
WiP: Applicability of ISO Standard Side-Channel
Leakage Tests to NIST Post-Quantum Cryptography

Markku-Juhani O. Saarinen
PQShield Ltd.

Oxford, United Kingdom
mjos@pqshield.com

Abstract—FIPS 140-3 is the main standard defining security
requirements for cryptographic modules in U.S. and Canada;
commercially viable hardware modules generally need to be
compliant with it. The scope of FIPS 140-3 will also expand
to the new NIST Post-Quantum Cryptography (PQC) standards
when migration from older RSA and Elliptic Curve cryptography
begins. FIPS 140-3 mandates the testing of the effectiveness of
“non-invasive attack mitigations”, or side-channel attack coun-
termeasures. At higher security levels 3 and 4, the FIPS 140-3
side-channel testing methods and metrics are expected to be those
of ISO 17825, which is based on the older Test Vector Leakage
Assessment (TVLA) methodology. We discuss how to apply ISO
17825 to hardware modules that implement lattice-based PQC
standards for public-key cryptography – Key Encapsulation
Mechanisms (KEMs) and Digital Signatures. We find that simple
“random key” vs. “fixed key” tests are unsatisfactory due to
the close linkage between public and private components of
PQC keypairs. While the general statistical testing approach
and requirements can remain consistent with older public-key
algorithms, a non-trivial challenge in creating ISO 17825 testing
procedures for PQC is the careful design of test vector inputs so
that only relevant Critical Security Parameter (CSP) leakage is
captured in power, electromagnetic, and timing measurements.

Index Terms—FIPS 140-3, Post-Quantum Cryptography, Side-
Channel Attacks, DPA, DEMA, TVLA, ISO 17825

I. TRANSITIONS: FIPS 140-3, SIDE-CHANNELS, AND PQC

The U.S. & Canadian standard for the security of cryp-
tographic modules is FIPS 140-3 [1]; after two decades,
validation of implementations to the older FIPS 140-2 standard
[2] ended in 2021. The new standard states that:

Major changes in FIPS 140-3 are limited to the
introduction of non-invasive physical requirements.1

Non-invasive physical attacks use external physical measure-
ments to derive secret information but do not modify the
module’s state. They are commonly known as Side-Channel
Attacks (SCA) and have been widely known since the 1990s;
Timing Attacks (TA) [4] and Differential Power Attacks (DPA)
[5] are the most common ones.

Almost concurrently with the start of FIPS-mandated side-
channel testing, NIST is transitioning to Post-Quantum Cryp-
tography (PQC) standards for digital signatures and key
establishment [6]. Hence designers of new high-assurance
cryptographic modules for Government use are expected to
meet both SCA and PQC requirements.

1However, there have been other substantial changes in FIPS 140 testing,
such as the much more comprehensive entropy source requirements [3].

II. ISO 17825 SIDE-CHANNEL TESTING

A. Limitations
ISO 17825 [7] presents its tests as repeatable, “push-button”

tests with moderate costs. The test metrics determine confor-
mance to ISO 19790 [8] (and, by extension, future versions
FIPS 140-3 [1]) at Security Levels 3 and 4. The procedure
primarily tests for statistical signs of first-order leakage of
secret information (Critical Security Parameters, CSPs). Key
recovery is not expected to be demonstrated.

Due to its push-button leak-detection nature (without con-
sideration for specific attacks), it is useful to think of ISO
17825 as defining a “least common denominator” base level
for side-channel security. It is not commensurable with an
Evaluation Assurance Level (EAL) gained from Vulnerability
Analysis (AVA VAN) under the Common Criteria scheme [9].

The [7] non-invasive test metrics exclude attacks that
modify the module’s state, either destructively or through
temporary faults. The test control interfaces are similar to the
cryptographic module’s external API. Since fault attacks are
excluded, the main requirement for laboratory equipment is
to issue commands synchronously and gather high-precision
measurements of power consumption (for DPA), electromag-
netic emissions (for DEMA), or for Timing Attacks (TA).

B. General Test Procedure
Our working assumption is that a PQC Implementation

Under Test (IUT) will be required to meet a similar non-
invasive security as RSA and Elliptic Curve (ECDSA) imple-
mentations. The statistical methodology, calibration, and other
technical requirements are largely the same as for older public-
key cryptography in ISO 17825 [7] and ISO 20085 [10], [11].
Note that hybrid IUTs can implement both types of algorithms.

The most readily applicable test is the “general statistical
test procedure” [7, Figure 7]. The current version of these
tests create data subsets A and B of measurements (e.g., trace
waveforms) with the IUT, where input test vectors to A and
B differ the way input CSPs are selected.

Example: Subset A may use a fixed bit value in the CSP,
while measurements in set B use random CSP values. If the
A/B measurement sets can be distinguished from each other
with the Welch t-test with high enough statistical confidence,
this is taken as evidence of the leakage of the CSP and will
result in a FAIL. If the confidence level is not reached, the
test result is a PASS for the test vectors.

Version 20220303070000

Outline of the General Statistical Test Procedure
0. Determine the required sample size N = NA+NB and

t-test threshold C from the experiment parameters.
1. Collect Subsets A and B and compute their pointwise

averages (µA, µB) and standard deviations (σA, σB).
2. Compute the pointwise Welch t-test statistic vector

T =
µA − µB√
σ2
A

NA
+

σ2
B

NB

.

3. If at any point |T | > C, the test results in a FAIL.
If the threshold was is not crossed, the test is a PASS.

The 2016 version of ISO 17825 [12] derived the sample size
N (of waveforms) directly from the security level; 10, 000 for
Level 3 and 100, 000 for Level 4, and the statistical threshold
value was fixed at C = ±4.5. However, this leads to a
statistically flawed experiment; for example, the family-wise
error rate (FWER) was not considered [13], and hence the
resulting confidence levels were not accurate.

Under the newer versions of ISO 17825 [7], the security
level determines (Cohen’s) standardized effect size; d = 0.04
for Level 3 and d = 0.01 for Level 4. This, together with
the false-positive rate α, false-negative rate β are used to
determine the number of traces N and threshold C. Bonferroni
correction is used to address FWER.

III. PQC EXPERIMENT CLASSES

We will focus on NIST finalist lattice-based KEMs and Sig-
nature algorithms. At first, the tests may seem straightforward
to set up; the private keys and shared secrets of NIST PQC
algorithms are considered CSPs. But this creates a lot of false
detections. NIST PQC private keys also contain components
that can be derived from public information; those items are
not CSPs, and detection of their “leakage” will create false
positives. For purposes of our discussion, we exclude such
public, shared items of information from the secret key, and
both pk and sk are hence required for private-key operations.

Example: The public matrix or ring element in lattice-based
cryptography (typically noted with the letter A) is not assumed
to be secret. Many algorithms derive A on-the-fly from a much
shorter seed value using an Extensible Output Function (XOF)
– and have the seed appear in both public and secret keys. The
role of A is analogous to public modulus n in the RSA or a
generator in Elliptic Curve crypto; they are needed for private
key operations but are also public parameters and hence need
to be excluded from the distinguishing process.

There are additional, fundamental algorithmic differences
between Post-Quantum Cryptography and older asymmetric
algorithms such as RSA. For example, [7] states that “Asym-
metric cryptography repeatedly uses elementary operations.”
This is less true for lattice-based algorithms than it is for
Elliptic Curve or RSA cryptography. The structure of the
newer algorithms is less homogenous and consists of many
special processing steps in addition to repeated arithmetic
iterations. Devastating leakage can occur at almost any stage
of the algorithm, and hence full-algorithm testing is essential.

API Conventions: We define simple API abstractions for
PQC algorithms at the “I/O Boundary” as required by the
ISO 17825 standard. In practice, these APIs may need to be
implemented as multiple discrete steps that set up or import
keys securely for the operation. Export may also be in scope.

We use (pk, sk) to denote public and private components
of the keypair, preferably refactored in a way that sk contains
only secret (CSP) parameters whose leakage leads to a security
compromise. If masking is used, it is assumed that a fixed
sk is remasked (“refreshed”) for each private key operation
trace. Some APIs allow randomizers to be passed with the
API; [seed] represents this. Such determinism is helpful for
testing, but the seeds themselves are CSPs and must be handled
appropriately in a side-channel context.

A. Classes CPA and CCA: Key Establishment Mechanisms

PQC Key Encapsulation Mechanisms (KEM) can be used
in many different roles; for ephemeral key establishment (in
interactive protocols such as TLS) and with long-term keys
for public-key encryption (in applications such as e-mail), and
for also for challenge-response authentication. All of these use
cases have different security requirements.

For technical definitions of CPA and CCA security, see [14].
CCA KEMs are often built on top of CPA components using
the Fujisaki-Okamoto (FO) transform [15], [16]. The general
test procedure is not adaptive and hence excludes interactive
forms of tests (“experiments”) required for CPA and CCA
security claims. The “CPA” and “CCA” terms are used here
just to refer to the underlying components of KEMs. Security
testing of CPA components is necessary to obtain assurances
about the security of the CCA construct as well.

Examples: Non-specific t-tests are commonly used in the
literature to demonstrate basic security against side-channel
attacks of PQC KEMs. Welch’s t-test method was used in
[17] and [18] to demonstrate the security of masked Kyber
implementations. However, these tests directly invoked inter-
nal subcomponents – such interfaces may not be available for
ISO 17825 testing. In [19] the t-test was also used in the non-
specific “fix vs. random” A/B test mode to verify the security
of the decapsulation component of SABER KEM against
simple DPA (however, a neural network profiling/template
attack was used later to attack the implementation [20]).

CPA.API – Encrypt/Decrypt API Abstraction.
In CPA testing, we use the CPA Encrypt/Decrypt subcom-

ponent of KEM algorithms built using the FO transform.

Initialize: (pk, sk)← CPA.KeyGen([seed])
Public: ct← CPA.Encrypt(pk,m, [seed])
Private: m← CPA.Decrypt(ct, pk, sk)

CPA.PD class: Public key distinguisher.
The IUT is CPA.Decrypt(). The traces for set A use a fixed

(but refreshed) keypair. Random, unique keypairs are used for
each trace in set B. The ciphertexts ct are created (typically
offline) using random messages m and matching keypairs to
those used by IUT to decrypt.

CPA.PD.A: m = Random, (pk, sk) = Fixed
CPA.PD.B: m = Random, (pk′, sk′) = Varying

Discussion: CPA.PD does not appear to be very important
in practice as the main implication of a FAIL is is that the
attacker can identify the fixed public key used, which is usually
inconsequential. However, a PASS on CPA.PD implies that the
secret key is also protected; this is a very positive feature but
may require unnecessary performance compromises. Imple-
mentations are not expected to protect public parameters.

CPA.SD class: Secret key distinguisher.
The IUT is CPA.Decrypt(). All ciphertexts decrypted in set

A are generated with a fixed (but refreshed) keypair (pk, sk).
For set B a modified secret key sk′ is used. Random messages
m are encrypted in both cases with pk to create the ciphertexts.

Tweak: sk′ ← CPA.KeyMod(pk, sk)

CPA.SD.A: m = Random, (pk, sk) = Fixed
CPA.SD.B: m = Random, pk = Fixed, sk′ = Varying

Discussion: The CPA.SD test is applicable only if the raw
private key operation CPA.Decrypt() does not return a FAIL
but will generally yield an invalid m′ in case of an invalid
secret key. This is an assumption that can be made with the
underlying CPA decryption primitive of most Lattice-based
KEMs. The test also assumes that the private and public
key components have been refactored in a way that allows
one to create a meaningfully modified secret key sk′ with
differences limited to CSP components. In classical cases,
one could simply flip a bit in the CSP / secret key but for
PQC the required synthesis is more complex. The resulting
sk′ is likely to be inconsistent with the public key, and hence
a special test entry method may be needed. The modification
must be meaningful also in the sense that it affects the result;
CPA.Decrypt(ct, pk, sk) 6= CPA.Decrypt(ct, pk, sk′).

We recommend that the (ct, pk, sk, sk′) test vector datasets
for CPA.SD – or code for generating them – are published
and shared to guarantee the consistency of the tests.

CCA.API – Encapsulate/Decapsulate API Abstraction.
PQC algorithms generally provide the basic Key Encapsula-

tion Mechanism (KEM) API for their CCA security versions.
There is no message m to select, but a random shared secret ss
is created in encapsulation. The algorithms are often designed
for implicit rejection; decapsulation may fail, but a synthetic
ss value is generated instead of a return code [16].

Initialize: (pk, sk)← CCA.KeyGen([seed])
Public: (ct, ss)← CCA.Encaps(pk, [seed])
Private: ss← CCA.Decaps(ct, pk, sk)

CCA.PD and CCA.SD: One can define a CCA.PD public key
distinguisher in an analogous manner to CPA.PD; however,
failure of this test can be a result of leakage of public vari-
ables, not CSPs. CCA.SD can be constructed using synthetic
keypairs in a similar fashion to CPA.SD. We note that FO
re-encryption will generally fail due to mismatch between pk
and synthetic sk′, so CCA.SD has limited use.

CCA.PC class: Plaintext Checking Distinguisher.
The IUT is CCA.Decaps() and the decapsulation operation

uses a fixed keypair (pk, sk) for all tests. The difference is in
ciphertexts; Set A consists of valid ciphertexts, while set B
ciphertexts are encapsulated with a mismatching public key
pk′, pk′ 6= pk.

CCA.PC.A: ct = CCA.Encaps(pk), matching sk
CCA.PC.B: ct = CCA.Encaps(pk′), mismatch

Discussion: This CCA test invokes the Plaintext Checking
(PC) oracle in Fujisaki-Okamoto transform present in many
CCA KEMs. The existence of a PC oracle generally implies
that the scheme’s security is reduced from CCA to CPA level.
It may also lead to compromise of CSPs [21].

B. Class Sig: PQC Signature testing

The tests focus on the signature function (private key
operations) as it is assumed that signature algorithms are used
with long-term keys. Key generation is rare.

Examples: Authors of [22] the use the TVLA / t-test to find
leakage points in an implementation of the Dilithium signature
algorithm. They then describe a masked variant of Dilithium
and use the t-test to verify the security of components (“gad-
gets”) against leakage. However, in ISO 17825 methodology,
the tester may not be able to access subcomponents.

Sig.API – Signature API abstractions.

Initialize: (pk, sk)← Sig.KeyGen([seed])

API with a signed message envelope sm of message m:

Private: sm← Sig.Sign(m, pk, sk, [seed])
Public: {m,Fail} ← Sig.Open(sm, pk)

Alternative API with a detached signature s of message m:

Private: s← Sig.Signature(m, pk, sk, [seed])
Public: {Ok,Fail} ← Sig.Verify(s,m, pk)

Sig.MD class: Message distinguisher.
The IUT is either Sig.Sign() or Sig.Signature(). Mes-

sages m and m′ have equivalent length, e.g., 256 bits.

Sig.MD.A:m′ = Random, (pk, sk) = Fixed
Sig.MD.B: m = Fixed, (pk, sk) = Fixed

Discussion: The message being signed may or may not
be a CSP, depending on the application. For side-channel
security we do not recommend deterministic signing that
always produces the same signature, given the same m and
keys. Dilithium can be operated in randomized mode too [23].

Sig.PD class: Public key distinguisher. The IUT is either
Sig.Sign() or Sig.Signature(). Fixed and varying keypairs
can be generated offline for the test.

Sig.PD.A: m = Fixed, (pk, sk) = Fixed
Sig.PD.B: m = Fixed, (pk′, sk′) = Varying

Discussion: Like with its CPA.PD counterpart, failure of
Sig.PD test does not necessarily imply leakage of secret CSP
information or other information leading to a signature forgery.

Sig.SD class: Secret key distinguisher.
The IUT is either Sig.Sign() or Sig.Signature(). For this

test, one needs to be able to modify the secret components sk
of the keypair while causing minimal changes to the public val-
ues pk; ideally, one constructs synthetic keypairs (pk, sk) and
(pk, sk′) with differences only in the actual secret component.
The exact procedure for such test vector generation depends
on the algorithm under test, and should be standardized.

Tweak: sk′ ← Sig.KeyMod(pk, sk)

Sig.SD.A: m = Fixed, pk = Fixed, sk′ = Varying
Sig.SD.B: m = Fixed, pk = Fixed, sk = Fixed

Discussion: As with CPA.SD and CCA.SD, the synthetic
secret keys sk′ do not need to be completely random but can
have only small differences to sk; the aim is to keep changes
to the pk public-key parameters required for verification at a
minimum. For example, a Dilithium [23] secret key contains
(ρ,K, tr) parameters that can be derived from the public key –
in addition to the secret vectors (s1, s2). Only the latter usually
needs to be protected against leakage. A practically relevant
testing procedure is able to perform private key operations with
the same ρ public values but varying (s′1, s

′
2) parameters; and

compare those traces against fixed (s1, s2).

IV. CONCLUSIONS

We predict that the FIPS 140-3 non-invasive security base-
line ISO 17825 will apply very broadly to commercial hard-
ware cryptography. It can be used to demonstrate the existence
and coverage of side-channel countermeasures – but these
PASS/FAIL leakage detection tests do not really measure the
cost of an attack by an adversary.

We have presented classes of simple ISO 17825 / TVLA
“push button” test procedures for PQC KEM and Signature
algorithms. Perhaps unsurprisingly, we find that side-channel
leakage testing of PQC modules can’t be entirely “black box”,
but requires carefully designed test vectors.

The straightforward application of “random vs. fixed” key-
pair distinguisher (CPA.PD, CCA.PD, Sig.PD) is not very
meaningful as leakage of public key does not imply leakage of
CSP information. Due to the complex linkage between private
and public parts of the keypair in PQC, one needs a special
method of constructing synthetic keypairs that modify only the
secret CSP components without modifying the public ones.

For PQC key establishment (KEMs) implemented with
the Fujisaki-Okamoto paradigm, verification of direct leakage
of CSPs can be obtained via the CPA Decrypt component
(CPA.SD). One needs to also test for the presence of the plain-
text checking oracle (CCA.PC) for partial CCA assurance.

For digital signatures, one generally wants to implement
randomized signatures instead of deterministic signatures; this
can be verified with a message distinguisher (Sig.MD). As
with KEMs, verification of direct secret leakage requires an
understanding of the scheme to generate differentiated keys
sk′ that can be used for CSP leakage detection (Sig.SD).

Standardized PQC test vector generation procedures are
needed to obtain consistent testing results in all cases.

REFERENCES

[1] NIST. Security requirements for cryptographic modules. Federal
Information Processing Standards Publication FIPS 140-3, March 2019.
doi:10.6028/NIST.FIPS.140-3.

[2] NIST. Security requirements for cryptographic modules. Federal
Information Processing Standards Publication FIPS 140-2 (With change
notices dated October 10, 2001 and December 3, 2002), May 2001.
doi:10.6028/NIST.FIPS.140-2.

[3] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,
Mary L. Baish, and Mike Boyle. Recommendation for the entropy
sources used for random bit generation. NIST Special Publication SP
800-90B, January 2018. doi:10.6028/NIST.SP.800-90B.

[4] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, Advances
in Cryptology - CRYPTO ’96, 16th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science, pages
104–113. Springer, 1996. doi:10.1007/3-540-68697-5_9.

[5] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer,
1999. doi:10.1007/3-540-48405-1_25.

[6] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene
Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status
report on the second round of the NIST post-quantum cryptography
standardization process. Interagency or Internal Report NISTIR 8309,
National Institute of Standards and Technology, July 2020. doi:
10.6028/NIST.IR.8309.

[7] ISO. Information technology – security techniques – testing methods
for the mitigation of non-invasive attack classes against cryptographic
modules. Working Draft ISO/IEC WD 17825:2021(E), International
Organization for Standardization, 2021.

[8] ISO. Information technology – security techniques – security require-
ments for cryptographic modules. Standard ISO/IEC 19790:2012(E),
International Organization for Standardization, 2012.

[9] Common Criteria. Common methodology for information technology
security evaluation: Evaluation methodology. Specification: Version 3.1
Revision 5, April 2017. URL: https://commoncriteriaportal.org/cc/.

[10] ISO. It security techniques – test tool requirements and test tool
calibration methods for use in testing non-invasive attack mitigation
techniques in cryptographic modules – part 1: Test tools and techniques.
Standard ISO/IEC 20085-1:2019(E), International Organization for Stan-
dardization, 2019. URL: https://www.iso.org/standard/70081.html.

[11] ISO. IT security techniques – test tool requirements and test tool calibra-
tion methods for use in testing non-invasive attack mitigation techniques
in cryptographic modules – part 2: Test calibration methods and appara-
tus. Standard ISO/IEC 20085-2:2020(E), International Organization for
Standardization, 2020. URL: https://www.iso.org/standard/70082.html.

[12] ISO. Information technology – security techniques – testing methods
for the mitigation of non-invasive attack classes against cryptographic
modules. Standard ISO/IEC 17825:2016, International Organization for
Standardization, 2016. URL: https://www.iso.org/standard/82422.html.

[13] Carolyn Whitnall and Elisabeth Oswald. A critical analysis of ISO 17825
(’testing methods for the mitigation of non-invasive attack classes against
cryptographic modules’). In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III,
volume 11923 of Lecture Notes in Computer Science, pages 256–284.
Springer, 2019. doi:10.1007/978-3-030-34618-8_9.

[14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. CRC Press, 2014. doi:10.1201/b17668.

[15] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
537–554. Springer, 1999. doi:10.1007/3-540-48405-1_34.

[16] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modu-
lar analysis of the Fujisaki-Okamoto transformation. In Yael Kalai

https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://commoncriteriaportal.org/cc/
https://www.iso.org/standard/70081.html
https://www.iso.org/standard/70082.html
https://www.iso.org/standard/82422.html
https://doi.org/10.1007/978-3-030-34618-8_9
https://doi.org/10.1201/b17668
https://doi.org/10.1007/3-540-48405-1_34

and Leonid Reyzin, editors, Theory of Cryptography - 15th Interna-
tional Conference, TCC 2017, Baltimore, MD, USA, November 12-
15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in
Computer Science, pages 341–371. Springer, 2017. doi:10.1007/
978-3-319-70500-2_12.

[17] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and
Christine van Vredendaal. Masking kyber: First- and higher-order imple-
mentations. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–
214, 2021. doi:10.46586/tches.v2021.i4.173-214.

[18] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas
Pöppelmann, Peter Schwabe, and Daan Sprenkels. First-order masked
Kyber on ARM Cortex-M4. IACR ePrint 2022/058, 2022. URL:
https://eprint.iacr.org/2022/058.

[19] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar,
Josep Balasch, and Ingrid Verbauwhede. A side-channel-resistant
implementation of SABER. ACM J. Emerg. Technol. Comput. Syst.,
17(2):10:1–10:26, 2021. doi:10.1145/3429983.

[20] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-
channel attack on a masked IND-CCA secure saber KEM implemen-
tation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):676–707,
2021. doi:10.46586/tches.v2021.i4.676-707.

[21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi,
and Naofumi Homma. Curse of re-encryption: A generic Power/EM
analysis on post-quantum KEMs. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(1):296–322, November 2021. doi:10.46586/tches.
v2022.i1.296-322.

[22] Vincent Migliore, Benoı̂t Gérard, Mehdi Tibouchi, and Pierre-Alain
Fouque. Masking dilithium - efficient implementation and side-channel
evaluation. In Robert H. Deng, Valérie Gauthier-Umaña, Martı́n
Ochoa, and Moti Yung, editors, Applied Cryptography and Network
Security - 17th International Conference, ACNS 2019, Bogota, Colom-
bia, June 5-7, 2019, Proceedings, volume 11464 of Lecture Notes in
Computer Science, pages 344–362. Springer, 2019. doi:10.1007/
978-3-030-21568-2_17.

[23] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
dilithium: Algorithm specifications and supporting documentation
(version 3.1). NIST PQC Project, 3rd Round Submission Up-
date, February 2021. URL: https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf.

[24] ISO. Information technology – security techniques – test requirements
for cryptographic modules. Standard ISO/IEC 24759:2017(E), Interna-
tional Organization for Standardization, 2017.

[25] NIST and CCCS. Implementation guidance for FIPS 140-3 and the cryp-
tographic module validation program. CMVP, November 2021. URL:
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/
fips-140-3-ig-announcements.

[26] Kim Schaffer. CMVP approved non-invasive attack mitigation test
metrics: CMVP validation authority updates to ISO/IEC 24759. NIST
Special Publication SP 800-140F, March 2020. doi:10.6028/NIST.
SP.800-140F.

[27] Kim Schaffer. CMVP approved non-invasive attack mitigation test
metrics: CMVP validation authority updates to ISO/IEC 24759. NIST
Special Publication SP 800-140F Rev 1 (Draft), August 2021. doi:
https://doi.org/10.6028/NIST.SP.800-140Fr1-draft.

[28] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Ro-
hatgi. A testing methodology for sidechannel resistance valida-
tion. CMVP & AIST Non-Invasive Attack Testing Workshop (NIAT
2011), September 2011. URL: https://csrc.nist.gov/csrc/media/events/
non-invasive-attack-testing-workshop/documents/08 goodwill.pdf.

[29] Josh Jaffe, Pankaj Rohatgi, and Marc Witteman. Efficient
sidechannel testing for public key algorithms: RSA case study.
CMVP & AIST Non-Invasive Attack Testing Workshop (NIAT
2011), September 2011. URL: https://csrc.nist.gov/csrc/media/events/
non-invasive-attack-testing-workshop/documents/09 jaffe.pdf.

[30] Tobias Schneider and Amir Moradi. Leakage assessment methodology
- A clear roadmap for side-channel evaluations. In Tim Güneysu
and Helena Handschuh, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2015 - 17th International Workshop, Saint-
Malo, France, September 13-16, 2015, Proceedings, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.
doi:10.1007/978-3-662-48324-4_25.

[31] Michael Tunstall and Gilbert Goodwill. Applying TVLA to public key
cryptographic algorithms. IACR ePrint 2016/513, 2016. Presented at

International Cryptography Module Conference – ICMC 2016. URL:
https://eprint.iacr.org/2016/513.

[32] François-Xavier Standaert. How (not) to use welch’s t-test in side-
channel security evaluations. In Begül Bilgin and Jean-Bernard Fis-
cher, editors, Smart Card Research and Advanced Applications, 17th
International Conference, CARDIS 2018, Montpellier, France, November
12-14, 2018, Revised Selected Papers, volume 11389 of Lecture Notes
in Computer Science, pages 65–79. Springer, 2018. doi:10.1007/
978-3-030-15462-2_5.

APPENDIX

Guide to the documents. The FIPS 140-3 document itself
[1] is short and structured as a list of pointers to documents
that modify the ISO security standards 19790 [8] and 24759
[24], the actual foundation documents. Requirements are is-
sued in six NIST Special Publications in the 800-140 series
(A-F), as well as in FIPS 140-3 Implementation Guidance [25].

For side-channel countermeasure testing, ISO 19790 [8]
refers to its Annex F, as do various sections in ISO 24759
[24]. Annex F is an empty placeholder. For FIPS 140-3 it is
amended by SP 800-140F [26], which was also initially empty.

In August 2021, a draft of SP 800-140F Revision 1 [27]
was circulated, which provided references to ISO 17825 [12]
for non-invasive attack mitigation testing.

Relation to TVLA. ISO 17825 tests are largely based on
Test Vector Leakage Assessment (TVLA) methodology first
proposed for AES and RSA by CRI / Rambus in 2011 [28],
[29] and later refined in additional work [30], [31]. ISO 17824
and the TVLA method have been criticized for the non-
detection of practical higher-order attacks [32] and also for
statistical correctness of its experiments [13]. Newer working
drafts of ISO 17825 [7] adopt Bonferroni correction to address
some of the correctness issues.

Note on Calibration. The draft SP 800-140F Revision
1 [27] also references ISO 20085-1 [10] for test tools and
techniques, and ISO 20085-2 [11] for calibration methods
and apparatus. Since [27] is in draft status, NVLAP testing
laboratories are not offering official testing capability, and the
FIPS 140-3 Implementation Guidance [25] still discusses non-
invasive attacks under the general “mitigation of other attacks”
banner. However, it is reasonable to expect that ISO 17825 will
be adopted for this purpose.

The calibration process in [11] states that the test equipment
must be able to detect leakage and fail certain specified IUTs.
It also states that “an IUT which is built to pass, shall pass,”
(Sect 6.2.4). Hence the goal of these calibrated tests should not
be seen as “detecting all side-channel leakage,” but detecting
leakage if and only if it exceeds a certain threshold.

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.46586/tches.v2021.i4.173-214
https://eprint.iacr.org/2022/058
https://doi.org/10.1145/3429983
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
https://doi.org/10.6028/NIST.SP.800-140F
https://doi.org/10.6028/NIST.SP.800-140F
https://doi.org/https://doi.org/10.6028/NIST.SP.800-140Fr1-draft
https://doi.org/https://doi.org/10.6028/NIST.SP.800-140Fr1-draft
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/09_jaffe.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/09_jaffe.pdf
https://doi.org/10.1007/978-3-662-48324-4_25
https://eprint.iacr.org/2016/513
https://doi.org/10.1007/978-3-030-15462-2_5
https://doi.org/10.1007/978-3-030-15462-2_5

	Transitions: FIPS 140-3, Side-Channels, and PQC
	ISO 17825 Side-Channel Testing
	Limitations
	General Test Procedure

	PQC Experiment Classes
	Classes CPA and CCA: Key Establishment Mechanisms
	Class Sig: PQC Signature testing

	Conclusions
	References
	Appendix

