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Abstract

We study fine-grained error bounds for differentially private algorithms for averaging and counting in
the continual observation model. For this, we use the completely bounded spectral norm (cb norm) from
operator algebra. For a matrix W, its cb norm is defined as
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where Q e W denotes the Schur product and ||-|| denotes the spectral norm. We bound the cb norm of two
fundamental matrices studied in differential privacy under the continual observation model: the counting
matrix Mcount and the averaging matrix Maverage. FOor Mcount, we give lower and upper bound whose
additive gap is 1 + % Our factorization also has two desirable properties sufficient for streaming setting:
the factorization contains of lower-triangular matrices and the number of distinct entries in the factorization
is exactly T. This allows us to compute the factorization on the fly while requiring the curator to store
a T-dimensional vector. For Mayerage, we show an additive gap between the lower and upper bound of
~ 0.64.
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1 Introduction

In the recent past, many large scale applications of data analysis involved repeated computations because of
the incidence of an infectious disease [App21, CDC20], typically with a goal of preparing some appropriate
response. However, privacy of the result (positive or negative infection) of a user is equally important. In
such an application, the system is required to continually produce outputs while preserving a robust privacy
guarantee such as differential privacy. Such an application is also not just a made-up example. In the first
work on differential privacy under continual observation (which coincided with an HIN1 outbreak in 2009),
Dwork et al. [DNPR10] used the following motivating example:

“Consider a website for HIN1 self-assessment. Individuals can interact with the site to learn
whether symptoms they are experiencing may be indicative of the HIN1 flu. The user fills in some
demographic data (age, zipcode, sex), and responds to queries about his symptoms (fever over
100.4° F?, sore throat?, duration of symptoms?). We would like to continually analyze aggregate
information of consenting users in order to monitor regional health conditions, with the goal, for
example, of organizing improved flu response. Can we do this in a differentially private fashion
with reasonable accuracy (despite the fact that the system is continually producing outputs)?"
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Figure 1: The lower and upper bound graphs for counting. The left graph is for additive error (with
€ = 0.5,6 = 107%) and comparison with binary tree mechanism and the right graph gives the difference
between the upper and lower bound.

For a stream of zeros and ones of length T Dwork et al. [DNPR10] and Chan et al. [CS511] showed that
there exists a differentially private mechanism, called the binary mechanism, for counting under continual
observation with an additive error of O (10g3/ 2 T). However, the constant has never been explicitly mentioned.
Given the wide applications of binary counting in many downstream tasks [BFM*13, CR21, CLSX12, FHO21,
HQYC21, JRSS21, Upal9, UUA21, UU21], constants can define whether the output is useful or not in practice.
In fact, from the practitioner point of view, the biggest problem is an interpretation of the asymptotic nature
of error given in O(+) notation. As Figure 1 illustrates, with the binary tree mechanism, the error is > 250 as
soon as the number of reporting events' goes beyond T = 10°. Other approaches that use dynamic versions
of off-the-shelf theoretically accurate privacy preserving algorithms for linear queries have constants that are
of order of 512, making them almost useless in practice [Cum?21]. This is because, for many organisations
that deploy life-saving and sparse resources, a large error is a big deterrence and the blatantly non-private
approach of rounding to nearest multiple of 100 becomes more appealing. With this in mind, we ask the
following central question:

Can we get a fine-grained bounds on constants in the error of differentially private algorithms
under continual observation?

The problem of reducing the additive error for counting under continual observation has been pursued
by many works (see [WCZ*21] and references therein). Most of these works use some heuristics or use
some smoothening techniques to improve their bound on the additive error’. These approaches make
the algorithm not scalable, especially when dealing with high-scale deployments, like that of exposure-
notification system (ENS) that has to operate when the stream length is in order of 1 million. Therefore, our
focus is to design a scalable mechanism that gives a fine-grained error bound.

One of the scalable techniques that provably reduces the error on linear queries is query matrix opti-
mization known as workload optimizer (see [MMHM21] and references therein). There are many techniques
presented for this, one of them being the factorization mechanism [ENU20, MNT20]. It can be shown that
the additive error (denoted as /o, error) of the factorization mechanism for linear queries represented by a
workload matrix M using the Gaussian mechanism scales as follows:

max A
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’ where |A]|,_,; :=
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(€,0) are the privacy budget, M = LR is a factorization of the workload matrix, | Q| is the number of queries
made, and C > 0is a constant defined by the concentration bound on the Gaussian distribution. The quantity
IIL|l—e0 [IR]]1_7 is known as the completely bounded norm (abbreviated as cb-norm and denoted by ||W|| )

I The United States of America alone has done more than 750 million COVID tests to date.
2The approach of Honaker requires to solve a linear program to estimate the weights to be placed on every nodes in the binary
mechanism.



in operator algebra [Pau82] and factorization norm (denoted by y2(W)) in functional analysis and computer
science [LMSS07]. The idea of factorization through Hilbert space to call it the factorization norm can be
traced back to the book of Pisier [Pis86] that cites the Steinspring representation of cb maps by Paulsen as a
factorization theorem [Pau21, PS85]. In this paper, we use the notation ||M||, to be consistent with the fact
that the cb norm is a norm [Pau82] and with the more accepted choice of notation in operator algebra from
where the concepts is borrowed.

log(1/9) 1 . . . . .
As for the error, CM in equation (1) is due to the concentration bound on the Gaussian

distribution followed by the union bound and can be concretely computed. In other words, to get a concrete
additive error, we need to find a factorization M = LR such that the quantity ||L||,_,, || R]|;_,, is not just
minimum, but can be computed concretely. Therefore, for the rest of the paper, we only focus on || M||,. In
particular, we focus on the cb norm of two workload matrices corresponding to two fundamental queries in
the continual observation model: counting and average.

We borrow the notations from Watrous [Wat18]. We use the notation v[i] to denote the i-th coordinate of a
vector v. For a matrix A, we use A[i, j| to denote its (7, j)-th coordinate, A[:, i] to denote its i-th column, A, :]
to denote its i-th row, || A, to denote its trace norm of square matrix, and || A|| to denote its operator norm.

Equipped with this notation, we can formally define our problem. The stream can be seen as a binary
vector, v € {0, 1}T, and at any time ¢ < T, we are concerned with the first t coordinates of v. This can be
equivalently written as the i-th entry of Mcount? and Mayerage?, Wwhere the matrix Mcount and Mayerage are
T x T lower triangular matrices as follows:
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Our goal is to give upper and lower bounds for || Mcount ||, and || Maverage|| - This in turn implies bounds
on the constants for the additive error of counting or computing the average of a stream of numbers under
continual observation using the factorization mechanism.

Our goal is to compute explicit factorization of both Mcount and Mayerage such that the factorization are
lower triangular matrices. The requirement of lower triangular matrices is a sufficient condition for continual
observation. However, it is also beneficial in the sense that it allows us to perform exact steps required in the
mechanism while getting an explicit bound on the additive error of the mechanism.

1.1 Ouwur results.

Bounding || Mcount||,- The question of finding the optimal value of || Mcount||., Was also raised in the
conference version of Matousek, Nikolov and Talwar [MNT20]. In their IMRN version, they cite a result by
Mathias [Mat93a, Corollary 3.5], which shows the following;:
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from the above. That is, the value of ||Mayerage| ., achieves its optimum in limit; however, since 4(T) is

always greater than or equal to ZILH(T), this implies that there is a slack between the two bounds for the
range of T one would be interested in practice. Finally, the proof of Mathias [Mat93a] relies on the dual
characterization of cb-norm, and, therefore, does not give an explicit factorization.

Using a completely different proof, we give a lower and upper bound on || Mcount||, that has a direct

dependence on T and the additive gap between the upper and lower bound is ~ 1 + %:

Theorem 1. Let Mcount € {0,1} 7 be the matrix defined in eq. (2). Then, we have

1 (T-1)
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We note that an asymptotic lower bound on the || Mcount||, is often attributed to Forster et al. [FSSS03]
in computer science. Forster et al.’s lower bound is more general, but for the special case of Mcount, it is a
weak version of the lower bound mentioned above®

Our upper bound constructs an explicit factorization of Mcount; therefore, the optimal way (up to an
additive constant of 1 + 1 ~ 1.30) to do the counting is to use our factorization. We note that it is possible
to get better factorization if entries of L and R are the quadratic extension of real field, ]R(\/j ); however,
we prefer to work on the real field. To show the tightness of our concrete bounds in Theorem 1, we plot the
graphs corresponding to the lower and upper bounds in Figure 1.

In a concurrent, independent work, McMahan et al. [MRT22] used similar techniques of matrix factoriza-
tion to show a bound in the expected 2 norm (equation 3 in their paper). In contrast, we give a bound in (e
norm. We also give an explicit factorization while they state their result in terms of solving an expensive
convex program (see Section 1.2 for more detailed comparison).

Our explicit factorization of Mcount = LTRisa square factorization and is such that both LT and R are
lower-triangular matrices. This allows us to perform binary counting in the continual observation model
efficiently.

The upper bound can be derived in many ways. One direct approach would be to find appropriate Kraus
operators of a linear map and then use the characterization by Haagerup and Pisier [HP93] of completely
bounded norm in terms of Haagerup norm. This approach yields an upper bound of 1 + @ ; however,
the proof of the result gets very technical and uses techniques from operator algebra. Moreover, it does not
directly give lower triangular factorization matrices LT and R.

Instead we use the characterization given by Paulsen [Pau82], which gives us a factorization in terms
of lower triangular matrices. More precisely, using three basic trigonometric identities, we show that the

n/2
(i,j)-thentry of R and L is an integral of even power of the cosine function, % J cos'7/(0)d6 for i > j. This
0

choice of matrices leads to the upper bound in eq. (3). Furthermore, it makes the analysis very simple with
the most technical part requiring bounding a function related to the derivative of the truncated Reimann
zeta function at s = 0. Bounding this function reduces to understanding a recurrence relation that yields a
monotonically decreasing sequence.

Our lower bound uses a characterization of completely bounded norm by Haagerup [Haa80].

Bounding ||Maveragel||o,- Our second result pertains to an almost tight bound on the matrix Mayerage:

Theorem 2. Let Mayerage € RT*T pe the matrix defined in eq. (2). Then ||Maverage|| = 1. Further, there is an
explicit factorization Mayerage = LT R such that, for T > 2, we have

T T(T +1)
HLH2—>00 ||RH1—>2 < m )

To get some context for the above bound, the upper bound is %2 in the limiting case T — co. In other
words, we have an additive gap of \7;—25 — 1 ~ 0.64 between the lower and upper bound. We leave it as an

open problem to close this additive gap on || Maverage || -
The proof of the theorem requires us to bound the sum of the first T terms in the Reimann zeta function,
{(s), ats = 2. Euler showed that {(2) = % as T — co [Eul06]. However, to get a bound that is a function of

T, we need to compute the partial sum. There are many proofs for {(2) = %2 and the reader might wonder
if it is possible to modify one of those proofs. However, most commonly known proofs do not give any
estimate for partial sum. For example, the first proof by Euler’s looks at the MacLaurin expansion of sin and
his second proof looked at Reimann zeta function for even s and its characterization in terms of Bernoulli’s
number [Eul06]. Similarly, proofs using Fourier expansion or Parseval identity also directly deals with the
infinite sum. To get the finite sum, we revisit the proof by Cauchy [Cau21]. Cauchy’s original proof uses

3 A weaker lower bound of % can be computed using Spreyer’s answer on math stack-exchange https://math.stackexchange.

com/q/2057845. This bound is weaker than the bound studied in nest algebra [Dav84]: || Mcount ||, = % log(T)..


https://math.stackexchange.com/q/2057845
https://math.stackexchange.com/q/2057845
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Figure 2: The lower and upper bound graphs for average. The left graph is for additive error (with
€ = 0.5,0 = 107%) and the right graph gives the difference between the upper and lower bound on the
absolute additive theoretical error.

Cauchy residue theorem; however, using de Moivre’s and Vieta’s formulas in Note VIII of Cauchy’s “Cours
d’Analyse," the proof (see the proof of Theorem 3) implies that

m  [T(2T-1) 1\*  [/1)? 1\* 27 [T(T+1)
< |14 (= - (=) < .
2T+1V ™ 3 —\/+<2)+(3>+ \7T) StV e
Taking the limit T — oo, the sandwich theorem gives us the value of {(2).
As in the case of Mcount, our lower bound follows using the characterization of Haagerup [Haa80].

1.2 Detailed Comparison with Previous Works

The binary tree mechanism of Chan et al. [CSS11] and Dwork et al. [DNPR10] and its improvement by
Honaker [Hon15] can be seen as a factorization. This has been independently noticed by McMahan et
al. [MRT22]. While Chan et al. [CSS11] and Dwork et al. [DNPR10] do allow computation on streaming data,
Honaker’s optimization [Hon15] does not because for a partial sum [1, ¢] it also uses the information stored
at the nodes formed after time ¢. Therefore, for this comparison with related work, we do not discuss the
Honaker’s optimization [Hon15]. Moreover, Honaker’s optimization is for minimizing the expected ¢3 error.
The other approaches used for binary counting under continual observation (see [WCZ*21] and references
therein) use some form of smoothening of the output. Considering this as a post-processing, we do not
discuss it any further.

The most relevant work with ours is the concurrent work by McMahan et al [MRT22] that also looks at
concrete bounds on performing counting under continual observation. The work of McMahan et al. [MRT22]
is motivated by performing optimization privately on streamed data. Therefore, they bound the expected
mean squared error (i.e., in £3 norm) on privately computing a running sum. On the other hand, we bound
the absolute additive error (i.e., in £, norm). Further, they characterize optimal factorization for counting
while we give explicit factorization for both counting and computing average under continual observation.
As a result, we do not have to solve a convex program, but compute the entries of the factorization using a
recurrence relation (for Mcount) and solving T(T + 1) /2 linear equations (for Mavyerage). Finally, our explicit
factorization for Mcount has a nice property that there are exactly T distinct entries (instead of possibly T2
entries in McMahan et al. [MRT22]) in the factorization. This has large impact on computation in practice.

Acknowledgements. We would like to thank Vern Paulsen for many insightful discussions regarding
completely bounded norms and Haagerup’s results along with his copy of Haagerup’s manuscript [Haa80],
Sarvagya Upadhyay for discussions on operator theory in quantum information and pointing to the semidef-
inite programs of Watrous [Wat09, Wat12], Sasho Nikolov for referring us to Mathias [Mat93a] and sharing a
copy of IMRN version of [MNT20], and Abhradeep Thakurta for helpful discussion regarding [MRT22].



2 Concepts from operator algebra

We give a brief overview of concepts from operator algebra, namely, completely bounded norm and Toeplitz
matrices, to the level required for this paper. Historically, completely bounded norm has been extensively
studied in operator algebra [Haa80, HP93, Pau82, Pau86, Pau02]. Completely bounded trace norm (also
known as diamond norm and equivalent, up to taking adjoint of the mapping to the completely bounded
spectral norm [HP93, Pau21]) are used naturally in quantum information theory [AKN98, ABP19, CPROO,
PW09, Wat(07] since Kitaev [Kit97] noted that can be used to quantify distance between quantum channel,
mathematical physics [BD15, DJKR06, HLP 18, She91], and fundamental physics [CR94, JPPG' 10, TMB03,
Wal94]. Recently, these norms have been recently studied in computer science for proving communication
complexity lower bounds [LMSS07, LS09] and analyzing differentially private algorithms [ENU20, MNT?20,
Nik14].
The most popular definitions (and characterization) of cb norm are as follows:

Qe W] } _
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Here, c(X) denotes the maximum ¢, column norm of the matrix X and Q @ W is the Schur product [Sch11].
The second and third equality was shown by Haagerup [Haa80] and Mattias [Mat93b]*. In fact, the character-
ization with respect to the trace norm can be derived from the duality of completely bounded spectral norm
and completely bounded trace norm (or diamond norm). Some other characterization of completely bounded
norm have been also studied, a partial list includes that in terms of Stinespring representations [PS85], Choi-
Jamiotkowski representation [Wat12], Haagerup norm [Haa80, HP93] and fidelity by combining Alberti
theorem and Uhlmann theorem.

Some of these characterizations have been instrumental in giving efficient algorithms for computing
cb norm. For example, one can use the technique developed by Cowen et al. [CFJ796]. Their algorithm is
based on the primal-dual based algorithm by Watson [Wat96] that computes a lower bound on cb-norm.
In particular, Cowen et al. [CFJ796] uses the factorization theorem of Haagerup [Haa80] to show that the
convergent of Watson’s algorithm actually gives a very tight upper bound, too. Alternatively, one can use the
methods developed by Johnston, Kribs, and Paulsen [JKP09] and Zarikian [Zar06] using the characterization
of cb norm in terms of Haagerup norm [HP93]. For the special case of Hermittian matrices, one can also
use the Watson’s algorithm [Wat96] with Wittstock’s decomposition theorem [Wit81]. These are practical
iterative methods, but their rates of convergence is unknown. The only known algorithms with provable
rate of convergence we are aware of is by Watrous [Wat09, Wat12] using various semi-definite formulations
and Ben-Aroya and Ta-Shma [BATS09] using convex optimization.

We use Toeplitz operator defined over Hardy space. In real analysis, Hardy spaces are spaces of distributions
on the real line, which are the boundary values of the holomorphic functions of the complex Hardy spaces.
In complex analysis, they are spaces of holomorphic functions on the unit disk. In short, they consists of
functions whose mean squared value on unit circle remains bounded as we reach the boundary. They are
natural to deal where Lebesgue spaces are not well behaved [CW09]). A bounded operator on the Hardy
space is Toeplitz if and only if its matrix representation, in the standard basis has constant diagonals. In
other words, Toeplitz operators are just multiplication followed by projection onto the Hardy space. We
refer the interested reader to the excellent book by Conway [Con00] for more in depth overview of operator
theory and monograph by Paulsen [Pau86] for completely bounded norm.

3 Proofs of the Main Results

We first collect two useful lemma used in our proofs.

Lemma 1. Let m be an even integer. Define

- ()6 ()5

4Paulsen attributed the first equality to Haagerup in his monograph [Pau86, Section 7.7].




Then Sy < \/ 7

Proof of Lemma 1. One can use the fact that Sy, is closely related to the derivative of the truncated Reimann
zeta function, {(s), at s = 0. Another approach would be to use a trigonometric equality involving the
integration of higher powers of cosine function. We take the latter approach for cleaner calculation. In
particular, we know that for even values of m,

T2 1 3 1 1
o m _ (! AT m — 7T _ _
Sm = 0/ COSs (x)dx = <2) <4) (> *2 Sm_2 7”1 — 1Sm,

Expanding on the recurrence relation, we can evaluate

s _ (m)! T
" am((m/2)N2 2
for even m. From here on, we can use many techniques. One technique would be to use Stirling approxima-
tion and set m = 2i to arrive the result. We instead take a real analytic approach to simply the computation
and keep the proof clean.
From the above, we can deduce that the sequences are equivalent in the terms of real analysis, i.e.,
Spt1 ~ Su. Further, for all m, S, 42 < S;;41 < Sy since the sequence is decreasing. This implies that

Sm+2 < Sm+1

< <L
Sm Sm

Now by the recurrence relation, we have (m +1)S,, < (m +2)S,,11. By the sandwich theorem, we conclude

that Sg‘—r:l — lasn — co,and hence S, ;1 ~ Sy, in real-analytic terms. By examining S,5,,11, we thus obtain
that

Sm < %

This completes the proof. O
Theorem 3 (Cauchy [Cau21]). Let T € IN be a natural number. Then

n  [T2T-1) 1\? /1\? 1\* m [2T(T+1)
< : 2 a(2) < .
2T+1V ™~ 3 \\/H(z) +<3> T t\T) Saraa 3
Proof. The theorem can be derived from Cauchy’s proof for the value of Reimann zeta function of order 2,
{(2). The original proof by Cauchy uses Cauchy residue theorem. Here, we give a self contained proof using
basic complex analysis and trigonometric identities along the line of Cauchy [Cau21].

Let0 < 0 < 7r/2and n = 2T + 1 be a positive odd integer. Let : = v/—1. Since 7 is an integer, using de
Moivre’s theorem, we have (cos 6 + 1sin )" = cos(nf) + ¢sin(nf). Dividing by sin” 6, we have

cos(nf) +tsin(nf)  (cosb +sinf)”  [cosb+isinf\" "
sin” 6 N sin” 6 N sin 0 = (cotf+1)

_ (g) cot”9+<’11>(c0t”_19)i+"'+( il)(cote)n 1+( )
(@)= @)oo o (@)oo (o).

Equating the imaginary parts gives the identity
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7




Consider 6; = 2%% for integer 1 < k < T. Then (2T + 1)6; = nf; = krm is a multiple of 7t. Thus
sin(n6y) = 0 and sin 6y # 0 since k < T is not a multiple of 2T + 1. This implies

2T+1\  or 2T+1\ o s r(2T+1
2T g, — 27129, 4+ ...+ (—1 -
< 1 >co k < 3 >co k +(-1) 2T +1 0

Using the fact that cot?(-) is an injective function on (0, 7r/2), we can say that the cot? 6 values are the
roots of the polynomial

p(x) = <2T1+1>XT_ (ZT?j_l)xT_l:|:---+(—1)T<§;11>-

Since we are working in the integral domain, the generalization of Vieta’s formula to the ring implies
that the sum of the roots is just the ratio of the first two coefficients of the polynomial. Therefore,

2T+1

2T(2T -1 T(2T -1

cot291+cot292+-~+cot29T=EZT%H;I (6 ) _ I 3 )
1

Using cot29 <672 <1+ cot? for 0 < 0 < 2 and the fact that 0 < Oy < /2 for1 < k < T, this implies
that

T(2T —1 2T +1\? /2T +1\? 2T +1\> T(Q2T+2
( )< + + + +. 4 + < (2T +2)
3 7T 27 Tr 3

Rearranging the terms completes the proof. O

3.1 Proof of Upper bounds

In this section, we will prove all the upper bounds in our main results.

3.1.1 Proof of Upper bounds in Theorem 1

Let us first consider the case of counting. It is one of the most basic statistics one would like to compute
and has been studied in the continual release model by Dwork et al. [DNPR10] and Chan et al. [CSS11].
Both these works used the binary tree mechanism to perform binary counting. Since this work, many other
applications of this basic framework of counting in the continual release has been used, including but not
limited to, batch to online conversion in private learning, heavy hitter estimation.
To prove an upper bound, we use the following trigonometric identities:
1. Forany @ € [, 7], sin?(6) + cos?(6) = 1.
/2
2. Forevenm, 2 [ cos™(6)do = (%) (3)---
0

3. Forall § € [—, 7], cos(26) = cos?(0) — sin?(0) = 2cos?(0) — 1.
We now define an n-dimensional vector a such that its k-th entry is

/2

alk] = % / cos?(0)do = <;) (Z) (21{2;1) .

0

Note that the entries of the vector satisfy a nice recurrence relation and hence very easy to compute on

the fly: _
alk] = (2;> alk —1].



Using these three identities, it is simple calculus and trigonometry to verify that Mcount = LTR, where L
and R are defined as follows:

1 i=j
Rli,j] =L[j,il={0 i<j . ()
alk] i—j=k

It is straightforward to see that the number of distinct entries in R and L is n. Now the maximum column
norm of LT (and that of R) can be bounded as follows:

-G () -y g s (0)- ()

Setting S = %Sm and m = 2i in Lemma 1, we have

o(L) = 1+T211<<;> (i)...(Ziz_il))zg 1+E;<\/1+71Tlog(T—1).

i=1

Since ¢(L) = ¢(R), we have the upper bound in eq. (3).

3.1.2 Proof of Upper Bounds in Theorem 2

In practice, if we want to continually output the average, we would first perform the counting and then
divide by the current time-stamps. This would invariable lead to an error that depends on log3/ 2T

We now move to proving eq. (4). One can prove the upper bound by using dual characterization of cb
norm. However, such a bound only gives an upper bound on the best additive error possible for computing
T successive average, but does not help in designing mechanism for computing average under continual
observation. This is because for continual observation, we want an explicit factorization into matrices.
Further, we would like the factorization to be lower triangular for efficiency reasons. Restricting ourself to
lower triangular may not result in optimal factorization; however, we argue that the square root factorization
would result in an additive error that is very close to the optimal. It is not clear how we can give an explicit
clean and closed form expression for the entries of the square root factorization, but we give a analytic way
to compute this factorization and argue that such a factorization would results in smaller error.

In particular, we wish to compute a factorization Mayerage = LR such that LT = R and R is a lower
triangular matrix with non-negative entries. The entries of the coordinates can be computed by solving
w system of equations in @ unknowns. The system of equations consists of degree-2 polynomials,
but it can be reduced to a linear system by solving the unknowns in the row-i before solving the row-(i 4 1).
Since the entries of L and R are non-negative, c(R) = c(L") equals the first column of the square root
factorization of Mayerage and 0 < L[j, 1] = R[], 1] < % forall 1 < j < T. Therefore, ¢(R)? < Zszl ]lz and we

have the upper bound in equation (4):
1\ | (1)? 1\?
=c(L") < = - U (el
=y < e (1) 4 (1) o (1)

3.2 Proof of Lower Bounds

using Theorem 3.

3.2.1 Proof of Lower Bounds in Theorem 1
For the lower bound on || Mcount ||.,, We appeal to operator algebra. For this, we use the characterization
given by Haagerup [Haa80]:

(6)

M
| Mcount||cp, = man {”Q.c"“”tn} .

IQl



We have the flexibility of choosing a candidate matrix Q and we have two main goals:

1. A upper bound on its operator norm and lower bound on the operator norm of its Schur product with
Mecount can be computed easily.

2. We wish to get a lower bound that depends on log(T).

The end goal of log(T) dictates and limits our choice of the candidate matrix Q. Since computing the operator
norm implies adding the square of coordinates of the vector formed by applying the operator on a vector
and our end goal is to get log(T) term, we aim to get i-th coordinate to be log(i). A lower bound on the
summation of log?(i) over 1 < i < T can be easily found using the trapezoid rule of integration.

Now operator norm is the maximum over all choices of unit vectors, we can choose a vector v that
allows us to compute ||(Q ® Mcount)?||, easily. With log(T) end goal, the choices in v are either pick the i-th

/log‘(T) log(T) .

coordinate as -~ or v as normalized all one vector. However, the choice of v such that v[i] = \/ =%~ is
not appropriate because we cannot exactly compute ||v||,, but rather we only know its limiting value (due to
the upper and lower bound on the sum on Harmonic series).

Combining the thought process described above, our only choice is to find a matrix Q that introduces a
Harmonic series for each coordinate. Since Q ® Mcount is a co-ordinate wise product, we use the following
choice for candidate matrix,

1 1 1
0 1 2 3 T
_1 0 1 5 e T
Q = . N . N . (7)

S T | Lo
T-1 T2 T-3 T—4

It is possible to explicitly compute an upper bound on the singular value of our candidate Q from the first
principle, but there is a simpler argument from Toeplitz operator that does not require tedious computation.
Our choice of Q is a principal submatrix of a Toeplitz operator with a symbol f such that f(e'?) = «(7r — ).
With this observation, we can now use the results known in operator theory. In particular, let Ty be the
Toeplitz operator on the underlying Hardy’s space with the symbol f defined above. Since for any Toeplitz’s
operator, its singular value coincides with the /o, of its symbol [BG00], we have

] - g

Combining eq. (6) and eq. (8) gives us

| Meount|lp > Qe Mcount|| _ 1 [(Q®Mcount) vl
i 7T 0eRT (EEdIPS

That is, to get a lower bound on || Mcount|| ., We need to lower bound ||Q ® Mcount||- For this, we pick a
vector v such that we can easily manage ||(Q ® Mcount)?||,. Our choice of such v is the following vector

T
1 1
o=(Jr ) - )
With this choice and the definition of Q and v in egs. (7) and (9), respectively, we have

NN
1 T-1 I 1 1 T-1 ] )
||Q 1 Maveragev‘lz = ﬁ Z Z % > ﬁ Z (log(] + 1)) (10)
j=1 \k=1 j=1
N—
S(T)

To bound the term inside the square root, we look at the following related definite integral:
T T-1
S(T) > I(T) = / (log(x +1))? dx = [(x +1)log?(x +1) — 2(x + 1) log(x + 1) + 2x — 2} .
0
= T(log T)? — 2T log(T) + 2T — 2.

10



Plugging it in eq. (10) gives us the the left hand side of eq. (3):

1 [T(logT)? — 2Tlog(T) + 2T — 2
|Mcount||cb>n_\/ (log T) Tg( ) .

3.2.2 Proof for Lower bound in Theorem 2

The lower bound on || Maverage |, is Very simple. In particular, by picking Q = I, we get

||Q.Maverage|| > HDH =1

M = max > =
Waverseeller =M% 0 2 o

where D = diag(e) is the diagonal matrix formed by the eigenvalues of Maverage, € = (1 % % %)
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