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Abstract
Fully homomorphic encryption (FHE) provides a natural so-
lution for privacy-preserving outsourced computation, but a
straightforward FHE-based protocol may suffer from high
computational overhead and large ciphertext expansion rate,
especially for computation-intensive tasks over large data,
which are the main obstacles towards practical outsourced
computation. In this paper, we present HEAD, a generic out-
sourced computation protocol that can be based on most main-
stream (typically a BGV or GSW style scheme) FHE schemes
with more compact storage and less computational costs than
the straightforward FHE-based counterpart. In particular, our
protocol enjoys a ciphertext/plaintext expansion rate of 1 (i.e.,
no expansion) at the server side. This is achieved by means
of “pseudorandomly masked” ciphertexts, and the efficient
transformations of them into FHE ciphertexts to facilitate
privacy-preserving computation. Depending on the underly-
ing FHE in use, our HEAD protocol can be instantiated with
the three masking techniques, namely modulo-subtraction-
masking, modulo-division-masking, and XOR-masking, to
support the decimal integer, real, or binary messages. Thanks
to these masking techniques, various homomorphic computa-
tion tasks are made more efficient and less noise accumulative.
We evaluate the performance of our protocol on BFV, BGV,
CKKS, and FHEW schemes based on the PALISADE and
SEAL libraries, which confirms the theoretical analysis of
the reduction computation costs and noise. For example, the
computation time in our BFV tests in an x86 server for the
sum or product of eight ciphertexts is reduced from 336.3 ms
to 6.3 ms, or from 1219.4 ms to 9.5 ms, respectively. Further-
more, our multi-input masking and unmasking operations are
more flexible than the FHE SIMD-batching, by supporting
an on-demand configuration of FHE during each outsourced
computation request.

1 Introduction

As an advanced form of encryption, homomorphic encryption
(HE) allows anyone not in possession of the decryption key

to perform certain computations (typically by evaluating a
Boolean/arithmetic circuit) on ciphertexts, and produces the
desired computation result in an encrypted form. It finds many
useful privacy-preserving applications in the big data era. For
example, a thin client can outsource his encrypted data and the
following computation based on the data, to a more powerful
cloud server, without revealing any substantial information.

An HE is called additively (resp., multiplicatively or fully)
homomorphic if addition (resp., multiplication or both) is
supported over ciphertexts. For instance, Paillier [39] is an
additive HE that supports only homomorphic additions and
scalar multiplications (but not multiplications between cipher-
texts). A leveled HE is a slightly weaker form of FHE that
supports arbitrary computations up to a certain depth that must
be specified in advance so as to the parameter configuration.

In a leveled HE scheme, a ciphertext would accumulate
some noise during homomorphic computations, and may not
be correctly decrypted when the computations are beyond the
preset level, since the introduced noise is too large and con-
ceals the plaintext. In order to avoid a decrypt-then-re-encrypt
naive noise reduction, a mechanism named bootstrapping
is proposed, which generally evaluates a decryption circuit
homomorphically [25, 27]. However, the bootstrapping over-
head is considerable. Currently, a learning-with-errors (LWE)
based leveled HE with a relatively efficient bootstrapping is
the mainstream to achieve FHE when the system parame-
ters are decoupled with the functions to be evaluated [34].
The rest of the paper would view a leveled HE scheme with
bootstrapping as an FHE scheme.

Except for the FHE schemes based on the approximate
greatest common division problem [15], the mainstream FHE
construction relies on the LWE-hard problem. The FHE stan-
dardization procedure [7] and outstanding open-source li-
braries [1–4, 18, 33, 40] mainly focus on the LWE path 1.
Various LWE-based FHE schemes would like to support
different types of input messages, rendering the BGV style
and the GSW style. A BGV-style scheme, e.g., BGV [11] or

1Microsoft leads the FHE standardization based on the LWE path, which
attracts a lot of attention from famous enterprises, institutes and universities.
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BFV [12, 23], aims to handle the integer inputs (word-wise).
CKKS [16] further extends an FHE to a real number input
message. The GSW style copes with bit-wise binary messages,
such as the GSW [31], FHEW [22], and TFHE [17] schemes.
The homomorphic computation results in these schemes (ex-
cept for CKKS) are precise, while CKKS may approximately
evaluate a computation at a preset precision.

Although these mainstream schemes [11,16,22,23] are im-
plemented in open-source libraries [3,18,40], an FHE scheme
is usually regarded as impractical in storage and computation.
The storage problem lies in the notable FHE ciphertext ex-
pansion. An LWE-based FHE ciphertext, corresponding to an
integer input, occupies several hundreds of kilobytes storage,
since a large enough lattice dimension is a precondition of
the security of the LWE-hard problem. Hence, the ciphertext
expansion rate, i.e., the ratio of the FHE ciphertext size to the
input message size, is quite large in an FHE scheme, which
vastly limits an FHE application no matter for transferring or
storing the ciphertext. Another focus for an FHE scheme is
the inefficient computation concern. For a software implemen-
tation, a ciphertext-wise multiplication is usually the slowest
operation in an integer FHE scheme, taking more than 100
ms. For a binary FHE scheme, the slowest computation unit
is a ciphertext-wise XOR/XNOR, taking more than 1 second.

1.1 Related Work

Recently, some researches aim to cope with the signifi-
cantly large ciphertext expansion rate and the low compu-
tation performance of an FHE scheme. These attempts, e.g.,
theoretically designing a compression algorithm or a soft-
ware/hardware implementation technique, try to pursue com-
pact storage and efficient computation for an FHE scheme.
Storage optimization. Packing [10] is a useful compression
technique for an FHE ciphertext. When the encryption pa-
rameters satisfy some conditions, a bunch of input messages
could be embedded to one ciphertext, rendering a relatively
small ciphertext expansion rate that is amortized. The state-of-
the-art packing works achieving a ciphertext expansion rate
of around 10× or 100× for a BGV-style or a GSW-style FHE
scheme [10, 37], respectively, which is not compact.

Gentry and Halevi [26] and Brakerski et al. [9] innovate
some mechanisms to compress many GSW-style ciphertexts
(occupying a large storage space) to a small-size ciphertext.
The resulting ciphertext expansion rate for a compressed ci-
phertext is almost 1, with a price of losing some homomorphic
functionalities in the compressed ciphertext.

The key-switching and modulus-switching are another two
techniques related to decreasing the ciphertext size [30]. Af-
ter multiplying two FHE ciphertexts, the dimension of the
resulting ciphertext is increased, which requires a relineariza-
tion operation, i.e., a key-switching operation [28], to re-
cover the ciphertext dimension. However, the size of a key-
switched ciphertext does not decrease compared with the

original size. Modulus-switching, proposed by Brakerski and
Vaikuntanathan [12], is a noise management technique inten-
tionally. Generally, when the noise of a ciphertext is reduced
via modulus-switching, the ciphertext size gets smaller. How-
ever, the switched ciphertext still keeps a large expansion rate
and the computation depth it could support is decreased.

Chen et al. [14] present a unidirectional transformation
from an LWE-based FHE ciphertext to a Ring LWE-based
one, which supports packing and has an amortized ciphertext
size. Still, the ciphertext expansion rate keeps large.

The SEAL library integrates the zlib or zstandard com-
pression libraries to further compress a serialized FHE compo-
nent. Note that these storage optimizations are not in theory.
Computation optimization. Based on packing, the work
from Smart and Vercauteren [44] enhances the evaluation
strength for one packed ciphertext, i.e., the SIMD (single
instruction, multiple data) batching. Besides storage optimiza-
tion, the evaluation on a batched FHE ciphertext is equally
acting on each element in that batch. A heavy computation
burden is amortized to each message, which is an accelera-
tion in some sense. A batched FHE scheme already offers
both the storage and computation optimization in a practical
application like a password leakage searching [38]. How-
ever, some FHE schemes, such as TFHE [17], only support
compress-used packing instead of SIMD-batching. Moreover,
the packing or SIMD-batching solution trades off the FHE
flexibility to amortized storage and computation optimization.

Aubry et al. [8] propose a circuit re-writer to highly de-
crease the depth of a Boolean/arithmetic circuit, which opti-
mizes the computation, since the computational overhead of
an FHE scheme highly relies on the circuit depth.

Another technical route about computation optimization of
an FHE scheme is based on a hardware accelerator. There are
a line of FPGA-based works [19–21, 43, 45] and some ASIC-
based works [35, 42]. Especially, the hardware accelerator
proposed by Feldmann et al. [24] outperforms state-of-the-art
software implementations by up to 17,000×.
HE transformation. Another way of FHE optimization is to
process an HE ciphertext transformed from another “cipher-
text”, e.g., of secret sharing [5,41] and AES [29,30], to avoid
heavy (fully) homomorphic ciphertext operations and obtain
some storage advantages.

Rane et al. [41] and Akavia et al. [5, 6] 2 optimize the HE
storage in a one-client-two-server outsourcing scenario using
additive secret sharing, under the assumption that these two
servers do not collude. In this case, a client first shares its
confidential data (a secret) between the two servers. When
the client makes a computation request, one server homomor-
phically encrypts its shares and sends the HE ciphertext to the
other server. Then, the other server recovers the ciphertext of
the secret to process the subsequent evaluation.

2We were not aware of the compact storage solution for FHE via secret
sharing until the event [6]. In some sense, our work could be seen as a variant
of [5] with only one single outsourced server.
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Table 1: HEAD contributions. (Ciphertext expansion rate abbreviated as CER)

HEAD protocols ModSub masking ModDiv masking XOR masking XOR masking
Input type Decimal integer Decimal integer Real Binary

Scheme BFV/BGV BFV/BGV CKKS FHEW

Storage optimization CER = 1 CER = 1 CER = 1 CER = 1

Computation Many Adds or ScalarMult Many Mults
N.A.

Many XORs/XNORs

optimization → one pt + ct → one ScalarMult → one NOT

Gentry et al. [29, 30] proposed a method to transform
an AES-128 ciphertext to a BGV FHE ciphertext, which
could be utilized in a one-client-one-server outsourcing
scenario. The AES ciphertext renders a compact storage,
i.e., a ciphertext expansion rate of almost 1 when the input
message size is a multiple of 128 bits. However, even
with hardware acceleration optimizations, transforming a
120-block AES-128 ciphertext costs more than four minutes.
In addition, the transformed FHE ciphertext corresponds to
the elements in GF(2d), and may not efficiently represent
many applications in practice.

Enlightened by the previous works [29, 30], we pur-
sue a different way to optimize FHE storage and computation,
without relying on non-colluding outsourced servers or
introducing high overheads of conversion. Moreover, the
transformation is more generic to support as many FHE
schemes and input data types as possible.

1.2 Our Contribution
We present HEAD 3, an FHE-based outsourced computation
protocol, which aims to address/mitigate the ciphertext expan-
sion and computational overheads (due to the use of FHE) at
the server side by paying reasonable costs in communication.
Compared with the previous transformative FHE optimiza-
tions [29, 30], our protocol is more generic and supports the
transformation from many typical mask-with-pseudorandom
encryptions to mainstream FHE (e.g., BGV-style or GSW-
style) ciphertexts with IND-CPA security (as expected from
FHEs). Concretely, we summarize the advantages as follows.

• Generic. The protocol can be instantiated with many
FHE schemes. We apply the corresponding suitable mask-
ing methods leading to the modulo-subtraction-masking
(ModSub), modulo-division-masking (ModDiv), and XOR-
masking protocols, supporting different data types (integer,
real or binary) of an underlying FHE.

• Compact. All FHE instantiations of the protocol achieve a
ciphertext expansion rate of 1 for a long-term outsourced
storage at the server side.

3The name is a portmanteau of HE and PAD.

• Efficient. Our protocol optimizes various outsourced com-
puting tasks (as summaried in Table 1). These optimiza-
tions reduce a large amount of time and/or noise. Reducing
noise for an FHE scheme eliminates the need for a heavy
bootstrapping, potentially reducing computation time.

– The ModSub protocol optimizes one/more ciphertext-
wise additions (Adds), or a scalar multiplication
(ScalarMult) to only a single plaintext-ciphertext ad-
dition, i.e., many Adds or ScalarMult→ one pt + ct.

– The ModDiv protocol optimizes one/more ciphertext-
wise multiplications (Mults) to only a single scalar
multiplication, i.e., many Mults→ one ScalarMult.

– The XOR-masking protocol optimizes one/more
ciphertext-wise XOR and XNOR operations
(XORs/XNORs) to a single plaintext-ciphertext XOR,
which is further optimized to a single ciphertext-wise
NOT, i.e., many XORs/XNORs→ one NOT.

• Flexible. Our flexibility lies in two aspects.

– It is flexible to configure the FHE encryption param-
eters of a transformed FHE ciphertext according to
(and just before) the computation. That is, the param-
eter choices do not need to be decided before the
masking operation, i.e., the storage phase.

– When a computation involves several stored masked
messages, the retrieval does not have a limitation, and
the selected masked messages can be transformed
into a single batched FHE ciphertext (if batching is
supported by the underlying FHE scheme) for subse-
quent evaluations.

Finally, we implement our protocols with the BFV, BGV,
CKKS, and FHEW FHE schemes in PALISAD and SEAL
libraries and compare them with a straightforward FHE-based
protocol (without our techniques) as a baseline. Our evalua-
tion shows that a masked ciphertext with the expansion rate of
1 occupies much less space compared with a straightforward
FHE ciphertext, and the computation optimizations are signif-
icant. For example, in a typical encryption parameter setting,
the expansion rate of a BFV ciphertext is around 200× or
20× when our protocol is not used in an unbatched or batched
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case, respectively. ModSub or ModDiv optimizes the sum or
product of eight BFV ciphertexts from 336.3 ms to 6.3 ms, or
from 1219.4 ms to 9.5 ms, respectively.
Paper organization. Section 2 introduces the notation, pseu-
dorandom function (PRF) and FHE definitions, and a straight-
forward FHE-based outsourced computation scenario. Sec-
tion 3 introduces the generic FHE-based outsourced computa-
tion protocol with compact storage and efficient computation,
and proves its security. Section 4 instantiates the generic
HEAD protocol by three different masking techniques, i.e.,
modulo-subtraction, modulo-division, and XOR. We show
that these instantiated protocols not only achieve a ciphertext
expansion rate of 1, but also optimize various computations in
different FHE schemes. Section 5 evaluates the performance
of the three protocols based on the BFV, BGV, CKKS, and
FHEW FHE schemes. Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Notation
x←$ X or x← X refers to drawing an element x from the
space X uniformly at random, or according to the distribution
of X , respectively. {xi} represents a set having I messages,
and each message in this set xi has an index i. The m-bit
message x could be represented in binary as x0, · · · ,xm−1. x̃
represents the masked message of x, using a pseudorandom r.
⊕ or � is an XOR or XNOR operation, respectively.

In an FHE scheme, let sk, pk, ct(·), M , and CT denote a
secret key, a public key, and a ciphertext, a message space, and
a ciphertext space, respectively. Γ is a circuit to be evaluated
in an FHE-based outsourced computation. λ is the security
parameter. n, t, and Q are FHE encryption parameters for
the ciphertext ring dimension, the plaintext modulus, and the
ciphertext modulus, respectively.

2.2 Pseudorandom Function
Let PRF: K ×X → Y be an efficiently computable func-
tion. PRF is a pseudorandom function if for any probabilistic
polynomial time (PPT) adversary A the advantage AdvPRF

A (λ)∣∣∣∣Pr[b = 1|key←$ K ;b← APRF(key,·)]−Pr[b = 1|b← ARF(·)]

∣∣∣∣
is negligible (negl), where RF(·) is a random function RF :
X → Y . In the following paper, we use ri← PRF(key, i) to
instantiate the PRF function, which takes inputs on key ∈K
and an index i ∈ X , and outputs a pseudorandom number
ri ∈ Y . We instantiate Y as same as the message space M .

2.3 Homomorphic Encryption
We summarize the key components of an FHE scheme in-
cluding four PPT algorithms, i.e., FHE = (KeyGen, Encrypt,

Decrypt, Eval) in a high level.

• (sk,pk)← KeyGen(1λ): This algorithm inputs a security
parameter λ and outputs a secret key sk and a public key
pk. pk implicitly refers to a public encryption key, a public
relinear key 4, and a public Galois key for rotating an SIMD-
batched ciphertext [36].

• ct(x) ← Encrypt(pk/sk,x) and x ← Decrypt(sk,ct(x)):
The encryption and decryption algorithms convert a mes-
sage x∈M to a ciphertext ct(x)∈ CT and vice versa. Note
that an FHE scheme may support a symmetric or an asym-
metric encryption mode, so that the encryption algorithm
would require a secret key or a public key, respectively. We
denote a set of ciphertexts or an SIMD-batched ciphertext
by {ct(xi)} or ct({xi}), respectively.

• ct(Γ(x))← Eval(pk,Γ,ct(x)): A circuit Γ to be evaluated
in an FHE scheme generally applies to the input ct(x) ren-
dering ct(Γ(x)). It is possible that the evaluation acts on
all elements in the batched ciphertext, or parts of the inputs
are in plaintext, both of which are denoted by ct(Γ({xi})).

Definition 1 (Correctness) A fully homormophic Encryp-
tion scheme FHE is correct if for all x ∈M , and (sk,pk)←
KeyGen(1λ), the following probability holds:

Pr


Decrypt(sk,
Encrypt(pk/sk,x)) = M;
Decrypt(sk,Eval(pk,Γ,
Encrypt(pk/sk,x))) = Γ(x)

≥ 1−negl(λ).

Informally, an encryption scheme is indistinguishable secure
under chosen plaintext attacks (IND-CPA) if no substantial
information about the plaintext can be feasibly extracted from
the ciphertext. In other words, for a given ciphertext, the dis-
tribution of the corresponding plaintext is still random in the
view of any PPT adversary.

Definition 2 (IND-CPA security) A fully homomorphic en-
cryption scheme FHE is indistinguishable secure under cho-
sen plaintext attacks, if for any PPT adversary A , the follow-
ing probability holds:∣∣∣∣Pr

[
ExptIND-CPA

FHE = 1
]
− 1

2

∣∣∣∣= negl(λ),

where the security game ExptIND-CPA
FHE is defined in Fig. 2.3.

Encoding. Roughly speaking, the encryption algorithm of
an LWE-based FHE scheme implicitly consists of an encod-
ing process to convert a message to an element in a special
plaintext space, and the decryption also includes a reversed
decoding process. In the BFV scheme, a plaintext is defined
by an element in a ring Rt = Zt/(xn +1), whose element is

4After a ciphertext multiplication, the dimension of the ciphertext may
increase. A relinearization is to recover the initial ciphertext dimension.
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ExptIND-CPA
FHE (1λ) :

b←$ {0,1},
(sk,pk)← KeyGen(1λ) OEnc(·) :
(x0,x1)← AOEnc Return ⊥ if x ∈ {x0,x1}
ct∗← Encrypt(pk/sk,xb) Otherwise return
b′← AOEnc(·)(ct∗) Encrypt(pk/sk,x).
Return(b′ = b)

Figure 1: Security game ExptIND-CPA
HE

a polynomial having a degree smaller than n and the coef-
ficients come from the field Zt . t is named as the plaintext
modulus, which affects the correctness of an FHE scheme. A
bigger t value may allow a larger message space to keep the
computation correctness without data-type overflow. How-
ever, a too big t value may introduce too much noise during
the homomorphic computations. The CKKS scheme extra
requires an integer scale factor ∆ to convert real inputs to in-
tegers. In the following paper, we do not specify the encoding
algorithm and regard the encoding and decoding processes as
the parts of the encryption and decryption, respectively.
Encryption parameters. A BGV-style FHE ciphertext typ-
ically contains two polynomials defined in a ring RQ =
ZQ/(xn + 1), in which n is the ring dimension and Q is the
ciphertext modulo. Selecting a big enough n value would guar-
antee the security level specified by the security parameter
λ [7]. A small Q value cannot support too many computation
levels in homomorphic encryption, while a too big ciphertext
modulo Q value would introduce more noise. A too big n or
Q value would add the storage and computational overhead.
Hence, the encryption parameters should be carefully selected
to fit a computation task without losing neither security, effi-
ciency, nor correctness.
SIMD batching. One FHE encryption renders a large com-
putational overhead and a large ciphertext storage size. SIMD
is a typical trick used in parallel computing, which is widely
used in FHE schemes [10, 44]. When N messages are embed-
ded into a batched ciphertext, the computational overhead of
an encryption/decryption or an evaluation, and the storage
usage of the ciphertext, are all divided by N, i.e., an amor-
tization operation. Hence, batching could be regarded as a
computation acceleration or a ciphertext compression opera-
tion in some sense. Sect. 5 would clearly compare the storage
difference between batching and unbatching.

Roughly speaking, when the plaintext modulus t satisfies
t ≡ 1 mod 2n, BFV and BGV support an N = n batching at
maximum [36]. In CKKS, the maximum batching size is n

2 .
Popular FHE libraries, e.g., PALISADE [40] and SEAL [3],
already widely follow this batching technique and highly
recommend that the developers should batch their messages

as much as possible, although batching does not fit all FHE
applications as we discussed in Sect. 1.

2.4 A Straightforward FHE-based Out-
sourced Computation Protocol

Fig. 2 introduces a straightforward FHE-based protocol used
in an outsourced storage and computation scenario. At first,
a client sets an FHE system by generating secret and public
keys according to a set of encryption parameters. Then, the
client encrypts its confidential messages by the FHE scheme,
and sends several ciphertexts to the server side, together with
the generated public key. The server stores the ciphertexts on
behalf of the client. When the client requests the server to
conduct some computations on its encrypted data, the client
proposes a computation task (generally a circuit Γ). Next,
the server computes this task without knowing the message.
Finally, the server returns the target ciphertext to the client
side, and the client decrypts it to obtain the results.

However, straightforward using an FHE scheme in this
scenario faces the storage and computation obstacles. The
FHE ciphertext expansion rate is significant. When n= 8,192,
t = 65,537, log2 Q= 180, encrypting a 16-bit integer message
leads to a 386.97 KB-size BFV ciphertext in PALISADE
library rendering an expansion rate of around 200×. Even
when batching is acceptable, the expansion rate of a ciphertext
having the maximum batch size is still more than 20×.

In addition, the number of ciphertext-wise operations re-
strains this application from the computation time and intro-
duced noise. Usually, the computation time for a ciphertext-
wise multiplication is much higher than an addition or a scalar
multiplication. A ciphertext-wise multiplication also intro-
duces a large amount of noise compared with other compu-
tations. An addition or a scalar multiplication accumulates
much less noise. Since bootstrapping is a heavy computational
burden to eliminate noise, a noise optimization is implicit a
computation time optimization.

3 The HEAD Protocol

In this section, we propose our generic HEAD protocol for
making an FHE-based outsourced computation more practical
in the aspects of storage and computation (Sect. 3.1), and then
prove its security in a simulation-based model (Sect. 3.2).

3.1 Syntax of the Generic HEAD Protocol
Definition 3 The generic HEAD protocol is depicted in Fig.3,
consisting of six PPT algorithms, namely HEAD = (KeyGen,
Encrypt, Decrypt, Eval, NewEval, Trans).

• The KeyGen, Encrypt, Decrypt, and Eval algorithms fol-
low the original ones in an FHE scheme as we introduced
in Sect. 2. In addition, {ct(ri)} = {ct(ri) | ∀i ∈ I ,ri ←$

5



Client Server
1) (sk,pk)← KeyGen(1λ)

2) {ct(ri)}← {Encrypt(pk,ri)} or ct({ri})← Encrypt(pk,{ri})
{ct(xi)} or ct({xi})

3) Storing {ct(xi)} or ct({xi})

4) Request
pk and Γ

5) ct(Γ({xi}))← Eval(pk,Γ,{ct(xi)})

or ct(Γ({xi}))← Eval(pk,Γ,ct({xi}))
ct(Γ({xi}))

6) Γ({xi})←Decrypt(sk,ct(Γ({xi})))

Figure 2: A straightforward FHE-based outsourced computation protocol

Client Server
1) {x̃i}← Trans({xi},{ri})

{x̃i}
2) Storing {x̃i}

3) (sk,pk)← KeyGen(1λ), {ct(ri)}← Encrypt(pk,{ri})
or ct({ri})← Encrypt(pk,{ri})

4) Request
{ct(ri)} or ct({ri}), pk and Γ

5) ct(Γ({xi}))←NewEval(pk,Γ,{ct(ri)},{x̃i})

or ct(Γ({xi}))←NewEval(pk,Γ,ct({ri}),{x̃i})
ct(Γ({xi}))

6) Γ({xi})←Decrypt(sk,ct(Γ({xi})))

Figure 3: The generic HEAD protocol

M ,ct(ri)← Encrypt(pk,ri)} for an index set I is denoted
by {ct(ri)}← {Encrypt(pk,ri)}, while an SIMD-batched
encryption is denoted by ct({ri})← Encrypt(pk,{ri}).

• The transformation algorithm Trans(x,r) returns a masked
ciphertext x̃ upon input of a message x ∈ M and
a randomness r ∈ M . If the inputs are two sets,
{x̃i} ← Trans({xi},{ri}) stands for {x̃i} = {x̃i | x̃i ←
Trans(xi,ri)}.

• The new evaluation algorithm NewEval(pk,Γ,ct(r), x̃) out-
puts a ciphertext ct(Γ(x))∈ CT on input a public key pk, a
circuit Γ, an FHE ciphertext ct(r) and a masked ciphertext
x̃. Still, NewEval could act on unbatched or batched cipher-
texts, i.e., ct(Γ({xi})) ← NewEval(pk,Γ,{ct(ri)},{x̃i})
or ct(Γ({xi})) ← NewEval(pk,Γ,ct({ri}),{x̃i}), respec-
tively.

Definition 4 (Correctness) The generic HEAD protocol is
correct if ∀x,r ∈M and (sk,pk)← KeyGen(1λ), the follow-
ing probability holds:

Pr



Decrypt(sk,Encrypt(pk,x))
= x ∧

Decrypt(sk,Eval(pk,Γ,
{Encrypt(pk,x)}))

= Decrypt(sk,NewEval(pk,Γ,
{Encrypt(pk,r),Trans(x,r)}))

= Γ(xi)


= 1−negl(λ)

It is obvious that our generic HEAD protocol (Fig. 3) does
not change the process of a straightforward FHE-based out-
sourced computation protocol (Fig. 2), no matter whether an
FHE scheme supports SIMD-batching or not. The masked

ciphertexts spend much less space achieving compact storage,
i.e., the ciphertext expansion rate is 1. Moreover, our protocol
offers some computation optimization and higher flexibility.
We will describe how we achieve compact storage and effi-
cient computation, and discuss the advantages (including the
flexibility) and limitations in Sect. 4.

3.2 Security Analysis
We take the unbatching style to prove the security of the
generic HEAD protocol, while the batching case is similar.
We consider the security under a semi-honest adversary who
has corrupted Server, which means the adversary will honestly
execute the protocol with Client but still could not extract any
substantial information of Client’s messages.

The proof is according to the standard simulation paradigm
with the real/ideal model [13, 32]. Informally speaking, for a
semi-honest adversary A , we would construct a simulator S
to simulate Client and execute the protocol with A . However,
the distribution in the view of A is indistinguishable from the
one in a real execution, which means no leakage about the
information of Client’s messages.

Theorem 1 Assume that the underlying fully homomorphic
scheme FHE is IND-CPA secure, then our generic HEAD
protocol is secure in the presence of a semi-honest adversary.

Proof Let A be an adversary who has corrupted the Server;
we construct a simulator S to simulate the Client in the HEAD
protocol as follows.

• Upon input of a public security parameter λ, a simulator S
invokes sk,pk← KeyGen(1λ) and receives back (sk,pk).
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• S invokes A upon input of pk.

• S randomly chooses {xi,ri ←$ M , ∀i ∈ I}, gener-
ates {x̃i} ← Trans({xi},{ri}), and computes {ct(ri)} ←
Encrypt(pk,{ri}).

• S ramdomly generates a circuit Γ and invokes A upon input
of (Γ,{ct(ri)},{x̃i}).

• S receives ct(Γ({xi})) and outputs the plaintext Γ({xi})←
Decrypt(sk,ct(Γ({xi})).

We prove that the distribution of A’s view in the simulation
is indistinguishable from the distribution in a real protocol ex-
ecution. The main difference between the simulation by A and
a real execution with an honest Client is the way that x̃i is gen-
erated: the Client internally decides its own message x′i in M ,
chooses random r′i and computes x̃′i← Trans(x′i,r

′
i); whereas

S chooses random xi and computes x̃i← Trans(xi,ri). Since
the underlying fully homormophic encyption scheme FHE is
IND-CPA secure, and ri, r′i are chosen randomly, the distri-
butions over the outputs of Trans(xi,ri) and Trans(x′i,r

′
i) are

indistinguishable in A’s view on receiving ct(ri). Otherwise,
we could construct a distinguisher D for the IND-CPA se-
curity experiment ExptIND-CCA

FHE naturally. Thus, we conclude
that the distribution of the semi-honest adversary A’s view
is indistinguishable from the distribution in a real execution,
and finish the proof. �

4 Various HEAD instantiations

In this section, we instantiate our generic HEAD protocol
rendering three protocols, i.e., a modulo-subtraction-masking
protocol, a modulo-division-masking protocol, and an XOR-
masking protocol. All instantiations achieve compact stor-
age, i.e., decreasing the masked ciphertext expansion rate to
1, and adaptively optimize some computation types, in the
FHE-based outsourced computation scenario (Sect. 2.4). Our
NewEval function includes two parts, i.e., an unmasking oper-
ation and an evaluation. Note that the evaluation may point to
many computation steps. Our optimization would take effects
on parts of steps, which would be described in corresponding
subsections and figures. The concrete computation time and
noise reduction by the protocols would be exhibited in Sect. 5.

4.1 Modulo Subtraction Masking
Fig. 4 instantiates Trans by modulo-subtraction-masking. In
addition to a ciphertext expansion rate of 1, the computa-
tion optimization lies in a reduction from arbitrary times of
ciphertext-wise additions or a scalar multiplication to a single
ciphertext-plaintext addition, significantly reducing the com-
putation time or noise, respectively. We describe this protocol
for an integer input vector, which is suitable for an integer
FHE scheme such as BFV [23] or BGV [11].

Storage optimization for an integer number FHE scheme.
We consider an application based on a message space M ,
whose length is a factor of the word length (e.g., 16 bits) and
is slightly smaller than Zt . For Trans in step 1 in Fig. 4, a
client firstly masks {xi ∈M } by element-wise modulo sub-
tracting an integer pseudorandom vector {ri} (generated from
PRF(key, i)), i.e., Trans({xi},{ri}) = {xi− ri mod t, ∀i ∈ I}.
Since the length of M is a factor of a word length, the size
of the masking result {x̃i} could be stored in the same size as
the one of the original messages, i.e., |{x̃i}|= |{xi}| and the
ciphertext expansion rate is 1. The client transfers the masked
set {x̃i} to the server side. Then, the client stores the small-
size PRF key for a long time as needed, until a computation
request is raised.

Next, we show how this modulo-subtraction-masking could
be unmasked using the FHE homomorphic properties, i.e.,
step 5.1 in Fig. 4. When the client wants to launch a compu-
tation on its ciphertexts, the client re-generates the pseudo-
random vector {ri} from the PRF using the same key, and
generates the FHE scheme (e.g., BFV or BGV) secret and
public keys. The FHE scheme should be configured by the
same plaintext modulus t as the one in the masking process,
while other configuarations could be flexible according to the
proposed computation circuit Γ. The masking set is encrypted
into ct({ri}) in an SIMD-batching style, and ct({ri}) would
be sent to the server along with the public key and Γ. Af-
ter receiving the request, the server picks up the ciphertext
{x̃i} from its storage. The server would obtain ct({xi}) by
computing ct({x̃i})← {x̃i}+ ct({ri}) = ct({x̃i}+ {ri}), in
which {x̃i}+ ct({ri}) is an SIMD-batched addition between
a batched plaintext and a batched ciphertext, and {x̃i}+{ri}
stands for an element-wise addition for {x̃i + ri, ∀i ∈ I}.

The server then computes the task according to the circuit
description Γ, and returns a result ciphertext ct(Γ({xi})) to
the client. Finally, the client decrypts it to have Γ({xi}).
Computation optimization for one or more ciphertext-
wise additions and a scalar multiplication. Since this
modulo-subtraction-masking is linear, the masked message
still keeps the linear homomorphic properties, which could
move a linear FHE ciphertext evaluation to the masking side.
The masking side operations are much easier than the ones
in the FHE ciphertext side. In step 2 of Fig. 4, the client may
preprocess ct(∑k

i=1 ri) or ct(c · ri) if the computation task Γ

requires a large number of additions or a scalar multiplication.
Step 5.2 in Fig. 4 reduces the sum of k FHE cipher-

texts ∑
k
i=1 ct(xi) to a single FHE ciphertext-plaintext addi-

tion ∑
k
i=1 x̃i + ct(∑k

i=1 ri). This is a significant optimization
since the computational overhead for the sum of k masked
ciphertexts or k pseudorandoms is much small. Furthermore,
when the inputs are batched in one FHE ciphertext, the
straightforward FHE computation for the sum of k ciphertexts
(∑k

i=1 ct(xi)) should be accompanied with needed rotations
or evaluations at indexes, so that our technique would fur-
ther reduce the computation time. This transformation also
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Client Server
1) {ri}← PRF(key,{i}), {x̃i}← Trans({xi},{ri}) = {xi− ri mod t}

{x̃i}
2) Storing {x̃i}

3) (sk,pk)← KeyGen(1λ), Encrypt for {ri}, ∑
k
i=1 ri, c · ri

4) Request ct({ri}), ct(∑k
i=1 ri), ct(c · ri); pk and Γ

5) ct(Γ({xi}))←NewEval(pk,Γ,ct({ri}),{x̃i}):

5.1) ct({xi})←{x̃i}+ct({ri}),

5.2) Computing ct(Γ({xi})), in which:

∑
k
i=1 ct(xi)← ∑

k
i=1 x̃i +ct(∑k

i=1 ri), c ·ct(xi)← c · x̃i +ct(c · ri)
ct(Γ({xi}))

6) Γ({xi})←Decrypt(sk,ct(Γ({xi})))

Figure 4: The modulo-subtraction-masking HEAD protocol for an integer number FHE scheme

Client Server
1) {ri}← PRF(key,{i}), {x̃i}← Trans({xi},{ri}) = {xi · r−1

i mod t}
{x̃i}

2) Storing {x̃i}

3) (sk,pk)← KeyGen(1λ), Encrypt for {ri}, rk
i , Πk

i=1ri

4) Request ct({ri}), ct(rk
i ), ct(Π

k
i=1ri); pk and Γ

5) ct(Γ({xi}))←NewEval(pk,Γ,ct({ri}),{x̃i}):

5.1) ct({xi})←{x̃i} ·ct({ri})

5.2) Computing ct(Γ({xi})), in which:

(ct(xi))
k ← x̃i

k ·ct(rk
i ), Πk

i=1ct(xi)←Πk
i=1x̃i ·ct(Πk

i=1ri)
ct(Γ({xi}))

6) Γ({xi})←Decrypt(sk,ct(Γ({xi})))

Figure 5: The modulo-division-masking HEAD protocol for an integer number FHE scheme

decreases a little introduced noise.
The optimization also works for an FHE scalar multipli-

cation c · ct(xi) by computing the scaling on the masking
side and the pseudorandom side, i.e., c · x̃i and c · ri, and then
computing a plaintext-ciphertext addition c · x̃i + ct(c · ri). Al-
though this optimization decreases a little computation time,
the reduced noise volume is significant.

4.2 Modulo Division Masking

Fig. 5 introduces the modulo-division-masking HEAD proto-
col, i.e., instantiating Trans by a modulo division for integer
number inputs. Still, this protocol not only achieves compact
storage, but also decreases the FHE ciphertext multiplication
consumptions at the server side. The computation optimiza-
tion reduces arbitrary times of ciphertext multiplications to a
single scalar multiplication, significantly decreasing both the
computation time and noise.
Storage optimization for a non-zero integer number FHE
scheme. This protocol has similar requirements for M and t
to the ones in the modulo-subtraction-masking HEAD proto-
col (Sect. 4.1). For non-zero integer inputs {xi},Trans invokes
{xi · r−1

i mod t, ∀i ∈ I}, in which non-zero {ri} comes from
a PRF. The unmasking operation inside NewEval only con-

sumes one SIMD-batched scalar multiplication to unmask the
maskings, i.e., ct({xi})←{x̃i} · ct({ri}).
Computation optimization for one or more ciphertext-
wise multiplications. Step 5.2 in Fig. 5 introduces the
modulo-division-masking computation optimization. If a com-
putation request Γ includes the k power of an FHE ciphertext,
the client in HEAD would prepare {rk

i } by computing the k
power of each element ri, then send the ciphertext ct({rk

i })
in the request. The server computes {x̃k} and then only com-
sumes one scalar multiplication to compute (ct(xi))

k.
If Γ requires a k-degree cross term from k variables, i.e.,

Πk
i=1xi. The straightforward FHE usage requires rotations or

evaluations at different indexes to achieve the product of k
ciphertexts Πk

i=1ct(xi). Our optimization also works in this
case, by firstly computing Πk

i=1x̃i and Πk
i=1ri then computing

one scalar multiplication of Πk
i=1x̃i · ct(Πk

i=1ri).
These optimizations decrease both a large amount of com-

putation time and noise, compared with the heavy homomor-
phic operations in the straightforward FHE usage.

4.3 XOR Masking

The XOR-masking HEAD protocols (in Fig. 6 and Fig. 7)
work for a real or binary number input. Both two protocols
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achieve compact storage.
Storage optimization for a real number FHE scheme. We
consider a fixed-point real number x occupying m bits in
Fig. 6, and x j stands for the j-th bit for j ∈ [0,m−1]. Specif-
ically, the first mfrac bits represent the fraction part of this
message, i.e., x0, · · · ,xmfrac−1, while the remaining m−mfrac

bits indicate the integer part, i.e., xmfrac , · · · ,xm−1. Hence, the
binary representation of x satisfies x = ∑

mfrac−1
j=0 x j ·2 j−mfrac +

∑
m−1
j=mfrac

x j ·2 j−mfrac = ∑
m−1
j=0 x j ·2 j−mfrac .

The Trans operation masks each bit of the input set {x j
i }

by an XOR operation with another random bit ri generated

from a PRF, i.e., {x̃ j
i ← x j

i ⊕ r j
i , ∀ j ∈ [0,m−1], ∀i ∈ I}.

Since a real number FHE scheme like CKKS supports
SIMD-batching, NewEval may execute the unmasking oper-
ations in a batching style. For each bit of each element x j

i ,
the binary XOR could be converted to a decimal relation, i.e.,

x j
i = x̃ j

i ⊕ r j
i = x̃ j

i + r j
i − 2 · x̃ j

i · r
j
i . For an m-bit fixed-point

decimal real number, we have

xi =
m−1

∑
j=0

(
x̃ j

i ·2
j−mfrac + r j

i ·2
j−mfrac −2 · x̃ j

i · r
j
i ·2

j−mfrac

)
=

m−1

∑
j=0

(
x̃ j

i ·2
j−mfrac +(1−2 · x̃ j

i ) · r
j
i ·2

j−mfrac

)
Hence, the relation in SIMD-batched ciphertexts keeps,

ct(xi) =
m−1

∑
j=0

(
x̃ j

i ·2
j−mfrac +(1−2 · x̃ j

i ) · ct(r
j
i ·2

j−mfrac)
)
,

ct({xi}) =
m−1

∑
j=0

(
{x̃ j

i ·2
j−mfrac}+{1−2 · x̃ j

i } · ct({r
j
i ·2

j−mfrac})
)

=
m−1

∑
j=0
{x̃ j

i ·2
j−mfrac}+

m−1

∑
j=0
{1−2 · x̃ j

i } · ct({r
j
i ·2

j−mfrac}).

Note that {x̃ j
i · 2 j−mfrac} and ∑

m−1
j=0 {x̃

j
i · 2 j−mfrac} are

element-wise multiplication and sum operations for all el-

ements in the sets, respectively. {1−2 · x̃ j
i }·ct({r

j
i ·2 j−mfrac})

and ∑
m−1
j=0 {1− 2 · x̃ j

i } · ct({r
j
i · 2 j−mfrac}) are SIMD-batched

scalar multiplication and sum operations, respectively.
Before a request, the client prepares ct({r j

i ·2 j−mfrac}) for
∀ j ∈ [0,m−1], ∀i ∈ I, then transfers these m ciphertexts to
the server side. After unmasking and computations, the CKKS
ciphertext ct(Γ({xi})) is transferred to the client.
Storage optimization for a binary input FHE scheme. The
XOR-masking HEAD protocol (Fig. 7) for a binary FHE
scheme takes the unbatching style since a GSW-style FHE
scheme does not support SIMD-batching. The message space
is M = {0,1}. For masking an binary vector {xi}, the client
runs bit-wise XOR by another binary pseudorandom vector

{ri} in Trans, rendering the same size vector {x̃i}, which
prevents the ciphertext expansion. For unmasking, this XOR
HEAD protocol requires a communication overhead to trans-
fer the unbatched FHE ciphertexts, {ct(ri)}. Then, the server
independently computes x̃i⊕ ct(ri) to recover ct(xi).
Computation optimization for one or more ciphertext-
wise XOR or XNOR operations for a binary FHE scheme.
Step 5.2 in Fig. 7 introduces our computation optimization
for this protocol. If a computation request Γ requires the
XOR or XNOR sum of k ciphertexts (i.e., ⊕k

i=1ct(xi) or
�k

i=1ct(xi)), the client would prepare and send the ciphertext
ct(⊕k

i=1ri) or ct(�k
i=1ri) along with the request, respectively.

Since the XOR operation is transitive, we have ⊕k
i=1ct(xi)←

(⊕k
i=1x̃i)⊕ct(⊕k

i=1ri), which is a single ciphertext-wise XOR
operation. One XOR operation based on two FHE ciphertexts
is very slow as the exhibition in Sect. 5. Hence, our opti-
mization is significant since we reduce the heavy burden to
compute k−1 times of XOR for ⊕k

i=1ct(xi) to a single XOR.
The optimization also works for XNOR. From a� b =

¬(a⊕ b) and a� b� c = a⊕ b⊕ c, we could induce that
�k

i=1ri equals to ⊕k
i=1ri or ¬(⊕k

i=1ri) if k is odd or even, re-
spectively. Hence, the XNOR sum of k ciphertexts �k

i=1ct(xi)
could be optimized to (�k

i=1x̃i)⊕ ct(�k
i=1ri) or (�k

i=1x̃i)⊕
¬ct(�k

i=1ri) for an even k or odd k, respectively. Similarly,
the ciphertext-wise XNOR operation is heavy, so that our
optimization is also significant.
Supporting a symmetric binary FHE scheme. From our
implementation experience, two famous FHE open-source
libraries PALISADE [40] and TFHE [18] only support the
symmetric version of FHE schemes, which does not support a
plaintext-ciphertext XOR or an encryption before a ciphertext-
wise XOR at the server side in an FHE-based outsourced
computation scenario.

In order to apply this XOR-masking protocol in practice,
we design another method at the server side (step * in Fig. 7).
For computing (x̃i)⊕ ct(ri), the operation is to reverse ct(ri)
(a NOT ciphertext operation) in essence, according to the bit
value of the x̃i. Since xi ← x̃i⊕ ri, xi ← 0⊕ ri = ri if x̃i =
0 and xi ← 1⊕ ri = ¬ri if x̃i = 1. Hence, the server could
set ct(xi)← ct(ri) if x̃i = 0, or ct(xi)←¬ct(ri) if x̃i = 1. A
NOT ciphertext operation takes a much less time (the level of
microseconds) than other ciphertext-wise Boolean operations
(the level from hundreds of milliseconds or seconds).

4.4 Discussion

Compact storage: the masked ciphertext expansion rate
of 1. Similar to Gentry et al.’s work [29, 30], a server in
our HEAD protocols stores compact ciphertexts in an FHE-
based outsourced computation scenario. When the client
requests a computation, the AES ciphertexts in Gentry et
al.’s work [29, 30] and the masked ciphertexts are trans-
ferred to high-expansion FHE ciphertexts. Both Gentry et
al.’s work [29, 30] and ours do not change a straightforward
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Client Server
1) {ri}← PRF(key,{i}), {x̃ j

i }← Trans({x j
i },{r

j
i }) = {x

j
i ⊕ r j

i , ∀ j ∈ [0,m−1]}
{x̃i}

2) Storing {x̃i}
3) (sk,pk)← KeyGen(1λ), Encrypt for {r j

i ·2 j}, ∀ j ∈ [0,m−1]

4) Request ct({r j
i ·2 j}) ∀ j ∈ [0,m−1]; pk and Γ

5) ct(Γ({xi}))←NewEval(pk,Γ,ct({r j
i ·2 j}),{x̃i}):

ct({xi})← ∑
m−1
j=0 {x̃

j
i ·2 j−mfrac}+∑

m−1
j=0 {1−2 · x̃ j

i } ·ct({r
j
i ·2 j−mfrac})

ct(Γ({xi}))
6) Γ({xi})←Decrypt(sk,ct(Γ({xi})))

Figure 6: The XOR-masking HEAD protocol for a real number FHE scheme

Client Server
1) {ri}← PRF(key,{i}), {x̃i}← Trans({xi},{ri}) = {xi⊕ ri}

{x̃i}
2) Storing {x̃i}

3) (sk,pk)← KeyGen(1λ), Encrypt for {ri}, ⊕k
i=1ri, �k

i=1ri

4) Request {ct(ri)}, ct(⊕k
i=1ri), ct(�k

i=1ri); pk and Γ

5) ct(Γ({xi}))←NewEval(pk,Γ,{ct(ri)}, x̃i):

5.1) ct(xi)← x̃i⊕ct(ri)

5.2) Computing ct(Γ({xi})), in which:

⊕k
i=1ct(xi)← (⊕k

i=1x̃i)⊕ct(⊕k
i=1ri);

�k
i=1ct(xi)← (�k

i=1x̃i)⊕ct(�k
i=1ri) for even k,

�k
i=1ct(xi)← (�k

i=1x̃i)⊕¬ct(�k
i=1ri) for odd k

*) For x̃i⊕ct(ri), set ct(xi)← ct(ri) if x̃i = 0,

ct(xi)←¬ct(ri) if x̃i = 1
ct(Γ({xi}))

6) Γ({xi})←Decrypt(sk,ct(Γ({xi})))

Figure 7: The XOR-masking HEAD protocol for a binary FHE scheme

FHE ciphertext expansion rate. However, our protocol is more
generic and extra offers computation optimizations than Gen-
try et al.’s work [29, 30], by paying a little communication
overhead.

We regard a used FHE scheme as a black box in our pro-
tocols, which offers us more genericity without relying on a
specific FHE scheme. Gentry et al.’s work [29,30] only could
store the AES ciphertext and transfer it to a BGV FHE cipher-
text. Our protocols support various masking techniques and
FHE schemes depending on the outsourced computation data
type. In addition, a masked ciphertext could be transformed
faster and could keep or even optimize some computation,
compared with an AES ciphertext. While the computation of
an AES ciphertext is limited in the field GF(2d).

A transformed FHE ciphertext in our protocol or Gentry et
al.’s work [29,30] may still occupy some memory space when
loading the FHE ciphertext for computation, which would be
one of our future works.
Adaptively supporting different computation types. The
three HEAD protocols optimize different computations de-
pending on the masking technique used in a storage phase.
Since the masked ciphertext expansion rate is 1 in all the three

instantiations, a client may outsource long-term storage for
all the three types (modulo-subsection, modulo-division, and
XOR) of masked messages, using three different pseudoran-
dom keys, without occupying too much space. No matter for
what kind of a computation task, the corresponding maskings
are picked up and used in the following computation.
The flexibility of HEAD protocols. It is worth noticing that
the server may store the masked ciphertexts during the life-
cycle of the outsourced storage and computation application.
Our protocol is not of one-time use. After one-time outsourced
storage, the client may propose multiple computation requests
on its outsourced ciphertexts without changing the pseudoran-
dom maskings.

A client may upload its I1 masked messages at the begin-
ning, while each following requested computation may only
require I2 messages and I2 << I1, i.e., a shorter pseudorandom
array as needed, which would further save the communication
overhead for the corresponding FHE ciphertext(s). Also, the
indexes included in I2 are not limited. The retrieved messages
could be transformed to one or more FHE ciphertexts as re-
quired if the selected FHE scheme supports SIMD-batching,
without the need to carry out unnecessary rotations.

10



What’s more, the encryption parameters of a transformed
FHE ciphertext could be configured just before a computa-
tion task is proposed. The client configures an FHE scheme
adaptively according to an outsourced computation task.
The extra costs of HEAD. As we depicted in Fig. 2 and
Fig. 3, the HEAD protocols do not change the procedure of a
straightforward FHE-based outsourced computation protocol
too much. In exchange for compact storage and computa-
tion optimization, the HEAD protocols may sacrifice some
communication overhead to transfer some FHE ciphertexts
of (the variants of) the pseudorandom maskings. Since, BFV
and BGV support SIMD-batching, the ModDiv and Mod-
Sub communication overheads are small, only transferring a
batched ciphertext. We also utilize the SIMD-batching sup-
porting for CKKS, so that the XOR-masking protocol for
CKKS could transfer m batched ciphertexts when the input
real numbers are m-bit fixed-point numbers. Since FHEW
(or other GSW-style FHE schemes) does not support batch-
ing, both our XOR-masking protocol and a straightforward
FHEW-based outsourced computation protocol would transfer
unbatched FHEW ciphertexts.

For the unmasking operations, the computational overhead
is small or reasonable in different HEAD protocols, as we
discussed in the previous subsections.
The trade-off between compact storage and computation
optimization for CKKS. This paper mainly describes our
XOR-masking HEAD protocol for CKKS (Fig. 6), achiev-
ing the extremely compact ciphertext storage without com-
putation optimization. However, the ModSub protocol also
supports CKKS, similarly optimizes additions and scalar mul-
tiplications, with a small ciphertext expansion.

For a real number x, a scale-round-modulo operation ren-
ders (bx ·∆e mod Q) ∈M . The scale factor ∆ would be the
same as the one used in the following CKKS scheme. Imple-
menting Trans by {x̃i = bxi ·∆e− ri mod Q} and selecting
ri←$ ZQ render the masking size expansion, since usually
the value of Q is not small. Considering a double-type input x
and log2 Q = 150, the expansion rate is around 150

64 ≈ 3.
For the unmasking operation inside NewEval, each element

in {x̃i} would be multiplied by the scale factor inverse, i.e.,
{x̃i · ∆−1}. The client prepares ct({ri · ∆−1}) and then the
server computes {x̃i ·∆−1}+ ct({ri ·∆−1}), i.e., an SIMD-
batched plaintext-ciphertext addition. The masked messages
in this way still keep the similar computation optimizations
as the ones in the integer case, i.e., step 5.2 in Fig. 4.
The value of a plaintext modulus t. As we introduced in
Sect. 2, an FHE evaluation result is t-modulo after several
computations. Different applications have different require-
ments of the t value. However, no matter what the t value is,
our ModSub and ModDiv protocols keep compact storage in
an FHE-based outsourced computation scenario.
The open question whether a real input could be division
masked to enhance the ciphertext multiplication strength.
According to our security proof for the HEAD protocol in

Sect. 3, a masking method is secure when a mask and the
resulting masked message are indistinguishable. The ratio
x̃ = x

r would be too small or too large if the double type
variables x and r come from the same space, which is beyond
the precision of an FHE scheme like CKKS. Hence, how to
use the HEAD protocol to mask a real number input in a
division form would be one of our future works.

5 Performance Evaluation

This section evaluates the performance of our three HEAD
protocols in storage and computation aspects. We also ex-
hibit the straightforward usage of FHE schemes without our
protocols as a baseline. We mainly evaluate the performance
using the PALISADE library [40] 5, while also obtaining the
introduced noise volume from the SEAL library [3]. The test-
ing environment is based on Intel Xeon Gold 6266C CPU @
3.00GHz and 64 GB memory, with Ubuntu 18.04.2 operation
system and GCC 7.5.0 compiler.

5.1 ModSub for BFV and BGV
To support the modulo-subtraction-masking (ModSub) proto-
col (Fig. 4), we first select the encryption parameters for BFV
and BGV schemes to ensure the FHE security and usability.
Since two straightforward FHE cases, i.e, an 8,192-size batch
and 8,192 unbatched ciphertexts, are executed to exhibit the
ciphertext expansion, the ring dimension n is set to 8,192
to support that batch size. The length of ciphertext modu-
lus Q is log2 Q = 180 for some linear computations. We use
an unsigned integer variable to load an input message from
{0,1}16, so that the ciphertext expansion rate is calculated by
ctsize

2B . The plaintext modulus t = 65,537 ensures the plaintext
would not overflow. This setting is deployed in Table 2 and
Table 3 (denoted by Setting I).

Table 2 shows the ciphertext size in the BFV and BGV
schemes without our protocols. One unbatched BFV cipher-
text takes 386.97 KB, and the ciphertext expansion rate is
around 396,261 B

2 B ≈ 198,130.5. Then, 8,192 unbatched BFV
ciphertexts occupy a considerable space of 3.02 GB. An 8,192-
batched BFV ciphertext achieves an amortized expansion rate
of 396,261 B

2 B·8,192 ≈ 24.2. The expansion rates keep the same order
of magnitude for BGV. Note that a batched ciphertext may
not support all applications as we discussed previously.

Our ModSub protocol keeps a ciphertext expansion rate of
1, i.e., 16 KB

2 B·8,192 = 1, supporting the BFV and BGV schemes
in the tests. A masked message vector can be “batched” store,
while the usage of each vector variable is flexible. When the
batch size is 8,192, Trans (Step 1 in Fig. 4), i.e., generating
{ri} and computing {xi − ri mod t}, costs 510 µs in total.
Then, it spends around 279 µs for a later re-generation of {ri}
from the PRF. If the computation requires all stored messages,

5Currently, the PALISADE library supports most FHE schemes.
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Table 2: Storage optimization for ModSub HEAD (Ciphertext expansion rate abbreviated as CER)

Scheme
Straightforward FHE (Unbatch) Straightforward FHE (Batch) ModSub HEAD

ctsize CER ctsize CER ctsize CER Transtime Unmasktime

BFV 3,246,170,112 B (3.02 GB) 198,130.5 396,261B (386.97 KB) 24.2 16 KB 1
510 µs

9.4 ms
BGV 4,320,976,896 B (4.02 GB) 363,731.5 527,463 (515.10 KB) 32.2 16 KB 1 6.3 ms

Table 3: Computation optimization for ModSub and ModDiv HEAD

Scheme
Setting I Setting II

Task Straightforward FHE time ModSub time Task Straightforward FHE time ModDiv time

BFV

ct+pt 6.3 ms

6.3 ms

(k−1) · (ct×ct) (k−1)·131.5 ms

9.5 ms
(k−1) · (ct+ct) (k−1)·6.3 ms (k−1) · (ct×ct)∗ (k−1)·132.1 ms

ct ·pt 6.4 ms (ct(x))8 398.1 ms

∑
8
i=1 ct(xi) 336.3 ms Π8

i=1ct(xi) 1,219.4 ms

BGV

ct+pt 3.2 ms

3.2 ms

(k−1) · (ct×ct) (k−1)·93.8 ms

9.8 ms
(k−1) · (ct+ct) (k−1)·6.4 ms (k−1) · (ct×ct)∗ (k−1)·100.8 ms

ct ·pt 9.7 ms (ct(x))8 357.8 ms

∑
8
i=1 ct(xi) 423.6 ms Π8

i=1ct(xi) 1,311.4 ms

∑
8
i=1 ct(xi)

∗ 183.8 ms Π8
i=1ct(xi)

∗ 585.0 ms

Table 4: Storage optimization for XOR HEAD (Ciphertext expansion rate abbreviated as CER)

Scheme
Straightforward FHE (Unbatch) Straightforward FHE (Batch) XOR-masking HEAD

ctsize CER ctsize CER ctsize CER Transtime Unmasktime

CKKS 8,615,895,040 B (8.02 GB) 525,872.5 1,051,745 B (1,027.09 KB) 64.2 16 KB 1
253 µs

289.4 ms
FHEW 33,923,072 B (32.35 MB) 33,128 N.A. N.A. 8,192×1 bit 1 8,192×2 µs

one batched unmasking computation for all masked cipher-
texts costs only 9.4 ms for necessary encodings combined
with one plaintext-ciphertext addition (Step 5.1 in Fig. 4). For
BGV, the unmasking time takes a smaller value.

Table 3 exhibits the computation optimization by our Mod-
Sub protocol, which reduces one or more (k− 1 times of)
ciphertext-wise additions (ct+ ct) or a scalar multiplication
(ct ·pt) to a single plaintext-ciphertext addition (ct+pt). We
take a sum case to reflect the promising computation opti-
mization. When computing the sum of k = 8 ciphertexts, it
is obvious that equally computing pt(8) · ct(x) is the fastest
way if the eight ciphertexts are identical, consuming a scalar
multiplication for 6.4 ms. When the accumulated items are
disparsed in one ciphertext batch, there are extra 7 operations
for “evaluation at index” and 7 additions, leading to around
336.3ms to compute ∑

8
i=1 ct(xi) in total. For both pt(8) ·ct(x)

and ∑
8
i=1 ct(xi), ModSub could outputs the corresponding re-

sults for 6.3ms. No matter how many numbers of additions
(k− 1 additions takes (k− 1)·6.3ms) could be reduce to a
single plaintext-ciphertext addition (taking 6.3ms).

For BGV, the PALISADE library release 1.11.5 extra offers

the rotation functionality. The sum could be accomplished
by rotations if x1, · · · ,x8 are arranged in order in a batch 6,
which is denoted by ∑

8
i=1 ct(xi)

∗ in Table 3. ModSub takes
3.2 ms for the sum of eight ciphertexts, faster than both an
evaluation-at-index sum and a rotation sum if the batched
items are arranged in order or not respectively.

Table 5 exhibits our BFV noise optimization from the
SEAL library [3]. Since a ciphertext-wise addition introduces
not much noise to the ciphertext, the optimization is slight
for several bits when the sum size k is not large 7. However,
the noise of a scalar multiplication is 21 bits in our setting. It
makes our optimization obvious since a plaintext-ciphertext
addition introduces tiny noise.

6At first, left-rotate the batch once, then compute an addition to get
ct(x1)+ct(x2). Next, left-rotate the result by 2 slots, and an addition renders
ct(x1)+ · · ·+ ct(x4). Finally, a 4-slot left-rotation and an addition lead to
∑

8
i=1 ct(xi). The PALISADE library release 1.11.5 only supports ciphertext

rotations for BGV and CKKS.
7The SEAL library release 3.7 does not offer the evaluation-at-index

functionality, and only supports the noise value evaluation for BFV.
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5.2 ModDiv for BFV and BGV

In order to support a deeper circuit in the tests, we set the
encyption parameters by n= 8,192, t = 65,537, log2 Q= 180
for BFV and n = 16,384, t = 65,537, log2 Q = 225 for BGV,
respectively, which is the Setting II in Table 3.

The modulo-division-masking (ModDiv) protocol also of-
fers a ciphertext expansion rate of 1. The difference lies in the
masking and unmasking overhead. The masking operations
take 4.1ms for 8,192 integers, and a scalar-multiplication-
based unmasking costs 9.5 ms or 9.8 ms for the BFV or BGV
test, respectively.

Table 3 exhibits the multiplication saving owing to ModDiv
in BFV and BGV. For k-1 times of ciphertext-wise multipli-
cations (or multiplication then relinearization, denoted by
(k−1) · (ct× ct)∗ in Table 3), the straightforward BFV usage
takes (k− 1)·131.5 ms (or (k− 1)·132.1 ms, respectively),
which is reduced to 9.5 ms by ModDiv.

In addition, we compute the eight power of a cipher-
text (ct(x))8 and the product of eight ciphertexts Π8

i=1ct(xi).
These two tasks are common in any one or k variables, k de-
gree polynomials in an FHE computation request. In BFV,
invoking log2(k) = 3 times of multiplication renders the 8
power of the ciphertext, which takes 398.1 ms in total. When
x1, · · · ,xk are stored in an 8-size batch, 7 times of evaluation
at indexes and 7 multiplications cost 1219.4 ms in total. In
BGV, we could take the rotation way to compute Π8

i=1ct(xi)
if the messages are arranged in order in a batch, denoted by
Π8

i=1ct(xi)
∗ in Table 3. The multiplication production tasks

in BGV take several hundreds of milliseconds or seconds.
ModDiv prepares masked x̃k or Πk

i=1x̃i outside an FHE
scheme. The optimized computation (a single plaintext-
ciphertext multiplication) overhead is 9.5 ms or 9.8 ms for
computing both (ct(x))8 and Π8

i=1ct(xi) in BFV or BGV, re-
spectively. The time reduction is considerable.

Similarly, Table 5 presents the introduced noise volume of
the straightforward FHE usage and our protocol. Although
a scalar multiplication requires 21 bits noise in our protocol,
which is still much smaller than the one to compute (ct(x))8

(86 bits) and Π8
i=1ct(xi) (87 bits) in BFV. For a larger k value,

the noise reduction by our protocol would also increase.

5.3 XOR-masking for CKKS and FHEW

We test our XOR-masking HEAD protocol for CKKS and
FHEW, similarly selecting the cases for an 8,192-size batch
and 8,192 unbatched ciphertexts.

Table 4 shows our storage optimization compared with
the straightforward CKKS usage. The CKKS encryption pa-
rameters are configured by n = 16,384, log2 Q = 150, and
we consider 16-bit fixed-point real numbers, and 8 bits rep-
resent the fraction part. When the batch size is 8,192, Trans
(Step 1 in Fig. 6), i.e., generating {ri} and computing x j

i ⊕ r j
i ,

costs 253 µs in total. The straightforward CKKS unbatched

Table 5: Noise for ModSub and ModDiv HEAD (BFV param-
eters: n = 8,192, t = 65,537, log2 Q = 180)

Scheme Task
Straightforward ModSub or

FHE noise ModDiv noise

BFV

ct+pt < 1 bit < 1 bit
ct+ct < 1 bit

< 1 bit
pt ·ct 21 bit

∑
8
i=1 ct(x) 3 bits

∑
8
i=1 ct(xi)

∗ 5 bits
(ct(x))8 86 bits

21 bits
Π8

i=1ct(xi)
∗ 87 bits

Table 6: Computation optimization for XOR-masking HEAD
protocol (128 bits security for FHEW; XORs or XNORs: the
computations for ⊕k

i=1ct(xi) or �k
i=1ct(xi), respectively)

Scheme XORs XNORs
Straightforward FHEW (k−1)×1.71 s (k−1)×1.70 s

XOR-masking HEAD 2 µs 2 µs

or batched ciphertext expansion rates are 525,872.5 and 64.2,
respectively. While XOR-masking for CKKS still keeps a
ciphertext expansion rate of 1. The computational overhead
to unmask the 8,192 masked messages is relatively higher
than the operations in other protocols, but is still reasonable,
which consumes around 289.4 ms in total 8.

The implemented FHEW scheme in PALISADE only sup-
ports unpacked computations and symmetric encryption 9. We
configure the 128 bits security and leave other parameters as
automatic recommendations. Table 4 shows that our protocol
decreases the ciphertext expansion rate from 4141 B

1 bit = 33,128
to 1. The unmasking operation in the symmetric version of the
XOR-masking protocol (step * in Fig. 7) reverses the value of
ct(ri) according to the value of the masking x̃i. Each cipher-
text NOT operation takes 2 µs. If an 8,192-size masked vector
{x̃i} are all value 1, Table 4 shows the worst case that the
unmasking operations take 8,192×2µs. Our XOR-masking
protocol also has a significant computation optimization for
one or more ciphertext-wise XOR and XNOR operations. For
the tasks of ⊕k

i=1ct(xi) and �k
i=1ct(xi), the overhead reduces

from (k−1)·1.7s to 2µs.

8The computations include sixteen times of encodings, scalar multiplica-
tions, and additions.

9Another Boolean FHE library, tfhe [18] also only supports unpacked
computations and symmetric encryption in the 1.0 version (https://tfhe.
github.io/tfhe/releases.html).
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6 Conclusion

In this paper, we presented HEAD, a generic FHE-based out-
sourced computation protocol for compact storage and ef-
ficient computation. We provide three HEAD instantiated
protocols for different types of input messages. Our protocols
accomplish a ciphertext expansion rate of 1 for storage and
our experiments show the significant computation time and/or
noise optimization for several evaluation functions.
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