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Abstract. The Module Learning With Errors problem (M-LWE) has
gained popularity in recent years for its security-efficiency balance, and
its hardness has been established for a number of variants. In this pa-
per, we focus on proving the hardness of (search) M-LWE for general
secret distributions, provided they carry sufficient min-entropy. This is
called entropic hardness of M-LWE. First, we adapt the line of proof of
Brakerski and Döttling on R-LWE (TCC’20) to prove that the existence
of certain distributions implies the entropic hardness of M-LWE. Then,
we provide one such distribution whose required properties rely on the
hardness of the decisional Module-NTRU problem.

Keywords: Lattice-Based Cryptography · Module Learning With Er-
rors · Entropic Hardness · Module-NTRU

1 Introduction

The Learning With Errors (LWE) [Reg05] and NTRU [HPS98] problems are the
most widespread computational assumptions for designing lattice-based cryp-
tosystems. The LWE problem asks to find a secret s ∈ Zdq given the noisy
system (A,b = As + e mod q) for A ∈ Zm×dq uniformly random and e drawn
from ψm, where ψ is an error distribution over Z (or R). In the decisional variant,
one has to distinguish such b from a uniform vector u over Zq (or Tq = R/qZ).
Although the error distribution can be arbitrary, most theoretical proofs use
a Gaussian distribution. LWE benefits from strong hardness guarantees, as its
average-case formulation is proven to be at least as hard as worst-case lattice
problems. The parameter d is known as the LWE dimension, and is often seen
as the security parameter of the problem as it is linked to the dimension of the
underlying lattice. The NTRU problem is defined over a more algebraic setting,
using algebraic integers instead of rational ones. In a number field K, consider R
to be the ring of algebraic integers in K. (Decisional) NTRU asks to distinguish

mailto:katharina.boudgoust@cs.au.dk
mailto:corentin.jeudy@irisa.fr
mailto:adeline.roux-langlois@irisa.fr
mailto:weiqiang.wen@telecom-paris.fr


between gf−1q mod q and u, where f and g are short elements of Rq = R/qR, f−1q
is the Rq-inverse of f and u is uniform over Rq. The search version, consisting in
finding f and g given gf−1q mod q, has recently be linked to standard ideal lat-
tice problems [PS21]. Although very few theoretical hardness results are known
for NTRU, it has been widely studied for more than two decades from a cryptana-
lytic standpoint. Unless for overstretched parameter sets [ABD16,CJL16,KF17],
it is believed to be a reliable hardness assumption to design public-key cryptosys-
tems, as is currently done by two candidates [CDH+20,BBC+20] in the NIST
competition [NIS].

Although LWE allows for designing provably secure cryptosystems, the re-
sulting schemes are usually not practical enough to be used in real-world sys-
tems. With this perspective in mind, several algebraically structured variants
of LWE [SSTX09,LPR10,BGV12,LS15] were introduced to improve efficiency
in terms of computation and storage, while maintaining strong enough hard-
ness guarantees from problems over structured lattices. The underlying algebraic
framework is the same as the one in the NTRU problem. In this paper, we focus
on the Module Learning With Errors (M-LWE) problem which is similar to the
original LWE formulation. The set of integers Z is replaced by a ring of alge-
braic integers R, as above. The problem is formulated over the free R-module Rd,
where d is called the rank of the module. Then, for a modulus q, and an error
distribution ψ over R (or KR = K ⊗Q R), and given (A,b = As + e mod q)
with A uniform in Rm×dq , s ∈ Rdq and e drawn from ψm, the goal is to re-
cover s. The decisional version asks to distinguish such a b from a uniformly dis-
tributed vector u. When d = 1, we call it Ring LWE (R-LWE). A module version
of NTRU was also recently studied by Chuengsatiansup et al. [CPS+20]. It con-
sists in distinguishing GF−1q mod q, with (F,G) short matrices in Rd×d×Rm×d
and F−1q the Rq-inverse5 of F, from a uniform matrix U ∈ Rm×dq . The mod-
ule versions M-LWE and M-NTRU give more flexibility to adjust the balance
between efficiency and security.

The average-case formulation of M-LWE is parameterized by a distribu-
tion S on the secret s. The original definition uses S to be the uniform dis-
tribution over Rdq . Even though this choice is the most natural one for theo-
retical results, practical schemes vary from it. For efficiency reasons, it is ad-
vantageous to choose secret distributions that lead to small-norm secrets, as is
done in the M-LWE-based schemes Kyber [BDK+18] and Dilithium [DKL+18]
currently participating in the NIST competition. The study of LWE with small-
norm secrets [GKPV10,BLP+13,Mic18] has recently been extended to the mod-
ule setting by Boudgoust et al. [BJRW20,BJRW21]. The second reason to de-
viate from the uniform distribution stems from the situation where the key
is not sampled from the prescribed distribution but from an imperfect one.
Braskerski and Döttling conducted a study of LWE with general entropic se-
cret distributions [BD20a], which they afterwards extended to the ring set-
ting (d = 1) [BD20b]. It was left open to thoroughly generalize this proof method

5 As we use both the Rq-inverse and the K-inverse, we insist on differentiating them
as F−1

q and F−1 respectively.
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to larger ranks d > 1. Hardness results encapsulating imperfect distributions pro-
vide theoretical insights on the resistance to key leakage, like cold boot attacks
for instance. These attacks leverage the physical properties of the hardware to
recover remanent information from the memory. In the representative cold boot
attack on M-LWE based schemes [ADP18], the adversary can manage to obtain
a faulty version of the (long-term) secret key s stored in memory. From the faulty
key s̃ = s +∆s, the adversary can now recover the full secret s by targeting a
new M-LWE instance (A,As̃−b mod q) = (A,A∆s−e mod q), where the new
secret ∆s is only promised to have certain entropy. The motivation is therefore
to prove the hardness of M-LWE when some secret key information is leaked to
the attacker, i.e., the remaining entropy in ∆s is smaller than that of s.
Our contributions. In this paper, we extend the line of work of Brakerski and
Döttling on the entropic hardness to the module setting, i.e., d ≥ 1, which has
gained popularity over its preceding variants. Our main contribution is given in
the following informal theorem. For a complete statement, refer to Theorem 5.2.

Theorem 1.1 (Informal). Assuming decisional M-NTRU is hard, the problem
search M-LWE with secret distribution S is hard for a sufficiently large Gaussian
noise and provided that S has large enough min-entropy.

The first step of our proof is to translate the M-NTRU problem from its algebraic
form to a non-algebraic one, which we call Structured NTRU (S-NTRU). This
simply consists in embedding the algebraic setting into vectors and matrices
over the integers or the reals. We similarly define Structured LWE (S-LWE),
generalizing the notion given in [BD20b]. The core of our work is then to prove
the hardness of S-LWE from that of S-NTRU.

To do so, we construct a sometimes lossy pseudorandom distribution, as in-
troduced in [BD20b]. The pseudorandomness property, proven under the hard-
ness of S-NTRU, essentially allows us to replace the uniform matrix A from
the S-LWE instance by the S-NTRU matrix GF−1q mod q, where F−1q is the Rq-
inverse of F. Then, the sometimes lossiness property translates the fact that
going from s to GF−1q s + e mod q loses enough information on s so that it is
hard to recover it. The sometimes lossiness thus entails the hardness of S-LWE
when A = GF−1q mod q. By the pseudorandomness, it then yields the hardness
of (search) S-LWE for a uniform A. Section 4 gives explicit conditions on the
distributions of F and G for the sometimes lossiness property to be satisfied.
It requires F and G to be somewhat well-behaved in terms of invertibility and
spectral bounds. More precisely, F must be invertible in Rq, the distributions
on F and G should both minimize their largest singular value, and the distribu-
tion of F should also maximize its smallest singular value. These conditions are
obtained by generalizing the approach from [BD20b] in the case of rings (d = 1).
It consists in introducing the extra dimension d associated to the module rank.
This has the effect of trading ring elements for matrices and vectors of ring
elements, but the theoretical arguments remain valid.

We then exhibit in Section 5 a distribution on F and G that satisfies the
required conditions, which is our main contribution. The invertibility in Rq has
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been studied in [CPS+20], which naturally implies invertibility in K. The spec-
tral analysis is more tricky and is the object of Sections 5.1 and 5.2. We give
technical results on the smallest (and largest) singular values of discrete Gaussian
matrices over the ring of integers of a number field, which might be of indepen-
dent interest. In addition to dealing with matrices, our techniques differ from
that of [BD20b] as we adopt a different, and inherently simpler, distribution on F
and G. This provides another valid way to construct sometimes lossy pseudoran-
dom distributions from module-based assumptions. For our distribution, call it
way 1, the pseudorandomness property is obtained by assuming that GF−1q mod

q ∈ Rm×dq is indistinguishable from uniform, hence the M-NTRU assumption for
a rectangular matrix G. The approach in [BD20b], call it way 2, is adapted to
the module setting in Appendix A. It argues that G̃F−1q mod q is indistinguish-
able from uniform, where G̃ is obtained by randomizing square matrices F,G.
More concretely, G̃ = EG + E′F with E,E′ random matrices of size m × d.
Then, G̃F−1q = EGF−1q + E′. Arguing that G̃F−1q mod q ≈ A now requires
to first replace the square matrix GF−1q by a uniform matrix U (M-NTRU
for a square matrix G) and then to replace EU + E′ by A (Hermite Normal
Form M-LWE6). The high-level picture of the entire proof is summarized in
Figure 1.1.

Module-NTRU
decisional

HNF Module-LWE
decisional

Structured NTRU
decisional

Sometimes Lossy
Pseudorandom
Distributions

Structured LWE
search

Module-LWE
search

Lemma 3.1
embedding

Section 5

Section 4

Lemma 3.1
embedding

Lemma A.1

Algebraic Setting
(K,KR, R,Rq)

Rational Setting
(Qn,Rn,Zn,Zn

q )
Way 1

Way 2

E
ntropic

R
equirem

ents

Fig. 1.1. High-level summary of the contributions of this work, proving Theorem 1.1.

One advantage of removing the HNF-M-LWE assumption is that our proof
can be seen as a reduction from decisional M-NTRU to search M-LWE. This
6 The Hermite Normal Form of M-LWE denotes a specific class of instances where the

secret is chosen from the same distribution as the error, i.e., S = ψd mod q.
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generalizes the observation of Peikert [Pei16] that decisional NTRU reduces to
search R-LWE. Another upside in only assuming M-NTRU is that we directly
recover the expected statistical hardness of M-LWE from that of M-NTRU when-
ever the parameters are large enough. We discuss briefly this statistical result in
Section 5.3 but note that it seems hard to build cryptosystems purely based on
the statistical hardness of M-LWE in these parameter regimes. Our reduction
is also rank-preserving between M-NTRU and M-LWE. Although it prevents us
from reaching unusually short secrets, it can still lead to better parameters com-
pared to (close to) rank-preserving reductions based on M-LWE assumptions,
as discussed in Section 6. As explained, we rely on a rectangular formulation
of M-NTRU which is similar to the multiple public keys version in the case
of NTRU. For non-overstretched parameters, we have no reason to believe that
this multiple public keys version, or rectangular M-NTRU in our case, is a sub-
stantially weaker assumption than square M-NTRU.

Lin et al. [LWW20] recently adapted the proof method from [BD20a] on LWE
to modules, which uses a sensibly different approach from the one we described
above. Their proof is based on an M-LWE hardness assumption, while it is
based on M-NTRU for us. This assumption allows them to tweak the starting
rank k of the module to reach smaller or larger secrets and noise, depending on
which one to optimize. However, their result does not provide a rank-preserving
reduction as k < d. Additionally, when k is close to d, our proof can lead to
better parameters, at the expense of trading the underlying assumption. We
discuss their result and compare it to ours in more details in Section 6.
Open Questions. Our proof only shows the entropic hardness of search M-LWE,
and we leave it as an open problem to extend it to the decisional variant. One pos-
sibility (of more general interest) would be to find a search-to-decision reduction
for M-LWE that preserves the (non-uniform) secret distribution. Additionally, it
would be interesting to have a worst-case to average-case reduction from module
lattice problems to decision M-NTRU in order to gain confidence in this rather
new assumption.
Organization. In Section 2, we introduce the notions and results that are
needed in our proof. In Section 3, we provide an equivalent formulation of M-LWE
and M-NTRU called Structured LWE and Structured NTRU, which general-
ize the notions defined in [BD20b]. In Section 4, we adapt the line of proof
from [BD20b] to our more general setting to give sufficient conditions for Struc-
tured LWE to be (mildly) hard. Section 5 is then dedicated to instantianting this
hardness result for M-LWE parameters. Finally, in Section 6, we discuss in more
details how our contribution places itself in the landscape of existing entropic
hardness results of M-LWE.

2 Preliminaries

In this paper, q denotes a positive integer, Z the set of integers, and Zq = Z/qZ
the set of integers reduced modulo q. For a positive integer n, we use [n] to
denote {1, . . . , n}. The vectors are written in bold lowercase letters a while the
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matrices are in bold uppercase letters A. The transpose and Hermitian opera-
tors for vectors and matrices are denoted with the superscript T and † respec-
tively. The identity matrix of size n× n is denoted by In. For a vector a ∈ Cn,
we define its Euclidean norm as ∥a∥2 = (

∑
i∈[n]|ai|

2
)1/2, and its infinity norm

as ∥a∥∞ = maxi∈[n]|ai|. Further, we denote by diag(a) the diagonal matrix whose
diagonal entries are the entries of a. For a matrix A = [aij ]i∈[n],j∈[m] ∈ Cn×m,
we define its spectral norm as ∥A∥2 = maxx∈Cm\{0}∥Ax∥2/∥x∥2, which cor-
responds to its largest singular value. The smallest singular value of A is de-
noted by smin(A). For a ring R and integers k, q, we denote GLk(R, q) the
set of matrices of Rk×k that are invertible in Rq = R/qR. The uniform dis-
tribution over a finite set S is denoted by U(S), and the statistical distance
between two discrete distributions P and Q over a countable set S is defined
as ∆(P,Q) = 1

2

∑
x∈S |P (x)−Q(x)|. Finally, the action of sampling x ∈ S from

a distribution P is denoted by x←↩ P .

2.1 Algebraic number theory

Although we focus on the problem once embedded into the integers, we provide
here the minimal background to understand the underlying ring structure. An
algebraic number ζ is a root of a polynomial over Q. The monic polynomial f of
minimal degree such that f(ζ) = 0 is called the minimal polynomial of ζ and is
unique. If f has coefficients in Z, then ζ is called an algebraic integer. A number
fieldK = Q(ζ) is a finite field extension of Q by adjoining the algebraic number ζ.
The degree of the field is that of f , i.e., [K : Q] = deg(f). We denote by R the
ring of algebraic integers in K. We also define the tensor field KR = K ⊗Q R.
Finally, we define Tq = KR/qR. When concretely instantiating the results in
Section 5, we need to restrict the choice of fields to cyclotomic fields, or even
a subclass of them. A cyclotomic field is a number field K = Q(ζ), where ζ
is a primitive ν-th root of unity, for an integer ν. The minimal polynomial is
then f = Φν =

∏
j∈[n](x − αj), where the αj are the primitive ν-th roots of

unity. Its degree is n = φ(ν), where φ is Euler’s totient function. A common
subclass is the one composed of power-of-two cyclotomic fields, which consists
in having ν = 2ℓ+1, in which case n = 2ℓ, and f = xn + 1.
Space H. We use t1 to denote the number of real roots of f , and t2 the number
of pairs of complex conjugate roots. We then have n = t1 + 2t2. For cyclotomic
fields, f has no real roots and therefore t1 = 0 and t2 = n/2. The space H is
then defined by H = {x ∈ Rt1 × C2t2 : ∀j ∈ [t2], xt1+t2+j = xt1+j}. H turns out
to be a real vector space of dimension n with the following orthonormal basis

UH =
1√
2

√2It1 0 0
0 It2 iIt2
0 It2 −iIt2

 .
We can therefore define the isomorphism Θ : x ∈ H 7→ U†Hx ∈ Rn between H
and Rn.
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Embeddings. A number field K = Q(ζ) of degree n can be seen as a vector
space of dimension n over the rationals with basis {1, ζ, . . . , ζn−1}, meaning
that each element x ∈ K can be written as x =

∑
0≤j≤n−1 xjζ

j with xj ∈ Q.
The coefficient embedding is the isomorphism τ between K and Qn that maps
every x ∈ K to its coefficient vector τ(x) = [x0, . . . , xn−1]

T . For simplicity, we
use τk(x) to denote xk. Additionally, τ can be extended to KR, mapping it to Rn.

Another way to embed K is to use the canonical embedding. K has exactly n
field homomorphisms σ1, . . . , σn, which are characterized by the fact that they
map ζ to one of the distinct roots of f . We order them so that σ1, . . . , σt1 map
to one of the real roots, and σt1+1, . . . , σt1+2t2 map to one of the complex roots.
The canonical embedding is defined as the field homomorphism from K to Cn
defined by σ(x) = [σ1(x), . . . , σn(x)]

T , and the addition and multiplication is
done component-wise. As f has rational coefficients, it holds that the complex
embeddings come in conjugate pairs, and therefore the range of σ is a subset
of H. Using Θ, we can therefore map K to Rn with σH = Θ ◦ σ.

The two embeddings are linked by the linear relation

σ(x) = Vτ(x) for all x ∈ K, where V =


1 α1 − αn−11

1 α2 − αn−12

| | |
1 αn − αn−1n

 ,

is the Vandermonde matrix defined by the roots of f . We define the field trace
of K using the canonical embedding σ as Tr(x) =

∑
k∈[n] σk(x) for all x ∈ K.

The discriminant of K denoted by ∆K is defined by det
(
[Tr(bi · bj)](i,j)∈[n]

)
,

where (bi)i is a Z-basis of R. In fields where the power basis 1, ζ, . . . , ζn−1 is
such a basis, we simply have ∆K = det(V)2. In cyclotomic fields, we have the
bound ∆K ≤ nn. From the trace, we can also define the dual of R by R∨ = {x ∈
K : Tr(xR) ⊆ Z}. Further, we define the field norm as N(x) =

∏
k∈[n] σk(x)

for all x ∈ K. The canonical embedding, as well as the trace and norm, can be
extended to KR too.

Multiplication matrices. The multiplication in K (or KR) translates into a
matrix-vector multiplication once embedded with either τ or σ. In the canonical
embedding, the multiplication matrix can be easily expressed. For all x and a
in K, we have σ(x · a) = σ(x) ⊙ σ(a) = diag(σ(x)) · σ(a), where ⊙ denotes
the coefficient-wise product or Hadamard product. Therefore, the multiplication
matrix is

Mσ(x) = diag(σ(x)).

We can then express the multiplication matrix with respect to σH as

MσH (x) = U†HMσ(x)UH = U†Hdiag(σ(x))UH .
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In the coefficient embedding, we can still express τ(x ·a) as Mτ (x) · τ(a), but
the expression of Mτ (x) is more involved as we have

Mτ (x) =

n−1∑
k=0

τk(x)C
k, with C =




0 0 −f0
−f1

−fn−1

In−1
(1)

the companion matrix of the minimal polynomial f =
∑n−1
k=0 fkx

k + xn. We
did not find a reference for this identity. Although it is a straightforward cal-
culation relying on properties of companion matrices, we provide a proof in
Appendix B.2 for completeness. We extend the embeddings to vectors in Kd

in the natural way by concatenating the embedding vectors of each coefficient,
i.e., τ(x) = [τ(x1)

T , . . . , τ(xd)
T ]T and similarly for σ. We can therefore translate

the matrix-vector multiplication in Kd to a matrix-vector multiplication in Rnd
by extending the multiplication matrix maps Mσ,MσH and Mτ to a matrix
in Km×d. More precisely, for a matrix F = [fij ](i,j) ∈ Km×d, we define the block
matrix Mσ(F) = [Mσ(fij)](i,j). We define MσH (F) and Mτ (F) the same way.
Ideals. An ideal I ⊆ R is an additive subgroup of R that is closed under
multiplication by R. An ideal p is prime if for all a, b ∈ R, ab ∈ p implies that
either a ∈ p or b ∈ p. Any ideal of R can be factored into a product of prime
ideals. The integer q is said unramified if the prime factors of qR are all distinct.
The field norm can also be extended to an ideal I of R by N(I) = |R/I|.

2.2 Lattices

A lattice is a discrete subgroup of Rn. Each lattice Λ can be represented by a
basis B = [bi]i∈[r] ∈ Rn×r as the set of its integer linear combinations, i.e., Λ =∑
i∈[r] Z · bi. We use Λ(B) to denote the lattice generated by the basis B. The

parameter r is called the rank of the lattice, but in this work we only consider
full-rank lattices where the rank matches the dimension n. The dual lattice of a
lattice Λ is defined by Λ∗ = {x ∈ Span(Λ) : ∀y ∈ Λ, ⟨x,y⟩ ∈ Z}.
Ideal lattices. Any ideal I of R embeds into a lattice of Rn via τ or σH . These
lattices are called ideal lattices. In the rest of the paper, we denote by LR a
basis of the lattice σH(R), and BR = L−1R . Since each lattice element can be
represented as LRx for some x ∈ Zn, we can map R to Zn by BR ◦ σH . We
denote by MR(x) the associated multiplication matrix, i.e.,

MR(x) = BRMσH (x)B
−1
R = (BRU

†
H)diag(σ(x))(BRU

†
H)−1.

Notice that when the power basis is a Z-basis of R, e.g. cyclotomics, we can
choose LR = [σH(1) | . . . | σH(ζn−1)] = U†HV. In that case, we have BR◦σH = τ
and also MR(·) = Mτ (·). We keep the notations without assuming how the
basis LR is chosen. We only use this specific choice of basis in Section 5.
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Module lattices. More generally, for an R-module M ⊆ Kd, M embeds into a
module lattice of Rnd via τ or σH . We define LRd = Id ⊗LR, which is a basis of
the module lattice σH(Rd), and we define BRd = L−1

Rd
= Id ⊗BR. We can then

extend the map MR to matrices by applying the map coefficient-wise as before.
It maps (matrices of) ring elements to (block matrices of) structured matrices,
as depicted in Figure 2.1. Further, just like Mτ , Mσ and MσH , MR is a ring
homomorphism.

aij
MR

n

n




a11

am1

a1d

amd

A =




MR

nm

nd

Fig. 2.1. Illustration of the (structured) multiplication matrix map MR

2.3 Probabilities

We first recall a trivial lemma that bounds the maximal singular value of a
random matrix Z by bounding the singular values of its blocks. The result can
be made deterministic for δ = 0. The proof is provided in Appendix B.2.

Lemma 2.1. Let a, b, c, d be integers. Let Z = [Zij ](i,j)∈[a]×[b] ∈ Rac×bd be
a random block matrix where each Zij ∈ Rc×d. Assume it holds for all (i, j)

that P[∥Zij∥2 ≥ γ] ≤ δ, for 0 ≤ δ ≤ 1. Then, we have P[∥Z∥2 ≥
√
ab · γ] ≤ ab · δ.

Gaussians. For a full-rank matrix S ∈ Rm×n (m ≥ n), and a center c ∈ Rn
we define the Gaussian function by ρc,S(x) = exp(−π(x− c)T (STS)−1(x− c)).
We can then define the continuous Gaussian distribution Dc,S whose density
is det(S)−1ρc,S. If S = sIn, then we simply writeDc,s, and we omit c if it is 0. We
then define the discrete Gaussian distribution DΛ,c,S over a lattice Λ by condi-
tioning on x being in the lattice, i.e., for all x ∈ Λ, DΛ,c,S(x) = Dc,S(x)/Dc,S(Λ),
where Dc,S(Λ) =

∑
y∈ΛDc,S(y). We use the simplified notation DR,c,S to de-

note DσH(R),c,S. Additionally, by abuse of notation, we also use Dc,S to denote
the distribution obtained by sampling x from Dc,S and outputting σ−1H (x) ∈ KR.
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Definition 2.1 (Sub-Gaussian Distribution). Let n be a positive integer,
and x a (discrete or continuous) random vector over Rn. We say that x is sub-
Gaussian with sub-Gaussian moment s, if for all unit vector u ∈ Rn, and all t ∈
R, we have E[exp(2πt⟨x,u⟩)] ≤ eπs2t2 .

A standard calculation shows that the discrete Gaussian distribution DΛ,s is
sub-Gaussian with sub-Gaussian moment s [MP12, Lem. 2.8], for any lattice Λ
and s > 0.

Smoothing. The smoothing parameter of a lattice Λ introduced by Micciancio
and Regev [MR07], and denoted by ηε(Λ) for some ε > 0, is the smallest s > 0
such that ρ1/s(Λ∗\{0}) ≤ ε. It represents the threshold above which the discrete
Gaussian distribution behaves like a continuous one.

Min-Entropy. Let x follow a discrete distribution on a set X, and z follow a
(possibly continuous) distribution on a (measurable) set Z. The average condi-
tional min-entropy7 of x given z is defined by

H̃∞(x|z) = − log2

(
Ez′

[
max
x′∈X

P[x = x′|z = z′]

])
If z is deterministic, we obtain the definition of the min-entropy of x as H∞(x) =
− log2(maxx′∈X P[x = x′]). For ε > 0, we also define the ε-smooth average
conditional min-entropy by

H̃ε
∞(x|z) = max{H̃∞(x′|z′) : ∆((x′, z′), (x, z)) ≤ ε}.

For convenience, we simply refer to all these notions as min-entropy instead of
their full name when it is clear from the context or notations. But it should be
noted that the notions are distinct.

2.4 Noise Lossiness

We now recall the notion of noise lossiness of a distribution S of secrets as
introduced in [BD20a,BD20b]. It quantifies how much information is lost about
a secret from S when perturbed by a Gaussian noise. As we are in the module
setting, we highlight the dimension as nd where n is the ring degree, and d the
module rank.

Definition 2.2 (Noise Lossiness). Let n, d, q be integers and s > 0 be a Gaus-
sian parameter. Let B be a non-singular matrix in Rnd×nd. Let S be a distribution
of secrets over Zndq . The noise lossiness νsB(S) is defined by

νsB(S) = H̃∞(s|s+ e),

where s←↩ S, and e←↩ DsB.
7 The (non-average) conditional min-entropy of x given z is de-

noted by H∞(x|z) instead of H̃∞(x|z), and given by H∞(x|z) =
− log2 (maxz′∈Z maxx′∈X P[x = x′|z = z′]).

10



We also recall the bounds on the noise lossiness derived in [BD20a] in the case
of general distributions, as well as that of distributions over bounded secrets.

Lemma 2.2 ([BD20a], Lem. 5.2). Let n, d, q be integers, and a Gaussian
parameter s such that 0 < s ≤ q

√
π/ ln(4nd). Let S be any distribution over Zndq .

Then it holds that
νs(S) ≥ H∞(S)− nd · log2(q/s)− 1.

Lemma 2.3 ([BD20a], Lem. 5.4). Let n, d, q be integers and s > 0 be a
Gaussian parameter. Let S be a r-bounded distribution (for the Euclidean norm)
over Zndq . Then it holds that

νs(S) ≥ H∞(S)−
√
2πnd log2(e) · rs .

2.5 Module Learning With Errors

In this work, we deal with Module Learning With Errors (M-LWE) over the
(primal) ring of integers R of a number field K. Additionally, we do not limit
the secret distribution to be uniform, and we thus define M-LWE for an arbitrary
distribution of secrets S.

Definition 2.3. Let K be a number field of degree n, and R its ring of in-
tegers. Let d, q,m be positive integers. Finally, let S be a secret distribution
supported on Rdq , and Υ be a distribution over error distributions on KR. The
search M-LWEn,d,q,m,Υ,S problem is to find the secret s given (A,b) = (A,As+
e mod qR) for A←↩ U(Rm×dq ), s←↩ S, and e←↩ ψm for ψ ←↩ Υ . The decisional
version consists in deciding whether such (A,b) is distributed as above or if it
is uniform over Rm×dq × Tmq .

In most cases, we consider Υ to be the deterministic distribution over {ψ} for
some (non-deterministic) error distribution ψ over KR. In this case, we use ψ
instead of Υ in the notation. In Section 6, we compare our result with existing
ones which requires to use the dual R∨ by considering s ∈ (R∨q )

d and e ∈ (R∨)m.
We may also use discrete error distributions over R instead of KR. The standard
formulation of M-LWE corresponds to S = U(Rdq), for which we omit the S in the
notation. For arbitrary secret distributions S, we usually analyze the hardness of
the problem based on some requirement on the entropy of S. This is why these
cases are also referred to as entropic M-LWE or entropic hardness of M-LWE.

2.6 Module-NTRU

We also recall the Module-NTRU (M-NTRU) problem, as defined by Chuengsa-
tiansup et al. [CPS+20]. Although we use discrete Gaussian distributions as
in [CPS+20], it can be formulated using an arbitrary distribution ψ as follows.

Definition 2.4 (Module-NTRU (M-NTRU)). Let R be the ring of integers
of a number field K and let q be a modulus. Let m, d be positive integers, and ψ
be a distribution on R. Let G ←↩ ψm×d and F ←↩ ψd×d conditioned on F ∈
GLd(R, q). Let F−1q be the Rq-inverse of F. The M-NTRUn,d,q,m,ψ problem asks
for distinguishing GF−1q ∈ Rm×dq from a uniformly random A←↩ U(Rm×dq ).

11



In the rest of the paper, we consider ψ = DR,γ for some Gaussian parameter γ >
0. In this case, we simply denote it as M-NTRUn,d,q,m,γ .

3 Structured LWE

In this section, we provide another formulation of LWE and NTRU. We then
prove that these new problems are equivalent to M-LWE and M-NTRU respec-
tively in a specific setting. Finally, we recall the notion of mild hardness presented
in [BD20b], and how it relates to the standard definition of hardness.

3.1 Structured LWE and Structured NTRU

In the following, we define a version of LWE that generalizes the Structured LWE
problem from [BD20b]. We also define the Structured NTRU problem which is a
generalization of the DSR problem from [BD20b]. We use the name Structured
NTRU only because it is to M-NTRU what Structured LWE is to M-LWE as
we explain in Section 3.2. NTRU already being a structured problem, it should
not be interpreted as if there exists an unstructured version of NTRU.

The only difference stems in introducing the extra dimension of the module
rank d. Instead of considering vectors of m matrices of size n × n, we consider
block matrices of size m×d with n×n blocks. We only define the search variant
of Structured LWE and the decisional variant of Structured NTRU as they are
the only one needed in this paper, but one could define the other versions in the
natural way. The main motivation for working with these problems is the simpler
analysis due to its formulation over Z instead of R. Furthermore, both S-LWE
and S-NTRU can be instantiated with distributions that are not directly linked
to M-LWE and M-NTRU.

The additional dimension in Structured LWE does not introduce much com-
plications compared to the case d = 1 from [BD20b]. This is why most of the
results in Section 3 and 4 are mere reformulations encompassing larger ranks.
The technical difficulties of dealing with block matrices arise when concretely
instantiating the hardness result to derive the hardness of M-LWE for arbitrary
secret distributions later in Section 4 and 5.

Definition 3.1 (Structured LWE, [BD20b, Def. 3.1] adapted). Let n, d, q,
and m be positive integers. LetM be a distribution of matrices on Zn×nq , and Υ
be a distribution of error-distributions on Rn. Furthermore, let S be a distri-
bution on Zndq . The goal of the S-LWEn,d,q,m,M,Υ,S problem is to find the se-
cret s←↩ S given (A,y) = (A,As+ e mod q), with A←↩Mm×d, and e←↩ ψm
where ψ ←↩ Υ .

If m is not specified, it means we consider the samples one by one. A single
sample follows the same definition for m = 1.

Definition 3.2 (Structured NTRU [BD20b, Def. 5.1] adapted). Let n, d,
q, and m be positive integers. LetM be a distribution of matrices on Zn×nq , and Ψ
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a distribution on GLnd(Z, q) × Znm×nd. The S-NTRUn,d,q,m,M,Ψ problem is to
distinguish the two following distributions

1. G · F−1q mod q, where (F,G)←↩ Ψ , and F−1q is the Zq-inverse of F mod q.
2. U←↩Mm×d.

Notice that these formulations are very similar to Definition 2.3 and 2.4 but
where the ring R is embedded as Zn. In Section 3.2, we prove that they are
equivalent up to carefully chosen mappings between the different distributions,
as done in [BD20b] for the case of R-LWE. Further, we sometimes decompose the
vectors (resp. matrices) in blocks of size n (resp. n× n) to show the correspon-
dence between R and Zn. We then have A = [Aij ](i,j)∈[m]×[d] with Aij ∈ Zn×nq ,
and x = [xT1 , . . . ,x

T
k ]
T for a vector x of size nk, and xi ∈ Zn (or Rn depending

on the context).

3.2 Module Problems as Structured Problems

For completeness, we detail here how to transform a (primal) Module-LWE (resp.
Module-NTRU) instance into an instance of Structured LWE (resp. Structured
NTRU) by choosing the correct distributions. The transformation consists in
embedding the ring elements either as vectors or as multiplication matrices. MR

maps a ring element to a structured matrix as illustrated in Figure 2.1, thus
motivating the names Structure LWE and Structured NTRU. Although the proof
is trivial, we provide it for completeness.

Lemma 3.1. Let K = Q(ζ) be a number field of degree n, and R its ring of in-
tegers. Let d, q,m be positive integers. We set M =MR(U(Rq)) the distribution
over Zn×nq , where MR is defined in Section 2.2.

LWE. Let ψ′ be a distribution over KR, and S ′ a distribution over Rdq . De-
fine ψ = (BR ◦ σH)(ψ′), and S = (BR ◦ σH)(S ′), where BR is defined in Sec-
tion 2.2. Then, the two problems M-LWEn,d,q,m,ψ′,S′ and S-LWEn,d,q,m,M,ψ,S
are equivalent.

NTRU. Now, let ψ′ be a distribution over R. We define Ψ to be the distribution
over GLnd(Z, q) × Znm×nd obtained by drawing F from (ψ′)d×d conditioned on
being in GLd(R, q), G from (ψ′)m×d and outputting (MR(F),MR(G)). Then,
the two problems M-NTRUn,d,q,m,ψ′ and S-NTRUn,d,q,m,M,Ψ are equivalent.

Proof. Since all the distributions are defined via an invertible mapping (ei-
ther MR or BR ◦ σH), we only prove one direction. The other simply consists in
using the inverse mappings.

LWE. Let (A,As + e mod qR) ∈ Rm×dq × Tmq where A ←↩ U(Rm×dq ), s ←↩ S ′
with S ′ is a distribution on Rdq , and e ←↩ (ψ′)m. The transformation consists
in applying (MR,BR ◦ σH) to the instance (A,As+ e mod qR). We now verify
that the result is correctly distributed with respect to M, S and ψ. For clarity,
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we denote BR ◦ σH by ϕ. Note that ϕ is linear. For all j ∈ [m], it holds

ϕ([As+ e]i) =
∑
j∈[d]

ϕ(aij · sj) + ϕ(ei) =
∑
j∈[d]

MR(aij) · ϕ(sj) + ϕ(ei)

= [MR(A) · ϕ(s) + ϕ(e)]i.

Here we handle vectors and block matrices but the computation still holds.
Simply note that [ϕ(s)]j corresponds to the j-th block of ϕ(s) which is col-
umn vector of size n, and MR(aij) is the (i, j) block of size n × n of the ma-
trix MR(A) by definition. The way we defined, M, S and ψ from MR(.), S ′
and ψ′, it is clear that (MR(A),MR(A)ϕ(s) + ϕ(e)) is distributed according
to S-LWEn,d,q,m,M,ψ,S . The oracle for S-LWEn,d,q,m,M,ψ,S thus returns ϕ(s),
from which we can recover s by inverting ϕ.
NTRU. Let A be in Rm×dq . First assume that A is uniform over Rm×dq . Then,
it holds that MR(A) is distributed according to M. Next, assume that A =
GF−1q mod qR, where F ←↩ (ψ′)d×d conditioned on being in GLd(R, q), G ←↩
(ψ′)m×d, and F−1q is the Rq-inverse of F. As MR is a ring homomorphism, it
holds thatMR(A) =MR(G)MR(F

−1
q ) mod qZ. SinceMR(F

−1
q ) is the Zq-inverse

of MR(F), the definition of Ψ gives that MR(A) is correctly distributed. A dis-
tinguisher for S-NTRUn,d,q,m,M,Ψ applied to MR(A) thus gives a distinguisher
for M-NTRUn,d,q,m,ψ′ .

Recall that in cyclotomic fields for example, we can choose BR = (U†HV)−1,
which leads to MR = Mτ and ϕ = τ . In this case, it simply uses the coefficient
embedding to embed M-LWE (resp. M-NTRU) into S-LWE (resp. S-NTRU).
Note that the hardness of S-NTRU can be established for other distributions Ψ ,
but based on different assumptions than M-NTRU. We discuss it in Section 5.2.
The distribution of the blocks is chosen to beM =MR(U(Rq)). The reader can
keep this choice in mind, but we point out that the results of Section 3.3, 3.4
and 4 hold for arbitrary distributions M, S and ψ.

3.3 (Mild) Hardness

We consider the two notions of hardness for S-LWE as is done in [BD20b],
namely standard hardness and the weaker notion of mild hardness. We show that
standard hardness naturally implies mild hardness, while the converse require
an a priori unbounded number of samples in order to use a success amplification
argument. All the proofs are provided in Appendix B.3 for completeness.

Definition 3.3 (Standard and Mild Hardness). Let n, d, q be positive in-
tegers. Let M be a distribution over Zn×nq , and Υ a distribution of distribu-
tions over Rn. Finally, let S be a distribution on Zndq . For any (s, ψ) sampled
from (S, Υ ), we denote by Os,ψ the (randomized) oracle that, when called, re-
turns (Ai,Ais+ ei mod q), where Ai ←↩M1×d and ei ←↩ ψ.

The S-LWEn,d,q,M,Υ,S problem is standard hard, if for every PPT adver-
sary A and every non-negligible function ε, there exists a negligible function ν
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such that
P s←↩S
ψ←↩Υ

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ ε(λ)

]
≤ ν(λ),

where AOs,ψ means that the adversary has access to Os,ψ as a black-box and can
thus query it as many times as they want. The internal probability is over the
random coins of A and the random coins of Os,ψ (meaning over the randomness
of the (Ai, ei)).

We now say that the S-LWEn,d,q,M,Υ,S problem is mildly hard, if for ev-
ery PPT adversary A and every negligible function µ, there exists a negligible
function ν such that

P s←↩S
ψ←↩Υ

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ 1− µ(λ)

]
≤ ν(λ).

When the number of available samples m is fixed a priori, we use the same
definitions except that A is only allowed at most m queries to the oracle. The
samples can be written in matrix form as (A,As+ e mod q) with A←↩Mm×d

and e←↩ ψm.

Lemma 3.2. Let n, d, q be positive integers. LetM be a distribution over Zn×nq ,
and Υ a distribution of distributions over Rn. Finally, let S be a distribution
on Zndq . If S-LWEn,d,q,M,Υ,S is standard hard, then it is also mildly hard. The
same result holds when the number of available samples m is fixed.

Lemma 3.3 ([BD20b, Lem. 3.4] adapted). Let n, d, q be positive integers.
LetM be a distribution over Zn×nq , and Υ a distribution of distributions over Rn.
Finally, let S be a distribution on Zndq . If S-LWEn,d,q,M,Υ,S is mildly hard, then
it is also standard hard.

3.4 Rerandomization

Lemma 3.3 holds for an unbounded number of samples, which is not always real-
istic. In order to generate new samples from a fixed number, we recall the reran-
domization lemma provided in [BD20b]. This procedure creates a new sample by
adding up a random subset of the available samples. It results in a different error
distribution which might not be easy to work with. The proof of the following is
given in Appendix B.3.

Lemma 3.4 ([BD20b, Lem. 3.5] adapted). Let n, d, q be positive integers.
Let M be a distribution over Zn×nq , and S be a distribution on Zndq . Let m be
a positive integer such that m ≥ n2d log2 q + n log2 q + ω(log2 λ). Let Φ be an
error distribution on Zn. The distribution of error-distributions ΥΦ,bin is defined
as follows: A distribution ψ ←↩ ΥΦ,bin is determined by m elements e1, . . . , em ∈
Zn chosen from Φ. To sample from the distribution ψ, choose x ←↩ {0, 1}m
uniformly at random and output

∑
i xiei. If S-LWEn,d,q,m,M,Φ,S is mildly hard,

then S-LWEn,d,q,M,ΥΦ,bin,S is also mildly hard.
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4 Entropic Hardness of Structured LWE

In this section, we adapt the notion of sometimes lossy pseudorandom distribu-
tion from [BD20b] to our more general version of Structured LWE. They gather
two main properties, namely pseudorandomness and sometimes lossiness, which
are essential in proving the entropic hardness of S-LWE. Section 4.1 formal-
izes this idea that if there exists a sometimes lossy pseudorandom distribution,
then S-LWE is mildy hard. Then, Section 4.2 gives sufficient conditions to con-
struct such distributions. As the proofs of this section do not require technical
novelty compared to the original ones, we defer them to Appendix B.4. Also, note
that all the matrices in this section are over Z, Zq, Q or R, and not R, Rq, K
or KR.

Definition 4.1 ([BD20b, Def. 4.1] adapted). Let n, d, q,m be positive in-
tegers. Let X be a distribution on Znm×ndq , M a distribution on Zn×nq , S a
distribution on Zndq and ψ an error distribution on Rn. We say that X is a
sometimes lossy pseudorandom distribution for (S,M, ψ) if there exists a neg-
ligible function ε, a κ = ω(log2 λ) and a δ ≥ 1/poly(λ) such that the following
properties hold.

Pseudorandomness: X is computationally indistinguishable from Mm×d

Sometimes Lossiness: PA←↩X [H̃
ε
∞(s|A,As+ e mod q) ≥ κ] ≥ δ, where s←↩

S and e←↩ ψm.

4.1 From Sometimes Lossiness to the Entropic Hardness of
Structured LWE

The following theorem adapted from [BD20b] states that the existence of a some-
times lossy pseudorandom distribution implies the mild hardness of Structured
LWE. The proof can be found in Appendix B.4. The pseudorandomness property
essentially allows us to trade the uniform matrix A from the S-LWE instance
for the matrix GF−1q mod q (where F−1q is the Zq-inverse of a short matrix F)
as in Definition 2.4. Then, the sometimes lossiness property translates the fact
that going from s to GF−1q s+e mod q loses enough information on s (with non-
negligible probability over the choice of F and G) so that it is hard to recover s.
The sometimes lossiness thus entails the hardness of S-LWE when A = GF−1q
instead of being uniform. By the pseudorandomness, it then yields the hardness
of S-LWE.

Theorem 4.1 ([BD20b, Thm. 4.2] adapted). Let n, d, q,m be positive inte-
gers. Let X be a distribution on Znm×ndq ,M a distribution on Zn×nq , S a distri-
bution on Zndq and ψ an error distribution on Rn. We assume that all the distri-
butions are efficiently sampleable. If the distribution X is a sometimes lossy pseu-
dorandom distribution for (M,S, ψ), then S-LWEn,d,q,m,M,ψ,S is mildly hard.
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4.2 Construction of Sometimes Lossy Pseudorandom Distributions

We now provide the generalization of [BD20b] to our new problem S-NTRU in
order to give sufficient conditions to construct sometimes lossy pseudorandom
distributions, and therefore get the mild hardness of S-LWEn,d,q,m,M,ψ,S by
Theorem 4.1. We first provide a few technical lemmata before the main result of
this subsection. The proofs follow the same structure as the one from [BD20b],
which is why we defer them to Appendix B.4. The goal is to prove that s has
sufficient min-entropy left, even if GF−1q s+e0 is known. Recall that BR ∈ Rn×n
and for ℓ ≥ 1, BRℓ = Iℓ⊗BR, as defined in Section 2.2. Note that in the following,
we need both the inverse modulo q (F−1q ) and the rational inverse (F−1) of a
matrix F ∈ Znd×ndq . The invertibility modulo q implies that the determinant
of F is a unit in Zq, and is therefore non-zero when seen as an element of Q,
which in turns implies the rational invertibility.

Lemma 4.1 ([BD20b, Lem. 5.4] adapted). Let n, d, and m be positive in-
tegers. Let Z = [Zi,j ](i,j)∈[m]×[d] ∈ Rnm×nd, where for all (i, j), Zi,j ∈ Rn×n and
set Z′ = B−1Rm · Z · BRd . Let s, s′ > 0 be such that s ≥ ∥Z′∥2 · s′. There exists
a distribution Ψ on Rnm, such that if e′ ←↩ Ds′·B

Rd
= Dd

s′·BR and e′′ ←↩ Ψ are
independent, then e = Ze′ + e′′ is distributed according to Ds·BRm = Dm

s·BR .

Lemma 4.2 ([BD20b, Lem. 5.5] adapted). Let n, d, q be positive integers.
Let F ∈ GLnd(Z, q), and F′ = B−1

Rd
FBRd . Let s >

√
2∥F′∥2ηε(B

−1
Rd

). Let f ←↩
D√2·sB

Rd
and e ←↩ DΛ(F),sB

Rd
. Let s be a random variable supported on Zndq .

Then it holds that

H̃2ε
∞(s|F−1q s+ F−1f mod q) ≥ H̃∞(s|F−1q s+ F−1e mod q),

with F−1q denoting its Zq-inverse, and F−1 its Q-inverse.

Lemma 4.3 ([BD20b, Lem. 5.6] adapted). Let n, d be positive integers,
and s a random variable supported on Zndq . Let s ≥ ηε(Λ(B−1Rd)), f ←↩ DZnd,

√
2·sB

Rd

and e←↩ DsB
Rd

, then it holds that H̃8ε
∞(s|s+ f) ≥ H̃∞(s|s+ e).

Altogether, Lemmata 4.1, 4.2, and 4.3 lead to the following theorem. It gives
the necessary link between the hardness of recovering s given GF−1q s+ e0, and
the noise losiness of the secret distribution. We first use Lemma 4.1 to decompose
the noise e0 into GF−1e1 + e′1 along the matrix GF−1, where F−1 is the Q-
inverse of F. To avoid a noise blow-up, the spectral norm of GF−1 needs to be as
small as possible, which is done by maximizing the smallest singular value of F
and minimizing the largest singular value of G. We then use Lemma 4.2 to go
from a continuous to a discrete Gaussian distribution. We argue that the entropy
of s knowing GF−1q s+(GF−1e1+e′1) mod q is larger than that of s knowing only
some (reduced) coset s+ e2 mod q where e2 is sampled on the lattice generated
by F. If the latter entropy is large enough, which requires to minimize the largest
singular value of F, then so is the former. Finally, Lemma 4.3 leads back to a
continuous noise, to express this condition in terms of the noise lossiness of S.
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Theorem 4.2 ([BD20b, Thm. 5.7] adapted). Let n, d, q,m be positive inte-
gers, and S a distribution over Zndq . Then, let F ∈ GLnd(Z, q). For (i, j) ∈ [m]×
[d], let Gij ∈ Zn×n be matrices and G = [Gij ](i,j)∈[m]×[d] be the block matrix
of the Gij. Further let F−1 ∈ Qnd×nd be the Q-inverse of F and F−1q ∈ Znd×ndq

be the Zq-inverse of F mod q. Define the matrix F′ = B−1
Rd

FBRd and G′ =

B−1RmGBRd . For s > ∥F′∥2 · ηε(Λ(B
−1
Rd

)), let s0 ≥ 23/2s
∥∥G′(F′)−1∥∥

2
. Then it

holds that

H̃18ε
∞ (s|GF−1q s+ e0 mod q) ≥ νsB

Rd
(S)− nd log2(∥F′∥2),

where e0 ←↩ Ds0BRm , and s←↩ S.

By combining the previous results, we obtain the main theorem that gives
explicit conditions to construct sometimes lossy pseudorandom distributions.
The proof can be found in Appendix B.4.

Theorem 4.3 ([BD20b, Thm. 5.8] adapted). Let n, d,m, q be positive in-
tegers, and β1, β2 > 0. Let Ψ be a distribution on GLnd(Z, q) × Znm×nd, M
a distribution on Zn×nq , and S a distribution on Zndq . Assume the hardness
of S-NTRUn,d,q,m,M,Ψ . Additionally, assume that if (F,G)←↩ Ψ then

–
∥∥B−1RmGF−1BRd

∥∥
2
≤ β1 where F−1 is the rational inverse of F.

–
∥∥B−1

Rd
FBRd

∥∥
2
≤ β2

with probability at least δ ≥ 1/poly(λ) over the choice of (F,G). Define the
distribution X on Znm×ndq by GF−1q , where (F,G) ←↩ Ψ and F−1q ∈ Znd×ndq is
the Zq-inverse of F. Let s > β2ηε(Λ(B

−1
Rd

)) and s0 > 23/2β1s. Further assume
that νsB

Rd
(S) ≥ nd log2(β2) + ω(log2(λ)).

Then X is a sometimes lossy pseudorandom distribution for (S,M, Ds0BRm ).

Therefore, Theorems 4.3 and 4.1 together yield the following immediate corollary.

Corollary 4.1. Assume that the conditions of Theorem 4.3 are satisfied. Then
the problem S-LWEn,d,q,m,M,ψ,S is mildly hard.

5 Instantiation for M-LWE

This section constitute our main contribution, which consists in concretely ex-
hibiting a sometimes lossy pseudorandom distribution that implies the entropic
hardness of M-LWE. We thus set the parameters so that it fits the requirements
of both Section 3.2 and 4. As seen in the latter in Theorem 4.3, the S-NTRU
problem must be hard for this distribution, and the distribution also needs to
be somewhat well behaved in terms of its spectral properties. Lemma 3.1 gives
the equivalence between M-NTRU and S-NTRU, which allows for expressing the
entire result in the more algebraic module setting. The more technical aspect of
this section comes from Section 5.1, in which we study the spectral properties
that we need. In particular, we derive a lower bound on the smallest singular
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value of discrete Gaussian matrices over R (once embedded via MσH ). Then,
in Section 5.2, we define this distribution and verify that it indeed leads to a
sometimes lossy pseudorandom distribution. Combining it with Corollary 4.1
and the equivalence between M-LWE and S-LWE of Lemma 3.1, we then ob-
tain the entropic (mild) hardness of M-LWE. All the results in this section hold
for arbitrary number fields at the exception of Corollary 5.2 which is stated for
cyclotomic fields.

5.1 Invertibility and Singular Values of Discrete Gaussian Matrices

We now recall [CPS+20, Thm. A.5] that gives the density of square discrete
Gaussian matrices over Rq that are invertible modulo qR. This theorem gives
concrete conditions so that DGLd(R,q),γ is efficiently sampleable. The proofs
of [CPS+20, Thm. A.5, Lem. A.6] depend on the embedding that is chosen to
represent R as a lattice. The paper uses Gaussian distributions in the coefficient
embedding over the lattice τ(R) which differ from our context. As such we need
to adapt the proofs for Gaussian distributions in the canonical embedding over
the lattice σH(R). The changes are mostly limited to volume arguments as the
volume of the lattice R depends on the embedding. Also, note that the proofs
of [CPS+20, Thm. A.5, Lem. A.6] still hold in any number field and for any
splitting behaviour of q provided that it is unramified, no matter the size of the
norm of its prime factors.

Theorem 5.1 ([CPS+20, Thm. A.5] adapted). Let K be a number field of
degree n and R its ring of integers. Let d ≥ 1 and q > 2n be an unramified prime.
We define Nmax = maxp|qR,p primeN(p) and Nmin = minp|qR,p primeN(p). As-
sume that γ ≥ 21/(2d−1) · (|∆K | ·N (d−1)/(2d−1)

max )1/n. Then

ργ(R
d×d \GLd(R, q)) ≤

2r

Nmin
· γnd

2

|∆K |d
2/2
· (1 + 8d22−n)

≤ 2r

Nmin
· (1 + 8d22−n) · ργ(Rd×d),

where r is the number of distinct prime factors of qR.

Remark 5.1. Consider q = 1 mod ν over the ν-th cyclotomic field. Then, qR
fully splits into n distinct prime ideals, each of norm q (Nmin = Nmax). Thus,
if γ ≥ 21/(2d−1)(|∆K | · q(d−1)/(2d−1))1/n which is roughly Ω(n), then we have
that

PF←↩Dd×dR,γ
[F ̸∈ GLd(R, q)] ≤

2n

q
+ negl(n) (2)

Note that if q ≤ 2n, the inequality is vacuous. However, in practice q is usually
much larger. For example, Kyber [BDK+18] uses q ≥ 13 · n while the signature
Dilithium [DKL+18] uses q ≥ n5/2 ≫ 2n. This yields a probability of invertibility
that is sufficient for this work, while allowing for reducing the parameter γ as
much as possible. More precisely, it allows for taking γ = Ω(n) with a constant
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close to 1. Also, as mentioned before, the invertibility in Rq implies that the
determinant is a unit of Rq. As such, it is a non-zero element when seen in K
which implies the K-invertibility.

Although it seems folklore, we weren’t able to find a Gaussian tail bound
on σ(x) in the infinity norm for x ←↩ DR,γ . We therefore provide the follow-
ing lemma, whose proof is mostly based on [Pei08, Cor. 5.3], and which proves
that ∥σ(x)∥∞ ≤ γ log2 n with overwhelming probability. Most of the tail bounds
are with respect to the Euclidean norm and thus require an extra

√
n factor.

Here, we are only interested in the infinity norm. The proof is provided in Ap-
pendix B.5.

Lemma 5.1. Let R be a ring of integers of degree n. Then for any γ > 0 and
any t ≥ 0, it holds that

Pf←↩DR,γ [∥σ(f)∥∞ ≤ γt] ≥ 1− 2ne−πt
2

.

Choosing t = log2 n gives ∥σ(f)∥∞ ≤ γ log2 n with overwhelming probability.

The main challenge in instantiating Theorem 4.3 is to provide a decent bound
for

∥∥G′(F′)−1∥∥
2
. It seems to require knowledge on the smallest singular value

of F′, which in our case is taken from a discrete Gaussian distribution. We
now provide a lower bound on the smallest singular value of discrete Gaussian
matrices. This automatically gives an upper bound on

∥∥(F′)−1∥∥
2
, as

∥∥(F′)−1∥∥
2
=

1/smin(F
′).

Lemma 5.2. Let K = Q(ζ) be a number field of degree n, and R its ring of
integers. Let I be any ideal of R. Let γ > 0 be a Gaussian parameter. Then, for
all δ ≥ 0, it holds that

PF←↩Dd×dI,γ

[
smin(MσH (F)) ≤

δ√
d

]
≤ nCγδ + ncdγ ,

with Cγ > 0 and cγ ∈ (0, 1) parameters depending on γ.

Proof. Spectral analysis. For convenience, we define S(A) to be the set of
singular values of any complex matrix A. First of all, note that MσH (F) = (Id⊗
U†H)Mσ(F)(Id ⊗UH). Since UH is unitary, we have S(MσH (F)) = S(Mσ(F)).
Recall that Mσ(F) is the block matrix of size nd × nd whose block (i, j) ∈ [d]2

is diag(σ(fij)). The matrix can therefore be seen as a d×d matrix with blocks of
size n×n. The idea is now to permute the rows and columns of Mσ(F) to end up
with a matrix of size n×n with blocks of size d×d only on the diagonal, as noticed
in e.g. [DM14]. For that, we define the following permutation π of [nd]. For all i ∈
[nd], write i−1 = k

(i)
1 +nk

(i)
2 , with k(i)1 ∈ {0, . . . , n−1} and k(i)2 ∈ {0, . . . , d−1}.

Then, define π(i) = 1 + k
(i)
2 + dk

(i)
1 . This is a well-defined permutation based

on the uniqueness of the Euclidean division. We can then define the associated
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permutation matrix Pπ = [δi,π(j)](i,j)∈[nd]2 ∈ Rnd×nd. Then, it holds that

PπMσ(F)P
T
π =

σ1(F) . . .
σn(F)

 .
Since Pπ is a permutation matrix, it is unitary and therefore S(Mσ(F)) =
S(PπMσ(F)P

T
π ). As PπMσ(F)P

T
π is block-diagonal, we directly get the singular

values by S(PπMσ(F)P
T
π ) = ∪k∈[n]S(σk(F)). This proves that S(MσH (F)) =

∪k∈[n]S(σk(F)). In particular, taking the minimum of the sets yields

smin(MσH (F)) = min
k∈[n]

smin(σk(F)).

Random matrix theory. By [MP12, Lem. 2.8], for all i, j ∈ [d] and unit
vector u ∈ Cn, ⟨σH(fij) ,u⟩ is sub-Gaussian with sub-Gaussian moment γ.
Hence, since the rows of UH are unit vectors of Cn, it holds that for all k ∈ [n]
and i, j ∈ [d], σk(fij) is sub-Gaussian with moment γ. Thus, for all k ∈ [n], σk(F)
has independent and identically distributed sub-Gaussian entries. A result from
random matrix theory by Rudelson and Vershynin [RV08, Thm 1.2] yields

P
[
smin(σk(F)) ≤

δ√
d

]
≤ Cγ · δ + cdγ , (3)

for some parameters Cγ > 0 and cγ ∈ (0, 1) that only depend on the sub-
Gaussian moment γ, for all k ∈ [n]. A union-bound gives that

P
[
smin(MσH (F)) ≤

δ√
d

]
≤ nCγδ + ncdγ ,

thus concluding the proof.

An immediate application of this lemma is for I = R, which gives a probabilistic
bound depending on the constants Cγ and cγ , which in turns depend on γ. Aside
from experimentally noticing that Cγ decreases polynomially with γ and that cγ
seems to decrease exponentially with γ, we do not have closed-form expression
of these constants. By scaling the distribution by γ and applying Lemma 5.2
for I = γ−1R, we obtain

PF←↩Dd×dR,γ

[
smin(MσH (F)) ≤

γδ√
d

]
≤ nCδ + ncd,

with C > 0 and c ∈ (0, 1) no longer depending on γ. In this case, we can
mitigate the union bound blow-up by choosing δ = n−3/2 for example, yield-
ing smin(MσH (F)) ≥ γ/n

√
nd with non-negligible probability. In what follows,

we thus use the following corollary. We discuss in Section 6 how we can experi-
mentally expect a better bound.

Corollary 5.1. Let K = Q(ζ) be a number field of degree n, and R its ring of
integers. Let γ > 0 be a Gaussian parameter. It holds that

PF←↩Dd×dR,γ

[
smin(MσH (F)) ≤

γ

n
√
nd

]
≤ O(n−1/2).
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5.2 Instantiation

We now define a distribution Ψ overGLnd(Z, q)×Znm×nd and prove it verifies the
conditions of Theorem 4.3 under a careful choice of parameters. This distribution
is actually a direct application of Definition 2.4 for a Gaussian distribution ψ. As
opposed to what is done in [BD20b], we no longer need to assume the hardness of
Hermite Normal Form M-LWE and we solely rely on the M-NTRU assumption
for rectangular matrices. Nonetheless, the distribution proposed in [BD20b, Sec.
6] can be adapted to the module setting as shown in Appendix A for complete-
ness. In this case, the hardness of S-NTRU is proven under that of M-NTRU for
square matrices and of HNF-M-LWE. It thus uses a more standard formulation
of M-NTRU but at the expense of an additional assumption, and also slightly
worse parameters. This highlights a trade-off between the underlying hardness
assumptions and the parameters.

Definition 5.1. Let K be a number field of degree n, and R its ring of integers.
Let d, q,m be positive integers. Let γ > 0 be a Gaussian parameter. We define
the distribution Ψ as follows:

– Choose F←↩ Dd×dR,γ such that F ∈ GLd(R, q);
– Choose G←↩ Dm×dR,γ .
– Output (MR(F),MR(G)).

Note that by Theorem 5.1, Ψ is efficiently sampleable if γ is sufficiently large, de-
pending on the splitting behaviour of q. In particular, as stated in Remark 5.1,
one can choose γ = Θ(n) and have a non-negligible probability that a sam-
ple from DRd×d,γ is also in GLd(R, q) for a fully splitted prime q in a cyclo-
tomic field. Also, since MR is a ring homomorphism, if F is invertible modulo q,
then so is MR(F), and vice-versa. By Lemma 3.1, M-NTRU and S-NTRU, are
equivalent for a specific connection between the distributions. We specifically
defined Ψ so that it matches with M-NTRUn,d,q,m,γ . Hence, assuming the hard-
ness of S-NTRU for this distribution Ψ is equivalent to assuming the hardness
of M-NTRUn,d,q,m,γ . We now show that the distribution Ψ leads to a sometimes
lossy pseudorandom distribution. By Theorem 4.3 it suffices to bound the max-
imal singular values of B−1

Rd
MR(F)BRd , and B−1RmMR(G)MR(F)

−1BRd , which
is the object of the following lemma.

Lemma 5.3. Let K be a number field of degree n, and R its ring of integers.
Let d, q,m be positive integers, and γ > 0. Let (MR(F),MR(G)) ←↩ Ψ . It holds
that

1.
∥∥B−1

Rd
MR(F)BRd

∥∥
2
≤ dγ log2 n

2.
∥∥B−1RmMR(G)MR(F)

−1BRd
∥∥
2
≤ nd

√
nm log2 n

except with probability at most O(n−1/2) + 2d(d+m)ne−π log2
2 n over the choice

of (MR(F),MR(G)). When d,m = poly(n), this probability is simply O(n−1/2).
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Proof. 1. It holds that B−1
Rd
MR(F)BRd =MσH (F). Let (i, j) be in [d]2. As UH

is unitary, it preserves the largest singular value, so it holds that∥∥∥U†Hdiag(σ(fij))UH

∥∥∥
2
= ∥diag(σ(fij))∥2 = ∥σ(fij)∥∞.

As fij ←↩ DR,γ , Lemma 5.1 gives that ∥σ(fij)∥∞ ≤ γ log2 n except with a prob-
ability of at most 2ne−π log2

2 n. Lemma 2.1 yields
∥∥B−1

Rd
MR(F)BRd

∥∥
2
≤ dγ log2 n

except with a probability of at most d2 · 2ne−π log2
2 n which is negligible for d =

poly(n).

2. We now bound
∥∥B−1RmMR(G)MR(F)

−1BRd
∥∥
2

from above. Note that we have

B−1RmMR(G)MR(F)
−1BRd = B−1RmMR(G)BRdB

−1
Rd
MR(F)

−1BRd

=MσH (G)MσH (F)
−1.

As ∥.∥2 is sub-multiplicative, we simply bound ∥MσH (G)∥2 and
∥∥MσH (F)

−1
∥∥
2

from above seperately. Using Lemma 5.1 and Lemma 2.1 once again yields

∥MσH (G)∥2 ≤
√
mdγ log2 n,

except with probability at mostmd·2ne−π log2
2 n. Finally, by Corollary 5.1 we have

that
∥∥MσH (F)

−1
∥∥
2
≤ n
√
nd/γ except with a probability of at most O(n−1/2).

Hence ∥∥B−1RmMR(G)MR(F)
−1BRd

∥∥
2
≤ nd

√
nm log2 n,

except with probability at most O(n−1/2) +md · 2ne−π log2
2 n.

We can now summarize the results of this section in our main theorem by combin-
ing Lemma 5.3 with Corollary 4.1. Using the equivalence of Lemma 3.1 between
the module and structured formulations, we have the following.

Theorem 5.2. Let K be a number field of degree n, and R its ring of integers.
Let m, d be positive integers. Let q be a positive integer and γ > 0 be such
that DGLd(R,q),γ is efficiently sampleable. Let S be a distribution on Rdq and S ′ =
BR ◦ σH(S). Assume the hardness of M-NTRUn,d,q,m,DR,γ , and that νs(S ′) ≥
nd log2(dγ log2 n) + ω(log2 λ) for some s > γd log2(n) · ηε(R). Then, for s0 ≥
23/2 · s · n

√
nmd log2 n, we have that M-LWEn,d,q,m,Ds0 ,S is mildly hard.

What characterizes the secret distribution is the noise lossiness condition of
Theorem 5.2. By using Lemma 2.2 and 2.3, we can have concrete conditions on
the entropy of the secret distribution.

Corollary 5.2. Let K be the ν-th cyclotomic field of degree n = φ(ν), and R its
ring of integers. Let m, d be positive integers. Let q > 2n be a prime such that q =
1 mod ν, and γ > 21/(2d−1)nq(d−1)/(n(2d−1)). Let S be a distribution on Rdq
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and S ′ = τ(S) (see Section 3.2). Assume the hardness of M-NTRUn,d,q,m,DR,γ .
Also, assume that for some γd log2(n) · ηε(R) < s < q

√
π ln(4nd) it holds that

H∞(S) ≥ nd log2(dγ log2 n) + nd log2(q/s) + ω(log2 λ).

Then, for s0 ≥ 23/2 ·s·n
√
nmd log2 n, we have that M-LWEn,d,q,m,Ds0 ,S is mildly

hard.

If S is supported on Rdη for some positive integer η ≥ 2, and for some s >
γd log2(n) · ηε(R) it holds that

H∞(S) ≥ nd log2(dγ log2 n) +
√
2π log2 e · nd · (η − 1)/s+ ω(log2 λ),

then the conclusion still holds.

Proof (of Corollary 5.2). Note that as τ is a bijection, S and S ′ have the same
entropy. Hence, the first statement is obtained simply by combining Theorem 5.2
with Lemma 2.2. For the second statement, we take a bounded distribution.
In practical uses of M-LWE, the bounds are considered on the coefficients of
the polynomials, which is why we consider a bound on the infinity norm of
the coefficient embedding of the secrets. To use Lemma 2.3, we simply have to
translate this bound into a bound on the secrets from S ′ in the Euclidean norm.
Since K is a cyclotomic field, we can choose BR = (U†HV)−1 as discussed in
Section 2.2, which yields BR ◦ σH = τ . Hence, we indeed have S ′ = BR ◦ σH(S)
as required by Theorem 5.2. Now, as τ(S) = S ′ is supported on {0, . . . , η−1}nd,
for s←↩ S it holds that

∥s′∥2 = ∥BR ◦ σH(s)∥2 = ∥τ(s)∥2 ≤ (η − 1)
√
nd.

Applying Lemma 2.3 thus yields the second statement.

Remark 5.2. The distribution from Definition 5.1 and the subsequent results can
also be instantiated for modules of rank 1. The parameters can be optimized
using the technical lemmata from [BD20b, Sec. 6] in this case. It provides an
alternative distribution to the one proposed in [BD20b], which improves the
parameters and discard the Hermite Normal Form R-LWE hardness assumption.
It would then give a detailed proof of the argument made by Peikert [Pei16] that
decisional NTRU reduces to search R-LWE. Our result can therefore be seen as
a generalization of this argument to modules.

5.3 On the Statistical Entropic Hardness of M-LWE

Chuengsatiansup et al. [CPS+20] show that if the Gaussian ψ = DR,γ is suffi-
ciently wide, and where q does not split too much, then the M-NTRUn,d,q,m,γ
problem is statistically hard, as we restate below. Note that the original state-
ment requires d ≥ m, which is actually not needed in the proof. The final proof
of Theorem 5.3 uses Theorem 5.1, and also the volume of R but in a ratio, which
does not affect the result when changing the embedding.
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Theorem 5.3 ([CPS+20, Thm. A.1] adapted). Let K be a number field of
degree n and R its ring of integers. Let m, d ≥ 1 and q be an unramified prime
such that minp|qR,p primeN(p) = 2Ω(n). We define Nmax = maxp|qR,p primeN(p).

Let γ ≥ max
(
2nqm/(d+m)+2/(n(d+m)), 21/(2d−1)|∆K |1/nN (d−1)/(n(2d−1))

max

)
. Then,

let Xγ be the distribution of GF−1q mod qR where F ←↩ Dd×dR,γ such that F ∈
GLd(R, q), F−1q the Rq-inverse of F and G←↩ Dm×dR,γ . Then, we have

∆(Xγ ,U(Rm×dq )) ≤ 2−Ω(n).

Our hardness assumption for the mild hardness of Entropic M-LWE is statisti-
cally thus proven by Theorem 5.3 for wide Gaussian distributions and a modu-
lus q that does not split into too many factors. In this case, our result introduces
non-trivial lower bounds on the entropy of the secret and the size of the noise such
that the M-LWE becomes statistically hard. By Theorem 5.2, this provides the
mild hardness of M-LWEn,d,q,m,Ds0 ,S with no computational assumption what-
soever. Nevertheless, the parameter γ required by Theorem 5.3 is roughly 2n

√
q

and hence makes the parameters of M-LWE not usable in practice. In particu-
lar, the entropy of the secret distribution must be very large. It then requires
that both the size of the secret and the size of the masking noise s must be of
the order of at least √q, making it hard to build usable cryptosystems purely
based on it. As such, the statistical result should only be seen as an interest-
ing byproduct of the theoretical proof, but not as a groundbreaking result for
practical applications.

Alternatively, one can also try to prove this result by showing that the dis-
tribution of the given M-LWE samples is statistically close to the uniform distri-
bution. However, this would require a leftover hash lemma over modules where
the input of the hash is only promised to have certain entropy. To the best of
our knowledge, there is no such entropic variant of the leftover hash lemma over
modules and we leave the investigation of it as a future work.

6 Related Work

In this section, we detail our main result of Theorem 5.2 and how it places
with respect to existing hardness results for entropic M-LWE. To simplify the
concrete comparison of parameters, we use the case of power-of-two cyclotomic
fields and use the formulation of Corollary 5.2. The reasoning can be extended to
more general number fields but requires the derivation of field-dependent values
such as ∆K and ∥L̃R∨∥ = maxi∈[n] ∥L̃R∨ei∥2. First, note that our reduction is
rank-preserving in the sense that the module rank from our M-NTRU assumption
equals the final module rank for entropic M-LWE. It can be advantageous for the
concrete hardness analysis, but it also gives less room to tweak the parameters
in order to achieve small secrets.
Constant secrets. In the case of uniform binary secrets as studied by Boud-
goust et al. [BJRW20,BJRW21], the entropy of the secret distribution is nd. We
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can see that the entropy condition of Corollary 5.2 for S = U(Rd2) (η = 2) is then
never met. Therefore, our hardness proof does not encompass unusually small
secrets. This is in part due to the rank-preserving nature of our proof, which
does not enable us to increase the rank by log2 q to attain constant secrets.
General secrets. We now focus on the case where the secret is from a general
distribution S. The first statement of Corollary 5.2 requires the entropy of S
to be at least nd log2(dγ log2(n) ·

√
ln(4nd)/π), when the masking noise s is at

its upper-bound of q
√
π/
√
ln 4nd. For this choice of s, it leads to s0 = n

√
8π ·

q ·
√
nm/ ln(4nd) · d log2 n. This noise parameter s0 is quite large because the

masking noise is close to q. If we choose s to be much smaller, this impacts
the minimal entropy that we can achieve. There is therefore a trade-off between
minimizing the entropy of the secret distribution or the noise parameter s0 to
preserve the same hardness result, as expected.

Remark 6.1. Note that this result can be instantiated for secret distribution over
secret with bounded norms. Hence a way of minimizing the entropy of the secret
distribution can be to minimize the size of the secret. So the trade-off is now
between the size of the secret and the size of the error.

Bounded secrets. In the more specific case of secrets with bounded norm,
the second statement of Corollary 5.2 can improve the parameters slightly. For
clarity, we define C ′ =

√
2π log2 e. Now, consider a parameter α > 0. Assume

we set C ′nd(η− 1)/s ≤ αn log2(dγ log2 n). This simplifies the entropy condition
to H∞(S) ≥ n(d + α) log2(dγ log2 n) + ω(log2 λ), while requiring s ≥ C ′d(η −
1)/(α log2(dγ log2 n)). This condition on s is likely subsumed by the condition
on s in the corollary statement, as long as α is not too small. For example, α =
1/n allows to satisfy both conditions on s. For the uniform distribution over Rdη
(maximal entropy), this translates to η ≥ (dγ log2 n)

1+α/d. One can thus tweak
the parameter α to either achieve a smaller masking noise (and therefore a
smaller noise s0), or smaller secrets.
Concrete parameters. Our reduction provides theoretical insights and gives
confidence in the fact that M-LWE-based cryptosystems are resilient even if the
secret distribution present a certain amount of leakage. We insist on the fact that
our proof does not encompass practical parameters, but can still be instantiated
with concrete parameters that satisfy all the conditions. We give for example
one such set of parameters.

The final noise s0 can be improved by a factor of roughly n experimen-
tally. Indeed, the bound on the smallest singular value of Lemma 5.2 can be
applied for I = R directly which introduces the constant Cγ . Experimentally,
it seems like Cγ = O(1/γδ) for δ ∈ (3/2, 2). Hence, for γ = Ω(n), it would
yield smin(Mσ(F)) ≥ γ/

√
nd with non-negligible probability. This would thus

save a factor of n in the expression of s0. We have studied the lower bound with
a heuristics for cyclotomic fields, and with γ under the condition of Theorem 5.1.
It yields a lower bound of γ/

√
nd on the smallest singular value with (exper-

imental) probability at least 3/4 (and going to 1 with polynomial speed as n
grows). A bound of γ/(10

√
nd) is verified with (experimental) probability of at
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n d m q γ ε s η s0

256 4 4 281474976729601 299 2−100 12005359 9649 8901435781154

Table 6.1. Example parameter sets verifying the following conditions: q prime with q =
1 mod 2n, γ ≥ 2

1
2d−1 nq

d−1
n(2d−1) , s > dγ log2 n·ηε(R), s >

√
2π log2 e·

d(η−1)
α log2(dγ log2 n)

, η ≥
(dγ log2 n)

1+α/d, α = 1
n
, s0 ≥

√
8 · s · nd

√
nm log2 n. Note that for a given ε > 0, one

has ηε(R) ≤
√

ln(2n(1 + ε−1))/π 1
λ∞
1 (R∨)

and λ∞
1 (R∨) ≥ N(R∨)1/n = |∆K |−1/n which

gives λ∞
1 (R∨) ≥ 1/n for a power-of-two cyclotomic field.

least 99/100. For completeness, we provide a simulation script in Sage [Sag20] as
Appendix alongside this paper. It simply generates such matrices and compares
their smallest singular value to the bound γ/(10

√
nd). The bound seems coher-

ent with the extensive research around spectral estimations of random matrices.
The smallest singular value of random matrices has been widely studied in order
to prove the Von Neumann & Goldstine conjecture [vNG47] that for a random
matrix A of size N × N , smin(A) is asymptotically equivalent to 1/

√
N with

high probability. This conjecture has been proven for specific distributions satis-
fying various conditions on the entries, which our matrix MσH (F) for F←↩ Dd×dR,γ

unfortunately does not verify. The bound seems however to hold heuristically.

6.1 Existing Hardness of Entropic M-LWE

As mentioned in the introduction, Lin et al. [LWW20]8 adapted the lossy argu-
ment approach of [BD20a] to the module setting. In order to compare with our
hardness result, we need to make some modifications to their result to adapt it to
the primal ring. We also need to adjust it to our definition of M-LWE which dif-
fers by a factor of q, i.e., considering As+e mod qR instead of q−1As+e′ mod R
with e′ having a Gaussian parameter in (0, 1). An advantage of their hardness
proof is that it holds for all number fields, but we limit our comparison to the
case of power-of-two cyclotomic fields. Also, note that the following only concerns
the search variant of entropic M-LWE. We then obtain the following.

Theorem 6.1 (Adapted from [LWW20]). Let K be a power-of-two cyclo-
tomic field of degree n, and R its ring of integers. Let d, k, q,m be positive integers
such that m > d > k ≥ 1, and m = ω(log2 λ). Assume the hardness of (primal
decisional) M-LWEn,k,q,m,DR,s1 . Let S be a distribution on Rdq . Assume that for
some 0 < s < q∥L̃R∨∥−1

√
π/ ln(4nd) it holds that

H∞(S) ≥ nk log2 q + nd log2(q|∆K |1/2n/s) + ω(log2 λ).

Then, for s0 ≥ O(s · s1
√
m), we have that M-LWEn,d,q,m,Ds0 ,S is hard.

8 Note that at the time of writing, the paper by Lin et al. is only accessible on ePrint
and has not yet been peer-reviewed.
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If S is supported on Rdη for a positive integer η ≥ 2, and for some s > 0 it holds
that

H∞(S) ≥ nk log2 q +
√
2π log2 e · nd · n(η − 1)/s+ ω(log2 λ),

then the conclusion still holds.

Moving to the primal ring simply has consequences on the smoothing pa-
rameter and therefore on the Gaussian parameters, hence the presence of ∥L̃R∨∥
which is the norm of a basis of the dual of σH(R) (up to conjugation). In
the case of power-of-two cyclotomics, LR∨ = (1/n) ·

√
nU for a unitary ma-

trix U. So ∥L̃R∨∥ = 1/
√
n. The other consequence comes from the volume of the

module lattice σH(Rd) which is |∆K |d larger than the volume of the dual lat-
tice σH((R∨)d). In power-of-two cyclotomic fields, we also have |∆K | = nn. Note
that the masking noise with parameter s covers s and not s/q as in [LWW20].
This is the result of multiplying by q in the definition of M-LWE they use.

Constant secrets. As the hardness proof is not rank-preserving, the result
of [LWW20] can be instantiated using a weaker hardness assumption (low k)
to achieve constant secrets. In particular, Theorem 6.1 can be instantiated for
binary secrets, requiring a rank d ≳ (k + 1) log2 q.

General secrets. The first statement of Theorem 6.1 requires a large enough
min-entropy, namely H∞(S) ≥ nk log2 q+nd log2

√
ln(4nd)/π+ω(log2 λ), when

choosing s = q
√
n/
√
ln(4nd), leading to s0 = O(qs1

√
nm/

√
ln(4nd)). Therefore,

when k is much smaller than d, the entropy requirement becomes better than
ours. To compare the noise parameter, we need to know the order of magnitude
of s1. By combining [LS15, Thm. 4.7] and [BJRW20, Lem. 13], one can obtain
the hardness of decisional M-LWE for s1 ≥ 2

√
dω((log2 n)

3/2) based on module
lattice problems. From this restriction on s1, the noise parameter s0 obtained
by [LWW20] is slightly bigger than ours (for d small compared to n) by a factor
of roughly ω(

√
log2 n)/

√
d. Also, recall that in our case m can also be a small

constant, while [LWW20] requires m ≥ max(d, ω(log2 n)).

Bounded secrets. In the case of secrets with bounded norm, the second state-
ment can once again improve the parameters slightly. Consider a parameter α >
0. Assume we set C ′nd · n(η− 1)/s ≤ αn log2 q. This simplifies the entropy con-
dition to H∞(S) ≥ n(k + α) log2 q + ω(log2 λ), while requiring s ≥ C ′nd(η −
1)/(α log2 q). For the uniform distribution over Rdη which reaches maximal en-
tropy, this now gives η ≥ q(k+α)/d.
Conclusion. We summarize the discussion for secrets with bounded norm with
maximal entropy in Table 6.2. Note that k + α cannot be larger than d other-
wise ηmin > q. We trade the underlying hardness assumption for differences in
the parameters. In particular, the main difference comes from comparing k log2 q
with d log2(nd log2 n), as γ can be as low as n. In some parameter regimes,
our proof method thus leads to slightly improved parameters. For example,
for n = 256, q = n3, and k close to d (close to rank-preserving reduction),
we achieve better parameters in terms of noise and secret size.
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[LWW20] Corollary 5.2

Number fields Arbitrary Arbitrarya

Constant secrets Yes No

Rank-preserving No Yes

Hardness assumption M-LWEk,DR,s1 M-NTRUd,γ=Ω(n)

General Distribution S

Minimal Entropy
H∞(S)− ω(log2 λ)

nk log2 q

+nd log2(
q
√
n

s
)

nd log2(dγ log2 n) + nd log2(
q
s
)

Maximal Masking
Noise s

s < q
√
n
√

π
ln(4nd)

dγ log2(n)ηε(R) < s < q
√

π
ln(4nd)

Bounded Distribution S (over Rd
η)

Minimal Entropy
H∞(S)− ω(log2 λ)

nk log2 q

+
C′nd · n(η − 1)

s

nd log2(dγ log2 n) +
C′nd · (η − 1)

s

Minimal secret bound
ηmin

q
k+1/n
d (nd log2 n)

1+ 1
nd

Minimal noise
s0

s1 ·O
(√

mn2d

log2 q
q
k+1/n
d

) √
8(nd log2 n)

2√nm · ηε(R)

Table 6.2. Comparison of [LWW20] in the primal ring (Theorem 6.1) and Corollary 5.2
for the hardness of M-LWEn,d,q,m,Ds0 ,S over power-of-two cyclotomic fields of degree n,
with module rank d and secret distribution S. For clarity, we have C′ =

√
2π log2 e.

The minimal secret bound ηmin and minimal noise s0 are obtained by fixing α = 1/n.
a: The result for arbitrary number fields is that of Theorem 5.2, but Corollary 5.2 is
stated for cyclotomic fields.
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A Alternative Distribution

In this section, we give an different distribution than the one from Definition 5.1
to highlight the trade-off between the underlying hardness assumptions and the
parameters.

Definition A.1. Let K be a number field of degree n, and R its ring of integers.
Let d, q,m be positive integers. Let γ > 0 be a Gaussian parameter, and ψ be a a
distribution on R such that Pe←↩ψ[∥σ(e)∥∞ > B] ≤ δ, for B ≥ 0, and δ ∈ [0, 1).
We define the distribution Ψ as follows:

– Choose F,G←↩ Dd×dR,γ such that F ∈ GLd(R, q);
– Choose e1, . . . , em, e

′
1, . . . , e

′
m ←↩ ψd; Define the matrix E ∈ Rm×d whose

rows are the eTi , and E′ ∈ Rm×d whose rows are the (e′i)
T .

– Define G̃ = EG+E′F.
– Output (MR(F),MR(G̃)).

Note that if ψ = DR,s1 , then by Lemma 5.1 one can set B = s1 log2 n and δ =
negl(n). As discussed, conditioning F to be invertible modulo q can be done by
taking γ sufficiently large depending on the splitting of q. We show that this dis-
tribution now relies on a different M-NTRU assumption that may be considered
more standard, but at the expense of requiring the hardness of HNF-M-LWE.
More precisely, there is a reduction from M-NTRU and HNF-M-LWE to S-NTRU
for this distribution Ψ .

Lemma A.1. Let K be a number field of degree n, and R its ring of integers.
Let d, q,m be positive integers. Let γ > 0 be a Gaussian parameter, and ψ be a
a distribution on R. Define M = MR(U(Rq)) as in Section 2.1. Assuming the
hardness of (decisional) HNF-M-LWEn,d,q,d,ψ and M-NTRUn,d,q,d,DR,γ , it holds
that S-NTRUn,d,q,m,M,Ψ is hard.

Proof. Let (MR(F),MR(G̃)) be sampled from Ψ . Let F−1q be the Rq-inverse of F.
We have that Y = G̃F−1q mod q equals EGF−1q +E′ mod q. Under the assump-
tion that (decisional) M-NTRUn,d,q,d,DR,γ is hard, it holds that GF−1q mod q is
indistinguishable from a uniformly random matrix AT ∈ Rd×dq . Then, assum-
ing the hardness of HNF-M-LWEn,d,q,d,ψ (up to transpose), a hybrid argument
(over m) yields that Y = EAT + E′ is indistinguishable from a uniform ma-
trix U over Rm×dq . Applying the ring homomorphism MR yields MR(Y) =

MR(G̃)MR(F
−1
q ) mod q is indistinguishable from MR(U). Since MR(F

−1
q ) is

the Zq-inverse of MR(F), and MR(U) is exactly distributed according toMm×d,
it indeed proves that the problem S-NTRUn,d,q,m,M,Ψ is hard.

For completeness, we derive the equivalent statement of Lemma 5.3 for this
distribution. By Theorem 4.3, it leads to a sometimes lossy pseudorandom dis-
tribution thus proving the entropic hardness of M-LWE for different parameters.
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Lemma A.2. Let K be the ν-th cyclotomic field of degree n = φ(ν), and R
its ring of integers. Let d, q,m be positive integers. Let γ > 0 be a Gaussian
parameter. Let ψ be a a distribution on R such that Pe←↩ψ[∥σ(e)∥∞ > B] ≤ δ,
for B ≥ 0, and δ ∈ [0, 1). Let (MR(F),MR(G̃))←↩ Ψ . It holds that

1.
∥∥B−1

Rd
MR(F)BRd

∥∥
2
≤ dγ log2 n

2.
∥∥∥B−1RmMR(G̃)MR(F)

−1BRd

∥∥∥
2
≤ O(Bn

√
nmd2 log2 n)

except with probability at most O(n−1/2) + 2mdδ + 4d2ne−π log2
2 n over the ran-

domness of (MR(F),MR(G̃)). When d = poly(n), this probability is O(n−1/2) +
2mdδ + negl(n).

Proof. 1. Note that MR(F) is distributed the same way as in Definition 5.1.
The argument for 1. from the proof of Lemma 5.3 is therefore identical, yield-
ing PF←↩Dd×dR,γ

[
∥∥B−1

Rd
MR(F)BRd

∥∥
2
> dγ log2 n] ≤ 2d2ne−π log2

2 n.

2. We now bound
∥∥∥B−1RmMR(G̃)MR(F)

−1BRd

∥∥∥
2

from above. First, it holds

that G̃F−1 = EGF−1 +E′. Yet we also have

B−1RmMR(G̃)MR(F)
−1BRd = B−1RmMR(G̃F−1)BRd

=MσH (G̃F−1).

Due to the homomorphic properties of MσH , and the fact that ∥.∥2 is a sub-
multiplicative norm, it holds∥∥∥MσH (G̃F−1)

∥∥∥
2
≤ ∥MσH (E)∥2 · ∥MσH (G)∥2 ·

∥∥MσH (F
−1)
∥∥
2
+ ∥MσH (E

′)∥2

As UH is unitary and ∥Mσ(eij)∥2 = ∥σ(eij)∥∞, each block of MσH (E) has a
spectral norm of ∥σ(eij)∥∞ respectively. Then, using Lemma 2.1 and the fact
that the entries of E are i.i.d. and B-bounded except with probability at most δ,
we have

P[∥MσH (E)∥2 ≥ B
√
md] ≤ md · δ

The same reasoning holds for E′. Then, the same argument as in 1. yields

∥MσH (G)∥2 ≤ dγ log2 n,

except with probability at most 2d2ne−π log2
2 n.

Finally, Corollary 5.1 yields
∥∥MσH (F

−1)
∥∥
2
≤ n
√
nd/γ except with probability

of at most O(n−1/2). Combining it all gives∥∥∥B−1RmMR(G̃)MR(F)
−1BRd

∥∥∥
2
≤ Bn

√
nmd2 log2 n+B

√
md

= O(B
√
nmd2 log2 n),

except with probability at most O(n−1/2) + 2mdδ + 2d2ne−π log2
2 n.

33



The noise lossiness condition is therefore unchanged, meaning that the entropic
argument remains exactly the same. However, using a more standard M-NTRU
assumption (for square matrices) requires an extra step in the reduction depend-
ing on HNF-M-LWE. This additional step further deteriorates the Gaussian noise
parameter achieved by the reduction. It indeed leads to

s0 ≥ O(s ·Bn
√
nmd2 log2 n)

= O(s · s1n
√
nmd2 log22 n),

which is roughly s1 · d log2 n larger than for the other distribution we proposed.

B Missing Proofs

B.1 Preliminaries

Lemma B.1 ([DORS08,Reg05]). Let G be a finite Abelian group, and Y be
a finite set. Let ℓ ≥ log|G| + log|Y | + ω(log λ) be an integer. Let g ←↩ U(Gℓ),
and x←↩ U({0, 1}ℓ). Let y be a random variable supported on Y which is possibly
correlated with x but independent of the gi. Then it holds that (g,xTg, y) is
statistically close to (g, u, y), where u←↩ U(G).

Lemma B.2 ([BD20b], Claim 1). Let Λ ⊆ RN and F′ ∈ RN×N . It holds
that ηε(F′ · Λ) ≤ ∥F′∥2 · ηε(Λ).

Proof. We consider full-rank lattices so we can assume that G is invertible. First
note that (F′ · Λ)∗ = (F′)−T · Λ∗. So for s > 0 it holds that

ρ1/s((F
′Λ)∗) =

∑
x∈Λ∗

exp(−πs2xT (F′)−1(F′)−Tx)

≤
∑
x∈Λ∗

exp(−π(s/∥F′∥2)
2∥x∥22)

= ρ∥F′∥2/s(Λ
∗).

Now take s = ∥F′∥2ηε(Λ). It thus yields ρ∥F′∥2/s(Λ
∗ \ {0}) ≤ ε. Hence

ρ1/s((F
′Λ)∗ \ {0}) ≤ ρ∥F′∥2/s(Λ

∗ \ {0}) ≤ ε,

which gives s ≥ ηε(F′Λ) by definition, thus concluding the proof.

We then recall a smoothing result that gives the distribution of the sum of a
discrete Gaussian and a continuous one. We also need the convolution theorem
by Peikert [Pei10].

Lemma B.3 ([Reg05], Claim 3.9). Let Λ ⊆ RN be a lattice and let σ ≥√
2ηε(Λ). Let e ∼ DΛ,σ be a discrete gaussian and e′ ∼ DRN ,σ be a continuous

gaussian. Then e+ e′ is 2ε-close to DRN ,
√
2σ.
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Theorem B.1 ([Pei10], Theorem 3.1). Let Σ1,Σ2 > 0 be two positive defi-
nite matrices such that Σ = Σ1+Σ2 > 0 and Σ−11 +Σ−12 > 0. Let Λ1, Λ2 be two
lattices such that

√
Σ1 ≥ ηε(Λ1) and

√
Σ2 ≥ ηε(Λ2) for some ε > 0. Let c1, c2 ∈

RN be arbitrary. Consider the following sampling procedure for x ∈ Λ2 + c2.

– Choose x1 ←↩ DΛ1+c1,
√
Σ1

.
– Choose x←↩ x1 +DΛ2+c2−x1,

√
Σ2

.

Then it holds that the marginal distribution of x is within statistical distance 8ε
to DΛ2+c2,

√
Σ. It still holds if x1 is sampled from the continuous Gaussian D√Σ1

.

We were not able to find a result in the literature that bounds the ε-smooth
average conditional min-entropy by the (non-smooth) average conditional min-
entropy. We thus provide the following lemma along with a straightforward proof
showing that, for a sufficiently small ε, the ε-smooth average conditional min-
entropy cannot be much larger than the average conditional min-entropy. This
fact seems intuitive but our bound seems quite loose and restrictive on the value
of ε. We leave it as an interesting open problem to improve it.

Lemma B.4. Let (x, z) be two discrete random variables with values in X×Z.
For any ε ≥ ε′ ≥ 0, we have H̃ε′

∞(x|z) ≤ H̃ε
∞(x|z). Additionally, for all ε <

|Z|−12−H̃∞(x|z), it holds

H̃ε
∞(x|z) ≤ H̃∞(x|z)− log2

(
1− ε|Z|2H̃∞(x|z)

)
.

In particular, if ε = (1− p(λ)−1)|Z|−12−H̃∞(x|z), for a function p(λ) > 1, then

H̃ε
∞(x|z) ≤ H̃∞(x|z) + log2 p(λ).

Proof. Let ε ≥ ε′ ≥ 0. Consider (a,b) random variables over X × Z such
that ∆((a,b), (x, z)) ≤ ε′. Then, we have that ∆((a,b), (x, z)) ≤ ε. It then
gives H̃∞(a|b) ≤ H̃ε

∞(x|z). Maximizing over such (a,b) yields the first inequal-
ity.

Now, let ε < |Z|−12−H̃∞(x|z). Consider (a,b) random variables over X × Z
such that ∆((a,b), (x, z)) ≤ ε. First, notice that

H̃∞(a|b) = − log2 Eb

[
max
a′∈X

P[a = a′|b]
]

= − log2
∑
b′∈Z

P[b = b′] · max
a′∈X

P[a = a′|b = b′]

= − log2
∑
b′∈Z

max
a′∈X

P[(a,b) = (a′,b′)].

For all (a′,b′) ∈ X × Z, we have |P[(a,b) = (a′,b′)]− P[(x, z) = (a′,b′)]| ≤
∆((a,b), (x, z)) ≤ ε. Hence, maximizing over a′ and summing over b′ gives

Eb

[
max
x′∈X

P[x = x′|z]
]
− ε|Z| ≤ Eb

[
max
a′∈X

P[a = a′|b]
]
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By our condition on ε, we can obtain

H̃∞(a|b) ≤ − log2

(
Eb

[
max
x′∈X

P[x = x′|z]
]
− ε|Z|

)
= − log2

(
2−H̃∞(x|y) − ε|Z|

)
.

Finally, by maximizing over all (a,b) that are ε-close to (x, z), we get

H̃ε
∞(x|z) ≤ − log2

(
2−H̃∞(x|y) − ε|Z|

)
= H̃∞(x|z)− log2

(
1− ε|Z|2H̃∞(x|z)

)
,

as claimed.

B.2 Proofs of Section 2

Equation (1)

Proof. Let f = xn +
∑n−1
k=0 fkx

k denote the minimal polynomial of ζ, and K =
Q(ζ). Let C denote the companion matrix of f , as in Equation 1. It is well known
that the characteristic (and minimal) polynomial of the companion matrix of f is
f itself. This entails that C has the roots of f for eigenvalues, which we denote
by α1, . . . , αn. Recall that the field embeddings are such that σi(ζ) = αi for
all i ∈ [n]. Since the roots of f are distinct, it means that C is diagonalizable.
More precisely, it holds that C = V−1diag(α1, . . . , αn)V = V−1diag(σ(ζ))V.
Now let x be in K. We have

∀y ∈ K, τ(xy) = V−1σ(xy) = V−1diag(σ(x))σ(y) = V−1diag(σ(x))Vτ(y),

thus proving that Mτ (x) = V−1σ(x)V. We can then rewrite this expression in
terms of the τk and C as follows.

V−1diag(σ(x))V = V−1diag

(
σ1

(
n−1∑
k=0

τk(x)ζ
k

)
, . . . , σn

(
n−1∑
k=0

τk(x)ζ
k

))
V

=

n−1∑
k=0

τk(x)V
−1diag(σ1(ζ)

k, . . . , σn(ζ)
k)V

=

n−1∑
k=0

τk(x)V
−1diag(σ(ζ))kV

=

n−1∑
k=0

τk(x)C
k,

concluding the proof.

Lemma 2.1
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Proof. Fix any vector x = (xT1 , . . . ,x
T
b ) ∈ Rdb, where the xi are in Rd. Then it

holds that ∥Zx∥22 =
∑
i∈[a]

∥∥∥∑j∈[b] Zijxj

∥∥∥2
2
. Yet∥∥∥∥∥∥

∑
j∈[b]

Zijxj

∥∥∥∥∥∥
2

≤
∑
i∈[b]

∥Zijxj∥2 ≤
∑
j∈[b]

∥Zij∥2∥xj∥2 ≤
√∑
j∈[b]

∥Zij∥22
√∑
j∈[b]

∥xj∥22

≤
√∑
j∈[b]

∥Zij∥22 · ∥x∥2,

So by a union bound over the (Zij)j , it holds that
P
[∥∥∥∑j∈[b] Zijxj

∥∥∥
2
≥ γ
√
b∥x∥2

]
≤ bδ.

Another union bound over i ∈ [a] yields ∥Zx∥22 ≤ γ2ab∥x∥22, hence proving
that ∥Z∥2 ≤ γ

√
ab, except with probability abδ over the choice of Z.

B.3 Proofs of Section 3

Lemma 3.2

Proof. Assume that S-LWEn,d,q,m,M,Υ,S is standard hard. Let A be a PPT ad-
versary and µ a negligible function. Then, ε = 1−µ is a non-negligible function.
By our assumption, there exists a negligible function ν such that

P s←↩S
ψ←↩Υ

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ ε(λ)

]
≤ ν(λ).

This means that for all PPT adversary A and every negligible function µ, there
exists a negligible function ν that verifies

P s←↩S
ψ←↩Υ

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ 1− µ(λ)

]
≤ ν(λ),

thus proving the mild hardness of S-LWEn,d,q,m,M,Υ,S .

Lemma 3.3

Proof. Assume towards contradiction there was a PPT adversary A breaks the
standard hardness of search S-LWEn,d,q,M,Υ,S . It means that there is a non-
negligible function ε(λ) = 1/poly(λ) such that for all negligible function ν we
have

P s←↩S
ψ←↩Υ

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ ε(λ)

]
> ν(λ).

We define κ(λ) = λ/ε(λ). Note that κ(λ) is polynomial in λ, and we can assume
that κ(λ) ≥ λ, as we have ε(λ) ≤ 1 without loss of generality. For any (s, ψ)
sampled from S × Υ , we say that (s, ψ) is good if it holds that

PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ ε(λ).
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We now construct the adversary B, which is given access to an oracle Os,ψ for
some (s, ψ)←↩ S × Υ .

Algorithm BOs,ψ

− Repeat κ(λ) times:
− Compute s′ ← AOs,ψ (1λ)
− Query λ additional samples and test whether s′ is a valid solution. If so

output s← s′

− If none of the iterations stopped the algorithm by returning a value, out-
put ⊥.

For convenience, we denote by si the value of s′ at the i-th iteration. We
now analyze the advantage of B. For that, fix a good (s, ψ) as defined above.
We show that the probability that none of the repetitions returns s is negligible.
For a given (s, ψ), all of the repetitions are independent, which means thatthe
outcomes are independent. As such, it holds that

P[∀i ∈ [κ(λ)] : si ̸= s] =
∏

i∈[κ(λ)]

P[si ̸= s]

∏
i∈[κ(λ)]

P[AOs,ψ (1λ) ̸= s]

≤ (1− ε(λ))κ(λ) (4)

= (1− λ/κ(λ))κ(λ)

≤ e−λ, (5)

where inequality (4) follows from the assumption that (s, ψ) is good, and inequal-
ity (5) stems from the fact that for all y ≥ x > 0, (1 − x/y)y ≤ e−x. Hence,
for (s, ψ) good, we have

PB,Os,ψ

[
BOs,ψ (1λ) = s

]
= 1− PB,Os,ψ

[∀i ∈ [κ(λ)] : si ̸= s] ≥ 1− e−λ.

It thus holds that

P s←↩S
ψ←↩Υ

[
PB,Os,ψ

[
BOs,ψ (1λ) = s

]
≥ 1− e−λ

]
≥ P s←↩S

ψ←↩Υ
[(s, ψ) is good ] .

Yet by assumption, for all negligible functions ν, we have that

P s←↩S
ψ←↩Υ

[(s, ψ) is good ] = P s←↩S
ψ←↩Υ

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ ε(λ)

]
> ν(λ).

By defining µ(λ) = e−λ, which is a negligible function, we have proven that there
exists an adversary B that runs in polynomial time (as κ(λ) = poly(λ)) and a
negligible function µ, such that for all negligible function ν

P s←↩S
ψ←↩Υ

[
PB,Os,ψ

[
BOs,ψ (1λ) = s

]
≥ 1− µ(λ)

]
> ν(λ).

This means that B breaks the mild hardness of S-LWEn,d,q,M,ψ,S , thus yielding
a contradiction.
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Remark B.1. The reason why the proof does not hold for a bounded number of
samples m is because if A is allowed m samples, then B would make κ(λ)(m+λ)
queries to the oracle. Since κ(λ) depends on the obtained advantage of A, the
number of samples needed by B cannot be set a priori.

Lemma 3.4

Proof. Assume towards contradiction that there is an adversary A that breaks
the mild hardness of S-LWEn,d,q,M,ΥΦ,bin,S . So there is a negligible function µ
such that for all negligible functions ν,

P s←↩S
ψ←↩Υ

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ 1− µ(λ)

]
> ν(λ).

We construct an adversary B against the mild hardness of S-LWEn,d,q,m,M,Φ,S .
Note that in this case, the distribution of distributions Υ can be seen as deter-
ministic outputting Φ with probability 1. The adversary proceeds as follows.
Algorithm B

− Input: m samples (A1,y1), . . . , (Am,ym).
− Setup an oracle O, which when queried chooses a uniformly random x ∈
{0, 1}m and outputs (

∑
i xiAi mod q,

∑
i xiyi mod q).

− Compute and output s← AO(1λ).

We now show that B simulates the oracleO of the problem S-LWEn,d,q,M,ΥΦ,bin,S .
We define yi = Ais+ ei mod q. Then the rerandomized sample(∑

i

xiAi mod q,
∑
i

xiyi = (
∑
i

xiAi)s+
∑
i

xiei mod q

)
,

has an error term e∗ =
∑
i xiei which follows a distribution ψ of ΥΦ,bin, where ψ

is defined by e1, . . . , em ∈ Zn that are sampled from Φ. By Lemma B.1, the
distribution of

∑
i xiAi is statistically close to the uniform distribution over

G = support(Md) given the e∗. This is because |G| ≤
∣∣Zn×ndq

∣∣ = qn
2d. Also, as

the hint
∑
i xiyi is supported on Znq , |Y| ≤ qn. Since we have m ≥ n2d log2 q +

n log2 q+ω(log2 λ) ≥ log2|G|+log2|Y|+ω(log2 λ), we can also apply the leftover
hash lemma in our setting. We conclude that the distribution of the samples
generated by O is statistically close to the correct distribution. Therefore, by
defining µ′(λ) = µ(λ) +∆(((Ai)i,

∑
i xiAi mod q, e∗), ((Ai)i, U(G), e∗)), which

is still negligible as explained above, we have that for all negligible functions ν

P s←↩S
Φ←↩{Φ}

[
PB,Os,Φ

[
BOs,Φ(1λ) = s] ≥ 1− µ′(λ)]

≥ P s←↩S
ψ←↩ΥΦ,bin

[
PA,Os,ψ

[
AOs,ψ (1λ) = s

]
≥ 1− µ(λ)

]
> ν(λ),

which concludes the proof.

39



B.4 Proofs of Section 4

Theorem 4.1

Proof. Let δ = 1/poly(λ) be as in Definition 4.1, and define ℓ = λ/δ = poly(λ).
By a standard hybrid argument, it holds that

(A(i))i∈[ℓ] ≈c (U(i))i∈[ℓ],

where A(i) ←↩ X and U(i) ←↩ Mm×d for all i = 1, . . . , ℓ. The argument then
makes use of the fact that by our choice of ℓ, there is only a negligible probability
that all of the A(i) are not lossy.
Assume towards contradiction that S-LWEn,d,q,m,M,ψ,S is not mildly hard, mean-
ing there exists a PPT adversary A and a negligible function µ such that for all
negligible functions ν

P s←↩S
ψ←↩{ψ}

[
PA←↩X
e←↩ψm

[A(A,As+ e mod q) = s] ≥ 1− µ(λ)
]
> ν(λ).

We omit the randomness over ψ as it comes from the deterministic distribu-
tion {ψ} Since the inequality is strict and over all negligible functions, it holds
that there exists a non-negligible function ε′ = 1/poly(λ) such that

Ps←↩S

[
PA←↩X
e←↩ψm

[A(A,As+ e mod q) = s] ≥ 1− µ(λ)
]
= ε′(λ).

We use A to construct a distinguisher D which distinguishes the (A(i))i∈[ℓ] and
the (U(i))i∈[ℓ] with non-negligible advantage. Let N = λ/ε′ = poly(λ). The
distinguisher D works as follows.

D((A(i))i∈[ℓ]):

− For i = 1, . . . , ℓ:
− For j = 1, . . . , N :
− Choose si,j ←↩ S and ei,j ←↩ ψ
− Compute s′i,j ← A(A(i),A(i)si,j + ei,j mod q)

− If for all j ∈ [N ] it holds that s′i,j ̸= si,j , abort and output 1.
− Output 0.

We now analyze the distinguishing advantage of D.

1. First assume that D’s input is (A(i))i∈[ℓ] distributed according to X ℓ. Since
the A(i) are all independent and X is sometimes lossy for S and ψ, recalling
that ℓ = λ/δ it holds that

P(A(i))i∈[ℓ]←↩X ℓ [∀i ∈ [ℓ] : H̃ε
∞(s|A(i)s+ e mod q) < κ]

=

ℓ∏
i=1

PA(i)←↩X [H̃
ε
∞(s|A(i)s+ e mod q) < κ]

≤ (1− δ)ℓ ≤ e−δℓ = e−λ,
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which is negligible. Consequently, there must exist an index i ∈ [ℓ] such
that H̃ε

∞(s|A(i)s+ e mod q) ≥ κ, except with negligible probability over the
choice of (A(i))i∈[ℓ]. Thus, fix (A(i))i∈[ℓ] for which there exists an i∗ ∈ [ℓ] with
H̃ε
∞(s|A(i∗)s+e mod q) ≥ κ. Now, since (si∗,j)j∈[N ] is distributed according

to SN , it holds by a union-bound that

P[∃j ∈ [N ] : A(A(i∗),A(i∗)si∗,j + ei∗,j mod q) = si∗,j ]

≤ N · P[A(A(i∗),A(i∗)s+ e mod q) = s]

≤ N · 2−H̃∞(s|A(i∗),A(i∗)s+e mod q)

≤ N · 2−H̃
ε
∞(s|A(i∗),A(i∗)s+e mod q)+log2 poly(λ) (6)

≤ N · poly(λ) · 2−κ,

where s ←↩ S and e ←↩ ψ. Inequality (6) follows by Lemma B.4 if ε is
sufficiently small. Then, since we have N = poly(λ) and κ = ω(log2 λ),
the bound is indeed negligible. It follows that in the computation of D
for input (A(i))i∈[ℓ], in the i∗-th iteration of the outer loop it will hold
that s′i∗,j ̸= si∗,j for all j ∈ [N ], except with negligible probability over
the choice of (si∗,j)j∈[N ] and (ei∗,j)j∈[N ]. The distinguisher therefore out-
puts D((A(i))i∈[ℓ]) = 1, except with probability at most e−λ+(1− e−λ) ·N ·
2−κ over the choice of (A(i))i∈[ℓ] and the random coins of D.

2. Now assume that A’s input is (U(i))i∈[ℓ], where each U(i) is distributed
according to Mm×d. We show that with high probability over the choice
of (U(i))i∈[ℓ] and the random coins of D, for every iteration i there will be
an index j such that s′i,j = si,j , which leads to D((U(i))i∈[ℓ]) = 0.

Fix an i∗ ∈ [ℓ]. Define the event BAD(s) by

BAD(s) :⇔ PU,e[A(U,Us+ e mod q) = s] < 1− µ,

where U←↩Mm×d. Recall that since we assume thatA breaks mild hardness
it holds that Ps[BAD(s)] ≤ 1−ε′. We now bound the probability that the si∗,j
are bad for all j ∈ [N ]. Since the si∗,j are independent, it holds that

P(si∗,j)j [∀j ∈ [N ] : BAD(si∗,j)] =
∏
j∈[N ]

Psi∗,j [BAD(si∗,j)]

≤ (1− ε′)N ≤ e−ε
′·N = e−λ,

recalling that Nε′ = λ. Then, with overwhelming probability 1 − e−λ, it
holds that at least one si∗,j is not bad. Fix (si∗,j)j∈[N ] such that there must
exist an index j∗ such that (si∗,j∗) is not bad, i.e., PU,ei∗,j∗ [A(U,Usi∗,j∗ +
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ei∗,j∗ mod q) = si∗,j∗ ] ≥ 1− µ. It follows that

PU(i∗),(ei∗,j)j
[∃j ∈ [N ] : A(U(i∗),U(i∗)si∗,j + ei∗,j mod q) = si∗,j ]

≥ PU(i∗),ei∗,j∗
[A(U(i∗),U(i∗)si∗,j∗ + ei∗,j∗ mod q) = si∗,j∗ ]

≥ 1− µ,

which is overwhelming. So the i∗-th iteration of the outer loop does not
abort (with output 1) with at most negligible probability over the choice of
the (si∗,j)j∈[N ], (ei∗,j)j∈[N ] and U(i∗).

A union-bound over all i∗ ∈ [ℓ] yields that with at most negligible probability
over the choice of the (U(i))i∈[ℓ] and the randomness of D that in the compu-
tation of D((U(i))i∈[ℓ]) any of the ℓ iterations of the outer loop results in an
abort with output 1. By construction of D, this means that D((U(i))i∈[ℓ]) = 0
with overwhelming probability.

Putting everything together, we conclude that

P[D((A(i))i∈[ℓ]) = 1]− P[D((U(i))i∈[ℓ]) = 1]

= P[D((A(i))i∈[ℓ]) = 1] + P[D((U(i))i∈[ℓ]) = 0]− 1

= 1− negl(λ).

Thus, D distinguishes X andMm×d with advantage close to 1, which contradicts
the assumption that X and Mm×d are computationally indistinguishable. This
concludes the proof.

Lemma 4.1

Proof. Let S =
√
s2Inm − (s′)2Z′(Z′)T . Let f ′ ∼ Ds′Ind = Dnd

s′ and f ′′ ∼ DS.
It thus holds that f = Z′f ′ + f ′′ is distributed according to Dnm

s = DsInm .
Multypling on the left by BRm yields BRmf = ZBRdf

′ +BRmf
′′.

Now notice that BRdf
′ is distributed according to Ds′·B

Rd
and that BRmf is

distributed according to Ds·BRm . Hence e′ and BRdf
′ are identically distributed,

and e and BRmf are too. Setting Ψ to be the distribution of BRmf
′′, the result

follows.

Lemma 4.2

Proof. Let ẽ′ be distributed according to the continuous Gaussian DσInd , and
let ẽ according to the discrete Gaussian DΛ(F′B−1

Rd
),σInd

. Let f̃ ←↩ D√2σInd
.

By Lemma B.2, it holds that ∥F′∥2 · ηε(B
−1
Rd

) ≥ ηε(Λ(F
′ · B−1

Rd
)). Lemma B.3

yields ∆(f̃ , ẽ+ ẽ′) ≤ 2ε.

Now note that by the definition of e we have that e and BRd ẽ are identi-
cally distributed. Similarly, f and BRd f̃ are identically distributed. By set-
ting e′ = BRd ẽ

′, we then obtain that ∆(F−1f , F−1e+ F−1e′) ≤ 2ε. We finally
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conclude

H̃∞(s|F−1q s+ F−1e mod q) = H̃∞(s|F−1q s+ F−1e mod q, e′)

≤ H̃∞(s|F−1q s+ F−1e+ F−1e′ mod q)

≤ H̃2ε
∞(s|F−1q s+ F−1f mod q),

which yields the result.

Lemma 4.3

Proof. Let e′ be distributed according to DZnd−e,sB
Rd

. Then, by Theorem B.1 it
holds that ∆(e+ e′, f) ≤ 8ε. A chain of inequalities on the min-entropy similar
to the one from the previous proof yields the result.

Theorem 4.2

Proof. Fix a distribution of secrets S and let s←↩ S. Let s1 = s0/
∥∥G′(F′)−1∥∥

2
≥

23/2s. As G′(F′)−1 = B−1Rm(GF−1)BRd , Lemma 4.1 states that there exists
a distribution Ψ over Rnm such that we can equivalently sample e0 by e0 =
GF−1e1 + e′1, where e1 ←↩ Dσ1BRd

and e′1 ←↩ Ψ . Consequently, we can write

y = GF−1q s+ e0 = GF−1q s+GF−1e1 + e′1 = G(F−1q s+ F−1e1) + e′1.

Thus, since y mod q can be computed from F−1q s+F−1e1 mod q and e′1 it follows
that

H̃∞(s|GF−1q s+ e0 mod q) = H̃∞(s|F−1q s+ F−1e1 mod q, e′1)

= H̃∞(s|F−1q s+ F−1e1 mod q),
(7)

where the second equality follows as e′1 is independent from s and e1. Now
let s2 = s1/

√
2 ≥ 2s and let e2 ←↩ DΛ(F),s2BRd

be a discrete Gaussian. By
Lemma 4.2 it holds that

H̃2ε
∞(s|F−1q s+ F−1e1 mod q) ≥ H̃∞(s|F−1q s+ F−1e2 mod q). (8)

Now, since F−1q is the Zq-inverse of F mod q, multiplying F−1q s + F−1e2 by F
preserves the entropy and yields

H̃∞(s|F−1q s+ F−1e2 mod q) = H̃∞(s|s+ e2 mod q). (9)

Now let s3 = s2/
√
2 ≥

√
2s, e3 ←↩ DZnd,s3BRd and e′3 ←↩ DΛ(F)−e3,s3BRd

.
Setting Λ2 = Znd and Λ1 = Λ(F) in Theorem B.1 and noting that s3 > s >
ηε(Λ(B

−1
Rd

)) we obtain that ∆(e2, e3 + e′3) ≤ 8ε. It follows that

H̃8ε
∞(s|s+ e2 mod q) ≥ H̃∞(s|s+ e3 + e′3 mod q)

≥ H̃∞(s|s+ e3 mod q, e′3).
(10)
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Since e′3 is distributed according to DΛ(F)−e3,s3BRd
, it only depends on the lattice

coset e3 mod Λ(F). Thus

H̃∞(s|s+ e3 mod q, e′3) ≥ H̃∞(s|s+ e3 mod q)−H0(e
′
3)

≥ H̃∞(s|s+ e3 mod q)− nd · log2(∥F′∥2),
(11)

as
∣∣Znd/Λ(F)∣∣ = |det(F)| = |detF′| ≤ ∥F′∥nd2 . Finally, we have that s3/

√
2 =

s > ηε(Λ(B
−1
Rd

)), Lemma 4.3 provides with the bound

H̃8ε
∞(s|s+ e3 mod q) ≥ H̃∞(s|s+ e mod q), (12)

where e←↩ DsB
Rd

. Putting everything together, we obtain that

H̃∞(s|s+ e mod q)− nd log2(∥F′∥2)
≤ H̃8ε

∞(s|s+ e3 mod q)− nd log2(∥F′∥2) (12)
≤ H̃8ε

∞(s|s+ e3 mod q, e′3) (11)
≤ H̃16ε

∞ (s|s+ e2 mod q) (10)
= H̃16ε

∞ (s|F−1q s+ F−1e2 mod q) (9)
≤ H̃18ε

∞ (s|F−1q s+ F−1e1 mod q) (8)
= H̃18ε

∞ (s|GF−1q s+ e0 mod q), (7)

concluding the proof.

Theorem 4.3

Proof. Directly by the S-NTRU assumption it holds that X is computationally
indistinguishable from Mm×d and thus verifies pseudorandomness.

For s←↩ S and e0 ←↩ ψ, we have

PGF−1
q ←↩X [H̃

18ε
∞ (s|GF−1q s+ e0 mod q,GF−1q ) ≥ ω(log2 λ)] ≥ δ.

Indeed, take GF−1q ←↩ X . With probability at least δ, the conditions of Theorem
4.2 are verified and thus

H̃18ε
∞ (s|GF−1q s+ e0 mod q,GF−1q ) = H̃18ε

∞ (s|GF−1q s+ e0 mod q)

≥ H̃∞(s|s+ e mod q)− nd log2(β2),

where e←↩ DsB
Rd

. Yet νsB
Rd

(S) = H̃∞(s|s+e mod q) ≥ nd log2(β2)+ω(log2(λ)).
As a result, it holds that H̃18ε

∞ (s|GF−1q s + e0 mod q,GF−1q ) ≥ ω(log2 λ) with
probability at least δ, thus proving the sometimes lossiness.

B.5 Proofs of Section 5

Lemma 5.1
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Proof. Let a ∈ R be sampled from DR,γ . Then σH(a) = U†Hσ(a) is distributed
according to DΛ,γ where Λ = σH(R). So ∥σ(a)∥∞ = ∥UHσH(a)∥∞ ≤ ∥σH(a)∥∞.
We briefly explain the last inequality. For clarity, we define a = σH(a). By
decomposing a = [aT1 |aT2 |aT3 ]T , with a1 ∈ Rt1 and a2,a3 ∈ Rt2 , a standard
calculation gives

UHa =
1√
2


√
2a1

a2 + ia3

a2 − ia3

 .
Hence ∥UHa∥∞ ≤ ∥a∥∞.

By the second part of [Pei08, Cor. 5.3] for m = 1, z = 1 and c = 0, it holds that
for all t ≥ 0

Pa←↩DΛ,γ [∥a∥∞ ≥ γt] ≤ 2ne−πt
2

.

Note that in the case where c = 0, the restriction of γ ≥ ηε(Λ) for some ε ≤
1/(2m + 1) is not necessary, and the calculation of the bound on the probabil-
ity saves a factor of e for that reason. With the observation that ∥σ(a)∥∞ ≤
∥σH(a)∥∞ it holds

Pa←↩DR,γ [∥σ(a)∥∞ ≤ γt] ≥ Pa←↩DR,γ [∥σH(a)∥∞ ≤ γt]

≥ 1− 2ne−πt
2

Choosing t = log2 n gives an overwhelming probability, concluding the proof.
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