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Abstract. We show how to construct a threshold version of stateful hash-based signature schemes like
those defined in XMSS (defined in RFC8391) and LMS (defined in RFC8554). Our techniques assume
a trusted dealer and secure point-to-point communications; are efficient in terms of communications
and computation; and require at least one party to have a large (but practical) amount of storage.
We propose the addition of an untrusted Helper to manage the large storage required without being
given access to any secret information. We prove the security of our schemes in a straightforward way,
reducing their strength to that of the underlying hash-based signature scheme. Our schemes are quite
practical, and substantially decrease the risk of accidental key reuse in hash-based signature schemes.

1 Introduction

Hash-based signatures[13, 15, 16] (HBS) are an old technology that is making a comeback due to
uncertainty about which digital signature algorithms will ultimately resist attack by quantum com-
puters. In recent years, several practical proposals for hash-based signatures have been published,
includingSphincs[3], Gravity-Sphincs[1], and Sphincs+[11]. Additionally, NIST has published require-
ments for using stateful hash-based signatures safely[6].
Hash-based signatures are built from two different primitives:
1. A one-time signature scheme: a signature construction that allows only one signature per key;

reusing a key leaks enough information to allow forgery of many other signatures with the key.
(Some schemes, such as [18], allow a small number of signatures before leaking enough information
to allow forgeries.)

2. A Merkle tree that contains a list of 2d one-time keys, and allows an efficient proof that a given key
is in the list. A Merkle tree has a single hash value (its root) that can be given to people to allow
this proof.

Hash-based signatures consist of both a one-time signature on the actual message being signed and a
Merkle tree path to prove that this one-time key is in the list of one-time keys owned by the user. In
the rest of this article, we will refer to the collection of 2k one-time keys, hashed by the Merkle tree, as
a composite key. The composite public key is the root of the Merkle tree.
Practical hash-based signature schemes can be classified into stateful schemes, where the signer keeps
track of which one-time keys have been used so far, and stateless schemes, where the signer chooses a
one-time (or few-time) key at random for each signature. Both kinds of hash-based signatures have a
maximum number of signatures allowed for a given composite public key.
A threshold signature[7, 8, 19] is a signature scheme in which the private key is split among n trustees,
and some subset of k trustees (where 2 ≤ k ≤ n) must work together to sign a message. We refer to
such a subset of k trustees as a quorum. Some threshold signature schemes require a trusted dealer to
generate and split up the signing key into shares; others can avoid this necessity. Our schemes require a
trusted dealer.
Typical proposals for threshold signature schemes have been based on an underlying signature scheme,
such as ElGamal or RSA. The threshold property is founded on exploiting homomorphic properties
of the underlying signature scheme. Hash-based signature schemes lack such convenient homomorphic
properties. To the best of our knowledge, hash-based signature schemes have not yet been considered as
an underlying signature scheme for threshold signature schemes, though in [2], stateful hash-based
group signatures were introduced. Their technique is similar to the “sharding” used in our schemes, as
described below.



1.1 Our Results

Starting with an existing stateful hash-based signature scheme, such as LMS or XMSS, we provide
practical techniques to split the private key material among n trustees, in order to construct the following
mechanisms:

1. An n-of-n signature scheme, in which all n trustees must cooperate to create a signature.
2. A k-of-n signature scheme, in which any k of the n trustees may cooperate to create a signature.
3. A coalition signature scheme, in which any set of coalitions of trustees defined when the scheme

was set up can cooperate to create a signature, but no signature can be formed by any subset of
trustees that does not make up (or contain) a coalition.

In all three cases, the resulting signatures are verified in the same way as ordinary hash-based signatures–
the exact same verification code for an existing HBS scheme can be used for verifying our signatures.
In fact, there is a trusted instance, the “dealer”, who generates the public key and the data for the
trustees and could just as well serve as a single signer, without involving the trustees. Our scheme could
thus also be viewed as a proxy signature scheme, where the holder of secret signing keys delegates4

signing capabilities to a group of trustees, in which the delegator (aka dealer) D defines what subsets of
the trustees are required to create valid signatures. The verifier will not observe any difference, since
signatures generated by D itself are identical to signatures jointly generated by groups of trustees
appointed by D.
We describe our techniques for Winternitz signatures (as in W-OTS+[10], XMSS[5, 9], and LMS[14]),
but they can be easily applied to Lamport signatures as well.
Our techniques are efficient in computation and communications, but they require substantial memory.
In order to make the scheme more practical, we introduce the notion of the Helper. The Helper can be
implemented as a participant in the protocol, but can also be implemented via a cloud storage service,
shared access to a large set of files, or even a physically distributed DVD or other large memory store.
In its most general form, the Helper is just a large constant public bitstring.
All of our techniques require a trusted dealer to generate and distribute the initial shares of the scheme.
(A natural case where this is reasonable is when the owner of a signing key sets up a threshold scheme
to protect the key from loss or compromise in the future.) As a consequence of the need for a trusted
dealer, our techniques will not work with tree-of-tree variants of these signature schemes[4], nor with
stateless hash-based signatures.
For a given number of signatures that must be available to each coalition, the setup time, Helper storage
requirements, and signature length in our schemes all scale linearly in the total number of coalitions
that can sign a message. In an n-of-n scheme, there is only one coalition, no matter how many trustees
there are. In a k-of-n scheme, there are

(
n
k

)
coalitions. This imposes practical limits to the choices of

k, n that our scheme can support, but still allows a wide range of such choices of practical use. For
example, a 3-of-5 threshold or 2-of-45 threshold signature scheme are quite practical.
The security of our n-of-n, k-of-n, and coalition signatures directly directly relate to the security of the
underlying hash-based signatures: An attacker who can forge a signature in our scheme without access
to a full coalition of trustees can also forge signatures in the underlying hash-based signature scheme
with only negligibly lower probability of success. (See Appendix B.).

1.2 Impact

Our techniques potentially solve the greatest risk associated with stateful hash-based signatures: the
possibility of accidentally reusing a one-time signing key due to some attack, hardware failure, or other
error. When a coalition of k trustees agree to sign a message, they must all sign with the same key5; no
honest trustee will go along with reusing a key. Instead of a single device failure leading to disaster,
multiple devices must fail in the same way at the same time to lead to disaster.
Additionally, many widely-discussed applications of stateful hash-based signatures, such as signing
firmware updates for long-lived systems, will benefit from both the security and the error-tolerant

4 Note that the delegator would have to take care to avoid reuse of any signing keys.
5 Reusing a one-time key in a stateful hash-based signature scheme potentially allows an attacker to sign arbitrary
messages with that key.
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properties of threshold signatures. For example, using a 3-of-5 threshold signature scheme in a high-value
firmware-update-signing application means that a damaged or compromised signing device need not
lead to disaster.

1.3 Guide to the Paper

The rest of the paper is organized as follows: Section 2.5 introduces the notation we use, and defines
some conventions. In Section 3, we show how to construct n-of-n stateful hash-based signatures. In
Section 4, we extend this to k-of-n threshold signatures and more general coalition signatures. Coalition
signatures are a generalization of threshold signatures that natively support a wide range of different
signing coalitions rather than just k-of-n coalitions. In Section 6, we summarize our results and discuss
possible future work. Appendix B provides a formal analysis of our security claims.

2 Notation and Conventions

2.1 Signatures, Coalition Signatures, and Threshold Signatures

A signature scheme (generate, sign,verify) consists of three algorithms:
1. a randomized key generation algorithm generate, which chooses a random key pair (X,Y ) =

generate(), where Y is the public key, and X the secret key.
2. a signing algorithm, sign, which, given the secret key X and a message M , computes a signature

σ = sign(X,M),
3. and a verification algorithm verify, which takes the public key Y , the messageM , and the signature

σ and either accepts or rejects the triple (Y,M, σ).
The signature scheme is sound, if and only if

verify(Y,M, sign(X,M)) = True

for all messages M and all matching secret/public key pairs (X,Y ).
Assume the adversary knows the public key Y , but not the secret key X. Also allow the adversary
to choose messages M1, M2, . . . , and receive signatures σ1, σ2, . . . , with σi = sign(X,Mi). The
signature scheme is secure (w.r.t. chosen messages), if the adversary cannot feasbibly find a pair
(M,σ) 6∈ {(M1, σ1), (M2, σ2), . . .}, such that verify(Y,M, σ) holds.

When running a signature scheme, at least two parties are involved, a signer and a verifier. The signer
knows the secret key Y and, when willing to sign a message M , creates the signature σ = sign(X,M).
Typically, the signer will also be the party that has run the key generation algorithm, though it may
also delegate this task to some trusted party. The verifier is given the public key Y , a message M , and
the signature σ. The verifier is thus able to run the verification algorithm.

For threshold and coalition signatures, the signer is split up into different parties: a dealer and n trustees.
The dealer runs the key generation algorithm and splits the secret key X into shares X1, . . . , Xn, one
share for each trustee. In this paper, we assume an honest dealer6. The signing algorithm sign is
implemented as a joint protocol to be exectued by one or more trustees.
For k ≤ n, a k-of-n threshold signature scheme allows any subset of at least k trustees to run the signing
protocol and create a valid signature.7 The security requirement is that for any group of less than k
trustees, it is infeasible to create a valid signature.
A coalition signature scheme is a generalized threshold signature scheme. I.e., assuming a set C of
coalitions c ∈ C, c ⊆ {1, . . . n}, any coalition c ∈ C of trustees (or a superset of c, cf, Footnote 7) can
create a valid signature, while no group of trustees that is not a superset of a coalition can do so. For

6 A natural situation is that the dealer is the owner of the key, setting up a coalition or threshold scheme to delegate
its signing capability to subsets of trustees, and to protect the key from loss or compromise in the future. Being the
owner of the key, the dealer has no incentive to cheat.

7 In the current paper, all signing protocols will assume exactly k trustees. However, if there are more than k trustees,
nothing stops any additional trustees from taking part in running the signing protocol by doing nothing at all.
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example, Alice may be allowed to sign with either Bob, Carol, or Dave. Alternatively, Bob, Carol and
Dave could jointly sign without Alice. But when only two of Bob, Carol and Dave join to sign, they
cannot feasibly create a valid signature; neither can Alice on her own. If we identify Alice, Bob, Carol,
and Dave by 1, 2, 3, and 4, respectively, then valid coalitions are {1, 2}, {1, 3}, {1, 4}, and {2, 3, 4}.

2.2 Notation

We introduce the following general notation:

– α is used throughout the paper to generically represent any variable that might be split into shares,
randomly sampled, sent between trustees, etc.

– A bitstring α of length ` is an element α ∈ {0, 1}`. We write ε for the bitstring of length 0.
– If α ∈ {0, 1}` and β ∈ {0, 1}m, then α ‖ β is the concatenation of α and β and thus in {0, 1}`+m.
– α←$ {0, 1}` means that α gets assigned an `-bit string chosen uniformly at random. When
α = α0, . . . , α`−1 is a bitstring of length `, we interchangeably interpret α as an integer α =∑

0≤i<`−1 2
`−iαi ∈ {0, . . . , 2` − 1}, with α0 the most significant (i.e., leftmost) bit, and α`−1 the

least significant bit.
– α̂ = A transmitted value for α that may or may not be correct.
– αt is trustee t’s share of α. Superscripts in this paper usually refer to shares, rather than to

exponentiation.
– α 6=t = All trustees’ shares of α except trustee t’s share.
– αH is the share of α held by the Helper.
– α⊕ is the XOR of shares 1 . . . n (that is, the XOR of all shares except that of the Helper).
– α+ = The XOR of all shares of α held by the attacker.
– απ = is the instance of α defined for one-time key π.
– αall = are the instances of α defined for all one-time keys in the composite key.
– When A is an array, A[i][j] is the i, jth component of the array.
– PRFK(x, n) is a pseudorandom function that takes key K and input x, and produces an n-bit

pseudorandom bit string as output. See Appendix B for the formal definition of a PRF used in this
paper.

– An input to PRF or hash is sometimes written as a tuple, such as (a, b, c), where the values included
may be integers or bitstrings. We assume that the tuple is encoded in an unambiguous way into a
bitstring for PRF or hash to process.

The following notation is used specifically in hash-based signatures.
– h = hash(M) is the `-bit hash value of a message M ∈ {0, 1}∗.
– h = hash(ρ,M) is the `-bit hash value of prefix ρ ∈ {0, 1}∗ and message M ∈ {0, 1}∗
– ` is the output length of hash, in bits.
– A one-time signature scheme is a triple (generate, sign, and verify) of algorithms, see Section 2.3.
– A Merkle tree is a balanced binary tree with leaves Vπ. See Section 2.4.
– π ∈ {0, 1}d is the unique identifier of a one-time signing key. Equivalently, it is the index of a leaf in

a depth-d Merkle tree whose root is the public key of the hash-based signature scheme.
– PATHπ is the Merkle-tree path to one-time verification key π.
– σπ(h) is the one-time signature of hash h under one-time key π. Sometimes as a shortcut, we write
σπ(M), where h = hash(M).

– The full signature is usually written as PATHπ, σπ(h).
– For Winternitz signatures, we have:
• w = the number of bits encoded in each hash chain
• a = the number of w-bit components needed to encode the hash
• c = the number of w-bit components needed to encode the checksum
• C = the maximum value of the checksum

– Xπ is a two-dimensional array containing the private one-time signing key π. For Winternitz
signatures, note that Xπ[i][0] is a (pseudo)random starting value, while for j > 0, Xπ[i][j] =
hash(Xπ[i][j − 1]).

When discussing our threshold hash-based signatures and semi-blind signatures, we use some additional
notation and terminology:
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– For a threshold scheme, a dealer is the entity that sets up the scheme initially. A trustee is one
of the entities allowed to hold a share of the signing key. A quorum of trustees is a set of trustees
sufficient to construct a signature. See Section 2.1. The Helper is an additional trustee that is
sometimes used, with high memory requirements and limited trust.

– n is the number of trustees. Trustees are numbered from 1, so that when there are three trustees,
they are trustees 1, 2, and 3.

– t is often used to denote a particular trustee. In the security analysis, t is used to indicate the one
uncompromised trustee.

– σtπ(h) is the t-th share of the signature σπ(h). σt(h) is produced by signing the hash h with trustee
t’s share of the one-time signing key. σπ(h) =

⊕
all t σ

t
π(h)

2.3 One-time Signatures

A one-time signature scheme (generate, sign,verify) consists of three algorithms:
1. a randomized key generation algorithm generate, that chooses a random key pair (Xπ, Yπ) =

generate(π), where the number π serves as an identifier for the key, Yπ denotes the public key,
and Xπ the secret key,

2. a signing algorithm, sign, which, given the secret key Xπ and a value h ∈ {0, 1}`, computes a
signature σπ = sign(Xπ, h),

3. and a verification algorithm verify, which takes the public key Yπ, the hash h, and the signature
σπ and either accepts or rejects the triple (Yπ, h, σπ). The signature scheme is sound, if and only if

verify(Yπ, h, sign(Xπ, h)) = True

for all hashes h and all matching secret/public key pairs (Xπ, Yπ).
We require a one-time signature scheme (generate, sign,verify) to be secure against a chosen-h
existential forgery attacks: The adversary is given Yπ, then the adversary chooses one single value
h ∈ {0, 1}` and requests σ = sign(Xπ, h) from the challenger. It is then required to be infeasible for the
adversary, to find any (h′, σ′) 6= (h, σ), with verify(h′, σ′) = Yπ.
In the current paper, the secret key Xπ is actually a two-dimensional array of components, and we will
address a single component as Xπ[i][j].
To sign arbitrary messages M ∈ {0, 1}∗, we will sign and verify the corresponding message hash
h = hash(M). If the hash function hash is collision resistant and the one-time signature scheme is secure
as required above, than this new scheme is secure against chosen-message existential forgery attacks.
The one-time signature schemes we consider in the current paper have the following properties:
– The verification procedure can be tweaked by taking only two inputs: the hash h and the signature
σπ. The public key Yπ, which would be the other input for the general verification procedure, is
actually computed as Ŷπ = verify(h, σπ). Verification succeeds if Ŷπ = Yπ. That is, the signature
scheme is sound if and only if

verify(h, sign(Xπ, h)) = Yπ.

– Our one-time signatures are hash-based, and we will in general use the same hash function hash
that we also employ to hash messages of arbitrary length to a fixed length of ` bits.8

– If we use one secret key Xπ to sign two different hashes h and h′ 6= h, it actually becomes easy for
the adversary to generate an existential forgery (except, possibly, when the Hamming difference
between h and h′ is exactly 1).

– The sign algorithms we consider are deterministic. Thus, we are free to sign the same h more than
once, without endangering the security of our one-time signature scheme.

In this paper, we will focus on Winternitz one-time signatures, since this is the most commonly used
hash-based signature scheme. However, we note that our techniques are easily adapted to Lamport
signatures as well.
For the hash-based one-time signature schemes that we consider in this paper, the private key consists of
a set of secret components, and the public key consists of the result of hashing those secret components

8 Note that the requirements for hashing arbitrary-length messages and for other applications of hashes in a hash-based
signature scheme are somewhat different.
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in some way. Signing a message involves hashing the message and using the bits of the hash to choose
which secret components to reveal. Verifying a message involves hashing the message and using the bits
of the hash to determine which secret components should have been revealed, then hashing them to
verify that the signature was formed correctly.

Memory Requirements A naive implementation of Winternitz signatures would require a lot of
storage for the one-time keys. For example, a typical parameter set for Winternitz signatures would
require about 32 KiB; storing 216 one-time keys would require around 2 GiB.
Instead of generating these values randomly, they are typically generated using a pseudorandom function
such as HMAC[12]. This allows the signer to regenerate each one-time signing key on the fly as needed.
For example, instead of setting

X[i][0]←$ {0, 1}256

we can set

X[i][0]← PRFK((π, 1, i, j), 256)

This permits the signer to generate and store only the values it needs for a given signature. Any practical
implementation of a hash-based signature scheme will use some variant of this technique to save memory.

Random Prefixes A signature is always computed on a hash, h, typically as the hash of a message
M : h ← hash(M). This requires hash to be collision resistant. As an alternative option, with fewer
requirements on the hash function, we consider a prefix ρ, which must be unpredictable for the party
choosing M . The signature is computed on h← hash(ρ,M), where hash somehow incorporates ρ into
the hashing of M in a way that provides security even when hash is vulnerable to collision attacks.
(While we refer to ρ as a prefix, many ways exist to incorporate the prefix into the hash–notably LMS
and XMSS use quite different techniques. We will use the notation hash(ρ,M) for any such technique.)
Note that generating ρ in a threshold signature needs to be done with care to avoid losing the additional
security guarantees it provides. A technique for doing so is described below.

2.4 Multi-Time Signatures from One-Time Signatures and Merkle Trees

A one-time signature scheme isn’t very useful in practice. To create many signatures (up to 2d), we
combine one-time signatures with a balanced binary tree9 of depth d. Every leaf Vπ = hash(Yπ) with
index π ∈ {0, . . . , 2d − 1} is the hash of a public one-time key Yπ. The internal nodes are defined
recursively; for x ∈

⋃
i∈{0,...,d−1}{0, 1}

i,

Vx = hash(Vx‖0 ‖ Vx‖1)

with the root V = Vε = hash(V0 ‖ V1). The three algorithms of a signature scheme are the following:
– The composite key generation algorithm generates the 2d one-time key pairs (Y0, X0), . . . , (Y2d−1,
X2d−1) and the corresponding Merkle tree. The composite public key PK = V is the root of the
Merkle tree. The composite secret key consists of all the secret one-time keys X0, . . . , X2d−1.

– The composite signature generation for hash h ∈ {0, 1}` consists of the following steps:
1. pick a previously unused10 index π ∈ {0, . . . , 2d − 1},
2. compute σπ(h) = sign(Xπ, h), and
3. compute the Merkle-tree path

PATHπ = PATHb0,...,bd−1 =

(
π, Vb0,b1,...,bd−2,(1−bd−1), . . . , Vb0,(1−b1), V(1−b0)

)
.

9 A more general definition would also consider a-ary and unbalanced trees – but we don’t need this in our context.
10 All composite schemes we consider are stateful, i.e., the signer knows which secret keys Xπ′ have already been used,

and which are currently unused.
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Note that PATHπ holds the information to compute the hashes on the path from the leaf Vπ to
the root V . Computing the hashes and then comparing the result to V verifyies that Vπ is the
leaf at position π in the Merkle-tree with root V .

The signature is the pair Sπ = (σπ(h), PATHπ).11

– The composite verification procedure takes the public key V (the root of the Merkle tree), the hash
h and the signature Sπ = (σπ(h), PATHπ). It performs the following two operations:
1. Call the one-time verification procedure to generate Yπ = verify(h, σπ),
2. and then accept if Vπ = hash(Yπ) is the leaf at position π in the Merkle tree with root V .

Stateful hash-based signatures are constructed from a Merkle tree whose leaves are all one-time signature
keys. We refer to the full set of these one-time keys as the composite key, and the root of this Merkle
tree as the composite public key, written as PK.
The following lemma is almost trivial but useful:

Lemma 1. When signing any two messages with hashes h and h′ using different keys π, π′, the
corresponding signatures Sπ and Sπ′ will be different: Sπ 6= Sπ′ . This holds even if h = h′.

Proof. When signing a message, we pick a previously unused π, so that π 6= π′ holds. Consequently
PATHπ 6= PATHπ′ and Sπ 6= Sπ′ .

2.5 Diagrams

We use diagrams to explain protocols, security definitions, and security reductions. Our protocols often
involve a single entity sending or receiving messages to/from several trustees in parallel. We use the
following conventions to convey this in our diagrams:

1. Our n-of-n, k-of-n, and coalition signatures always start from a single initiating trustee. The
responding trustees are shown in a single column. For readability, we always make trustee 1 the
initiating trustee. However, any trustee can take that role.

2. Our signature protocols involve sending the same message from the initiating trustee to the
responding trustees, and the initiating trustee receiving very similar messages (shares of some secret
value) back from each. Messages are assumed to go over a private, authenticated, replay-protected
point-to-point channel, using pre-shared symmetric keys between the trustees. However, we do not
assume a broadcast channel; Trustee #2 has no way to know what message Trustee #3 has received.

3. Messages are shown as single arrows. When it isn’t clear, the text under the arrow may specify
when this message is going to/coming from many different trustees at once.

3 Stateful Hash-Based n-of-n Signatures

In this section, we explain the techniques to design hash-based threshold and coalition signatures in the
following steps:

1. We show how to split a single one-time signing key into n shares, and how to do n-of-n Winternitz
signatures using those shares.

2. We define a space-inefficient but simple way to construct an n-of-n version of a stateful hash-based
signature scheme.

3. We refine the system into a more practical one, minimizing the memory requirements on trustees
while adding a new role–the “Helper”–to handle memory requirements without needing to be trusted.

11 Technically, there are two “signatures”: The full signature Sπ from the multi-time signature scheme and the one-time
signature σπ from the underlying one-time signature scheme. Also note that the verify procedure from Winternitz
actually computes the one-time public-key Yπ = verify(h, σπ).
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3.1 Splitting One-Time Signing Keys

As discussed above, a stateful HBS consists of two elements: A one-time signature scheme and a Merkle
tree of one-time keys. Each one-time signing key may sign a single message securely; if a one-time key is
ever used to sign two different messages, an attacker may be able to forge signatures from that one-time
key.
For Winternitz signatures, the one-time private key consists of an array of hash chains. These can be
represented as a two-dimensional array of secret values, X[0 . . . a−1][0 . . . 2w−1]. Each X[i][0 . . . 2w−1]
consists of an array of 2w values, constructed so that

X[i][j] =

{
A random starting value j = 0

hash(metadata, X[i][j − 1]) otherwise

In the rest of this paper, we ignore this structure, and simply treat each one-time signing key as a
two-dimensional array.
In fully specified HBS standards, metadata is incorporated into each hash function call, to prevent
multi-target attacks. Our techniques are compatible with a wide variety of ways this metadata might
be specified and incorporated into the hash, as with the LMS and XMSS standards. We ignore these
details here.
Suppose we have a one-time signing key, represented as a two-dimensional array, X. We can split a
one-time private key into n shares in a very straightforward way: For every possible value of i, j, we
choose the shares of trustee t, Xt[i][j], so that

X[i][j] =
⊕
all t

Xt[i][j]

For compactness, we can write X to mean the whole two-dimensional array of secret values (the whole
one-time signing key) and Xt as the whole two-dimensional array of shares held by trustee t. If we want
to specify which one-time private key we’re discussing, we will subscript it: Xt

π. Xt
all represents trustee

t’s shares of all the one-time signing keys in the composite key.

3.2 S_Sign: Signing with Shares

Suppose we have constructed t shares of the one-time private signing keys so that they XOR together
to produce the original one-time private keys. We can now define the S_Sign algorithm. This algorithm
takes a share of the one-time signing key and the hash of the message to be signed and returns a share
of the signature. The shares of the signature can be recombined into the full signature by XORing them
all together.
In Algorithm 1, we show the S_Sign algorithm, alongside the native signing algorithm. Note that the
algorithms are identical except for the inputs–S_Sign gets a share of the one-time key, while the native
signing algorithm gets the full one-time key.
As described above, we represent Winternitz signatures as an array of a + c values, where a is the
number of hash chains used to encode the Winternitz hash, and c is the number used to encode the
checksum. For example, when ` = 256, typical values for w = 4 would be a = 64, c = 3; the resulting
signature consists of 67 `-bit strings. The one-time private key consists only of the two-dimensional array
X. In practice, implementations of Winternitz signatures compute the entries in this two-dimensional
array as needed rather than storing them in an array.
When the n shares of the signature are recombined,

σπ(h)←
⊕
all t

S_Sign(Xt
π, h)

we get a normal Winternitz signature, that can be verified by existing code. We can prove correctness in
a straightforward way.

8



1: function S_Sign(Xt
π, h)

// t = which trustee this is, 1..n

// h = hash(message), a = d`/we

// C = a× (2w − 1), c = dlg(C)/we
2: splitw h into b[0 . . . a− 1]← h
3: for i← 0 . . . a− 1 do
4: σtπ[i]← Xt

π[i][b[i]]

// Compute Checksum
5: S ← C −

∑a−1
i=0 b[i]

6: d[0 . . . c−1]← S split into w-bit chunks
7: for i← 0 . . . c− 1 do
8: σtπ[i+ a]← Xt

π[i+ a][d[i]]

9: return σtπ(h)

1: function Sign(Xπ, h)
// Full Winternitz signature

// h = hash(message), a = d`/we

// C = a× (2w − 1), c = dlg(C)/we
2: splitw h into b[0 . . . a− 1]← h
3: for i← 0 . . . a− 1 do
4: σπ ← σπ ‖ Xπ[i][b[i]]

// Compute Checksum
5: S ← C −

∑a−1
i=0 b[i]

6: d[0 . . . c−1]← S split into w-bit chunks
7: for i← 0 . . . c− 1 do
8: σπ[i+ a]← Xπ[i+ a][d[i]]

9: return σπ(h)

Algorithm 1: Winternitz threshold signing algorithm vs original signing algorithm

Lemma 2 (S_Sign Lemma). Let X be the one-time private signing key for a Winternitz signature
and X1...n be shares of the private key such that, for all i, j

X[i][j] = ⊕nk=1X
k[i][j]

Then for any hash value h,
σπ(h) = ⊕nk=1S_Sign(X

k
π , h)

Proof. Given a one-time signing key Xπ, a Winternitz signature consists of revealing a subset of
components of Xπ. By definition, the shares X1...n

π satisfy

X[i][j] =
⊕
all t

Xt[i][j]

For each component of Xπ revealed by the Winternitz signing algorithm, the corresponding share of
that component is revealed by S_Sign. Thus,

σπ(h) = ⊕nk=1S_Sign(X
k
π , h)

ut

For compactness, in the rest of this paper, we will often write σtπ(h) for S_Sign(Xt
π, h). We will

also sometimes write σπ(M) or σtπ(M) instead of the more correct but longer σπ(h) or σtπ(h), where
h = hash(M) or h = hash(ρ,M). When the hash and message being signed is clear from context, we
will sometimes simply write σ for the one-time Winternitz signature, or σt for trustee t’s share of the
one-time Winternitz signature.

3.3 Multiple Keys

S_Sign allows us to do an n-of-n signature for a single one-time key. However, a stateful HBS scheme
requires the ability to do this for many keys and to produce a Merkle tree path for the one-time public
key whose corresponding private key is used to sign a message.
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In order to get a secure n-of-n stateful hash-based signature scheme, we need each trustee to keep track
of which keys it has used and to refuse to reuse any key12. In the rest of this paper, unless we say
otherwise, we will assume that the keys are used in a completely rigid, sequential order.
Producing the paths for each signing key in a standard HBS scheme is done by recomputing parts of the
Merkle tree as needed, and a fair bit of cleverness has gone into efficient algorithms for doing so. (For
example, see [20].) However, this can’t be done by trustees holding shares of keys. A simple solution is
simply to have each trustee store an XOR share of the Merkle tree path for each key in the tree13.
Let π be the index used to indicate the current one-time key. Then, Xπ is the private one-time signing
key for π (and is a two-dimensional array of values), σπ(h) is the signature of hash value h under
one-time key π, and PATHπ is the Merkle-tree path of the corresponding one-time public key. We indicate
shares of all these by a superscripted number or variable: Xt

π, PATHtπ, and σtπ(h) are trustee t’s share of
one-time private key π, the Merkle tree path of key π, and the signature under key π of h.
This lets us specify the full n-of-n signing protocol, given that the private keys and paths have somehow
been split out into n shares that all XOR back together into their original values.
The process for producing an n-of-n signature appears in Protocol 1.
For ease of exposition, we assume that the initiating trustee is trustee 1, and that the responding
trustees agree to sign the message. In reality, any trustee may initiate a signature, and the responding
trustees may refuse a signature (returning ⊥ to the initiating trustee) either because they are unwilling
to sign the proposed message or because they believe the key-id has already been used. The initiating
trustee must verify the resulting signature before relying on it being correct.

Initiating Trustee Responding Trustees

π,M−−−−−−−−−−−−−−−−−−−−−→
to responding trustees

– h← hash(M)
– Each trustee t com-

putes:
σtπ ←S_Sign(Xt

π, h)

PATHtπ, σ
t
π or ⊥

←−−−−−−−−−−−−−−−−−−−−−
from each responding trustee t

– h← hash(M)
– σ1

π ← S_Sign(X1
π, h)

– σπ ←
⊕

all t σ
t
π

– PATHπ ←
⊕

all t PATH
t
π

– Verify signature

Protocol 1: n-of-n Signature Protocol

12 In a real-world system, there also would need to be a mechanism for recovering after the trustees get out of synch.
We will mostly ignore this engineering detail for the rest of this paper and assume that the trustees in the n-of-n
scheme are always in agreement about which key they are going to use next. Note that in our protocols, the key-id
to be used is included in the initial message of the protocol, so the trustees can quickly determine when they are
out-of-synch.

13 Having each trustee store a share of the Merkle tree path also simplifies the security proof for these schemes, as
discussed below.
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3.4 Generating the Shares: PRFs and the Helper

In our scheme, we assume a trusted dealer, who generates the initial set of one-time keys, constructs the
Merkle tree for each one-time key, and distributes shares of the key material to the trustees.

Approach to Generating Shares The simplest way to generate the shares for a value α is to
make the first n − 1 shares random, and the final share the XOR of all other shares XORed with α.
That is, we could do something like this for a value α that is to be split into n shares:

αt ←$ {0, 1}` for t← 1 . . . n− 1

αn ← α1 ⊕ . . .⊕ αn−1 ⊕ α

This would work, but would impose heavy memory requirements on the trustees. With commonly-used
Winternitz parameters, a single one-time key would require about 17 KiB, and a collection of 216

one-time keys would require about 2 GiB.
In existing HBS implementations, private keys are typically generated using a PRF call. We could use
the same trick. Then, to split a value α into n shares, we could do:

αt ← PRFK[t](label for α) for t← 1 . . . n− 1

αn ← α1 ⊕ . . .⊕ αn−1 ⊕ α

Again, this would work. And n− 1 trustees would escape the memory requirement. However, the nth
trustee would still require a large amount of storage. A practical system can be built this way, but
we prefer a different approach–one that allows all trustees to be identical. If we do, then we get an
additional output from splitting our values into shares, which we will call the Helper shares.

αt ← PRFK[t](label for α) for t← 1 . . . n− 1

αH ← α1 ⊕ . . .⊕ αn ⊕ α

We can think of the Helper shares as a kind of auxillary public bitstring that results from the process of
splitting the signing key into shares. As long as the initiating trustee has access to that public bitstring,
it can run the n-of-n signature protocol described above.

Generating Pseudorandom Shares In the rest of this paper, we use the convention of providing
the PRF (and sometimes other functions) a tuple as input, such as (1, π) or (2, π, i, j). We assume that
this tuple is encoded in an unambiguous way as a string, with each integer converted into a bitstring, so
that every distinct tuple yields a different bitstring. The job of our protocol is to define these tuples so
that each secret value is generated by exactly one PRF call. We will sometimes call these tuples labels.
The trustees’ individual shares for each one-time key are generated as follows:

For one-time key π and Trustee t:

PATHtπ ← PRF(K[t], (1, π), |PATHπ|)
Xt
π[i, j]← PRF(K[t], (2, π, i, j), `)

ρtπ ← PRF(K[t], (4, π), `)

φtπ ← PRF(K[t], (5, π), `× n)

Since these shares are generated using a PRF, each trustee requires only a very small amount of storage.
See Table 1 for a list of all the labels used in our schemes.
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domain variable use full label reference
1 PATH shares of PATH (1, π) this section
2 X shares of one-time private key (2, π, i, j) this section
4 ρ shares of prefix (4, π) 3.5
5 φ shares of prefix checksum (5, π) 3.5
10 φ computing check value for prefix (10, π, ρ) 3.5

Table 1. Labels used with a PRF to derive trustee shares and check values in our scheme.

Deriving the Helper Shares We can now spell out the full process which the dealer uses to
generate the shares. The individual trustees’ shares are entirely determined by their PRF keys and the
choice of key-id π; the following algorithm produces the Helper shares. We assume that the dealer starts
by generating the entire set of one-time signing keys, their corresponding public keys, and the Merkle
tree path for each one-time key. We also assume the attacker starts out knowing each trustee’s PRF key.
The dealer then runs the following function to produce the Helper shares.

1: function PseudorandomShares(K[1 . . . n], Xall , PATHall , n)
// Note: K[i] 6= K[j] when i 6= j

2: for each key, π do
3: PATHHπ ← PseudorandomSplit(K[1 . . . n], PATHπ, (1, π), n)
4: for each component (i, j) of X do
5: XH

π [i][j]← PseudorandomSplit(K[1 . . . n], Xπ, (2, π, i, j), n)

6: return (PATHHall , X
H
all )

7: function PseudorandomSplit(K[1 . . . n], α, L, n)
8: αH ← α
9: for t← 1 . . . n do
10: αH ← αH ⊕ PRFK[t](L, |α|, |α|)
11: return (αH)

Algorithm 2: Splitting a Winternitz key into shares

At the end of this process, the trustees need only be given their keys and the set of values of π in
order to be able to rederive their shares, imposing an extremely small storage requirement. The process
also produces a set of Helper’s shares, which will be fairly large–about 2 GiB for a composite key that
supports 216 signatures.
To see why the Helper shares can be safely made public, consider an attacker who knows the shares of
trustees 2 . . . n. The attacker can determine

α = (αH ⊕ α2 ⊕ . . .⊕ αn)⊕ α1

However, since α1 is indistinguishable from a random value, this leaks no information about α.

The Helper The Helper shares require a lot of storage. In order to prevent the need for any of the
trustees to store these shares, we introduce the idea of the Helper–a minimally-trusted participant in
the protocol that provides a large amount of memory, but holds no secret data, and is not trusted to
decide whether or not to sign a message. The Helper’s entire role in the protocol is to respond to queries
by looking up the answers in the Helper shares, concatenating them, and sending the result back.
In the revised signing protocol (illustrated in Protocol 2), all messages go from or to the initiating trustee.
Messages to the responding trustees are sent to each responding trustee individually–the responses are
sent from each responding trustee back to the initiating trustee. The initiating trustee also communicates
directly with the Helper. This allows us to secure the communications in this protocol with pre-shared
keys, requiring only symmetric cryptography and quite limited storage for any reasonable number of
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trustees. For ease of exposition, we assume in the diagram that the trustees agree to the signature.
However, the responding trustees may reject a signature (returning ⊥) if they refuse to sign M or believe
the key-id to have already been used. By contrast, the Helper has no such option. (If corrupted, it could
refuse to respond or send garbage, but there is no valid reason for it to refuse a message.)

Initiating Trustee Responding Trustees Helper
Decide to sign M .

π,M−−−−−−−−−−−−−−−−→
to each responding trustee

h← hash(M)
σtπ ← S_Sign(Xt

π, h)

σtπ, PATH
t
π←−−−−−−−−−−−−−−−−−−−

from each responding trustee t
h← hash(M)

π, h−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

σHπ ← S_Sign(XH
π , h)

σHπ , PATH
H
π←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

σtπ ← S_Sign(Xt
π, h)

σπ ←
⊕
σ1,...,n,H
π

PATHπ ←
⊕

PATH1,...,n,Hπ

Verify signature

Protocol 2: n-of-n Signatures with Pseudorandom Shares and Helper

3.5 Prefixes and Masking: Protecting Against Collision Attacks

Most modern hash-based signature schemes incorporate an unpredictable prefix or mask into the hash
of the message. This ensures that even an attacker who can find collisions for the hash function cannot
attack the HBS scheme–instead, these schemes hope to base their security on the second preimage
resistance of the hash, or at least to retain security even against an attacker who can find collisions
against the hash.
Adding an unpredictable randomization parameter (called a prefix and labeled as ρ in the rest of this
paper) to an n-of-n signature scheme introduces a new problem: since we care about attacks by up to
n− 1 of the trustees against the signature scheme, if the security of the signature scheme relies on the
unpredictability of the prefix before the message is chosen, then we need a secure way for the trustees to
derive this value. The initiating trustee must specify the message to be signed before any subset of n− 1
trustees can determine the prefix, and it must not be possible for the dishonest trustees to convince an
honest trustee to accept an altered prefix.
Our solution is straightforward: When the shares are set up, the dealer generates the prefixes, using
whatever mechanism is consistent with the HBS being used. Then, for each one-time key π, the dealer
splits the prefix ρπ across the trustees just as it does the other secret components of the key, ensuring
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that no subset of n− 1 trustees can learn ρπ. The dealer also splits a check value, φπ, which allows each
trustee to efficiently check that ρπ is the correct14 prefix for one-time key π. φπ, in turn, is composed of
values that will allow each trustee to verify that the prefix is correct.
The signing protocol becomes somewhat more complicated–the requesting trustee must first send out
M ; all trustees respond with their shares of ρπ, φπ. The requesting trustee then sends out ρπ, φπ; each
responding trustee verifies that ρπ is the correct prefix for this one-time key and, if so, computes and
sends back its shares of the one-time signature on hash(ρπ,M). Once again, verification is identical to
that used for the underlying hash-based signature scheme with prefixes.
Note that we impose no restrictions on the choice of the prefixes, except that the dealer must know
them all at the time the shares are constructed and distributed to the trustees. Our scheme works with
both LMS[14] and XMSS[5, 9]. LMS leaves the generation of prefixes up to the implementation, while
XMSS generates its prefix (called KEY) based on information known when the key is generated.

1: function PseudorandomSharesPrefix(, ρall , Xall , PATHall , n)
// Requirement: K[i] 6= K[j] when i 6= j

2: for each key, π do
3: PATHHπ ← PseudorandomSplit(K[1 . . . n], PATHπ, (1, π), n)
4: ρHπ ← PseudorandomSplit(K[1 . . . n], ρπ, (4, π), n)

// Create the check value φ. Note that |φ| = n× `.
5: φπ = P_CHK(K[1 . . . n], π, ρπ)
6: φHπ ← PseudorandomSplit(K[1 . . . n], φπ, (5, π), n)
7: for each component (i, j) of X do
8: XH

π [i, j]← PseudorandomSplit(K[1 . . . n], Xπ, (2, π, i, j), n)

9: return (PATHH
all , X

H
all , ρ

H
all , φ

H
all )

// Called by dealer to construct all n check values for this prefix.
10: function P_CHK(K[1 . . . n], π, ρ)

// φ is an array 1 . . . n of `-bit strings.
11: for i← 1 . . . n do
12: φ[i]← PRFK[i]((10, π, ρ), `)

13: return φ

// Called by trustee to verify one check value for this prefix.
14: function P_VER(K, t, π, ρ, φ)

// Use the PRF to verify that the prefix matches the check value.

// t is which trustee is doing the verification; K is its PRF key.
15: if PRFK((10, π, ρ), `) = φ[t] then
16: return 1
17: else
18: return 0
19: function PseudorandomSplit(K[1, . . . , n], α, L, n)
20: αH ← α
21: for t← 1 . . . n do
22: αH ← αH ⊕ PRFK[t](L, |α|, |α|)
23: return (αH)

Algorithm 3: Splitting Winternitz shares and prefixes

The protocol for doing n-of-n signatures also becomes a bit more complex. The whole process is
illustrated in Protocol 3. Once again, for ease of exposition we assume that trustee 1 is the initiating

14 If the initiating trustee could learn or alter the prefix after sending the message to be signed, the security benefit
of the prefix would be lost. Specifically, an initiating who could find collisions on the hash function could get a
signature on some message not agreed on by the other n− 1 trustees in the coalition.

14



trustee, and that the responding trustees accept the proposed message. In reality, any trustee may
initiate the signature, and the trustees may reject the signature request by returning ⊥. Also, the
trustees will send ⊥ and abort the protocol if they do not agree with the value of ρ. Just as before, the
initiating trustee must verify the final signature before relying on it.

Initiating Trustee Responding Trustees Helper
Decide to sign M .

π,M−−−−−−−−−−−−−−−−→
to each responding trustee

ρtπ, φ
t
π←−−−−−−−−−−−−−−−−−−−

from each responding trustee t

π, 1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ρHπ , φ
H
π←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ρπ ←
⊕

all t,H ρ
t
π

φπ ←
⊕

all t,H φ
t
π

If not P_VER(π, ρπ, φπ), abort!

ρπ, φπ−−−−−−−−−−−−−−−−→
to each responding trustee

If notP_VER(π, ρπ, φπ):
abort!
Else:
h← hash(ρπ,M)
σtπ ← S_Sign(Xt

π, h)

PATHtπ, σtπ←−−−−−−−−−−−−−−−−−−−
from each responding trustee t

h← hash(ρπ,M)

π, 2, h−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
σHπ ← S_Sign(XH

π , h)

PATHHπ , σHπ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
σπ ←

⊕
all t,H σ

t
π

PATHπ ←
⊕

all t,H PATHtπ
Verify signature.

Protocol 3: Pseudorandom Share n-of-n Signatures With Prefix and Helper
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3.6 Can the Helper Censor Signatures?

In the above protocol, it is easy to see that the trustees can decide whether or not to stop running the
protocol based on not wanting to sign a given message. However, the Helper (by definition, an untrusted
party) must not have the power to decide which messages are to be signed. This is ensured by the
initiating trustee sending the Helper hash(ρ,M), rather than M . Because the Helper has no way to
know the value of ρ, it has no information about M , and so must respond without knowing the value of
M . The Helper15 can deny service, preventing any signatures from being constructed. However, the
Helper never learns what message is being signed, so it cannot exert control over which messages are
being signed.

3.7 Summary So Far

So far, we have developed a proof-of-concept n-of-n hash-based signature scheme, and refined it into a
much more practical one that incorporates random prefixes to support randomized hashing of messages.
The more practical scheme requires the assistance of an untrusted participant called the Helper (or
access to a large public string called the Helper shares) to handle the storage required by the scheme.
Next, we extend these schemes to k-of-n and coalition signatures.

4 Stateful Hash-Based k-of-n and Coalition Signatures

4.1 Overview

A major benefit of threshold signatures is the ability to combine split control (so that a single rogue
employee or compromised device cannot sign arbitrary messages) with redundancy (so that a single
device being lost, stolen, or destroyed doesn’t prevent future signatures). With n-of-n signatures, we get
split control; we still need to provide redundancy in the form of signatures that allow some incomplete
subsets of trustees to sign messages while still limiting those subsets to ensure a good tradeoff between
security and availability.

4.2 What Doesn’t Work

The obvious way to turn our n-of-n signature scheme into a k-of-n threshold signature scheme (for
1 < k < n) is to replace the XOR-based secret sharing we used above by a k-of-n secret sharing scheme.
The requester would reconstruct the shares of signatures from the shares in much the same way as in
our scheme. Unfortunately, this doesn’t work, because of the requirement to never allow reuse of a key.
Recall that a stateful hash-based signature requires the signer to keep track of all one-time signing keys
used so far–reusing a key allows anyone who sees both signatures to forge new signatures. Further, a
k-of-n threshold signature scheme must be secure even against an attacker who controls a coalition of
k − 1 trustees.
Unfortunately, a k-of-n stateful threshold signature scheme of this kind with k < n would be insecure.
For example, consider a 4-of-5 threshold signature scheme, with three corrupt trustees (A,B,C) and two
honest trustees (D,E). A, B, C, and E work together to form a signature using key-id #1. Then, A,
B, C, and D work together to form a signature also using key-id #1. A, B, and C have now seen two
signatures with the same key, and may be able to forge many more signatures using key-id #1. This
attack will work for any k < n.
Avoiding this attack appears to require some very heavyweight mechanisms: establishing a broadcast
channel between all n trustees to keep track of which keys have been used, a trusted third party or
timestamping service to keep track of which key-ids have been used, or some other much more complex
protocol to prevent key reuse in the presence of k − 1 corrupt trustees.

15 Recall that the Helper can be replaced with a shared string to which the inititiating trustee has access. In that case,
nobody but the trustees can block signatures.
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4.3 Sharding: Composing k-of-k Coalitions

There is a simple solution to this problem, which interacts remarkably well with the use of Merkle trees
in stateful HBS schemes: We can always construct a k-of-n scheme as the composition of many k-of-k
schemes. (We sometimes call each k-of-k coalition a shard.)
Suppose we want a 3-of-5 scheme. Since

(
5
3

)
= 10, we can get the functionality of a 3-of-5 scheme by

establishing a 3-of-3 scheme for each of the ten possible coalitions of the trustees and distributing the
shares for each coalition to the trustees who are members of that coalition. Each trustee must now keep
track of which keys have been used in each of its six coalitions, as well as the range of key-ids that go
with each of its coalitions.
The one-time keys for each of the ten coalitions are stored together in the same Merkle tree, and the
Helper stores Helper shares for each of the one-time keys, but only k trustees have shares that can be
used to sign with any given one-time key. We can think of this in two equivalent ways:

1. The total set of one-time keys is fixed to some value (say 220), and we divide the one-time keys
among the coalitions.

2. We require that we always have some minimal number of signatures (say, 216) even if only one
coalition remains, and we make a Merkle tree of 10× 216 one-time keys.

Stateful hash-based signature schemes have the property that the length of the signature depends partly
on the number of possible signatures, so this scheme requires somewhat longer signatures. However,
Merkle tree paths grow only logarithmically in the number of leaves. For example, suppose we want
to ensure that each coalition in a 3-of-5 signature scheme can sign 216 messages. There are

(
5
3

)
= 10

coalitions needed, so we need ten times as many total one-time keys in the scheme. A simple way to
meet this requirement is to have 220 instead of 216 one-time keys in the whole Merkle tree. This makes
the PATH four hashes longer. With commonly-used parameters for the underlying HBS scheme, this
means that the full signatures become about 5 % longer16 when we go from an n-of-n scheme with 216

one-time keys to a 3-of-5 scheme with 216 one-time keys per coalition, and 220 total one-time keys.

4.4 Limitations for k-of-n Threshold Signatures

Sharding is in some ways an inelegant solution, and it limits the things we can practically do. Sharding
works well for theshold signatures when n and k are small, but becomes impractical when the number(
n
k

)
of quorums is huge. Consider a 50-of-100 scheme. The number of different quorums is

(
100
50

)
≈ 296.35.

Even providing every quorum with a single key is infeasible!
Fortunately, most practical uses of threshold signatures have a relatively small number of trustees, and
a correspondingly small set of quorums. For such uses, our scheme is powerful and flexible. For example,
while a 50-of-100 scheme spread across a huge company would not be practical, a scheme that allowed
any 5/10 trustees from each of ten different sites to sign a message would be practical.
Suppose we start with a total of 220 one-time signing keys. Table 2 shows the effect of different choices
of n and k on theshold k-of-n signature schemes, listing the number of coalitions each trustee belongs to
and the number of signatures each coalition can produce. The number of coalitions each trustee belongs
to determines how much memory each trustee must dedicate to keeping track of the current key-id in
each of its coalitions.
As can be seen from the table, relatively small choices of n, k yield practical schemes–for example, a
3-of-5 or 4-of-7 threshold hash-based signature scheme can work well in practice. On the other hand, a
10-of-20 scheme is not really practical–each coalition in such a scheme gets only about five signatures,
and each trustee needs lots of storage to keep track of which keys can still be used in each coalition (at
the very least ≈ 34 kilobytes for 92 378 three-bit counters, each taking values between zero and five).

16 Note that these are still standard hash-based signatures–stateful hash-based signatures get slightly longer as the
total number of one-time signatures available goes up, because the Merkle tree path for the one-time key used grows
longer.
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n k coalitions coalitions signatures
per trustee per coalition

3 2 3 2 349525
5 2 10 4 104857
5 3 10 6 104857
7 2 21 6 49932
7 4 35 20 29959
9 2 36 8 29127
9 5 126 70 8322

20 10 184756 92378 5

Table 2. Effect of choice of n, k assuming 220 one-time keys in composite key.

4.5 Generalized Permission Structures and Coalition Signatures

Sharding also offers a huge degree of flexibility in defining how signatures may be authorized, far more
than is provided by a simple threshold signature scheme. With sharding, we can support any monotone
permission structure, so long as the number of quorums isn’t excessive.
We propose the term “coalition signature” to specify a scheme that allows arbitrarily-constructed
coalitions of trustees to sign messages. We are unaware of any other signature scheme that fits this
description. Our k-of-n threshold HBS schemes are simply instances of coalition signatures where the
coalitions are formed out of all subsets of k trustees. However, coalition signatures allow for far finer
control of how signatures may be carried out.
Below, we offer three simple examples, barely scratching the surface of what is possible. As above, our
examples assume 220 one-time keys per composite key. Table 3 shows how these coalition signature
schemes relate to somewhat similar (but much less precisely controlled) threshold signature schemes.

Example # 1: Consider a company with five departments, each with four trustees. A signature requires
approval from all five departments, but it doesn’t matter which trustee from each department approves
signing. There are 45 = 1024 coalitions that can sign a message, and each trustee is a member of 256
coalitions. This can be handled by sharding in a straightforward way. The closest approximation to this
access structure in a pure threshold signature would probably be a 5-of-20 scheme, but note that this
scheme has much finer control of which trustees may sign a message, and also far fewer coalitions.

Example # 2: Consider an organization that has five highly-trusted senior trustees, and also five
less-trusted junior trustees. We allow signatures by any three senior trustees, any two senior trustees with
one junior trustee, or any one senior trustee with three junior trustees. The total number of coalitions is
thus

(
5
3

)
+
(
5
2

)
× 5+5×

(
5
3

)
= 10+10× 5+5× 10 = 110. Each senior trustee is a member of 36 coalitions;

each junior trustee is a member of 40 coalitions. While this looks a little like a 3-of-10 scheme, note that
it again has a great deal more precise control over who is allowed to sign, and also far fewer coalitions.

Example # 3: Similar to example # 3, assume ten senior and ten junior trustees. Signatures require ten
trustees in total, including at least eight senior trustees. The total number of coalitions is 1+

(
10
9

)
×
(
10
1

)
+(

10
8

)
×
(
10
2

)
= 1+100+2025 = 2126. A senior trustee is a member of 1+

(
9
8

)
×
(
10
1

)
+
(
9
7

)
×
(
10
2

)
= 1+90+1620

coalitions. A junior trustee is a member of
(
10
9

)
× 1+

(
10
8

)
×
(
9
1

)
= 10+405 = 415 coalitions. This scheme

can still be considered practical, while the practicality of a proper 10-of-20 scheme is questionable, as
pointed out in Section 4.4.

4.6 Enforcement

A natural question to ask is: what prevents a given trustee from providing shares for a shard it is not
authorized to use? That is, if a given key is in a shard controlled by Alice and Bob, what prevents Carol
from participating in the signature protocol for this key?
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scenario coalitions coalitions signatures
per trustee per coalition

Example # 1 1024 256 1024
5-of-20 scheme 15504 3876 67
Example # 2 110 ≤40 9532
3-of-10 scheme 120 36 8738
Example # 3 2126 ≤1620 493

10-of-20 scheme 184756 92378 5

Table 3. Comparing examples #1 to #3 with proper threshold schemes, assuming 220 on-time keys.

The answer lies in the Helper shares. When a key is in a shard controlled by Alice and Bob, its Helper
shares for some shared value α are constructed as:

αH = α⊕ αAlice ⊕ αBob

Nothing prevents Carol from using the PRF to compute her own shares for this key, but her shares are of
no help in recovering α, because the Helper shares were computed using only the correct value of α
and Alice and Bob’s shares. Nor will Alice or Bob send or accept any shares to/from Carol for a shard
where Carol is not a member.

4.7 Accountability

Most threshold schemes have no way to determine which quorum of trustees created the signature. In
some applications, this is a desirable property; in others, the key owner may prefer to find out who is to
blame for signing a particular message. Our scheme leaves the possibility of determining the responsible
quorum, based on which shard was used to sign the message. This information may also be made
available to outsiders, but this isn’t required, and in fact, it is possible for the dealer to set the scheme
up in a way that prevents the signatures leaking any information about which messages were signed by
which coalition.

4.8 Coalition Signatures with a Helper

The protocol for doing k-of-n and coalition signatures with prefixes and the Helper is almost identical to
the n-of-n signature with prefixes and the Helper; the only addition is a need for the initiating trustee to
determine which coalition it should use. The details of how each trustee determines which other trustees
are available are beyond the scope of this paper, though we note that a practical implementation will
want to do some load-balancing across coalitions, to ensure that the one-time keys from each coalition
get used at a consistent rate.

5 Practical Considerations

5.1 Threshold Signatures Make Stateful Hash-Based Signatures Work Better

We believe our approach makes stateful hash-based signatures significantly more useful in practice.
Threshold signatures address many of the practical engineering and operational problems with using
stateful hash-based signatures. Specifically:
– A great deal of engineering and operational complexity is involved in managing a device with a

stateful hash-based signature key, in order to avoid accidentally reusing a one-time signing key. By
splitting the key into n shares across n separate devices, the chances of accidental or malicious key
reuse become enormously smaller–if k trustees are required to sign a message, then all k must agree
on the same one-time key to use. Key reuse will only happen if all k trustees make the same error.
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– Backing up a device that holds a stateful hash-based signature key is dangerous–restoring from
backup can easily lead to reusing a one-time signing key. However, not backing up a device storing a
high-value key risks having important functions stop working when a device fails or is lost. Splitting
the stateful HBS key into the shares of a k-of-n signature scheme provides substantial fault tolerance
without the need to back up any specific device. Further, the Helper can be backed up or replicated
freely without raising any security issues.

– Many of the applications for which stateful hash-based signatures are proposed involve very high-
value signatures that must remain secure for a long time. The split control of a threshold signature
scheme is a very good fit for this kind of high-value application–a compromised device or rogue
employee is limited in the damage they can do.

5.2 Adapting Our Scheme to Existing Standards

Fully-specified hash-based signature schemes such as LMS[14] or XMSS[9] incorporate many details
we’ve omitted in this discussion–for example, each public key is given a globally-unique identifier, and
hash calls incorporate metadata into each computation to avoid multitarget attacks. Different standards
further define how the prefix is to be generated and incorporated into the message hash. Our schemes
can easily be adapted to follow all of these requirements, so long as the prefixes can be known when the
threshold scheme is set up.

5.3 Computing and Communications Overhead

Each signature requires two round-trip messages between the initiating trustee and each responding
trustee to produce a signature, as well as two round-trip messages between the initiating trustee and
the Helper. The messages are relatively short–the message to be signed, plus a few hundred bytes more
than the length of the one-time signature.
The point-to-point secure channels between the trustees can be based on pre-shared symmetric keys,
and require nothing more expensive than an authenticated encryption scheme.
Very little computing power and storage is needed for a trustee. During signing, each trustee does only
fast symmetric operations–hash functions, PRF calls, and XORing together bitstrings. A trustee only
needs to store: (1) its PRF key, (2) the current key-id to be used with each coalition of which it is a
member, and (3) pre-shared symmetric keys for communicating with each of the other trustees.
Coordinating on which key to use is straightforward. In the first message of the protocol, the initiating
trustee sends the key-id it expects to use to each responding member of the coalition. If any trustee in
the coalition believes this key has already been used (it is possible for disagreements to arise honestly,
due to communications failures), it will communicate this fact to the initiating trustee (shown as sending
⊥ in our protocols). Each responding trustee can then send the key-id it believes should be next, and
the initiating trustee can select the largest key-id, and use that key-id to initiate its request. This allows
any member of a coalition to deny service by using up all the one-time keys available to the coalition at
any time, but this was already possible, since any trustee can always refuse to sign with any keys in its
coalition.

5.4 Memory Requirements and the Role of the Helper

The biggest downside of our techniques is the requirement for several gigabytes of memory, probably
duplicated across multiple untrusted Helper devices, perhaps implemented as a distributed key:value
database. (As noted above, with typical parameters, a composite key supporting 216 signatures requires
a Helper with about 2 GiB of storage.)
We use the Helper to avoid the need for trustees to have large amounts of memory–this is a quite
important practical consideration if the trustees’ keys are stored on secure cryptographic modules, which
are unlikely to have gigabytes of storage. The Helper allows us to split out the role of providing bulk
storage from the role of having access to secret data, the ability to cause a key to be reused, or the
power to decide whether to sign a given message.
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In the k-of-n and coalition signature case, however, the Helper offers another advantage: we can duplicate
it many times (so there may be two or three Helpers) or back up all its information without weakening
our system. Even an attacker who learns all of the Helper’s data is unable to forge signatures, and
backing up and restoring the Helper’s state don’t introduce a risk of key reuse or key compromise.
Further, the Helper’s shares can be safely backed up and stored in many locations without concern.
This preserves the fault tolerance property we expect from a k-of-n threshold signature scheme. It’s
also possible to have each trustee store a few Helper shares for each of its coalitions, allowing continued
functionality if the Helper or Helpers are temporarily unavailable. (Since backups of the Helper are safe
to keep without added security, unavailability of the Helper will be temporary.)
The Helper can deny service to the trustees. However, when prefixes are used, it cannot do so selectively–
it never sees the message being signed, only a hash. Because it doesn’t know the prefix used, it cannot
even precompute messages to block.
The Helper can be implemented on a cloud storage service17, without requiring the dealer or user to
trust the cloud storage service with their keys. While we show the Helper as taking part in the protocol
in our diagrams, it is straightforward to implement the Helper as a key:value database and have the
initiating trustee make queries to construct the Helper’s share of the signature and PATH. (For typical
Winternitz parameters, the initiating trustee would need to make 68 key:value database queries to
produce the Helper’s share of PATH, σ.) Alternatively, the initiating trustee could request the 17 KiB
chunk of data associated with key π and compute the Helper’s share locally, or a cloud provider could
operate a Helper service for a fee–again, this does not require the dealer to trust the cloud service with
any secrets, or to give the cloud service any power over which messages are to be signed.

5.5 Other Roles

The Dealer The dealer in our scheme is entirely trusted–they are assumed to be the owner of the
signing key. Our protocols allow the dealer to delegate the signing process to some defined subsets of
the trustees.

The Delegator in a proxy signature scheme Although we wouldn’t expect the scheme to be used this
way, the dealer could in principle start with signing messages in a single-party manner and, at any point
of time, delegate the signing process to trustees (or rather, to specified subsets of a specified group of
trustees).

The Verifier The verifier in our scheme is exactly the same as one used to verify signatures from the
underlying HBS scheme. The signatures produced are identical in both cases.

6 Conclusions

In this article, we have shown how to turn stateful hash-based signatures into threshold signature
schemes. Our techniques have low communications and computational overhead, require only fast
symmetric cryptography, and can be applied to existing hash-based signature specifications such as
LMS[14] or XMSS[9]. They do, however, require an untrusted participant in the signing protocol with
abundant memory called the Helper, or alternatively, access to a large shared public string (the Helper
shares). The Helper can be implemented using cloud storage or on a cloud service, without requiring
the owner of the key to trust the cloud storage service with their signing keys.
Our techniques offer a practical solution to many practical engineering and operational difficulties
with stateful hash-based signatures and provide security only negligibly lower than that provided by
the underlying stateful hash-based signature scheme. On the other hand, our techniques have some
limitations: along with the memory requirements, they require a trusted dealer and cannot support
stateless hash-based signature schemes like SPHINCS+[11] or tree-of-tree approaches such as HSS[14].
It is not yet clear how the requirements in NIST’s hash-based signature guidance [6] might apply to our
techniques.

17 For comparison, at the time of this writing, there are cloud storage services offering free accounts with as much
storage as is needed for the Helper to support a threshold stateful HBS instance with 216 keys.
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6.1 Future Research

There are many questions left open by this research. Among them are:
1. In this paper, we have shown how to produce threshold Winternitz signatures. Lamport signatures

are straightforward to adapt to our techniques. Can they be extended to other hash-based signature
schemes such as HORS[18], FORS[11], and BiBa[17]?

2. Our techniques require that the whole set of prefixes for signatures be known at the time the shares
are generated for the trustees. Can we adapt these techniques to allow more flexibility in generating
these prefixes?

3. Our techniques require a trusted dealer. Can our techniques be improved to eliminate this require-
ment?

4. Relatedly, is there any way to adapt our techniques to tree-of-trees approaches or stateless hash-
based signatures? This appears to require replacing the trusted dealer with an efficient protocol, in
order to allow on-the-fly regeneration of subtrees of one-time keys.

5. In one sense, it is surprising that such primitives can be made from hash-based signatures at all. This
work, alongside the group signatures developed in [2], raises the question of what other surprising
bits of functionality remain to be found within these very old and well-studied techniques.
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A A Brief Review of Winternitz Signatures

Here, we give a very brief refresher on Winternitz signatures. For a more complete explanation
of Winternitz signatures, see the descriptions in [9, 14].
As discussed above, for Winternitz signatures, the one-time private key consists of an array of
hash chains. These can be represented as a two-dimensional array of secret values, X[0 . . . a+
c− 1][0 . . . 2w − 1]. Each X[i][0 . . . 2w − 1] consists of an array of 2w values, constructed so that

X[i][j] =

{
A random starting value j = 0

hash(metadata, X[i][j − 1]) otherwise
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Winternitz signatures sign an `-bit hash value by first breaking the hash into a = d `w e chunks,
each of w-bits, and then encoding each w-bit chunk as an entry in one of the hash chains. A
verifier given the hash chain entry and the correct value for that w-bit chunk can then compute
the final value in the hash chain, and the one-time public key is the hash of the concatenation
of all the final values in the hash chain. This means that verifying a valid Winternitz (hash,
signature) pair will produce the one-time public key; this is handy for stateful hash-based
signatures, since the next part of verifying the signature is verifying a Merkle-tree path.
Because an attacker given X[i][j] can always compute X[i][j + 1 . . . 2w − 1] by simply applying
the formula above, we must also incorporate a checksum on the w-bit chunks of the hash being
signed, and encode that checksum in hash chains as well. The effect of the checksum is to
guarantee that the sum of all the w-bit chunks (hash and checksum) have a constant sum.
This guarantees that in order to alter the signature so it signs a different hash by walking
forward in one or more hash chains, the attacker must also go backwards in at least one hash
chain–something prevented by the preimage-resistance property of the hash.
In fully specified HBS standards, metadata is incorporated into each hash function call, to
prevent multi-target attacks. For this refresher, we mostly ignore such engineering details.
Suppose we have a one-time signing key, represented as a two-dimensional array, X. (Most
implementations of Wintertnitz signatures will simply compute each desired value of X[i][j],
but conceptually it is easier to think in terms of the whole array being available.)
In this paper, we represent Winternitz signatures as an array of a + c values, where a is the
number of hash chains used to encode the Winternitz hash, and c is the number used to encode
the checksum. For example, when ` = 256, typical values for w = 4 would be a = 64, c = 3; the
resulting signature consists of 67 `-bit strings. The one-time private key consists only of the
two-dimensional array X.
The following pseudocode shows the sign and verify functions for Winternitz signatures.
1: function Sign(Xπ, h)

// Full Winternitz signature

// h = hash(message), a = d`/we
// C = a× (2w − 1), c = dlg(C)/we

2: b[0 . . . a− 1]← h split into w-bit chunks.
3: for i← 0 . . . a− 1 do
4: σπ[i]← Xπ[i][b[i]]

// Compute Checksum
5: S ← C −

∑a−1
i=0 b[i]

6: d[0 . . . c− 1]← S broken into w-bit chunks
7: for i← 0 . . . c− 1 do
8: σπ[i+ a]← Xπ[i][b[i]]

9: return (σπ(h))
10: function Verify(σ, h)

// Full Winternitz signature

// h = hash(message), a = d`/we
// C = a× (2w − 1), c = dlg(C)/we

11: b[0 . . . a− 1]← h split into w-bit chunks.
// Compute Checksum

12: S ← C −
∑a−1
i=0 b[i]

13: b[a− 1 . . . a+ c− 1]← S broken into w-bit chunks
14: T ← ε // Start with empty string
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15: for i← 0 . . . a+ c− 1 do
16: u← σ[i]
17: for j ← 0 . . . (2w − 1− b[i]) do
18: u← hash(metadata, u)
19: T ← T ‖ u
20: return (hash(T ))

B Security Analysis

In this section, we provide a security proof for n-of-n, k-of-n, and coalition hash-based signatures,
incorporating prefixes, pseudorandom shares, and the Helper.

B.1 Security Notion and Game Definitions

The standard security notion used for a signature scheme is EU-CMA. Informally, this means
that no attacker should be able to sign a new message, even given many signatures on messages
of its choice. More formally EU-CMA security is defined in terms of a particular forgery game–a
signature scheme has EU-CMA security if there is no attacker that has more than negligible
probability of winning the forgery game.

HBS Security Definition We start by defining the security of the hash-based signature scheme
from which we construct our n-of-n signatures, in terms of a forgery game. Stateful hash-based
signatures need a slightly different game definition than more conventional signatures, in order
to account for the use of a large set of one-time signing keys.
The only difference between the HBS forgery game and the standard EU-CMA forgery game is
that the challenger must use a new one-time key for each message, and, thus, must include a
Merkle tree path to the corresponding one-time public key. We assume there are exactly Q keys
in the stateful hash-based signature, which also provides a bound on how many signatures may
be requested by the attacker. Also, we assume the signer in the stateful hash-based signature
scheme uses the one-time keys in a fixed order and never reuses a key. (We make the same
assumption about the trustees in the threshold versions of HBS signatures.)
An HBS scheme has HBS-EU-CMA security if there is no attacker that wins the HBS-Forge
game with greater than negligible probability.

Security Notion for Coalition Signatures Next, we need to define a security notion for
n-of-n, k-of-n, and coalition hash-based signatures. Since k-of-n and coalition signatures are
composed from n-of-n signatures, this translates to needing a security notion for n-of-n signatures.
Once we have an n-of-n signature security notion, security claims about our k-of-n and coalition
signatures are simply instances of n-of-n signature scheme security.
Game 2 illustrates the incomplete-coalition forgery game, in which the attacker is given n− 1 of
the n trustees’ states and then plays a forgery game, with the Challenger playing the role of the
one non-compromised trustee.
The IC-Forge game is quite a bit more complicated than the normal Forgery game because a
signature is a protocol between the attacker and the challenger (simulating a protocol between
multiple trustees), rather than an operation done by the challenger. This means that the IC-Forge
game must allow for all the different ways a run of the protocol might occur. Further, the attacker
in this game controls n− 1 of the n trustees, as well as the Helper, and simply plays the role of
all of these trustees in interacting with the challenger, who plays the role of the uncompromised
trustee. This leads to three major differences with the Forgery game:
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Challenger Attacker
Phase 1: Initial Message

PK−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Phase 2: Signature Queries (For π ← 1 . . . q)

Mπ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Sπ = (ρπ, PATHπ, σπ(ρπ,Mπ))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Phase 3: Forgery Message

S∗ = (M∗, ρ∗, PATH∗, σ∗(ρ∗,M∗))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
IF M∗ is different from any Mi and verifies properly THEN the attacker wins.

Game 1: The HBS With Prefixes Forgery Game

First, at the beginning of the game, the challenger must give the attacker not only the public
key, but also the shares of n − 1 trustees, as well as the Helper shares. (Thus, our security
notion considers only static corruptions, not active ones.) The attacker is allowed to select which
trustees it wishes to corrupt, but, since all trustees’ keys are generated in exactly the same way
(via a PRF call), this choice doesn’t really affect anything.
Second, the attacker is allowed up to Q signature queries, where the challenger plays the role of
the uncompromised trustee. But now, since a signature query is really a run of the protocol, the
attacker has a lot more choices–it can make two entirely different kinds of queries:
A-queries The attacker plays the role of an initiating trustee to get a signature on message
Mπ. The challenger responds exactly as an uncompromised responding trustee would respond.
This means first sending shares of ρ, φ and later sending shares of PATH, σ. The attacker may
choose which of its compromised trustees is the initiating trustee.
C-queries The attacker gives the challenger Mπ, and the challenger then plays the role of the
uncompromised initiating trustee for Mπ. The challenger then initiates a signature protocol
exactly as the uncompromised trustee would and carries it through to completion. Finally, the
challenger provides the attacker with either a valid signature on Mπ, or ⊥ if the attacker’s
responses caused it to detect an error in the protocol.
Finally, the attacker sends a final message. The attacker wins the game by producing a new
message (not one previously queried), along with a valid signature on the new message.
We say that an n-of-n signature scheme has IC-EU-CMA security if there is no attacker who
has more than a negligible chance of winning the incomplete coalition forgery game. This is
another way of saying that an incomplete coalition (one not authorized to sign a message) has
a negligible chance of producing a forged signature, and it is exactly the security property we
need from an n-of-n, k-of-n, or coalition signature.
An n-of-n HBS scheme has IC-EU-CMA security if there is no attacker that wins the IC-Forge
game with greater than negligible probability.

B.2 The Main Theorem and Intuition for the Proof

Theorem 1 (Main Theorem). Write PHBS-Forge(Q,X ) for the probability of an algorithm
X to win the HBS forgery game, aka Game 1, requesting Q signatures, P IC-Forge(Q,Y) for
the probability of an algorithm Y to win the IC-Forge game, aka Game 2, also requesting Q
signatures, APRF(Q′,Z) for the advantage of a distinguisher Z to distinguish a PRF from a
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random function, making Q′ calls to the PRF, and QPRF(Q) for the number of PRF calls when
running Protocol 3 to generate Q signatures.
Assume an algorithm A that wins the IC-Forge with probability P IC-Forge(Q,A) Then an algorithm
B and a distinguisher C exist, such that

P IC-Forge(Q,A) ≤ PHBS-Forge(Q,B) +APRF(QPRF(Q), C) + (n− 1) · 2−` +Q · 2−`.

Both B and C will be described in the proof, and both run A once, as a subprogram. Apart from
the resources for running A, the running time and storage for B and C is at most linear in the
number of one-time signatures. Similarly, QPRF(Q) is linear in Q.

Intuition for the Proof We first (Figure 1) provide a simulator (Sim-RF) which uses an
attacker that wins IC-Forge to win HBS-Forge (that is, to forge signatures in the underlying
HBS scheme). However, the simulator uses calls to a random function where our scheme uses
calls to a PRF.
We then (Figure 2) provide a second simulator (Sim-F). If there is an attacker that wins the
IC-Forge game when the shares are generated by a PRF but not by a random function. Sim-F
uses that attacker to distinguish the PRF from a random function.

Fig. 1. Winning IC-Forge implies winning HBS-Forge

Fig. 2. Forging against PRF version of challenger implies distinguishing PRF/RF
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B.3 Preliminary Lemmas and Definitions

We write T for the transcript, i.e., for the sequence of messages sent to and from A during one
run of the IC-Forge game.

Definition 1 (Winning Transcript). We call T a winning transcript when the final message
in T is a valid forgery message–that is, it is a valid signature on some M∗ which A never queried
during the game. More formally, this happens when the final message in T is

(m∗, PATH∗, σ∗(M∗))

such that

verify(PK, hash(M∗), (PATH∗, σ∗(M∗))) = 1 and
M∗ /∈ {M1,M2, . . . ,MQ}.

B.4 Proof of Main Theorem.

The proof appears in Section B.5 and is based on a sequence of lemmas, which we provide first.
Algorithm B from the theorem is the algorithm Sim, as defined in Figure 4, and distinguisher C
is D, as defined in Lemma 15.

The Simulator and Challenger for the IC-Forge Game with Prefixes Algorithm 4
demonstrates the approach to prove the main theorem. The left algorithm is the challenger in
the IC-Forge game–it responds to attacker queries and ultimately receives the attacker’s final
message. If that message contains a forgery (that is, it includes a signature that wasn’t produced
during the query phase), then the attacker wins the IC-Forge game. The right algorithm is the
simulator–it also plays the IC-Forge game with the attacker. The proof of our main theorem
stems from two claims: Firstly, it is infeasible for the attacker to distinguish the simulator from
the challenger. Secondly, if the attacker wins the IC-Forge game, i.e., if its final message contains
a forgery, then the simulator uses that message to win the HBS forgery game.

Lemma 3 (Pseudorandom-Share C-Queries Not Needed). A C-query against this chal-
lenger can be simulated exactly using only an A-query and knowledge of the public key. Thus,
there is no need for the IC-Forge game to include C-queries.

Proof. In the IC-Forge game, the challenger is asked to initiate a signature query on message M .
It makes this query to the other trustees (all played by the attacker), who respond with ρ6=t, φ6=t,
the shares of the prefix and its check value. The challenger reconstructs and verifies ρ, φ and
sends these values to the attacker, which responds with PATH6=tπ , σ 6=tπ (M) or ⊥. The challenger
finally sends back either PATHπ, σπ(M) or ⊥, depending on the values sent by the attacker.
The attacker can compute the contents of the challenger’s first response to the C-query, ρ, φ, by
making an A-query on messageM and getting back ρt, φt and using its own shares to reconstruct
the values of ρ, φ. After sending these two values back to the challenger, the challenger will
respond with PATHtπ, σ

t
π(M). Using its own shares, the attacker can reconstruct the challenger’s

second response to the C-query, PATHπ, σπ(ρ,M).
If PATH, σ is a valid signature on the hash of φ and M using key π, then the attacker knows that
the challenger would have sent it PATH, σ. If not, then the attacker knows that the challenger
would have sent it ⊥. Note that the challenger as well as the attacker can check this condition–it
depends only on PATH, σ,M, and the composite public key of the underlying HBS scheme.
Since the attacker can exactly predict the result of making a C-query using the results of an
A-query, there is no need to include C-queries in the game definitions for n-of-n hash-based
signatures with prefixes. ut
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The IC-Forge Security Lemma The proof of security the n-of-n signatures follows from the
following lemma, whose individual conditions must then be proven individually.

Lemma 4 (IC-Forge Security Lemma). Let Chal be the challenger in an incomplete-coalition
forgery game for signature scheme Σ. Let Sim be the simulator, which simulates Chal using
calls to the challenger in the hbs-Forge game. Then, winning the incomplete-coalition forgery
game for Σ implies winning the hbs-Forge game, if the following conditions hold:
1. Equal Probability Shares:

Pr[initial shares sent to attacker | Chal] = Pr[initial shares sent to attacker | Sim]

2. Identical Responses: Given any query from an attacker, and identical initial shares, Chal
and Sim will always respond identically.

3. Forgery Transfer: Consider the transcript of running the signature scheme, either with
Chal, or with Sim. Any such transcript is made up of the initial shares, the challenges from
the attacker, the responses, and the final forgery message. A transcript τ could be either (1)
created by running Chal and the attacker, or (2) by running Sim and the attacker. Forgery
Transfer means that if τ implies the adversary winning in case (1), then the same τ implies
that Sim wins its hbs-Forge game with HBS-challenger in case (2).

Proof. For the proof, we consider the implications from the three conditions:
1. The first condition guarantees that the initial shares sent to the attacker have equal probability

whether from Chal or Sim. The probability of the attacker making any given query must
then be the same for Chal and Sim.

2. The second condition guarantees that the response to each query is likewise the same when
coming from Sim or Chal. Thus, each additional query, and the final forgery message, must
have the same probability of being seen by Sim and Chal.
Thus, the probability of any given transcript is the same whether the transcript is with Chal
or with Sim.

3. The third condition guarantees that a transcript T , which would be a winning transcript
with Chal, is a transcript which will allow Sim to produce a winning transcript in the
hbs-Forge game.

We conclude that for every transcript T , the probability for T to be a winning transcript
against Chal is the same as the probability of T being a winning transcript for Sim against the
HBS-challenger. Thus, an efficient attacker who wins the IC-Forge game can be used to construct
a simulator which efficiently wins the hbs-Forge game with exactly the same probability. ut

Forgery Transfer The forgery transfer condition holds for any challenger in the IC-Forge game.
This is true because a winning transcript for the IC-Forge game ends with a valid signature on
a message that wasn’t queried during the game; for any winning transcript, it is easy to define a
simulator that will turn this into a winning transcript for the hbs-Forge game.

Lemma 5 (Forgery Transfer). Let T be the transcript of the IC-Forge game between the
attacker and the challenger and let T ′ be the corresponding transcript between the simulator and
the HBS-challenger that results when T occurs between the attacker and the simulator. If T is a
winning transcript in the IC-Forge game then T ′ is a winning transcript in the hbs-Forge game.

Proof. A winning transcript is one in which the final message sent by the attacker contains a
valid signature for a message that was never queried during the game. The simulator forwards
each query from the attacker to the HBS-challenger, and then forwards the final message to the
HBS-challenger. If a winning transcript occurs between the attacker and the simulator, the final
message in the transcript will be a valid signature on a message never queried during the game;
the simulator will then send a final message to the HBS-challenger which is a valid signature on
a message never queried during the game, and, thus, will win the hbs-Forge game. ut
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Proving Security of Threshold Hash-Based Signatures with Prefixes At last, we are
ready to prove the security of our n-of-n hash-based signature scheme.

Approach to the Proof By the IC-Forge lemma above, we need three things to be true for
the scheme to be secure:
1. Equal probability shares
2. Identical responses
3. Forgery transfer
Our scheme generates its shares using calls to a PRF. However, in order to prove security, we
need to be able to make statements about the probability of those shares taking on a particular
value. We start with defining variant of the challenger and the simulator, where the PRF is
replaced by a random function (RF):
Following the approach above, we will prove these statements for Chal-RF (the challenger with
all calls to the PRF that are used to derive shares for the uncompromised trustee replaced with
calls to a random function), and then use the PRF/RF switching lemma to prove security for
the challenger, which uses only PRF calls.

Definition 2 (Chal-RF, Sim-RF). Let Chal-RF be a variant of the challenger in which each
call to PRFK[t](α, `) (that is, each PRF call producing the uncompromised trustee’s shares) is
replaced with a call to a random function RF(α, `).
Let Sim-RF be a variant of the simulator in which each call to PRFK[t](α, `) (that is, each PRF
call producing the uncompromised trustee’s shares) is replaced with a call to a random function
RF(α, `).

We now prove that an attacker who can win the IC-Forge game against Chal-RF can be used to
construct a new attacker who can win the HBS-Forge game.

Lemma 6 (Unique Labels). The inputs to the PRF used to generate each component of each
trustee’s share are unique–that is, no two PRF calls with the same key K also get the same input.

Proof. The components to the shares are generated as follows:

PATHtπ = PRFK[t]((1, π), |PATH|)
Xt
π[i][j] = PRFK[t]((2, π, i, j), `)

The initial input (1 or 2) ensures that a PRF call used to generate a share of the PATH can never
collide with that used to generate a share of the private key. The second input is the unique
ID for the one-time signing key whose shares are being generated; this ensures that PRF calls
used to generate shares for different one-time keys will never collide. For generating Xt

π[i][j],
the PRF call also includes i, j, ensuring that the PRF calls used to generate shares of different
components of the one-time signing keys will also never collide. ut

Lemma 7 (Chal-RF Equal Probability Initial Shares). For each possible value of initial
shares seen by the attacker, the probability of the challenger producing those shares is identical
to the probability of the simulator producing those shares.

Proof. Only PRF keys of the n− 1 compromised trustees are sent to the attacker, and these are
generated identically (in line 5) by Chal-RF and Sim-RF and so have equal probability.
As shown in lines 13-21 of the Chal-RF and 16-21 of Sim-RF, the shares for the Helper are
generated differently. For any internal value α, we have the Helper’s share from the challenger:
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αHchal = α⊕
n−1⊕
k=1

αk

= αt ⊕ α⊕
⊕
k 6=t

αk

Let C be a constant

C = α⊕
⊕
k 6=t

αk

then we can say

αH = αt ⊕ C

and so

Pr[αH = X] = Pr[αt ⊕ C = X]

= Pr[αt = X ⊕ C]

By the Unique Labels lemma, we know that each input to RF is unique. Thus, αt is uniformly
random.

This also means that the Helper’s share is a uniformly random bitstring. Likewise, from the
simulator

αHsim =

n−1⊕
k=1

αk

= αt ⊕
⊕
k 6=t

αk

Let C∗ be a constant

C∗ =
⊕
k 6=t

αk

then we can say

αH = αt ⊕ C∗

and so

Pr[αH = X] = Pr[αt ⊕ C∗ = X]

= Pr[αt = X ⊕ C∗]

Thus, each of the Helper’s shares is a uniformly random bitstring from both Chal-RF and
Sim-RF. Since they are drawn from the same distribution, their probabilities are equal. ut

Next, we must prove identical responses.
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First, we show correctness of (R,F, P, S) from the challenger and the simulator. Recall that

σiπ(ρπ,M) = S_Sign(hash(ρπ,M), Xi
π)

For correctness, all the shares held by the attacker XORed with the shares provided by the
uncompromised trustee must XOR to the correct values of ρπ, φπ, PATHπ, σπ(ρπ,M):

ρπ = R⊕
⊕
6=t

ρiπ

φπ = F ⊕
⊕
6=t

φiπ

PATHπ = P ⊕
⊕
6=t

PATHiπ

σπ(ρπ,M) = S ⊕
⊕
6=t

σtπ(ρπ,M)

Which can be rewritten to give the correctness conditions we need:

R = ρπ ⊕
⊕
6=t

ρiπ (1)

F = φπ ⊕
⊕
6=t

φiπ (2)

P = PATHπ ⊕
⊕
6=t

PATHiπ (3)

S = σπ(ρπ,M)⊕
⊕
6=t

σtπ(ρπ,M) (4)

Lemma 8 (Challenger Correctness). The challenger’s (R,F, P, S) satisfy the correctness
conditions equations 1-4, above.

Proof. Note that initial shares are computed in lines 6-21 of the challenger, and (R,F, P, S) in
lines 29-36.

In line 10, the challenger sets

φπ = P_CHK(K[1 . . . n], π, ρπ)

In lines 30-36, the challenger sets

R = ρt

F = φt

P = PATHt

h = hash(Mρ,π)

S = S_Sign(Xt
π, h)
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In lines 13-21, the challenger sets the initial shares so that

PATHHπ = PATHπ ⊕
n−1⊕
k=1

PATHkπ

φHπ = φπ ⊕
n−1⊕
k=1

φkπ

ρHπ = ρπ ⊕
n−1⊕
k=1

ρkπ

XH
π [i][j] = Xπ[i][j]⊕

n−1⊕
k=1

Xk
π [i][j] For all i, j

By the S_Sign Lemma, we know that when X satisfies the above condition

σπ(ρπ,Mπ) =
⊕
all k

σkπ(ρπ,Mπ)

Rearranging the terms, we find that

R = ρπ ⊕
⊕
6=t

ρiπ

F = φπ ⊕
⊕
6=t

φiπ

P = PATHπ ⊕
⊕
6=t

PATHiπ

S = σπ(ρπ,M)⊕
⊕
6=t

σtπ(ρπ,M)

ut

Lemma 9 (Simulator Correctness). The simulator’s P and S also satisfy the correctness
conditions equations 1-4, above.

Proof. Note that initial shares are computed in lines 6-21 of the simulator, and (R,F, P, S) in
lines 29-36.

In lines 29-36, the simulator sets

R = ρtπ ⊕ ρπ
φπ = P_CHK(K[1 . . . n], π, ρπ)

F = φtπ ⊕ φπ
P = PATHtπ ⊕ PATHπ
h = hash(ρπ,Mπ)

S = σπ(Mπ)⊕ S_Sign(Xt
π, h)
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In lines 16-21, the simulator sets the initial shares so that

PATHHπ =

n−1⊕
k=1

PATHkπ

ρHπ =

n−1⊕
k=1

ρkπ

φHπ =

n−1⊕
k=1

φkπ

XH
π [i][j] =

n−1⊕
k=1

Xk
π [i][j] For all i, j

By the S_Sign Lemma, we know that when X satisfies the above condition

σπ(ρπ,Mπ) =
⊕
all k

σkπ(ρπ,Mπ)

Rearranging the terms, we again find that

R = ρπ ⊕
⊕
6=t

ρiπ

F = φπ ⊕
⊕
6=t

φiπ

P = PATHπ ⊕
⊕
6=t

PATHiπ

S = σπ(ρπ,M)⊕
⊕
6=t

σtπ(ρπ,M)

ut

We now know that (R,F, P, S) satisfy the same correctness conditions from the challenger and
simulator. The values of R,F, P depend only on the initial shares. However, the value of S also
depends on the value of ρ used in the calculation.
In the simulator, ρ comes from the HBS-challenger. In the challenger, it comes from the attacker,
sent as ρ̂. If it is possible for the attacker to alter ρ̂ to be different from ρ, then the challenger
and simulator will not give identical responses. (Indeed, this would represent an actual attack
on the scheme!)
The challenger and simulator both verify the correctness of ρ via a call to P_CHK(φ, π, ρ); if it
fails, they send back ⊥ to the attacker, otherwise, they send back P, S. Since S will be different
if ρ̂ 6= ρ, we need to show that if ρ̂ 6= ρ, the challenger and simulator will send back ⊥.
This leads us to the following definition:

Definition 3 (BAD#2). BAD event #2 occurs when, for some π in the transcript, ρ̂π 6= ρπ
and RF ((10, π, ρ̂π), `) = φ̂π[t], where t is the uncompromised trustee.

Lemma 10. Pr[BAD2] ≤ Q× 2−`

Proof. When ρ̂π 6= ρπ, RF ((10, π, ρ̂π), `) represents a new query to the random function and so
its output is a random `-bit string. The attacker cannot make queries to the random function,
and so can only try to guess this output. The probability that the attacker correctly guesses
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a random `-bit string is 2−`. In the transcript, a maximum of Q queries may be made. Thus,
the probability of seeing at least one instance of the attacker correctly guessing this value is no
more than Q× 2−`. ut

Lemma 11 (Identical Responses). Given identical initial shares and composite keys, and
assuming no BAD events, the responses to each query from the attacker will be identical from
the Chal-RF and Sim-RF.

Proof. The correctness conditions for (R,F, P, S) allow only one possible value of (R,F, P, S)
for a given set of initial shares, prefixes, queries, and composite key. Since both the simulator
and challenger generate correct values for (R,F, P, S) given their initial shares, they must also
generate identical (R,F, P, S) when starting with identical initial shares. As long as no BAD
events occur, the attacker will never successfully get a response from either the challenger or
simulator with a different prefix than the one that was initially generated (in the case of the
challenger) or provided by the HBS-challenger (in the case of the simulator). This guarantees
that all four values must be identical from the challenger and simulator. ut

Lemma 12 (Chal-RF secure). If no BAD events occur, then the existence of any attacker
who can win the IC-Forge game against Chal-RF implies an attacker who can win the IC-Forge
game against HBS-Challenger with the same number of queries. Thus,

P IC-Forge
Chal-RF (Q) ≤ PHBS-Forge(Q)

Proof. The proof is straightforward.
1. The initial shares have equal probability from Chal-RF and Sim-RF. [Prefix Equal-Probability

Shares]
2. Given identical initial shares and composite keys, and no BAD events, the responses from

Chal-RF are identical to those from Sim-RF. [Prefix Identical Responses]
3. A forgery against Chal-RF implies a forgery against Sim-RF which implies a forgery against

the underlying HBS scheme. [Forgery Transfer]
4. Thus, winning the IC-Forge game against Chal-RF implies winning the forgery game against

HBS-challenger, assuming no BAD events. [IC-Forge Lemma]
ut

We now bound this inequality from the other side:

Lemma 13 (HBS-Forge bound).

PHBS-Forge = P IC-Forge
Chal-RF

Proof. Suppose we have an algorithm HBS-att which wins the HBS-Forge game with probability
P . We can construct an algorithm chal-att to win the IC-Forge game with the same probability
and same number of queries. The algorithm works as follows:
1. After the initial shares are sent, we provide the public key to HBS-att.
2. We pass each query from HBS-att to Chal, reconstruct the resulting signature, and provide

it to HBS-att.
3. At the end, if HBS-att produces a forgery, we pass it along to Chal. We win IC-Forge against

Chal with the same probability as HBS-att wins the HBS-Forge game.
This demonstrates that

P IC-Forge
Chal-RF ≥ PHBS-Forge

Since we also know from the Chal-RF secure lemma that
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P IC-Forge
Chal-RF ≤ PHBS-Forge

we can conclude that

P IC-Forge
Chal-RF = PHBS-Forge

ut

Finally, we need to show that the PRF version is also secure.

PRF/RF Switching Recall that Chal and Sim are defined with calls to a PRF to derive the
trustees’ shares, while Chal-RF and Sim-RF are defined so that the uncompromised trustee’s
shares are generated by calls to a random function.
Any forgery attacker Att may be connected to Chal, Sim, Chal-RF, or Sim-RF. The number of
chosen message queries made by A will be restricted to some parameter Q. Accordingly, we write
Att(Chal, Q), Att(Chal-RF, Q), etc. Below, we will consider probabilities such as P IC-Forge

Att(Chal) and

P IC-Forge
Att(Chal-RF) to indicate the probability of Att to succeed in generating an IC-Forge with the

connection specified.
Similarly, we consider a distinguisher Dist, which may be connected either to a PRF or a RF,
which we write as Dist(PRF, q) and Dist(RF, q), where q is an upper bound on the number of
queries Dist can make to the function at hand.

Definition 4 (Advantage of a distinguisher). For a distinguisher Dist, we write APRF
Dist(q)

for the advantage of Dist in distinguishing a PRF from a random function, making at most q
queries to the function at hand:

APRF
Dist (q) = |P [Dist(RF, q)=1]− P [Dist(PRF, q)=1]| .

In order to reason about this advantage, we define two more algorithms, Chal-F and Sim-F:

Definition 5 (Chal-F, Sim-F). Chal-F and Sim-F are defined only within the context of a
PRF/RF distinguishing game, in which we have access to the PRF/RF oracle.
Let Chal-F be a variant of the challenger in which each call to PRFK[t](α, `) (that is, each PRF
call producing the uncompromised trustee’s shares) is replaced with a call to the PRF/RF oracle.
Thus, when the oracle is responding from a PRF, this is an instance of Chal, whereas when the
oracle is responding from a random function, this is an instance of Chal-RF.
Let Sim-F be a variant of the simulator in which each call to PRFK[t](α, `) (that is, each PRF call
producing the uncompromised trustee’s shares) is replaced with a call to the PRF/RF oracle.
Thus, when the oracle is responding from a PRF, this is an instance of Sim, whereas when the
oracle is responding from a random function, this is an instance of Sim-RF.

We now must define an additional bad event, which can only happen when Chal-F or Sim-F is
being called within a PRF/RF distinguishing game: the PRF oracle could happen to select a
PRF key that is already in use for one of the other trustees. This would lead to an immediate
and trivial distinguisher.

Definition 6 (BAD#1). BAD event #1 occurs in the distinguisher D during PRF/RF dis-
tinguishing game, when the PRF/RF oracle selects the same PRF key as one of the PRF keys
selected by Chal-F or Sim-F for some trustee.

Lemma 14. Pr[BAD#1] ≤ (n− 1)× 2−`
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Proof. By the definition of Chal-F and Sim-F, the (n− 1) compromised trustees’ keys are all
`-bit strings chosen uniformly at random. By the definition of the PRF/RF game, the PRF key
chosen by the oracle is also an `-bit string chosen uniformly at random. The probability of a
match between the oracle’s key and one of the n− 1 compromised trustees’ keys is thus

Pr[BAD#1] ≤ (n− 1)× 2−`

ut

Lemma 15 (PRF/RF Switching). For any attacker A, let PAChal(Q) be the probability A
produces a forgery against Chal, and PAChal-RF(Q) the probability that A produces a forgery
against Chal-RF. Then, assuming no bad events, a distinguisher D exists, which just runs
A(Chal-F ), thus making QPRF queries to F , and gaining the advantage APRF

D (QPRF), such that∣∣∣P IC-Forge
A(Chal) (Q)− P IC-Forge

A(Chal-RF)(Q))
∣∣∣ ≤ APRF

D (QPRF).

Corollary 1. If, assuming no bad events, for all feasible distinguishers D∗, we assume an upper
bound APRF

D∗ (QPRF) ≤ ε for the advantage, then

P IC-Forge
A(Chal) (Q)− P IC-Forge

A(Chal-RF)(Q)) ≤ ε.

Furthermore, if we assume ε to be negligible – as required by standard security assumptions for
PRFs –, then the security of Chal and Chal-RF is the same, up to a negligible difference.

Proof (PRF/RF Switching). Consider two distinguishers, D0 and D1:
1. Both D0 and D1 run Att(Chal-F ).
2. D0 outputs 0 if Att(Chal-F ) succeeds in producing a forgery and 1 if Att(Chal-F ) fails.
D1 outputs 1 if Att(Chal-F ) succeeds in producing a forgery and 0 if Att(Chal-F ) fails.

Observe that
APRF
D0

(Q) = PAChal(Q)− PAChal-RF(Q).

I.e., APRF
D0

(Q) ≥ 0 if
P IC-Forge
A(Chal) (Q) ≥ P IC-Forge

A(Chal-RF)(Q).

Similarly, APRF
D1

(Q) > 0 if P IC-Forge
A(Chal-RF)(Q) > P IC-Forge

A(Chal) (Q). ut

Lemma 16 (Security With No Bad Events). Assuming no BAD events:

P IC-Forge
Chal (Q) ≤ AHBS-Forge(Q) +APRF(QPRF)

Proof. By the PRF/RF Switching Lemma, we know that if no BAD events occur,

P IC-Forge
Chal (Q) ≤ P IC-Forge

Chal-RF (Q) +APRF(QPRF)

By the Chal-RF Secure lemma, we know that if no BAD events occur,

P IC-Forge
Chal-RF (Q) ≤ PHBS-Forge(Q)

Thus, we can say that if no BAD events occur,

P IC-Forge
Chal (Q) ≤ PHBS-Forge(Q) +APRF(QPRF)

ut
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In words, this tells us that as long as no BAD events occur, there is no attacker that can
win the IC-Forge game against our scheme with higher probability than the probability of the
best attacker winning the HBS-Forge game, plus the advantage of the best possible attacker in
distinguishing the PRF from a random function.

B.5 Main Theorem Proof

We can now prove our Main Theorem on the security of the scheme. Recall that this bounds the
ability of any attacker to carry out incomplete-coalition forgeries against our n-of-n signature
scheme in terms of the ability of any attacker to either forge signatures in the underlying HBS
or distinguish a PRF from a random function. The bound is written:

P IC-Forge(Q) ≤ PHBS-Forge(Q) +APRF(QPRF(Q)) + (n− 1) · 2−` +Q · 2−`.

Proof. By the Security With No Bad Events lemma, we know that if no bad events occur, our
security bound is

P IC-Forge
Chal (Q) ≤ PHBS-Forge(Q) +APRF(QPRF)

By Lemma 14, we know that

PBAD#1 ≤ (n− 1) · 2−`

By Lemma 10, we know that

PBAD#2 ≤ Q · 2−`

Applying the union bound, we get:

P IC-Forge
Chal (Q) ≤ PHBS-Forge(Q) +APRF(QPRF) + Pr[BAD#1] + Pr[BAD#2]

≤ PHBS-Forge(Q) +APRF(QPRF) + (n− 1)2−` +Q2−`

ut

For any plausible parameters of the scheme, (n− 1)2−` +Q2−` is negligibly small. If the PRF
is secure, then by definition, APRF(QPRF) is also negligibly small. Thus, our scheme’s security is
approximately the same a the security of the underlying hash-based signature scheme. Specifically,
an attacker who can sign messages without a complete coalition in our scheme can also, with
only negligibly smaller probability of success, forge messages for the underlying hash-based
signature scheme.

38



Challenger Attacker
Phase 1: Initial Message

PK, n− 1 trustees’ shares,
Helper’s shares−−−−−−−−−−−−−−−−−−−−−→

Phase 2: Signature Queries (For π ← 1 . . . q)

A-Query,π,Mπ←−−−−−−−−−−−−−−−−−−−−−

ρtπ, φ
t
π−−−−−−−−−−−−−−−−−−−−−→

ρ̂π, φ̂π←−−−−−−−−−−−−−−−−−−−−−

PATHtπ, σ
t
π(ρπ,Mπ) or ⊥−−−−−−−−−−−−−−−−−−−−−→
–OR–

(C-Query,π,Mπ, ρ
6=t
π , φ6=tπ )

←−−−−−−−−−−−−−−−−−−−−−

ρπ, φπ or ⊥−−−−−−−−−−−−−−−−−−−−−→

PATH6= t
π , σ 6= t

π (ρπ,Mπ)←−−−−−−−−−−−−−−−−−−−−−

PATHπ, σπ(ρπ,Mπ) or ⊥−−−−−−−−−−−−−−−−−−−−−→
Phase 3: Forgery Message

M∗, ρ∗, PATH∗, σ∗(ρ∗,M∗)←−−−−−−−−−−−−−−−−−−−−−
If verify(M∗, (ρ∗, PATH∗, σ∗(ρ∗,M∗))) AND M∗ /∈ {M1, . . . ,Mq} THEN attacker wins

Game 2: The Incomplete-Coalition Forgery Game with Prefixes
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1: function Chal(Q)
// Generate composite key.

2: PK, PATHall , Xall ← KeyGen()
// Find out which trustee to compromise

3: Send PK to attacker.
4: Receive t from attacker.

// Generate n pseudorandom shares
5: K[1 . . . n] chosen randomly w/o dups.
6: for k ← 1 . . . n do
7: for each π do
8: PATHkπ ← PRFK[k]((1, π), `)
9: ρkπ ← PRFK[k](3, π), `)
10: φkπ ← PRFK[k](4, π), `)
11: For each i, j:
12: Xk

π [i][j]← PRFK[k]((2, π, i, j), `)

// Generate Helper shares.
13: for each π do
14: ρπ ←$ {0, 1}`
15: φπ ← P_CHK(K[1 . . . n], π, ρπ)

16: for each π do
17: PATHHπ ← PATHπ ⊕

⊕n
k=1 PATH

k
π

18: φHπ ← φπ ⊕
⊕n

k=1 φ
k
π

19: ρHπ ← ρπ ⊕
⊕n

k=1 ρ
k
π

20: for each (i, j) do
21: XH

π [i][j]← Xπ[i][j]⊕
⊕n

k=1X
k
π [i][j]

// Give attacker requested shares

22: Send K[ 6=t], PATHHall , XH
all , φ

H
all , ρ

H
all to attacker.

// Respond to A-queries
23: for each signing query Mπ do

// Compute uncompromised trustee’s response.
24:
25:
26:
27: R← ρt

28: F ← φt

// Use shares computed above to respond
29: Send back R,F
30: Receive ρ̂, φ̂ from attacker.
31: P ← PATHt

32: h← hash(ρ̂π,Mπ)
33: S ← S_Sign(Xt

π, h)

// Reject any altered prefix.

34: if P_VER(K[t], t, φ̂, π, ρ̂) = 1 then
35: Send back P, S
36: else
37: Send back ⊥

// Receive forgery message from attacker
38: Receive M∗, ρ∗, PATH∗, σ∗

1: function Sim(Q)
// Get public key.

2: Receive PK from HBS-Chall.
// ←− See common code on left

3: Send PK to attacker.
4: Receive t from attacker.

// ←− See common code on left
5: K[1 . . . n] chosen randomly w/o dups.
6: for k ← 1 . . . n do
7: for each π do
8: PATHkπ ← PRFK[k]((1, π), `)
9: ρkπ ← PRFK[k](3, π), `)

10: φkπ ← PRFK[k](4, π), `)
11: For each i, j:
12: Xk

π [i][j] ←
PRFK[k]((2, π, i, j), `)

// Generate fake Helper shares.
13:
14:
15:
16: for each π do
17: PATHHπ ←

⊕n
k=1 PATH

k
π

18: ρHπ ←
⊕n

k=1 ρ
k
π

19: φHπ ←
⊕n

k=1 φ
k
π

20: for each (i, j) do
21: XH

π [i][j]←
⊕n

k=1X
k
π [i][j]

// ←− See common code to left.
22: Send K[6= t], PATHHall , X

H
all , φ

H
all , ρ

H
all to

attacker.
// Respond to A-queries

23: for each signing query π,Mπ do
// Compute uncompromised trustee’s shares.

24: Send Mπ to HBS-Challenger.
25: Receive ρπ, PATHπ, σπ(ρπ,Mπ)
26: R← ρtπ ⊕ ρπ
27: φπ ← P_CHK(K[1 . . . n], π, ρπ)
28: F ← φtπ ⊕ φπ

// ←− See common code to left.
29: Send back R,F
30: Receive ρ̂, φ̂ from attacker.
31: P ← PATHtπ ⊕ PATHπ
32: h← hash(ρπ,Mπ)
33: S ← σπ(h)⊕ S_Sign(Xt

π, h)

// ←− See common code to left.

34: if P_VER(K[t], t, φ̂, π, ρ̂) = 1 then
35: Send back P, S
36: else
37: Send back ⊥

// Receive forgery message from attacker
38: Receive M∗, ρ∗, PATH∗, σ∗
39: Forward to HBS-Challenger

Algorithm 4: Challenger and Simulator Definitions
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