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Abstract—This work considers mitigation of information leak-
age between communication and sensing operations in joint
communication and sensing systems. Specifically, a discrete mem-
oryless state-dependent broadcast channel model is studied in
which (i) the presence of feedback enables a transmitter to
simultaneously achieve reliable communication and channel state
estimation; (ii) one of the receivers is treated as an eavesdrop-
per whose state should be estimated but which should remain
oblivious to a part of the transmitted information. The model
abstracts the challenges behind security for joint communication
and sensing if one views the channel state as a characteristic
of the receiver, e.g., its location. For independent identically
distributed (i.i.d.) states, perfect output feedback, and when part
of the transmitted message should be kept secret, a partial
characterization of the secrecy-distortion region is developed. The
characterization is exact when the broadcast channel is either
physically-degraded or reversely-physically-degraded. The char-
acterization is also extended to the situation in which the entire
transmitted message should be kept secret. The benefits of a joint
approach compared to separation-based secure communication
and state-sensing methods are illustrated with a binary joint
communication and sensing model.

I. INTRODUCTION

The vision for next generation mobile communication net-
works includes a seamless integration of the physical and
digital world. Key to its success is the network’s ability to
automatically react to changing environments thanks to tight
harmonization of communication and sensing [1]. For instance,
a mmWave joint communication and radar system can be used
to detect a target or to estimate crucial parameters relevant to
communication and adapt the communication scheme accord-
ingly [2]. Joint communication and sensing (JCAS) techniques
are envisioned more broadly as key enablers for a wide range
of applications, including connected vehicles and drones.

Several information-theoretic studies of JCAS have been
initiated, drawing on existing results for joint communication
and state estimation [3]–[6]. Motivated by the integration
of communication and radar for mmWave vehicular applica-
tions, [7] considers a model in which messages are encoded
and sent through a state-dependent channel with generalized
feedback both to reliably communicate with a receiver and
to estimate the channel state by using the feedback and
transmitted codewords. The optimal trade-off between the
communication rate and channel-state estimation distortion is
then characterized for memoryless JCAS channels and i.i.d.
channel states that are causally available at the receiver and
estimated at the transmitter by using a strictly causal channel

output. Follow up works have extended the model to multiple
access channels [8] and broadcast channels [9].

The nature of JCAS mandates the use of a single modality
for the communication and sensing functions so that sensing
signals carry information, which then creates situations in
which leakage of sensitive information can occur. For example,
a target illuminated for sensing its range has the ability to
gather potentially sensitive information about the transmitted
message [10]. As the sensing performance and secrecy perfor-
mance are both measured with respect to the signal received at
the sensed target, there exists a trade-off between the two [2].
To capture and characterize this trade-off, we extend the JCAS
model in [7] by introducing an eavesdropper in the network.
The objective of the transmitter is then to simultaneously
communicate reliably with the legitimate receiver, estimate
the channel state, and hide a part of the message from
the eavesdropper. The channel state is modeled as a two-
component state capturing the characteristics of each individual
receiver, the feedback is modeled as perfect output feedback
for simplicity, and the transmitted message is divided into two
parts, only one of which should be kept (strongly) secret (this
is called partial secrecy in [11]). We develop inner and outer
bounds for the secrecy-distortion region of this partial-secrecy
scenario under a strong secrecy constraint when i.i.d. channel
states are causally available at the corresponding receivers.
The bounds match when the JCAS channel is physically- or
reversely-physically-degraded and the outer bound also applies
to the case of noisy generalized feedback. We also extend these
characterizations to the case in which the entire transmitted
message should be kept secret. The proposed secure JCAS
models can be viewed as extensions of the wiretap channel
with feedback models [12]–[19]. Our achievability proof lever-
ages the output statistics of random binning (OSRB) method
[20]–[22] to obtain strong secrecy. A binary JCAS channel
example with multiplicative Bernoulli states illustrates how
secure JCAS methods may outperform separation-based secure
communication and state-sensing methods.

II. PROBLEM DEFINITION

We consider the secure JCAS model shown in Fig. 1,
which includes a transmitter equipped with a state estimator, a
legitimate receiver, and an eavesdropper (Eve). The transmitter
attempts to reliably transmit a uniformly distributed message
M = (M1,M2) ∈ M = M1 × M2 through a memo-
ryless state-dependent JCAS channel with known statistics
PY1Y2Z|S1S2X and i.i.d. state sequence (Sn

1 , S
n
2 ) ∈ Sn1 × Sn2
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Fig. 1. JCAS model with partial secrecy, where only M2 should be kept
secret from Eve, for j = 1, 2 and i = [1 : n]. We mainly consider JCAS
with perfect output feedback, where Zi−1 = (Y1,i−1, Y2,i−1).

generated according to a known joint probability distribution
PS1S2

. The transmitter calculates the channel inputs Xn as
Xi = Enci(M,Zi−1) ∈ X for all i = [1 : n], where Enci(·)
is an encoding function and Zi−1 ∈ Zi−1 is the delayed
channel output feedback. The legitimate receiver that observes
Y1,i ∈ Y1 and S1,i for all channel uses i = [1 : n] should
reliably decode both M1 and M2 by forming the estimate
M̂ = Dec(Y n

1 , S
n
1 ), where Dec(·) is a decoding function.

The eavesdropper that observes Y2,i ∈ Y2 and S2,i should
be kept ignorant of M2. Finally, the transmitter estimates the
state sequence (Sn

1 , S
n
2 ) as Ŝn

j = Estj(X
n, Zn) ∈ Sj

∧n
for

j = 1, 2, where Estj(·, ·) is an estimation function. Unless
specified otherwise, all sets S1, S2, Ŝ1, Ŝ2, X , Y1, Y2, and Z
are finite.

For simplicity, we consider the perfect output feedback case
in which for all i = [2 : n] we have

Zi−1 = (Y1,i−1, Y2,i−1). (1)

Although this is explicitly used in our achievability proofs,
some of our converse results hold for generalized feedback. We
next define the strong secrecy-distortion region for the problem
of interest.

Definition 1. A secrecy-distortion tuple (R1, R2, D1, D2) is
achievable if, for any δ > 0, there exist n ≥ 1, one encoder,
one decoder, and two estimators Estj(Xn, Y n

1 , Y
n
2 ) = Ŝn

j such
that

1

n
log |Mj | ≥ Rj − δ for j=1, 2 (rates) (2)

Pr
[
M 6= M̂

]
≤ δ (reliability) (3)

I(M2;Y
n
2 |Sn

2 ) ≤ δ (strong secrecy) (4)

E
[
dj(S

n
j , Ŝ

n
j )
]
≤Dj+δ for j=1, 2 (distortions) (5)

where dj(sn, ŝn) = 1
n

∑n
i=1 dj(si, ŝi) for j=1, 2 are bounded

per-letter distortion metrics.

The secrecy-distortion region RPS,POF is the closure of the
set of all achievable tuples with partial secrecy and perfect
output feedback.

The use of per-letter distortion metrics dj(·, ·) in conjunction
with i.i.d. states simplifies the problem to a rate distortion
region characterization [7]–[9]; in fact, past observations are
independent of present and future ones, lending the transmitter
no state prediction ability to adapt its transmission on the fly.
Analyzing JCAS models with memory leads to conceptually
different results, see, e.g., [23].

Remark 1. The strong secrecy condition (4) is equivalent
to I(M2;Y

n
2 , S

n
2 ) ≤ δ since the transmitted message is

independent of the state sequence.

III. BOUNDS FOR JCAS WITH PARTIAL-SECRECY

We next provide inner and outer bounds for the secrecy-
distortion region RPS,POF; see Section VI for a proof sketch.

Define [a]+ = max{a, 0} for a ∈ R.

Proposition 1 (Inner Bound). RPS,POF includes the union
over all joint distributions PUPV |UPX|V of the rate tuples
(R1, R2, D1, D2) such that

R1 ≤ I(U ;Y1|S1) (6)
R2 ≤ min{R′2, (I(V ;Y1|S1)−R1)} (7)

Dj ≥ E[dj(Sj , Ŝj))] for j = 1, 2 (8)

where

PUVXY1Y2S1S2 = PU |V PV |XPXPS1S2PY1Y2|S1S2X , (9)

R′2 = [I(V ;Y1|S1, U)− I(V ;Y2|S2, U)]+

+H(Y1|Y2, S2, S1, V ) (10)

and Est∗j (x, y1, y2) = ŝj for j = 1, 2 are per-letter state
estimators such that dj(x, y1, y2) is equal to

argmin
s̃∈Ŝj

∑
sj∈Sj

PSj |XY1Y2
(sj |x, y1, y2) dj(sj , s̃). (11)

One can limit |U| to

(min{|X |, |Y1|, |Y2|}+2) (12)

and |V| to

(min{|X |, |Y1|, |Y2|}+2) · (min{|X |, |Y1|, |Y2|}+1). (13)

Proposition 2 (Outer Bound). RPS,POF is included in the union
over all joint distributions PV X of the rate tuples in (8) and

R1 ≤ I(V ;Y1|S1) (14)

R2 ≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y2, S2, V )

)
,(

I(V ;Y1|S1)−R1

)}
(15)

where (9) with constant U follows and we can apply the
deterministic per-letter estimators Est∗j (x, y1, y2) = ŝj for
j = 1, 2 by using (11). One can limit the cardinality to

|V|≤(min{|X |, |Y1|, |Y2|}+1). (16)

Remark 2. Since we consider perfect feedback as in (1),
the outer bound proposed in Proposition 2 is also valid for



the general JCAS problem depicted in Fig. 1, in which the
feedback Zi−1 can be any noisy version of (Y1,i−1, Y2,i−1).

We next characterize the exact strong secrecy-distortion
regions for physically-degraded and reversely-physically-
degraded JCAS channels with partial secrecy and perfect
output feedback, defined below; see also [9, Definition 2].

Definition 2. A JCAS channel PY1Y2|S1S2X is physically-
degraded if we have

PY1Y2|S1S2X = PS1PY1|S1XPY2S2|S1Y1
. (17)

The channel is reversely-physically-degraded if the degradation
order is changed and

PY1Y2|S1S2X = PS2
PY2|S2XPY1S1|S2Y2

. (18)

The physically-degraded corresponds to a situation in which
the observations (Y n

2 , S
n
2 ) of the eavesdropper are degraded

versions of observations (Y n
1 , S

n
1 ) of the legitimate receiver

with respect to the channel input Xn.

Theorem 1. RPS,POF for a physically-degraded JCAS problem
with partial secrecy and perfect output feedback is the region
defined in Proposition 2.

Proof Sketch: Since the outer bound given in Proposi-
tion 2 does not assume any degradedness, the converse proof
for Theorem 1 follows from the outer bound. Furthermore, the
achievability proof for Theorem 1 follows by modifying the
proof of the inner bound in Proposition 1. We next provide a
sketch of the modifications for a physically-degraded JCAS.

First, Un is not used, i.e., Un is eliminated from the
achievability proof. Second, to each vn(k) we assign four
random bin indices (Fv(k),Wv1(k),Wv2(k), Lv(k)) such that
Fv(k) ∈ [1 : 2nR̃v ], Wv1(k) ∈ [1 : 2nRv1 ], Wv2(k) ∈ [1 :

2nRv2 ], and Lv(k) ∈ [1 : 2nRv ] for all k = [1 : b] independently
such that M1(k) =Wv1(k) and M2(k) = (Wv2(k), Lv(k)). As
in (53), we impose the reliability constraint

R̃v > H(V |Y1, S1) (19)

as in (55) and (56) we impose the strong secrecy constraints

Rv2 + R̃v < H(V |Y2, S2) (20)

Rv < H(Y1|Y2, S2, S1, V ) (21)

and as in (57) we impose the mutual independence and
uniformity constraint

Rv1 +Rv2 + R̃v +Rv < H(V ). (22)

We remark that we have H(V |Y2, S2) ≥ H(V |Y1, S1) for
all physically-degraded JCAS channels, i.e., we obtain

[I(V ;Y1|S1)− I(V ;Y2|S2)]
+

(a)
= H(V |Y2, S2)−H(V |Y1, S1) (23)

where (a) follows because V is independent of (S1, S2) and
since

V −X − (Y1, S1)− (Y2, S2) (24)

form a Markov chain for these JCAS scenarios. Define

R′2,deg = [I(V ;Y1|S1)− I(V ;Y2|S2)]
+ +H(Y1|Y2, S2, S1, V )

(a)
= H(V |Y2, S2)−H(V |Y1, S1) +H(Y1|Y2, S2, S1, V )

= H(Y1, V |Y2, S2, S1)−H(V |Y1, S1) +H(S1|Y2, S2)

−H(S1|Y2, S2, V )

= H(V |Y2, S2, S1, Y1)−H(V |Y1, S1) +H(Y1|Y2, S2, S1)

+H(S1|Y2, S2)−H(S1|Y2, S2, V )

(b)
= H(Y1, S1|Y2, S2)−H(S1|Y2, S2, V ) (25)

where (a) follows by (23) and (b) follows from the Markov
chain in (24).

Applying the Fourier-Motzkin elimination [24] to (19)-(22),
for any ε > 0 one can achieve

R1=Rv1 = I(V ;Y1, S1)− 2ε = I(V ;Y1|S1)− 2ε (26)

and for any R1 that is less than or equal to (26), one can
achieve

R2=Rv2+Rv=min{R′2,deg, (I(V ;Y1|S1)−R1)}−3ε. (27)

Furthermore, the proofs for achievable distortions, sufficiency
of given deterministic estimators, inversion of the problem
in the source model into the problem in the channel model,
and elimination of the public indices follow similarly as in
Section VI-A, so we omit them.

Lemma 1. RPS,POF for a reversely-physically-degraded JCAS
problem with partial secrecy and perfect output feedback is
the union over all joint distributions PV X of the rate tuples
satisfying (8), (14), and

R2 ≤ min
{
H(Y1|Y2, S2, S1),

(
I(V ;Y1|S1)−R1

)}
(28)

for joint distributions as in (9) but with constant U , and we can
apply the deterministic per-letter estimators Est∗j (x, y1, y2) =
ŝj for j = 1, 2 by using (11). One can limit the cardinality to

|V| ≤ min{|X |, |Y1|, |Y2|}. (29)

Proof Sketch: The proof follows by showing that the
inner and outer bounds in Propositions 1 and 2, respectively,
match after elimination of Un from the proof of achievability,
as in the proof for Theorem 1 above. After removal of U , i.e.,
U is constant, by (7) we have

R2

(a)

≤ min
{
H(Y1|Y2, S2, S1, V ),

(
I(V ;Y1|S1)−R1

)}
(b)
= min

{
H(Y1|Y2, S2, S1),

(
I(V ;Y1|S1)−R1

)}
(30)

where (a) follows since V is independent of (S1, S2) and since
H(V |Y1, S1) ≥ H(V |Y2, S2) for all reversely-physically-
degraded JCAS channels because of the Markov chain

V −X − (Y2, S2)− (Y1, S1) (31)

and (b) follows because of the Markov chain

V −X − (Y2, S2, S1)− Y1. (32)



Furthermore, by (15) we obtain

R2

(a)

≤ min
{(
H(Y1, S1|Y2, S2, V )−H(S1|Y2, S2, V )

)
,(

I(V ;Y1|S1)−R1

)}
(b)
= min

{
H(Y1|Y2, S2, S1),

(
I(V ;Y1|S1)−R1

)}
(33)

where (a) follows from the Markov chain in (31) and (b)
follows from the Markov chain in (32).

IV. BOUNDS FOR JCAS WITH SINGLE SECURE MESSAGE

We next give inner and outer bounds for the JCAS problem
with perfect output feedback, in which there is a single mes-
sage M =M2 that should be kept secret from an eavesdropper,
i.e., M1 = ∅ in Fig. 1. For this problem, the definitions
of an achievable secrecy-distortion tuple (R,D1, D2) and
corresponding strong secrecy-distortion region RPOF follow
similarly as in Definition 1 by eliminating (M1, R1) and by
replacing (M2, R2,RPS,POF) with (M,R,RPOF), respectively.

Proposition 3. (Inner Bound): RPOF includes the union over
all joint distributions PV X of the rate tuples (R,D1, D2)
satisfying (8) and

R ≤ min{R′′2 , I(V ;Y1|S1)} (34)

where

PV XY1Y2S1S2
= PV |XPXPS1S2

PY1Y2|S1S2X , (35)

R′′2 = [I(V ;Y1|S1)− I(V ;Y2|S2)]
+

+H(Y1|Y2, S2, S1, V ) (36)

and apply the deterministic per-letter estimators
Est∗j (x, y1, y2) = ŝj for j = 1, 2 by using (11). One
can limit the cardinality as in (16).

Proposition 4. (Outer Bound): RPOF is included in the union
over all PX of the rate tuples satisfying (8) and

R ≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y2, S2, X)

)
,

I(X;Y1|S1)
}

(37)

where we can apply the deterministic per-letter estimators
Est∗j (x, y1, y2) = ŝj for j = 1, 2 by using (11).

Proof Sketch: The proof of the inner bound in Propo-
sition 3 follows by eliminating Un in the proof of the inner
bound for Proposition 1 such that R1 = Rv1 = 0 and by
imposing (19)-(22) after replacing Rv2 with Rv since for this
case we have M(k) = (Wv(k), Lv(k)) for all k = [1 : b].

We next prove the outer bound. Assume that for some δn>0
and n ≥ 1, there exist an encoder, decoder, and estimators such
that all constraints imposed on the JCAS problem with perfect

output feedback are satisfied for some tuple (R,D1, D2). We
then obtain

nR
(a)

≤ I(M ;Y n
1 |Sn

1 ) + nεn
(b)

≤
n∑

i=1

H(Y1,i|S1,i)−H(Y n
1 |Sn

1 , X
n) + nεn

(c)
=

n∑
i=1

(
H(Y1,i|S1,i)−H(Y1,i|S1,i, Xi) + εn

)
=

n∑
i=1

(I(Xi;Y1,i|S1,i) + εn) (38)

where (a) follows because M and Sn
1 are independent, and

from Fano’s inequality and (3) for an εn > 0 such that εn → 0
if δn → 0, which is similar to (60) below, (b) follows since
M − (Xn, Sn

1 ) − Y n
1 form a Markov chain, and (c) follows

because the JCAS channel is memoryless and state sequence
is i.i.d. Furthermore, we also have

nR
(a)

≤ I(M ;Y n
1 , Y

n
2 , S

n
1 , S

n
2 ) + nεn

= H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ) + I(Y n

2 , S
n
2 ;M)

−H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ,M) + nεn

(b)

≤
n∑

i=1

H(Y1,i, S1,i|Y2,i, S2,i) + δn

−H(Sn
1 |Y n

2 , S
n
2 , X

n) + nεn

(c)
=

n∑
i=1

H(Y1,i, S1,i|Y2,i, S2,i) + δn

−
n∑

i=1

H(S1,i|Y2,i, S2,i, Xi) + nεn (39)

where (a) follows from Fano’s inequality and (3) for an
εn > 0 such that εn → 0 if δn → 0, (b) follows by
(4) and from Remark 1 after replacing M2 with M for the
JCAS problem with perfect output feedback, and because
M−(Y n

2 , S
n
2 , X

n)−Sn
1 form a Markov chain, and (c) follows

because the JCAS channel is memoryless and state sequence
is i.i.d. Thus, by applying (66) given below and introducing
a uniformly-distributed time-sharing random variable, as being
applied in the proof of outer bound for Proposition 2, we prove
the outer bound for the JCAS problem with perfect output
feedback by letting δn → 0.

Similar to Section III, we characterize the exact strong
secrecy-distortion regions for the JCAS problem with per-
fect output feedback when the JCAS channel PY1Y2|S1S2X

is physically-degraded, as in (17), or reversely-physically-
degraded, as in (18).

Theorem 2. RPOF for a physically-degraded JCAS problem
with perfect output feedback is the region defined in Proposi-
tion 4.

Proof: Since the outer bound given in Proposition 4 is
valid for any JCAS channel, the converse proof for Theorem 2
follows from Proposition 4. Furthermore, the achievability



proof for Theorem 2 follows by modifying the proof of the in-
ner bound for Theorem 1 such that we assign V n(k) = Xn(k)
for all k = [1 : b] and then apply the same OSRB steps for
Xn(k) rather than V n(k).

Lemma 2. RPOF for a reversely-physically-degraded JCAS
problem with perfect output feedback is the union over all PX

of the rate tuples in (8) and

R ≤ min
{
H(Y1|Y2, S2, S1), I(X;Y1|S1)

}
(40)

where we can apply the deterministic per-letter estimators
Est∗j (x, y1, y2) = ŝj for j = 1, 2 by using (11).

Proof Sketch: We show that the inner and outer bounds
in Propositions 3 and 4, respectively, match after assigning
V n = Xn in the proof of achievability, i.e., we choose V = X
that is allowed by (35), such that by (34) we obtain

R
(a)

≤ min
{
H(Y1|Y2, S2, S1, X), I(X;Y1|S1)

}
(b)
= min

{
H(Y1|Y2, S2, S1), I(X;Y1|S1)

}
(41)

where (a) follows since X is independent of (S1, S2) and since
H(X|Y1, S1) ≥ H(X|Y2, S2) for all reversely-physically-
degraded JCAS channels because of the Markov chain in
(31) and (b) follows because of the Markov chain in (32).
Furthermore, by (37) we have

R
(a)

≤ min
{(
H(Y1, S1|Y2, S2, X)−H(S1|Y2, S2, X)

)
,

I(X;Y1|S1)
}

(b)
= min

{
H(Y1|Y2, S2, S1), I(V ;Y1|S1)

}
(42)

where (a) follows from the Markov chain in (31) and (b)
follows from the Markov chain in (32).

V. BINARY JCAS CHANNEL WITH MULTIPLICATIVE
BERNOULLI STATES EXAMPLE

We next consider a JCAS with perfect output feedback
example, in which JCAS channel input and output alphabets
are binary with multiplicative Bernoulli states, i.e., we have

Y1 = S1 ·X, Y2 = S2 ·X (43)

where PS1S2(0, 0) = (1 − q), PS1S2(1, 1) = qα, and
PS1S2(1, 0) = q(1−α) for fixed q, α ∈ [0, 1], so the JCAS
channel satisfies (17) [9, Section IV-A].

Define the binary entropy function, for any c ∈ [0, 1], as

Hb(c) = −c log c− (1− c) log(1− c). (44)

Lemma 3. The strong secrecy-distortion region RPOF for a
binary JCAS channel with multiplicative Bernoulli states char-
acterized by parameters (q, α), and with Hamming distortion
metrics is the union over all p = Pr[X = 1] of the rate tuples

R ≤ q(1− α)Hb(p) (45)
D1 ≥ (1− p) ·min{q, (1− q)} (46)
D2 ≥ (1− p) ·min{qα, (1− qα)}. (47)

Proof Sketch: The proof follows by evaluating the strong
secrecy-distortion region RPOF defined in Theorem 2 since the
JCAS channel considered is physically-degraded. Proofs for
(46) and (47) follow by choosing Est∗j (1, y1, y2) = yj and
Est∗j (0, y1, y2) = 1{Pr[Sj = 1] > 0.5} for j = 1, 2 that
result from (11), which are equivalent to the proofs for [9,
Eqs. (27c) and (27d)]. We next have I(X;Y1|S1) = qHb(p),
which is equivalent to the proof for [9, Eq. (27a)] with r = 1.
Furthermore, we obtain

H(Y1, S1|Y2, S2)−H(S1|Y2, S2, X)

(a)
= H(S1|S2) +H(Y1|S1, Y2, S2)−H(S1|S2)

(b)
= PS1S2(1, 0)H(Y1|S1 = 1, S2 = 0)

(c)
= PS1S2

(1, 0)H(X) = q(1− α)Hb(p) (48)

where (a) follows since S1 − S2 − (Y2, X) form a Markov
chain for the considered JCAS channel, (b) follows since if
S1 = 0, then Y1 = 0, and if (S1, S2) = (1, 1), then Y1 = Y2,
and (c) follows since Y1 = X that is because of S1 = 1 and
since X is independent of (S1, S2). Therefore, we have

R ≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y2, S2, X)

)
,

I(X;Y1|S1)
}

= q(1− α)Hb(p) (49)

which follows since α ≤ 1.
We remark that for the considered example, the rate

of the securely transmitted message is upper bounded by(
H(Y1, S1|Y2, S2)−H(S1|Y2, S2, X)

)
rather than I(X;Y1|S1),

the latter of which is the upper bound for the rate for the same
example when there is no secrecy constraint [9, Corollary 4].
Thus, the amount of rate loss due to the strong secrecy
constraint is qαHb(p) for this JCAS example. Furthermore,
one can show that JCAS methods achieve significantly better
performance than separation-based secure communication and
state-sensing methods. First, one can show that the maximum
secure communication rate in (45) is achieved with p = 0.5,
whereas the minimum distortions in (46) and (47) are achieved
with p = 1 that results in zero communication rate. Then,
applying time sharing between the tuples achieved by the
separation based methods to convexify and enlarge the region,
we observe that the secrecy-distortion region that can be
achieved by applying the JCAS methods is strictly larger than
the region being achieved by the separation based methods.
These analyses are analogous to the comparisons between joint
and separation-based secrecy and reliability methods for the
secret key agreement problem, as discussed in [25]–[27].

VI. PROOFS FOR PROPOSITIONS 1 AND 2

A. Inner Bound

Proof Sketch: We use the OSRB method [21], [22] for
the achievability proofs, applying the steps in [28, Section 1.6],
see also [29].



Since in the JCAS problem with partial secrecy and perfect
output feedback an encoder maps messages into length-n code-
words in the channel model, we first define an operationally
dual problem to this problem in the source model, as defined
in [21] and which is called Protocol A. Reliability and secrecy
analysis for a proposed random code construction is conducted
for Protocol A. We next define a problem in the channel model,
called Protocol B, that is equivalent to the JCAS problem
considered with the addition of a public index. The joint
probability distributions in Protocols A and B are shown to be
almost equal under given constraints, which allows to invert
the random source code proposed for Protocol A to construct
a random channel code for Protocol B. The achievability proof
by using the OSRB method follows by proving that the public
index in Protocols A and B can be fixed ahead of transmissions.

Protocol A (dual problem in the source model): Similar to
the dual problem defined in [29] for a wiretap channel, the
dual of the JCAS problem with partial secrecy and perfect
output feedback is a secret key agreement model, where a
source encoder observes Xn ∈ Xn and independently and
uniformly randomly assigns two random bin indices M ∈
M = M1 × M2 and F ∈ F to it. In the dual source
model, M = (M1,M2) represents a secret key that should
be reliably reconstructed at a source decoder that observes
(Y n

1 , S
n
1 ) ∈ Yn

1 × Sn1 and F to satisfy (3), whereas the
eavesdropper observes (Y n

2 , S
n
2 ) ∈ Yn

2 × Sn2 and F , which
determines the conditions to satisfy the strong secrecy con-
straint (4). Furthermore, the state sequence estimation at the
source encoder by using perfect output feedback should satisfy
the distortion constraints (5).

While the strictly causal observation of the i.i.d. state
through feedback does not provide opportunities to improve
reliability, feedback offers significant opportunities to improve
secrecy. Hence, we apply a block Markov coding scheme that
consists of b ≥ 2 transmission blocks, each with n channel
uses, to transmit (b − 1) independent messages M(k) =
(M1(k),M2(k)). In every block, secret keys are distilled from
the states and used to protect messages in the subsequent
block. In the following, all n-letter random variables are i.i.d.
according to (9) for all k = [1 : b], obtained by fixing
PU |V , PV |X , and PX so that there exist associated per-letter
estimators Estj(x, y1, y2) = Ŝj for j = 1, 2 that satisfy

E[dj(Sn
j ,Est

n
j (X

n, Y n
1 , Y

n
2 ))] ≤ Dj + εn (50)

where εn > 0 such that εn → 0 when n → ∞. The block k
under consideration is indicated by adding the argument (k)
to the variables, e.g., M(k) refers to the message in block k,
etc.

For all blocks k = [1 : b] we construct codes as follows. To
each un(k) independently and uniformly assign two random
bin indices (Fu(k),Wu(k)) such that Fu(k) ∈ [1 : 2nR̃u ] and
Wu(k) ∈ [1 : 2nRu ] for all k = [1 : b]. Furthermore, to
each vn(k) independently and uniformly assign three random
indices (Fv(k),Wv(k), Lv(k)) such that Fv(k) ∈ [1 : 2nR̃v ],
Wv(k) ∈ [1 : 2nRv ], and Lv(k) ∈ [1 : 2nRv ] for all k = [1 : b].

Finally, to each yn1 (k−1), independently and uniformly assign
a random index Ly1(k− 1) ∈ [1 : 2nRy1 ] = [1 : 2nRv ].
Conceptually, the indices F (k) = (Fu(k), Fv(k)) represent the
public choice of an independent encoder-decoder pair in block
k ∈ [1 : b], while the indices W (k) = (Wu(k),Wv(k), Lv(k))
represent the messages that should be reliably reconstructed at
the decoder. Only Wv(k) should be directly kept secret from
the eavesdropper. Lv(k) represents a non-secure additional
message that should be reliably reconstructed at the decoder
and can be kept secret by applying a one-time pad as used
in the chosen-secret model [30]–[32]. The role of the index
Ly1(k− 1), which is known at all legitimate parties thanks to
the perfect output feedback, is to provide the required key
for the one-time pad in block k. Secure reconstruction of
Lv(k) follows by summing it in modulo-2nRv with Ly1(k−1).
Thus, rather than reconstructing Lv(k) directly, the decoder
reconstructs the modulo sum (Lv(k)+Ly1(k−1)) by estimating
V n(k) since it then can use its observation Y n

1 (k−1) from
the previous transmission block to obtain Lv(k) by applying
modulo-2nRv subtraction. If Ly1(k−1) is uniformly distributed
and independent of all random variables in the source model
except Y n

1 (k− 1), then the modulo sum is also uniformly
distributed and independent of Lv(k), which allows to keep
Lv(k) secret from the eavesdropper. Furthermore, we assign
for all k = [2 : b] that

M1(k) =Wu(k), M2(k) = (Wv(k), Lv(k)). (51)

We next impose conditions on the bin sizes to satisfy all
constraints given in Definition 1.

Using a Slepian-Wolf [33] decoder, one can reliably recon-
struct Un(k) from (Y n

1 (k), Sn
1 (k), Fu(k)) for all k = [1 : b]

such that the expected value of the error probability taken over
the random bin assignments vanishes when n→∞, if we have
[21, Lemma 1]

R̃u > H(U |Y1, S1). (52)

Similarly, one can next reliably reconstruct V n(k) from
(Y n

1 (k), Sn
1 (k), Fv(k), U

n(k)) for all k = [1 : b] if we have

R̃v > H(V |Y1, S1, U). (53)

Thus, (3) is satisfied if (52) and (53) are satisfied and the
backward decoding is applied, which is a method proposed
in [34] that requires to wait until all b block transmissions
are complete to decode the blocks in the backward order as
k = b, b − 1, . . . , 2 such that reliable reconstruction of Lv(k)
is possible by using Y n

1 (k−1). Furthermore, the large delay of
nb channel uses to apply backward decoding can be reduced
by applying a binning step in the channel model or using the
sliding window decoding [35], as mentioned in [36, pp. 393].

The public index Fu(k) and secret key Wu(k) are almost
independent and uniformly distributed for all k = [1 : b] if we
have [21, Theorem 1]

Ru + R̃u < H(U) (54)

since then the expected value, which is taken over the random
bin assignments, of the variational distance between the joint



probability distributions Unif[1 : 2nRu ] · Unif[1 : 2nR̃u ] and
PWuFu vanishes when n → ∞. Furthermore, the public
index Fv(k) and secret key Wv(k) are almost independent
of (Y n

2 (k), Sn
2 (k), U

n(k)) and uniformly distributed for all
k = [1 : b] if we have

Rv + R̃v < H(V |Y2, S2, U). (55)

Similarly, the random bin index Ly1(k−1) is almost indepen-
dent of (Y n

2 (k−1), Sn
2 (k−1), Sn

1 (k−1), V n(k−1), Un(k−1))
and uniformly distributed for all k = [2 : b] if we have

Ry1 = Rv

< H(Y1|Y2, S2, S1, V, U)
(a)
= H(Y1|Y2, S2, S1, V ) (56)

where (a) follows because U − V − (Y1, Y2, S1, S2) form a
Markov chain. Thus, (4) is satisfied by applying the one-time
padding step above if (55) and (56) are satisfied. Consider next
the joint condition that (Fu(k),Wu(k), Fv(k),Wv(k), Lv(k))
are almost mutually independent and uniformly distributed for
all k = [1 : b] if we have

Ru + R̃u +Rv + R̃v +Rv < H(V,U). (57)

Applying the Fourier-Motzkin elimination to (52)-(57), for
any ε > 0 we can achieve

R1 = Ru = I(U ;Y1, S1)− 2ε
(a)
= I(U ;Y1|S1)− 2ε (58)

R2 = Rv +Rv
(b)
= min{R′2, (I(V ;Y1|S1)−R1)} − 3ε (59)

where (a) follows since U and S1 are independent and (b)
follows because (U, V ) are mutually independent of (S1, S2)
and if H(V |Y2, S2, U) ≤ H(V |Y1, S1, U), then Wv cannot be
securely reconstructed, i.e., we then have Rv = 0.

We next consider the distortion constraints (5)
on channel-state estimations. Since we assume per-
letter estimators given in (50), (3) is satisfied by
imposing the conditions above on the bin sizes, and all
(un(k), vn(k), xn(k), yn1 (k), y

n
2 (k), s

n
1 (k), s

n
2 (k)) tuples are

in the jointly typical set with high probability, by applying
the law of total expectation to bounded distortion metrics
and from the typical average lemma [36, pp. 26], distortion
constraints (5) are satisfied; see also [37]. Furthermore,
without loss of generality one can use the deterministic
per-letter estimators that result from (11) and the proof
follows from the proof of [7, Lemma 2] by replacing
(S,Z, Ŝ, d) with (Sj , (Y1, Y2), Ŝj , dj), respectively, since
Ŝj(k) − (X(k), Y1(k), Y2(k)) − Sj(k) form a Markov chain
for all j = 1, 2 and k = [1 : b].

Protocol B (main problem in the channel model with
common randomness assistance): In Protocol B, we consider
the JCAS problem with partial secrecy and perfect output
feedback, and assist the problem with the public index F (k)
for all k = [1 : b] such that (3)-(5) are satisfied also for
Protocol B by choosing R1 and R2 as in (58) and (59),
respectively. The proof of this result follows mainly by proving
that the joint probability distribution obtained in Protocol A is
almost preserved in Protocol B, i.e., we prove for n → ∞

that 1) the limit of the expectation, defined over the random
binning operations, of the variational distance between the joint
probability distributions obtained in Protocol B and required
for the reliability constraint is 0; 2) the limit of the random
probability, defined over the random binning operations, that
Kullback-Leibler divergence between the joint probability dis-
tributions obtained in Protocol B and required for the secrecy
constraint is greater than 0 is 0. Since the proof steps are
standard and mainly repeat the steps in [21], we omit them; see
[29, Section IV] for an extensive proof for a wiretap channel.

Now suppose the public indices F (k) are generated
uniformly at random for all k = [1 : b] indepen-
dently. The encoder generates (Un(k), V n(k)) according
to PUn(k)V n(k)|Xn(k)Fu(k)Fv(k) obtained from the binning
scheme above to compute the bins Wu(k) from Un(k) and
(Wv(k), Lv(k)) from V n(k), respectively, for all k = [1 : b].
This procedure induces a joint probability distribution that is
almost equal to PUVXY1Y2S1S2

fixed above [28, Section 1.6].
We remark that the reliability and secrecy metrics considered
above are expectations over all possible realizations F = f .
Thus, applying the selection lemma [38, Lemma 2.2], these
results prove the inner bound in Proposition 1 by choosing an
ε > 0 such that ε→0 when n→∞ and imposing b→∞.

B. Outer Bound

Proof Sketch: Assume that for some δn> 0 and n ≥ 1,
there exist an encoder, decoder, and estimators such that (3)-
(5) are satisfied for some tuple (R1, R2, D1, D2). Using Fano’s
inequality and (3), we have

H(M |Y n
1 , S

n
1 )

(a)

≤ H(M |M̂)≤nεn (60)

where (a) allows randomized decoding and εn=δn(R1+R2)+
Hb(δn)/n such that εn→0 if δn→0.

Let Vi , (M1,M2, Y
i−1
1 , Si−1

1 ) such that Vi − Xi −
(Y1,i, Y2,i, S1,i, S2,i) form a Markov chain for all i ∈ [1 : n]
by definition of the channel statistics.

Bound on R1: We have

nR1

(a)

≤ I(M1;Y
n
1 |Sn

1 ) + nεn

≤
n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|M1,M2, Y

i−1
1 , Sn

1 ) + εn
)

(b)
=

n∑
i=1

(
H(Y1,i|S1,i)−H(Y1,i|M1,M2, Y

i−1
1 , Si

1) + εn
)

(c)
=

n∑
i=1

(
I(Vi;Y1,i|S1,i) + εn) (61)

where (a) follows by (60) and because M1 and Sn
1 are

independent, (b) follows since

Sn
1,i+1 − (M1,M2, Y

i−1
1 , Si

1)− Y1,i (62)

form a Markov chain, and (c) follows from the definition of
Vi.



Bound on (R1 +R2): Similar to (61), we obtain

n(R1 +R2)
(a)

≤ I(M1,M2;Y
n
1 |Sn

1 ) + nεn
(b)

≤
n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|M1,M2, Y

i−1
1 , Si

1) + εn
)

(c)
=

n∑
i=1

(
I(Vi;Y1,i|S1,i) + εn) (63)

where (a) follows because (M1,M2, S
n
1 ) are mutually inde-

pendent and by (60), (b) follows since (62) form a Markov
chain, and (c) follows from the definition of Vi.

Bound on R2: We obtain

nR2

(a)

≤ I(M2;Y
n
1 , Y

n
2 , S

n
1 , S

n
2 ) + nεn

≤ H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ) +H(Y n

2 , S
n
2 )

−H(Y n
2 , S

n
2 |M2)−H(Y n

1 , S
n
1 |Y n

2 , S
n
2 ,M1,M2)+nεn

= H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ) + I(Y n

2 , S
n
2 ;M2)

−H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ,M1,M2)+nεn

(b)

≤
n∑

i=1

H(Y1,i, S1,i|Y2,i, S2,i) + δn + nεn

−
n∑

i=1

H(S1,i|Y2,i, S2,i,M1,M2, Y
i−1
1 , Si−1

1 )

(c)

≤
n∑

i=1

H(Y1,i, S1,i|Y2,i, S2,i) + δn + nεn

−
n∑

i=1

H(S1,i|Y2,i, S2,i, Vi) (64)

where (a) follows by (60), (b) follows by (4) and from
Remark 1, and because

(Y
n\i
2 , S

n\i
2 )− (Y2,i, S2,i,M1,M2, Y

i−1
1 , Si−1

1 )− S1,i (65)

form a Markov chain, and (c) follows from the definition of
Vi.

Distortion Bounds: We have for j = 1, 2

(Dj+δn)
(a)

≥ E
[
dj(S

n
j , Ŝ

n
j )
]
=

1

n
E
[
dj(Sj,i, Ŝj,i)

]
(66)

where (a) follows by (5), which is achieved by using the
deterministic per-letter estimators that result from (11).

Introduce a uniformly distributed time-sharing random vari-
able Q ∼ Unif[1 : n] that is independent of other random
variables, and define Y1 = Y1,Q, S1 = S1,Q, Y2 = Y2,Q,
S2 = S2,Q, and V = (VQ,Q), so V − X − (Y1, Y2, S1, S2)
form a Markov chain. The proof of the outer bound follows
by letting δn → 0.

Cardinality Bounds: We use the support lemma [39,
Lemma 15.4] to prove the cardinality bound, which is a
standard procedure, so we omit the proof.
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