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Abstract. One oft-endeavored security property for cryptographic hash
functions is collision resistance: it should be computationally infeasible
to find distinct inputs x, x′ such that H(x) = H(x′), where H is the
hash function. Unruh (EUROCRYPT 2016) proposed collapseability as
its quantum equivalent. The Merkle-Damg̊ard and sponge hashing modes
have recently been proven to be collapseable under the assumption that
the underlying primitive is collapseable. These modes are inherently se-
quential. In this work, we investigate collapseability of tree hashing. We
first consider fixed length tree hashing modes, and derive conditions un-
der which their collapseability can be reduced to the collapseability of
the underlying compression function. Then, we extend the result to two
methods for achieving variable length hashing: tree hashing with domain
separation between message and chaining value, and tree hashing with
length encoding at the end of the tree. The proofs are performed using
the collapseability composability framework of Fehr (TCC 2018), that
allows us to discard of deeply technical quantum details and to focus on
proper composition of the tree hashes from their compression function.

Keywords: collapseability · collision resistance · tree hashing · compo-
sition

1 Introduction

Hash functions are functions that map arbitrarily long strings, or at least very
long strings, to a digest of fixed length. Their introduction dates back to the sem-
inal work of Diffie and Hellman [7] in the context of digital signatures. Nowadays,
hash function outgrew their original role: they find thousands of applications in
cryptography. These applications all require certain security properties of the
hash function. One of these properties is collision resistance: it should be com-
putationally infeasible for an attacker to find two distinct messages with the
same hash digest. The notion appeared first in Merkle’s PhD thesis [9], and is
the leading security property when it comes to breaking hash functions. Well-
known hash functions MD5 [11] and SHA-1 [12], and many others, are considered
insecure mainly because practical collision attacks were mounted on these (cf.
Stevens et al. [15] for MD5 and Stevens et al. [14] for SHA-1). However, find-
ing collisions appears not to be a purely academic exercise: in 2012 the Flame
virus exploited collisions in MD5 to act as a properly signed Windows Software
Update security patch [13].



When we move to the quantum setting, the classical notion of collision re-
sistance is not strong enough. Unruh [17, Theorem 19] (Theorem 22 in the full
version) showed that there is a hash function that is collision resistant and thus
can safely be used in a classical commitment scheme, but is not secure when the
commitment scheme is used in a quantum setting. We can therefore conclude
that, even if a hash function is (classically) collision resistant, it behaves unex-
pectedly when used in a quantum environment. We need a stronger model in
favor of collision resistance.

1.1 Collapseability

Unruh [17] presented collapseability as a quantum equivalent of collision re-
sistance of hash functions. Informally, for cryptographic hash functions, col-
lapseability requires an adversary that outputs a hash value together with a
superposition of corresponding preimages is not able to tell if the superposition
gets measured or not. We revisit collapseability in Section 3, and particularly
outline the idea as to why this would be the quantum equivalent of collision
resistance in Section 3.3.

The model of collapseability has gained traction. In a follow-up work, Un-
ruh [16] proved that the Merkle-Damg̊ard hashing mode [10,6] is collapsing if
the compression function is. Later, Czajkowski et al. [5] proved collapseability
of the sponge construction [1] if the underlying one-way function is (their work
combined independent works of Unruh [18] and Czajkowski et al. [4]). These
proofs are, however, quite tedious and technically involved. They require the
reader to possess a large amount of quantum knowledge.

In [8], Fehr introduced an alternative framework for collapseability. His def-
inition is more algebraic in nature, whereas that of Unruh is more algorithmic.
This allowed Fehr to reason about composability of collapseable functions in a
neat and compact way. In more detail, Fehr showed that collapseability is closed
under certain compositions, all with very concise proofs. These composability
properties make it possible to reason about collapseability from a purely clas-
sical view, without requiring quantum knowledge. He applied the approach to
the Merkle-Damg̊ard and sponge hash construction, proving that they are col-
lapsing if the underlying compression function is. Therewith, he confirmed the
correctness of the earlier results in his new framework.

1.2 Our Contribution

We consider collapseability of tree hashing. We will make full use of Fehr’s frame-
work [8] in order to argue what conditions a tree hashing mode must meet in
order to be collapseable.

First, in Section 4 we consider the basic problem of tree hashing for fixed
length messages. For messages of a certain fixed length n, we recursively define
a tree hash function TH n. It is defined based on a split function split(n) ∈
{1, . . . , n−1} that prescribes how the final digest is derived from two tree hashes
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TH split(n) and TH n−split(n) applied to the first split(n) and last n − split(n)
message blocks.

Then, in Section 5, we detail how the result can be extended to variable length
hashing using domain separation. In this case, it is assumed that processing of
message blocks and chaining values is properly domain-separated in the way the
mode calls its compression function. One way in doing so is by appending a 0 to
message blocks and a 1 to chaining values. Intuitively, this makes it impossible to
replace the chaining value of a subtree with a message block with the same value.
We prove that the resulting variable length tree hash function is collapsing. This
is done by extending trees with ‘empty’ blocks in such a way that we can reduce
collapseability of the variable length mode to that of the fixed length mode.

Finally, in Section 6, we consider a second way to turn the fixed length
construction into a variable length hashing mode: length encoding. Here, we
allow any tree hashing mode, but the block length of the message will be in-
cluded by using a final compression function call. This approach makes the final
compression functions disjoint for different message lengths, and using previous
techniques and the composition results of Fehr, we likewise manage to prove
collapseability.

All three collapseability results come with a security bound that expresses
the adversarial advantage relative to the collapseability of the underlying com-
pression function, as well as with a complexity analysis of the resulting modes.

1.3 Related Work

One might likewise consider quantum indifferentiability of tree hashing in the
framework of Zhandry [19]. We remark, however, that in the classical setting
indifferentiability implies collision resistance, but not conversely, and for some
applications the weaker property of collision resistance is sufficient. A similar
remark applies to the quantum setting, i.e., collapseability is sufficient in many
applications such as the simple commitment schemes given by Unruh [17]. In
such settings, it is senseless to rely on a stronger property with a more complex
security proof and a, likely, weaker security bound.

2 Preliminaries

We will use the following compositions of functions.

– For g : X → Y and h : W → Z, the concurrent composition g∥h : X ×W →
Y × Z is given by (x,w) 7→ (g(x), h(w)).

– For g : X → Y and h : Y → Z, the nested (or sequential) composition
h ◦ g : X → Z is given by x 7→ h(g(x)).

– For g : X → Y and h : X → Z, the parallel composition (g, h) : X → Y × Z
is given by x 7→ (g(x), h(x)).

– For g : X → Y and h : W → Z, the disjoint union g ⊔ h : X ∪W → Y ∪ Z
maps x ∈ X to g(x) and w ∈ W to h(w). Furthermore, f and g are required
to have disjoint domains and images, so X ∩W = Y ∩ Z = ∅.
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Furthermore, we write Sn = 1+2+ · · ·+n = n(n+1)/2 for the sum of positive
integers up to n.

2.1 Qubits and Measurements

Classical computers work with classical bits. These bits can be either a 0 or
a 1, but not a combination of both. However, quantum computers work with
quantum bits (qubits). These qubits can be just a 0 or 1, but can also be in a
state which is a combination of both. A qubit that has a single value is denoted
by |0⟩ or |1⟩ (pronounced ‘ket 0’ and ‘ket 1’), for 0 and 1 respectively. However,
a qubit can also be a linear combination of both, denoted as α |0⟩ + β |1⟩ for
some α, β ∈ C such that |α|2 + |β|2 = 1. This is called a superposition. A
superposition can also be written in a single ket. For example, we could define
the state |ϕ⟩ = α |0⟩+ β |1⟩. If a qubit is in a superposition, computations on it
are applied to all values at the same time. However, we cannot directly measure
the coefficients in the states. We have to do a measurement, which destroys the
superposition.

Given a qubit |ϕ⟩ = α |0⟩+ β |1⟩, we can measure it in the standard compu-
tational basis {|0⟩ , |1⟩}. Then one of the following happens:

– |ϕ⟩ collapses to the state |0⟩ with probability |α|2. We get the result ‘0’.
– |ϕ⟩ collapses to the state |1⟩ with probability |β|2. We get the result ‘1’.

Since |α|2 + |β|2 = 1, exactly one of these happens with probability 1.
In addition to single qubit states, there are also states of multiple qubits. In

general a quantum state of dimension n has the form∑
i∈{0,1}n

αi |i⟩ ,

where αi ∈ C and
∑

i |αi|2 = 1. For example, we can have the 2-dimensional
state

1√
2
(|00⟩+ |11⟩) .

Measurements happen in a similar way to single qubits. When measured in
the standard computational basis { | i⟩ | i ∈ {0, 1}n }, a state |ϕ⟩ =

∑
i αi |i⟩

collapses to the state |i⟩ with probability |αi|2. We get the result ‘i’.
We can also measure in other bases. This can be any orthonormal basis. The

measurements happen in the same way as before, but we have to rewrite our
state in the new basis. For example, a popular basis is {|+⟩ , |−⟩} given by

|±⟩ = 1√
2
(|0⟩ ± |1⟩) .

If we want to measure |0⟩ in it, we have to rewrite it as

|0⟩ = 1

2
(|0⟩+ |1⟩) + 1

2
(|0⟩ − |1⟩) = 1√

2
|+⟩+ 1√

2
|−⟩ .

This means that the measurement results in either |+⟩ or |−⟩, both with prob-
ability 1/2.
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3 Collapseability

Unruh [17] introduced collapseability as the quantum version of classical collision
resistance. His definition uses an ‘algorithmic’ view on collapseability. Later,
Fehr [8] introduced a new formalism of collapseability. His new definition uses
a more ‘algebraic’ view, which allows for simpler proofs of some composition
results. We will mostly use Fehr’s formalism to classically prove that certain
tree hash functions are collapsing.

Although most proofs become easier with the more ‘algebraic’ definition, we
present the more ‘algorithmic’ one given in [17] as it is easier to understand.

Definition 1. Given a (hash) function H, we play the following game. An ad-
versary A generates a quantum state |ϕ⟩ =

∑
x∈X αx |x⟩ such that H(x) = c for

all x ∈ X for some c. Then, one of the following happens:

1. The state |ϕ⟩ gets measured in the computational basis.
2. The state |ϕ⟩ is left untouched.

The adversary A does not know which one happened, but it tries to determine
it. It returns a bit b, indicating which case it thinks has happened. Its advantage
is given by

cAdv[H](A) =
∣∣P[b = 1 : Case (1)]− P[b = 1 : Case (2)]

∣∣ .
In the remaining of this section, we first look at the query complexity of functions
in Section 3.1. This allows us to give a definition of collapseability that maxi-
mizes over adversaries. Then we look at the composability of collapseability in
Section 3.2. These lemmas allow us to reason classically about the collapsing
advantage. Finally, in Section 3.3 we explain why collapseability is a stronger
notion than collision resistance.

3.1 Complexity

In order to limit the resources of the adversary, we adopt the notion of complexity
from Fehr [8]. Given a function f , we assign it a complexity c(f), which is a
non-negative integer. We usually normalize the complexity of the compression
function as 1. We also assume that this abstract notion satisfies some natural
properties. Simple functions like constants, copying, deleting, the identity, etc.,
have zero complexity. Furthermore, we assume that the complexity function
behaves well under compositions, so that

c(f∥g) ⩽ c(f) + c(g) ,

c(g ◦ f) ⩽ c(f) + c(g) ,

c(f ⊔ g) ⩽ c(f) + c(g) .

The final inequality is not mentioned in [8]. However, we will need it in
our proofs, and it seems natural to assume. If we were to apply the functions
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just classically, it seems enough to bound c(f ⊔ g) by max(c(f), c(g)), as every
application computes either f or g, but not both. However, since we work with
qubits, we also have to account for superpositions. If a qubit is in a superposition
consisting of inputs from both domains, we have to compute both functions. This
means that its complexity can be c(f) + c(g).

Given the notion of complexity, we can define the advantage we get when we
limit the resources of the adversaries.

Definition 2. The collapsing advantage of H with complexity q is given by

cAdv[H](q) = max
A∈A(q)

cAdv[H](A) ,

where A(q) are all adversaries with query complexity q.

We also say that a function H is ε-collapsing if cAdv[H](q) ⩽ ε(q).

3.2 Composability of Collapseability

The main advantage of the formalism introduced by Fehr is that some compos-
ability results have very concise proofs. The following lemmas are taken from
Fehr [8].

Lemma 1 (Concurrent composition). The concurrent composition g∥h sat-
isfies

cAdv[g∥h] ⩽ cAdv[g] + cAdv[h] .

Lemma 2 (Nested composition). The nested (or sequential) composition h◦
g satisfies

cAdv[h ◦ g](q) ⩽ cAdv[g](q + c(g)) + cAdv[h](q + c(g)) .

Lemma 3 (Parallel composition). The parallel composition (g, h) satisfies

cAdv[(g, h)] ⩽ min(cAdv[g], cAdv[h]) .

Lemma 4 (Disjoint union). The disjoint union g ⊔ h satisfies

cAdv[g ⊔ h] ⩽ cAdv[g] + cAdv[h] .

3.3 Collapseability Implies Collision Resistance

We show that collapseability is a stronger notion than collision resistance. Our
reasoning is similar to the one of Unruh [17, Lemma 22] (Lemma 25 in the
full version), but simplified to only require the basic knowledge of qubits and
measurements given in Section 2.1.

Suppose one can obtain distinct x, x′ with H(x) = H(x′). We show how such
a collision can be used to break the collapseability of H. As the state in the
collapsing game, we choose

|ϕ⟩ = 1√
2
(|x⟩+ |x′⟩) .
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Now |ϕ⟩ may or may not get measured in the computational basis. If it gets
measured, it either collapses to |x⟩ or to |x′⟩, both with probability 1/2. If it
does not get measured, it stays the same.

In order for adversary A to differentiate between the two cases, we measure
|ϕ⟩ in a modified basis. Almost all basis elements stay the same, but we replace
|x⟩ and |x′⟩ with

|+x,x′⟩ = 1√
2
(|x⟩+ |x′⟩) and |−x,x′⟩ = 1√

2
(|x⟩ − |x′⟩) .

This is still an orthonormal basis. If |ϕ⟩ is not measured, it is equal to |+x,x′⟩,
hence the result of the measurement is |+x,x′⟩ with probability 1.

However, if |ϕ⟩ is measured, it is either |x⟩ or |x′⟩. We rewrite these in the
new basis as

|x⟩ = 1

2
(|x⟩+ |x′⟩) + 1

2
(|x⟩ − |x′⟩) = 1√

2
|+x,x′⟩+ 1√

2
|−x,x′⟩ ,

|x′⟩ = 1

2
(|x⟩+ |x′⟩)− 1

2
(|x⟩ − |x′⟩) = 1√

2
|+x,x′⟩ − 1√

2
|−x,x′⟩ .

This means that both |x⟩ and |x′⟩ get measured as either |+x,x′⟩ or |−x,x′⟩, both
with probability 1/2.

The adversary thus operates as follows. If it finds |+x,x′⟩, it concludes that
|ϕ⟩ was not measured, and if it finds |−x,x′⟩, it concludes that |ϕ⟩ was measured.
Since it gets the case without measurement always right, and it basically guesses
in the case with measurement, its advantage is 1/2. Hence H is not collapsing.

4 Fixed Length Tree Hashing

Fehr [8] showed that some simple hash constructions like Merkle-Damg̊ard can
be proven to be collapsing by only using the composition lemmas of Section 3.2.
This means that the reasoning in the proofs is just classical, as the hash con-
structions are broken down as the composition of smaller functions for which the
composition lemmas apply. The main technicality moved from actually proving
collapseability to describing hash functions as clever compositions of collapseable
functions. In this work we investigate tree hashes.

We start with tree hashes of fixed length that can only take a fixed number
of blocks and for which the structure is the same for all inputs.

Let f : {0, 1}c×{0, 1}c → {0, 1}c be a compression function. We define a tree
hashing mode by its splitting points, that is a function split : N⩾2 → N. Given a
message x1, . . . , xn the parts x1, . . . , xsplit(n) and xsplit(n)+1, . . . , xn are hashed
separately and compressed with f . No part can be empty, so 1 ⩽ split(n) ⩽ n−1
for all n. An example is displayed in Figure 1 with a splitting function such that

split(5) = 3 ,

split(3) = 2 ,

split(2) = 1 .

(1)
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Note that it is irrelevant for this particular tree what value split(n) takes for
n /∈ {2, 3, 5}.

m1 m2

m3 m4 m5

split(2) = 1

split(3) = 2 split(2) = 1

split(5) = 3

Fig. 1: Tree hash with the split function of (1). The circles with messages mi

represent the message blocks, while the other circles represent calls to the com-
pression function f and their resulting chaining value. The final digest is the
result of the compression call of the root.

Likewise, we can express the Merkle-Damg̊ard mode as a tree hash with
split(n) = n − 1. The example mode of Sakura [2, Section 5.4], which balances
the tree very well, can be expressed with split(n) the largest power of 2 smaller
than n.

We now define the general tree hashing mode that we will consider in this
work.

Definition 3. Given a compression function f : {0, 1}c × {0, 1}c → {0, 1}c
and a function split : N⩾2 → N, we recursively define the tree hashes TH n :
({0, 1}c)n → {0, 1}c for n ∈ N⩾1 as

TH 1(x1) = x1 ,

TH n(x1, . . . , xn) = f(TH k(x1, . . . , xk),TH n−k(xk+1, . . . , xn)) ,

where k = split(n). Note that we can express this definition equivalently using
the composition functions defined in Section 3.2 as follows:

TH 1 = id ,

TH n = f ◦ (TH k∥TH n−k) .

The function TH n calls the compression function n− 1 times. As we normalize
the complexity of f as c(f) = 1, we would expect the complexity of TH n to be
n− 1. This is indeed the case.

Lemma 5. If f has complexity c(f) = 1, then c(TH n) ⩽ n− 1 for all n.
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Proof. We use strong induction to n. Since we assume the identity has 0 com-
plexity, we get

c(TH 1) = c(id) = 0 .

For n > 1 we have TH n = f ◦ (TH k∥TH n−k), which means, using the compo-
sition properties of the complexity function (See Section 3.1), that

c(TH n) = c(f ◦ (TH k∥TH n−k))

⩽ c(f) + c(TH k) + c(TH n−k)

⩽ 1 + (k − 1) + (n− k − 1) = n− 1 . ⊓⊔

We now look at the collapseability of TH n. As it only accepts a fixed number
of blocks, we find that it is collapsing regardless of the split function used.

Proposition 1. If f has complexity c(f) = 1 and is ε-collapsing, then TH n is
collapsing for all n with advantage

cAdv[TH n](q) ⩽ (n− 1) · ε(q + Sn−2) .

Proof. We use strong induction to n. Since the identity has an advantage of 0,
we get

cAdv[TH 1](q) = 0 .

For n > 1 we have TH n = f ◦ (TH k∥TH n−k), which means, using nested
composition and the fact c(THm) = m− 1 (Lemma 5), that

cAdv[TH n](q) ⩽ cAdv[f ] (q + c (TH k∥TH n−k))

+ cAdv[TH k∥TH n−k] (q + c (TH k∥TH n−k))

⩽ ε(q + n− 2) + cAdv[TH k∥TH n−k](q + n− 2) .

Using concurrent composition and the induction hypothesis, we find that

cAdv[TH k∥TH n−k](q + n− 2) ⩽ cAdv[TH k](q + n− 2)

+ cAdv[TH n−k](q + n− 2)

⩽ (k − 1) · ε(q + n− 2 + Sk−2)

+ (n− k − 1) · ε(q + n− 2 + Sn−k−2) .

Since k and n − k are strictly smaller than n, we have that n − 2 + Sk−2 and
n− 2 + Sn−k−2 are less or equal to Sn−2, which means that

cAdv[TH k∥TH n−k](q + n− 2) ⩽ (k − 1) · ε(q + Sn−2)

+ (n− k − 1) · ε(q + Sn−2)

= (n− 2) · ε(q + Sn−2) .

Putting these together, and using that n− 2 ⩽ Sn−2, we get that

cAdv[TH n](q) ⩽ ε(q + n− 2) + (n− 2) · ε(q + Sn−2)

⩽ (n− 1) · ε(q + Sn−2) . ⊓⊔
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5 Variable Length Using Domain Separation

We have seen that any binary tree hash of fixed length is collapsing. However, a
hash function has to be able to hash inputs of varying lengths. We cannot just
use the tree hash corresponding to the input we got, as this leads to collisions.
For example, suppose that we have a big tree hash. We can replace two leaves,
that get compressed together to a chaining value CV , by just a single leaf with
CV as the message. This is a collision, as the resulting digests of both trees are
the same.

One solution to this problem is using domain separation between the message
blocks and the chaining values. For example, all message blocks can end with a
0, while the chaining values all end with a 1. We see that this requirement arises
naturally when we apply a similar idea as Fehr [8]. He proves Merkle-Damg̊ard
secure by limiting the block size of the input to some L. Every smaller message
is expanded to a message of size L by prepending ‘empty’ blocks ⊥. Then the
compression function is modified to also take these ‘empty’ blocks as input and
ignore them. We use a similar strategy where we embed a smaller tree in a larger
tree and fill the extra leaves with these ‘empty’ blocks.

To do so, we define the mapping Extend[U ](T ) which takes an unlabeled
binary tree U and a labeled binary tree T , such that T is a subtree of U . This
means that every node in T has to be a node in U as well, and not a leaf. Then
Extend[U ](T ) outputs a labeled binary tree with the same structure as U , but
with labels based on T . Every leaf of T with value m is mapped to its part in
U , with the label m on the leftmost leaf, and the label ⊥ on all the other leaves.
An example is displayed in Figure 2.

m1

m2 m3

m4

(a) Labeled tree T

m1

(b) Unlabeled tree U

m1 ⊥ m2 m3 m4 ⊥

⊥

(c) Extend[U ](T )

Fig. 2: Extending a tree. The tree T has to be a subtree of U .

More formally, assume that the tree hashing mode uses domain separation:
input blocks can be differentiated from the chaining values. This means that
we can identify two disjoint sets M ⊆ {0, 1}c and C = {0, 1}c \ M that cover
all message block values and chaining values, respectively. Next, we define three

10



different types of tree hashing modes, with different types of output: a message
block in M , a chaining value in C or either one in {0, 1}c. These functions are
defined as THM

n : Mn → M , THC
n : Cn → C, and THX

n : Xn → {0, 1}c, where
the domains are recursively defined as

Mn = M × {⊥}n−1 ,

C1 = ∅ ,

Cn = Xk ×Xn−k ,

Xn = Mn ⊔ Cn ,

where k = split(n). Given these domains, we now define the three types of tree
hashing modes themselves.

Definition 4. Given a compression function f : {0, 1}c × {0, 1}c → C and a
function split : N⩾2 → N, we recursively define the tree hashes THM

n : Mn → M ,
THC

n : Cn → C and THX
n : Xn → {0, 1}c as

THM
n (m,⊥, . . . ,⊥) = m,

THC
n (x1, . . . , xn) = f(THX

k (x1, . . . , xk),TH
X
n−k(xk+1, . . . , xn)) ,

THX
n = THM

n ⊔ THC
n ,

where k = split(n).

Using these functions, we finally define the variable input length function TH⩽L
dom :

M⩽L → {0, 1}c which hashes variable length trees up to length L. Let U , with
a size of K blocks, be the smallest tree of which all trees up to length L are
a subtree of. TH⩽L

dom maps an input m1, . . . ,mn, to THX
K(x1, . . . , xK), where

x1, . . . , xK is the tree Extend[U ](Tn), where Tn is the tree of size n with labels
of m1, . . . ,mn. This means that xi is equal to either some mj or ⊥. We can
apply this mapping non-ambiguously as every tree up to length L is a subtree
of U .

For example, in the Merkle-Damg̊ard construction every tree of size n is a
subtree of the tree of size n′ if n ⩽ n′. This means that U is just the normal tree
of size L, hence K = L. This is displayed in Figure 3 for L = 4. Note that this is
not the case in general. For example in the construction in Sakura, if L is equal
to 2ℓ+1, then the right branch only contains one leaf, which means that it does
not contain the tree for 2ℓ, which is a full binary tree with a right branch of size
2ℓ−1. However, we can still choose the next power of two as a tree that contains
the necessary trees, hence K ⩽ 2L. This is displayed in Figure 4 for L = 5.

We are ready to prove the collapseability of TH⩽L
dom.

Theorem 1. If f has complexity c(f) = 1 and is ε-collapsing, then TH⩽L
dom is

collapsing for any L with advantage

cAdv[TH⩽L
dom](q) ⩽ (K − 1) · ε(q + SK−2) ,

where K is the size of the smallest tree of which all the trees up to length L are
a subtree of. Furthermore, we have that L ⩽ K ⩽ SL.
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m1 m2

m1 ⊥

⊥

(a) Tree T2 (solid) and
Extend[U ](T2) (dashed).

m1

m3

m1 ⊥

m2

(b) Tree T3 (solid) and
Extend[U ](T3) (dashed).

m4

m1 m2

m3

(c) Tree T4, equal to U .

Fig. 3: Hashing variable sized hashes with the Merkle-Damg̊ard mode. U , dis-
played in Figure 3c, is the smallest tree structure of which all trees up to length
4 are a subtree of. This tree happens to be the same as the normal Merkle-
Damg̊ard construction with n = 4.

m1

m2

m3 m4

m1 ⊥ m2 ⊥

(a) Tree T4 (solid) and
Extend[U ](T4) (dashed).

m5 ⊥

m1 m2 m3 m4

m5

(b) Tree T5 (solid) and
Extend[U ](T5) (dashed).

m1

(c) Tree U , not equal to
any previous tree.

Fig. 4: Hashing variable sized hashes with the example mode of Sakura. The trees
up to length 3 are not shown. Tree U , displayed in Figure 4c, is the smallest tree
structure of which all trees up to length 5 are a subtree of. This tree is different
from all the constructions up to length 5.

Proof. As the first step, an input m1, . . . ,mn is mapped to the extended input
x1, . . . , xK , on which the tree hash THX

K is applied. This mapping is injective,
hence 0-collapsing, hence we have to show that

cAdv[THX
K ](q) ⩽ (K − 1) · ε(q + SK−2) .

As THM
n is injective, it is 0-collapsing, hence we see that cAdv[THX

n ] = cAdv[THC
n ]

by disjoint union. Furthermore, THC
n is defined in almost the same way as TH n

in Definition 3. The only difference is that the recursive call is to THX
k instead

12



of itself. However, as the advantage of THX
k is the same as that of THC

k we can
still apply the same proof as in Proposition 1, which gives the desired result.

Furthermore, we look at the value of K, which is the size of the smallest tree
U of which all the trees up to length L are a subtree of. First, the tree of size L
has to be a subtree of U , which means that its size is at least L, hence L ⩽ K.
Second, every tree of size n adds at most n leaves to U for all n up to L. This
means that its size is at most 1 + 2 + · · ·+ L = SL, hence K ⩽ SL. ⊓⊔

6 Variable Length Using Length Encoding

We have seen that we can make a variable length tree hash collapsing by using
domain separation between the message blocks and the chaining values. However,
this method adds some overhead and might not work well with the alignment of
the message blocks, as at least a bit has to be added to every block. Another way
to allow a variable length input is by using length encoding. Here, the length of
the message is used in a final compression call. We define the hash with length
encoding TH⩽L

len : ({0, 1}c)⩽L → {0, 1}c, which hashes variable length trees up
to length L, as

TH⩽L
len (x1, . . . , xn) = f(n,TH n(x1, . . . , xn)) ,

where n is the number n encoded as a binary number in {0, 1}c, which limits L
to be at most 2c.

This method requires less overhead than domain separation, as the length of
the message is added just once. We find that any tree hash with length encoding
in a final compression call is collapseable, by applying the composition lemmas
on some smaller functions.

Theorem 2. If f has complexity c(f) = 1 and is ε-collapsing, then TH⩽L
len is

collapsing for any L with advantage

cAdv[TH⩽L
len ](q) ⩽ (SL−1 + 1) · ε(q + (L− 1)2) .

Proof. Instead of looking at TH⩽L
len directly, we build it as the composition

of smaller functions. First we define for every n ∈ N the function LTH n :
({0, 1}c)n → {0, 1}c × {0, 1}c as

LTH n(x1, . . . , xn) = (n,TH n(x1, . . . , xn)) .

Note that we can also write this as LTH n = (cn,TH n), where cn = x 7→ n is
the constant function with value n. By parallel composition we get that

cAdv[LTH n](q) = cAdv[TH n](q) ⩽ (n− 1) · ε(q + Sn−2) .

Let LTH⩽L : ({0, 1}c)⩽L → {0, 1}c × {0, 1}c be

LTH⩽L =

L⊔
n=1

LTH n .

13



Note that the images are disjoint as LTH n stores n in the output, which is
different for every n, as long as L < 2c. By disjoint union we get that

cAdv[LTH⩽L](q) ⩽
L∑

n=1

cAdv[LTH n](q)

⩽
L∑

n=1

(n− 1) · ε(q + Sn−2)

⩽ SL−1 · ε(q + SL−2) .

For its complexity we have that

c(LTH⩽L) ⩽
L∑

n=1

c(LTH n)

=

L∑
n=1

c(TH n)

⩽
L∑

n=1

(n− 1)

= SL−1 .

Finally we have that TH⩽L
len = f ◦LTH⩽L. Using the facts that SL−1 ⩽ (L−1)2

and SL−1 + SL−2 = (L− 1)2 we get

cAdv[TH⩽L
len ](q) ⩽ cAdv[f ](q + c(LTH⩽L)) + cAdv[LTH⩽L](q + c(LTH⩽L))

⩽ ε(q + SL−1) + SL−1 · ε(q + SL−1 + SL−2)

⩽ ε(q + (L− 1)2) + SL−1 · ε(q + (L− 1)2)

= (SL−1 + 1) · ε(q + (L− 1)2) . ⊓⊔
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