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Abstract. A fundamental computational problem is to find a shortest non-zero vector in Euclidean lattices,
a problem known as the Shortest Vector Problem (SVP). This problem is believed to be hard even on
quantum computers and thus plays a pivotal role in post-quantum cryptography. In this work we explore
how (efficiently) Noisy Intermediate Scale Quantum (NISQ) devices may be used to solve SVP. Specifically,
we map the problem to that of finding the ground state of a suitable Hamiltonian. In particular, (i) we
establish new bounds for lattice enumeration, this allows us to obtain new bounds (resp. estimates) for
the number of qubits required per dimension for any lattices (resp. random q-ary lattices) to solve SVP;
(ii) we exclude the zero vector from the optimization space by proposing (a) a different classical optimisation
loop or alternatively (b) a new mapping to the Hamiltonian. These improvements allow us to solve SVP in
dimension up to 28 in a quantum emulation, significantly more than what was previously achieved, even for
special cases. Finally, we extrapolate the size of NISQ devices that is required to be able to solve instances
of lattices that are hard even for the best classical algorithms and find that with ≈ 103 noisy qubits such
instances can be tackled.

1 Introduction

Cryptography studies the limits of computing: what can and cannot efficiently be computed. In 1976 Diffie
and Hellman significantly expanded the realm of the possible by inventing public key cryptography [DH76]
which allows two parties to agree on a shared secret over a public channel in the presence of a wiretapping
adversary.3 Since its invention public-key cryptography has seen widespread adoption and is now a
crucial building block for securing, say, the Internet. However, this advance was not unconditional
but relies on the presumed hardness of some computational problem. Virtually all currently deployed
public-key encryption schemes rely on the difficulty of one of two computational problems: the discrete
logarithm problem and the problem of factoring large integers.

Everything changed in 1994 when Peter Shor’s seminal work [Sho97] showed that quantum computers
could effectively solve those two central problems. While the timeline for when sufficiently big quantum
computers may be available is uncertain, the proposed such timelines and the threat of “collect-
now-decrypt-later”-style attacks provoked global efforts to develop “post-quantum cryptography”,
cryptographic schemes that run on classical computers but resist attacks with quantum computers. The
centre of these international efforts is the Post-Quantum Standardisation Process (NIST PQC) by the
US National Institute of Standards and Technology (NIST) [NIS]. To date, there are several candidates
for post-quantum cryptography, mainly lattice-based, code-based, hash-based, multivariate cryptography
and supersingular elliptic curve isogeny cryptography. Lattice-based cryptography seems to be a prime
contender for large scale adaption: among the Round 3 finalists of the NIST PQC, five out of seven
finalists are based on lattices.

While, of course, all post-quantum candidates are conjectured to be hard also on a quantum computer,
a pressing question for adoption is “how hard?”. That is, in order to pick parameters that are both
efficient in practice but quantifiably resist attacks, the research community studies the quantum resources
required to solve the underlying hard problems.

On the other hand, it is expected that the transition to quantum computers will start with a phase
referred to as Noisy Intermediate Scale Quantum (NISQ), featuring devices that consist of at most
one thousand erroneous qubits. This low number of qubits makes use of any known error-correction
technique infeasible, something that also puts stringent restrictions on the depth a quantum computation
can have before the noise becomes dominant leading to essentially random outcomes. To overcome
this limitation of these devices, hybrid classical-quantum algorithms are designed specifically for these
devices while most of the famous quantum algorithms like Grover’s search, Quantum Fourier Transform

3 If the public channel is authenticated, the adversary may even actively interact with both parties.



or Shor’s algorithms are impracticable. A natural question is thus “how hard are lattice problems on
NISQ devices?”. This question sheds light on the performance of these devices on a natural and central
computational problem.

Contributions. After some preliminaries (Section 2), we determine a suitable mapping of the central hard
problem on lattices, the Shortest Vector Problem (SVP) into the ground state of a Hamiltonian operator,
the form required by the classical-quantum optimisation algorithms of our interest. In Section 3, we
introduce Ising spin Hamiltonian operators and explain how to map SVP to an optimisation problem in
this framework. We discuss the challenges that arise with this formulation and give a solution to the
“zero vector problem” for VQE.4 Our problem formulation requires to know a priori bounds for each
coordinate of a shortest vector in a given basis B of the lattice. In Section 4 we thus analyse the cost
of solving SVP in a non-adaptive exhaustive search which allows us to quantify the search space. In
particular, we show that the size of the search space depends on the norms of the vectors forming the
“dual basis” B̂ := (BBT )−1B. This allows us to obtain a NISQ quantum algorithm to compute an HKZ
reduced basis, one of the strongest notion of reduction, using 3

2n log2 n+O(n) qubits and thus solving
SVP in passing. This cost of non-adaptive enumeration was previously known only for a special class of
lattices. We also perform extensive classical numerical experiments to study the average case behaviour
of lattice reduction in the context of our NISQ quantum enumeration algorithm. In Section 5 we then
show that our bounds allow us to run quantum emulation experiments that using up to 28 qubits are
able to solve SVP in dimension 28 which is considerably more than prior literature. Extrapolating our
experimental data we find that between 1, 000 and 1, 600 qubits suffice to encode SVP for a dimension
180 lattice, the current record dimension for “Darmstadt SVP Challenge” [DSvW21]. For the avoidance
of doubt, our results do not violate any previous claims on the hardness of lattice problems on quantum
computers because in general we may hope for a running time at best 2λ/2+o(λ) for instances encoded in
λ = 3

2n log2 n+O(n) qubits.5

2 Preliminaries

Lattices A (Euclidean) lattice L is a discrete subgroup of Rd, or equivalently the set L(b1, . . . , bn) =
{
∑n

i=1 xibi : xi ∈ Z} of all integer combinations of n linearly independent vectors b1, . . . , bn ∈ Rd.
Such bi form a basis of L. We say that a matrix B forms a basis of L if its rows form a basis of L. All
the bases have the same number n of elements, called the dimension or rank of L. The dual L̂ of a
lattice L is the set of all vectors x ∈ span(L) such that 〈x,y〉 is an integer for all y ∈ L. If B is a basis
of L then B̂ := (BBT )−1B is a basis of L̂. We call B̂ the “dual basis” of B.

One of the fundamental algorithmic problems related to lattices is to find a shortest non-zero element
of an arbitrary lattice (with respect to its Euclidean norm), given an arbitrary basis of this lattice. This
problem is referred to as the shortest vector problem (SVP) and the length of such a vector denoted by
λ1(L). It is a central premise of lattice-based cryptography that solving SVP (and its decision variant
GapSVP) within a polynomial factor takes super-polynomial time also on a quantum computer [Reg05].
It is well-known that the hardness of the SVP is related to the “quality” of the basis which informally
quantifies the length of the vectors in the basis and the angles between. Intuitively, a basis with short
and relatively orthogonal vectors is of higher quality. Therefore, a fundamental problem in lattice-based
cryptography is to increase the quality of a given basis, a process known as lattice reduction. The
celebrated LLL algorithm [LLL82] was the first polynomial-time algorithm that computes a reduced
basis of guaranteed quality, namely the first vector is at most exponentially longer than the shortest
vector of the lattice. The BKZ algorithm [Sch87] is a generalisation of LLL to obtain more strongly
reduced basis at the expense of a higher running time. More precisely, the BKZ algorithm requires one
to choose a so-called block size β: the larger the β, the stronger the reduction but the higher the running
time (which is at least exponential in β). BKZ internally uses an algorithm to solve (near) exact SVP in
lower-dimensional lattices. Therefore, understanding the complexity of SVP is critical to understanding

4 In Appendix A we outline a less efficient solution to impose the constraint at the Hamiltonian level adding new variables.
That approach is applicable to QAOA, quantum annealing and adiabatic quantum computing thus extending our
method.

5 Classically, SVP can be solved in time n1/(2e)n+o(n) and poly(d) memory or 20.292n+o(n) time and memory.
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the complexity of BKZ and lattice reduction. This, in turns, is critical to choosing security parameters
of cryptographic primitives [ACD+18].

Finally, one of the strongest notion of reduction is that of HKZ reduced basis [Kan83]. The first
vector of such a basis is always a shortest vector of the lattice. Furthermore, HKZ basis naturally lend
themselves to be computed recursively and enjoy many good properties, especially in conjunction with
enumeration [HS07]. Enumeration algorithms list all of the lattice points within a ball of prescribed radius
r. One of the most important aspect of enumeration is to correctly chose the enumeration radius r so
that it is larger than λ1(L), but not too large since the running time increases rapidly with r. For random

lattices, the so-called Gaussian Heuristic gives a good estimate of λ1(L) as gh(L) :=
√

n
2πedet(L)1/n.

The fastest known (heuristic) quantum algorithm [CL21] for solving SVP is a “sieving algorithm”
runs in time 20.257n+o(n), uses QRAM [GLM08] of maximum size 20.0767n+o(n), a quantum memory
of size 20.0495n+o(n) and a classical memory of size 20.2075n+o(n). The second main class of quantum
algorithms for solving SVP are “lattice-point enumeration” algorithms which combine exhaustive search
with projections [ANS18]. These algorithms run in time nn/(4e)+o(n) and poly(d) memory. In many
cryptography applications nn/16+o(n) seems plausible [ABF+20]. On classical computers, the current
record computation solved the “Darmstadt SVP Challenge”, which asks to solve a slightly relaxed
version of SVP, in dimension 180 [DSvW21] using sieving on GPUs. Both classes of algorithms rely on
Grover’s algorithm or random walks which require long running computations on fault-tolerant quantum
computers and thus are not suitable on quantum devices of the next decade, the NISQ era.

Variational Quantum Algorithms (VQA)s [CAB+21] are hybrid classical-quantum algorithms that can
solve a variety of problems, including optimisation problems. VQAs are believed to be one of the most
promising approaches to use and possibly offer quantum advantage on near-term quantum devices –
also known as Noisy Intermediate-Scale Quantum (NISQ) devices. The quantum devices that currently
exist and those that will become available in the coming 2-5 years are expected to have at most 1000
qubits (intermediate-scale) and have imperfections (noisy). Since the number of qubits is limited, to
run computations of interest one cannot “afford” to perform quantum error-correction since this would
require an overhead in the order of ≈ 103 physical qubits for every useful logical qubit. VQAs mitigate
the effects of noise by a different approach. A computationally expensive subroutine is solved by the
quantum device that amounts in estimating the “energy” of a quantum state that arises as the output
of a parameterized quantum circuit of short depth (avoiding the excessive accumulation of errors). The
preparation and measurement is run multiple times and the output is fed to a classical optimisation
part that essentially off-loads part of the computation to a classical device. VQAs appear to offer
advantages over classical algorithms in various areas of quantum chemistry [KMW+17,WZdS+20] and
is a promising approach for many other areas including combinatorial optimization [Luc14], quantum
machine learning [CLKAG21] and quantum metrology [KEJ+20].

Since SVP can be formulated as an optimisation problem, we focus on two most widely used VQAs
for combinatorial optimisation, namely Variational Quantum Eigensolver (VQE) [PMS+14,MRBAG16]
and Quantum Approximate Optimisation Algorithm (QAOA) [FGG14]. The first step for both of them,
as well as for quantum annealing [HKL+20], is to encode the problem (SVP here) to the ground state
(smallest eigenvalue) of a Hamiltonian operator H. For QAOA and quantum annealing, the Hamiltonian
needs to be an Ising spin Hamiltonian (i.e. involving only Z spins and up to quadratic interaction terms)
and for quantum annealing extra limitations due to the connectivity of the spins apply. For VQE the
Hamiltonian can take more general form (including higher order terms and/or X spins). The second
step, once the Hamiltonian is chosen, is to select an ansatz state |ψ(θ)〉 – a family of quantum states,
parametrized by θ, that are the output of a simple parameterized circuit. Ideally, we would like to ensure
that elements of the family considered are close to the ground state of the problem’s Hamiltonian. The
two classes of anstze that exist are the hardware efficient ones that are essentially chosen for the ease
that can be implemented at a given quantum hardware, and the problem specific that are anstze that
use information about the problem for example using the problem’s Hamiltonian. The former are less
prone to errors and can be used with any Hamiltonian but have no guarantee to be “dense” around
the true ground state, while the latter are more sensitive to noise and can be used with specific classes
of Hamiltonians but are designed to have states close to the true ground state. The third step is to
prepare a state from the ansatz and measure it where this step is repeated multiple times. From these
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repetitions an estimate of the expectation 〈ψ(θ)|H|ψ(θ)〉 is calculated and passed as the cost value for
the choice of parameters to a classical optimizer.

The optimizer then calculates new parameter θ and the procedure repeats until some stopping
criterion is reached and an estimate for the ground state is produced. For our VQE runs we used
hardware efficient anstze. QAOA is by definition a problem specific ansatz since the family is constructed
as a discretized version of Quantum Adiabatic Computation. This puts a constraint on the form of
the Hamiltonian (which makes it harder to solve SVP with fewer qubits see Section 3.2), but has the
theoretical guarantee that for sufficiently deep circuits the solution should be found. Specifically, for
Hamiltonians that involve only spin Z terms, to compute the energy/cost C(θ) of a quantum state
|ψ(θ)〉 we prepare the state and measure in the computational basis N times. Each run gives outcomes
(bit-strings) xi, and for every outcome we compute the related cost mi(xi). Our estimate of the cost
of the state is C(θ) = 〈ψ(θ)|H|ψ(θ)〉 ≈ 1

N

∑N
i=1mi and is used by the classical optimizer. For classical

combinatorial optimization problems one can find that other methods are performing better. The
Conditional Vale at Risk (CVaR) [BNR+20] and the Ascending-CVaR [KW21] are two methods that
give better results and in this work we will use the former. In [BNR+20] instead of computing the cost
taking the average of the values mi, they considered ordering the values from the smallest to the larger
and counting the α-tail of the distribution. Specifically, α is to be chosen heuristically and the cost is
calculated as an average of dαNe lowest measurements outcomes. Suppose {m̃i}i=1,...,N is a sorted set

of {mi}i=1,...,N in non-decreasing order. Then the cost is calculated as: CCV aRα(θ) = 1
dαNe

∑dαNe
i=1 m̃i.

We note that finding a ground state of a Hamiltonian is QMA-complete in general, but for specific
Hamiltonians the ground can be found efficiently – adiabatic quantum computing is a universal model,
that finds efficiently the ground state of those Hamiltonians that correspond to BQP problems. Indeed,
in our case, since SVP is believed to be outside BQP we do not expect to find the solution efficiently.
On the other hand, obtaining a polynomial speed-up is valuable for the cryptanalysis – after all Grover’s
algorithm also provides such a moderate speed-up. In particular, we do not expect to do better than
Grover – query complexity bounds indicate that for our problem we can get at most a small constant
improvement to Grover. However, due to the fact that our approach is heuristic, we may still be able to
get considerable (larger) speed-up for certain (but not the hardest) instances.

2.1 Related Work

There have been several works focusing on translating SVP into Hamiltonian H where the ground
state corresponds to the shortest lattice vector. Note that we can trivially achieve encodings where
the corresponding eigenvalues of H define the order of lattice vector lengths. The resulting variational
quantum formulation is thus capable of solving the approximate SVP, a relaxation of SVP, on which the
security of most lattice-based protocols is relied upon. In [JGLM20] the energy gaps between the first
three excited states of the problem Hamiltonian are analysed when solving low dimensional SVP via
adiabatic computation. The ground state is by their construction a zero state and hence the first excited
state is sought. The results suggest the existence of “Goldilocks” zones. In such zones the adiabatic
evolutions are slow enough that there is a high probability of sampling any of the first three excited
states without any strong dominance of any of them. As a consequence, in this case it is possible to
obtain the shortest non-zero vector with a small number of measurement samples. This motivates the
use of QAOA to find the ground state as it mimics the adiabatic computation. However, the experiments
were performed only for lattices up to 4 dimensions. Moreover, as SVP is an integer optimization problem,
bounds on the ranges of the (integer) variables need to be defined prior to mapping the problem into a
binary optimization problem. The authors make an experimental guess that each of them grows linearly
with lattice dimension resulting in guess of O(n log n) qubit requirement. The qubit requirement was
later proved in [JCLM21] for special lattices with what they called “an optimal Hermite Normal Form
(HNF)”. The density of such lattices is around 44% for lattices generated with entries selected “uniformly
at random” [Maz10, Section 5.1]. For such lattices, they show that 3

2n log2 n + n + log det(L) qubits
are enough to guarantee that the shortest vector is an eigenvector of the hamiltonian. To confirm the
approach, experiments for up to 7-dimensional instances of SVP were performed on D-Wave quantum
annealer making use of up to 56 logical qubits. The proof of their bound crucially relies on the special
shape of the HNF namely that it has at most one nontrivial column. However, q-ary lattices (which are
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ubiquitous in cryptography, see Section 5.1) almost never have such a special Hermite Normal Form
since6 they have k nontrivial colums, where k is the rank of the underlying linear code and typically
linear in the dimension (such as n/2).

3 Direct approaches to SVP with Variational Quantum Algorithms

Recall that the starting point for VQE and QAOA (but also for quantum annealing) is to encode the
problem to the ground state of a Hamiltonian H. As in other combinatorial optimization problems,
one first needs to turn the problem to a quadratic unconstrained binary (QUBO) form and then
there is a standard method to obtain an Ising Hamiltonian (i.e. a Hamiltonian that involves only Z
operators and the interaction terms involve just pairs of qubits). Note that to run VQE one can have
more general Hamiltonians and as we will see later, in some cases it is simple to include constraints
(or even higher order terms). Coming back to QUBO formulatons the general form of the cost is
C(s1s2...sn) = c +

∑
i ciisi +

∑
i 6=j cijsisj , for string binary variables s1s2 · · · sn, for some coefficients

c, {cij}1≤i,j≤n. Since Pauli-Z operators have ±1 eigenvalues one maps each binary variable si to Ii−Zi
2

leading to the Ising Hamiltonian, H =
∑

i cii
Ii−Zi

2 +
∑

i 6=j cij
Ii−Zi

2 ⊗ Ij−Zj
2 where Zi and Ii are the

Pauli-Z and identity operators respectively, acting on i-th qubit.

3.1 Mapping the Shortest Vector Problem into QUBO formulation

A first approach (also starting point of [JGLM20,JCLM21]), is to consider as variables the coefficients
of the basis vectors. Each choice of the coefficients determines a vector in the lattice, and its length can
be easily calculated using the basis matrix. There are two major challenges with this approach. The first
one is that the coefficients are integers while we want to use a finite number of binary variables. Recall
that each binary variable will result to a qubit so we can only use a finite number while making this
number as small as possible is crucial to run it in a NISQ device. We therefore need to truncate (limit)
the possible coefficients, but in a way that the shortest vector is included in our possible solutions. The
second challenge is that if the variables are the coefficients then a possible vector is the vector that all
coefficients are zero, a vector that clearly is shorter than the shortest (non-zero) vector we are searching.
We would therefore need to impose the constraint x 6= 0 at some level.

Going back to the formulation, given an n-dimensional full-rank row-major lattice basis matrix
B, we define lattice L(B) = {xB|x row vector, x ∈ Zn}. The shortest vector problem (SV P ) finds the
solution λ1 = miny∈L(B)\{0} |y|. Let x be a row vector of coefficients and G = BBT a gram matrix of

the basis. Then y = xB =⇒ |y|2 = xBBTxT = xGxT which allows us to reformulate it as a quadratic
constrained integer optimization problem:

λ21 = min
y∈L(B)\{0}

|y|2 = min
x∈Zn\{0}

n∑
i=1

xiGii + 2
∑

1≤i<j≤n
xixjGij . (1)

As a consequence of rank-nullity theorem, we have λ1 6= 0 as required. In order to convert (1) into
a binary optimization problem, we need bounds |xi| ≤ ai for all i = 1, ..., n. This has been the core
problem of all approaches to map the SVP into a Hamiltonian and we provide tighter and more general
bounds in Section 4.

We now define new binary variables {x̃ij}0≤j≤blog 2ac using the initial integer variables xi and the
bound ai

|xi| ≤ a =⇒ xi = −a+

blog 2ac−1∑
j=0

2j x̃ij + (2a+ 1− 2blog 2ac)x̃i,blog 2ac (2)

where the last term ensures we do not enlarge the search space. By substituting into (1) and ignoring
the x 6= 0 constraint, the resulting QUBO becomes (3) where c, cij and dij,kl are calculated constants

6 Indeed, the matrix of a q-ary lattice is

[
In−k X

0 qIk

]
, where X ∈ Z(n−k)×k

q has rank k, is already in HNF.
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resulting from the substitution.

min
x1,0,...,x1,blog 2a1c...
xn,0,...,xn,blog 2anc

c+
∑
x̃ij

cij x̃ij +
∑
x̃ij ,x̃kl

dij,klx̃ij x̃kl (3)

3.2 Encoding the x 6= 0 constraint

In deriving Equation 3 we ignored the x 6= 0 condition in the definition of SVP. The true minimum
is zero and is obtained by setting all the integer variables x1,...,xn to zero. Instead we want to obtain
the second smallest value. In other words, we are seeking the first excited state of the corresponding
Hamiltonian, with the extra information that the “true” ground state (zero vector) is known. There are
three ways to address this. First is to ignore the constraint, run the optimization to find the ansatz
state with greatest overlap with the zero vector, and hope that it has an (ideally large) overlap with the
first excited state [JGLM20]. Even if this approach succeeds in finding SVP for small dimensions it is
unlikely to work well at large scales. The second solution is to exclude the zero vector by imposing it in
a form of a constraint that “penalizes” the zero vector. To map the problem back to a QUBO, however,
requires introducing extra variables (n− 2 in our case), making this approach less practical. Since this
approach can work both for QAOA and quantum annealing where the last and more practical approach
does not work, we give the details of this mapping in Appendix A.

The third approach, that we will analyse here and used in our numerical experiments, can be used
in VQE. One directly targets the first excited state by modifying the classical loop of the VQE i.e.
modifying the way that the cost is evaluated. In the general form, assuming that |ψ0〉 is the ground state,
instead of using the expression C(ψ) = 〈ψ|H|ψ〉 for the cost, we use C(ψ) = 〈ψ|H|ψ〉 1

1−|〈ψ|ψ0〉|2 , where

the multiplicative factor is the inverse of the probability of not being in the ground state. This gives
infinite cost to the ground state, and in general penalizes states with greater overlap with the ground
state. It is easy to see that this cost is minimized at the first excited state of the original Hamiltonian.
Note that other approaches to find the first excited state exist (see for example [HWB19]).

In our case the ground state is the zero vector. Let Ñ be the cardinality of mi’s (measured bit-strings)
that are non-zero. Then N

Ñ
is the numerical estimate of the inverse of the probability not being the zero

vector. Therefore we will be using the modified cost C ′(θ) =
(
N
Ñ

)
1
N

∑N
i=1mi. Equivalently, this means

that to compute the cost of a state, we disregard the zero-vector outcomes taking the average value over
all the other outcomes. In the measurements of the final ansatz state, at the end of the optimization, we
output the measurement sample with the lowest non-zero energy. The advantage of this approach is
that the quantum part (states and measurements) are identical to the unconstrained one, and the only
difference is in the way that the measurement outcomes are used to assign a cost to different states in
the classical optimization part of the VQE.

4 Bounds on lattice enumeration and application to variational quantum
algorithms for solving SVP

In the previous section we gave a map of SVP to a QUBO formulation that is suitable for VQE. This
map, however, relies on bounds on each |xi|. In this section, we obtain worst case bounds on the |xi|
based on the orthogonality defect of the dual basis. We then give two applications of this result. First,
we show how to obtain a recursive algorithm to compute a HKZ reduced basis and thus solving the SVP
in passing. This method gives us the best asymptotical bound on the number of qubits required. Second,
we estimate the number of qubits required to directly solve the SVP by reducing the dual basis with
recursive or classical preprocessing and then applying the NISQ enumeration.

4.1 General bounds on lattice enumeration

As we have seen in Section 3.1, we need to choose a bound on each of the |xi| to obtain a finite
optimisation problem. This bound will then determine the number of qubits required. In order to be
sure to find a solution, we first derive a general bound on all the xi that correspond to lattice points in
a ball of radius A. We then use the Gaussian heuristic to choose the radius A so as to ensure that this
ball contains at least one nonzero vector for most lattices and therefore a shortest vector.
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Lemma 1. Let x1, . . . , xn be such that ‖x1 · b1 + · · ·+ xn · bn‖ 6 A, then for all i = 1, . . . , n we have
|xi| 6 A‖b̂i‖ where b̂1, . . . , b̂n are the rows of B̂ and B is the matrix whose rows are b1, . . . , bn.

Proof. Let δi,j denote the Kronecker delta. Observe that
〈
bj , b̂i

〉
= δi,j for all i, j. Indeed,

〈
bj , b̂i

〉
=

(B · B̂
T

)i,j = (In)i,j = δi,j . Now let v = x1 · b1 + · · · + xn · bn for some x1, . . . , xn ∈ Z be such that

‖v‖ 6 A. Then for any i, we have that
∣∣∣〈v, b̂i〉∣∣∣ = |xi|. But on ther other hand,

∣∣∣〈v, b̂i〉∣∣∣ 6 ‖v‖ · ‖b̂i‖
which proves the result. ut

If we now make use of the Gaussian heuristic to choose the radius A and take A := gh(L) =√
n/2πe · vol(L)1/n. The total number of qubits that we need will be

N =
n∑
i=1

(blog2(2mi)c+ 1) 6 2n+ log2

n∏
i=1

mi (4)

where mi is the bound on the |xi|. Using the bound of Lemma 1 we obtain

n∏
i=1

mi 6

(√
n

2πe

)n
· vol(L) ·

n∏
i=1

∥∥∥b̂i∥∥∥ =

(√
n

2πe

)n
·

∏n
i=1

∥∥∥b̂i∥∥∥
vol(L∗)

=

(√
n

2πe

)n
δ(L∗)

where L∗ is the dual of L = L(b1, . . . , bn) and δ(·) denotes the orthogonality defect. This suggest that
the critical factor for the enumeration is the reduction of the dual of the lattice and not the lattice itself.

Corollary 1. The number of qubits required for the enumeration on the basis B, assuming the Gaussian

heuristic is bounded by 2n+ log2

((
C2n
2πe

)n/2
δ(B̂)

)
where δ(·) denotes the orthogonality defect and C

the multiplicative factor used with the Gaussian heuristic7.

4.2 Bound on the number of qubits for producing a HKZ basis

In this section, we show that our NISQ enumeration procedure can be used to HKZ reduce a basis in a
recursive way using only 3

2n log2(n) +O(n) qubits, thus solving SVP in passing. This is asymptotically
the same as the algorithm in [JCLM21]. However, our algorithm works for any lattice, whereas the
algorithm in [JCLM21] only works for lattices that have what they called “an optimal Hermite Normal
Form”. See Section 2.1 for more details.

Our algorithm is a variant of the classical algorithm for producing a HKZ reduced basis from
Kannan [Kan83]. The main difference is that Kannan’s algorithm exclusively works on the (primal) basis
whereas our algorithm has to reduce both the primal and the dual basis to control the number of qubits
required in the enumeration steps. This difference requires us to work slightly differently. In particular,
Kannan’s algorithm works by recursively producing a “quasi-HKZ” reduced basis, and then applying
enumeration on this basis to obtain a full HKZ basis. A quasi-HKZ reduced basis is essentially a LLL
basis on which one applies an HKZ reduction to the projection of the last n− 1 vectors (orthogonally to
the first). In contrast, our algorithm first produces what we call a “pseudo-HKZ” basis and then runs
the enumeration on its dual. This pseudo-HKZ basis is an LLL basis on which one applies an HKZ
reduction to the first n− 1 vectors. Although the two notions are close, they are not exactly the same.

We will require the following well-known result about HKZ basis.

Proposition 1 ([WC19]). The orthogonality defect of a HKZ basis is bounded by γ
n/2
n ·

∏n
i=1 ·

√
i+3
2

where γn is Hermites constant in dimension n, and γn <
1
8n+ 6

5 .

Corollary 2. The orthogonality defect of a HKZ basis is 6 2
n log2 n−

(
5
2+

1
2 log2 e

)
n+O(logn)

.

Proof. See Appendix D.

7 The enumeration is done with a radius of C · gh(L).
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input :A basis (b1, . . . , bn)
output :An HKZ basis of the same lattice

1 L := L(b1, . . . , bn)
2 (d1, . . . ,dn) := dual basis of (b1, . . . , bn)
3 (d1, . . . ,dn) := LLL-reduce (d1, . . . ,dn)
4 (d1, . . . ,dn−1) := HKZ-reduce (d1, . . . ,dn−1) /* the basis is (n− 1)-dimensional */

5 (b1, . . . , bn) := dual basis of (d1, . . . ,dn)
6 Call the NISQ enumeration procedure proposed in Section 3 on (b1, . . . , bn) using the bounds established in

Lemma 1 and keep a shortest vector v
7 (b1, . . . , bn) := LLL-reduce (v, b1, . . . , bn) /* extract a basis from n+ 1 vectors */

8 Compute the orthogonal projections (b′2, . . . , b
′
n) of (b2, . . . , bn) on b⊥1

9 (b′2, . . . , b
′
n) := HKZ-reduce (b′2, . . . , b

′
n) /* the basis is (n− 1)-dimensional */

10 For each i, set bi := b′i + αib1 where αi ∈
(
− 1

2
, 1
2

]
is such that bi belongs to L

11 return (b1, b2, . . . , bn)

Algorithm 1: HKZ-reduction algorithm using quantum enumeration

Theorem 1. Assuming the Gaussian heuristic, Algorithm 1 produces an HKZ basis with 3
2n log2(n)−

2.26n+O(log n) qubits.

Proof. We first show that the algorithm is correct by induction on n. Let L = L(b1, . . . , bn) at the
beginning of the algorithm. First note that at the beginning of line 6, the basis (b1, . . . , bn) is still a
basis of the original lattice L since all the previous operations preserve that property. Assuming the
Gaussian heuristic is true (or true with a multiplicative factor C), the enumeration algorithm will indeed
find a shortest nonzero vector v at line 6. The reduction at line 7 will allow to extract a basis of L
among the n+ 1 vectors v, b1, . . . , bn. Since v is a shortest vector, the LLL reduction will ensure that
b1 is a shortest vector of L at the beginning of line 8. Let L′ = L(b′2, . . . , b

′
n) be the projected lattice

obtained after line 8. The reduction at line 9 does not change the lattice spanned by the b′i which is now
a HKZ basis. The lifting operation at line 10 ensures that (b1, . . . , bn) is a basis of L at the end of the
algorithm. Since b1 is a shortest vector of L and (b′2, . . . , b

′
n) is HKZ and a basis of the projected lattice,

it follows that the returned basis is HKZ.
We now analyze the qubits requirement of the algorithm. Let (d̄1, . . . , d̄n) be the basis obtained after

line 3 and (d̄
∗
1, . . . , d̄

∗
n) be its Gram-Schmidt orthogonalization. By the properties of the LLL-reduction,

we have
∥∥d̄n∥∥2 6 2n−1 ·

∥∥d̄∗n∥∥2. Let (d1, . . . ,dn) be the basis obtained after line 4 and (d∗1, . . . ,d
∗
n) be

its Gram-Schmidt orthogonalization. Clearly dn = d̄n since this vector was not touched by the HKZ
reduction. It follows that d∗n = d̄

∗
n because d∗n (resp. d̄

∗
n) is the projection of dn = d̄n on the orthogonal

of span(d1, . . . ,dn) = span(d̄1, . . . , d̄n) which are equal because the HKZ reduction does not change the
span. As a result, we have ‖dn‖2 6 2n−1 · ‖d∗n‖

2 after line 4 and therefore

δ(d1, . . . ,dn) = δ(d1, . . . ,dn−1) ·
‖dn‖
‖d∗n‖

= 2
n log2 n−

(
2+

1
2 log2 e

)
n+O(logn)

by Corollary 2. Taking the dual of this basis at line 5 means at line 6, we are in a position to run the
enumeration algorithm on a basis (b1, . . . , bn) whose dual (d1, . . . ,dn) has a small orthogonality defect.
By Corollary 1, the number of qubits required for this enumeration step is bounded by

2n+ log2

[(
C2n

2πe

)n/2
δ(d1, . . . ,dn)

]
6 3

2n log2 n−
(
1
2 log2 π + log2 e− log2C

)
n+O(log n)

Denote by Q(n) the number of qubits necessary to run the algorithm in dimension n. Since we
run the enumerations sequentially, Q(n) = max(Q(n − 1), n log2(n) + O(n)) and therefore Q(n) =
3
2n log2(n)− 2.26n+O(log n) for C = 1. ut

4.3 Solving the SVP directly in the NISQ era

As we have seen in the previous sections, the bound on the xi and thus the running time of the
enumeration fundamentally depend on the quality of the dual basis. The algorithm of the previous
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section takes advantage of this fact by recursively reducing the primal and dual basis and always running
the enumeration on a dual quasi-HKZ reduced basis, one of the strongest notion of basis reduction.
Unfortunately, the bound on the number of qubits that we obtained relies on worst case bounds on the
orthogonality defect of such basis. In particular, the linear term in the bound of Theorem 1 is quite
pessimistic for most bases.

In this section, we perform numerical experiments to understand the number of qubits necessary to
run the quantum enumeration depending on the quality of the dual basis. In cryptography, it is common
to use LLL or BKZ reduced basis. Using Corollary 1, we draw Figure 1a which shows the number of
qubits needed when the dual basis is LLL reduced or BKZ-β reduced with different β. We choose the
maximum value of β = 70, since the running time becomes prohibitively long for larger β. We also
performed experiments with dual pseudo-HKZ reduced basis to understand the practical behavior of the
algorithm in the previous section89. The graph was obtained by generating random q-ary lattices (for
q = 65537 and k = n/2), reducing them and then computing N as in (4) using the bounds in Lemma 1.
Each experiment was repeated 5 times10 and the average was taken. We also performed regression using
quadratic polynomials for LLL and BKZ reduced basis. This type of regression is expected to fit well
since the number of qubits can be shown to be quadratic. On the other hand, as shown in Theorem 1,
for pseudo-HKZ reduced dual basis, the number of qubits should grow as Θ(n log2(n)) asymptotically.
Hence, we fitted with a curve of form 3

2n log2(n) + an+ b.

In order to solve the current lattice approximate SVP record (dimension 180), we need approximatively
1157 qubits when the dual is sufficiently reduced (β = 70 for example). This is considered to be achievable
in the not so far future.

Fig. 1: Experimental results
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5 Experimental results

We run quantum emulation of the VQE algorithm on a classical computer to assess the performance
of our SVP solver. Due to the limited number of emulable qubits we considered lattices with rank up

8 Given the high cost of computing HKZ reduced basis, our experiments are limited to dimension 80.
9 See Section 4.2 for the definition, a pseudo-HKZ reduced basis is slightly weaker than an HKZ basis.

10 The q-ary lattices that we generate have fixed determinant, hence the number of qubits only depends on the orthogonality
defect. We observed that the orthogonality defect of LLL and BKZ reduced basis varies little between runs, hence the
small number of runs.
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x     y       y-      y+  repeat_nr
20 41.000000 1.000000 2.000000 5
30 89.600000 1.600000 0.400000 5
40 124.800000 2.800000 2.200000 5
50 199.600000 0.600000 0.400000 5
60 241.400000 1.400000 1.600000 5
70 345.600000 7.600000 3.400000 5
80 400.400000 0.400000 1.600000 5
90 494.600000 35.600000 28.400000 5
100 599.200000 1.200000 0.800000 5
110 670.400000 10.400000 20.600000 5
120 807.400000 27.400000 25.600000 5
130 910.000000 1.000000 1.000000 5
140 1009.600000 29.600000 57.400000 5
150 1192.000000 8.000000 7.000000 5
160 1280.000000 0.000000 0.000000 5
170 1416.400000 52.400000 57.600000 5
180 1615.800000 13.800000 4.200000 5



x     y       y-      y+  repeat_nr
20 40.000000 0.000000 0.000000 5
30 89.800000 0.800000 0.200000 5
40 120.200000 0.200000 0.800000 5
50 186.200000 5.200000 4.800000 5
60 240.000000 0.000000 0.000000 5
70 280.400000 0.400000 0.600000 5
80 377.400000 7.400000 5.600000 5
90 449.800000 0.800000 0.200000 5
100 500.000000 0.000000 0.000000 5
110 579.400000 16.400000 11.600000 5
120 714.000000 4.000000 3.000000 5
130 780.000000 0.000000 0.000000 5
140 841.400000 1.400000 1.600000 5
150 996.600000 9.600000 22.400000 5
160 1118.600000 2.600000 1.400000 5
170 1190.000000 0.000000 0.000000 5
180 1264.000000 3.000000 4.000000 5



x     y       y-      y+  repeat_nr
20 41.400000 1.400000 1.600000 5
30 90.000000 0.000000 0.000000 5
40 120.000000 0.000000 0.000000 5
50 181.400000 8.400000 5.600000 5
60 238.200000 1.200000 1.800000 5
70 280.000000 0.000000 0.000000 5
80 339.600000 3.600000 4.400000 5
90 432.800000 2.800000 3.200000 5
100 499.200000 0.200000 0.800000 5
110 550.000000 0.000000 0.000000 5
120 625.600000 9.600000 5.400000 5
130 757.000000 2.000000 3.000000 5
140 835.200000 1.200000 0.800000 5
150 900.000000 0.000000 0.000000 5
160 968.000000 4.000000 4.000000 5
170 1132.600000 9.600000 5.400000 5
180 1248.800000 2.800000 5.200000 5



x     y       y-      y+  repeat_nr
20 43.200000 1.200000 1.800000 5
30 86.000000 3.000000 2.000000 5
40 123.400000 3.400000 2.600000 5
50 177.600000 2.600000 2.400000 5
60 237.400000 1.400000 1.600000 5
70 280.400000 0.400000 0.600000 5
80 331.200000 4.200000 2.800000 5
90 413.200000 3.200000 4.800000 5
100 495.600000 3.600000 3.400000 5
110 550.200000 0.200000 0.800000 5
120 605.800000 3.800000 4.200000 5
130 698.400000 4.400000 7.600000 5
140 818.400000 4.400000 5.600000 5
150 898.000000 1.000000 2.000000 5
160 960.000000 0.000000 0.000000 5
170 1028.800000 2.800000 1.200000 5
180 1157.800000 4.800000 4.200000 5



x     y       y-      y+  repeat_nr
20 63.200000 3.200000 2.800000 5
30 97.400000 1.400000 1.600000 5
40 139.800000 3.800000 3.200000 5
50 196.400000 2.400000 1.600000 5
60 245.800000 0.800000 0.200000 5
70 288.800000 1.800000 2.200000 5
80 348.200000 2.200000 1.800000 5
90 431.800000 5.800000 3.200000 5




to 28, much smaller than the cryptographically relevant ranks but much bigger than prior quantum
attempts. While we estimated the space-complexity required to solve large dimensions, we cannot reliably
extrapolate the performance (accuracy/time) due to the heuristic nature of VQE. The effects of noise
and error-mitigation are beyond the scope of this work and are left for future explorations.

5.1 Experimental framework

For our experiments we first sample A = [[Id−k, Ã]; [0, q · Ik]] ∈ Zd×d where Ã←$Z(d−k)×k
q and

Ix ∈ Zx×x is the identity. We then consider the lattice L(A) spanned by the rows of this matrix. In
particular, we first LLL reduce the entire lattice basis and then consider the sublattice of rank n spanned
by the first rows of the reduced basis. Our choice of q-ary lattices L(A) is partly motivated by their
ubiquity in cryptography and by their connection to worst-case lattice problems. For example, finding
short vectors in the dual of a random q-ary lattice is as hard as finding short vectors in any lattice [Ajt96].
We preprocess these lattices using the polynomial-time LLL algorithm for numerical stability reasons.
We extract a n-rank sublattice in dimension d rather than considering full-rank lattices with n = d since
LLL will succeed in solving SVP for such small dimensions directly. The VQE receives a n× d matrix
as input and this “leaves some work” for the quantum algorithm to do. Note that even though many
instances of these sub-lattices were “almost” solved by the described procedure, it is little advantage for
the VQE as the size of the search space was not reduced. Therefore, by using a random guess for initial
optimization parameters of an ansatz circuit, our experiments represent scaled-down real instances.
Consequently, the hardness of SVP for VQE is in our experiments not even lowered if the shortest
vector is already present in the given basis. The search space is defined by bounds on the coefficient
vector as discussed in Section 4.1. However, the bounds there are worst-case and asymptotic. In contrast,
lattice algorithms tend to perform much better on average than in the worst case, especially in small
dimensions. Indeed, Figure 1a illustrates the same phenomenon here. We hence present a different qubit
mapping strategy for which we compute probabilities of the shortest lattice vector lying within these
bounds and in our quantum experiments we evaluate the probability of finding the ground state of
problem Hamiltonian. The advantage is that the two problems: choosing an appropriate qubit mapping
and finding the ground state of the problem Hamiltonian, can be tackled separately. The overall success
probability of the variational SVP solver is then a product of the probability of encoding the shortest
non-zero lattice vector in the search space and the probability of finding the Hamiltonian’s ground state.

Naive qubit mapping approach. Given an n-rank sublattice we assign one qubit per coefficient of the
coefficient vector, i.e. |xi| ≤ 1 for 1 ≤ i ≤ n. Using this approach we found that the shortest non-zero
lattice vector was included in the search space with the following probabilities: rank 15 : 80%, rank 16 :
75%, rank 17 : 75%, rank 18 : 74%, rank 19 : 71%, rank 20 : 70%, rank 21 : 64%, rank 22 : 62%, rank 23 :
57%, rank 24 : 55%, rank 25 : 50%. See Appendix B for analysis of naive qubit mappings with ranks up
to 50 that also considers different naive mapping strategies. The results presented in the appendix can
be of an interest for all experimental approaches to the SV P that use a Hamiltonian formulation.

Quantum emulation setup. We developed distributed variational quantum algorithms emulation
software framework11 by modification of parts of Xacc [MLD+20] library to utilize implementations
of variational quantum algorithms and useful classical optimizers and we use QuEST [JBBB19] for
the underlying quantum emulation. The experiments have been run on Ngio 5, a distributed computer
provided by Edinburgh Parallel Computing Centre featuring 2x Xeon Platinum 8260 24C 2.4GHz with
12x 16GB DRAM modules. The emulations use state-vector representation of intermediate quantum
states and do not consider any effects of noise. Noise would affect the probability of finding the ground
state (uncertainty of cost makes the classical optimization harder) (Figure 1b Top), but it would
not affect the time requirements (Figure 1b Bottom), neither the number of qubits. As it has been
noted, extrapolating our results to lattice dimensions of cryptographic interest is infeasible from our
experiments, because the way the probability of success decays cannot be extrapolated (among other
reasons because we cannot anticipate the effects that barren plateaus would have). This is why for our
current contribution adding noise would not add much in our analysis, beyond perhaps, bringing lower
the probabilities of solving the problem in the very low qubit experiments that are possible to emulate.

11 https://github.com/Milos9304/FastVQA, https://github.com/Milos9304/LattiQ
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5.2 Experimental results

To improve the performance in our experiments we used CV aRα cost for VQE. We chose α = 0.175
since this gave better results (see also Appendix C). We were able to solve the SVP with our emulator
for lattices with rank up to 28. Our experiments with 128 instances suggest that the success probability
of finding the shortest non-zero lattice vector remains roughly constant for lattice instances with ranks
not much larger than 28. Figure 1b (top) depicts the averaged overlap of the final ansatz state with the
ground state corresponding to the shortest non-zero lattice vector found by a classical enumeration. The
overlap represents the probability of sampling the shortest lattice vector with a single measurement
of the final ansatz state. From the figure we see that we need ≈ 25 samples to obtain the solution.
Moreover, we observed linear time scaling (see Figure 1b bottom). We note, however, that the ranks of
cryptographically relevant lattices are larger (≈ 400) and we cannot extrapolate our observations with
confidence.
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CL21. André Chailloux and Johanna Loyer. Lattice sieving via quantum random walks. Cryptology ePrint Archive,
Report 2021/570, 2021. https://eprint.iacr.org/2021/570.

CLKAG21. Alba Cervera-Lierta, Jakob S. Kottmann, and Alán Aspuru-Guzik. Meta-variational quantum eigensolver:
Learning energy profiles of parameterized hamiltonians for quantum simulation. PRX Quantum, 2:020329,
May 2021.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, November 1976.
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A Techniques to optimize towards first excited state of problem Hamiltonian

Section 3.1 shows that an Ising spin Hamiltonian whose eigenstates correspond to lattice vectors in a
certain region can be constructed in a straightforward manner. However this implicitly encodes the
zero vector as the ground state of the Hamiltonian. Since the output of the SVP problem is expected
to be non-zero, a technique to essentially find the Hamiltonian’s first excited state must be utilized.
Note that this is equivalent with finding a new Hamiltonian that has as ground state the first excited
state of our initial Hamiltonian. In the case of VQE there exists a natural solution to the problem that
can be accommodated fully at the classical loop (classical post-processing) of the optimization. This
happens by defining a cost function that excludes the contribution of the zero vector eigenstate and
consequently guides the optimizer towards the first excited state. However, such modification cannot be
done to QAOA nor can be executed on a quantum annealer as the cost function is strictly defined by
the optimization strategy itself.

The first approach one might consider is ignoring the x 6= 0n and proceed with trying to optimize
for the ground state. There is a chance that the overlap of the first excited state with final ansatz state
(aimed to match closely the ground state/zero-vector) is non-zero and that it gets sampled during the
final ansatz measurements. This approach does not increase any requirements on quantum resources,
however, especially as the number of qubits increases, it is not expected to yield satisfiable results.
The difference in cost between the zero vector and the first excited state (the SVP) increases and
the probability of obtaining the first excited state while targeting the ground state decays possibly
exponentially fast.

Instead, a more accurate and in the long term, viable solution is to modify the Hamiltonian and
impose a penalty for reaching the zero vector (ground state of the “naive” Hamiltonian). Introducing
the extra constraint, and ensuring that the new Hamiltonian is still QUBO (so that we can run QAOA
or quantum annealing) requires to introduce auxiliary variables and thus requires more qubits. In our
case, we succeed to obtain a theoretical guarantee that the optimization result converges to the shortest
lattice vector in the limit of optimization parameters for the cost of introducing extra n− 2 qubits for a
lattice with rank n. Such approach hence roughly reduces the abilities of QAOA algorithm or quantum
annealer device by a half compared to the VQE algorithm but allows us to benefit from a wider range
of quantum variational approaches and hence we include it here for the reference. A trivial solution
would be to penalize certain assignment of QUBO binary variables that makes the QUBO formulation
zero. As we will argue below, given m QUBO binary variables, the approach would require to introduce
m− 2 new binary variables. Note that m ≥ n is the number of binary variables in QUBO. If we let n
be rank of a lattice we can see that m ≥ n as shown in Section 3.1 where m ≈ n log(2a) if each xi has
the same variable range 2a assigned. Suppose that instead of the mapping presented in Equation 2 we
instead map each integer variable as

|xi| ≤ a =⇒ xi = −a+ ζia+ ωi(a+ 1) +

blog(a−1)c−1∑
j=0

2j x̃ij + (a− 2blog(a−1)c)x̃i,blog(a−1)c (5)
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by introducing new binary variables ζi, ωi and {x̃ij}0≤j≤blog ac for eachi xi.The encoding (5) allows us
to encode penalization of zero state with much less qubits. It is easy to observe that for the last two
terms of (5) it holds that

0 ≤
blog(a−1)c−1∑

j=0

2j x̃ij + (a− 2blog(a−1)c)x̃i,blog(a−1)c ≤ a− 1

and consequently
xi = 0 =⇒ ζi = 1

Hence the penalization of the case where all integer variables are penalized for being zero ∀xi = 0 is
equivalent to penalization of the case where the same number of binary variables are one ∀ζi = 1. The
penalization term then becomes (6)

L
∏

ζi (6)

where L is the penalty value. The term (6) can be encoded as (7) where {zi}1≤i≤n are extra auxiliary
binary variables with bijective correspondence to {ζi}0≤i≤n.

L(1 +

n∑
i=1

zi(−(1− ζi) +

n∑
k=i+1

(1− ζk))) (7)

Proof ((7) encodes constraint (6)). Let xi = 1− ζi, τi = −xi +
∑

k=i+1 xk and let zi = 1 ⇐⇒ τi < 0.
Then it is easy to see that values of z1, ..., zn minimize (7). If ∀xi = 0, the whole expression is equal
to L as required. Otherwise, let j1, ..., jm be positions of m ≤ n binary ones in the bitstring x1x2...xn
sorted in the increasing order. Then τjm = −1 and τjl ≥ 0 for 1 ≤ l < m. Hence ∀i 6=jmzi = 0, zjm = 1
and the whole expression is 0, hence no penalty is imposed.

Observe that setting zn = 1 and zn−1 = ζn does not change the global minimum of (7). Hence n− 2
additional binary variables {zi}1≤i≤n−2 are needed to encode the penalization term for an n-rank lattice.
The quadratic unconstrained binary optimization problem formulation that can be trivially mapped to
Ising spin Hamiltonian hence becomes

min x1,...,xn
z1,...,zn−2

n∑
i=1

xiGii + 2
∑

1≤i<j≤n
xixjGij + L(1 +

n∑
i=1

zi(−(1− ζi) +

n∑
k=i+1

(1− ζk))) (8)

where xi is encoded as in (5). Number of binary variables needed to represent xi bounded by ai is
blog aic+ 3. Hence the total number of binary variables in (8) is

nbin vars constrained =

n∑
i=1

(blog aic+ 3) + (n− 2) = 4n− 2 +

n∑
i=1

blog aic

B Probability of including the shortest lattice vector in the search space using
naive qubit mapping strategies

As discussed in Section 4 and 5.1, the bounds determined in Section 4.1 are not the best choice for small
lattice instances. Given n dimensional lattice L and m available qubits, choosing a uniform distribution
of qubits over elements of the coefficient vector x turns out to achieve a high probability of encoding the
shortest non-zero lattice vector as the ground state of a problem Hamiltonian when m is sufficiently large.
Figure 2 depicts the probabilities of encoding the shortest non-zero lattice vector as a Hamiltonian’s
ground state given the number of available qubits and the lattice rank. The results were averaged
over 1024 instances prepared using the same methodology as for the quantum emulation experiments
described in Section 5.1. Three approaches have been compared: 1. distributing

⌊
m
n

⌋
qubits to each of the

coefficient of x (blue) 2. randomly distributing
⌊
m
n

⌋
qubits to n×

⌊
m
n

⌋
coefficients of x and distributing⌊

m
n

⌋
+ 1 to the remaining coefficients of x (red) 3. Using Lemma 1 with A = gaussian heuristics(L) to
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obtain a discrete distribution of the bounds over coefficients of x. The distribution is then scaled such
that at most m qubits were distributed (green).
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Fig. 2: Probability of encoding the shortest lattice vector as an eigenvector of problem Hamiltonian
using blue: uniform distribution of qubits, red: uniform distribution of qubits and random distribution
of the remaining qubits, green: scaled distribution of qubits according to Lemma 1 with A being a
gaussian heuristics corresponding to the lattice instance

C Conditional value at risk experiment data

We chose the value of α = 0.175 to use in the CV aRα VQE algorithm in our quantum emulation
experiments in Section 5. Based on an experiment involving 1024 instances of rank 16 lattices prepared
as in Section 5.1 this value gave the best results. The value of α was varied incrementally in small
steps. Figures 3a and 3b depict the mean and the median overlaps of the final ansatz state with
Hamiltonian’s ground state respectively. We can observe that despite positive linear correlation between
the mean overlap and parameter α, the median overlap peaks sharply at α ≈ 0.175, an indication of a
rightly-skewed distribution. In other words, we have seen significantly less instances with high overlap as
α >≈ 0.4 tends towards one, although when such overlaps happen, they are high enough so that their
mean increases with α. The inverse of the overlap is the expected number of measurement samples of
the final ansatz state to obtain the ground state. Hence a compromise must have been made to achieve
as many as possible overlaps which were sufficiently high in the sense that the ground state could be
obtained from them by a reasonable number of measurements. In order to make a fair comparison,
we considered the probabilities of sampling the ground state if 5000 measurements of the final ansatz
were to be performed as depicted in Figure 3c. We chose the value α = 0.175 as it achieved around
78% probability of finding the Hamiltonian’s ground state and at the same time it achieves the highest
median of overlaps (around 0.006). Note that the non-CV aRα VQE version, i.e. when α = 1 resulted in
only 21% probability of finding the Hamiltonian’s ground state.

A final thing to note is that when one uses CVaR, the optimizer has incentive to find a quantum
state that has α overlap with the true ground state, but no incentive to increase the overlap to higher
values than α, since anything above the α-tail is irrelevant for computing the cost. Therefore, while it
has been demonstrated that small values of α may increase the chances of finding the solution after a
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fixed number of shots/measurements of the final state is carried out, the actual (mean) overlap does not
necessarily increase (at least not to values above α). This was one of the motivation to look modify
CVaR and define an Ascending-CVaR [KW21].

Fig. 3: Experimental determination of CVaR’s parameter α
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(a) Averaged overlap with the shortest lattice vector as a
function of parameter α with standard deviations.
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(b) Median overlap with the shortest lattice vector as a func-
tion of parameter α.
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(c) Probability of sampling the ground state in 5000 samples using CVaR version of VQE as a function of parameter α.
Note that α = 1 corresponds to the standard non-CVaR version of VQE.

D Proof of Corollary 2

Let δ be the orthogonality defect. Then

log2 δ 6
n
2 log2 γn + 1

2 log2
(n+3)!

3! − n
6 n

2 log2(
1
8n+ 6

5)− n+ 1
2 log2(n+ 3)! +O(1)

= n
2 log2(n)− 5

2n+ 1
2 log2(n+ 3)! +O(1)

= n
2 log2(n)− 5

2n+ 1
2 log2 n! +O(log n)

6 n
2 log2(n)− 5

2n+ 1
2 log2

(√
2πn

(
n
e

)n
e

1
12n

)
+O(log n) by standard bounds

= n
2 log2(n)− 5

2n+ n
2 log2 n− n

2 log2 e+O(log n).
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