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Abstract

Generic groups are an important tool for analyzing the feasibility and in-feasibility of group-
based cryptosystems. There are two distinct wide-spread versions of generic groups, Shoup’s
and Maurer’s, the main difference being whether or not group elements are given explicit labels.
The two models are often treated as equivalent. In this work, however, we demonstrate that the
models are in fact quite different, and care is needed when stating generic group results:

• We show that numerous textbook constructions are not captured by Maurer, but are
captured by Shoup. In the other direction, any construction captured by Maurer is
captured by Shoup.

• For constructions that exist in both models, we show that security is equivalent for “single
stage” games, but Shoup security is strictly stronger than Maurer security for some
“multi-stage” games.

• The existing generic group un-instantiability results do not apply to Maurer. We fill this
gap with a new un-instantiability result.

• We explain how the known black box separations between generic groups and identity-based
encryption do not fully apply to Shoup, and resolve this by providing such a separation.

• We give a new un-instantiability result for the algebraic group model.

1 Introduction
Generic groups [Nec94, Sho97, Mau05] are idealized cryptographic groups where group operations
are carried out by making queries to a group oracle, each query incurring unit cost. For both
adversaries and constructions, generic groups capture natural generic algorithms which do not make
any use of the particular features of the group in question, and instead only perform legal group
operations.

There are plenty of valid criticisms of generic groups (e.g. [Fis00, KM06]), and like random
oracles, generic groups cannot exist in the real world [Den02]. Nevertheless, cryptographic groups are
one of the core cryptographic building blocks, and generic groups are critical to our understanding
of the feasibility and infeasibility of group-based cryptosystems. The best practical attacks on many
cryptosystems built from appropriate cryptographic groups are often generic. What’s more, many
of the most efficient schemes have only generic group proofs. As just one example, adaptive security
is usually straightforward with generic groups. In contrast, standard model proofs of adaptive
security often require more complex and less-efficient cryptosystems, such as the dual system
methodology [Wat09]. Additionally, even cryptosystems with a standard-model security proof rely
on computational assumptions, and for groups, there are many. When new such assumptions are

1



made, they are often accompanied by a generic group proof of hardness, which at least demonstrates
the lack of obvious flaws.

Moreover, generic groups are critical for black box separations, showing barriers to achieving
various cryptographic objects from groups. Such barriers are important for the design of cryp-
tosystems, even if one objects to using generic groups in security proofs. Examples of objects
separated from generic groups include identity-based encryption [PRV12, SGS21], order revealing
encryption [ZZ18], types of delay functions [RSS20], and accumulators [SGS20]. An impossibility
relative to generic groups helps guide protocol design by showing what kinds of techniques will be
required. While non-black box techniques can sometimes overcome such impossibilities — famously,
IBE from the Diffie-Hellman assumption [DG17], for example — the use of such techniques almost
always makes the results impractical. Thus, generic group impossibilities most likely rule out any
practical protocol based on cryptographic groups.

Two different generic groups. Since first proposed by Nechaev [Nec94], two different flavors
of generic groups have emerged. The first is Shoup’s [Sho97], where the group is modeled as a
random embedding of the additive group Zp into bit strings, with the group operations carried out
by making oracle queries.

Later, Maurer [Mau05] proposed a different model that uses pointers instead of a random
representation. The oracle initializes a table with various values in Zp, representing exponents in
the group. The adversary cannot access the values directly, but just knows their line numbers in
the table. The adversary then outsources linear computations on the table to the oracle.

Shoup and Maurer are the main approaches used in the literature. Numerous works (e.g. [BFF+14,
BCFG17, AY20, CL20, CH20]) actually treat the models as identical, simply referring to both as the
generic group model. Some of these works justify this lack of distinction by pointing to a result of
Jager and Schwenk [JS08], which provides some sort of equivalence between Shoup and Maurer. But
Maurer, Portmann, and Zhu [MPZ20] find that Maurer’s model allows for stronger hardness proofs,
seemingly contradicting [JS08]. Recent works of Schul-Ganz and Segev [SGS20, SGS21] briefly argue
that the equivalence only applies to problems that are defined “independent of the representation”
of the group, and more generally the models are incomparable. The relationship between the models
is not further explored, and it is not clarified what “independent of the representation” means. But
the purpose of the generic group models is precisely to capture algorithms that work in any group,
regardless of representation!

The above state of affairs makes it hard to interpret and compare the various positive and
negative results using generic groups.

1.1 Overview of Results

In this work, we address the important questions above by giving a detailed comparison between
the models.

The Type-Safe Model. First, we point that many works, primarily those proving black box
separations, claiming to use Maurer’s model actually do not operate in the model Maurer originally
defined. Whereas Maurer’s original model has algorithms outsourcing their group computations to a
stateful table, many works instead have the algorithms perform the operations locally, but constrain
the algorithms to performing only legal group operations through a simple type system. We argue
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that this is technically a different model than Maurer’s original model. However, we observe that
Maurer’s model is actually poorly suited for the setting of general cryptosystems1, and that the
type-system based model implicitly used in many works is in fact the more appropriate model. We
therefore formalize this model, which we call the Type-Safe (TS) generic group model.

Likewise, throughout this work, we will refer to Shoup’s model as the Random Representation
(RR) model, to give it a more descriptive name.

From TS/Maurer to RR/Shoup for cryptosystems (Section 3). For now we ignore security,
and just discuss whether group-based cryptosystems compile in one model or the other. We generalize
one direction of the proof of Jager and Schwenk [JS08] from algorithms to general cryptosystems,
showing that:

Theorem 1.1 (Informal). Any cryptosystem which compiles in the TS/Maurer model also compiles
in the RR/Shoup model.

Separations for cryptosystems (Section 4). We then observe that the converse does not
hold. Concrete cryptosystems that do not compile include the Blum-Micali PRG [BM82] and the
Goldreich et al. PRF [GGM84]. Worse, we show that several primitives are simply impossible:

Theorem 1.2 (Informal). Pseudorandom permutations, domain extension for collision resistant
hashing, and encryption with additive ciphertext size overhead are each impossible in the TS/Maurer
model.

The applications excluded by Theorem 1.2 follow from textbook techniques that are taught in
many introductory cryptography courses. These techniques work in the standard, RR/Shoup, and
even random oracle models, the last often being treated as weaker than generic groups.

Remark 1.3. The recent works of [RSS20] and [DHH+21] already, perhaps unintentionally, provide
separations. [RSS20] proves delay functions impossible in the TS/Maurer model and [DHH+21]
proves signatures impossible. However, the RR/Shoup model implies random oracles [ZZ21], and
both delay functions and signatures can readily be constructed assuming random oracles. Signatures
can even be constructed from cryptographic groups in the standard model [Rom90]. We note that
the purpose of these works was not to demonstrate limitations of the TS/Maurer model relative
to RR/Shoup: [RSS20] argues for the difficulty of constructing group-based VDFs and time-lock
puzzles, and [DHH+21] seeks to explain challenges in efficient group-based signatures. Nevertheless,
a separation was a perhaps unintended consequence of their results. Our results show that the case
of delay functions and signatures were not isolated incidents, and the inability of cryptosystems to
compile in the TS/Maurer model is in fact wide-spread.

Remark 1.4. The above results (including those of [RSS20] and [DHH+21]) show that the TS/-
Maurer model is actually incomparable to the random oracle model (ROM): public key encryption
exists in the TS/Maurer model but not in the ROM [IR89], while the above results give examples
that exist in the ROM but not TS/Maurer. This is in contrast to the RR/Shoup model, which is
known to be strictly stronger than random oracles [ZZ21].

1It appears it was never meant to be: Maurer discusses several classes of problems to consider in his model,
capturing discrete log, DDH, and more exotic variants. But general cryptosystems are not covered by the classes of
problems.
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Security in RR/Shoup vs TS/Maurer (Section 5). We next turn to discussing whether
schemes are secure in the models. We give two theorems, which are adaptations of the two directions
of the proof of [JS08]:

Theorem 1.5 (Informal). Amongst cryptosystems that compile in TS/Maurer (and hence also
RR/Shoup), security in RR/Shoup implies security in TS/Maurer.

Theorem 1.6 (Informal). Amongst cryptosystems that compile in TS/Maurer, if the security
experiment is single-stage, then security in TS/Maurer implies security in RR/Shoup.

Single-stage means there is a single adversary party; such games capture most of the basic security
properties, from one-way functions to public key encryption and more. This is in contrast to multi-
stage games, which communicate with multiple adversaries that have restricted communication.
Multi-stage games include deterministic public key encryption (the message distribution is an
additional adversary) and leakage resilience (the leakage function is an adversary).

We complement the above theorems by showing that, in the multi-stage setting, TS/Maurer
security does not imply RR/Shoup security. Concretely:

Theorem 1.7 (Informal). There exists a deterministic PKE which compiles in both RR/Shoup
and TS/Maurer, which is secure in TS/Maurer, but is insecure in RR/Shoup and insecure in any
standard-model instantiation.

Thus TS/Maurer and RR/Shoup are equivalent for single-stage games (provided the game
compiles in TS/Maurer), but TS/Maurer is strictly less sound than RR/Shoup in the multi-stage
setting.

On the Un-instantiability of Generic Groups (Section 6). Next, we consider the well-
known criticism of generic groups that there are (contrived) schemes secure in the generic group
model that cannot be securely instantiated under any group. This was proved by Dent [Den02] by
adapting similar results for random oracles due to Canetti, Goldreich, and Halevi [CGH98]. There
are now numerous ways to achieve the same result [Nie02, GK03, BBP04, BFM15]. These results
typically work by having a branch in the honest algorithms that is completely insecure, say by
outputting the secret key in the clear. These branches cannot be triggered in the ideal model, but
can be triggered under any instantiation of the group.

However, we observe that the vast majority of these results only apply in RR/Shoup: basically
the trigger is detected by looking at the bit representation of group elements. In fact, we show that
the paradigm of correlation intractability underlying many of these results cannot be used to give
a TS/Maurer un-instantiability result; see Theorem 6.2. Existing un-instantiability results that
apply in TS/Maurer [BCPR14] correspond to a multi-stage game (extractable OWFs), and require
a very strong computational assumption, indistinguishability obfuscation, which is not known to be
implied by groups. Our deterministic PKE scheme gives an unconditional result, though still in the
multi-stage setting. The prior work therefore leaves open the tantalizing possibility of a standard
model group which can securely instantiate any cryptosystem that compiles and corresponds to a
single-stage game in the TS/Maurer model. We refute this:

Theorem 1.8. There exists a plain public key encryption (PKE) scheme and one-time message
authentication code (MAC)2 which compile and are unconditionally secure in the TS/Maurer model
(and therefore also RR/Shoup), but insecure under any instantiation of the group.

2Plain PKE and MAC security are single-stage games.
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We note that our schemes can be adapted to give private-key encryption and MACs in the
random oracle model that are insecure under any instantiation of the random oracle, replicating
the result of [CGH98]. Our constructions, however, use different ideas, far simpler tools, and are
entirely self-contained. Our PKE scheme may also be qualitatively less contrived: as pointed out
by [KM06], the prior approach of inserting a branch that causes insecure behavior goes against
reasonable cryptographic practice. Our scheme, by contrast, is just ElGamal applied bit-by-bit,
together with a single bit of leakage. Our leakage function itself is contrived, but leakage is usually
modeled adversarially. An adversary could very well choose a contrived leakage if it would lead to
an attack.

The Impossibility of IBE from Generic Groups. The literature contains two impossibilities
for identity-based encryption (IBE) from generic groups: Schul-Ganz and Segev [SGS21] prove
a separation in the TS/Maurer model, whereas the original separation due to Papakonstantinou,
Rackoff, and Vahlis [PRV12] claims to prove a separation RR/Shoup. However, we observe that the
definition of generic groups used in the latter work actually is somewhere between the TS/Maurer
and RR/Shoup models. In particular, they make a TS/Maurer-style restriction where algorithms
get explicit group elements as input, and are only allowed to make queries on those elements or
elements derived from them. This restriction is used at a critical step in their proof, where they
show how to eliminate the explicit group elements from a user’s secret key.

Restricting algorithms to operating only on explicitly provided group elements makes sense
for individual algorithms trying to solve non-interactive problems such as discrete log. But for
cryptosystems comprising multiple communicating parts, group elements can easily be transmitted
implicitly. One could simply flip all the bits of a group element, and then recover the element by
flipping them back. Alternatively, one can secret share a group element into different shares.

We note the close relationship between IBE and signatures, with IBE immediately giving
signatures by re-interpreting user secret keys as signatures. What’s more, a crucial part of [PRV12]
can be seen as running the verification algorithm of the derived signature scheme. Given the close
relationship, and the fact that signatures are possible in RR/Shoup, but impossible after making
TS/Maurer restrictions, it is important to understand whether [PRV12] can be overcome in the full
RR/Shoup model. We fill in this gap, showing that this is not possible:

Theorem 1.9. IBE does not exist in the RR/Shoup model.

The Soundness of the Algebraic Group Model (Section 8). Fuchsbauer, Kiltz, and
Loss [FKL18] propose the Algebraic Group Model (AGM) as a model that lies between the
standard model and generic groups. Here, adversaries can see the actual standard-model group
elements, but must be able to “explain” any group element it outputs as a linear combination of its
input elements.

We first point out some definitional ambiguities in the literature needed to avoid trivially
invalidating the model. We argue that the model envisioned by [FKL18] allows exactly the security
games which compile in the TS/Maurer model. This means the model inherits the limitations
of the TS/Maurer model. The AGM is therefore actually incomparable to the RR/Shoup model,
and it cannot reason about many textbook techniques3. We also resolve an open question raised
by [FKL18], showing an un-instantiability result for the AGM:

3Note that many works in the AGM starting from [FKL18] sometimes additionally add a random oracle, and these
techniques can be used on the random oracle.
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Theorem 1.10. There exists a one-time message authentication code that is secure in the AGM
but insecure in any standard-model instantiation of the group.

We also take a closer look at the comparison between the AGM and the TS/Mauer model. We
do not give any formal results, but argue that the claimed advantages of the AGM are not always
supported by existing evidence.

Remark 1.11. In a concurrent and independent work [KZZ22], Katz, Zhang, and Zhou study the
AGM. They also point out the ambiguities in the AGM, but do not attempt to resolve them. They
also reach the conclusion that the AGM is incomparable to the RR/Shoup model, but for very
different reasons. They crucially rely on TS/Maurer games for their separation. On the other hand,
our separation crucially relies on restricting the AGM to TS/Maurer games, and would not apply
under their relaxed convention. For a slightly more thorough discussion, see Section 8.

1.2 Takeaways

Our work shows that extreme care must be taken when proving security or separations for generic
groups. Our equivalence for single-stage security justifies the common practice of treating the
models as equivalent for positive results in many settings, though the distinction is critical in the
multi-stage setting. On the other hand, our separations for constructions show that impossibilities
in the RR/Shoup vs TS/Maurer models must be interpreted very differently.

We also believe that our work points to significant limitations of black box impossibilities in
the TS/Maurer model, as the model excludes numerous textbook (and black-box!) cryptographic
techniques, ones that even work for the seemingly weaker random oracle model. On the other
hand, these techniques seem to be all captured by RR/Shoup. This shows that impossibilities in
RR/Shoup very closely reflect the available black box techniques for groups, whereas TS/Maurer
does not. Nevertheless, TS/Maurer impossibilities may still be useful for guiding cryptosystem
design, by showing that non-algebraic (but still generic) techniques making use of the group labels
would be necessary.

Our work fills in some important gaps in the literature, showing (1) that IBE is impossible in the
fully general RR/Shoup model, and (2) that TS/Maurer is impossible to instantiate in general in the
standard model. For (2), we give a new, relatively simple, approach to achieving un-instantiability
results. We hope that our result sheds additional light on the plausibility of generic groups.

Finally, we shed some additional light on the algebraic group model, by showing that it is
incomparable to the RR/Shoup model and is nevertheless un-instantiable, despite being closer to
the standard model.

1.3 Organization

Due to limited space and having several different results, we omit a separate detailed technical
overview of our results, instead having a brief overview at the beginning of each of our technical
sections. Section 2 defines our basic notation. Section 3 defines the TS/Maurer and RR/Shoup
models, plus shows when the two can be treated equivalently. Section 4 demonstrates applications
which compile in RR/Shoup but not TS/Maurer. Section 5 shows the inequivalence of security for
multi-stage games. Section 6 gives our new un-instantiability result for TS/Maurer. Section 7 gives
our new impossibility for IBE in the RR/Shoup model. Finally, Section 8 discusses the algebraic
group model.
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2 Preliminaries and Notation
We will use a non-uniform circuit model of computation, though all of our models and results can
be translated into the Turing machine setting.

Throughout, let λ be a security parameter. An algorithm is therefore a list of circuits C =
{Cλ}λ∈Z, with domains Dλ and range Eλ. The circuits comprising an algorithm can either be
deterministic or probabilistic. In the later case, there are random coin gates, which generate a
random bit.

For interactive algorithms, each circuit Cλ is replaced by a sequence of circuits C(1)
λ , C

(2)
λ , . . . .

The domain of C(i)
λ is denoted S(i)

λ × I
(i−1)
λ and the range is S(i+1)

λ ×O(i)
λ . Here, S(i)

λ is the space of
states that C(i)

λ passes to C(i+1)
λ , O(i)

λ is the space of outgoing messages that the algorithm sends in
the ith step, and I(i)

λ is the space of incoming messages. For convenience, we will generally suppress
the security parameter.

We next consider complete sets of interacting algorithms. Each algorithm in the set is an
interactive algorithm, sharing the same security parameter. There is a one-to-one correspondence
between outgoing and incoming messages. Therefore, a complete set of interacting algorithms taken
together yields a single non-interactive algorithm, which maps the initial inputs of each algorithm
to the set of algorithms to the set of outputs. We can also consider a subset of a complete set of
interacting algorithms, which we call an incomplete set. In this case, some of the messages are
internal, sent amongst algorithms in the set, while other messages are external, and sent to and
received from outside the set. An incomplete set of interacting corresponds to a single interactive
algorithm, whose incoming and outgoing messages are the external messages.

2.1 Games and Cryptosystems

A game is given by a probabilistic interactive algorithm Ch, called a challenger, and a function
t : Z+ → [0, 1]. The challenger is given as input a security parameter λ ∈ Z+, and interacts with
k non-communicating parties A1, . . . ,Ak. In other words, (Ch,A1, . . . ,Ak) forms a complete set of
interacting algorithms, and A1, . . . ,Ak forms an incomplete set where all messages are external.
Collectively, A = (A1, . . . ,Ak) is called the adversary. After the interaction, Ch outputs a bit b; this
interaction is denoted b← (A � Ch)(λ). If b = 1 we say the adversary wins, and if b = 0 we say the
adversary looses. In the case k = 1, we call (Ch, t) a single-stage game. If k > 1, we call (Ch, t) a
multi-stage game.

Let A be a class of adversaries. A game (Ch, t) is hard for A if, for all A ∈ A, there exists a
negligible ε such that Pr[1← (A � Ch)(λ)] ≤ t(λ) + ε(λ). Typical examples of adversary classes are
(1) all algorithms, (2) all polynomial-time (in λ) algorithms, or (3) all query algorithms making
a polynomial number (in λ) of queries to some oracle. (1) is often referred to as statistical or
information-theoretic security, whereas (2) is typically called computational security. For (3), if the
algorithms are not restricted, we will call the adversary query bounded.

Cryptosystems. Abstractly, a cryptosystem is just a set of algorithms. Typically these algo-
rithms will be non-interactive, though their incoming and outgoing messages may contain multiple
components that would be sent to different users.

The security of a cryptosystem is usually defined by a game. In the case where the security
experiment makes black-box use of the cryptosystem, the game itself is an incomplete set of interacting
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algorithms: one of these interacting algorithms is a coordinator, and the remaining algorithms are all
instances of the cryptosystem components. The various instances of the cryptosystem components
receive and send messages from the coordinator, who also sends and receives external messages to
the one or more adversaries. The game together with the adversaries then forms a complete set of
interacting algorithms.

For example, consider the case of one-way functions: the coordinator chooses a random x, and
sends x to one instance of the function F to get y. Then the coordinator sends y externally to the
adversary, and receives x′ in response. It then sends x′ to a second instance of F to get y′, and then
checks y = y′.

2.2 Groups

We will write groups multiplicatively, writing g × h or simply gh to denote group multiplication.
We will always assume cyclic groups of prime order p. Given a group element g ∈ G, a matrix of
group elements G ∈ Gn×m and matrices A ∈ Zm×rp ,B ∈ Zs×np , let gA ∈ Gm×r, GA ∈ Gn×r and
BG ∈ Gs×m be the matrices defined as:

(gA)i,j = gAi,j

(
GA

)
i,j

=
m∏
k=1

GAk,j

i,k

(
BG

)
i,j

=
n∏
k=1

GBi,k

k,j .

Observe that for any appropriately-sized matrices A,B, gA·B = (gA)B = B(gA).

3 Different Generic Group Models
Here, we recall Shoup’s [Sho97] (which we will also call the random representation model) and
Maurer’s[Mau05] generic group models, as well as propose a Type Safe model, formalizing a model
implicit in prior work.

3.1 Random Representation (RR)/Shoup Model [Sho97]

Let p ∈ Z be a positive integer, and let S ⊆ {0, 1}∗ be a set of strings of cardinality at least p. We
will assume an upper bound is known on the length of strings in S. A random injection L : Zp → S
is chosen, which we will call the labeling function. We will think of L(x) as corresponding to gx,
where g is a fixed generator of the group. All parties—including the adversary, the cryptosystem,
and the challenger—are able to make the following queries:

• Labeling queries. The party submits x ∈ Zp, and receives L(x).

• Group operations. The party submits (`1, `2, a1, a2) ∈ S2 × Z2
p. If there exists x1, x2 ∈ Zp

such that L(x1) = `1 and L(x2) = `2, then the party receives L(a1x1 + a2x2). Otherwise, the
party receives ⊥.

All queries incur unit cost. We denote the oracles together as GRR. For an algorithm A that makes
queries to GRR, we write AGRR . A game (Ch, t) in the RR model allows all parties (the challenger
and one or more adversaries) to make queries to the generic group. We say that (Ch, t) is hard in
the RR model if it is hard for the class of adversaries whose cost is polynomial in log p.

We will think of L(x) as corresponding to gx, for some fixed generator g of the group. Therefore,
if `1, `2 correspond to gx1 , gx2 , the group operation query compute ga1x1+a2x2 = (gx1)a1 × (gx2)a2 .
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3.2 Maurer’s Model [Mau05]

Again let p ∈ Z be a positive integer. An empty table T is initialized. Then all parties are able to
make the following queries:

• Labeling queries. The party submits (x, i) ∈ Zp × Z. Row i of T is then set to x, potentially
overwriting any contents at row i. No response is given.

• Group operations. The party submits (i1, i2, i3, a1, a2) ∈ Z2 × Z2
p. If there are entries x1, x2 in

rows i1, i2, respectively, of T , then row i3 is set to a1x1 + a2x2, potentially overwriting any
contents at row i3. If the contents of i1 or i2 are empty, then nothing is written. No response
is given.

• Equality queries. The party submits (i1, i2) ∈ Z2. If there are entries x1, x2 in rows i1, i2,
respectively, of T , then the party receives 1 if x1 = x2, and 0 otherwise. If the contents of i1
or i2 are empty, then the party receives ⊥.

All non-equality queries incur unit cost, and we define hardness analogously to the RR model. We
denote the oracles together as GMa. For an algorithm A that makes queries to GMa, we write AGMa .
As in the RR model, we will imagine there is a fixed generator g, and a row containing x will
correspond to the group element gx. The group operation queries therefore take the group elements
in two positions, and write the desired combination of them to the third position.

Remark 3.1. Our convention of zero-cost equality queries follows Maurer, and better reflects
reality: it is easy to show a lower bound of Ω(p) cost for discrete logarithms when counting equality
queries. Yet baby-step-giant-step only take Θ(√p) cost in the standard and RR/Shoup models,
using a data structure to find collisions faster than what is possible with just equality queries.
By making equality queries free, we obtain a tight Θ(√p) complexity for discrete log in Maurer’s
model. [MPZ20] takes a different approach, refining Maurer’s model to allow more sophisticated
queries that allow for implementing the required data structure with Θ(√p) queries. Regardless, the
number of possible equality queries is at most quadratic in the number of wires, so this convention
only makes a polynomial difference, which does not effect our results.

Challenges of Maurer’s Model. Maurer’s model makes sense for reasoning about computational
problems, such as discrete logarithms or Diffie-Hellman. Here, the table is initialized to contain the
problem instance in the first several rows, with the rest of the table as scratch space for performing
computations.

However, the model is potentially problematic when reasoning about cryptosystems, where
different components of the cryptosystem (or even the same component run multiple times) are
using the group, and therefore need to make queries to the oracle. Since the oracle is stateful, this
can cause bad behavior of the algorithms. For example, the security experiment for one-wayness
runs the function twice, once to generate the adversary’s input, and once to check its output. If
running the function causes the table values to change, then the outputs of the function may not be
deterministic. Worse, the adversary may be able to influence the outputs by writing values to the
table, which could make inversion easier. Of course this is not an issue in the real world, but it
demonstrates an issue when trying to apply Maurer’s model to cryptosystems.
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3.3 The Type Safe (TS) Model

Here we offer a model that tries to capture the intuitive properties of Maurer’s model, while also
having a stateless oracle to avoid the issues above. This model is, in fact, implicit in many works
claiming to use Maurer’s model [RSS20, SGS20, SGS21, DHH+21], but has not to our knowledge
been formally written down.

Let p ∈ Z be a positive integer. An algorithm A will be given as a circuit. Unlike a standard
binary circuit, the circuit for A will have the following features:

• There will be two kinds of wires, bit wires and element wires. Bit wires take values in {0, 1},
whereas element wires take values in Zp ∪ {⊥}.

• There will be “bit gates” that map bits to bits. These gates cannot take element wires as
input. Any universal gate set is allowed for the bit gates.

• Additionally, there will be a few special “element gates”, whose inputs and/or outputs include
element wires:

– Labeling Gate. This takes as input dlog2(p)e bit wires, and interprets them as an
x ∈ Zp. Its output wire will be an element wire, containing the value x. An element wire
containing x will be thought of as corresponding to the value gx. If the input wires do
not correspond to an x ∈ Zp, the output wire will contain ⊥.

– Group Operation Gate. This takes as input 2 × dlog2(p)e bit wires and 2 element
wires. The bit wires are interpreted as a1, a2 ∈ Zp. Let x1, x2 be the contents of the
element wires. The output wire is an element wire, set to a1x1 + a2x2. If any of the bit
or element input wires do not correspond to elements of Zp, then the output wire is set
to ⊥.

– Equality Gate. This takes as input two element wires, and outputs a bit wire. Let
x1, x2 be the contents of the element wires. The output wire is set to 1 if x1 = x2, and 0
otherwise. If x1 or x2 are equal to ⊥, then the output wire is set to 0.

We somewhat abuse notation, and for an algorithm A in the type safe model, we write AGTS . Our
cost metric for circuits in the TS model will count only labeling and group operation gates, with bit
and equality gates being free. Free bit gates corresponds to the other generic group models, where
queries are bounded but computation outside of queries is free. Free equality gates are used for the
same reason as equality queries in Maurer’s model.

A game (Ch, t) in the TS model allows all parties (the challenger and one or more adversaries)
to use labeling and group operation gates, and send both bit and element wires to each other. We
define hardness as in the previous models.

In the TS model, we will think of element wires as containing log2 p bits. Therefore, if an
algorithm has k1 element wires as input and k2 bit wires, its overall input size will be k1 log2 p+ k2.

3.4 Examples

We now discuss several examples of cryptosystems based on groups, to illustrate the differences
between the TS and RR models.
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One-way functions. Discrete logs give a simple one-way function f(x) = gx. This function
easily maps to the RR model as f(x) = L(x), which is evaluated by making a single labeling query.
The function also maps to the Type Safe model, but with some caveats. Namely, f(x) is simply
a labeling gate, which outputs an element wire. Thus, in the TS model, f(x) does not map bits
to bits, but rather maps bits to elements. This makes sense and compiles, but it means that the
outputs of f cannot be operated on at the bit level, and in particular cannot be fed back into f .
The next example illustrates the challenges this creates.

Pseudorandom Generators. Consider the Blum-Micali [BM82] PRG: on input x, let x0 = x.
Then define xi = gxi−1 for i = 1, . . . , n, where n is the number of desired outputs. Then for each i,
output a hardcore bit bi extracted from xi.

Blum-Micali easily compiles in the RR model: just let xi = L(xi−1). The only caveat is that the
set of labels must be log p bits so the domain and range of x 7→ gx are essentially identical. On the
other hand, Blum-Micali does not compile in the Type Safe model: x1 is an element wire, and so it
cannot be fed into another labeling gate in order to derive x2.

Other PRGs will compile in the TS model. For example, consider G(x, y) = (gx, gy, gxy), which
is a pseudorandom generator under the decisional Diffie-Hellman assumptions. To evaluate in the
TS model, compute xy over Zp using standard circuit gates, and then apply labeling gates to x, y,
and xy. It is straightforward to generalize G to obtain arbitrary stretch.

Pseudorandom Functions. Once we have a pseudorandom generator like G(x, y) above, we
may hope to build a pseudorandom function following Goldreich, Goldwasser, and Micali [GGM84].
This construction takes any length-doubling PRG G : {0, 1}n → {0, 1}2n, and constructs a PRF as
follows. Define G0 to be the first n bits of the output of G, and G1 to be the second n bits. For a
key k ∈ {0, 1}n and input x ∈ {0, 1}m, define F (k, x) = Gxm(Gxm−1(. . . Gx1(k) . . . )).

For a PRG G in the RR model, the PRF of [GGM84] readily also compiles in the RR model.
However, the same is not true for the Type Safe model. For example, our G from above takes bits
as input but outputs element wires, and so the outputs cannot be fed back into G as in [GGM84].

Nevertheless, there are PRGs in the TS model, namely Naor-Reingold [NR97]. The secret key
consists of α0, . . . , αm, and F (k, x) = gα0

∏m

i=1 α
xi
i . To evaluate in the TS model, simply compute

α0
∏m
i=1 α

xi
i and then apply a labeling gate.

The above examples already begin to show that the Type Safe model does not capture all
common cryptographic techniques one may apply to groups. In Section 4, we strengthen these
observations to show some concepts that are simply impossible in the TS model, despite there being
standard-model constructions from groups. On the other hand, the Random Representation model
seems to capture known black-box techniques, and does not suffer from these limitations.

Next, we prove certain positive relationships between the TS and RR model. These results are
analogous to the theorem of [JS08], which is often cited as proving the equivalence between Shoup’s
and Maurer’s generic group models. Our results below formalize what this equivalence means, and
where it falls short.

3.5 Compiling TS To RR

Here we show that any algorithm which exists in the TS model also compiles in the RR model. By
applying this to cryptosystems and games, we see that any technique which is captured by the TS
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model is also captured by the RR model. By applying this to adversaries, we see that security in
the RR model implies security in the TS model, amongst games the TS model (and hence in both
models). These results are an adaptation of one direction of the proof of [JS08].

In more detail, we show that there is a canonical translation of any algorithm (or set of interacting
algorithms) into the RR model.

Definition 3.2. Let AGTS be an algorithm in the TS model. We then define the canonical translation
of AGTS into the RR model, which we will denote as AGRR , which is identical to AGTS except that:

• All element wires are replaced by collections of bit wires, which together are interpreted as
labels.

• Labeling and group operation gates are replaced with the corresponding labeling and group
operation queries.

• Equality gates are replaced by string comparison sub-routines.

For a set of interactive algorithms AGTS = (AGTS
1 , ...AGTS

k ) in the TS model, we define the canonical
translation as AGRR = (AGRR

1 , . . . , AGRR
k ).

Theorem 3.3. Let AGTS be a complete set of interactive algorithms in the TS model, whose final
output is a set of bit wires. Let AGRR be its canonical translation. Then the output distributions of
AGTS and AGRR are identical.

Proof. To see that the distributions of outputs are identical between AGTS and AGRR , we observe
that, in the TS model, it is equivalent to consider the element wires as containing L(x) instead of x.
Each algorithm in AGRR then simply replaces each element wire with bit wires, but still containing
L(x), and evaluates the equality gates for itself using string comparison.

Now let Π be a protocol and (Ch, t) an associated security game in the TS model. Let Π′, (Ch′, t)
be the canonical translation into the RR model.

Theorem 3.4. If (Ch′, t) is hard in the RR model, then (Ch, t)is hard the TS model. This holds
whether or not Ch,Ch′ are single-stage games.

Proof. Toward contradiction, let A = (A1, . . . ,Ak) be an adversary playing the game Ch in the TS
model, and winning with probability q, which is non-negligibly greater than t. Let A′ be the canonical
translation of A. Then (A′,Ch′) is the canonical translation of (A,Ch), which are complete sets of
interacting algorithms. By Theorem 3.3, the output distribution is identical, which contradicts the
hardness of (Ch′, t).

3.6 From TS Security to RR Security for Single-Stage Games

Now, we visit the other direction of the equivalence claimed in [JS08], showing that TS security
implies RR security sometimes, namely in single-stage games.

Theorem 3.5. If Ch is a single-stage game and Π is (Ch, t)-secure in the TS model, then Π′ is
(Ch′, t)-secure in the RR model, where (Ch′, t) is the canonical translation of (Ch, t).
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The intuition is that an adversary A′ for Π′ is compiled into an adversary A for Π, where A
lazily simulates the RR labeling function with a table T , using its TS gates to ensure consistency.

Note that Theorem 3.5 only applies to single-stage games. If we try applying the proof to
a multi-stage adversary, our new adversary has to maintain the table T , which must be shared
across all the adversaries to maintain consistency. Thus, we actually obtain a single-stage adversary,
violating the requirements of the game. Section 5 demonstrates that this limitation is inherent,
giving a multi-stage cryptosystem that is secure in the TS model but not in the RR model. We now
give the proof.

Proof. Toward contradiction, let A′ be a single-stage adversary playing the game Ch′ in the RR
model, and winning with probability u, which is non-negligibly greater than t. We now construct an
adversary A for Ch in the TS model, which wins with probability at least u− negl. This contradicts
the fact that (Ch′, t) is assumed to be hard.

We now describe A. For simplicity, we assume that p/|S| is negligible, where S ⊆ {0, 1}∗ is
the set of labels used in the RR model. At the end of the proof, we describe how to remove this
restriction.

A initializes a table T to be empty. Entries in T will be pairs (x, `), where x is an element wire,
and ` ∈ S. Then it runs A′. We now explain how it processes queries from A′, as well as messages
to and from Ch.

• Consider a message from Ch to A. This message contains two parts: a list v of element wires,
as well as a string τ .
For each element wire x ∈ v, A searches T for a pair (x′, `) with x′ = x, where x′ = x is
checked using equality gates. If such a pair exists, then it sends ` to A. Otherwise, A′ samples
a random ` ∈ S, conditioned on ` not being in the table T . It adds the pair (x, `) to T , and
sends with `.
Finally, it sends the string τ .

• Now consider a message from A′. This message contains two parts: a list v′ of labels, as well
as a string τ .
For each string ` ∈ v′, A searches T for a pair (x, `′) with `′ = `. If such a pair exists, then it
sends x to Ch. Otherwise, it uses a labeling gate to generate an element wire containing ⊥,
which it sends to Ch. It then adds (⊥, `) to T .

• For a labeling query on input x, A first applies a labeling gate on x, receiving x on an element
wire. Then A searches for an entry (x′, `) ∈ T with x′ = x, using equality gates to check if
x′ = x. If such an entry is found, it replies to A′ with `. Otherwise, it samples a random ` ∈ S,
conditioned on ` not being in the table T . It adds the pair (x, `) to T , and replies with `.

• For a group operation query on input (`1, `2, α1, α2), A first applies a labeling gate on each of
x1 and x2, receiving them on element wires. Then it searches for entries (x′1, `1), (x′2, `2) with
x′1 = x1 and x′2 = x2, again using equality gates. If such entries are found, it applies a group
operation gate on (x1, x2, α1, α2), obtaining the element wire x3.
Next, A searches for an entry (x′3, `3) ∈ T with x′3 = x3, once again using an equality gate.
If such an entry is found, it replies to A′ with `3. Otherwise, it samples a random `3 ∈ S,
conditioned on `3 not being in the table T . It adds the pair (x3, `3) to T , and replies with `3.
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To prove that A still wins with probability at least u− negl, we consider the following sequence
of hybrid experiments:

• Hybrid 0. This is the case where A′ interacts with Ch′. A′ wins with probability u, by
assumption.

• Hybrid 1. Here, A′ is interacting with Ch′, with the following change. If at any point A′
sends a label ` that was not explicitly given to A′ in some prior query or interaction with Ch′,
then the value of L−1(`) is set to ⊥.
Note that, by our assumption that p/|S| is negligible, with overwhelming probability any label
produced by Ch′ that was not explicitly provided will not be in the image of L, and hence
L−1(`) will be ⊥ anyway. Hence, A′ still wins in Hybrid 1 with probability at least u− negl.

• Hybrid 2. This is the same as Hybrid 1, except that the injection L is sampled lazily. This
is identical from the perspective of A′, and hence A′ still wins with probability at least u−negl.

• Hybrid 3. Here, A′ is a subroutine of A. This view is identical to that of Hybrid 2, with
the translation between the TS model and Shoup’s model happening inside A instead of in
Ch′. Therefore A′—and hence A— win with probability at least u− negl.

This completes the proof in the case p/|S| is negligible. To extend to the case where p/|S| may be
non-negligible (and even p = |S|), we have to account for the fact that the adversary can sample
valid labels on its own with non-negligible probability. Fortunately, since the labeling function is
a random injection, we still have that any such label will correspond to an element in Zp that is
uniformly random, conditioned on being different from the elements of all other labels the adversary
has seen. Such elements will, with overwhelming probability, satisfy no non-linear relations with
other labels. This allows us to still readily simulate the view of an RR adversary using just TS
queries.

4 Further Impossibilities in the Type Safe Model
Here, we give impossibility results in the Type-Safe (TS) generic group model, which nevertheless
have standard-model constructions from cryptographic groups and moreover compile and have
security in the Random Representation/Shoup model. These impossibilities are for textbook
cryptographic applications, showing a significant weakness for the TS model.

We first state the following lemma, which is implicit in numerous works, and is the main
justification for the Algebraic Group Model [FKL18] being implied by the generic group model.

Lemma 4.1. Consider any deterministic algorithm A(h, x) whose input contains a vector h of n
group elements, which compiles in the TS model and outputs a single group element. Then there is
another deterministic algorithm E(h, x) whose run-time and query complexity is linearly related to
A, such that E(x) outputs a vector v ∈ Zn+1

p satisfying A(h, x) = (g,h)v.

Note that, while Lemma 4.1 discusses deterministic algorithms, it can readily be applied to
randomized algorithms by supplying the same random coins to A and E, making them deterministic
functions of the random coins.
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Proof. By the type system constraint, the group element outputted by A must be an element wire.
We therefore prove that, regardless of the element wire, there will such an E. For element wires
that come from input group elements, this is trivial. For other element wires, E will simulate A.
For element wires that are the output of a labeling gate in input α, E outputs v = (α, 0, . . . , 0).
Next consider a group operation gate with inputs g1, g2, α1, α2. We assume by induction we have
already handled the input element wires to this gate. Therefore, we can compute v0,v1 such
that g1 = (g,h)v1 , g2 = (g,h)v2 . We then simply output α1v1 + α2v2. Then the output value
gα1

1 gα2
1 = (g,h)α1v1+α2v2 as desired.

As is typical in the generic group literature, we will also observe that any equality gate can be
thought of as a linear test on (g,h): let v1,v2 be the vectors guaranteed by Lemma 4.1 for the two
gate inputs. Then the equality gate tests whether (g,h)v1−v2 = 1. We call the linear test trivial if
v1 = v2, and non-trivial if v1 6= v2. Note that trivial tests will always output 1 (denoting equal),
whereas the result of non-trivial tests will depend on the elements in h.

4.1 Collision Resistant Domain Extension

Here, we will prove that any hash function H that compiles in the TS model must have somewhat
large hashing keys. This is in contrast to the standard model, where domain extension such as
Merkle-Damgård allows for constant-sized keys.

Definition 4.2. A collision resistant hash function is a keyed function H : K ×X → Y, together
with a key generation procedure Gen, satisfying:

• Compression: 2× |Y| ≤ |X |

• Efficiency: H and Gen run in polynomial time.

• Collision resistance: For any efficient adversary A, there exists a negligible function negl
such that

Pr[H(k, x0) = H(k, x1) ∧ x0 6= x1 : (x0, x1)← A(k), k ← Gen()] < negl .

Theorem 4.3. Let H be a hash function with key length k, input length n, and output length m.
Suppose H both compiles and is query-bounded collision resistant in the TS model with group order
p. Then n ≤ 1 +m× (k + log p).

Proof. Suppose H has key space Gk1 × {0, 1}k2 , domain Gn1 × {0, 1}n2 , and range Gm1 × {0, 1}m2 .
Then k = k2 + k1 log p, n = n2 + n1 log p, and m = m2 +m1 log p. Then our goal is to show that
n ≤ 1 +m× (k + log p). We will prove a stronger statement, namely that: n ≤ 1 +m(k1 + 1) log p.

We first make two simplifying assumption, which we argue are wlog.

Simplifying Assumption 4.4. n1 = 0, meaning n = n2.

In other words, the input consists entirely of bits and no group elements.

Lemma 4.5. For any H, there exists a new collision resistant hash function H ′ with domain, range,
and key size as H, but which satisfies Simplifying Assumption 4.4.
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Proof. H ′ is defined as H(k, (α1, . . . , αn1 , x) ) = H ′(k, (gα1 , . . . , gαn1 , x)); H ′ uses the same key
sampling algorithm Gen as H. Clearly, any collision for H ′ can be converted into a collision for
H, so if H is collision resistant, then so is H ′. Moreover, this change from H to H ′ preserves
n = n2 + n1 log p.

Let K2 ∈ {0, 1}k2 be the bits of the key, and K1 ∈ Gk1 be the group elements. For a key (K1,K2),
we say that an input x is “good” if all the non-trivial linear equations over K1 queried during
evaluating H(x) evaluate to non-zero. We will pick an inverse polynomial δ (in fact, a constant), to
be specified later.

Simplifying Assumption 4.6. Except with negligible probability over the choice of key (K1,K2)←
Gen(), a 1− δ fraction of x in the domain are good.

Lemma 4.7. For any H satisfying Simplifying Assumption 4.4, there exists H ′ satisfying both
Simplifying Assumptions 4.4 and 4.6, with n′ = n,m′ = m, k′1 ≤ k1.

Proof. The idea is that“bad” inputs yield a linear equation over the exponents of the key. By solving
the linear system, one can solve for one element of the hashing key in terms of others, compiling H
into a new hash function with fewer bad inputs. One can iterate this process until the fraction of
bad inputs becomes sufficiently small. This process expands the bit part of the hashing key (k2), but
this is fine since it is independent of the stronger bound n ≤ 1 +m(k1 + 1) log p that we will prove.

We now give the full proof. Define ` = (k1 + 1)λ/δ. We define a new procedure Gen′(), which
works as follows: first run (K1,K2)← Gen(). Then for i = 1, . . . , `, do the following:

• Sample xi ← {0, 1}n and compute H((K1,K2), x).

• Collect any linear combination Kv
1 = 1 revealed during the evaluation.

Let V be a basis for the set of collected linear combinations above. Writing the vectors in V as rows
in a (wide) matrix, re-arrange the entries of K1, if necessary, so that the last |V| columns of the
matrix are full-rank. Write K1 = (K ′1, S), where S is the last |V| entries of K1. Then we can solve
for the entries of S as linear functions of K ′1, using V. Therefore, Gen′() outputs (K ′1,K ′2), where
K ′2 consists of K2, together with linear functions of K ′1 giving S.

H ′((K ′1,K ′2), x) is then defined as follows. First, extract K2 from K ′2. Then compute S from
K ′1 and the linear functions contained in K ′2, and let K1 = (K ′1, S). Finally run H((K1,K2), x).

First, note that H and H ′ have the same input-output behavior, since H ′ just re-derives the
original key for H and runs H. Since the derivation of K ′1,K ′2 from K1,K2 is just a post-processing of
the key, this conversion also does not affect collision resistance. Clearly, H ′ still satisfies Simplifying
Assumption 4.4.

We now show that H ′ satisfies Simplifying Assumption 4.6. Fix a key (K1,K2) for H, and
consider deriving the key (K ′1,K ′2). Suppose we actually ran the derivation for ` + 1 iterations,
instead of `. For each iteration i = 1, . . . , `+ 1, let pi be the probability that the dimension of the
collected linear combinations increases in that iteration (note that pi will be a variable depending
on the outcome of the previous iterations). Notice that the pi are can never increase, since adding
more dimensions to V can only decrease the probability of finding a linearly independent equation.
Our goal is to show that p`+1 ≤ δ.

Suppose toward contradiction that p`+1 > δ. Then each pi > δ for i ≤ `. But now break the i
into k1 + 1 epochs of size λ/δ. Within each epoch, the probability of adding a dimension is at least
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1− (1− δ)λ/δ ≈ 1− e−λ. This means that V has dimension at least k1 + 1, except with probability
(k1 + 1)e−λ, which is negligible. But V are linearly independent equations over K1, so the dimension
of V is capped at k1, a contradiction.

With our simplifying assumptions, we can now finish the proof of Theorem 4.3. The idea is that for
good x, we can write the output (O1, O2) ∈ Gm1 × {0, 1}m2 as O1 = A(K2,x)(g,K1) O2 = F (K2, x)
for A : {0, 1}k2 × {0, 1}n → Zm1×(k1+1)

p and F : {0, 1}k2 × {0, 1}n → {0, 1}m2 . Recall that a
left superscript means left multiplication in the exponent. A collision amongst good x for the
map x 7→ (A(K2, x), F (K2, x)) therefore yields a collision for the hash function. This means that
(A(K2, x), F (K2, x)) must be injective for good x; since a 1− δ fraction of x are good, this allows
us to lower bound the output length of (A(K2, x), F (K2, x)), thereby giving our bound.

We now give the proof in detail. Recall the setup: we let K2 ∈ {0, 1}k2 be the bits of the key,
and K1 ∈ Gk1 be the group elements. We have by Simplifying Assumption 4.4 that the input is
entirely bits. By Simplifying Assumption 4.6, we have that a 1− δ fraction of inputs to the hash
function are “good”, meaning all the non-trivial linear equations over K1 queried during evaluating
H(x) evaluate to non-zero.

Amongst the good x, since any query over K1 is fixed to non-zero, equality queries do not affect
the output. As such, using the fact that H operates in the Type-Safe model, we can write the
output (O1, O2) ∈ Gm1 × {0, 1}m2 for good x as:

O1 = A(K2,x)(g,K1) O2 = F (K2, x) .

Recall that a left superscript means left multiplication in the exponent. Here, A : {0, 1}k2×{0, 1}n →
Zm1×(k1+1)
p maps the bit part of the key and the input to a matrix of elements in Zp, which are

then used to map K1 to O1. F : {0, 1}k2 × {0, 1}n → {0, 1}m2 computes the bit part of the output.
Both functions A, F can be computed without making any queries to the oracle.

Now, suppose that, for a given K2, there exists a collision amongst good x for the function
pair (A, F ). That is, there are x0 6= x1, both good, such that A(K2, x0) = A(K2, x1) and
F (K2, x0) = F (K2, x1). Then x0, x1 also collide in H relative to (K1,K2) for any choice of K1.
Since A, F make no use of the generic group, if it contains a collision it can be found without
making any queries to the generic group (but potentially with exponential computation).

We would like to conclude, therefore, that (A, F ) must be injective. This, however, is not quite
true, as a collision for (A, F ) only gives a collision for H if both members of the collision are good.
Fortunately most elements in the domain are good, but we will have to be careful in our justification.

Concretely, consider the following attack: choose a random x0, and then choose a random x1
(potentially the same as x0) such that (A, F )(x0) = (A, F )(x1), where the computation of x1 is
computationally inefficient but requires no queries. We know that x0 and x1 are both separately
random elements in {0, 1}n, and therefore each are separately good with probability at least 1− δ.
x0, x1 are not independent, but we can nevertheless conclude that both x0, x1 will be good with
probability at least 1− 2δ.

Now suppose n > 1 +m(k1 + 1) log p. Notice that the range of (A, F ) has bit-length m1(k1 +
1) log p + m2 ≤ m(k1 + 1). As such, we can conclude that x0 6= x1 with probability at least 1/2.
The probability that x0 6= x1 and both x0, x1 are good is therefore 1

2 − 2δ. If we choose δ to be,
say, 1/5, then with probability 1/10 our attack will find a good collision for (A, F ), and hence a
collision for H. This completes the proof of Theorem 4.3.

17



4.2 Pseudorandom Permutations

Definition 4.8. A pseudorandom function is an efficient keyed function F : K×X → Y such that, for
any efficient adversary A, there exists a negligible ε such that |Pr[AF (k,·)() = 1]−Pr[AR(·)() = 1]| < ε,
where R : X → Y is a uniformly random function.

Now we define pseudorandom permutations:

Definition 4.9. A pseudorandom permutation is a keyed function pair P, P−1 : K ×X → X with
the following properties

• Permutation: For all k ∈ K, x ∈ X , F−1(k, F (k, x)) = x. In particular this implies F, F−1

are permutations once the key is fixed.

• Pseudorandomness: F is a secure pseudorandom function.

Theorem 4.10. Let F, F−1 be a pseudorandom permutation. If F, F−1 compiles in the TS model,
it cannot be information-theoretically secure in the model.

Theorem 4.10 will be the immediate consequence of the following three lemmas:

Lemma 4.11. Let F be an efficient keyed function which compiles in the TS model, such that the
range contains at least one bit. Then F is not a secure PRF in the TS model.

Lemma 4.12. Let F be an efficient keyed function which compiles in the TS model, and has at
least one group element in the domain. Then F is not a secure PRF in the TS model.

Lemma 4.13. Let F, F−1 be an efficient keyed permutation pair which compiles in the TS model.
Then the number of group elements in the domain and range must be identical.

We now prove the Lemmas. We start with Lemma 4.11.

Proof. The idea is to first ignore all the group element outputs and just focus on the bit output.
Similarly to Simplifying Assumption 4.4, we can also replace all key element wires with bit wires.
Then we argue that the resulting function can be computed without element gates at all, and
hence it is impossible for it to be pseudorandom against computationally unbounded (but element
gate-bounded) adversaries.

We now give the proof. Let F be a keyed function which compiles in the TS model. Suppose F
has key space Gk1 × {0, 1}k2 , domain Gn1 × {0, 1}n2 , and range Gm1 × {0, 1}m2 . Suppose m2 > 0.
Our goal is to devise an attack against the PRF security of F in the TS model.

We can assume that n1 = 0; that is, that the domain of a PRF is always bits. It will be proven
in Lemma 4.12 that in fact n1 must be zero. But here, we just explain that any PRF with n1 > 0
can be compiled into one with n1 = 0, by interpreting n1 log p bits of the input as n1 exponents.
This is basically identical to Simplifying Assumption 4.4 in the proof of Theorem 4.3. We can also
assume without loss of generality that k1 = 0; in other words, the secret key is all bits. This is
a consequence of the fact that the key is secret, so instead of choosing a random group element
we can choose a random exponent and just include the exponent in the secret key. In more detail,
if k1 > 0, we can construct another keyed function F ′ with key space {0, 1}(k1 log2 p)+k2 , where
F ′( (s1, . . . , sk1 ,K2) , x ) = F ( (gs1 , . . . , gsk1 ,K2) , x ). F ′ is a secure PRF if and only if F is a
secure PRF.
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Finally, we can assume without loss of generality that m1 = 0: for any F with m1 > 0, we can
derive a new function F ′ which simply discards the group element portion of the output. Truncating
the output has no effect on security.

We now have a keyed function whose domain, key space, and range are comprised entirely of bits.
The function is not quite independent of the group, since F can still make queries to the group oracle.
However, since the input is entirely bits, by Lemma 4.1, the queries to the oracle can be represented
as gv1 , gv2 for known v1, v2. F can eliminate the query by replacing it with an equality check on
v1, v2. The result is a function that is entirely independent of the oracle. Pseudorandomness can be
broken in exponential time but with zero queries, violating PRF security in the TS model.

We next prove Lemma 4.12.

Proof. The idea is that any function with group element inputs must be linear in those inputs. But
linear functions cannot be pseudorandom. Let F be a keyed function which compiles in the TS
model. Suppose F has key space Gk1 × {0, 1}k2 , domain Gn1 × {0, 1}n2 , and range Gm1 × {0, 1}m2 .
Suppose n1 > 0. Our goal is to devise an attack against the PRF security of F in the TS model. Our
attack will rely on the fact that for any group element in the domain, all F can do is linearly combine
that element with other group elements. This allows us to predict how the output of F will change
when we change the group element. Such predictive ability lets us break the pseudorandomness of
F .

We can assume without loss of generality that n1 = 1; like in the proof of Lemma 4.11, we can
always eliminate group elements in the input without harming security. By Lemma 4.11, we can
also conclude that m2 = 0; that is, the output consists entirely of group elements. We now give our
attack:

• We choose random α ∈ Zp and a random x ∈ {0, 1}n2 .

• Query the PRF oracle on the inputs (gα, x), (g2α, x), and (g3α, x), obtaining in responses
gu1 , gu2 , gu3 for vectors u1,u2,u3 of elements in Zp.

• Make equality test queries to test if 2u2 = u1 + u3, outputting the result.

We now analyze the attack. If querying a truly random function, clearly the test in the final
step will output non-zero with overwhelming probability. We now consider the case of querying F .
Since α is random and F can only make a polynomial number of queries, we have that, except with
negligible probability, any non-trivial linear equation queried that involves gα must give non-zero.
Same for g2α, g3α, and by union bound all non-trivial linear equations for each of gα, g2α, g3α must
evaluate to non-zero. We therefore delete all equality queries. If we apply Lemma 4.1, the extracted
vector of exponents is therefore independent of whether the input is gα, g2α, or g3α. Thus there are
thus vectors r, s (depending on x and the key) such that, with overwhelming probability over the
choice of α,

ui = r + iαs

But then we have that 2u2 = u1 + u3. Thus, except with negligible probability, the final step of the
algorithm will output zero. Therefore, our attack breaks the security of F as a PRF.

Finally, we conclude by proving Lemma 4.13.
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Proof. The idea is as follows. Suppose the number of group elements were not equal. By potentially
exchanging the roles of F, F−1, we assume F has fewer group element outputs than it’s inputs. Now
consider running F on a random input. Since F is a permutation, the output must information-
theoretically encode the input. But since there are now fewer group elements, this means some
information about the exponents of the input must now be present in the bit wires of the output.
We show how to embed a discrete log challenge into the input, and then extract this information
from the bit wires using F−1 and Lemma 4.1, resulting in computing the discrete log. But this is a
contradiction, since discrete logs are intractable in the TS model.

We now give the proof. Let F, F−1 be a keyed permutation pair, which compile in the TS model.
Suppose F has key space Gk1 ×{0, 1}k2 , domain Gn1 ×{0, 1}n2 , and range Gm1 ×{0, 1}m2 . Our goal
is to show that m1 = n1; as a consequence of being a permutation, we must also have m2 = n2.

To do so, we will show that if m1 6= n1, then we can solve the discrete logarithm problem in
the TS model, which we know is impossible. Since we do not care about the security of F, F−1

for Lemma 4.13, F and F−1 can be interchanged. As such, we can assume m1 < n1. To give an
intuition for the proof, suppose m1 = 0 and n1 = 1. Then consider running y = F (k, (h, x) ) for a
random key k and an input (h, x) where h is a group element and x consists of bits. Then running
F−1(k, y) would give (h, x); applying Lemma 4.1 to F−1(k, y), whose input consists entirely of bits,
would therefore reveal the discrete log of h.

We now give the attack for general m1 < n1. Suppose we are given a group element h = ga for
an unknown a. The attack proceeds as follows:

• Choose random vectors v,w ∈ Zn1
p and compute h = gv ◦ hw = gv+aw. Here, ◦ means

component-wise multiplication.

• Choose a random x ∈ {0, 1}n2 and random key k ∈ {0, 1}k2 .

• Compute (u, y) = F (k, (h, x) ), where u ∈ Gm1 . Using Lemma 4.1, we can find a matrix
A′ ∈ Zm1×(n1+1)

q such that u = A′(1,h). Let A ∈ Z(m1+1)×(n1+1)
q be A′, except where we

insert the row (1, 0, ..., 0) as the first row. Then (1,u) = A(1,h).

• Compute (h′, x′) = F−1(k, (u, y) ). By the correctness of F , we have that h′ = h, x′ = x.
Using Lemma 4.1 again, we can find a matrix B ∈ Zn1×(m1+1)

q such that (1,h) = B(1,u) =
B·A(1,h). Note that B · A ∈ Z(n1+1)×(n1+1)

q is not full rank, since it’s rank is at most
m1 + 1 < n1 + 1.

• Now let C = In1+1 −B ·A. We therefore have that C(1,h) = 1. C must have rank at least 1,
so let z be some non-zero vector in the row-span of C. Then

0 = z · (1,v + aw) = (z · (1,v)) + a(z · (1,w)) .

Assuming z · (1,w) 6= 0, we can therefore compute a = −(z · (1,v))/(z · (1,w)).
Write z = (z0, z′), so that z · (1,w) = z0 + z′ ·w. It remains to show that z0 + z′ ·w 6= 0 with all
but negligible probability. Indeed, the distribution of h, and hence also z, depends only on v + aw.
Since w is masked by v, we have that even conditioned on z, w is an independent uniformly random
vector.

If z′ is not the all-0 vector, then z ·w is uniformly random in Zp, independent of z0. In this case,
z0 + z′ ·w is therefore a uniformly random element of Zp, and so is 0 with negligible probability
1/p. If z′ is 0, then since z is non-zero, we must have z0 6= 0. But in this case, z0 + z′ ·w = z0 6= 0.
This completes the proof.
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4.3 Efficient CPA-Secure Encryption for Message Strings

We now prove that any CPA-secure encryption scheme in the TS model, whose domain is bit strings
(as opposed to group elements) must have a quite large ciphertexts. In particular, the number of
group elements in the ciphertext must approximately equal the bit-length of the message. Since
group elements require log p bits, meaning roughly a factor of log p blowup in the ciphertext size.

Definition 4.14. A CPA-secure encryption scheme consists of a pair of efficient probabilistic
algorithms Enc : K ×M→ C,Dec : K × C →M satisfying:

• Correctness: ∀K ∈ K,M ∈M, Pr[Dec(K,Enc(K,M)) = M ] ≥ 1− negl.

• Chosen Plaintext Security: Consider an adversary A playing the following game with a
challenger. The challenger first chooses a random K ← K, and chooses a random bit b ∈ {0, 1}.
Then A makes queries on message pairs (M0,M1), and receives Enc(k,Mb). The adversary
outputs a guess b′ for b. We require that, for any efficient A, Pr[b′ = b] ≤ 1/2 + negl.

Theorem 4.15. Let Enc,Dec be a CPA-secure encryption scheme which compiles in the TS model.
Suppose the message space is bit-strings {0, 1}n. If the ciphertext space is Gm1 × {0, 1}m2, then
m1 ≥ Ω(n/ log λ).

Proof. Let Enc,Dec be a CPA-secure encryption scheme in the TS model. We first argue that the
bit portion of the ciphertexts must be statistically independent of the message, even conditioned on
the secret key K. This follows from the usual impossibility of information-theoretically CPA-secure
encryption.

Now consider decrypting a ciphertext c ∈ Gm1 . Dec will make a polynomial number T of
equation queries over (1, c). The message outputted will be some function of the results and the bit
portion of the ciphertext. We can assume without loss of generality that Dec never makes a query
that is linearly dependent on previous queries which returned 0. Indeed, Dec can correctly predict
the output of the query will be 0. Therefore, there will be at most m1 queries that will result in
zero, since the dimension of the zero queries is m1.

This means there is� 1 bit of information about the message in the bit-portion of the ciphertext,
and only log2

( T
m1

)
≤ m1 log2 T bits of information in the queries, and therefore the message length

n is at most this quantity. Hence, m1 ≥ n/ log2 T . Since T is polynomial in the security parameter,
this gives the desired lower-bound on the ciphertext size.

5 The Insecurity of the Type-Safe Model for Multi-stage Games
Here, we show that security in the TS model does not imply security in the RR model. We first
define deterministic public key encryption, following [BBO07].

Definition 5.1. A deterministic encryption scheme is a triple of efficient algorithms (Gen,Enc,Dec)
where Enc,Dec are deterministic such that:

• Correctness: For all m, Pr[Dec(sk, c) = m : (sk,pk)←Gen()
c←Enc(pk,m) ] ≥ 1− negl.

• `-Security: For any two distributions D0, D1 with min-entropy at least `, and for any efficient
probabilistic adversary A, |Pr[A(pk,Enc(pk, D0)) = 1]− Pr[A(pk,Enc(pk, D1)) = 1]| ≤ negl,
where (pk, sk)← Gen().
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Here, the min-entropy of a distribution D is H∞(D) = min log2 Pr[x ← D]−1. Since Enc is
deterministic, for security to be possible at all, we require ` = ω(log λ). For security to be non-trivial,
we usually ask that `� |m|.

Construction 5.2. Let (Gen,Enc,Dec) be the following deterministic encryption scheme for mes-
sages in Zp:

• GenGTS(): run a1, . . . , an ← Zp, and output sk = (a1, . . . , an), pk = (h1 = ga1 , . . . , hn = gan).

• EncGTS(pk,m): run c0 ← gm and ci = hmi g
mi for i = 1, . . . , n.

• DecGTS(sk, c): for i = 1, . . . , n, compute ui = cai0 . If ci = ui, set mi = 0; otherwise set mi = 1.

It is straightforward that Construction 5.2 is correct: ui = gmai = hmi . Therefore ci = ui if and
only if mi = 0.

Theorem 5.3. Construction 5.2 is an `-secure deterministic encryption scheme in the TS model
for ` = log2 p− 2, but is insecure in the RR model or in any standard-model instantiation of the
group.

Proof. We first sketch the idea. For insecurity in the RR and standard models, the idea is to have
D0, D1 be random messages conditioned on, say, the first bit of gm being 0 and 1, respectively.
These clearly have high min-entropy, but also allow for the adversary to trivially distinguish the
two cases by looking at the first bit of c0. For security in the TS model, we first note that this bit
fixing strategy does not apply since the distribution cannot have direct access to the bits of gm. We
give a simple proof that no distinguishing strategy is possible.

We now give the full proof. We first prove the insecurity in the RR model as well as the standard
model, which have essentially identical proofs. Let ` be the bit-length of group elements. The
adversary chooses a random t ∈ {0, 1}`, and submits two distributions D0, D1 of messages: Db

consists of random messages conditioned on 〈t, gm〉 = b. Since inner products are good extractors, for
a random messagem, 〈t, gm〉 will be statistically close to a random bit. Therefore, with overwhelming
probability the distributions D0, D1 will have min-entropy at least (log2 p)− 2, and hence are valid
distributions. Given the ciphertext c, the adversary then simply outputs 〈t, c0〉 = 〈t, gm〉 = b. Thus
the adversary’s advantage is negligibly close to 1.

Now we prove security in the TS model. Consider an adversary A which outputs two dis-
tributions D0, D1, each with min-entropy at least H∞. Consider any non-trivial linear equation
w0, w1, . . . , wn, v0, v1, . . . , vn that A will apply to the public key and ciphertext:

gw0hw1
1 · · ·h

wn
n cv0

0 · c
vn
n = gw0+mv0+

∑n

i=1 ai(mvi+wi)+mivi

Consider the linear equation E = w0 +mv0 +
∑n
i=1 ai(mvi +wi) +mivi. Suppose there exists some

i > 0 such that (vi, wi) 6= (0, 0). Then since m has min-entropy, except with negligible probability
at most 2−H∞ , mvi + wi 6= 0. Then except with negligible probability at most 1/p in the choice of
ai, E 6= 0. On the other hand, suppose that vi = wi = 0 for all i > 0. Then E = w0 +mv0, and
(v0, w0) 6= (0, 0). As above, E 6= 0 except with negligible probability at most 2−H∞ . Hence, in either
case, with overwhelming probability E 6= 0.

Since all equality queries give non-zero with overwhelming probability, regardless of which
message distribution is encrypted, A has negligible advantage.
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6 TS Un-instantiability
Here, we give an example of a protocol that compiles and is secure under a single-stage game in
the TS model (and hence also in the RR model, by Theorem 3.5) and yet is insecure under any
standard-model instantiation of the group.

6.1 Overview

We first explain limitations of the existing works on the un-instantiability of idealized models, as
well as sketch our solution.

The first such un-instantiability result was for random oracles (RO), a predecessor of generic
groups, where one models an hash function as a truly random function. Canetti, Goldreich, and
Halevi [CGH98] give contrived schemes that are secure in the random oracle model, but which are
insecure under any instantiation of the oracle by a concrete hash function. Their impossibility works
by identifying a security property of a hash function H called correlation intractability, which requires
that for any “sparse” relation over input/output pairs, it is computationally infeasible to find an input
x such that (x,H(x)) satisfies the relation. Correlation intractability is trivially satisfied by random
oracles, but [CGH98] show that it is impossible (in certain parameter regimes) for standard-model
hash functions. They then build contrived cryptosystems where an input/output pair satisfying the
relation causes some clearly insecure behavior: e.g. the secret key holder completely reveals their
key, or the encrypter encrypts uses the identity function. In the random oracle model, this will
never happen and the system will remain secure. But in the standard model, the attacker simply
uses the impossibility for correlation intractability to find such an input. triggering a complete
break of the system.

This idea was translated to generic groups by Dent [Den02], who uses similar ideas but where
the hash function is replaced by the group labeling function. Another way to obtain a separation is
through the recent work of Zhandry and Zhang [ZZ21], who show that the labeling function of a
generic group, when properly truncated, gives a random oracle, which in turn is impossible.

However, both of these results crucially rely on the labeling function; that is, they only compile
in the RR/Shoup model. There are at least a couple reasons why the un-instantiability result
appears to not generalize to the TS model. First, [CGH98, Den02] use a random oracle to instantiate
Micali’s CS proofs [Mic94], which in turn requires a domain-extending Merkle tree; we already
showed (Section 4) that domain extension is impossible in the TS model.

More fundamentally, we show (Section 6.2 below) that correlation intractability cannot separate
the TS and standard model, regardless of the particulars of the construction. Concretely, we give
a simple hash function which is correlation intractable (in the standard model) with respect to
every evasive relation that compiles in the TS model. We note that, the cryptosystems derived
from correlation intractability [CGH98] must execute the relation, and therefore the relation must
compile in the TS model if we want to use it for an un-instantiability result.

Other un-instantiability results [Nie02, GK03, BBP04, BFM15] have similar issues to the above.
Meanwhile, [BCPR14] give an un-instantiability result that compiles in the TS model, but it is
a multi-stage game and requires strong computational assumptions, namely indistinguishability
obfuscation.

We fill in this gap, showing that the single-stage TS model is unconditionally un-instantiable,
albeit using a very different, and arguably simpler, approach than correlation intractability. At a
high level, we start with ElGamal, but where message bits are encrypted bit by bit. This is easily
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proved secure in the standard model. We then modify the scheme to append a single bit, which is a
contrived leakage function of the message as well as randomness.

In either the TS or RR model, it is not difficult to show that this leakage offers minimal
advantage to breaking the cryptosystem. However, in the standard model, we show that by
essentially encrypting the description of (that is, the code) of the group, the ciphertext, leakage
included, easily reveals one bit about the message. This breaks security.

The main challenges are two-fold. First we must make sure the encryption scheme can actually
be decrypted; recall, we want it to compile in the TS model, where we showed in Section 4 that
common PKE schemes do not compile. A more difficult problem is to maintain security in the
generic group models. The reason this is challenging is that our leakage function interprets the
message as arbitrary code and runs it on some inputs. If we are not careful, this arbitrary code
could already break security without having anything to do with the generic group. For example,
the code could just be for a constant function. If we just outputted the result of the code, this would
break security even in the generic group models. We give our solution in Section 6.3. In Section 8
we give another un-instantiability result for one-time MACs in the context of the Algebraic Group
Model (AGM), which also applies to the TS model.

6.2 On Correlation Intractability in the TS model

A relation R(·, ·) is evasive if, for any a, R(a, b) = 1 with negligible probability over the choice of
uniformly random b.

Definition 6.1. A hash functionH is correlation intractable with respect to R if it is computationally
intractable to find an a such that R(a,H(a)) = 1. H is correlation intractable (with no quantification
by R) if it is correlation intractable with respect to every evasive relation.

We show that if we restrict to R which compile in the TS model, it is straightforward to obtain
a correlation intractable hash function. Let G be a group with generator g of order p. Let K = G be
the key space, X = Zp be the domain, and Y = G be the range. Define H(K, a) = Ka. Consider
any efficient R : Zp × G→ {0, 1} which compiles in the TS model.

Theorem 6.2. Assuming discrete logs are hard in G, then H is correlation intractable with respect
to every evasive relation R that compiles in the TS model.

Proof. Suppose R is a relation which compiles in the TS model, and which is evasive. In other words,
for any a, Pr[R(a, h) = 1 : h← G] is negligible. Now suppose there is an efficient algorithm A (in the
standard model) such that Pr[R(a,H(K, a)) = 1 : K ← G, a← A(K)] is non-negligible. This means,
with non-negligible probability over K ← G and the randomness of a, R(a,H(K, a)) = 1 whereas
R(a, h) = 0 with overwhelming probability for a random h 6= H(K, a). Since R(a, ·) only depends
on the results of linear queries, consider the first query where the results differ. Since the query
must depend on the second argument to R, it will be non-zero for a random h with overwhelming
probability; this means the query must give zero for H(k, a). In other words, there must be some
query (α, β) such that gαH(K, a)β = 1. But remember that H(K, a) = Ka. Therefore, we can find
the discrete log of K as K = g−α/aβ . This violates the assumed hardness of discrete logarithms.

6.3 Our Un-instantiable construction

Construction 6.3. Let (GenGTS ,EncGTS ,DecGTS) be the following:
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• GenGTS(1λ): sample α← Zp \ {0}, and let pk = (g, h = gα, λ) and sk = α.

• EncGTS(pk,m): Let n be the bit-length of m. For each i ∈ [n], sample ri ← Zp and let
ci = gri , di = hri+mi , where mi ∈ {0, 1} is the ith bit of m. Let e ← L(m, {ri}i where L is
defined below. Output output c = ({ci, di}i∈[n], e).

• DecGTS(sk, c): for each i ∈ [n], compute d′i = cαi . If d′i = di, set mi = 0; otherwise set mi = 1.
Output m = m1m2 · · ·mn.

L(m, {ri}i) works as follows: interpret the last n − λ bits of m as the description of a function
H : Zp → {0, 1} in some canonical way. Then:

• Test if H is “balanced” by sampling k = 32λ random sj ← Zp, j = 1, . . . , k, computing
bi ← H(si), and checking that

∑k
j=1 si ∈ (3k/8, 5k/8).

• If H is not balanced, sample a random bit e← {0, 1}. Otherwise, let e = H(r1)⊕H(r2)⊕ ·⊕
H(rλ). Output e.

Theorem 6.4. Construction 6.3 is a secure public key encryption scheme in the TS generic group
model (and hence also in the RR model, by Theorem 3.5). However, Construction 6.3 is insecure in
the standard model.

Proof. We first show that the construction is correct and secure. Correctness is a straightforward
adaptation of the correctness of ElGamal: di = hri+mi = gαri+αmi = cαi h

mi . Therefore di = cαi if
and only if mi = 0. For security, we first show the following:

Lemma 6.5. For any message m, the bit e is statistically close to a uniform random bit. Concretely,
|Pr[e = 0]− 1/2| ≤ 2−λ.

Proof. The proof idea is e is the XOR of many independent samples from the not-too-biased outputs
of H. Lemma 6.5 above shows that an adversary cannot break Construction 6.3 just by looking
at the bit e. For the full proof, consider the H derived from m. Then each bj are independent
Bernoulli random variable with expectation p := Prs←Zp [H(s) = 1]. Then

∑
j bj is given by the

binomial distribution with expectation kp. Using Hoeffding’s inequality gives us the tail bounds:

Pr

∣∣∣∣∣∣
∑

j

bj

− kp
∣∣∣∣∣∣ ≥ δk

 ≤ 2e−2kδ2
.

In particular, setting δ = 1/8, we have that (
∑
j bj) ∈ [(p − 1/8)k, (p + 1/8)k] except with

negligible probability. Therefore, if p /∈ [1/4, 3/4], except with probability 2e−k/32, H will be deemed
not balanced.

We therefore break into two cases. First suppose p /∈ [1/4, 3/4]. In this case, with probability
at least 1 − 2e−k/32, e will be a random bit, since H is deemed not balanced. Hence, |Pr[e =
0]− 1/2| ≤ e−k/32. Since k = 32λ, this quantity is at most e−λ ≤ 2−λ.

Now suppose p ∈ [1/, 4, 3/4]. In this case, either e will be a random bit (in the event that
H is deemed unbalanced), or e will be the parity of λ independent Bernoulli random variables
with expectation p. In the latter case, since these variables are not too biased, their parity will be
approximately randomly distributed. In particular, Pr[e = 0] = 1

2(1 + (1 − 2p)λ), and therefore
|Pr[e = 0]− 1/2| ≤ 1

2 × (1/2)λ.
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We now expand this to consider general adversaries which also get ci, di:

Lemma 6.6. Construction 6.3 is secure in the TS generic group model.

Proof. Consider the adversary’s challenge messages m0,m1. Since the bit e cannot alone reveal
which message is encrypted, the only way to distinguish is to have a distinguishing equality gate
which outputs different values when encrypting m0 vs m1.

Consider any of the adversary’s element wires. By tracing through the various element-related
gates, we can write the value of this element wire as a linear combination over the “base” exponents,
namely those of the public key and ciphertexts components. Therefore, any equality gate can be seen
as testing if a linear combination of the base exponents gives 0. If the equality gate is distinguishing,
the linear combination must be 0 for one of the challenge messages, say m0, and non-zero for the
other, m1. In particular the linear combination v0, . . . , vn, w0, . . . , wn must be not identically 0, and
satisfy

v0 × 1 + w0 × α+
∑
i

vi × ri + wi × (αri +m0,i) = 0 .

Now, suppose the bit e is not given. Then this linear combination is a non-zero degree 2 polynomial
in the underlying random values α, {ri}. By Schwartz-Zippel, this polynomial evaluates to non-zero,
except with probability 2/p.

Now, we would like to take a union bound over all equality gates to say that all the gates
evaluate to non-zero, with overwhelming probability, and hence there are no distinguishing gates.
But remember that our cost metric does not bound the number of equality gates. To resolve
this, note that we have at most a polynomial number t of element wires, and therefore there can
only be

(t
2
)
≤ t2/2 non-redundant equality gates. Therefore, the probability of there being some

distinguishing equality gate is upper bounded by t2/p.
So far, this bound assumed that e was not given. But e is just a single bit. So if there was an

algorithm A that could generate a distinguishing gate given e, there is another algorithm A′ which
also generates a distinguishing gate without e, just with half the probability. This A′ just makes a
random guess for e, which is correct with probability 1/2. But the above ruled out such an A′.

The result is that any algorithm running in cost t has advantage at most 2−λ + 2t2/p, which is
negligible for polynomial t.

Finally, we show that no matter how the group is instantiated, Construction 6.3 is insecure in
the standard model

Lemma 6.7. For any standard-model group, Construction 6.3 is insecure.

Proof. Consider instantiating Construction 6.3 with an arbitrary standard model group scheme.
Then consider the following adversary A.

• On input pk = (g, h), let ` be the bit-length of group elements.

• Choose a random t ∈ {0, 1}`, and construct the circuit H(s) = 〈t, hs〉, where 〈·, ·〉 denotes the
inner product mod 2 of the bit string inputs.

• Send to the challenger the challenge messages (m0 = (0λ, H),m1 = (1λ, H)). Receive the
ciphertext c = ({ci, di}i, e).

• Output e⊕ 〈t, d1 ⊕ · · · ⊕ dλ〉.
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We now analyze A. First, since inner products are good extractors, H is balanced with overwhelming
probability. Thus e = H(r1)⊕H(r2)⊕ · ⊕H(rλ).

Suppose c is an encryption of m0. Then 〈t, di〉 = 〈t, hri〉 = H(ri). Hence, with overwhelming
probability, the output of A is exactly 0. Next suppose c is an encryption of m1. Then 〈t, di〉 =
〈t, hri+1〉. Hence, if we define W = (hr1 ⊕ hr1+1)⊕ · ⊕ (hrλ ⊕ hrλ+1), the output is equal to 〈t,W 〉.
In order to finish the proof of Lemma 6.7, we will need the following:

Claim 1. Pr[W = 0] ≤ 1/2.

Proof. Since the ri are independent, W is the XOR of λ iid random variables V samples as
V = hr ⊕ hr+1 for a random choice of r ∈ Zp.

Note that V has zero support on 0, since V = 0 implies hr = hr+1, which in turn means h = 1.
Since h = gα for α 6= 0, this is impossible.

Moreover, we claim that there is no element which D outputs with probability more than
1/2. Suppose toward contradiction that V outputted a string v with probability larger than 1/2.
Then v = hr ⊕ hr+1 for at least half of r ∈ Zp. There must therefore exist r, r + 1 such that
v = hr ⊕ hr+1 = hr+1 ⊕ h(r+1)+1. But then hr = hr+2, meaning h2 = 1. Since the order p of h is a
prime, this in turn means h = 1, which again is impossible.

Since the guessing probability of each instance of V is at most 1/2, then so is the XOR of λ iid
samples. This completes the proof.

Notice that t is independent from the ri, and hence W . Hence, if W 6= 0, 〈t,W 〉 is a uniform
random bit. Therefore the output of A on m1 is 1 with probability at least 1/4, giving it a
non-negligible advantage. This completes the proof of Lemma 6.7.

Putting together Lemmas 6.6 and 6.7 proves Theorem 6.4.

7 Impossibility of IBE from Generic Groups
Papakonstantinou, Rackoff, and Vahlis [PRV12] give an impossibility of identity-based encryption
(IBE) from generic groups. The authors cite Shoup’s model, and like Shoup they define the generic
group model as a random mapping from Zp into bit strings. However, we argue that their definitions
and proofs actually lie somewhere between Shoup’s and the Maurer/TS model. For example,
consider their definition of a generic algorithm ([PRV12], page 6):

A generic algorithm A is a probabilistic algorithm (or with randomness in its input)
that takes inputs and produces outputs of the form (w, g1, . . . , gk) ∈ ({0, 1}∗ × Gk)
for an arbitrary k ∈ N. A is given oracle access to O restricted to sums that have
non-zero coefficients only for the elements g1, . . . , gk.

Above, O is their notation for the oracle implementing the generic group. Requiring an algorithm
to be explicitly given group elements as input, and then only allowing queries on linear combinations
of those explicit group elements, is a TS-style restriction that is not present in the RR/Shoup
model. Since all algorithms must declare the type of inputs they work on, this also means that the
components of any cryptosystem (public keys, secret keys, ciphertexts, etc) must explicitly delineate
between group elements and bits, just as in the TS model.
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This restriction on algorithms plays an important role in the impossibility proof. The proof
of [PRV12] proceeds in two steps, where in the first step they compile a generic group IBE scheme
into one where user secret keys do not contain any group elements. The second step is to show
that such a restricted IBE cannot exist in the generic group model. Unfortunately, the distinction
between user keys containing group elements or not is only well-defined if the group elements of
secret keys are explicitly labeled, as in the TS model. In the RR model, one could imagine trivially
hiding group elements by, say, XORing them with an arbitrary string, or secret sharing into different
pieces.

Digging deeper, the impossibility proof does the following many times: compute an encryption of
a random message, and then promptly decrypt it, collecting all the queries made during the process.
We observe that this process is exactly how verification works when compiling IBE to a signature
scheme in the usual way. However, signatures were shown impossible in the TS model by [DHH+21],
who also runs the verification procedure many times to collect queries. But we know that signatures
are possible in the RR model, so the impossibility of [DHH+21] only applies in the TS model. Given
these similarities between the impossibility proofs, together with the fact that [PRV12] imposes
TS-like restrictions, it is unclear whether the IBE impossibility should extend to the full RR model.

A full impossibility. Here, we prove a full impossibility of IBE in the RR generic group model,
resolving this gap. We first define IBE; we use a key encapsulation variant for simplicity, which is
equivalent to the standard notion.

Definition 7.1. An identity-based encryption (IBE) scheme consists of a tuple of efficient proba-
bilistic algorithms (Gen,Extract,Enc,Dec) satisfying:

• Correctness: For all identities id, Pr
[
Dec(skid, c) = k :

(msk,mpk)←Gen()
sk id←Extract(msk,id)
(c,k)←Enc(mpk,id)

]
≥ 1− negl.

• Random Identity Security: Consider an adversary A playing the following game. The
challenger first chooses a random (msk,mpk)← Gen(), and chooses a random bit b ∈ {0, 1}.
The challenger samples q + 1 random identities id1, . . . , idq, id∗. For i = 1, . . . , q, is compute
skidi ← Extract(msk, idi). It also computes (c∗, k∗0) ← Enc(mpk, id∗) and samples a uniform
k∗1. It sends {idi, skidi}i∈[q], c

∗, k∗b to A, which outputs a guess b′ for b. We require that, for all
efficient A and polynomial q, Pr[b′ = b] ≤ 1 + negl.

Theorem 7.2. There is no random identity-secure IBE scheme in the RR model.

Proof. Our proof, while different than [PRV12], will follow the same basic outline, though it will
replace “secret keys contain no group elements” with a related restriction that is well-defined in
the RR model. It will also clarify what about IBE makes it impossible in the RR model, where
signatures are possible.

Concretely, we will define a type of signature scheme, where generic group queries during
verification are independent of the signature (but dependent on the message and public key). Such
a signature scheme is rather easily shown to be impossible, in any idealized model. This replaces
the second part of the proof of [PRV12]. By using a simpler object (signatures instead of IBE) we
are able to significantly simplify this part of the proof of [PRV12]. It also offers a clear explanation
for the gap between general signatures and IBE in the generic group model, since general signatures
will not have the special structure.
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The bulk of the proof of Theorem 7.2 is showing that any IBE in the RR model can be compiled
into such a restricted signature scheme. The idea is to view the IBE as a signature scheme, which
is already well-known. However, the resulting signature scheme has a special structure: a first
phase that is independent of the signature, and then a second phase that depends on the signature.
Importantly, the second phase is decrypting a ciphertext produced in the first phase. We use the
correctness of the IBE to argue we can compile out the queries made in the second phase; this
compiling-out step crucially uses the linear structure of groups.

We now give the proof. We first define a restricted signature scheme:

Definition 7.3. An restricted signature scheme (R-Sig) relative to an oracle O consists of a tuple
of oracle algorithms (GenO, SignO,VerO) such that:

• δ-Correctness: Pr
[
VerO(PK, σ) = 1 :

M←$
(SK,PK)←GenO()
σ←SignO(SK,M)

]
≥ δ.

• Restricted Structure: VerO(PK,M, σ) = Ver1( Ver0O(PK,M) , σ), where Ver1 is indepen-
dent of O, but Ver0 is independent of σ.

• 0-random message security: For any query-bounded adversary A,

Pr[VerO(PK,M, σ) = 1 :
(SK,PK)←GenO()

M←$
σ←AO(PK,M)

] is negligible.

Lemma 7.4. For any oracle O and any constant δ > 0, R-Sigs do not exist.

Proof. Consider choosing an oracle O, a random M , and (SK,PK)← GenO(), and then fixing them.
We will say that σ is “good” if Pr[VerO(PK,M, σ) = 1] ≥ δ/2, where the probability is taken over
the random coins of Ver. By correctness, with probability at least δ/2 over O,M, SK,PK, there will
exist at least one good σ, namely the output of SignO(SK,M).

Suppose Ver0 was deterministic. Then we could compute v ← Ver0O(PK,M), and consider the
oracle-free probabilistic circuit C(σ) = Ver1(v, σ). Then an input σ is good if and only if C(σ)
accepts with probability at least δ/2. Since C is oracle-free, we can brute-force search for such a σ,
finding it with probability at least δ/2. The forgery will then be (M,σ), which is accepted by the
challenger with probability δ/2, giving an overall advantage δ2/4.

For a potentially randomized Ver1, we have to work slightly harder. For a good σ, we have
that Prv←Ver0O(PK,M)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≥ δ/4. Meanwhile, we will call a σ “bad” if
Prv←Ver0O(PK,M)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≤ δ/8.

For a parameter t chosen momentarily, we let v1, . . . , vt ← Ver0O(PK,M), and construct circuits
Ci(σ) = Ver1(vi, σ). We then brute-force search for a σ such that Pri←[t][Pr[Ci(σ) = 1] ≥ δ/4] ≥ 3δ/8.
By Hoeffding’s inequality, any good σ will be a solution with probability 1− 2Ω(δ2t). Meanwhile,
any bad σ will be a solution with probability 2−Ω(δ2t). By setting t such that t/δ2 is sufficiently
longer than the bit-length of signatures, we can union bound over all bad σ, showing that there will
be no bad solutions except with negligible probability. We will therefore find a not-bad solution
with probability at least δ/2− negl ≥ δ/3. In this case, with probability at least δ/8 over the choice
of v by the verifier, Pr[Ver1(v, σ) = 1] ≥ δ/4. Hence, the overall success probability is at least
(δ/3)× (δ/8)× (δ/4) ≥ δ3/100.

Lemma 7.5. If there is an IBE scheme in the RR generic group model, then for any constant δ
there exists a restricted signature scheme in the same model.
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Proof. Let (GenGRR ,ExtractGRR ,EncGRR ,VerGRR) be a supposed IBE scheme in the RR model. Now
consider the following standard way of constructing a signature scheme from an IBE scheme:

• Key generation is simply GenGRR , with PK = mpk and SK = msk.

• SignGRR(SK,M) = ExtractGRR(SK,M), where M is interpreted as an identity.

• VerGRR(PK,M, σ): Run (c, k)← EncGRR(PK,M), where again M is interpreted as an identity,
and output 1 if and only if DecGRR(σ, c) = k.

Notice that (Gen, Sign,Ver) is almost restricted: VerGRR(PK,M, σ) = Ver1GRR( Ver0GRR(PK,M) , σ)
where Ver0GRR(PK,M) outputs v = (c, k)← Enc(PK, id) while we have Ver1GRR(v, σ) checks that
DecGRR(σ, c) = k.

The problem, of course, is that Ver1 likely makes queries to GRR, so does not have the required
structure. We will therefore need to show how to compile out GRR from Ver1. The idea is to provide
Ver1 some extra hints (through both v and PK) to help it answer the queries. First, any query made
during Ver0 is provided in v. Second, during setup, we choose many random messages, which we
sign and verify, collecting all queries made during the verification process (both Ver0 and Ver1). We
provide these queries in PK. Then Ver1 answers its queries by seeing if the query is in the span of
the various queries it has available through v and PK. If so, it knows how to correctly answer the
query. If not, it answers with a random label.

By standard arguments, we show that the only way Ver1 can answer incorrectly is if a query
corresponds to a “new” equation over labels seen during Gen. By increasing the number of sign/verify
trials during setup, we expand the span of queries provided in PK. Since there are only a polynomial
number of queries during Gen, we can set the number of trials large enough to ensure any arbitrarily
small inverse polynomial correctness error. We now give the proof.

Recall that we have (GenGRR ,ExtractGRR ,EncGRR ,VerGRR) as a supposed IBE scheme in the RR
model. Now consider the following standard way of constructing a signature scheme from an IBE
scheme:

• GenSig
GRR = GenGRR , with PK = mpk and SK = msk.

• SignGRR(SK,M) = ExtractGRR(SK,M), where M is interpreted as an identity.

• VerGRR(PK,M, σ): Run (c, k)← EncGRR(PK,M), where again M is interpreted as an identity,
and output 1 if and only if DecGRR(σ, c) = k.

Recall that (Gen,Sign,Ver) is almost restricted: VerGRR(PK,M, σ) = Ver1GRR( Ver0GRR(PK,M) , σ)
where Ver0GRR(PK,M) outputs v = (c, k) ← EncGRR(PK,M) while Ver1GRR(v, σ) checks that
DecGRR(σ, c) = k. The problem is that Ver1 must make queries to GRR.

The random identity security of (Gen,Extract,Enc,Dec) immediately implies the many random
message security of (GenSig,Sign,Ver), where the adversary is given an arbitrary polynomial q
number of signatures on random messages to help it in its forgery. Note that we only need q = 0.
But we will leverage the security for higher q in order to compile out the oracle queries of Ver1.

We now gradually transform (GenSig, Sign,Ver). Our transformations will not affect security,
but will eventually result in Ver1 making no oracle queries. In the following, we will assume that
labels are much larger than log p, so that they are a negligible fraction of bit strings. We can handle
smaller S as we did in the proof of Theorem 3.5 in Section 3.
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Removing new labels from Ver0 . First, since Ver0 and Ver1 are just subroutines in a single
verification algorithm, we do not affect security in any way by having Ver0 provide all its oracle
queries to Ver1 in v. Ver1 can now try to answer its own queries using this information. Concretely:

• Ver0GRR
1 (PK,M): run (c, k)← EncGRR(PK,M). Note that labeling queries can be computed

through a sequence of group operation queries, so we will assume wlog that only group
operation queries are made. Let Lc,k be the set of all queries made by Enc. Moreover, for a
query (`1, `2, a1, a2) resulting in `3, we know a linear combination (a1, a2,−1) over (`1, `2, `3)
giving the identity. We therefore assemble a linear space Sc,k of linear equations over Lc,k.
Output v = (c, k, Lc,k, Sc,k).

• Ver1GRR
1 (v, σ): check that DecGRR(σ, c) = k, except that we change how queries (`1, `2, a1, a2)

are answered:

– If either label `1 or `2 are not in Lc,k, then make the query.
– If both labels `1, `2 are in Lc,k, search for an `3 such that the vector (a1, a2,−1) (appro-

priately permuted to match the positions of `1, `2, `3 in Lc,k) is in the span of Sc,k. If
such an `3 exists, it must be unique since otherwise there are multiple labels of the same
element. In this case, output `3, without making any queries
If no such `3 is found, make the query to GRR.

Let Ver1 be the combination of Ver01 and Ver11. Since labels are random and represent a negligible
fraction of bit strings, for a random message M , we have that except with negligible probability all
labels queried by Ver11 to GRR must have been produced by queries made by (SK,PK)← GenGRR(),
SignGRR(SK,M), or Ver0GRR

1 (PK,M). We call such queries “new”
Consider such a query ` made during SignGRR(SK,M). We will show first how to eliminate

such queries. There are at most a polynomial number tSign of such queries, since Sign is query
efficient. We will call such a label ` “heavy for σ”, or “heavy” for short, if VerGRR

1 (PK,M, σ) =
Ver1GRR

1 (Ver0GRR
1 (PK,M), σ) causes Ver11 to query on ` with probability greater than α, for some

parameter α to be chosen later.
We will now modify Sign into Sign1 as follows:

• SignGRR
1 (SK,M) runs σ = SignGRR(SK,M). Then it for i = 1, . . . , ....u, it runs VerGRR

1 (PK,M, σ),
collecting all labels appearing in queries or responses into a set Lσ. It also construct the
corresponding space of linear equations Sσ. It the outputs the signature σ1 = (σ, Lσ, Sσ).

• Ver1GRR
2 is the same as Ver1GRR

1 , except that it searches for labels in Lc,k ∪ Lσ and linear
equations in the span of Sc,k ∪ Sσ.

Note that these modifications have no effect on security, since the post-processing by Sign1 could
have been done using publicly available information and the signature. We now explain that, with
reasonably high probability, there will be no new queries that came from Sign

Lemma 7.6. Except with probability t[(1− α)u + α], none of the new queries made by Ver11 will
have been queried during Sign.

Proof. Observe that any heavy ` will have a probability 1− (1− α)u of being included in Lσ, and
hence not queried. Any non-heave ` has a probability α. So for any label, the probability of being
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queried is at most (1−α)u +α. Union bounding over all t queries gives a probability t[(1−α)u +α]
of there being any new query arising from Sign

By setting 1/α, u to be sufficiently large polynomials, we can make the probability t[(1−α)u+α].
Thus, we conclude that in (Gen, Sign1,Ver2 = (Ver01,Ver12), except with arbitrarily small polynomial
probably, no new queries made by Ver12 will come from Sign1.

We now handle new queries coming from Gen in a similar fashion:

• GenGRR
1 (): first run (SK,PK)← GenGRR(). Then for i = 1, . . . , w, choose a random message

M and compute VerGRR
2 (PK,M, SignGRR

1 (SK,M)). Let LPK be the list of all labels queries or
received in the w runs of Ver2 (but not Sign1), and SPK the corresponding linear combinations.
Output PK1 = (PK1, LPK , SPK).

• Ver1GRR
3 is the same as Ver1GRR

2 , except that it now searches for labels in Lc,k ∪Lσ ∪LPK and
and linear equations in the span of Sc,k ∪ Sσ ∪ SPK .

These modifications still have no effect on security, since LPK , SPK can be computed by making
a polynomial number of signing queries, and then verifying the responses using publicly available
information.

Just as with new queries from Sign1, we can set w to be sufficiently high relative to the number
of queries made during Gen to get an arbitrarily small inverse polynomial probability of any new
query originating from Gen1.

The result is that, except with arbitrarily small probability, no new labels will ever be queried
by Ver13.

Removing queries. The above shows that we do not need to worry about Ver13 making queries
on new labels that were not provided in either the public key, signature, or v. Now we show that we
can eliminate queries as well.

When Ver1GRR
3 actually makes a query to GRR, there are two possibilities:

• The resulting label was previously queried by Gen1,Sign1,Ver01, or Ver13.

• The resulting label was not previously queried.

In the first case, Ver13 obtains an equation over the labels available to it, which must be linearly
independent from all prior equations. But observe that the overall dimension of the space is at
most the number of available labels, a polynomial. But if such an equation were likely to be found,
then we could simply increase u,w by 1, which is equivalent to adding a new random message and
corresponding queries when running Gen1 and also adding a single verification when running Sign1.
By continuing to increase u,w, we therefore gradually increase the dimension of the available linear
equations, and decreasing the probability of a new equation. As we did with setting u,w before, we
can simply set u,w appropriately large to get an arbitrary inverse polynomial probability of a new
equation.

We now have removed all queries except those that result in labels that were never queried by any
previous algorithm. In this case, the entire view of the correctness experiment is independent of the
label value (except that is distinct from the known labels). We call this the “good” case. Therefore,
by the correctness guarantee, we can sample a fresh random label, and with high probability
maintain correctness.
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So our final Ver14 makes no queries to GRR. Instead, for any query that it would make to GRR,
it simply chooses a fresh random label, and adds it together with the corresponding equation to
its list of labels and equations. The result is that, except in the arbitrarily small probability case
where we are not “good”, the output of Ver14 is correct. This completes the proof.

Combining Lemmas 7.4 and 7.5, we therefore prove Theorem 7.2.

8 On the Algebraic Group Model
Here, we discuss the Algebraic Group Model (AGM) of Fuchsbauer, Kiltz, and Loss [FKL18].
The AGM is proposed as a model lying between the standard and generic group models, striking
a compromise between the wide applicability of generic groups and the security conferred by a
standard-model proof. For these reasons, the AGM has become a popular model for proving security
(e.g. [GRWZ20, BFL20, KLX20, BDFG20, GT21]).

In the AGM, adversaries can see the actual standard model group representation without any
type-system constraints. They can therefore perform arbitrary standard-model computations on
these elements. However, any time the adversary outputs a group element h, it must “explain” that
element, by outputting a vector a such that h =

∏
i g
ai
i , where gi are the input group elements.

Because the adversary has unfettered access to the group representation, security cannot hold
unconditionally; instead, security is proven by a reduction transforming an algebraic adversary into
an algorithm for a hard problem, typically discrete log.

8.1 Allowed Games in the AGM

One wrinkle discussed in [FKL18] is that, without further constraints, the model is trivially invalid.
Suppose the experiment provides the adversary a group element h, but implicitly encoded as a
string s by, say, by flipping every bit in the representation of h. Then the adversary can turn around
and output h (by flipping all the bits back), but it would have no way of producing a representation
of h without solving the discrete log of h. [FKL18] suggest the following resolution:

We therefore demand that non-group-element inputs must not depend on group
elements.

This demand, however, is never formalized. Fortunately, we can see that the Type Safe mode
readily captures the desired intuition. After all, the TS model distinguishes between group and
non-group elements, and the type safety guarantee means that once a group element is obtained,
nothing can be done with it except for generating new group elements and equality gates. Since
equality gates do not depend on the group element itself but just the exponent, no information
about the group element can be extracted into bit wires.

We therefore propose that the AGM is restricted to TS model games.

8.2 AGM as a compiler

We now offer a different view of the AGM, as a compiler for TS games. Essentially, for any TS
game, we can compile it into one where any group elements sent by the adversary must come with
an explanation of that element.
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Note that the TS restriction only applies to the game itself; according to the AGM, we will give
the adversary the actual group elements. But now, at some stage the game may accept an element
wire, but the adversary produces actual group elements. The group element needs to be converted
into an element wire. But this is potentially problematic, as element wires contain values in Zp,
so it would appear one needs to solve discrete logarithms in order to perform the conversion. One
solution may be adopt the convention that element wires contain group elements instead of their
exponents. However, this is somewhat unsatisfactory, as it makes the description of the TS model
group-dependent.

The resolution is to observe that we actually do not need to do such a conversion. Since the
AGM requires the adversary to also output an explanation of the group element, we can actually
compute the element wire using this explanation and the element gates. So instead of asking the
adversary to provide a group element, we only ask that it provides an explanation.

We therefore re-conceptualize the AGM as a compiler, transforming a game (p,Ch) in the TS
model into a new game (p,Ch′), also in the TS model. Ch′ is identical to Ch, except for the following:

• Ch′ keeps a list g = (1, g1, g2, . . . , g`−1) of all element wires Ch has outputted so far, including
1.

• Whenever Ch takes as input an element wire h, Ch′ instead takes a collection of bit wires
corresponding to a vector v ∈ Z`p. It then applies element gates to compute an element wire
for h = gv, which it sends to Ch.

Definition 8.1. A TS game (p,Ch) is secure in the AGM for a group G if and only if (p,Ch′) is
secure in the standard model for G.

8.3 AGM Un-instantiability

We now give an construction of a one-time MAC that is secure in the AGM, but insecure in the
standard model, resolving an open question from [FKL18]. This result also gives an un-instantiability
result for the TS model, which is simpler but somewhat more contrived. We note that our PKE
scheme from Section 6 does not demonstrate anything about the AGM, since the adversary is not
asked to produce any group elements. As such, for the PKE scheme, the AGM is actually equivalent
to the standard model and hence the scheme is insecure in the AGM.

Definition 8.2. A one-time message authentication code (MAC) is a triple of PPT algorithms
(Gen,MAC,Ver) where:

• Correctness: ∀m, Pr[Ver(k,m, σ) = 1 : k←Gen()
σ←MAC(k,m)] ≥ 1− negl

• Security: For any adversary A, there exists a negligible negl such that A wins the following
game with probability at most negl: First A produces a message m; in response it receives σ ←
MAC(k,m) for a random key k; finally it outputs m∗ 6= m and σ∗. It wins if Ver(k,m∗, σ∗) = 1.

Note that we will require our MAC to work for unbounded-length messages. Even for unbounded-
length messages, one-time MACs can readily be built unconditionally. We now give our counter-
example:

Construction 8.3. Let (Gen′,MAC′,Ver′) be an unconditional one-time MAC. We construct a new
MAC (Gen,MAC,Ver) using a group G. We will assume elements in G have bit-length log2 p; we
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can easily extend to general G. We will assume G comes with two generators g, h, with the discrete
log between them unknown. Our MAC works as follows:

• Gen(): run k′ ← Gen′() and sample γ, δ ← Zp. Output k = (k′, γ, δ).

• MAC(k,m): first run σ′ ← MAC′(k′,m). Then interpret m as a function H whose output
length is log2 p bits. Compute u = H(γ, δ). Output σ = (σ′, u, g).

• Ver(k,m, σ): First run Ver(k′,m, σ′). If it accepts, also accept. Otherwise, write σ = (σ′, u, w).
Check if w = gγhδ. If so, accept. Otherwise, reject.

Theorem 8.4. Construction 8.3 is a secure one-time MAC in the AGM under the discrete log
assumption, but insecure under any instantiation of the group.

Proof. We start with standard-model insecurity. We query on the m which will be interpreted as
the function H(γ, δ) = gγhδ. In the resulting signature, u therefore gives gγhδ. It can then sign any
message with the signature (∗, ∗, u).

For AGM security, consider an adversary A breaking security in the AGM. Let m∗ be the message
it forges, and σ∗ = (σ′, u∗, w∗) be the forgery. By the one-time security of (Gen′,MAC′,Ver′), we
know that the only way for this signature to pass verification is for w∗ = gγhδ. Since A is algebraic,
and only previously received two group elements g, h (u was provided as bits), it must therefore
explain w∗ by producing α, β such that w∗ = gαhβ. There are two cases:

• (α, β) 6= (γ, δ). In this case, we can turn such an adversary into an algorithm for solving
the discrete log of h relative to g. By the assumed hardness of discrete logarithms, this is
impossible.

• (α, β) = (γ, δ). But γ, δ are random strings of total length 2 log2 p, and the adversary only
gets at most log2 p bits of information about them, namely the output of H. And yet the
adversary is somehow able to recover all 2 log2 p bits. This violates the incompressibility of
random strings.

Remark 8.5. In our proof, we needed g, h to be publicly known since there was no communication to
the adversary before its query. Knowledge of g, h is needed to construct the function H(γ, δ) = gγhδ.
We could have instead had the signer generate g, h as part of the secret key, and then used a
two-time MAC. The first query would be used to learn g, h, and the second query would then be on
H(·, ·).

8.4 Is the AGM Superior to Generic Groups?

Since the AGM requires TS games, it is therefore actually worse in some ways than the RR model.
From now on, we will therefore focus on comparing to the TS generic group model.

Works citing the AGM will typically motivate the model by saying that it is “between” the
standard model and generic group model, which we will take to refer to the TS model. However, it
is not always discussed why being between is advantageous, and we will now argue that in fact, it
often does not offer clear benefits.
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Attack-oriented perspective. From an “attack-oriented” perspective, the AGM captures a
wider class of attacks than generic groups. In this sense, the model offers a clear advantage
when applied to the multiplicative groups over finite fields. The best attacks on such groups are
index calculus attacks, which are captured by the AGM but not generic groups. This perspective
appears to be the original motivation of Fuchsbauer et al. [FKL18], and is also made rather explicit
in [ABK+21].

However, we note that some groups are not susceptible to index calculus attacks. Concretely,
elliptic curves without efficient pairings are not, and this is exactly the reason why these curves
are often conjectured to have optimal 128-bit security with groups of size 2256. In fact, essentially
the only known attacks on elliptic curves are either generic, rely on a pairing, or the contrived
counter-examples to generic groups such as [Den02]. For these groups, there are no known algebraic-
but-non-generic adversaries, so it is not obvious that the AGM captures a wider class of adversaries.
Thus while not worse than the TS generic group model, it seems that the AGM does not offer
significant advantages for elliptic curves for this perspective either.

Security prediction perspective. Another perspective is that a model is about making predic-
tions about security. For any game (p,Ch) and group G, the standard, algebraic, and TS models will
each make a decision about whether the game is hard. The standard model is the ground truth, but
it may be infeasible to actually know if a game is secure or not in this model. The algebraic and TS
models can be seen as predictions about this ground truth that are easier to reason about by giving
more power to the prover, but they will have false-positives. The AGM could be advantageous if it
offered better predictive ability that the standard or generic group models, in certain settings. This
seems to be the perspective taken by [AHK20], who position the AGM as being about avoiding
un-instantiability results.

We now argue that existing work does not demonstrate any benefits of the AGM from this
perspective. Concretely, looking at the AGM literature, we can break the known games into two
cases:

• Those in which the AGM is trivially equivalent to the standard model. These are cases like
public key encryption where the game does not ask for any group elements from the adversary
and so the AGM imposes no restrictions over the standard model.

• Those in which the security holds in the AGM if and only if it also holds in the TS model.
These include Construction 8.3 and all the positive results about the AGM, as well as trivially
easy games in the TS model.

Thus, amongst known games, the AGM offers little predictive power for which games should be
secure: in the first case we just stick with the standard model, and in the second case we can just
stick with the TS model. For all the examples in the literature, it is trivial to distinguish between
the cases by inspection. So despite having fewer false positives, once we condition on the game,
the known examples do not demonstrate any predictive advantages of the AGM over the existing
models.

Note that this does not mean the AGM does not offer any predictive advantages, just that the
current evidence does not support advantages from this perspective. We leave demonstrating such
an advantage, or proving that one cannot exist, as an interesting question for future work.

Remark 8.6. Another claimed benefit of the AGM is that it makes proving generic group hardness
results easier. The basis for the proofs being easier is that the proofs are by reduction (to an
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unconditionally hard problem in the generic group model), even if the end goal is an unconditional
generic group proof. It does appear that this alternative approach can yield simpler proofs. However,
this advantage is rather independent of the algebraic group model, and such simpler proofs could be
obtain without considering the AGM at all.

8.5 Comparison to [KZZ22]

Here, we give a brief comparison to the concurrent and independent work of Katz, Zhang, and
Zhou [KZZ22]. As in our work, they point out that “depend” is never formalized in [FKL18], leaving
the AGM ambiguous. Katz et al. do not attempt to give a formal definition.

Katz et al. go on to give a counterexample, concluding like we do that the AGM and the
RR/Shoup model are incomparable. Their counterexample crucially relies on a game where the
adversary can make a query that reveals a bit of the label of a group element. As such, their
counterexample is not a TS/Maurer game, and would be excluded by our convention for the
AGM. By allowing more games in the AGM, Katz et al.’s incomparability result for the AGM and
RR/Shoup models is entirely different than ours. In addition to their counterexamples not applying
under our convention for the AGM, our counterexamples do not apply under their convention, as
our counterexamples crucially comes from limiting the allowed games to TS/Maurer games. Aside
from pointing out the ambiguities in the AGM and the separation between the AGM and RR/Shoup
models (for entirely different reasons), there is essentially no overlap between our work and theirs.

We note that Katz et al. argue for allowing the adversary to learn a bit of a label during a query,
despite [FKL18] insisting that non-group-elements produced by games should not “depend” on
group elements. Katz et al.’s justification for this is that [FKL18] allow games where the adversary
can make DDH-like queries, where the adversary submits group elements (u, v), and learns a single
bit indicated whether or not v = ua for a secret a known to the game. As the result of such queries
is a single bit that “depends” on the group element, Katz et al. conclude that queries returning
single bits should be acceptable.

We point out that the bit in DDH queries, however, is quite different from revealing a bit of
the label. The result of a DDH query only depends on the exponents, and is independent of the
label itself. Our convention of only allowing TS/Maurer games in fact separates these two types of
games: the DDH-like queries above are allowed in the TS/Maurer model, since the game can test if
v = ua for an a it knows using just group operations and equality gates. Thus our convention offers
a reasonable way to circumvent their counterexample, though it introduces counterexamples of its
own.
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