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Abstract. Over the recent years, the cryptanalysis community lever-
aged the potential of research on Deep Learning to enhance attacks.
In particular, several studies have recently highlighted the benefits of
Deep Learning based Side-Channel Attacks (DLSCA) to target real-
world cryptographic implementations. While this new research area on
applied cryptography provides impressive result to recover a secret key
even when countermeasures are implemented (e.g. desynchronization,
masking schemes), the lack of theoretical results make the construction of
appropriate models a notoriously hard problem. In this work, we propose
the first solution that bridges DL and SCA. Based on theoretical results,
we develop the first generative model, called Conditionnal Variational
AutoEncoder based on Stochastic Attacks (cVAE-SA), designed from the
well-known Stochastic Attacks, that have been introduced by Schindler et
al. in 2005. This model reduces the black-box property of DL and eases
the architecture design for every real-world crypto-system as we define
theoretical complexity bounds which only depend on the dimension of
the (reduced) trace and the targeting variable over Fn

2 . We validate our
theoretical proposition through simulations and public datasets on wide-
range of use-cases, including multi-task learning, curse of dimensionality
and masking scheme.

Keywords: Side-Channel Attacks · Deep Learning · Discriminative Models ·
Generative Models · Stochastic Attacks · Variational AutoEncoder

1 Introduction

Context. Side-Channel Analysis (SCA) is a class of cryptographic attack in
which an adversary tries to exploit the vulnerabilities of a real-word crypto-
system for key recovery by analyzing its physical characteristics via side-channel
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traces like power consumption or electromagnetic emissions. During the execu-
tion of an algorithm into a crypto-system, side-channel traces record the in-
termediate variable being processed. A sensitive value denotes an intermediate
variable that depends on small pieces of the secret key, namely subkeys. Side-
channel observables related to sensitive variables are referred as traces and can
be exploited in order to recover secret subkeys. One of the most powerful types of
SCA, referred to as profiled SCA, is defined as a two-stage process. The underly-
ing problem solved by this type of SCA relies on the classification task based on
estimation of conditional (class-oriented) probability distributions related to each
secret subkey. The first profiled SCA so-called template attacks was introduced
by [4] considering that a real leakage model coincides exactly with the determin-
istic part of the leakage and gaussian noise assumption. Then, Schindler et al.
proposed the so-called stochastic attacks that refine the approximation of real
leakage model [18] characterizing the leakage as a pseudo-boolean function over
a monomial basis.Both approaches constitute the classical profiled SCA in the
current state-of-the-art and are based on the construction of a generative model.

Two separated worlds. Widely developed in the Machine Learning field, a
generative model has the particularity of being able to generate new data from
estimated Probability Density Functions (PDFs) (which are close to the real
unknown one) by a sampling approach. Contrary to the classical profiled SCA,
the state-of-the-art of Deep Learning based Side-Channel Analysis (DLSCA)
only considers the discriminative models for key recovery objective. This solu-
tion differs from the generative model because it only learns boundaries between
classes while the classical profiled SCA attempts to model the PDF of individ-
ual classes. Hence, generative models solve a more general problem than just
guessing which subkey leaks the most. While the classical profiled SCA can be
easily justified from a theoretical point of view, the DLSCA models, provided by
the state-of-the-art, are very difficult to design and interpret. Thus, there are no
intuitions on how those models should be configured, even against unprotected
implementations. Indeed, even if a wide-range of architectures have been stud-
ied in DLSCA context (e.g. fully-connected neural networks [13,14], ResNets [8],
transformer neural network [7], Support Vector Machine (SVM) [14], Random
Forest[14]), there are no practical rules to construct them due to a lack of un-
derstanding between DL and SCA paradigms. Consequently, the discriminative
models force the adversary to consider the DLSCA approach as black-box tools.
Thus, bridging the gap between DL and SCA is essential to define the limita-
tions of the DLSCA and provide clear improvements in this field. From this new
starting point, an adversary can bring additional DL features that reduce the
limitations provided by the classical profiled SCA approaches while preserving
the interpretability and the explainability provided by the generative models.

Contributions. This paper falls into the class of works on machine-learning
based cryptanalysis targeting real-world crypto-systems. In particular, we bridge
DL and SCA paradigms by proposing the very first generative architecture which
is based from theoretical results provided by stochastic attacks [18]. This new
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model clarifies the links between DL and classical SCA issues (i.e.
dimensionality reduction, needs of synchronization, higher-order attacks, multi-
task learning). It represents a seminal contribution for further investigations and
developments. In particular, the contributions of our work can be summarised
as follows:

– We establish the first link between DLSCA and classical profiled SCA. By
bridging both techniques, each field can benefit from the advantages of the
other. Explainability of classical SCA can be transfered to DLSCA that was
considered more or less as a black-box tool.

– We propose the Conditional Variational AutoEncoder based Stochastic At-
tacks (cVAE-SA) as a new neural network architecture that lies between
stochastic attacks and DLSCA. Our models benefit from the theoretical as-
pects of stochastic attacks, as well as their ability to estimate and reconstruct
the targeted leakage models. This analogy is helpful to ease the construction
of the neural network as well as its interpretation.

– Thanks to its analogy with the stochastic attacks, we define some theoretical
bounds related to the neural network complexity. It suggests that shallow
neural networks can be sufficient to exploit the sensitive information induced
in a trace. This result is in accordance with the Universal Approximation
Theorem [15].

– We develop a new attack strategy based on similarity measure that allows
an adversary to specifically choose which samples the model should target
to retrieve the sensitive information. This results in a more flexible solution
than classical profiled side-channel attacks.

– We validate all our theoretical results through a wide-range of use-cases in-
cluding the following challenges in SCA context namely multi-task learning,
curse of dimensionality, targeting masking scheme.

– Through a detailed experimental comparison of our cVAE-SA proposition
with classical profiled attacks (i.e. template and stochastic attacks) as well
as multiple DLSCA models, we highlight the benefits and the drawbacks
of cVAE-SA. This results in a perspective about a new typology of models
specific to the SCA context.

This proposition opens-up further research directions where improvements from
both fields could be further combined for enhancing the attack efficiency as well
as the explainability of the results.

2 Preliminaries

2.1 Notation & terminology

Basics on probability theory. Let calligraphic letters X denote sets such
that, if X is finite, its cardinality, denoted |X |, defines its number of elements.
The corresponding capital letters X (resp. bold capital letters) denote random
variables (resp. random vectors T). The lowercase x (resp. t) denote the realiza-
tion of X (resp. T). The ith entry of a vector T is defined as T[i]. The probability
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of observing an event X is denoted by Pr[X] such that a conditional probability
of observing an event X knowing an event Y is denoted Pr[X|Y ]. The moments
of a random variable X are quantities providing information about the shape
and location of its Probability Mass Function (discrete case) or its Probability
Density Function (continuous case). E[X] is used to denote the expected value
of a random variable X and EX∼D defines under which probability distribution
it is computed. In addition, the second central moment, also known as the vari-
ance, of a random variable X is defined as V[X]. The symbol VX [f(X)] (resp.
EX [f(X)]) denotes the variance (resp. expected value) of a function f of the ran-
dom variable X, over the distribution of X. The standard deviation of a random
variable X, denoted σX , is defined as the square root of its variance.

A side-channel measurement will be constructed as a random vector T ∈
RD where D defines the dimension of the related trace. The targeted sensitive
variable, denoted Y = f(X, k∗), depends on a cryptographic primitive f : X ×
K → Fn2 , a public variable X ∈ X (e.g. plaintext or ciphertext) and a part
of the secret key k∗ ∈ K (e.g. byte) that the adversary tries to retrieve. We
define X ∼ ND(µ, Σ) to denote a random vector X that follows a multivariate
Gaussian distribution of parameters µ ∈ RD and Σ ∈ MD,D(R). In the rest
of this paper, ΣX (resp. µX) denotes the covariance matrix (resp. mean) of a
random variable X.

Given pX and qX two probability distributions on X , the Kullback-Leibler
(KL) divergence measures how pX differs from qX such that:

DKL (pX ||qX) =
∑
x∈X

pX [x] log

(
pX [x]

qX [x]

)
.

Usually, pX denotes the measured probability distribution while qX defines the
theoretical model. The KL-divergence is always non-negative and equals zero if
and only if pX = qX .

SCA terminology. SCA usually apply a divide-and-conquer strategy which
consists in separately recovering differents parts of the N -bit (global) secret key

k∗ =‖
N
n
i=1 k

∗
i considering n-bit subkeys k∗i ∈ K. For the rest of this paper, we

will consider only attacking a subkey (i.e. n = 8), hence using k∗ instead of
k∗i and referencing subkey as key in the rest of the paper. Given a variable
Y and an independent noise Z, a traces T is a D-dimensional random vector
{T[0], . . . ,T[D − 1]} where T[i] represents the leakage of time sample i (for
0 ≤ i < D) satisfying the Gaussian Indepedent Noise Assumptiona:

T = ψ(Y ) + Z (1)

where ψ : Fn2 → R is a pseudo-boolean function mapping a n-bit intermediate
value Y which is generated from a cryptographic primitive f : X ×K → Fn2 . The
latter corresponds to the deterministic part of the trace. In this work, we set
n = 8. Let Z ∼ ND(µ, Σ) corresponds to the noise which is characterized by a
multivariate gaussian distribution parameterized by an unknown pair (µ, Σ).

a This means that the Gaussian noise Z is independent of the variable Y .
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2.2 Related works & limitations of discriminative models

Related works. Typically, to perform a DLSCA attack the adversary consid-
ers a discriminative approch which models the conditional posterior probabilities
Pr [Y |T] in order to discriminate and pick the most likely hypothetical candidate
Y (i.e. sensitive information) given a trace T. A discriminative model estimates
a φ-parametric probability conditional distribution Pr[Y |T, φ] that is as simi-
lar as possible to the true unknown joint probability distribution Pr [Y |T]. This
approach is beneficial for directly solving a classification problem without mod-
eling unnecessary information and thus, mitigating the impact of some coun-
termeasures such as the desynchronization effect [3,7,21].This reason leads the
side-channel community to investigate the DL approaches to improve the pro-
filed SCA [1,3,9,21] relying on discriminative approach. More specifically, all the
DLSCA models proposed in the state-of-the-art are based on such approach (e.g.
fully-connected neural networks [13,14], ResNets [8], transformer neural network
[7]). However, due to the lack of theoretical results, the discriminative models
can be seen as black-box tools, and the design of models can be a real challenge
even against unprotected cryptographic implementations. To reduce this issue,
some solutions which automatically tune model hyperparameters have been in-
vestigated [1,11,17] but the related process is time-consuming, the range of the
hyperparameters’ values are randomly bounded such that a poor design of the
model can be highly impacted by underfitting/overfitting issues. This paper re-
duces this issue by providing the first DL model based on SCA theoretical result
in order to make the construction phase easier.

Generative approach. An alternative solution consists in considering a prob-
abilistic generative approach which captures the interactions between all the
variables considered by the resulted learning algorithm. To comply with this
technical specification, this strategy builds a model that estimates the probabil-
ity distribution of the traces. To fit with SCA context, the conditional probabil-
ity distribution, Pr[T|Y ], has to be estimated such that, afterwards, the Bayes’
theorem can be computed in order to retrieve the conditional posterior proba-
bilities Pr[Y |T] and pick the most likely label Y . More concretely, a generative
model can be viewed as an estimation of a Θ-parametric conditional distribution
Pr[T|Y,Θ] that is as similar as possible to the true unknown conditional distri-
bution Pr[T|Y ]. The classical profiled SCAs, such as the stochastic attacks [18],
follow this approach by building a model, i.e. leakage model, that estimates the
class-conditional probability distributions (i.e. Pr[T|Y ]) for each possible value
of a sensitive intermediate variable. One benefit of this method is the ability to
explain and interpret the result provided by the model. The following section
summarizes the stochastic attacks [18] introduced by Schindler et al. as well as
the new model that we detail in Sec.3.

2.3 Overview of this work

A short description of stochastic attacks [18]. Given a trace T such that
its ith time sample can be defined as T[i] = ψi(f(X, k∗)) + Z[i], the goal of the
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stochastic attack is to find an approximation of the leakage model, denoted ψ̂i, as
close as possible to the true unknown ψi. As ψi is assumed to be a pseudo-boolean
function, ψi can be viewed as a linear combination of monomial basis’ vectors
u ∈ Fn2 . Hence, there exists a set of real coefficients (αu)u∈Fn2 such that, for a
sensitive intermediate value Y ∈ Fn2 , the leakage model (see Eq.1) is redefined
as:

ψ̂i,α(Y ) =
∑

u=(u[0],...,u[n−1])∈Fn2

αu[i] · Y u, (2)

where Y u denotes the monomial basis and characterizes the conjunction of all
bits of Y such that Y u =

∏n−1
j=0 Y [j]u[j] where Y [j] ∈ F2 defines the jth bit of Y

and the power notation is simply Y [j]0 = 1 and Y [j]1 = Y [j]. In other words,
ψi can be approximated as a multivariate polynomial in the bit-coordinate Y [j]
with coefficients in R. The degree d (s.t. d ≤ n) of such monomial is defined as the

maximal number of bits’ interaction induced in ψ̂i,α(Y ). In particular, this degree
d can be viewed as logical operator (e.g. AND or XOR). The related subspace
is denoted by Fd+1. For the profiling phase, the stochastic attack mechanism
consists firstly in choosing the degree d of the pseudo-boolean function ψ̂α, and
then in estimating the leakage model for each hypothetical key k ∈ K. Given
a set of Np labeled traces Ip = {(t0, y0), . . . , (tNp−1, yNp−1)}, the adversary

estimates the leakage model (ψ̂i,α(Y ))Y ∈Fn2 by finding the best set of coefficients
(αu[i])u∈Fn2 through the application of the ordinary least squares (OLS) method.
The set of coefficients (αu[i])u∈Fn2 which minimizes the OLS are called the OLS
estimator for ψ. More details on how to practically implement stochastic attacks
can be found in [5]. While the basis choice is essential for efficient profiling phase,
i.e. having a good approximation of the leakage model, the application of gradient
descent method for minimizing the OLS method is an interesting alternative to
the classical approach (see [18, Eq.13]) and will be explored in next sections.
This leads to get a better intuition into how a DL model should be designed in
order to extract the sensitive information and results in a more flexible solution
during the exploitation phase.

A new generative strategy in DLSCA. In SCA context, we want to ex-
plicitly compute an approximation of the true unknown conditional probability
distribution Pr[T|Y ] in order to retrieve the secret key that is manipulated by
the targeted real-world crypto-system. In 2014, Kingma and Welling introduced
the Variational AutoEncoder (VAE) [10] as a solution to this issue outside of the
SCA context. In this paper, we develop a new usage of variational autoencoders
for DLSCA and we present our main contribution: the Conditional Variational
AutoEncoder based on Stochastic Attacks (cVAE-SA). In particular, this new ap-
proach models a Θ-parametric conditional distribution Pr[T|Y,Θ] through the
design of two distinct parts referred as encoder and decoder.

First, an encoder characterizes the noise Z included in a trace (see Eq.1) by
estimating a small set of samples that depend on the targeted sensitive variable,
i.e. the Points of Interest (PoIs). To conduct such a characterization, a KL-
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divergence loss is used in order to find the trainable parameters that fit the
most with the true unknown solution.
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Fig. 1: cVAE-SA structure.

Then, a decoder is defined in order to generate a synthetic trace, based on a
reconstruction loss, from the noise estimated by the encoder, and an approxima-
tion of the deterministic part ψ(Y ) defined in Eq.1. An overview of the model is
provided in Fig.1, and the details of the cVAE-SA are defined in the following
section.

Once the cVAE-SA is designed, it is automatically configured over a set of
training traces in order to estimate the Θ-parametric conditional distribution
Pr[T|Y,Θ] that should be as similar as possible to the true condition distribu-
tion Pr[T|Y ]. Based on this configured model, the adversary can compute the
maximum likelihood over a set of attack traces in order to retrieve the most
likely subkey candidate over Fn2 such that n = 8.

3 Conditional Variational AutoEncoder based on
Stochastic Attacks

Through this section, we explain the link between generative DL models and
classical profiled SCA by building a new type of VAE. Sec.3.1 introduces the
problem we want to solve and proposes a first link with SCA. Sec.3.2 explains
our architecture and the theoretical link with the work provided by Schindler
et al. [18], known as the stochastic attacks. Then, Sec.3.3 describes the training
process of cVAE-SA and the relation with similarity measures. Finally, Sec.3.4
describes the attack phase and the theoretical architecture complexity bounds.
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3.1 Generative latent variable models

We propose to contextualize Conditional VAE (cVAE) [19] into SCA in order to
give a new perspective for generative models. Supported by theoretical aspects
of stochastic attacks, this new approach can be considered as an alternative to
classical discriminative models often used in DLSCA.

Problem statement. The cVAE aims at modeling a Θ-parametric conditional
distribution Pr[T|Y,Θ] from two random variables T ∈ RD and Y ∈ Fn2 . Sup-
pose that a trace T ∈ RD is acquired by assuming that all the time samples
are sequentially generated such that its assigned label only depends on a small
set of time samples (i.e. PoIs). As the cVAE is a latent variable model, which
suggests that the variability in the traces given a label Y can be captured by a
small finite set of time samples, its applicability in the SCA context fits well. By
designing such models for performing SCA, we thus want to capture the interac-
tions between the time samples via the characterization of a latent space V. In
particular, a Θ-parametric latent variable model FΘ, providing a Θ-parametric
conditional distribution Pr[T|Y,Θ], is representative of the true unknown condi-
tional distribution Pr[T|Y ], for every trace T and every given sensitive variable
Y , if there is a representation of compressed data V ∈ V, also known as latent
space representation, such that the marginal distribution is given by:

Pr [T|Y,Θ] =

∫
v∈V

Pr [T|Y,v, Θ]Pr [v|Y ] dv, (3)

where v is the realization of a random variable V in a D
′
-dimensional space

V, with a probability Pr[V = v] defined over V, and Pr[V = v|Y ] denotes the
probability of observing v over the latent space V knowing Y . While the latent
space characterizes the noise distribution defined in Eq.1 (deeper details will be
provided in the following paragraphs), we can easily assume that Pr[V|Y ] = Pr[V]
because V is independent of the label Y . In addition, we assume that Pr[V]
follows a multivariate Gaussian distribution of parameters (µ, Σ). Through the
conditional variational autoencoder, we wish to optimize Θ such that we can
sample V from Pr[V], and obtain, with high probability, a new generated trace
T̃ very similar to the true known T.

Intractability. However, Eq.3 is unfortunately intractable as it should be com-
puted for every latent representations induced by the latent space V. Thus, the
following part of the section proposes solutions to circumvent this issue. Hope-
fully, Pr[T|Y,Θ] may still be efficiently approximated thanks to the Monte-Carlo
method. Hence, for a large number of samples {v0, . . . ,vNv}, a trace T and a
label Y , we can compute an estimation of Pr[T|Y ]. As a consequence, for a
given label Y and a latent variable V, we can build a neural network that com-

putes Pr[T|Y,V, Θ]. This model, denoted F
(dec)
Θ : RD

′

×Fn2 → RD, is named the

decoder. Given a latent variable V ∈ RD
′

and a sensitive variable Y ∈ Fn2 , the
decoder generates a new trace T̃ as close as possible to the real observed trace T.
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However, to perfectly construct a new set ofD-dimensional traces from F
(dec)
Θ , we

have to estimate the multivariate Gaussian distribution characterizing the latent
space V by approximating the following probability distribution Pr[V|T, Y ]. This

probability is defined as Pr[V|T, Y ] = Pr[T|V,Y ]·Pr[V]
Pr[T|Y ] and it is also intractable

due to Eq.3. Consequently, a solution is to find a parametric model that ap-
proximates the true unknown posterior Pr[V|T, Y ]. In statistics, the variational
inference techniques can approximate such complex distributions. Given a trace
T and a label Y ∈ Fn2 , a Θ-parametric model can be constructed to estimate

the parameters µV ∈ RD
′

and ΣV ∈ MD′ ,D′ (R) of the multivariate Gaussian
distribution ND′ (µV, ΣV) such that the KL-divergence between the approxi-
mation and the targeted probability distribution Pr[V|T, Y ] is minimized. The

Θ-parametric model, denoted F
(enc)
Θ : RD × Fn2 → RD

′

, is called the encoder. In
the rest of this paper, we denote as FΘ,φ the resulted cVAE-SA such that, for

a given trace T and a given label Y , FΘ,φ(T, Y ) = F
(dec)
φ ◦ (F

(enc)
Θ (T, Y ), Y ).

Furthermore, as the aim of this paper is to bridge the DL and the classical
profiled SCA, no particular focus will be proposed on dimensionality reduction
techniques. Thus, the following part assumes that D

′
= D.

3.2 Latent space estimation and instances’ generation

Through the description of the stochastic attack (see Sec.2.3), the adversary can
construct a conditional variational autoencoder adapted for the SCA context.

Encoder. As mentioned in Sec.2.3), the encoder models a neural network

F
(enc)
Θ : RD × Fn2 → RD which returns an approximation of µV ∈ RD and
ΣV ∈ MD,D(R) such that it can be used to characterize an element in the la-
tent space V of dimension D. This element describes the behavior of the targeted
crypto-system (see on the left part of Fig.1). In this regard, we design the en-

coder F
(enc)
Θ such that it characterizes the leakage model ψ(Y ) and the random

part Z of a trace T in order to fit with the stochastic attack process. To build a
suited encoder, the related neural network should follow the structure defined in
Sec.2.3 in order to extract the maximum amount of relevant information from
T. First, the adversary has to estimate the deterministic part of a trace T (i.e.
leakage model ψ) that is defined by Eq.2. This modeling can be estimated by
a fully-connected layer of D neurons such that each of them is linked with all
elements of the monomial basis (Y u)u∈Fn2 . Let Y ∈ Fn2 and (Y u)u∈Fn2 (resp.

ψ̂i,Θ(Y )) be the input (resp. output) of the ith neuron such that:

ψ̂i,Θ(Y ) = %

 ∑
u=(u[0],...,u[n−1])∈Fn2

Θu[i] · Y u
 ,

where %(.) is a function (linear or non-linear) and Θ ∈M∑d
i=0 1+(ni),D

(R) denotes

the set of trainable parameters for a given degree d that characterizes the space
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Fd+1. While the goal of our work is to reduce the gap between deep learning and
classical profiled SCA, we define %(.) as the identity function in order to satisfy

ψ̂Θ[i] = ψ̂α[i] and consider that the deterministic part of a trace at time sample
i can be approximated by a single neuron. In the rest of this paper, this layer
will be denoted as ψ̂Θ (see Fig.1).

Once the noise-free part ψ̂Θ is estimated, the next step is to deeply character-
ize the noise part Z using traces and the neurons of ψ̂Θ layer. In the cVAE-SA,
we choose to deliberately force the subtraction of the traces at time sample i and

the ith neuron of ψ̂Θ layer in order to fit with Eq.1. Then, the encoder F
(enc)
Θ is

trained to return a Θ-parametric mean vector µV,Θ ∈ RD, and a Θ-parametric
covariance matrix ΣV,Θ ∈ MD,D(R) that describes the multivariate Gaussian
noise for a given trace T. Those approximations respectively estimate µV and
ΣV. Thus, from these parameters, the adversary can compute Pr[V|T, Y,Θ].

That is, F
(enc)
Θ extracts all the information induced in a trace such that the

latent variable V ∈ V is characterized by its noise part Z.

Decoder. Once the encoder is constructed, the adversary can capture the pa-
rameters µV,Θ and ΣV,Θ which are needed to design the related Gaussian noise
distribution ND(µV,Θ, ΣV,Θ). From a new sample V ∼ ND(µV,Θ, ΣV,Θ), the

adversary designs a decoder F
(dec)
φ : RD × Fn2 → RD (see on the right part

of Fig.1) such that given a trace T and the subspace Fd+1, containing all the
pseudo-boolean functions of degree lower or equal to d, he wants to maximize
the conditional probability distribution Pr[T|Y,V, φ], i.e. building a new trace
T̃ ∈ RD as similar as possible to the related real trace T and defined as follows:

T̃[i] =
∑

u=(u[0],...,u[n−1])∈Fn2

φu[i] · Y u

︸ ︷︷ ︸
ψ̂i,φ

+V[i]. (4)

Note that a latent variable V ∈ RD is initially sampled from the prior distribu-
tion Pr[V] such that the dimension of V should correspond with the dimension
of the latent space estimated by the encoder. However, performing the train-
ing process in such configuration can be arduous. Indeed, during the training
process, the backpropagation cannot be performed because the adversary has to
compute the gradient of the loss function with respect to samples (i.e. latent vari-
able V ∈ V), which is inherently non-differentiable. To circumvent this issue, the
reparametrization trick [10] proposes to rewrite V such that the derivative can
be computed with respect to the parametric distributions (i.e. µV,Θ and ΣV,Θ)
that are differentiable. Instead of generating samples from ND(µV,Θ, ΣV,Θ),
sampling is performed from ε ∼ ND(0, ID), followed by the computation of

V = µV,Θ +Σ
1
2

V,Θ × ε.
Once V is constructed, the adversary has to approximate the deterministic

part of the leakage model, namely ψ̂φ. As already mentioned for the encoder,
its estimation can be made with a fully-connected layer such that the input of
size D is characterized by (Y u)u∈Fn2 for a given Y ∈ Fn2 . Because the adversary
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wants to characterize all the input time samples, the number of nodes in the
ψ̂φ layer depends on the dimensionality of the latent space, i.e. dimension of V
(see Fig.1). Based on ψ̂φ and V, the adversary can then build a new trace T̃
following Eq.4.

Then, to adequately find the trainable parameters Θ and φ, the adversary
has to consider some learning metrics that aims at approximating Pr[T|Y ].

3.3 Similarity maximization

As defined in Sec.3.2, our generative model has to optimize a set of parameters
φ and Θ in order to maximize the marginal log-likelihood log(Pr[T|Y, φ]).

Theorem 1. For any choice of encoder F
(enc)
Θ and trainable parameters Θ, the

conditional marginal log likelihood log(Pr[T|Y, φ]) can be defined as:

log (Pr [T|Y, φ]) = E
v∼F (enc)

Θ

[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

+DKL (Pr [V|T, Y,Θ] ||Pr [V|T, Y, φ]) .
(5)

Unfortunately, due to the intractability of Pr[V|T, Y, φ] (see Sec.3.1), Eq.5
cannot be solved in practice. Hence, we have to define a function such that
log(Pr[T|Y, φ]) can be approximated through an optimization algorithm. In [10],
Kingma and Welling propose a variational lower bound on the marginal likeli-
hood which was generalized by Sohn et al. on conditional marginal likelihood
[19].

Theorem 2. [19] For any choice of encoder F
(enc)
Θ and trainable parameters Θ,

the variational lower bound of log(Pr[T|Y, φ]) is defined as:

log (Pr [T|Y, φ]) ≥ −DKL (Pr [V|T, Y,Θ] ||Pr [V])

+ E
v∼F (enc)

Θ

[log (Pr [T|Y,v, φ])] .
(6)

The equality between Eq.5 and Eq.6 holds if and only if the encoder F
(enc)
Θ ,

which approximates the parameters µV,Θ and ΣV,Θ that are needed to compute
Pr[V|T, Y,Θ], is able to perfectly predict Pr[V|T, Y, φ]. In such configuration,
the adversary exactly captures the random part induced in a trace T. Based on
Eq.6, we define the empirical risk that we minimize to train the cVAE-SA.

Definition 1 (Empirical risk combined with Evidence Lower BOund
(ELBO) Loss). Given a latent space V, a set of Np labeled traces
Ip = {(t0, y0), . . . , (tNp−1, yNp−1)}, we define the empirical risk optimizing FΘ,φ,
that approximates the generative distribution Pr[T|Y ], as follows:

R̂ (LELBO, FΘ,φ) =
1

Np

Np−1∑
i=0

DKL (Pr [V|ti, yi, Θ] ||Pr [V])︸ ︷︷ ︸
KL-Divergence Loss

− E
v∼F (enc)

Θ

log (Pr[ti|yi,v, φ])︸ ︷︷ ︸
Reconstruction Loss

,
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such that (Pr[V|ti, yi, Θ])0≤i<Np is computed from µV,Θ and ΣV,Θ provided

by the encoder (F
(enc)
Θ (ti))0≤i<Np and (Pr[ti|yi,v, φ])0≤i<Np is obtained from

F
(dec)
φ (v).

Sampling v from the learned posterior Pr[V|T, Y,Θ] knowing the trace T,
the related label Y and the multivariate Gaussian distribution ND(µV,Θ, ΣV,Θ),

can be seen as encoding T into v, while F
(dec)
φ seeks to reconstruct T from v.

Classically used for training a variational autoencoder, the loss function defined
in Def.1 can be decomposed into two terms: the reconstruction and the KL-
divergence terms. To minimize the reconstruction loss, the embedding means
µV,Θ are pushed far away from each other and embedding standard deviations
ΣV,Θ are pulled toward zero. To get smaller DKL(Pr[V|T, Y,Θ]||Pr[V]), the em-
bedding means are pulled toward zero and the embedding standard deviations
are pulled toward one. While the KL-divergence term is opposed to the recon-
struction loss, it can be seen as a regularization term. Indeed, putting a lot of
information about T in V makes reconstruction trivial, but the penalization
induced by the regularization term is non-negligible. Therefore, the regulariza-
tion term acts as an information bottleneck, so a balance between both terms
must be found. If necessary, the KL-divergence loss can be monitored by a hy-
perparameter β. In the state-of-the-art, these models are called β-Variational
AutoEncoders. However, the impact of the β-parameter on the resulted learning
algorithm is considered as out of the scope of this paper.

Reconstruction loss. This term, denoted by E
v∼F (enc)

Θ

log(Pr[T|Y,v, φ]), is

linked with the decoder F
(dec)
φ introduced in Sec.3.2. It defines the probability of

constructing T given the label Y and a sample v of the latent space V of size D.
Hence, the reconstruction loss tends to maximize the log likelihood in order to
construct traces that are correlated with the true unknown leakage model ψ and
the noise Z related to T. Thus, it encourages the decoder to learn how a trace can
be reconstructed from a given noise representation defined by a latent variable
V. The reconstruction loss optimizes the parameters φ to retrieve the correct
coefficients associated with each vector of the monomial basis (Y u)u∈Fn2 such
that the probability distribution in latent space V is defined by a multivariate
Gaussian distribution ND(µV,Θ, ΣV,Θ). Typically, if we only consider the case
where no interaction between the time samples of T occurs, then, the covariance
matrix ΣV,Θ can be simplified to a diagonal matrix such that its vector repre-
sentation can be described as σ2

V,Θ = [ΣV,Θ[0, 0], ΣV,Θ[1, 1], . . . , ΣV,Θ[D,D]].
In such configuration, we do not expect to capture the time samples’ interaction
related to the constructed trace T̃ ∈ RD. Thus, the reconstruction loss can be
computed as follows:

E
v∼F (enc)

Θ

−log (Pr [T|Y,v, φ]) = E
v∼F (enc)

Θ

[
D−1∑
i=0

1

2
log
(
2πσ2

T̃
[i]
)

+
(T[i]− µT̃[i])2

2σ2
T̃

[i]

]
,

(7)
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where µT̃[i] (resp. σ2
T̃

[i]) indicates the ith element of the mean (resp. variance)

vector of generated traces T̃ given a latent representation v and a deterministic
part ψ̂φ which depends on Y = f(X, k∗) (see Eq.4). However, assuming that
ΣV,Θ can be simplified to a diagonal matrix affects the ability of the generated

trace T̃ to capture the interaction between the time samples of T. While this
choice can be problematic from a performance perspectiveb, the computation
gain is non-negligible as the matrix inversion does not have to be computed
in order to process the reconstruction loss. Then, we assume that the output
distribution of the conditional variational autoencoder is an isotropic Gaussian
(i.e. for all v ∼ ND(µV,Θ,diag(ΣV,Θ)), we can define ΣT̃ = σ2 · ID where σ2 is
a scalar). While the Mean Squared Error (MSE) loss function can be written as
E
v∼F (enc)

Θ

||T− µT̃||2, Eq.7 can be simplified as follows:

E
v∼F (enc)

Θ

− log (Pr [T|Y,v, φ]) =
1

2
log
(
2πσ2

)
+

E
v∼F (enc)

Θ

||T− µT̃||2
2σ2

. (8)

Note that this solution is minimized if the scalar σ2 = E
v∼F (enc)

Θ

||T−µT̃||2 =

MSE [20].

This loss is approximated via Monte-Carlo sampling, however, due to com-
putation constraints, we consider only one sample v for computing Eq.8 during
the training process. Consequently, for an estimated trace T̃, we minimize its
L2-norm from the related true trace T in order to find the best parameters φ.
In other words, through this solution, we attempt to find an estimated trace

T̃ as similar as the real one T. Thus, the decoder F
(dec)
φ is only affected by

the reconstruction loss and seeks to suitably reconstruct T̃ based on a latent
representation V and a deterministic part ψ̂φ.

KL-divergence loss. However, to reduce the overfitting issue, a regularization
term is added. In addition to the optimization of φ, the cVAE concurrently op-
timizes Θ to minimize the KL-divergence of the approximation Pr[V|T, Y,Θ]
from Pr[V]. In addition, the better Pr[V|T, Y,Θ] approximates the true poste-
rior distribution Pr[V|T, Y, φ], in terms of the KL divergence, the smaller the
gap between R̂(LELBO, FΘ,φ) and the marginal log-likelihood log(Pr[T|Y, φ]).
As remainder, both Pr[V|T, Y,Θ] and Pr[V] are assumed to be Gaussian, specif-
ically, Pr[V|T, Y,Θ] follows ND(µV,Θ, ΣV,Θ) and Pr[V] follows ND(0, ID). The
latter distribution is assumed as the traces are standardized, i.e. zero mean and
unit variance, and such that no interactions are captured between the time sam-
ples. Indeed, as Pr[V] characterizes the random part of T̃ (see Eq.4), it has to
follow the same distribution as the random part of the real trace T which is
N (0, 1) for each non-informative time sample. Through this configuration, the

b To nuance this issue, Bruneau et al. [2, Fig.3] illustrate that the information induced
by the covariance matrix is mainly brought by its diagonal.
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KL-divergence can be computed as follows:

DKL(Pr [V|T, Y,Θ]||Pr [V]) = E
v∼F (enc)

Θ

[log(Pr [v|T, Y,Θ])− log(Pr [v])]

=
1

2

(
− log (|ΣV,Θ|)− tr(ID) + µTV,Θ · µV,Θ + tr(ΣV,Θ)

)
= −1

2

D−1∑
i=0

(
1 + log

(
σ2
V,Θ[i]

)
− µ2

V,Θ[i]− σ2
V,Θ[i]

)
.

The last simplification can be made as ΣV,Θ can be rewritten as a vector
σ2
V,Θ such that each element of (σ2

V,Θ[i])0≤i<D defines the ith diagonal of ΣV,Θ.
While the KL-divergence measures how the Pr[V|T, Y,Θ] distribution is differ-
ent from Pr[V], standardizing input traces is helpful to reduce the impact of
irrelevant time samples.

To clearly explain the impact of the KL-divergence loss on the learning pro-
cess, let us denote T a D-dimensional trace that has been standardized at each
sample. Let {l0, . . . , ls−1} defines a set of indices where the sensitive information
leaks (i.e. PoIs) such that,

T[i] =

{
ψ(Y )[i] + Z[i] ∼ N (0, 1) if i ∈ {l0, . . . , ls−1},

Z[i] ∼ N (0, 1) otherwise.

In this setting, we assume that the interactions between trace samples are
negligible. Thus, if the trace T is standardized, each time sample has a zero
mean and unit variance. Hence, if the ith time sample of T has no determin-
istic part (i.e. ψ(Y ) = 0), the related element of the latent variable V[i] =

Z[i] − ψ̂Θ(Y )[i] follows N (0, 1) which induces that ψ̂Θ[i] is negligible. Conse-
quently, if i /∈ {l0, . . . , ls−1}, the related sample of the latent variable follows the
same distribution as Z[i]. In such scenario, the KL-divergence loss is negligible
while the latent representation does not contain any information about the se-
cret key k∗. Thus, considering these non-informative time samples do not affect
the regularization term and are unsuitable for the decision process. This result
encourages the adversary to only consider the time samples with a non-negligible
deterministic part.

On the other hand, if i ∈ {l0, . . . , ls−1}, then V[i] = ψ(Y )[i]+Z[i]− ψ̂Θ(Y )[i]

followsN (0, 1). Thus, it suggests that Z[i] ∼ N (E[ψ̂Θ(Y )[i]−ψ(Y )[i]],V[ψ(Y )[i]]+

V[ψ̂Θ(Y )[i]]+V[V[i]]−2·Cov[ψ[i], ψ̂Θ[i]]−2·Cov[ψ[i],V[i]]+2·Cov[ψ̂Θ[i],V[i]]).
However, due to the KL-divergence loss function involved during the training
process, we force the latent variable (V[i])0≤i<D to follow ND(0, ID). As de-
fined in Sec.3.2, this latent variable characterizes an estimation of the noise Z
induced in the trace T. Thus, during the training process of the cVAE-SA, we
penalize the model to tend E[ψ̂Θ(Y )[i] − ψ(Y )[i]] towards 0 and V[ψ(Y )[i]] +

V[ψ̂Θ(Y )[i]]+V[V[i]]−2 ·Cov[ψ[i], ψ̂Θ[i]]−2 ·Cov[ψ[i],V[i]]+2 ·Cov[ψ̂Θ[i],V[i]]

towards 1 such that this solution is reached if and only if ψ̂Θ = ψ. Consequently,
when KL-divergence loss is computed, the conditional variational autoencoder
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aims at optimizing the trainable parameters Θ of the encoder F
(enc)
Θ such that

the regularization term equals 0 if and only if Θ is optimal. This justification
suggests that the latent space should be only composed by PoIs. One solution is
to consider dimensionality reduction techniques. In addition, when the Gaussian
noise increases, the dependence between T[i] and ψ[i] decreases. In this config-
uration, differentiating the sensitive information from the noise can be difficult
as Z[i] approximately follows N (0, 1) regardless of the information included in
the time sample i. This observation confirms the benefits of the noise to reduce
the efficiency of DLSCA approach.

Once the generative model FΘ,φ is trained, the adversary has to make a
decision following the approximation of Pr[T|Y ] in order to fit with the stochastic
attack approach. The following section describes this strategy.

3.4 Decision rule & network complexity

Typically, the inference phase of cVAE consists in generating a new set of data
based on an input and a conditional known label. In SCA context, our goal is
different and tends to find the conditional unknown label Y that fits the best
for a given trace T. The following part describes a new solution to retrieve the
secret key k∗ from the model previously defined.

Key recovery phase. During the training phase, we defined a function FΘ,φ
that approximates log(Pr[T|Y, φ]) through an optimization algorithm (i.e. gra-
dient descent-based algorithms) such that the generated trace T̃, defined by the

output of the decoder F
(dec)
φ , is close to the real one T captured for a given

label. Based on a new set of generated traces, the adversary can find the key
hypothesis that approximates the marginal likelihood. Let Ia be a set of Na
attack traces such that Ia = {t0, . . . , tNa−1}. For each of these attack traces,
the adversary can compute the related label Y = f(X, k) mixing the known
plaintexts X ∈ X and a key hypothesis k ∈ K. Then, the Monte Carlo method
can be performed to get an estimation of Pr[T|Y, φ]. Hence, for a set of Nv la-
tent samples {v0, . . . ,vNv−1}, we can compute an approximation of the marginal
log-likelihood as follows:

log (Pr [ti|yi, φ]) ≈ −DKL (Pr [V|ti, yi, Θ] ||Pr [V])

− 1

2
log

2π ·
D−1∑
j=0

(
ti[j]−

1

Nv

Nv−1∑
h=0

t̃h[j]

)2
− 1

2
,

(9)

where t̃h is the hth generated trace constructed from Pr[ti|yi,vh, φ] (see Eq.8).
When the inferred posterior Pr[V|T, Y,Θ] deviates from the true unknown pos-
terior Pr[V|T, Y, φ], the number of samples Nv increases in order to obtain an
accurate approximation of Pr[T|Y, φ]. If the profiling phase has been performed

successfully, then (ti− 1
Nv

∑Nv−1
j=0 t̃j)

2 should be minimized when k = k∗. Hence,
the most likely candidate is defined through the maximum likelihood rule:
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k̂ = arg max
k∈K

(
Na−1∑
i=0

log (Pr [ti|f(xi, k), φ])

)
.

To enhance the key extraction phase, the adversary can precisely define the
PoIs’ indexes via a leakage assessment once the profiling phase is performed.
Indeed, if Θ and φ are correctly learned, the adversary can visualize them in
order to properly select the PoIs (see Sec.4.2). Thus, during the attack phase,
the adversary can only compute Eq.9 on the samples that are considered as
relevant by the cVAE-SA.

Theoretical network complexity bounds. Based on the previous sections,
we can efficiently find an architecture for a given implementation. Consequently,
some theoretical network complexity bounds can be expressed following the ad-
versary’s knowledge. Indeed, our generative neural network (i.e. cVAE-SA) can
be easily built for a given Y ∈ Fn2 , a degree d of bits’ interaction and a D-

dimensional trace T ∈ RD. First, for estimating (ψ̂Θ[i])0≤i<D (resp. (ψ̂φ[i])0≤i<D),
the encoder (resp. decoder) needs to optimize Θ (resp. φ) in order to retrieve
the correct leakage model. Hence, for a given Y ∈ Fn2 , the number of weights

that has to be optimized is ((1 +
∑d
i=0

(
n
i

)
) ·D) in both cases (s.t. d ≤ n). Then,

for estimating (V[i])0≤i<D (resp. (T̃[i])0≤i<D), we have to link the ith sample

of the trace T (resp. the latent variable V) with the related ψ̂Θ[i] (resp. ψ̂φ[i]).
Here, we decide to follow the classical stochastic attacks in order to easily ex-
tract the related noise. Hence, no weights are needed for this operation. Finally,
to approximate µV,Θ (resp. ΣV,Θ), we need (D · (D + 1)) (resp. D2 · (D + 1))
neurons. For the simplified diagonal case, ΣV,Θ can be reduced to σ2

V,Θ, thus,
only D · (D + 1) neurons are needed in this configuration. To sum up the com-
plexity measurement, the adversary needs to construct a generative model with
(D · ((D+1)2 +2 · (1+

∑d
i=0

(
n
i

)
))) weights (resp. (2D · ((D+1)+1+

∑d
i=0

(
n
i

)
))

weights if ΣV,Θ is reduced to σ2
V,Θ). Following those metrics, it can be noticed

that the trace dimension D influences the most the network complexity.

However, a solution can be considered to improve the network complexity
without altering the cVAE-SA performance. Indeed, following Sec.3.3, if the
adversary detects s PoIs, he can construct a vector {l0, . . . , ls−1} of s indices
such that li denotes the index related to the ith point of interest. Based on this
knowledge, he can build a cVAE-SA with lower complexity such that most of
the relevant information, dedicated to the s PoIs, can be extracted from a trace.
Instead of considering all the samples of the D-dimensional trace (s.t. D ≥ s),

he can construct a neural network with (s · ((s+1)2 +2 ·(1+
∑d
i=0

(
n
i

)
))) weights

(resp. (2s · ((s+ 1) + 1 +
∑d
i=0

(
n
i

)
)) weights if ΣV,Θ is reduced to σ2

V,Θ). As a
consequence, we drastically reduce the network complexity without altering the
ability of the generative model to retrieve the secret key as suggested in Sec.3.3.
For example, the network complexity of Fig.1 is about 1, 040 weights if all bits’
interactions are considered (i.e. d = 8, s = 2 and n = 8). When black-box models
(e.g. discriminative models) are considered, finding such complexity bounds is
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known as an arduous task as no correlations are provided with classical profiled
SCA.

One of the main benefits of the proposed variational autoencoder is its ex-
plainability and its interpretability regarding the side-channel context. In ad-
dition, our theoretical results suggest that its width does not have to be large
no matter the dimension of the traces. This result is faithful with the Universal
Approximation Theorem [15]. Through the following section, we validate these
properties and broaden the attacks’ spectrum on protected implementations con-
sidering the boolean making scheme.

4 Empirical investigations on cVAE-SA

Through this section, we validate all the theoretical observations provided in
Sec.3 without optimizing the hyperparameters selection.

4.1 Settings

Hyperparameter selection. While classical DLSCA models need to tune a
lot of hyperparameters (e.g. type of neural network, number of layers, number of
nodes per layer, activation function, optimizer algorithms, learning rate, number
of epochs, batch size), the configuration of the proposed cVAE-SA only deals with
the optimizer algorithm, the batch size, the learning rate and the number of
epochs. In this section, optimization is done using the Adam optimizer on batch
size {8, 16, 32, 64, 128} and the learning rate is set to {10−1, 10−2, 10−3, 10−4}.
We construct each model with the following number of epochs {10, 20, 30, 40}
and select the hyperparameters that provide the best ranking value. Finally, in
this section, Ntrank denotes the number of attack traces that are needed to reach
a constant rank of 1. These traces are randomly shuffled and picked up from a
set of attack traces Ia which is characterized by simulations that are described
in the following. For a good estimation of Ntrank, an average over 10 simulations,
denoted N̄trank, is computed.

Simulations. To verify the benefits of the cVAE-SA, we simulateD-dimensional
traces from a 8-bit sensitive variable Y . In this section, the simulated traces are
built following two scenarios:

– Scenario 1 – We assume the leakage model induces the maximum amount of
interactions between bits (i.e. F9), such that all bits influencing the leakage
model have the same weighting. Hence, the ith time sample of the simulated
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trace T is defined as follows:

T[i] =



1 · Y [1] + 1 · Y [3] + 1 · Y [6]

+ 1 · ⊕1
b=0Y [b] + 1 · ⊕2

b=0Y [b] + 1 · ⊕3
b=0Y [b]

+ 1 · ⊕4
b=0Y [b] + 1 · ⊕5

b=0Y [b] + 1 · ⊕6
b=0Y [b]

+ 1 · ⊕7
b=0Y [b] + Z[i]

if i ∈ {l0, . . . , ls−1},

Z[i] otherwise,
(10)

where {l0, . . . , ls−1} defines a set of indices related to each PoI, ⊕nb=0Y [b] =
Y [0] ⊕ . . . ⊕ Y [n], Y [b] = Sbox[X ⊕ k∗][b] denotes the bth bit of the output
of the Sbox, and Z[i] is a Gaussian noise following N (0, σ2) such that σ2 = 1.

– Scenario 2 – We assume that the leakage model induces interactions of
degree 2 between bits (i.e. F3) but differs by the location of the PoIs. The
ith time sample of the trace T is defined as follows:

T[i] =


1 · (X ⊕ k∗)[5] + 1 · (X ⊕ k∗)[3]

⊕ (X ⊕ k∗)[7] + Z[i]
if i ∈ {l′0, . . . , l

′

s′−1},

1 · Sbox [X ⊕ k∗] [3] + 1 · Sbox [X ⊕ k∗] [6] + Z[i] if i ∈ {l0, . . . , ls−1},
Z[i] otherwise,

(11)
where Sbox [X ⊕ k∗] [b] denotes the bth bit of the output of the Sbox consid-
ering a plaintext X and the secret key k∗, Z[i] is a Gaussian noise following
N (0, σ2) such that σ2 = 1.

A set of 10, 000 traces (9, 000 for the profiling phase and 1, 000 for the vali-
dation phase) is simulated for each scenario.

Limitations of the monomial basis. In [18], Schindler et al. suggest a non-
orthonormal monomial basis to approximate the leakage model ψ. This proposi-
tion limits the adversary’s interpretation when combination of bits are induced
in the leakage model. To ease its interpretation, Guilley et al. propose a de-
composition of the monomial basis to isolate the leakage from the combination
of bits [6]. Through the application of the well-known Gram-Schmidt orthonor-
malization on the monomial basis, Guilley et al. introduce a new orthonormal
monomial basis that uncorrelates each basis vector and preserve the degree of
bits’ interaction. Hence, constructing the cVAE-SA on this orthonormal mono-
mial basis is beneficial to evaluate the ability of the neural network to retrieve
the leakage model and maintain its interpretability. This approach will be con-
sidered in the rest of the paper. Using the orthonormal monomial basis has
a major benefit. When the basis is able to describe the switching activity of
the circuit, the estimated basis coefficients highlight specific exploitable secu-
rity flaws in the studied implementation. Hence, visualizing the basis coefficients
that characterize the cVAE-SA model FΘ,φ, namely Θ and φ, is useful to get
deeper information on the exploitable security flaws. The next section proposes
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to visualize the trainable parameters Θ and φ in order to assess the suitability
of the cVAE-SA to extract the expected leakage model ψ.

4.2 Leakage model estimation & multi-task learning

Single-sensitive variable attacks. As mentioned in Sec.3.2, the encoder (resp.
decoder) is trained to retrieve the trainable parameters Θ (resp. φ) in order to
maximize their correlation with the targeted leakage model. Once the cVAE-SA
is correctly trained, the adversary can visualize these trainable parameters (i.e. Θ
and φ) in order to find the security flaws induced in the studied implementation.
In the considered scenario (see Fig.2a), the weight visualization can be used to
assess the ability of the encoder (resp. decoder) to retrieve the leakage function
defined in Eq.10. Indeed, these figures illustrate the coefficients associated to each
vector of the orthonormal monomial basis. The first coefficients of each figure
define the lowest bits’ interaction induced in the leakage model. For example,
the first element, included in the interaction of degree 5 area, is characterized
by ⊕4

b=0Y [b]. While the related weight is non-negligible, the cVAE-SA identifies
that interaction ⊕4

b=0Y [b] influences the leakage model. This observation can be
confirmed in Eq.10. Proceeding this analysis for the entire set of non-negligible
weights can be helpful to evaluate the ability of the cVAE-SA to retrieve the
leakage model. Indeed, if we compare the real simulated leakage model defined
in Eq.10 with the non-negligible weights depicted in Fig.2a, we can see that
all the peaks are associated with the correct basis vector. In addition, each

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

Vector basis

Vector basis

Encoder

Decoder

(a) Single-sensitive variable attacks (see
Eq.10).

Vector basis

Vector basis

Sbox Input Sbox Output

Sbox Input Sbox Output

Decoder

Encoder

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

Degree 2 Degree 3 Degree 4 Degree 5 Degree 6 Degree 2 Degree 3 Degree 4 Degree 5 Degree 6

(b) Multi-task learning attacks (see
Eq.11).

Fig. 2: Weight visualization assessing the suitability of our generative model to
retrieve the leakage model.

coefficient associated with the sensitive interactions seems to get approximately
the same impact which corresponds to the real leakage function defined in Eq.10.
Consequently, if the cVAE-SA is correctly trained, it sounds helpful to retrieve
complex leakage models and the related security flaws. Moreover, through the
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visualization provided in Fig.2a, the adversary can also identify the time samples
where the sensitive information leaks. Indeed, this figure highlights that only T[1]
is useful to extract the leakage model. Hence, once the cVAE-SA is correctly
trained, the adversary can easily retrieve the PoIs. Then, during the attack
phase, the adversary can decide to focus its attack by computing Eq.9 only on
T[1] instead of the entire trace dimension as mentioned in Sec.3.4. Contrary to
classical profiled SCA approach, the cVAE-SA provides a more flexible solution
during the exploitation phase by reducing the impact of irrelevant samples.

One advantage of the stochastic model is to approximate the data that de-
pends on the secret key. Through this process, the adversary directly obtains a
score related to the key manipulated by the crypto-system. Hence, the adver-
sary can adapt the orthonormal monomial basis to target simultaneously multi-
ple cryptographic primitives (e.g. input and output of the Sbox). Therefore, the
cVAE-SA can be adapted to perform multi-tasking attacks.

Multi-task learning attacks. To exploit all the bits’ interaction for each
sensitive variable, we set d = 8 such that Fig.2b illustrates the impact of each
vector of the basis F9. When the time sample T[1] is considered, we can see an
interaction of degree 1 and 2 that corresponds to the bit 5 and the interaction
between the bits 3 and 7 of the input of the Sbox. Then, through Fig.2b, we
can see that T[2] extracts a leakage model with two interactions of degree 1.
When we refer to Eq.11, we observe that the true leakage model depends on 3rd

and the 6th bit of the Sbox’s output. Hence, through this simulation, we can
validate the ability of the cVAE-SA to correctly retrieve the leakage model of
multiple sensitive variables simultaneously. This approach is highly beneficial in
SCA context as it gathers more information about the targeted secret key and
results in a better performance. However, as mentioned in Sec.3.4, the degree d
of the orthonormal monomial basis Fd+1 directly affects the complexity of the
cVAE-SA. Hence, considering the attacks of multi-sensitive variable increases by
2D · (1 +

∑d
i=0

(
n
i

)
) the number of trainable parameters (i.e. weights) for each

new targeted sensitive variablec. Thus, depending on his computational capacity,
the adversary has to define the most suitable structure to employ for defeating
the targeted crypto-system.

However, in SCA context, the adversary mainly deals with a non-negligible
number of uninformative samples. The following section assesses the ability of
the cVAE-SA to mitigate this constraint.

4.3 Curse of dimensionality

When the adversary performs a side-channel attack, he wants to precisely find
the relevant key-dependent time samples even if a large part of the trace contains
uninformative time samples. Usually, the number of PoIs s is far lower than the
trace dimension D (i.e. s � D). Thus, to assess the benefits of the cVAE-SA,

c This number can be reduced to 2s
′
· (1 +

∑d
i=0

(
n
i

)
) if the adversary only targets the

PoIs, denoted {l
′
0, . . . , l

′

s
′−1
}.
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we have to understand the ability of this new model to retrieve the PoIs when
a lot of samples are irrelevant. In order to evaluate it under this restriction, we
consider Scenario 1 (see Sec.4.1) such that we construct 6 sub-scenarios where
D ∈ {3, 10, 50, 100, 500, 1000} and s = 1 such that the related Signal-to-Noise
Ratio (SNR) equals to 0.549. Hence, for each case study, only a single PoI is
configured while the dimension of the simulated traces increases. In Tab.1, we
denote PRI = s

D , the fraction of relevant information in each sub-scenario and
evaluate the impact of this variable on other parameters, namely the batch-
size and the learning rate. Finally, Nv denotes the number of samples V used
to perform Eq.9. As suggested in Sec.3.4, the attack process is performed only

Table 1: Impact of the trace dimension on the cVAE-SA performance (with
s = 1, Nv = 10, batch-size = 10).

PRI% D Learning rate N̄trank Network complexity Training time

33% 3 10−2 47 1, 566 7s
10% 10 10−2 51 5, 360 8s
2% 50 10−2 49 30, 800 35s
1% 100 10−2 46 71, 600 47s
0.2% 500 10−3 52 758, 000 401s
0.1% 1000 10−3 65 2, 516, 000 933s

on the time samples defined as relevantd by the cVAE-SA. Hence, the weight
visualization applied on φ and Θ is very helpful to define which samples can be
considered as PoIs. Through Tab.1, we can see that increasing D does not impact
the resulted performance of the cVAE-SA (i.e. N̄trank). Indeed, if the adversary
adequately finds the correct hyperparameters, namely batch-size and learning
rate, he can expect to get similar results for high values of D. However, as
detailed in Sec.3.4, increasing the input dimension highly impacts the complexity
of the cVAE-SA. Finding a way to focus the interest of the model only on the
relevant time samples can drastically reduce the network complexity without
altering its resulted performance. Such investigation could be part of a future
work to highlight even more the benefits of DL in SCA context.

Once the adversary validates the ability of the generative model to deal with
a low percentage of relevant information, he can question the benefits of the
cVAE-SA to defeat boolean masking implementations. The next section deeply
investigates this protection against this new model.

4.4 Generalization on boolean masking implementation

Typically, the discriminative models are built to automatically extract the rel-
evant information from a trace without providing a clear interpretability of its
decision making. In opposition, the cVAE-SA models the leakage model without

d Here, the relevance of a time sample is characterized by its coefficients φ and Θ such
that the most relevant time samples have the highest coefficient values.
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altering its representation in order to get a global characterization of Pr[T|Y ].
Consequently, our generative approach does not automatically recombine the
PoIs but preserve the network’s explainability that is mandatory for an adver-
sary. Thus, if we have to face with a masking implementation, some preprocess-
ing phases are needed. In particular, a masking scheme of order o consists in
a o + 1-sharing of the sensitive target variable. In our setting, this corresponds
to a situation where the leakages of the shares are hidden among values that
have no relation with the target. Consequently, to perform a successful high-
order attack [16], the adversary has to find the o + 1 shares of the targeted
sensitive information. Typically, classical approaches considered in profiled SCA
uses some recombination techniques as preprocessing. This approach involves
the combination of o + 1 shares in order to “demask” the masked values and
perform the attacks on the unmasked value. To apply this proposition, various
recombination techniques [16] are introduced, namely product combining, abso-
lute difference combining and optimal product combining. If the adversary wants
to apply one of these techniques, he has to recombine the samples related to
each of the o+ 1 shares and then, target the unmasked sensitive value Y .

To evaluate the suitability of cVAE-SA in such scenarios, we decide to simu-
late a 5-dimensional traces with different level of masking order o ∈ {0, 1, 2, 3}.
For each case-study, we apply the absolute difference, the product and the opti-
mal product combining functions and list the best result we obtained in Tab.2.
Through this table, we demonstrate the ability of the proposed cVAE-SA to de-

Table 2: Impact of boolean masking implementations on the conditional varia-
tional autoencoder performance (with batch-size = 64, Nv = 10).

Order Learning rate N̄trank Combining function Network complexity

0 10−2 9 Optimal product 2, 630
1 10−2 32 Optimal product 14, 150
2 10−3 100 Optimal product 95, 750
3 10−3 247 Absolute difference 1, 103, 750

feat a high-order boolean masking implementation. Surprisingly, the number of
shares does not highly impact the hyperparameters’ valuee, namely the learning
rate and the batch-size, unlike the network complexity. Indeed, for a given set
of D-dimensional traces, the combining methods multiplied by D the number
of time samples for each mask reduction. Hence, for performing an o order at-
tack, the adversary has to deal with traces of Do+1 samples. As the dimension
of the traces impacts the network complexity (see Sec.3.4), the adversary has to
exponentially increase his computational ability with the attack order.

Once all these simulations validate the theoretical observations provided in
Sec.3, we compare the benefits of considering the new cVAE-SA with the classical
profiled side-channel attacks on real unprotected and protected implementations.

e The readers must be aware that this observation cannot be generalized on all imple-
mentations and would benefit from further investigations.

22



5 Experimental results

The experiments are implemented in Python using the Keras library and are run
on a workstation equipped with 128GB RAM and a NVIDIA GTX1080Ti with
11GB memory. In the following section, the discriminative models are based on
the CNN architectures provided by [21] and then, a global benchmark is provided
with other typology of discriminative models (see Tab.4). For the generative
models, the configurable hyperparameters, namely the batch-size and the learn-
ing rate, are respectively set to {8, 16, 32, 64} and {10−1, 10−2, 10−3}. We con-
struct each model with the following number of epochs {10, 20, 30, 40, 50, 75, 100}
and select the value that provides the best rank. As mentioned in Sec.4, we de-
note N̄trank the average value of Ntrank over 10 shuffled experiments. In the
following, we always capture the maximum amount of interactions (i.e. F9).
This choice was made because an adversary does not have a priori knowledge
on the bits’ interactions.

5.1 Presentation of the datasets

We used three different datasets for our experiments. All the datasets correspond
to implementations of Advanced Encryption Standard (AES). The datasets offer
a wide range of use cases: high-SNR unprotected implementation on a smart
card, low-SNR unprotected implementation on a FPGA, low-SNR protected
implementation with first-order masking.

– DPA contest-v4f is an AES software implementation with a first-order
masking. Knowing the mask value, we can consider this implementation as
unprotected and recover the secret key directly. In this experiment, we at-
tack the first round Sbox operation. We identify each trace with the sensitive
variable Sbox[X[0] ⊕ k∗] ⊕M where M denotes the known mask and X[0]
the first byte of the plaintext.

– AES HDg is an unprotected AES-128 implemented on FPGA. The attack
targets the register writing in the last round such that the label of the ith

trace is Sbox−1[C[j] ⊕ k∗] ⊕ C[j′] where C[j] and C[j′] are two ciphertext
bytes such that j = 12 and j′ = 8.

– ASCAD-v1 is introduced in [1]. The target platform is an 8-bit AVR micro-
controller (ATmega8515) where a AES-128 protected with a boolean mask-
ing scheme is implemented. The targeted sensitive variable is the first round
Sbox operation such that Y = Sbox[X[3]⊕ k∗].

Remark 1. While this work bridges DL with SCA, no investigation has been con-
ducted on the desynchronization effect. Indeed, as this countermeasure needs the
use of shift-invariant layers (e.g. convolutional layers), further theoretical results

f http://www.dpacontest.org/v4/42_traces.php
g https://github.com/AESHD/AES_HD_Dataset
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should be provided to clearly explain how those layers should be configured re-
garding the related work in SCA. This investigation is out of the scope of this
paper and should be a part of a future work.

5.2 A comparison with state-of-the-art SCA

In this section, we evaluate the benefits of the cVAE-SA against the classical
side-channel attacks (i.e. template attacks, stochastic attacks) by respecting the
same experimental conditions as the state-of-the-art result. For the DPA contest-
v4 and AES HD datasets, Kim et al. [9] propose to select 50 features with the
highest SNR in order to reduce the needs of computation when classical side-
channel attacks are considered. For ASCAD-v1 dataset, we select the 8 most
relevant samples related to the mask and the masked values and then, apply the
three combining functions introduced in Sec.4.4.

DPA contest-v4. Once the cVAE-SA is trained, the adversary can observe the
coefficients related to each time sample as illustrated in Fig.3a. Then, he can se-
lect those with the highest trainable parameters (i.e. Θ and φ) and perform his
attack on this subset. For this dataset, we compute Eq.9 on the 50 time samples
previously extracted. When a high-SNR unprotected implementation is consid-
ered, we observe that our generative model has the same performance as classical
profiled side-channel attacks (see Tab.3). Hence, for this implementation, sim-
ilar results can be obtained whatever the attack performed. Consequently, in
this configuration, considering the cVAE-SA is equivalent to classical profiled
side-channel attacks.

(a) DPA contest-v4 dataset. (b) AES HD dataset.

Fig. 3: Weight visualization of 50 time samples assessing the suitability of our
generative model to retrieve the leakage model.

AES HD. Following the state-of-the-art results [9], a template attack needs
approximately 25, 000 attack traces to retrieve the secret key. Surprisingly, per-
forming the stochastic attack on the same dataset highly improves the related
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performance. Indeed, when this approach is considered, the adversary can re-
cover the secret key with 4, 500 attack traces which is 5.5 times better. Finally,
when the cVAE-SA is applied, an even better attack can be performed. As men-
tioned in Sec.3.4, the attack phase is based on sample similarity measures. Hence,
the adversary can only compute Eq.9 on the relevant samples detected during
the profiling phase. Thus, we drastically reduce the impact of the uninforma-
tive samples during the attack phase. In this configuration, we only consider the
samples where the related φ coefficients are greater than 0.5 (see Fig.3b). Ac-
cordingly, while the training process was performed on traces with 50 samples,
the computation of Eq.9 was made on the 14 time samples complying with the
configured restriction. This processing tremendously increases the performance
of the resulted attack. Indeed, the cVAE-SA model divides by 100 (resp. 18)
the number of attack traces that are needed to perform a template attack (resp.
stochastic attack).

ASCAD-v1. As mentioned in Sec.4.4, we perform high-order attacks with the
help of combining functions as preprocessing (i.e. product combining, optimal
product combining, absolute difference combining). Then, we profile the genera-
tive models on the unmasked value in order to extract the relevant information.
In Tab.3, the optimal product combination provides the best performance on the
ASCAD dataset. Through this experiment, we observe that the cVAE-SA per-
forms better than template or stochastic attacks. While 351 (resp. 290) attack
traces are needed to reach a constant rank of 1 when the template attack (resp.
stochastic attack) is considered, our generative model retrieves the secret key
within 190 attack traces. As previously mentioned for the AES HD dataset, this
result can be explained by the ability of the cVAE-SA to target a specific range
of relevant combined time samples during the attack phase. On the contrary, the
classical profiled SCA have to consider the 64 time samples (i.e. 8 time samples
related to the masks and the masked value) used to perform the related attacks.
Hence, resulted noisy time samples can highly influence the performance of the
resulted attacks.

Table 3: Comparison of N̄trank value depending on datasets. The best perfor-
mance for each dataset is denoted in blue.

Stochastic Attacks Template Attacks
cVAE-SA
[This work]

DPA-contest v4 4 4 [9] 4
AES HD 4, 500 25, 000 [9] 250
ASCAD-v1 290 351 190

In conclusion, when a classical profiled SCA is trained on D-dimensional
traces, the adversary has to perform the exploitation phase on the same trace
dimension. Unfortunately, the adversary does not know a priori which time sam-
ples are considered as relevant once the profiling phase is applied. Hence, per-
forming the exploitation phase on the D-dimensional traces could be impacted
by the uninformative time samples. On the other hand, once the profiling phase
is performed on the D-dimensional traces, the cVAE-SA is beneficial to select a
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subset of s time samples, such that s � D, in order to compute Eq.9 only on
the informative time samples. Hence, this new proposition is more flexible than
classical profiled SCA and results in a better attack perspective as we are less
impacted by uninformative time samples.

However, the adversary can question the benefits of the generative approach
with respect to discriminative models. The following section highlights the ben-
efits and the limitations of both approaches in DLSCA.

5.3 A comparison with state-of-the-art DLSCA

When the discriminative approaches are considered, a major drawback can be
highlighted regarding the architecture configuration. Indeed, the resulted mod-
els have a plethora of hyperparameters to tune. The more effort we spend on
the hyperparameter tuning of the network architecture, the more efficient the
resulted attack is expected. In addition, due to their black-box property, the
discriminative models are difficult to interpret. However, the main benefit of
this approach is about automatically combining the points of interest to limit
the masking effect. While the discriminative model considers all the samples of
the trace, we decide to focus the interest of the generative model on the most
relevant samples only. As highlighted in Sec.4.3, increasing the number of ir-
relevant samples highly impact the network complexity and the training time
without altering the related performance. While our work does not investigate
the dimensionality reduction techniques, we want to evaluate the pledge of this
new proposition in the side-channel field.

DPA contest-v4. First, on Fig.4a, we can visualize the rank evolution of the
generative and the discriminative models on the DPA contest-v4 dataset. While
a discriminative model can retrieve the secret key with 4 attack traces, the cVAE-
SA reaches the same performance depending on the number Nv of latent samples.
As mentioned in Sec.3.4, the value of Nv depends on the ability of the cVAE-SA
to correctly approximate Pr[T|Y, φ]. The higher the Nv, the more confident the
resulted attack. This observation can be confirmed in Fig.4a. Indeed, if Nv = 1,
two attack traces are needed to retrieve the secret key. However, a poor rank
stabilization is observed. To rectify this point, increasing the Nv value preserve
a constant rank convergence towards 1.

AES HD. The same observation can be made when the AES HD dataset is
considered. Indeed, when the Nv value increases, a rank stabilization is ob-
served when the number of attack traces grows. In addition, Fig.4b highlights
a better model when the generative approach is considered. Indeed, for Nv =
{100, 1, 000}, the resulted model converges towards a constant rank of 1 with 250
attack traces. Even if the discriminative approach directly estimates Pr[Y |T],
this figure indicates a lower performance when classical DLSCA model is per-
formed. Indeed, the related number of traces that are needed for retrieving the
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secret key is about 1, 000. As illustrated by Ng and Jordan [12], this result sug-
gests that a better discriminative model can be found on this dataset. Indeed,
an optimal discriminative model should be, at least, as efficient as a genera-
tive approach. However, finding the best discriminative model can be difficult
due to the broad hyperparameter selection. This result highlights the benefits of
the cVAE-SA in comparison with the classical DLSCA models from a practical
perspective.

(a) DPA-contest v4 (b) AES HD (c) ASCAD-v1

:cVAE-SA

Fig. 4: Mean rank evolution for cVAE-SA and discriminative models.

ASCAD-v1. One benefit of the discriminative approach is to automatically
recombine the points of interest. In opposition, the generative approach does
not take advantage of this property (see Sec.4.4). Through Fig.4c, we can vi-
sualize the benefits of automatically combining the points of interest. Indeed,
the discriminative approach converges faster towards a constant rank of 1. This
result could be explained by the ability of the discriminative model to find a
custom combining function that maximizes the posterior probabilities Pr[Y |T].
Hence, this custom unknown function can be more adapted for the targeted
dataset. On the other hand, the cVAE-SA model is trained on combined traces
that are constructed from classical approaches (i.e. optimal product combining).
Consequently, when masking implementations are considered, a discriminative
approach can provide better result than the cVAE-SA. However, applying the
discriminative approach can be limited from an interpretation point of view. In
addition, the discriminative approach required plethora of additional settings
(i.e. architecture, activation function, weight initialization, etc.) that has not to
be considered when the cVAE-SA is constructed. Hence, the configuration of
discriminative models can be an issue from a practical perspective.

Benchmark. In Tab.4, we refer the main models introduced in the DLSCA lit-
erature. In particular, it can be mentioned that the cVAE-SA is the only model
which considers the generative approach. Through this benchmark, we can as-
sess that the cVAE-SA performs similarly, or even better, than classical DLSCA
models. As suggested by Ng and Jordan [12], the asymptotic error of the discrim-
inative model is lower or equal to the one related to the generative approach.
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Therefore, discriminative models should be at least as efficient as a cVAE-SA.
However, as their construction phase is not deterministic, an irrelevant model
can be designed to solve a given classification task and the resulted performance
can be less efficient than the cVAE-SA due to a poor approximation of the true
unknown expected leakage model. This observation can be confirmed through
the results provided in Tab.4.

Table 4: DLSCA benchmark of N̄trank value depending on datasets. The best
performance for each dataset is denoted in blue.

Discriminative model Generative model

CNN
FCNN

ResNet TransNet SVM
Random cVAE-SA

(or MLP) Forest [This work]

DPA contest-v4
3 4 3

-
3 5 3

[21] [13,14] [8] [14] [14]

AES HD
831 7, 400 2, 100

-
6, 653 2, 877 250

[22] [14] [8] [14] [14]

ASCAD-v1
191 155 552 300

- -
190

[21] [13] [8] [7]

The results provided in this section highlight the benefits and the limita-
tions of cVAE-SA against classical DLSCA models. In SCA, the cVAE-SA can
be helpful to evaluate the feasibility of an attack and get a security bound
of a device. However, while the configuration of such neural network is simple
in comparison with DLSCA models, this new proposition can perform worse
under masking conditions. As a perspective, we suggest to consider an hybrid
approach combining the discriminative and the generative models in order to
keep the explainability and the interpretability while preserving the benefits of
the automatic recombination.

6 Conclusion

This paper proposes to reduce the gap between historical SCA (i.e. genera-
tive models) and classical DLSCA (i.e. discriminative models). In that purpose,
we introduce the first DLSCA model based on generative approach. From the
stochastic attack introduced by Schindler et al. [18], we first design an explain-
able and interpretable architecture that aims at retrieving the real unknown
leakage model. Based on stochastic attack modeling, this new model can be
easily constructed whatever the implementation an adversary has to deal with.
Furthermore, this analogy helps us to define theoretical bounds on the network
complexity (e.g. number of trainable parameters) as well as identifying mutual
problematics and perspectives (e.g. dimensionality reduction, multi-task learn-
ing). Then, we theoretically explain the impact on each individual loss in SCA
such that, the reconstruction loss penalizes the model in order to estimate a
trace as similar as possible to the real one. On the other hand, we demonstrate
that the KL-divergence loss is beneficial to correctly estimate the latent space.
Compared with historical profiled SCA, the cVAE-SA is beneficial by provid-
ing the ability to carefully select the samples the adversary wants to focus on
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during the exploitation phase. Hence, by providing a more flexible generative ap-
proach, we drastically reduce the impact of uninformative samples on the attack
performance. This observation was confirmed on real case-study.

To bridge the gap between generative and discriminative approaches, we
conduct experiments on simulations and public datasets on wide-range of use-
cases and observe that the generative approach does not perform worse than a
discriminative one. However, using the discriminative approach seems beneficial
when masked implementations are targeted because more approriate unknown
combining function can be automatically retrieved by the related model. This
solution cannot be considered with generative models.

All these results suggest a lot of future works. First, as the generative ap-
proach aims at approximating a joint distribution between two random variables,
we have to assess the suitability of using the cVAE-SA as model to perform non-
profiled SCA, or even more generally, blind SCA. Finally, while the limitations
of the discriminative (resp. generative) approach seem solved by the genera-
tive (resp. discriminative) approach, one solution could be to consider an hybrid
model that preserves the automatic sample recombination property (i.e. discrim-
inative approach) while keeping the explainability/interpretability and reducing
the hyperparameter selection (i.e. generative approach).
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