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Abstract

Messaging platforms like Signal are widely deployed and provide strong security in an asynchronous
setting. It is a challenging problem to construct a protocol with similar security guarantees that can
efficiently scale to large groups. A major bottleneck are the frequent key rotations users need to perform
to achieve post compromise forward security.

In current proposals – most notably in TreeKEM (which is part of the IETF’s Messaging Layer
Security (MLS) protocol draft) – for users in a group of size n to rotate their keys they must each craft
a message of size log(n) to be broadcast to the group using an (untrusted) delivery server.

In larger groups, having users sequentially rotate their keys requires too much bandwidth (or takes too
long), so variants allowing any T ≤ n users to simultaneously rotate their keys in just 2 communication
rounds have been suggested (e.g. “Propose and Commit” by MLS). Unfortunately, 2-round concurrent
updates are either damaging or expensive (or both); i.e they either result in future operations being more
costly (e.g. via “blanking” or “tainting”) or are costly themselves requiring Ω(T ) communication for each
user [Bienstock et al., TCC’20].

In this paper we propose CoCoA; a new scheme that allows for T concurrent updates that are neither
damaging nor costly. That is, they add no cost to future operations yet they only require Ω(log2(n))
communication per user. To circumvent the [Bienstock et al.] lower bound CoCoA increases the number
of rounds needed to complete all updates from 2 up to (at most) log(n); though typically fewer rounds
are needed.

The key insight of our protocol is the following: in the (non-concurrent version of) TreeKEM, a
delivery server which gets T concurrent update requests will approve one and reject the remaining T −1.
In contrast, our server attempts to apply all of them. If more than one user requests to rotate the same
key during a round, the server arbitrarily picks a winner. Surprisingly, we prove that regardless of how
the server chooses the winners, all previously compromised users will recover after at most log(n) such
update rounds.

To keep the communication complexity low, CoCoA is a server-aided CGKA. That is the delivery
server no longer blindly forwards packets, but instead actively computes individualized packets tailored
to each user. As the server is untrusted, this change requires us to develop new mechanisms ensuring
robustness of the protocol.
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1 Introduction

End-to-end (E2E) secure cryptographic protocols are rapidly becoming ubiquitous tools in the daily life
of billions of people. The most prominent examples are secure messaging protocols (such as those based
on the Double Ratchet) and E2E encrypted VoIP conference calling protocols. The demands of practical
E2E security are non-trivial; all the more so when the goal is to allow groups to communicate in a single
session. Almost all current (aka. “1st generation”) E2E protocols for groups are built on top of some
underlying black-box 1-on-1 E2E secure protocol [26]. However, this approach seems to unavoidably result
in the complexity of (at least some critical) operations scaling linearly in the group size n.1 This has resulted
in practical limits in the groups sizes for deployed E2E protocols (to date, often in 10s or low 100s and never
more than 1000).

Motivated by this, Cohn-Gordon et al. [14] initiated the study of E2E protocols whose complexity scales
logarithmically in n. Starting with this work, research in the area has focused on a fundamental class of
primitives called Continuous Group Key Agreement (CGKA).2 Intuitively, CGKA is to, say, E2E secure
messaging what Key Agreement is to Public Key Encryption. That is, CGKA protocols capture many
of the challenges involved in building practical higher-level E2E secure applications (like messaging) while
still providing enough functionality to make building such applications comparatively easy using known
techniques [2]. Thus they present a very useful subject for research in the area.

In a bit more detail, a CGKA protocol allows an evolving set of group members to continuously agree on
a fresh symmetric key. Every time a new party joins, or an existing one leaves or refreshes (a.k.a. “updates”)
their cryptographic state, a new epoch begins in the session. Each epoch E is equipped with its own group
key kE which can be derived by all parties that are members of the group during E. CGKA protocol sessions
are expected to last for very long periods of time (e.g. years). Thus, they must provide a property sometimes
referred to as post compromise forward security (PCFS) [3]. That means that the group key of a target epoch
should look random to an adversary despite having compromised any number of group members in both
earlier and later epochs as long as the compromised parties either left the group or performed an update
between their compromise and the target epoch.3 In the spirit of distributed E2E security (and unlike, say,
Broadcast Encryption or Dynamic Group Key Agreement) CGKA protocols must achieve this without the
help of trusted group managers or other specially designated trusted parties.

With a few exceptions discussed below, most CGKA protocols today [14, 7, 1, 23, 3, 5] were designed with
an asynchronous communication setting in mind (likely motivated by the application of secure asynchronous
messaging). That is, parties may remain offline for extended periods of time, not ever actually being online at
the same time as each other. Once they do come online, though, they should be able to immediately “catch
up” and even initiate a new epoch (e.g. by unilaterally adding a new member to the group). To facilitate
this, protocols are designed to communicate via an untrusted network which buffers protocol packets for
parties until they come online again.

The Problem Of Coordination. One property the first generation of CGKA protocols [23, 1, 7, 14]
share is that they require all protocol packets to be processed in exactly the same order by every group
member. However, ensuring this level of coordination can present real challenges in a variety of settings;
especially for large groups (e.g. with 50, 000 members as is targeted by the IETF’s upcoming E2E secure
messaging standard MLS [6]). In particular, it might lead to the problem sometimes called “starvation”
where a client’s packets are constantly rejected by the group (e.g. when the client is on a slow network
connection and so can never distribute its own packets fast enough).

1In fact, this holds true even for the few 1st generation E2E protocols designed from the ground up with groups in mind [20].
2Also referred to as Group Ratcheting [9] or Continuous Group Key Distribution [11].
3We note that PCFS is strictly stronger than providing the two more commonly discussed properties of Forward Security

(FS) and Post Compromise Security (PCS). Indeed, a successful attack on an epoch E may require compromises both before
and after E. Such an attack is neither an FS attack nor a PCS attack. Moreover, literature usually speaks informally of FS
and PCS as separate notions asking that they both hold. Yet the notions do not necessarily compose. For example, the MLS
messaging standard has both strong FS and PCS properties but significantly worse PCFS [1]. Fortunately, all formal security
definitions for CGKA we are aware of do in fact capture (some variation of) PCFS instead of treating FS and PCS separately.
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There do not seem to be any practical solutions to convincingly provide this level of coordination without
significant drawbacks. Implementing the buffering mechanism via a single server does not automatically
address the issue of starvation of clients with a slow connection. Nor is a round-robin “speaking slot”
approach a satisfactory solution (even assuming universal time), as it would severely impact responsiveness;
especially for larger groups. It’s also not just responsiveness that suffers from a reduction of the rate at
which parties can send new packets to the group. The quality of the security of a session (e.g. the speed
with which privacy is recovered after a group member’s local state is leaked) is also tightly dependent on the
rate at which participants can send out packets. After all, if a compromised party has not even been able to
send anything new to the group since a compromise, they have no way to update the leaked cryptographic
material to something the adversary cannot simply derive itself.

Concurrency At A High Price. To mitigate this problem the MLS messaging protocol introduced a
new syntax referred to as the “propose-and-commit” (P&C) paradigm. Since then it was adopted by most
second generation CGKA protocols [3, 5] as it allows for some degree of concurrency. In particular, group
members (and even designated external parties) may concurrently propose changes to the group state e.g.
“Alice proposes adding Bob”, “Charlie proposes updating his keys”, etc. At any point a group member can
collect such proposal into a commit message which is broadcast to the group and actually affects all changes
in the referenced proposals. Note, however, that the commit messages still must be processed in a globally
unique order. Moreover, in each of these protocols there is a high price being paid for large amounts of
concurrency. Namely, the greater the number of proposals in a single commit message, the less efficient (e.g.
greater packet size) certain future commits will be. In fact, efficiency can degenerate to the point where
(starting from an arbitrary group state) a commit to Θ(n) proposals can produce a state where the next
commit packet is forced to have size Ω(n); a far cry from the desired O(log(n)).

Lower-Bounds on Communication Complexity. Bienstock et al. [9] showed that there are limits to
what we could hope for in terms of reducing communication complexity. Specifically, they show that T group
members updating concurrently incurs a communication cost per user in the following round that is linear
in T in any “reasonable” protocol.4 In fact, if all n parties wish to update concurrently within 2 rounds then
this has complexity at least Ω(n2).

1.1 Our Contributions

In this paper we propose a new CGKA protocol called CoCoA (for COncurrent COntinuous group key
Agreement) which is designed specifically to allow for efficient concurrent group operations. In contrast to
past CGKA protocols, update operations may require more than 2 rounds (in the worst case log(n) rounds).
However, even when all n users update their keys concurrently in log(n) rounds, the total communication
complexity of any user is only roughly (log(n))2 (constant size) ciphertexts. This circumvents [9] as their
lower-bound only holds for updates that complete in at most 2 rounds. So, for the price of more interaction
CoCoA can greatly decrease the actual bandwidth consumed.

To emphasize this even more, consider the cost of transitioning from a fully blanked tree to a fully
unblanked one. We believe this to be a particularly interesting case as it captures the transition from any
freshly created group into a bandwidth-optimal one. The faster/cheaper this transition can be completed, the
faster an execution can begin optimal complexity behaviour. TreeKEM [7], the CGKA scheme used in the
MLS messaging protocol, needs n/2 rounds with receiver complexity, i.e. number of ciphertexts downloaded
per user, Ω(n log(n)). The protocol in [9], in turn, would be able to unblank the whole tree in 2 rounds with
linear sender and recipient communication per user. In contrast, in CoCoA the tree could be unblanked
in 1 round with linear sender cost, but only logarithmic recipient cost. For big groups this difference is very
significant.

4For the lower bound, [9] considered a symbolic model of execution, which only applies to protocols constructed by using
“practical” primitives combined in a “standard” way. For definitions of what “practical” and “standard” mean in this context
we refer to [9], but we remark, that our protocol and the TreeKEM variants considered in this work fall into this category.
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With such low communication, a user cannot learn all the 2n − 1 fresh public-keys in the distributed
group state (usually called “ratchet-tree” or “key-tree”). Fortunately, for CoCoA, users only need to know
the log(n) secret keys and another 2 log(n) public keys. So in our protocol, users will not have a complete
view of the public state as in previous protocols, but only know the partial state that is relevant to them. As
a consequence, the server no longer acts as a relay but instead computes packets tailored to the individual
receiving user. This comes with a new challenge that we address in this work: ensuring consistency across
all users is not as straightforward anymore. This is crucial for security, since users disagreeing e.g. on the
set of group members can lead to severe attacks.

Once we take into account operations like adding and removing group members, efficiency might degrade
(though not to anything worse than past protocols). Nevertheless, in a typical execution we can expect to
see far more updates than adds/removes. In particular, the more updates parties perform the faster the
protocol heals from past compromises so it is generally in users’ interest to perform updates as regularly as
they can. By (greatly) reducing the cost of updates compared to past CGKA protocols, we allow groups to
have quantitatively better security for the same amount of communication complexity spent.

In terms of security, we prove CoCoA secure in an “partially active setting”. A bit more precisely, the
adaptive adversary can (repeatedly) leak parties local states including any random coins they use and query
users to generate protocol messages. As the sever is untrusted, the adversary is allowed to send arbitrary
(potentially malformed) server messages and deviate from the server specification. However, as users sign
their protocol messages and the adversary does not get access to signing keys, it is not able to generate such
messages by itself. While the latter is a strong assumption, it is common for such protocols. We discuss this
in more detail in Section 5. Note that [23] uses the term partially active to refer to security against weaker
adversaries that have control of the delivery server, but are not allowed to send arbitrary messages.

Signature Keys. One caveat to the above discussion are signature keys. Apart from the aforementioned
public and secret keys, each group member must know the signature verification key of each other group
member (as these are used to authenticate packets, amongst other things). In principle, this means that just
distributing n new signature key pairs (as part of n parties updating) already imposes Ω(n) communication
complexity for each group member (regardless of how many rounds are used or even of concurrency).

However, in practice, there are several mitigating aspects to this problem. As was observed already during
the design of MLS, in some real-world deployments of CGKAs fresh signature keys may be much harder to
come by than simply locally generating new ephemeral key material. That is because each new signature key
is typically bound to some external identity (like an account name) via some generic “authenticator” and this
binding may be an expensive and slow process. E.g. a certificate that must be obtained manually from a CA.
For this reason CoCoA (like MLS) explicitly permits lite updates; that is, updates which refresh all secret key
material of the sender except for their signature keys. While lite updates are clearly not ideal from a security
perspective, they do allow for frequently refreshing the remaining key material without being bogged down
by the cost of certifying fresh signature keys. Moreover, CoCoA (like MLS) derives authenticity of packets
not just from signatures but also by requiring senders to, effectively, prove knowledge of the previous epoch’s
group key. Thus, leaking a group members’ signing keys does not automatically confer the ability to forge
on their behalf. Indeed, if the victims all perform a lite update, a fresh epoch is initiated with a secure group
key.

1.2 Related Work

The study of CGKA based protocols (in particular, with the explicit goal of PCS) was initiated by the
ART protocol [14], based on which the first version of MLS [6] was built shortly before transitioning to
TreeKEM [7]. TreeKEM has since been the subject of several security analysis including [1, 2, 11, 11, 8, 15].
More generally, the study of CGKAs has, roughly speaking, focused on several topics: stronger security
definitions, more efficient constructions, better support for concurrency and new security properties.
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Concurrent CGKA. Several works have studied CGKA’s supporting varying degrees of concurrent op-
erations. Weidner’s Causal TreeKEM [24] explores the idea of updates re-randomizing key material instead
of overwriting it (though it lacks forward secrecy and a complete security proof). Recently, [28] proposed
a decentralized CGKA protocol; albeit with linear communication complexity. Finally, a paper by Bien-
stock et al. [9] studies the trade-off between PCS, concurrency and communication complexity, showing a
lower bound for the latter and proposing a close to optimal protocol in their synchronous model for a fixed
group in a weak security model (see Section 4).

CGKA Security Notions Protocols. Broadly speaking, there are at least three approaches to defining
basic security properties for CGKA (e.g. confidentiality, authenticity and group agreement).

A similar security model to the one in our paper can be found in [23]. That work was the first to require
security against an adaptive adversary (and also introduced the basic GSD proof technique used in most
subsequent security proofs for adaptively secure CGKA.) They use their model to analyze Tainted TreeKEM
which exhibits a different efficiency profile than TreeKEM that can prove advantageous in some common
settings.

The security model of [1] is weak but incomparable to our model. Their adversaries must deliver all
packets in the same order to all parties (though not at the same time or even at all) and they do not learn
the coins of corrupt parties. On the other hand, the adversary may modify and even inject new packets;
albeit only if honest parties would reject the resulting adversarial packet. They use the model to analyze the
security of RTreeKEM which enjoys greatly improved forward secrecy (and PCFS) relative to other CGKAs
(with the exeception of the ones in [3]).

A different approach to security notions was initiated in [2] where the history graph technique was
introduced to describe the semantics of any given CGKA executions. They also provided the first black-
box construction of secure group messaging from CGKA (and other primitives). Their game based notion
still placed some restriction on when an active adversary could inject new packets. But it soon inspired
the ideal/real CGKA security notion in [3] which presented the first ideal functionality for CGKA. Their
notion captures security against powerful adaptive and fully active adversaries (i.e. they can deliver arbitrary
packets without any restrictions) that can corrupt parties at will and even set their random coins. They
used their notion to capture the security of a pair of CGKA protocols they described; in particular, showing
them to satisfy maybe the strongest versions of the basic CGKA security properties of any existing protocols
to date; albeit at the cost of quite impractical efficiency. Finally, building on that work, [5] extend their
adversaries to also account for how corrupt insiders might interact with a (very weak) PKI. The resulting
notion is called insider security. That work analyzes the insider security guaranteed by TreeKEM. The
formal notion was later adapted in [19, 4] to capture essentially the same intuition but for the server-aided
CGKA setting.

A third approach to defining adaptive and active security is taken in [8] who use an “event driven”
language to define adaptive security a CGKA. E.g. authenticity is captured by roughly stating that if Alice
believes a packet came from Bob then this must be preceded by an event where Bob sends such a packet.
However, their adversaries are closer to those of [3] than the full insider adversaries of [5] as they can not
interfere with the PKI. In [8], TreeKEM (Draft 7) along with 4 variants are analyzed.

Other Security Properties. The notion of server-aided CGKA was first formalized in [4]. They intro-
duced the SAIK protocol which reduces receiver communication costs by as much as 1000 fold in groups
of size 10, 000. However, the earlier work of [16] and the concurrent work of [19] both include (implicit)
server-aided CGKAs as well.

The work of [22] initiated the study of post-quantum primitives for CGKA by building primitives designed
for use in TreeKEM (and similar CGKAs). However, it turned out that their security notion was lacking
(e.g. it seems to not allow for adaptive security of the resulting CGKA) so in a follow up paper [19] a new
(more secure) PQ primitive is proposed along with a novel server-aided CGKA (proven secure in the classic
model) designed to reduce receiver communication cost.

Cremers et al. compared the PCS properties in the multi-group setting of MLS to the Signal group
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protocol [15]. In [3] zero-knowledge proofs are used to improve the robustness of CGKA protocols. The
approach was made a bit more practical in [16] by, amongst other things, introducing tailor-made ZK proofs.
Very recently, [18] initiated the study of membership privacy for CGKAs.

Group Key Exchange. A closely related family of protocols to CGKA are the older Group Key Exchange
(GKE) protocols which allow a fixed group of users to derive a common key. These can be traced to early
publications like [21, 12]. In contrast to CGKA, GKE protocols do not target PCS and are designed for the
synchronous setting. That is, they are highly interactive e.g. requiring all parties to contribute to any one
operation via interactive rounds. Initial GKE results were followed by a long list of works exploring additional
features; notably, supporting changes to group membership mid-session (aka. Dynamic GKE) [10, 17].
Another notion very related to CGKA are Logical Key Hierarchies [27, 29, 13]. Introduced as a solution
to very related primitive of Multicast Encryption [25]. They allow a changing group of users to maintain a
common key with the help of a trusted group manager.

2 Preliminaries

2.1 Continuous Group-key Agreement

To begin with, we define the notion of continuous group-key agreement (CGKA). Parties participating in
the execution of a CGKA protocol will maintain a local state γ, allowing them to keep track of a common
ratchet tree, to derive a shared secret. Parties will be able to add and remove users to the execution, and to
rotate the keys along sections of the tree, thus achieving FS and PCS. Our definition is similar to that of [23],
with the main difference that operations do not need to be confirmed individually by the server. Instead,
the stateful server works in rounds, collects operations into batches and sends them out at the end of each
round (note that setting the batch size equal to 1 would just return the definition from [23]). Accordingly,
a party issuing an operation will no longer be able to pre-compute its new state should the operation be
confirmed.

Definition 1 (Asynchronous Continuous Group-key Agreement). An asynchronous continuous group-key
agreement (CGKA) scheme is an 8-tuple of algorithms CGKA = (CGKA.Gen,CGKA.Init,CGKA.Add,CGKA.Rem,
CGKA.Upd,CGKA.Dlv,CGKA.Proc,CGKA.Key) with the following syntax and semantics:

Key Generation: Fresh InitKey pairs ((pk, sk), (ssk, svk))← CGKA.Gen(1λ) consist of a pair of public key
encryption keys and a pair of digital signing keys. They are generated by users prior to joining a group,
where λ denotes the security parameter. Public keys are used to invite parties to join a group.

Initialize a Group: Let G = (ID1, . . . , IDn). For i ∈ [2, n] let pki be an InitKey PK of party IDi. Party
ID1 creates a new group with membership G by running:

(γ, [W2, . . . ,Wn])← CGKA.Init (G, [pk1, . . . , pkn] , [svk1, . . . , svkn] , sk1)

and sending welcome message Wi for party IDi to the server. Finally, ID1 stores its local state γ for
later use.

Adding a Member: A group member with local state γ can add party ID to the group by running (γ,W, T )←
CGKA.Add(γ, ID, pk, svk) and sending welcome message W for party ID and the add message T for all
group members (including ID) to the server.

Removing a Member: A group member with local state γ can remove group member ID by running (γ, T )←
CGKA.Rem(γ, ID) and sending the remove message T for all group members (ID) to the server.

Update: A group member with local state γ can perform an update by running (γ, T )← CGKA.Upd(γ) and
sending the update message T to the server.
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Collect and Deliver: The delivery server, upon receiving a set of CGKA protocol messages T = (T1, . . . ,
Tk) (including welcome messages) generated by a set of parties, sends out a round message (γser, (M1,
. . . ,Mn)) = CGKA.Dlv(γser, T ), where Mi is the message for user i and γser is the server’s internal
state. Each Mi contains a counter ci indicating whether Mi includes an update message generated by
user i, and which one of the potentially several they might have generated.

Process: Upon receiving an incoming CGKA message Mi, a party immediately processes it by running
γ ← CGKA.Proc(γ,Mi).

Get Group Key: At any point a party can extract the current group key K from its local state γ by running
K ← CGKA.Key(γ).

2.2 Ratchet Trees

Our protocol builds on TreeKEM, and thus uses the same underlying structure of a ratchet tree for deriving
shared secrets among the group members. A ratchet tree is a directed binary tree T = (VT, ET), with edges
pointing towards the root node vroot

5 and each user in the group associated to a leaf. We will use the
notation Ti = (V i

T, E
i
T) to refer to the ratchet tree associated to round i.

Tree structure. Given a node v, we will denote its child by child(v), its left and right parents respectively
as lparent(v), rparent(v), and will write parents(v) = (lparent(v), rparent(v)). Given a leaf node, we denote
its path to the root as path(v) = (v0 = v, v1, . . . , vk = vroot), where vi = child(vi−1). Similarly, we denote
its co-path as co-path(v) = (v′1, . . . , v

′
k), where v′i is the parent of vi not in path(v). We will often just refer

to such a (co-)path as v’s (co-)path. For a user ID we will denote its associated leaf node by leaf(ID), and
accordingly sometimes refer to leaf(ID)’s (co-)path as just ID’s (co-)path or (co-path(ID)) path(ID). Given
two leaves l, l′, let Int(l, l′) be their least common descendant, i.e. the first node where their paths intersect.
For a node v ∈ T, we set v.isLeaf := true if v is a leaf of T, and v.isLeaf := false otherwise.

Node states. Each node v has an associated node state γ(v). Sometimes during the protocol execution
nodes can be marked as blank, meaning that their state is empty. Blank nodes become unblanked if their
state is repopulated at a later point in time.

The non-blank node state contains: a PKE key-pair (γ(v).sk, γ(v).pk), sometimes written as (skv, pkv)
for simplicity; a vector of public keys PKpr called the predecessor keys which correspond to the public keys
of the nodes in the resolution of v (defined below) in the round right before the current key pkv was first
introduced, see Section 3.4; a pair of hash values hv called the parent hash of v; an identifier corresponding to
the party IDv generating the node’s key pair; a signature σv under the private signing key of IDv; a transcript
hash value, Htrans, committing to the state of IDv at the time of sampling that node’s key pair (defined below
in Section 3.3); a confirmation tag value confTag (defined below in Section 3.4); an optional pair of hash
values ov = (ov,1, ov,2) corresponding to partial openings of a Merkle commitment sent by the server and
encoding the state of the parent nodes of v; and a set of of so called unmerged leaves γ(v).Unmerged, or simply
Unmerged(v), corresponding to the leaves (and their associated public keys) of the subtree rooted at v whose
users have no knowledge of skv (this will be the case, temporarily, for newly added users). In a slight abuse of
notation, given a set of nodes S, we define its set of unmerged nodes to be Unmerged(S) = ∪v∈SUnmerged(v).
Finally, the state of leaves l additionally contains a signing and verification key-pair (sskl, svkl) corresponding
to the user IDl associated to that leaf. For an internal node v, we will write sskv to refer to the secret signing
key of party IDv. For a summary of node states see Table 1.

The secret part of γ(v) consists of skv, and sskv in case v is a leaf. In turn, the public part, pγ(v), of
γ(v) consists of γ(v) minus the secret part. While the public part of nodes’ states can be accessed by all
users, users should only have partial knowledge of the secret parts. Indeed, the protocol ensures that the

5The non standard direction of the edges here captures that knowledge of (the secret key associated to) the source node
implies knowledge of (the secret key associated to) the sink node. Note that nodes therefore have one child and two parents.
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(γ(v).sk = skv, γ(v).pk = pkv) The node’s key-pair
(sskl, svkl) Signing key-pair (Only present if v is a leaf)
PKpr vector of predecessor keys
hv = (hv,1, hv,2) Parent hash value
IDv Identifier of party setting v’s key
σv Signature under IDv’s key
Htrans,v Transcript hash
confTagv Confirmation tag
ov = (ov,1, ov,2) Pair of partial Merkle commitment openings
γ(v).Unmerged = Unmerged(v) Set of unmerged leaves keys

Table 1: State γ(v) of non-blank node v.

secret part of γ(v) is known only by users whose leaf is in the sub-tree rooted at v; this is known as the tree
invariant.

Looking ahead, parties might end up (through a misbehaving delivery server) having different views on
the state of a given node, and so we will refer to the view of party IDi of v at round n as γn

i (v).

Resolution and effective parents. The set of blank and non-blank nodes in a ratchet tree gives rise to
the resolution of a node v. Intuitively, it is the minimal set S of non-blank nodes such that for each ancestor
v′ of v the set S contains at least one node on the path from v′ to v. Formally, it is defined as follows.

Definition 2. Let T be a tree with vertex set VT. The resolution Res(v) ⊂ VT of v ∈ VT is defined as follows:

� If v is not blank, then Res(v) = {v}.

� If v is a blank leaf, then Res(v) = ∅.

� Otherwise, Res(v) = ∪v′∈parents(v)Res(v
′)

In a slight abuse of notation, given a set of nodes V , we define the resolution of V to be Res(V ) =⋃
v∈V Res(v).

Re-keying. Users will often need to sample new keys along their leaves’ paths. This is done following the
MLS specification, through the hierarchical derivation captured in the algorithm Re-key(v) (Algorithm 1).
Given a leaf v, it outputs a list of seeds and key-pairs for nodes along v’s path. We use ∆root or the expression
root seed to refer to the seed associated to vroot. The algorithm will use two independent hash functions H1

and H2. These can be easily defined by taking a hash function H, fixing two different tags x1 and x2 and
defining Hi(·) = H(·, xi).

3 The CoCoA Protocol

We start with a high level description of the CoCoA protocol in Section 3.1. Section 3.2 covers users’ states
and the key schedule, Section 3.3 robustness and the round hash, Section 3.4 the parent hash mechanism,
and Section 3.5 formally defines the protocol procedures.

3.1 Overview

Concurrent updates in CGKA. To recover from compromise, CGKA protocols allow users to refresh
the secret key material known to them. Broadly, a user does this by re-sampling all keys they know (those
on the user’s path in the case of a ratchet tree), encoding them in an update message, and sending this to
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Algorithm 1: Re-key computes new seeds and keys along a path.

Input: A leaf node v in a tree T of depth d.
Output: A vector of hierarchically derived seeds, and another vector of corresponding keys for all

nodes in v’s path to the root.

1 ∆1
$← S(λ) // λ security parameter; S(λ) seed space

2 (sk1, pk1)← PKE.Gen(H2(∆1))
3 for i← 2 to d do
4 ∆i = H1(∆i−1)
5 (ski, pki)← PKE.Gen(H2(∆i))

6 ∆← (∆1, . . . ,∆d)
7 K← ((sk1, pk1), . . . , (skd, pkd)) return (∆,K)

the server, which broadcasts it to the other group members. However, it is unclear how to handle concurrent
update attempts by several users.

As a first approach, it seems natural to simply reject all but one update. Using a fixed rule to determine
whose update to implement, however, might lead to starvation, with users blocked from updating and thus
not recovering from compromise (compare Fig. 1, column (a)). Even if parties that did not update for the
longest time are prioritized, it may take a linear number of update attempts to fully recover security of the
ratchet tree (compare Fig. 1, column (b)).

To amend this issue the MLS protocol introduced the “propose and commit” paradigm. Roughly, update
proposals refresh a user’s leaf key and signal the intent to perform an update. A commit then allows a user
to implement several concurrent update proposals. While this allows the ratchet tree to fully recover within
two rounds, this comes at the cost of destroying the binary structure of the tree, as, in order to preserve the
tree invariant, nodes not on the path of the committing party are blanked. In the worst case, this can lead
to future updates having a size linear in the number of parties (compare Fig. 1, column (c)).

The approach we take with the CoCoA protocol is to implement all updates simultaneously, albeit some
of them only partially. Intuitively, while the ratchet tree might not fully recover immediately, every updating
party still makes progress towards recovery; and after logarithmically many updates of every compromised
user, security is restored (compare Fig. 1, column (d)).

Updates in the CoCoA protocol. The main idea in the CoCoA protocol is, given several concurrent
update messages, to apply all of them simultaneously, while resolving conflicts by means of an ordering of the
operations. As a consequence, some updates might only be applied partially. More precisely, the protocol
parameters contain an ordering ≺. This could be, e.g. the lexicographic ordering, however, the particular
choice does not affect our security results. Then, given a set of update messages {U1, . . . , Uk}, if a node in
the ratchet tree would be affected by several Ui, the one that is minimal with respect to ≺ takes precedence
and replaces its key pair. Consider the example of Fig. 2, in which the users A,C,G in a group of size 8
concurrently update, with C’s update taking precedence over the other two. Note that since the updates
are concurrent, new keys get encrypted to keys of the previous round. Assume, e.g., that C and G were
compromised. Then, after the updates, all compromised keys are replaced. However, only the first three
keys in C’s and G’s update paths are secure, while the new ∆root was encrypted to an old, compromised
key and hence is known to the adversary. So, while the ratchet tree did not fully recover, it made progress
towards it. In Section 5 we discuss the security of CoCoA in more detail.

Adds and Removes. To be able to add users to and remove users from the group, CoCoA combines
features from different versions of TreeKEM, together with a new rule for the server to handle concurrent
operations. In general, it follows the approach of TreeKEM v7 in that it does not distinguish between
Proposals and Commits. However, add operations are handled in a way reminiscent of the latter technique,
as they are executed in two rounds: a first round where they get announced to the rest of group members,
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(a) ND TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...

Update 7

Update 8

(b) ID TreeKEM v7

Update 1

Update 2

Update 3

Update 4

...

Update 7

Update 8

(c) TreeKEM v11 (P&C)

Propose

Commit

(d) CoCoA

Update 1

Update 2

Update 3

Update 4

Figure 1: Comparison of number of rounds required to recover from corruption for different TreeKEM
variants, ND stands for ”Näıve Delivery”, ID for ”Ideal Delivery”. Red nodes indicate key material known
to the adversary. In each round all parties (try to) update. In columns (a) and (d) update requests are
prioritized from left to right. In column (b) update requests are prioritized from left to right among all parties
that did not update yet. In column (c) all parties propose an update, then the leftmost party commits.
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A B C D E F G H

Figure 2: Example; concurrent updates in the CoCoA protocol. The former state of the ratchet tree (black)
is changed by concurrent updates of A (blue), C (green), and G (red). The ordering is UC ≺ UA ≺ UG. In
the updates solid edges correspond to seeds obtained by hashing, dashed edges to encryptions.

and a second where the parties actually join the group, after receiving a welcome message. We stress that add
operations taking two rounds seems to be an inherent consequence of allowing concurrency: an updating
user cannot compute encryptions for a user added to the group in the same round by a different party.
Moreover, adds are executed following the unmerged leaves technique, introduced in TreeKEM v9, which
can be thought of as initially connecting a new user’s leaf directly to vroot and progressively connecting it
to lower nodes as the keys for these get rotated. As in MLS, it is assumed that parties have a public (list
of) key(s) available to all other users, termed init keys, which can be used to add them to groups.

Removes can also be seen as a two-round process, as the removal of a party will cause vroot to get blanked,
and an extra round will be needed to create a new group key - this is the same dynamic already existing in
TreeKEM versions up to v7. Note that while this does not apply to later versions, these do need two rounds:
one for the removal to be proposed, and another for it to be committed.

Note that concurrent operations could be conflicting: consider the case of two parties removing each
other, a removed party adding a new one, or a removed party updating. Thus, special care needs to be taken
in how to handle these conflicts. We refer the reader to Section 3.5 for more details.

Saving on communication complexity. A consequence of allowing concurrent operations is that arbi-
trarily many keys can change in a given round (even all the keys in the tree if all parties decide to update).
In previous protocols, like MLS, every user stores a complete copy of the current ratchet tree. Sticking to
this principle while allowing concurrent updates would imply that the communication cost of a round could
be linear, as a party would have to download all new public keys in the tree. To avoid this, in the CoCoA
protocol users only keep track of the state of nodes that are relevant to them when issuing an operation:
those in their path and in the resolution of nodes in their co-path, since the latter will be the ones they need
to encrypt to when sending an Update. As an important consequence, the server no longer only acts as a
relay server broadcasting the same message to all users. Instead, given a set of Update, Add, and Remove
operations, it prepares an individual packet for every user. We discuss the efficiency benefits of this approach
in more detail in Section 4.6

Authenticity. Naturally, protocol messages have to be authenticated in any real-world deployment. In
the MLS protocol, all users keep track of signature verification keys of the other users, and sign the Update,
Add, and Remove messages that they generate. As these messages are no longer simply forwarded by the
server, in the CoCoA protocol users sign every component of the message separately. Removes and Adds
(and therefore Initialization messages) consist of a single block of information that everyone needs to receive,
so a single signature suffices. In case of an Update, on the other hand, every ciphertext, and public key needs

6One could also imagine a variant of CoCoA that sticks closer to the principles of TreeKEM v11, by having the server
forward complete update messages. While in this case t concurrently updating users would lead to a recipient complexity of
t · log(n), the protocol would still allow for concurrent updates that preserve the binary structure of the ratchet tree and thus
outperform TreeKEM v11 for certain sequences of operations at the cost of slower healing.
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to be signed individually. However, this increase in computational cost and size of sender packets allows us
to greatly decrease recipient packets in the way discussed above.

Robustness. An important property CGKA protocols aim for is robustness: ensuring that parties have
consistent views of the tree. TreeKEM achieves what [5] refers to as weak robustness: all honest parties
accepting some message M (potentially generated adversarially) will transition to compatible states.7

To capture the CoCoA protocol, the definition of weak robustness needs to be slightly adapted: parties
now receive different personalized packages as opposed to a unique one that gets broadcast to everyone, and
do not have access to the complete ratchet tree. Accordingly, we require that if two parties receive and
accept messages Mi and Mj satisfying a certain relation, they will transition into consistent states (where
malformed messages not satisfying this relationship will immediately force users into inconsistent states).
TreeKEM achieves weak robustness through a value called confirmation tag [5]. This consists of a MAC of
the entire CGKA transcript (encoded in a running hash, called the transcript hash) up to and including that
epoch, which is sent together with every Commit message. The MAC key, a.k.a. the confirmation key, is
derived from the new epoch key schedule, which ensures correct processing of the commit message and also
that the sender had knowledge of the previous epoch’s key schedule. To ensure consistency, users compute
the transcript hash locally and verify the MAC. There are two issues when attempting to apply this to our
scheme: 1) a user issuing an operation at a given round n will not have knowledge of the operations taking
place concurrently, and thus will not be able to pre-compute the resulting transcript hash at the moment of
crafting their message. And 2), since users only have a partial view of the ratchet tree, they are not able to
compute the transcript hash. Note that users need to ensure they received consistent sets of operations, as
e.g. in Figure 2, if C is not sent A’s partial update, they will disagree on the key for node Int(A,B) after
processing.

We solve 1) by effectively only authenticating the transcript up to the last round, i.e. not including the
current operations. This ensures that if ID accepts a packet, it comes from a user whom they agreed with up
until the beginning of that round. We solve 2) by what we call a round hash: a hash value computed over
the public part of the new state of the ratchet tree (and any add and remove operations applied concurrently
in that round). Clearly, none of the users can compute this hash value from their local state, so we shift this
computation to the delivery server, who sends the round hash value to every party. However, the delivery
server might act maliciously, and hence we need to ensure that the users can verify this computation. We do
this by letting the round hash be a Merkle commitment to the current state. Users then expect the server
to provide the openings of the commitment necessary to verify that it matches their partial view of the tree,
which ensures consistency. See Section 3.3 for details.

Parent hash. TreeKEM aims for further security through two different mechanisms, mainly targeted at
allowing new group members to verify the legitimacy of the received information. Informally, the first one,
parent hashing, provides newly added users with the guarantee that the ratchet tree was well formed, i.e.,
that it resulted from a legitimate execution of the protocol. The second, tree hashing, consists of a locally-
computed hash commitment to the whole ratchet tree, which the new users can verify upon joining. Our
round hash can be seen as subsuming it, just with the difference that it can no longer be computed locally.

We adapt the parent hash construction from TreeKEM into our protocol, with some modifications. While
TreeKEM relies on parent hash to ensure new users can verify the tree received when joining a group, we
also use it to verify any new keys sent by the server to current users. This is needed since, as a result of
blanks, the set of nodes whose states users need to keep track of varies.

3.2 Users’ states and the Key Schedule

Each user keeps track solely of the state of nodes on either their path or the resolution of their co-path; we
define P(ID) = path(ID) ∪ Res(co-path(ID)) to be the set comprising exactly those nodes. More in detail,

7We mention in passing that [5] also defines a notion of strong robustness, seemingly hard to achieve using practically efficient
protocols, so we do not discuss it further.
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γ.ID An identifier for the party.
γ.G The set of current members of the group.
γ.ssk The party’s signing key
γ(v) Node state for every v ∈ P(γ.ID), only public part for v ∈ Res(co-path(γ.ID)).
γ.Htrans Current value of the transcript hash.
γ.appSecret Current round’s application secret.
γ.confKey Current round’s confirmation key.
γ.initSec Current round’s initialization secret.
γ′ Pending state encoding operations not yet confirmed.

Table 2: User’s local state γ.

each user stores a local state γ, described in Table 2, which gets updated after every round message. We
will write γn to refer to a state corresponding to round n.

Key schedule. CoCoA’s key schedule for round n is defined via hash function H5 as follows:

γ.epochSecret(n) = H5(γ.initSec(n− 1) ||∆root(n) || Htrans(n))

γ.appSecret(n) = H5(γ.epochSecret(n) || ’appsecret’ )

γ.confKey(n) = H5(γ.epochSecret(n) || ’confirm’ )

γ.initSec(n) = H5(γ.epochSecret(n) || ’init’ )

The epoch secret γ.epochSecret(n) is used to derive all other keys from it; the application secret γ.appSecret(n)
serves as the group key in epoch n and is to be used in higher level protocols, e.g. secure group messaging;
the confirmation key γ.confKey(n) will be used to authenticate next epoch’s protocol messages through a
MAC termed the confirmation tag;8 and the initialization secret γ.initSec(n) seeds next round’s key schedule,
tying it to the current one. Finally, the transcript hash Htrans(n) encodes the transcript of the execution
up until round n - it is defined in the following section.

3.3 Robustness, Round Hash, and Transcript Hash

In this section we discuss CoCoA’s robustness. We show that two parties accepting messages containing the
same round hash value, will transition into consistent states. We start by defining the concept of a round
hash and consistent states.

In the following we assume a fixed rule, that can be locally computed by the users on input a ratchet
tree T and a set of operations that determines a total ordering of said operations. This ordering ensures all
users will compute the same round hash and also, when applied to adds Ai, determines the free leaf that the
user added by Ai is assigned to.

Definition 3. Let H3 be a hash function, and n a round with associated protocol messages T = (U,R,A) =
((U1, . . . , Uk), (R1, . . . , Rl), (A1, . . . , Am)), where the Ui correspond to Update messages; and the Ri and Ai

correspond to the packets, as sent by their issuers, of any remove and add operation, respectively; and let each
vector U,R,A be ordered with respect to the ordering ≺. Let Tn be the ratchet tree resulting from applying
the operations in T with respect to ≺ to Tn−1, and pγ(v) the public state of v in Tn (note that pγ(v) = blank

if the node is to be blanked as a result of some removal in R). We define the map ℓ taking nodes in Tn to
labels as follows:

ℓ(v) =

{
H3(pγ(v)), if v is a leaf.

H3(ℓ(lparent(v)), ℓ(rparent(v)), pγ(v)), if v is an internal node.

8This MAC, also present in TreeKEM, is there to mitigate active attacks. The latter are not reflected in our security model,
but we chose to keep it, as it is the main security mechanism in response to a leaking of signature keys.
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The round hash Hround(n) of n is defined to be

Hround(n) = H3 (ℓ(vroot), R,A) .

In short, the round hash is essentially a Merkle commitment to the ratchet tree’s public keys and the
round’s dynamic operations. The benefit of this approach is that every user can verify that the round hash
sent by the server faithfully encodes the operations affecting their local state, by just receiving at most a
logarithmic number of values irrespective of the number of updates (note that a user will necessarily need
to hear about all dynamic operations). In particular, a user ID receiving the appropriate group operations
should have access to the inputs corresponding to dynamic operations, and to the new keys of nodes in P(ID).
The server does this by sending the user Hround(n), as well as the output of openRH(Algorithm 2), which,
on input a user ID, returns a vector of hash values, corresponding to the labels of nodes not in P(ID), but
that are parents of a node in P(ID). Given these values, the user is able to verify the received round message
by running verifyRH(Algorithm 3), which recomputes Hround(n) with respect to their updated ratchet tree
and compares it to the round hash provided by the server. In order to formally define the above algorithms,
we make use of the following helper functions:

� extract on input a round message M and a state γ, outputs a list of updates (U1, . . . , Up), removes
(R1, . . . , Rq), and adds (A1, . . . , As), a list of indices i corresponding to the leaves users added by the
Ai are assigned to, and a round hash value h.

� update-info on input vectors U,R,A of update, remove and add operations, ordering ≺, a state γ
corresponding to ID and a node v ∈ P(ID), outputs a node public state pγv corresponding to the public
state of v resulting from applying the input operations with respect to ≺ and state γ (pγv = blank if
v is blanked as a result of some Ri); and, if v is a leaf node, additionally, outputs the identifier ID∗

corresponding to v after applying the operations as above.

� retrieve-labels on input a local state γ, a node v and a vector O of tuples of the form (vi, h, h
′), outputs

vector (v, hl, hr) if there is a unique vector in O with vi = v, where hl = h and hr = h′, and ⊥
otherwise.

� tree on input a set of nodes V outputs the smallest subtree of T which contains V .

� depth on input a local state γ and a node v, outputs the depth of v, as defined by the length of the
path from v to vroot in tree(P(γ.ID)).

Algorithm 2: openRH

Input: User ID and labeled ratchet tree Tℓ

Output: A vector O of nodes and hash values.
1 O := ()
2 for v ∈ Res(co-path(ID)) do
3 if v.isLeaf = false then
4 O ← O ∪ (v, ℓ(lparent(v)), ℓ(rparent(v)))

5 return O

Correctness of Algorithm 3 follows by inspection. The following lemma shows that we get the desired
robustness. Note that if two users process a round message containing different round hash values, they
will immediately be forced into inconsistent states, so we can just concern ourselves with the case where the
round hash values are the same.

The transcript hash is defined as Htrans(0) = 0, and, for subsequent rounds, given a verified round hash:

Htrans(n) = H3(Htrans(n− 1)||Hround(n)) .
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Algorithm 3: verifyRH

Input: Local state γ, round message M, and vector O of nodes and hash values
Output: b ∈ {0, 1}

1 (U,R,A, i, h)← extract(M, γ)
2 for d ∈ {depth(leaf(γ.ID)), . . . , 0} do
3 for v ∈ tree(P(γ.ID)) s.t. depth(v) = d do
4 if v.isLeaf = true then
5

pγv ← update-info(U,R,A,≺, γ, v)
6 ℓ(v) = H3(pγv)

7 else if v ∈ Res(co-path(ID)) then
8

pγv ← update-info(U,R,A,≺, γ, v)
9 (v, hl, hr)← retrieve-labels(O, γ, v)

10 ℓ(v) = H3(hl, hr,
pγv)

11 else
12

pγv ← update-info(U,R,A,≺, γ, v)
13 ℓ(v) = H3(ℓ(lparent(v)), ℓ(rparent(v)), pγv)

14 if h = H(ℓ(vroot), R,A, λ) then
15 b← 1

16 else
17 b← 0

18 return b

With this we can define what it means for parties to have consistent states, which informally requires
them to have consistent views of the tree (i.e. agree on the states of nodes on the intersection of their states),
and agree on the group key, group members, and group history, i.e. on the transcript hash.

Definition 4. Let ID and ID∗ be two group members with states γ and γ∗. They have consistent states
if pγ(v) = pγ∗(v) for all v ∈ P(ID) ∩ P(ID∗), γ.appSecret = γ∗.appSecret, and (γ.G, γ.Htrans) = (γ∗.G,
γ∗.Htrans).

Note that we only define consistency of states for users who have joined the group. More in detail, we say
that a user ID has (in their view) joined the group if there exists a query CGKA.Proc(ID, ·) in the execution,
where ID accepts the corresponding round message, i.e. where the state for ID changes (is initialized) as a
result of said query.

The following proposition shows that we get the desired robustness. Note that if two users process a
round message containing different round hash values, they will immediately be forced into inconsistent
states, so we can just concern ourselves with the case where the round hash values are the same.

Proposition 1. Let IDi and IDj be two group members with consistent local state after round n and let them
receive round messages Mi and Mj respectively, both containing the same round hash value h, and opening
vectors Oi and Oj. If verifyRH(γn

i ,Mi, Oi) = verifyRH(γn
j ,Mj , Oj) = 1, then they will have consistent states

after processing their respective round messages.

Proof. Assume for contradiction that the parties arrive to inconsistent states after processing their respective
messages, we will show that this implies a collision for H. Since we assumed them to start the round in a
consistent state, and the received round hash is the same, they will agree on the transcript hash. Similarly,
agreement on the group ID and round follows trivially from the agreement in the previous round. Thus,
disagreement over the group state must come from either membership or key material in the tree. First,
let (Uk, Rk, Ak,≺k, λk, h) ← extract(Mk, γk) for k ∈ {i, j} and denote by ℓk the map from nodes to labels
as derived by party IDk when running algorithm verifyRH. Define αk = (ℓk(vroot), Rk, Ak, λk). We know
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from verifyRH(γn
i ,Mi, Oi) = verifyRH(γn

j ,Mj , Oj) = 1 that H(αi) = H(αj). Now, if γn+1
i .G ̸= γn+1

j .G,
it follows that (Ri, Ai) ̸= (Rj , Aj), since γn

i .G = γn
j .G. In particular, this implies that αi ̸= αj , i.e. a

collision for H. Assume, therefore, that γn+1
i .G = γn+1

j .G and that there is v ∈ P(IDi) ∩ P(IDj) such that
pγn+1

i (v) ̸= pγn+1
j (v). If hi ̸= hj , a collision for H follows as before, so assume that hi = hj . Let u, u′ be the

left and right parents, respectively, of vroot. By definition, we have that hk = H(ℓk(u), ℓk(u′), pγn+1
k (vroot)).

If any of ℓi(u) ̸= ℓj(u), ℓi(u
′) ̸= ℓj(u

′) and pγn+1
i (vroot) ̸= pγn+1

j (vroot) hold, a collision for H follows.
Assume thus equality of the labels and public states, and assume w.l.o.g that v is on the left subtree, i.e. is
an ancestor of u. We know that ℓi(u) = ℓj(u), and that ℓk(u) = H(ℓk(w), ℓk(w′), pγn+1

k (u)), by definition,
where wk, w

′
k are the left and right parents of u. Thus, as before, either we have some inequality between the

corresponding values for i and j, from which a collision can be extracted, or the labels for the parents are the
same for both parties. We can repeat this process until arriving to v, for which we know pγn+1

i (v) ̸= pγn+1
j (v).

We will therefore eventually find a collision for H.
Therefore, an adversarial delivery server making IDi and IDj accept messages with a consistent round

hash value, which prompt them into inconsistent states would equivalently be able to derive a collision for
H. Since we assume H to be collision resistant, it follows that no such adversary exists.

The next proposition shows that, in fact, it is to consider the group keys or transcript hash values in
users states to determine if these are consistent.

Proposition 2. If H3 and H5 are modeled as random oracles then, with all-but-negligible probability, the
states γ and γ∗ of users ID and ID∗ are consistent if and only if CGKA.Key(γ) = CGKA.Key(γ∗). Equivalently,
if they have the same transcript hash value γ.Htrans = γ∗.Htrans.

Proof. The only if implication is clear by definition. Assume thus that CGKA.Key(γ) = CGKA.Key(γ∗). Since
the application secret in their states is the same, so must be Htrans, by collision resistance of H5. If the
states of the two parties differ in the group membership, then one of them must have processed some Add or
Remove operation the other has not. These operations are directly hashed into the appropriate round hash,
which itself gets hashed into Htrans. Thus, there must have been a collision in either H3 or H5. Finally, the
public states for all nodes in a user’s state get hashed by the user in order to compute the round hash. As
before, if any of the values in the states of nodes in the intersection of user’s states P(ID) ∩ P(ID∗) differs,
we can extract a collision for either H3 or H5. Hence, the states of the two users must be consistent.

Finally, to see that two users having the same transcript hash value implies them having the same
epoch secret CGKA.Key(γ), recall that γ.epochSecret(n) = H5(γ.initSec(n− 1) ||∆root(n) ||Htrans(n)), where
γ.initSec(n) = H5(γ.epochSecret(n)||’init’). Moreover, a user always checks that the secret key at any node v,
and in particular at vroot, is consistent with the public key set at that node. The former is derived from ∆v,
and the latter is input into the computation of the round hash, and therefore of Htrans. Thus, were the seeds
∆root(n) used by ID and ID∗ to compute their respective epochs secrets different, so would be their transcript
hash values, up to the negligible probability of collisions of PKE.Gen and the random oracle H2 (since, recall,
(ski, pki ← PKE.Gen(H2(∆i))). Last, suppose for contradiction that the initialization secrets are different
while their transcript hash values match. Since the γ.initSec are derived deterministically from γ.epochSecret,
if γ.initSec(n−1) ̸= γ.initSec∗(n−1), then we would have γ.epochSecret(n−2) ̸= γ.epochSecret∗(n−2). By the
collision resistance of the random oracle H3, Htrans(n) = Htrans

∗(n) implies Htrans(n−1) = Htrans
∗(n−1),

so we could apply the same argument, eventually reaching the first epoch where the last one of them joined,
i.e. to the first point in the execution where Htrans = Htrans

∗. If at this point one of the users, say w.l.o.g.
ID, was already a part of the group (i.e. this was not the value with which one of them initialized their state),
then ID∗ got both their γ.initSec∗ and Htrans

∗ from another party ID′, so we can repeat the argument with
respect to ID and ID′. If, instead, these values corresponded to those with which both of them initialized
their state, then by collision resistance, they must have been sent by different parties ID1 and ID2, for which
the same must be true: their transcript hash values match, but not their initialization secrets. Eventually,
since the number of users in the group is finite and there is a single initial user, the group creator, it must
be that these two users are the same or were added by the same party with respect to the same state (by
collision resistance of the random oracle H3), which is a contradiction.
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3.4 Parent Hash

Ratchet trees in TreeKEM contain so-called parent hashes, which were introduced to the standard in
TreeKEM v9, and analyzed and improved by Alwen et al. [5]. These ensure, on the one hand, that for
every node v ∈ T, whoever sampled skv had knowledge of the secret signing key for some leaf l of the subtree
rooted at v; and on the other, that at the moment this secret was generated it was not communicated to
any user whose leaf is not in this subtree. This protects against active attacks where a user is added to a
malformed group where the tree invariant is violated, potentially causing him to communicate to a set of
users different to the one he believes to be communicating to.

To adapt parent hash to CoCoA we have to overcome the two issues that (a), since parties update
concurrently, parent hash values can be defined with respect to keys on the copath that were overwritten by
a concurrent update, and (b), since the resolution of a user’s copath and in turn the corresponding public
keys that are known to the user may change from round to round, the user needs to be able to verify the
authenticity of such keys without having access to the state of leaves below it. We address the first issue by
having users store the public keys of one previous round: each node state γ(v) now contains an associated
list of predecessor keys, PKpr, containing the public keys corresponding to nodes in the resolution of v in the
epoch when the current key was sampled, and excluding those that where unmerged at child(v);9 i.e. if the
Update sampling pkv unblanked v, the predecessor keys will be a list, else it will just contain the previous
public key. The second issue we solve by not only signing the parent hash value of users’ leaves but by
introducing a signature at every node in their update path (that which is sent with the packet containing
the new public key when it is first announced). Last, to ensure consistency between users’ views, we add
two further values to the parent hash and node state: a commitment to the subtree under the node’s sibling
and a commitment to the whole ratchet tree. We now define more formally the slightly modified parent-hash
algorithm, compatible with our construction, with respect to signature scheme Sig.

As in TreeKEM, parent hash values of a node are updated whenever the key corresponding to the node
is updated. More in detail, let ID compute an Update U containing new keys for nodes along their path (see
full definition in Section 3.5), which get stored in pending state γ′. Parent hashing algorithm PHash.Sig on
input (ID, γ′) first fetches ID’s update path path(vID) = (v0 = vID, v1, . . . , vk = vroot). For i ∈ {0, . . . , k − 1}
let v′i denote the parent of vi+1 that is not part of path(vID), and let R = Res(v′i) \ Unmerged(vi+1). Then,
we define h1,k = h2,k = 0 , and using hash function H4, compute:

h1,i ← ℓ(v′i) for i ∈ (k − 1, . . . , 0)

h2,i ← H4(pkvi+1
,PKpr

vi+1
, h2,i+1, {pkv}v∈R) for i ∈ (k − 1, . . . , 0)

σi ← Sig.Sig
(
γ(ID).ssk, (pkvi ,PKpr

vi , (h1,i, h2,i),Htrans, confTag)
)

for i ∈ (0, . . . , k)

where ℓ(v) is the label of v as in Def. 3 above, PKpr
v ← 0 if v did not have a key before U , hi = (h1,i, h2,i).

Algorithm PHash.Sig then adds the values (H,Σ) = (h0, . . . , hk, σ0, . . . , σk) to U , substitutes the parent
hash values hi and signatures σi in γ′ by the newly computed ones, and returns U .

Verification. A user receiving a tree T from the server can verify its authenticity by running the algo-
rithm PHash.Ver(T ). This will be run by users in two different scenarios: on the one hand, when joining the
group, they will verify the whole ratchet tree (in this case T = T); on the other, when processing a round
message containing one or more Removes, they will verify the received keys for nodes in the new resolution
of their co-path (in this case T is the union of P(IDi) for all removed IDi). The algorithm runs as follows:

The algorithm first checks that all non-blank nodes in the tree have a complete public state, and that
for any internal node v, the associated identifier IDv is associated to one of the leaves of the sub-tree rooted
at v.10 If any of these checks does not pass, the algorithm aborts. Next, it checks that h2,vroot , and then,
verifies the following conditions hold:

9The exclusion of these unmerged leaves responds to the fact that these could correspond to parties added after the state
for child(v) was last updated.

10A user who is already part of the group will have knowledge of the leaf index of each group member, and can check this
without necessarily having a full view of the tree.
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1. For any non-blank non-leaf node v in T the following equalities hold with either p and p′ being the left
and right parents of v or, if not, with p′ being the left parent of v and p the right parent, setting p←
lparent(p) if p is blank, until p is either non-blank or an empty leaf, in which case 0← PHash.Ver(T ).11

(a) h2,p = H4(pkv,PKpr
v , h2,v, {pkw}w∈R) and h1,p = ℓ(p′) or

(b) h2,p = H4(pkv,PKpr
v , h2,v,PKpr

p′ ) and Htrans,p = Htrans,p′ .

where R = Res(p′) \ Unmerged(v).

2. For every node w ∈ T , Sig.Versvkw((pkw,PKpr
w , hw,Htrans,w, confTagw), σw) = 1.

We say that p and p′ as defined above are the effective parents of v. If p is the effective parent satisfying
condition 1, we say that v verifies through p, and note that this corresponds to the situation where p’s key
was sampled in the same Update as v’s. Observe that if we have two concurrent updates, the parent hash
value of the node at the intersection cannot possibly have been computed with respect to the new key in its
co-path, as these were generated at the same time, by different parties. Thus, the parent hash value will be
computed w.r.t. the predecessor key - condition (b) corresponds to this case. Moreover, we check that in
this case the users computing the concurrent updates where actually in consistent states, by checking that
transcript hash values they included in their update packets are the same. In case v is not the intersection
between two concurrent updates, the public state of the nodes in the resolution of the co-parent will not
have changed, so we only need to check with respect to the newest key in the resolution nodes. However, we
also check that the user who sampled v indeed had in their view the same (commitment to) subtree under
the parent of v not in their path, by checking that the parent hash value h1 is consistent with the label of p′.
Finally, unmerged leaves are excluded from R since these might differ between the time the parent hashes
were computed and the new user joins the group.

3.5 The Protocol: CoCoA and Partial Updates

In the description below, we use γ for the state of the party issuing the appropriate operation. The ordering
used to resolve conflicts caused by concurrent updates is denoted by ≺. An overview of the content of
user-generated messages can be found in Table 3, and one for the contents of round messages in Table 4.

Initialization. To initialize a group with parties G = {ID1, . . . , IDn}, ID1 creates a ratchet tree as follows.
First, ID1 retrieves the public initialization keys (pk, svk) = ({pkID1

, . . . , pkIDn
}, {svkID1

, . . . , svkIDn
}) of all

group members (including themselves), redefines G ← (G, pk, svk) to include these, and initializes a left-
balanced binary tree with n leaves, assigning each pair of keys in (pk,svk) to a leaf. Let v be ID1’s leaf.
They then sample new secrets for v’s path (∆,K) ← Re-key(v), store the new keypairs (skj , pkj) in the
corresponding nodes on the created tree and compute and store in γ′ the parent hashes and signatures
for the nodes in path(v): (H,Σ) ← PHash.Sig(ID1, γ

′), where recall that each σj ∈ Σ is a signature of
(pkj , 0, hj ,Htrans, 0) for some vj ∈ path(v) with hj ∈ H its corresponding new parent hash pair (here
PKpr

v and confTag are set to 0 initially). For every vj ∈ path(v) \ v, let wj be the parent of vj not in
path(v). Then, for each yj,l ∈ Res(wj), ID1 computes ej,l = PKE.Enc(pkyj,l

,∆j), together with the signature
σs
j,l = Sig.Sigsski(ej,l). Next, they send out the initialization message I = (′init′, ID1, G,pk, P, S); where

P is the vector with entries pj = (pkj , hj ,Htrans, σj), one per node in path(ID1); and S is the vector with
entries sj,l = (ej,l, σ

s
j,l), containing all the necessary encryptions and values to be authenticated, for each

vj ∈ path(v). Finally, ID1 erases the seeds ∆i, and sets all internal nodes in their local copy of the tree which
are not in their path to be blank.

11The recursion in the second case is needed to account for the possible blank nodes introduced between p and v as a result
of adding to new leaves to accomodate new parties, so that p and p′ correspond to the parents of v at the time the state of v
was created.
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Init
ID The identifier of the group creator.
G List of group members.
P = (pj = (pkj , hj ,Htrans, σj) : j ∈ [|path(ID)|]) Public states for every vj ∈ path(ID).
S = (sj,l = (ej,l, σ

s
j,l) : j ∈ [|path(ID)|], l ∈ Lj) Encryptions of the seeds along ID’s path.

Update
ID The identifier of the updating user.
ci Update counter
P = (pj = (pkj , hj ,Htrans, confTag, σj) : j ∈ [|path(ID)|]) New public states for every vj ∈ path(ID).
S = (sj,l = (ej,l, confTag, σ

s
j,l) : j ∈ [|path(ID)|], l ∈ Lj) Encryptions of the new seeds.

Remove/Add
ID Identifier of removed/added party.
confTag Confirmation tag.
σ Signature of message contents under sender’s signing key.
pkID Public key of added party (Only adds).
W = (Hround, γ.Htrans, γ.G, γ.confKey, γ.initSec) Welcome message (Sent next round, signed, only adds).

Table 3: Contents of user generated messages.

Update. To issue an update, user IDi with state γ and at leaf v, first computes new secrets along their path
(∆,K) ← Re-key(v), stores the new keys in γ′ and computes and stores the parent hashes and signatures
for the nodes in path(v): (H,Σ) ← PHash.Sig(IDi, γ

′). Second, they set confTag = MAC.Tag(γ.confKey,
γ.Htrans). For every vj ∈ path(v) \ v, let wj be the parent of vj not in path(v) and let Lj = Res(wj) ∪
Unmerged(Res(wj)) be the set of nodes that are either in the resolution of wj or are leaves that are unmerged
at some node in said resolution. Then, for each yj,l ∈ Lj , IDi computes ej,l = PKE.Enc(pkyj,l

,∆j), together
with the signature σs

j,l = Sig.Sigsski(ej,l, confTag). Next, they send out the update message U = (IDi, P, S, ci);
where P is a vector of entries pj = (pkj , hj ,Htrans, confTag, σj , ) containing the new public states and
necessary authentication values for each vj ∈ path(v);12 S is the vector with entries sj,l = (ej,l, confTag, σ

s
j,l),

containing all the necessary encryptions and values to be authenticated, for each vj ∈ path(v); and a counter
ci, the number of updates (including this one) sent by IDi since they last processed a round message. Last,
they erase the seeds ∆.

Remove. To remove party IDj , IDi sends out a remove(IDj) plaintext request together with confTag =
MAC.Tag(γ.confKey, γ.Htrans), and a signature σ under their signing key of the remove message and the
confirmation tag. This will have the effect of blanking the nodes in IDj ’s path. Following a removal, an
Update operation must be issued immediately so that a new group key is created.

Add. Additions of parties work in two rounds. To add party IDj , IDi first sends a plaintext add request
add(IDj , pk, svk) containing IDj ’s public init key pair (pk, svk), confTag = MAC.Tag(γ.confKey, γ.Htrans) and
a signature under IDi’s signing key of the add request and the confirmation tag. This will allow all group
members to learn the identity of the new party and therefore to encrypt future protocol messages to them. In
the following round, IDi

13 must send IDj a signed welcome message W = (Hround, γ.Htrans, γ.G, γ.confKey,
γ.initSec), encrypted under pk, containing the necessary information to initialize their local state and seed
that round’s key schedule, as well as check the received tree from the server is correct. Moreover, some user
must send an Update during that round, ensuring that way that a new application secret will be created.

12note that, as in an initialization message, the signature included in each of the pj does not exactly cover the rest of the
elements of pj , but also includes the predecesor key PKpr at that node. This is not a problem for verification, as this is set to
0 for new groups, and in any other cases, parties will have access to the key at that node before they processed said update.

13an alternative specification could allow any group member online to do this instead
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R Vector of Remove operations
A Vector of Add operations
ci Update counter
Hround Round hash value
Oi Openings to verify Hround

γ(v) for v ∈ Ni public states of nodes needed to update P(IDi)
uv = (ID, p, s) public state and encryption (if appropriate) of each relevant updated v
W Welcome message (only for new joiners)
T Entire ratchet tree (only for new joiners)

Table 4: Contents of Round message Mi to party IDi.

Collect and Deliver. Whenever the server receives an initialization message I, it just forwards it to all
the new group members, initializing its local state γser with the members of the new group and the public
information of the ratchet tree included in I. For all other messages, it does as follows: given concurrent
group messages T = (U,R,A,W ) = (Ua, Rb, Ac,Wd : a ∈ [p], b ∈ [q], c ∈ [r], d ∈ [s]) sent during a round,
corresponding to Updates, Removes, Adds, and Welcome messages, respectively, the delivery server will first
check if any two or more updates come from the same user, deleting all of them except for the one received
last. The server first updates its local copy of the public state of T, stored in γser, by updating the public
keys of nodes refreshed by any Ua, blanking any nodes affected by any Rb, and adding a public key and
identifier to any leaf newly populated as a result of an Ac; here if two or more operations affect a given
node, the operation that is minimal with respect to ≺ will be the one determining the state of the node. A
few considerations must be observed here, which we discuss further below: first, all Removes must precede
any Updates, so that a node is blanked whenever a leaf under it is removed, irrespective of which Updates
take place; second, conflicting Removes take effect simultaneously, blanking nodes in both paths; third, new
users are added on the left-most free leaves in the tree according to some fixed rule that the receiving parties
can reproduce locally. Once the server’s view T is updated, it computes the labels for it, defining Tℓ, and
the round hash Hround, as prescribed in Definition 3; and computes opening vectors Oi ← openRH(IDi,Tℓ)
for all group members IDi ∈ G (note that these will be computed with respect to the set P(IDi) resulting
from (un)blanking nodes as implied by T ). Then, it crafts round messages Mi for each user, containing the
following information: first, the vectors R and A or Removes and Adds; second the vector Oi and the round
hash Hround; third, the public states γ(v) = (pkv,PKpr

v , hv, IDv, σv,Htrans,v, confTagv, ov,Unmerged(v)) at
the beginning of the round of the nodes v ∈ Ni = (∪j∈Rid

P(IDj)) \ P(IDi) where Rid is the set of indices
of parties removed by R, i.e., the new nodes on the resolution of IDi’s and the extra states needed to verify
the validity of the received keys14; and fourth, for each node v ∈ P(IDi) (after the (un)blanking implied by
T ) whose keys get rotated as a result of some (winning w.r.t. ≺) update Ua = (ID, P, S), the server adds
uv = (ID, pj) to Mi, where pj ∈ P is the public state of corresponding to v; if, besides, v ∈ path(IDi) and is
the lowest node in path(IDi) updated by Ua, the server also includes the tuple sj,l ∈ S into uv, corresponding
to the encryption of v’s seed to the node in path(IDi) which is also in the resolution of the parent of v not
on Ua’s path. Last, the server will also include a counter ci, equal to that of the update by IDi included in
Mi if there is one, and equal to 0 otherwise. Finally, for each IDi, recipient of a welcome message W, the
round message Mi will additionally contain W, as well as a copy of the public state of T.

Process. Upon receipt of a round message M containing associated Updates U = (U1, . . . , Up), Removes
R = (R1, . . . , Rq), Adds A = (A1, . . . , Ar), openings vector O, public states for nodes in N , round hash
Hround, and counter c, user ID processes it as follows. First, if c ̸= 0, they check if, from the time they last
processed a round message, they issued an update with counter c, aborting if not. Next, for every update,

14note that the leaves of the sub-tree of T with vertex set Ni correspond to the new nodes in the resolution of ID that were
not part of their state

21



remove and add, they check that MAC.Ver(γ.confKey, confTag) = 1; that for the all update packets Ua the
transcript hash value included with the new public values for a node is the same as γ.Htrans; and that the
associated signature verifies under the public key of the sender (using the current node key in place of PKpr

to verify signatures of updates); and similarly abort if any of these verifications does not pass. 15 If these
checks pass, they copy their local state γ corresponding to the current round to γ′, incorporating into it any
node states previously stored there as part of the generation of said update with counter c (this update is
empty if c = 0). Then, they update the public state of nodes needed to verify the round hash, as prescribed
by the received operations: first, for every v ∈ P(ID), they blank v if it is in the path affected by some Ri

and update P(ID) to include its new resolution as follows: they check that the set of nodes N consists of the
nodes outside P(ID) that are in the paths and resolutions of co-paths of removed users. If more than one user
is removed, it could be that N consists of several disconnected subtrees of T. For each such subtree T , ID
checks that its leaves are all non-blank; that all the leaves (w.r.t to T) of removed parties as described in R
are included in it; and, finally, that PHash.Ver(γ, T ) = 1. Moreover, for each blanked node w (as a result of
M), they will use the received openings for the leaves of T , together with the received states, to reconstruct
the Merkle hash openings ov associated to v and check that the stored values match these. If all the checks
pass, ID incorporates in γ′ the public states of the nodes in N that belong to the new nodes in P(ID), together
with the received openings for each such node, and aborts otherwise. Next, if any v in the new P(ID) set is
affected by an update Ua, they overwrite its public key, parent hash value, signature, identifier, transcript
hash value, and confirmation tag to the one set by Ua, and update the unmerged leaves and predecessor
keys appropriate; and else, if corresponding to a newly populated leaf, determine the corresponding added
party from (U,R,A) and add the new public key and identifier ID∗ to the leaf. If several nodes in their state
are affected by updates, they also check that for every such node in their path, the update setting a new
state for it is the same setting a state for one of its parents. Once the updating of the public state of T is
done, they run verifyRH(γ′,M), aborting if the output is 0. Once those verifications are passed, for all nodes
affected by some Ui, they decrypt the appropriate seed, derive the new key-pairs from it as in algorithm
Re-key, check that the received public key matches the derived one, aborting if not, and otherwise, overwrite
the public and secret keys with them; set Unmerged(v)← ∅, and then Unmerged(v)← Unmerged(v) ∪ li for
each leaf li that is an ancestor of v corresponding to an added party. After that, they update γ.G to account
for membership changes as per R and A. Finally, they compute the key schedule for the current round, set
γ ← γ′, deleting both the old key schedule and the old key material from node states, and delete γ′ ← ∅.

If the user is not yet part of the group, M will also contain a welcome message W = (Hround,Htrans,
G, confKey, initSec) together with a copy of the public state of the ratchet tree T, allowing the user to
initialize their state prior to executing the instructions above. The newly added user IDi will first check that
G matches the leaf identifiers in T, compute the round hash from T, R and A as in Def. 3, and check that it
matches the received value Hround (and skip this step when later processing the rest of the round message).
If any of these checks fails, the user immediately aborts. Next, they will initialize their state γ by setting
γ.ID ← IDi, γ.Htrans ← Htrans, γ.G ← G, γ.confKey ← confKey, and γ.initSec ← initSec. Finally, they
set the state γ(l) of the leaf l to contain the init key with which they were added - note that they will not
have at this point knowledge of the secret keys of any other node, but they will obtain some as soon as they
process any Ua. When doing so, note that for the verification of the signature they will need to make use of
the keys in T. Last, to process an initialization message I = (′init′, ˜ID, G, P, S), ID verifies the parent hash
for the node public states in P , using PKpr

v = 0 for all nodes v ∈ pathĨD, derives the keys for ˜ID’s path from
S, and creates a ratchet tree with users in G as leaves and the obtained keys. Last, they initialize the key
schedule, with initial value 0 for γ.initSec and Htrans, storing all in the newly created state γ.

Get group key. To extract the current group key a user ID with local state γ fetches K = γ.appSecret.

15Observe that this could allow an active adversary to continuously send inconsistent messages, preventing users from up-
dating. Since this falls outside of our model, we do not consider it here for simplicity, but note that it could be prevented by
having users process all operations that do verify and compute an updated round hash, hashing together the received value and
the operations that failed verification, inputting this into the transcript hash instead. This would ensure that parties agree on
the transcript hash if and only if they processed exactly the same operations.
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Protocol type Rounds to heal Cumulative sender Per-user recipient Subsequent per-user
t corruptions communication communication update cost

no coordination coordination worst average

(a) corrupted parties unknown

Original TreeKEM & variants [1, 6, 23, 24] n n2 log(n) n log(n) n log(n) log(n) log(n)
Propose-commit TreeKEM [6] 2 n2 n n n n
Bienstock et al. [9] 2 n2 n n† log(n)† log(n)
Bidirectional channels [28] 2 n2 n2 n n n

This work ⌈log(n)⌉+ 1 n log2(n) n log2(n) log2(n) log(n) log(n)

(b) corrupted parties known

Original TreeKEM & variants [1, 6, 23, 24] t t2 log(n) t log(n) t log(n) log(n) log(n)

Propose-commit TreeKEM [6] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t)) t2+(n−t) log(n)
n

Bienstock et al. [9] 2 t2(1 + log(n/t)) t(1 + log(n/t)) t(1 + log(n/t))† log(n)† log(n)
Bidirectional channels [28] 2 tn tn t n n

This work ⌈log(n)⌉+ 1 t log2(n) t log2(n) log(n) ·min(t, log(n)) log(n) log(n)

Table 5: Comparison of the communication complexity of different CGKA protocols. For a detailed discussion
of the table see Section 4. The values x depicted in the last 5 columns are to be understood as O(x). We
assume that the ratchet-tree based protocols start with a fully unblanked tree. †: In the uncoordinated
case, the protocol’s recipient communication is n2 (case (a)) and t2(1 + log(n/t)) (case (b)), respectively.
Regarding the subsequent update cost, while the protocol formally has a worst case subsequent update cost
of log(n), it is only secure in a weak security model. Modifying it to obtain PCS guarantees similar to
the other protocols, e.g. by tainting [23], would lead to future worst-case update cost of n (case (a)) and
t(1 + log(n/t)) (case (b)), respectively.

Handling concurrent changes to the group membership. Regarding the considerations on handling
concurrent dynamic operations in the collect and deliver operation, note that it is mandatory that Removes
precede Updates, as the new keys sampled by the latter might be encrypted to keys under the knowledge
of some of the removed parties; thus, if the node is not blanked, there is not guarantee the removed party
will no longer have knowledge of any node’s state - our restriction on the ordering prevents this, enforcing
that a node is blanked whenever a leaf under it is removed, irrespective of which Updates take place. With
regards to conflicting removes, i.e., those where the removed party in one is the remover in the other, so that
processing the one would render the other syntactically incorrect, this could be left up to the group policy.
For example, if two parties IDi and IDj concurrently remove each other, different policies could be a) both
take effect, b) none take effect and c) only one takes effect. We consider the first option to be the most
desirable, e.g. so users could not avoid being removed by issuing removals of other parties, and so apply this
one in the protocol.

4 Efficiency

In this section we discuss the communication complexity of our protocol and compare it with other CGKA
schemes. We focus on the cost incurred by several users updating concurrently to recover from compromise,
as this is the main setting we aim to tackle with this work. An overview is given in Table 5.

Considered setting. Not only does the sequence of operations preceding concurrent update operations
(in the case of ratchet-tree based CGKA schemes) have a crucial impact on the resulting communication
cost, but also, whether the participating parties know which of the other parties have been compromised
and when they are planning to update. Thus, there are plenty of different settings one could compare. We
restrict our view to the following, that in our opinion are quite natural.

We consider a group of n users, t of which have been compromised. For ratchet-tree-based protocols we
assume that the tree is fully unblanked/untainted, as this should typically be the case, with Updates being
the most common operation. Our analysis differentiates between the settings (a) where it is only known
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that the group has been compromised, but not who the particular t corrupted users are, and (b) where the
set of compromised users is known to everyone. Note that the former essentially forces every member of the
group to update, while in the latter scenario only the t compromised users have to act.

The first value we are interested in is the number of rounds of (potentially) concurrent updates, after which
the group key is guaranteed to be secure again. The second is the cumulative sender complexity (measured
over all rounds), which essentially corresponds to the number of public keys and ciphertexts sent to the server.
Here, we again distinguish between two settings. Namely, whether the parties act coordinated or not. In
the latter case the participating parties are not aware of whether other parties are concurrently preparing
updates/commits, which, depending on the scheme, potentially leads to the server having to reject packages.
In the former case, on the other hand, they have this knowledge. In practice, this could be implemented by
introducing an additional mechanism, that requires parties to wait for a confirmation by the server before
preparing and sending update packages. We further track the per-user recipient communication complexity,
again measured as a total over all rounds required to recover from compromise. The final considered value
is the sender communication cost of a single, non-concurrent, update/commit in a subsequent round. Here,
we state both the cost of the worst-case party as well as the average cost.

In Table 5 we mark schemes that perform substantially better or worse in one of the categories in green
and red, respectively.

The communication complexity of CoCoA. We first discuss the number of rounds required to recover
from compromise of t users. As we will show in Section 5, it is sufficient for the group to recover that all
corrupted users concurrently update in ⌈log(n)⌉+ 1 rounds.

Regarding the sender communication complexity, the size of update packages sent by a user ID to update
in the CoCoA protocol is proportional to the size of the resolution of ID’s co-path, which will be of order log(n)
for a fully unblanked tree16. However, this value could be up to linear in a tree with many blanks, as is the
case in TreeKEM and its variants, where blanks (or taints in the case of TTKEM) degrade communication
efficiency. In CoCoA concurrent updates are merged and thus none are ever rejected by the server. Hence,
in the considered scenario CoCoA in both the coordinated and uncoordinated setting has the same sender
communication complexity of order n log(n)2 (corresponding to n users sending an update of size log(n)
in ⌈log(n)⌉ + 1 many rounds) and t log(n)2 (corresponding to t users sending an update of size log(n) in
⌈log(n)⌉+ 1 many rounds), for cases (a) and (b) respectively.

With regards to the recipient communication complexity, user ID in our protocol needs to only receive at
most a single ciphertext per update (zero if said update does not rotate the keys of any node in their state),
and never more than path(ID) = ⌈log(n)⌉ in total. They will also receive at most |P(ID)| public keys per
round.17 Thus in case (a) ID would incur a download cost of order log(n) per round, andO(log(n)2) across the
⌈log(n)⌉+ 1 rounds. In case (b) only t parties are updating per round, implying that the per round recipient
cost is of order min(t, log(n)) and the cost over all ⌈log(n)⌉ + 1 rounds is of order log(n) · min(t, log(n)).
Finally, as in CoCoA concurrent updates do not affect the ratchet tree structure and in particular do not
require blanks, the cost of subsequent updates remains of order log(n).

The communication complexity of other CGKA schemes. We now give a brief overview on the
communication cost of other CGKA schemes in the considered scenarios as presented in Table 5. The
first considered class are ratchet-tree based schemes that do not rely on the propose-commit framework,
as TreeKEM v7 and earlier versions [6], rTreeKEM [1], TTKEM [23], and Causal TreeKEM [24]. These
schemes require n (in case (a)) or t (in case (b)) rounds to recover, as only one update per round can be
implemented18. Regarding the sender communication complexity, in the uncoordinated case every (in case

16an additional ciphertext would need to be sent for each unmerged leaf across ID’s path, but this will not account for much
in typical protocol executions.

17Note that the size of P(ID) grows at most by 1 per every blank node.
18Causal TreeKEM proposes an interesting idea of re-randomizing node secrets through a concrete homomorphic operation,

instead of re-sampling them. Thus it actually allows for concurrent updates. However, the presented security statement still
requires updates of every compromised party in different rounds, thus leading to communication complexity as presented in
the table.
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(b) corrupted) user would try to update in every round, thus leading cost of order n2 log(n) (case (a)) and
t2 log(n) (case (b)), respectively. In the coordinated case, only one user per round would send an update
attempt, leading to costs of n log(n) and t log(n). The per-user recipient cost is of order n log(n) as n
packets of size log(n) have to be downloaded, and, finally, the cost of subsequent updates is of order log(n),
as updating does not result in blanks.

The second class of protocols are ratchet-tree based protocols following the propose-commit paradigm as
TreeKEM v8[6] and later versions, and the protocol by Bienstock et al. [9]. In these protocols the group can
recover very quickly, by all compromised users proposing an Update in the first round, and having someone
send a commit to all updates of the previous round in a second round. But this comes at the elevated cost
of blanking (or tainting in the case of a PCS version of [9]) the paths of all those T users. This leads to
the commit having a cost roughly proportional to the number of updates of the previous round. In case (a)
this leads to a cumulative sender communication of n2 in the uncoordinated case (all n user try to commit
at cost n) and, with coordination, of n (only one user commits). In case (b) the authors of [9] show that
the cost of a commit to t updates in their protocol is of order t(1 = log(n/t)) that also applies to propose-
commit TreeKEM. Thus, in this case the sender complexity is given by t2(1 = log(n/t)) (no coordination)
and t(1 = log(n/t)) (coordination), respectively. The per-user recipient communication is of order n (case
(a)) and t(1 = log(n/t)) (case (b)). The ability to recover in only two rounds in propose-commit TreeKEM
comes at the cost of introducing blank nodes in the ratchet tree. Concretely, in case (a) the commit to n
updates would lead to a fully blanked tree, meaning that the average (and worst case) cost of subsequent
updates is going to be linear in n. Note that fully recovering from this state requires linearly many commits
to single updates. In case (b) there always exists a user with a subsequent update cost of order t(1+log(n/t))
and the average update cost is at least of order (t2 + (n− t) log(n))/n. While the protocol of [9] formally has
a worst case subsequent update cost of log(n), it is only secure in a weak security model. Modifying it to
obtain PCS guarantees similar to the other protocols, e.g. by tainting [23], would lead to future worst-case
update costs matching the ones of propose-commit TreeKEM.

Finally, the protocol by Weidner et al. [28] based on bidirectional channels also supports concurrent
operations and allows the group to recover in 2 rounds. We point out that this work targets a different
network model and has thus a different focus than ours. In particular, the communication complexity
for each update is linear in the number of parties, which is considered impractical in the contexts we are
interested in. The protocol has a cumulative sender complexity of order n2 (case (a)) and tn (case (b)) both
in the coordinated and uncoordinated case, and a per-user recipient complexity of order n and t, respectively.
The cost of subsequent updates is of order n.

Summary and comparison. CoCoA diverges across two different axes from what could be considered a
common paradigm until now. On the one hand, users are no longer required to keep track of the full state of
the ratchet tree, reducing the recipient communication cost and the storage costs for users, and making this
cost differ substantially from the total amount of upload communication. Indeed, this is a big change, as this
distinction is not really present in previous works, where the majority of uploaded packets are downloaded
by everyone. On the other hand, we consider a more flexible PCS guarantee that only requires users to
heal after ⌈log(n)⌉+ 1 rounds. This is in contrast to previous works requiring PCS to hold after a constant
number of rounds or only after n rounds. The effect of allowing concurrent updates to be merged is that, on
one hand, the protocol is agnostic to coordination, i.e., no additional mechanism is needed that ensures that
users do not send update/commit packages that will be rejected by the server, and, on the other hand, it
allows the protocol to handle concurrent update operations without introducing blanks in the ratchet tree.

The trade-off with TreeKEM versions preceding the propose-commit paradigm is clear: we are paying
a log(n) factor in sender communication in exchange for faster PCS that is independent from the number
of compromised users. The comparison with propose-commit TreeKEM is not as straightforward, as the t
compromised users can heal in only 2 rounds. The main advantage CoCoA over has this scheme is that
it does not introduce blanks in the ratchet tree when handling concurrent operations, which leads to an
improved update cost in subsequent rounds. However, this comes at the cost of slower healing and a factor
of log2(n) (or roughly log(n) in case (b)) in terms of sender communication cost. We point out that the
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propose-commit framework of TreeKEM allows for more flexibility, e.g. by performing the required updates
in several batches over multiple rounds. The exact trade-off achieved by such an intermediate approach is
hard to quantify, but, again, due to blanking the cost of future updates will suffer. Finally, CoCoA, compared
to all versions of TreeKEM, has the advantage of reduced recipient communication complexity and that users
can prepare updates without the need of extra communication with the server to prevent rejection of said
updates.

As a final remark, CoCoA seems to have a slightly worse efficiency than TreeKEM based protocols predat-
ing the propose-commit paradigm, since it requires slightly larger sender communication overall. However,
as we show in Section5, this is only the case if fast PCS is required for many users. In fact, a round with a
single update will immediately grant PCS to its sender, just as in TreeKEM. Thus, CoCoA can be seen as
an extension of pre propose-commit TreeKEM, which incorporates the possibility of trading bandwidth for
faster collective healing.

5 Security

Given a set of parties whose state has leaked, TreeKEM and related variants achieve PCS exactly after all
of them perform an update. This is still true in our protocol as long as the updates are applied sequentially.
Furthermore, we also allow for concurrent updates, which results in some updates only being applied par-
tially. Not surprisingly, it is not sufficient for every party to perform a partial update in order to achieve
PCS. Consider the following scenario: parties IDi and IDj , both of which were corrupted since their last up-
date, update concurrently by generating and processing simultaneously messages Mi and Mj , respectively,
resulting in a round message that refreshes both their paths; and let’s say that Mi ≺Mj . Then, the seed of
the node at the intersection of both paths gets encrypted under a node in the path of IDj ; in particular, it
gets encrypted under a key the adversary knows. Thus, PCS is not achieved. However, as a group the two
users have made progress towards achieving PCS: all nodes up to that intersection have healed. And hence,
if at least one of the parties (potentially concurrently with other users) updates again, the ratchet tree will
recover. In our security proof we capture this in more generality. In particular, we show that parties may
heal after an individual, non-concurrent update, or by at most logarithmically many updates.

We consider our security proof a significant contribution of this work, not only because it increases our
confidence in the security of our protocol, but also because there are significant differences to prior work.
There are two main sources of obstacles for us to overcome: 1) Parties only have partial views of the key
material in the tree and are potentially not even aware of changes to the key material outside of their view.
This introduces difficulties in defining when a party should consider another party as safe. 2) The delivery
server is not purely a relay server that one can force to behave honestly using signatures. In our case, the
server is expected to actively compute parts of the messages that are exchanged, but still we do not want
to put any trust in the server. Accordingly, the adversary gains additional active capabilities compared to
prior works of similar flavor. Another aspect new to our proof is a combinatorial result over the challenge
graph that establishes the ratchet tree’s healing after log(n) updates.

5.1 Security Model and Safe Predicate

To analyze the security of CoCoA, we essentially use the security model from [23], which allows the adversary
to act partially actively and fully adaptively: in this model, the adversary can adaptively decide which users
perform which operations, and can actively control the delivery server; however it can not issue messages on
behalf of the users. In [23] this is enforced by assuming authenticated channels. Since in CoCoA the signing
of protocol messages is more involved, parent hash plays an important role also for security against partially
active adversaries, and the server no longer just relays messages, we make the use of signatures explicit in
this work. As we restrict our analysis to partially active adversaries, the adversary does not get access to
signing keys via corruptions. While this might look artificial, it has importance in practice as discussed in
the introduction, and we still obtain meaningful results in the vein of [23]. Nevertheless, we consider the
analysis of CoCoA’s security against fully active adversaries an important question for future work.
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Except for explicit signatures, the differences in the setting of concurrent CGKA to the one of [23] are
that 1) users process concurrent messages, 2) no messages are ever rejected by the server, and 3) the server
is allowed to send arbitrary (potentially malformed) messages. Regarding 2), it is however possible that
messages get lost and even that a user does not process an update they generated. Whether a user IDi’s
update message (and which one) is contained in a round message Mi, is represented by a counter ci. Finally,
regarding 3), while our security notion is strictly stronger than the one from [23] (where the server could
only forward existing messages), the security of protocols such as TreeKEM and TTKEM can trivially be
upgraded to our notion: This is true since round messages in these protocols only consist of signed messages
and the adversary does not learn any party’s signing key. In our protocols, in contrast, the server is assumed
to perform some computation on users’ messages, hence it makes sense to consider a stronger model where
this computation is not trusted.

Definition 5 (Asynchronous CGKA Security). The security for CGKA is modeled using a game between
a challenger C and an adversary A. At the beginning of the game, the adversary queries create-group(G)
and the challenger initializes the group G with identities (ID1, . . . , IDℓ). The adversary A can then make a
sequence of queries, enumerated below, in any arbitrary order. On a high level, add-user and remove-user
allow the adversary to control the structure of the group, whereas process allows it to control the scheduling
of the messages. The query update simulates the refreshing of a local state. Finally, start-corrupt and
end-corrupt enable the adversary to corrupt the users for a time period. The entire state and random coins
of a corrupted user are leaked to the adversary during this period, except for the user’s signing key.

1. add-user(ID, ID′): a user ID requests to add another user ID′ to the group.

2. remove-user(ID, ID′): a user ID requests to remove another user ID′ from the group.

3. update(ID): the user ID requests to refresh its current local state γ.

4. process(M, ID): for some message M and party ID, this action sends M to ID which immediately
processes it.

5. start-corrupt(ID): from now on the entire internal state and randomness of ID except for the signing
key sskID is leaked to the adversary.

6. end-corrupt(ID): ends the leakage of user ID’s internal state and randomness to the adversary.

7. challenge(q∗): A picks a query q∗ corresponding to an action a∗ = update(ID) or the initialization (if
q∗ = 0). Let K0 denote the group key that is sampled during this operation and K1 be a fresh random
key. The challenger tosses a coin b and – if the safe predicate below is satisfied – the key Kb is given
to the adversary (if the predicate is not satisfied the adversary gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We call a CGKA scheme CGKA-
secure if for any PPT adversary A it holds that

AdvCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]|

is negligible.

In contrast to the security definition of [23], process queries do not point to specific queries here. Thus,
in order to define our safe predicate, we first need to define what we mean by saying that a party processed
another party’s update.

Definition 6. Let ID and ID∗ be two (not necessarily different) users and (γq, T ) ← CGKA.Upd(γq−1) an
update with associated counter c, generated by ID in query q. Let R(ID, γq) be the set of round messages M
that

(a) are efficiently computable from the public transcript and private states of all parties,
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(b) have counter c for party ID, and

(c) will be accepted by ID in state γq, i.e., CGKA.Proc(γq,M) outputs a new state γq+1 such that CGKA.Key
(γq+1) ̸= CGKA.Key(γq).

Then we say that ID∗ processes the update T (or equivalently q) at time q∗ > q if ID∗ processes some round
message M∗ at time q∗ resulting in state γq∗ , and CGKA.Key(γq∗) ∈ {CGKA.Key(CGKA.Proc(γq,M)) |M ∈
R(ID, γq)}.

As a special case we say that ID∗ processes the single update T (or equivalently q), if in item (c) addi-
tionally the only changes to P(ID) resulting from updates are due to T .

With this notion in place, we will now define the safe predicate similar to the one in [23]. In particular, it
rules out all trivial winning strategies, while preserving simplicity by ignoring protocol-specific details such
as the relative position of users within the tree.

Definition 7 (Critical window, safe user). Let ID and ID∗ be two (not necessarily different) users and
q∗ ∈ [Q]0 be some update(·) or create-group(·) query. Let q− < q∗ be maximal such that one of the
following holds:

� There exist L := ⌈log(n)⌉ + 1 update queries aiID := update(ID) (i ∈ [L]) that were generated for ID
and processed by ID∗ within the time interval [q−, q∗]. If ID∗ does not process L such queries then we
set q− = 1, the first query. We denote the last such update query as qL.

� There exists an update query a−ID := update(ID) that was generated by ID and processed by ID∗ as a
single update within the time interval [q−, q∗]. In this case, we set qL := q−.

Furthermore, let q+ > qL be the first query that invalidates ID’s current key (in the view of ID∗), i.e., in
query q+, ID processes a (partial) update a+ID := update(ID) /∈ {aiID}i∈[L]. If ID does not process any such
query then we set q+ = Q, the last query.
We say that the window [q−, q+] is critical for ID at time q∗ in the view of ID∗. Moreover, if the user ID is
not corrupted at any time point in the critical window, we say that ID is safe at time q∗ in the view of ID∗.

Similar to [23], we define a group key as safe if all the users that ID∗ considers to be in the group are
individually safe, i.e., not corrupted in their critical windows, in the view of ID∗.

Definition 8 (Safe predicate). Let K∗ be a group key generated in an action

a∗ ∈ {update(ID∗), create-group(ID∗, ·)}

at time point q∗ ∈ [Q]0 and let G∗ be the set of users which would end up in the group if query q∗ was
processed, as viewed by the generating user ID∗. Then the key K∗ is considered safe if for all users ID ∈ G∗

(including ID∗) we have that ID is safe at time q∗ in the view of ID∗ (as per Definition 7).

Note that the second case in Definition 7 exactly captures the case where only single updates are accepted
in each round. Thus, the security of CoCoA is strictly stronger than sequential variants of TreeKEM.
Further, the bound of ⌈log(n)⌉+ 1 updates as required in Definition 7 is indeed tight, an example is shown
in Section 5.2, Figure 3.

Remark 1. We make the following observations about Definition 8.

� If we were to consider a weaker security model where the delivery server is honest, Definitions 7 and 8
could be considerably simplified as follows: Let G∗ be the group of users at time q∗. Then q∗ is safe, if
all users ID ∈ G∗ either did ⌈log(n)⌉+ 1 partial or one full update before q∗, and one update (partial
or full) after q∗, and are not compromised between/during these updates.
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� A more permissible safe predicate could be defined when considering the relative position of updating
users within the tree. To this aim, one could define a function that evaluates the progress a user makes
during a concurrent update. This progress corresponds to the number of keys the party updates along
its path to the root and depends on the ordering imposed on concurrent updates. e.g. a single update
refreshes the entire path, hence makes progress ⌈log(n)⌉ + 1, a concurrent update makes progress at
least 1. An even stronger notion of safe group keys could be defined by also considering the effect
updates of other users have on a member ID’s path: E.g. if ID does a single concurrent update, all
keys along her path can heal if her sibling continues to update. In this work, however, we prefer to
define a simple and protocol-independent security notion that allows to compare our scheme to other
constructions.

5.2 Security of CoCoA

Regarding the security of CoCoA we obtain the following.

Theorem 1. If the encryption scheme used in CoCoA is IND-CPA-secure, the signature scheme is UF-
CMA-secure, and the used hash functions are modeled as random oracles, then CoCoA is CGKA-secure.

To prove security of CoCoA, we follow the approach of [23] and consider the graph structure that is
generated throughout the security experiment. A node i in the so-called CGKA graph is associated with
seeds ∆i and si := H2(∆i), and a key-pair (pki, ski) := Gen(si). The edges of the graph, on the other hand,
are induced by dependencies via the hash function H1 or (public-key) encryptions. To be more precise, an
edge (i, j) corresponds to either:

(a) a ciphertext of the form Encpki(∆j); or

(b) an application of H1 of the form ∆j = H1(∆i) used in hierarchical derivation.

Naturally, the structure of the CGKA graph depends on the update, add-user or remove-user queries
made by the adversary, and is therefore generated adaptively. To argue security of a challenge group key,
we consider the subgraph of the CGKA graph that consists of all ancestors of the node associated to the
challenge group key – the so-called challenge graph. By functionality of the CGKA protocol, the challenge
group key can be derived from any secret key/seed associated to a node in the challenge graph. For an
example of CGKA graph and challenge graph see Figure 3. To argue security, none of the secret keys in
the challenge graph must be leaked to the adversary by corruption. We prove (in Lemma 2 below) that
this is indeed the case for CoCoA if the safe predicate is satisfied. Our proof follows the ideas from [23],
but involves a new combinatorial argument to establish the upper bound of ⌈log(n)⌉+ 1 updates for healing
the state of every user. Further, the fact that in CoCoA users only keep track of a part of the ratchet tree
substantially complicates the proof of this statement.

In more detail, the proof for the protocol in [23] relies on the property that every key in the challenge
graph must stem from an update that the party ID∗, who generated the challenge key, processed. This can
easily be ensured for protocols keeping track of the full ratchet tree, by forcing parties, who do not agree
for every point in time in the protocol execution on every key associated to a node in the ratchet tree, into
inconsistent states, thus making future communication between them impossible. Note that this implies the
desired property. In this case, if a user ID, while generating an update, encrypts the seed of a key pk to
some pk′, and later ID∗ encrypts to pk, then ID∗ must have had pk′ in their state at some point in time, and
thus in particular processed the update establishing it.

Unfortunately, while in an execution where the server behaves honestly, this property would also be true
with respect to the relatively simple definition of processing an update of Definition 6, it is no longer true
if we allow an untrusted server. Since in CoCoA the server might send malformed round messages, this
property turns out to not hold anymore. We overcome this issue by giving a more involved definition (which
is equivalent to Definition 6 in the honest server setting) of weakly processing an update and then essentially
show, in the ROM, that every key in a user’s state must stem from a weakly processed update (Lemma 5).
Further, we show that users that do not agree on the same history of weakly processed updates transition to

29



A B C D E F G H

Figure 3: Example; CGKA graph and challenge graph. Sequence of operations; we write update(X ≺ Y ),
to indicate that parties X and Y updated concurrently and X’s update took precedence over Y ’s. A group
with 8 parties is set up (black), update(A ≺ B) (blue), update(C ≺ B) (green), update(G ≺ B) (red), G’s
update is challenged. Vertices and edges that are part of the challenge graph are shaded in gray. Note that
even though B updated three times her leaf key in the challenge graph lags behind by 3 = log(8) steps.

inconsistent states (Lemma 4). For this we have to show, for example, that all keys introduced into a user’s
state after a change to the resolution of their copath must have been weakly processed in an earlier round
(even in the case that at this point in time this update did not affect the user’s limited view of the ratchet
tree). To prove these properties we rely on the consistency mechanisms of transcript hash and parent hash.

With these statements in place we are finally able to show that no key in the challenge graph is leaked to
the adversary, where we use the observation that this property holding with respect to processing an update
as defined in Definition 6 is implied by it holding with respect to the relaxed definition.

5.3 Overview of Proof Structure

In this section we give an overview of the proof structure, introducing the definition of weakly processing and
a few small preliminary results, along with the statements of the main lemmas we build the proof on. For
all security statements in the remainder of the paper we assume all hash function Hi, i ∈ [5], to be random
oracles. Our security proof of CoCoA is based on the proof of the following Lemma.

Lemma 2. Assume that Sig is a secure signature scheme and H3 a hash function. Then, for any safe
challenge group key in the asynchronous CGKA security game instantiated with CoCoA, it holds that none
of the seeds and secret keys in the challenge graph are leaked to the adversary via corruption.

With this Lemma in place, Theorem 1 now follows from the corresponding results in [23, Section 3.5].
There, security of a variant of TreeKEM called TTKEM is proven by reducing to a game that is known as
generalized selective decryption (GSD), where the adversary can query for encryptions of secret keys under
other keys, corrupt keys, and finally has to distinguish a key from random that it did not trivially learn by its
previous queries. While GSD had only been defined in the secret-key setting, in [23] the authors introduce
and analyze a public key variant of this game in the random oracle model, which allows to consider the
security experiment of ratchet-tree based CGKA protocols as a special case of GSD. This is true thanks to
Lemma 2, which guarantees that any safe challenge in the CGKA security game implies a valid challenge
in the GSD game. The security bound for CoCoA now follows analogously to the corresponding result for
TTKEM [23, Theorem 4] from the more general result on public-key GSD in the ROM [23, Theorem 3].

In order to prove Lemma 2 we will rely on the notion of weakly processing an update. Since an adversarial
server can send wrong openings to a user, when ID processes a round message, they might still be introducing
into their state some keys or some hash values that depend on updates they have not processed as per the
definition above. For example, consider the case of a round message sent to ID, containing a single Update
from a user ID∗ who is not their sibling: a malicious server could include the correct keys and encryptions
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in the round message, but substitute the new Merkle commitment by an arbitrary value; this will cause ID
to still accept the message and update the corresponding keys in their state, while not having processed
ID∗’s update (since the server cannot fool the latter into accepting a round message with a round hash
dependent on the wrong opening). Below we define a notion of weakly processing an update, which captures
this scenario. Before we do that, however, we will define the further notion of explicitly processing, capturing
the process of users introducing keys into their state by means of (weakly) processing an update. Note,
however that explicitly processing an update will not imply processing it, for the above mentioned reason.

In what follows the adversary queries as defined in the security game (Definition 5) are also denoted
using the protocol notation (Definition 1) in order to explicit refer to the CGKA protocol in use.

Definition 9 (Explicitly Process). We say that a user ID∗ has explicitly processed the update U generated
by user ID in query q = CGKA.Upd(γID) if ID∗ processed and accepted a round message M in query q∗ > q
and either

� M contained a counter c corresponding to update U generated by ID, or

� M contained a tuple pv = (pkv, hv,Htrans, confTag, σv) corresponding to the public state of some node
v, where pv ∈ U and its transcript hash value Htrans is the same as the one in the state of ID.

Definition 10. We say that a user ID∗ has weakly processed the update U generated by user ID in query
q = CGKA.Upd(γID) if ID∗ processed a round message M∗ in query q∗ > q and either:

� q∗ was the first query ID∗ processed, and the full tree which ID∗ received in the welcome message
contained a node state sampled in U ,

� there exists ID′ (not necessarily different from ID∗), in the group in the view of ID∗, such that the
following conditions below hold. Let first q′ be either q′ = CGKA.Upd(γ′) the last Update from ID′

weakly processed by ID∗ or, if such update does not exist, the query in which ID′ processed their welcome
message into the group, initializing state γ′. Then:

– there exists a series of efficiently computable round messages (given access to the RO queries, the
public transcript, and private states of all parties) M′

1, . . . ,M
′
t such that ID′ with respect to state

γ′ would process (and accept) all M′
i in order, where γ′

i is the state resulting from processing and
accepting M′

i with respect to state γ′
i−1 (and γ′

0 = γ′).

– ID′ explicitly processed U by processing M′
t.

– CGKA.Key(CGKA.Proc(γq∗

ID∗ ,M∗)) = CGKA.Key(γ′
t), i.e. they derive the same group key after

processing the respective messages,

A few remarks regarding this definition: first, note that the update query q′ in the second case of the
definition is required to have been weakly processed by ID∗. In fact, it must also hold that if this case is
satisfied, such query was also processed by ID∗, since weakly processing but not processing an update implies
the user processing will never have consistent states with the update issuer. Second, note that considering the
case where ID′ = ID∗ is equivalent to saying ID∗ explicitly processed U . In particular, explicitly processing
an update means weakly processing it. Similarly, by considering the case where ID′ = ID, we can see
that processing also implies weakly processing. We recall again that explicitly processing does not imply
processing. From this definition, we can define the predicate wProcess(ID, U, q), which evaluates to 1 if ID
weakly processed U at time q; and else evaluates to 0.

Below we define formally what it means for a user to join the group at the same time or after another
user. Note that this is defined with respect to the views that users have of the group. With regards to the
situation where a user leaves the group and joins again, we assume that it does so with a new identifier. That
is, party identifiers are assumed unique and cannot rejoin once removed. Further, for security we assume
also that init keys are only used once.
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Definition 11. We say that user ID∗ is added at the same time or after ID (in the view of ID) if there exist

qA = CGKA.Add(·, ID) and q∗A = CGKA.Add(·, ID∗) and queries q and q∗ such that γq
ID ≡ γq∗

ID∗ and, moreover,
either ID processed q∗A in some query ≤ q, or the equivalence holds for q and q∗ corresponding to the first
process queries for each party.

Throughout the following, for simplicity of notation, we assume that the state of a party is the same
before and after issuing an add, remove and update operation, i.e. if q is a query of the form CGKA.Add(ID, ·),
CGKA.Rem(ID, ·) or CGKA.Upd(γq−1

ID ), we consider the states of party ID at q − 1 and q the same. While in
practice this is not the case, since issuing any of these operations will change the pending state γ′

ID, which
is a part of the local state, it will not change any value in the rest of the state, and thus will not influence
any statement regarding states consistency.

When a user ID is added to the group, we count them as effectively processing two round messages, the
first one corresponding to the welcome message, the second corresponding to the round message that comes
with it. Thus, we will say ID∗ has a state consistent with that of ID at the time the latter joined the group
if the state of ID∗ is consistent with the contents of the welcome message or, equivalently, with the user that
added ID. Note that although the welcome message contains no group key γ.appSecret, it does contain a
transcript hash value Htrans, and users having the same transcript hash value in their state is equivalent
(up to collision resistance of the random oracle) to users having the same group key, by Proposition 2.

Before beginning with the proofs, we present here an observation that will be used throughout most of
them. Informally, this is the following: due to updates being signed and the adversary not having access
to signing keys, every key in a user’s state and, in turn, in the challenge tree, must stem from an update
or add query. More precisely, any key stemming from an add query, that is introduced in the state, gets
delivered in a packet that comes with a signature by the party who authored the add, together with a
signature of the party whom that leaf belongs to; and any key introduced in the state by either explicitly
processing an update, or by receiving a node state from the server after a removal, is received as part of a
tuple (pkv, hv,Htrans, confTag, σv), together with a party identifier IDv. Before accepting, a user will check
that σv is a signature for (pkv, hv,PKpr

v ,Htrans, confTag) under IDv’s verification key. Thus, any key, and
moreover, any of those signed values in the state of any v ∈ P(ID), must have come from an update by IDv.
In other words, if some state in P(ID) contained a key, or value from the ones above, not corresponding to
a query, we could build a forger for the signature scheme with a loss of n in the advantage by guessing the
user that supposedly generated the key in question. Note that every update, add, or remove query requires
at most n + 2 log(n) signatures (this happens, e.g., in the case of a fully blanked tree).

The following small proposition shows that, as we would expect of the more general definition of weak
processing, users can only weakly process updates issued by parties with a consistent state.

Proposition 3. Let U be an output from q∗ = CGKA.Upd(γq∗−1
ID∗ ), for some user ID∗ with state γq∗−1

ID∗ at
time q∗− 1. Let ID be a party with state γID and such that wProcess(ID, U, q) = 1 for some query q, and such
that ID was already part of the group before q. Then the states of ID at time q − 1 and ID∗ at time q∗ are
consistent.

Proof. If ID weakly processed U after joining the group, then, by definition there must exist a user ID′ and
some message M′ such that ID′ would explicitly process U by processing M′ in query q′ and such that its
state right after would be consistent with the state of ID at q. Now, for ID′ to explicitly process U , their
state just before processing M′, at q′ − 1, must have been consistent with the state of ID∗ at the time they
issued U , i.e. at q∗. This is the case since for ID′ to accept M′, the signed packet contained in said round
message and which corresponded to U must have contained the same transcript hash value as ID′ had at
q′ − 1 that moment in their state. However, by collision resistance of the random oracle H3, since the states
of ID at q and ID′ at q′ were consistent, so were their respective states at q − 1 and q′ − 1. But this implies
that ID’s state at q − 1 was consistent with that of ID∗ at q∗.

It follows from the proposition above that no user can weakly process the same update twice:

Corollary 3. Let wProcess(ID, U, q) = 1 for some ID, U and q. Then, except with negligible probability, for
any q′ ̸= q, wProcess(ID, U, q′) = 0.
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Proof. Assume for contradiction that there is an update U and distinct queries q, q′ with wProcess(ID, U, q) =
1 and wProcess(ID, U, q′) = 1. Let q < q′, and assume first that ID did not join the group in q. By
Proposition 3, the state of ID at both q− 1 and q′− 1 must be consistent with the state of U ’s author at the
time U was generated. But this is not possible, since ID has processed and accepted some round message
(and therefore updated its state) in between these times.

Suppose now that ID did join the group in q. Since the welcome packet that they received was (except
with negligible probability) part of the output of a query, the transcript hash Htrans in it was computed with
respect to the round hash value Hround in it. Further, we know Hround is consistent with the tree that ID
received upon joining, which contained some node state from U , by the assumption that ID weakly processed
U at q. However, this node state from U also contained a transcript hash value. By Proposition 3, ID at
q′ − 1 was consistent with U ’s author at the time they issued U . In particular, the transcript hash value in
U must be the same as the transcript hash value in ID’s state at q′ − 1 ≥ q, by Proposition 2. But this is a
contradiction to the properties of the random oracle H3, since the transcript hash value of ID at this time
depended on that of ID at q, which itself depended on the transcript hash value in U .

With this in place, we will be ready to prove Lemma 2 above, with the help of two further Lemmas,
capturing the consistency guarantees given by our round hash and parent hash mechanisms.

The first one states that users with consistent states have weakly processed equivalent sequences of
operations.

Lemma 4. Let ID and ID∗ be two users with consistent states at time q, and such that ID∗ joined the group
at the same time or after ID. Then:

{U : ∃q′ ≤ q s.t. wProcess(ID∗, U, q′) = 1} ⊆ {U : ∃q′ ≤ q s.t. wProcess(ID, U, q′) = 1}

and, for any q∗1 , q
∗
2 , with q∗1 < q∗2 and any Updates U,U ′ such that wProcess(ID∗, U, q∗1) = wProcess(ID∗, U ′, q∗2) =

1, there exist q1 and q2, with q1 < q2 such that wProcess(ID, U, q1) = wProcess(ID, U ′, q2) = 1.

The second one states that all the keys that a user incorporates into their state as part of the protocol
execution stem from adds or updates that they have weakly processed, and moreover, that these do not
correspond to operations that have already been superseded by other weakly processed Updates.

Lemma 5. For any user ID and any key pkv in their local state γ associated to a node v ∈ P(ID) at time
q∗, the following hold:

1. there is a query q ∈ {1, . . . , q∗}, such that pkv is either the InitKey of a party whose Add was processed
by ID in query q, or was sampled in some update U that the user had weakly processed in q; i.e.,
wProcess(ID, U, q) = 1;

2. for any Update U ′ generated before q∗, which affects v and such that wProcess(ID, U ′, q′) = 1 for some
q′ ≤ q∗, it holds that q′ ≤ q.

To conclude the security proof, in Section 5.4 we give the proof of Lemma 2 assuming Lemmas 4 and 5,
which are proven afterwards, in Section 5.5.

5.4 Proof of Lemma 2

We now prove Lemma 2. To do so, we first argue that all parties associated to leaves in the challenge graph
belong to the group as viewed by the party generating the challenge key.

Lemma 6. Let ID∗ be the party who generated the challenge key K∗ in query q∗. Then, all parties associated
to leaves in the challenge graph belong to G∗, the set of group members at time q∗ in ID∗’s view.

Proof of Lemma 6. Let ID /∈ G∗ and assume for contradiction that ID is associated to a leaf in the challenge
graph. Let v1, . . . , vk be the path in the challenge path from ID’s leaf v1 to the root vk. Further, let
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i1 < · · · < iℓ be such that the edges from (vij−1, vij ) correspond to encryptions, while the other edges on
the path stem from hierarchical derivation. Note that either ID∗ never considered ID to be in the group, or
ID∗ processed a remove-user(·, ID) message (and no subsequent add-user(·, ID) message). Further, it is
not possible that ℓ = 1 since in this case ID∗ would have encrypted a seed to the key of vi1−1 that in this
case was generated by ID. However, in the course of processing any round message, before incorporating any
key into their local state ID∗ checks that it comes with a signature which verifies under the key of some user
from the corresponding sub-tree, in particular from a user in G∗.

Thus, we may assume ℓ ≥ 2. We denote the user that generated the key at vij by IDj and the corre-
sponding update query by qj . So, when ID1 generated the key at vi1 they encrypted its seed to the a key
that was generated by ID, implying that ID1 considered ID to be in the group at this point in time. Further,
user ID2 encrypted the seed of node vi2 to a key generated in update q1 implying in particular that at time
q2 they had weakly processed the same operations (and in particular the same add/remove operations) as
ID1 at q1 by Proposition 3 and Lemma 4, plus potentially some others, but none affecting nodes on the the
subtree under vi2−1 (since any such operation would overwrite the keys created in q1). In particular, they
cannot have processed any remove-user(·, ID) between q1 and q2, so they must consider ID to be part of
the group.

By repeatedly applying this argument we obtain that IDℓ−1, when generating update qℓ−1, considered ID
to be part of the group. Similarly, as ID∗ = IDℓ processed this update, they also must have considered ID
to be in the group at this point in time and, further, cannot have processed a remove-user(·, ID) message
before generating the root of the challenge graph at qℓ, as, again, otherwise the key at viℓ−1 would have been
blanked or overwritten; a contradiction.

Proof of Lemma 2. Let ID∗ be the party who generated the challenge key K∗ in query q∗. Since K∗ is safe,
for all parties ID in G∗, the set of group members at time q∗ in ID∗’s view, ID must be safe in the view of
ID∗. We will show that any key in the challenge graph can only be in the state of ID during the critical
window [q−ID, q

+
ID] of ID in the view of ID∗. Together with Lemma 6 this will show the result. We note that all

the secret keys in the state of ID during its critical window are overwritten in the state of ID before the next
corruption of ID. This is the case because, by definition of the safe predicate, after ID generated the last
update aLID she (partially) processes some further update a+ID before the next corruption. Even though her
own update a+ID might only be partially processed, the way updates are merged in CGKA.Dlv guarantees that
all keys along ID’s path will be refreshed. Moreover, by Corollary 3, ID will not add to their state any keys
that were already part of it. It is sufficient to prove that any key in the challenge graph was generated by a
party that had already entered its critical window in the view of ID∗ when generating the update resulting in
this key. This is because seeds can only be encrypted to keys that have already been generated – since every
key in the challenge graph must stem from a query, as argued above –, which means that all receiving parties
are already in their respective critical window. Accordingly, we now prove that each key in the challenge
graph was generated by some user ID ∈ G∗ within the first period [q−ID, q

L
ID] of ID’s critical window for q∗ in

the view of ID∗.
To this aim, first note that the challenge node was generated by user ID∗ in query q∗, and q∗ by definition

lies in the first period of the critical window of ID∗. We will proceed by induction: consider an arbitrary
internal node v in the challenge graph, and assume it was generated at time qv (which is in the first period
of the critical window of the generator). Then, all except one parent of v must have been generated before
query qv. More precisely, for all parents w of v in the challenge graph it holds: Either (1) w was generated
in the same query qv (this happens for exactly one parent), or (2) w was generated by a party ID ∈ G∗ in
the subtree rooted at w, by Lemma 6, at some time qw < qv. In case (1), if v was generated during the
first period of the critical window of its generator, then clearly the same holds for w. In case (2), since
ID∗ only processes messages from parties with a consistent state, and qw was weakly processed by the party
who generated qv before it generated qv (by Lemma 5), having weakly processed qv, user ID∗ must have also
weakly processed qw before. This follows from Lemma 4, as both users must have then weakly processed the
same updates. In other words, we have q+w < q+v , where q+ refers to the query when ID∗ weakly processes
q. Similarly, we can deduce that qw must have been the last update generated by ID before qv, which was
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weakly processed by ID∗. This means that, for all update queries q′ID > qw generated by ID that are weakly
processed by ID∗, we have (q′ID)+ ≥ q+v .

We will now look at the critical window of ID. Consider first the case where ID’s critical window is defined
through a single update q−ID that was processed individually by ID∗. We will show that q−ID ≤ qw (so that,
in fact, equality holds here), which means that ID generated qw in the first period of its critical window.
Assume for contradiction that q−ID > qw, so that q∗ > (q−ID)+ > q+v . Consider the partition of the path in the
challenge graph from v to K∗ given by encryption edges, as in the proof above of Lemma 6: let v1, . . . , vk be
the nodes in such path, and let i1 < · · · < iℓ be such that the edges (vij−1, vij ) correspond to encryptions,
while the other edges correspond to hierarchical derivations. If ℓ = 1 then, by Lemma 5, in q∗ ID∗ encrypted
to a key generated in q−ID, but q−ID overwrote all keys generated by qv, so v cannot be in the challenge graph,
which contradicts our assumption on v. Assume, thus ℓ ≥ 2 and denote the user that generated the key at
vij by IDj and the corresponding update query by qj . In that case, by the same argument as in the previous

case, ID1 must have not weakly processed q−ID, before qv, since otherwise they would encrypt vi1 under a
key sampled by the former, and not the latter, and v would not be in the challenge graph. But we can
recursively apply this argument to deduce that IDℓ = ID∗ must also not have weakly processed q−ID at q∗, a
contradiction.

Finally, consider the case where ID’s critical window is defined through a sequence of L = ⌈log(n)⌉ + 1
updates q−ID = q1, . . . , qL. We will argue with respect to the potentially larger sequence q−ID = q1, . . . , qL′

of weakly processed updates in the first period of the critical window; here L′ ≥ L = ⌈log(n)⌉ + 1, since
processing implies weakly processing. Applying the same argument as in the previous paragraph, we can
deduce that at most one of these updates qi could have been weakly processed by ID∗ in the window
[q+w + 1, q+v ], and if this is the case, then this update must have been weakly processed concurrently with qv.
Note that if q+i = q+v for any i > 1, we have q+1 ≤ q+w , which by Lemma 4 implies q1 ≤ qw and thus ID is in
its critical window when it generates qw. If this is not the case, no qi can belong to the mentioned interval,
meaning it suffices to show that q+1 < q+v , as this implies q1 ≤ qw. Assume for contradiction q+1 ≥ q+v .
Consider v’s child u1; following the same argument, at most one of ID’s queries can be weakly processed
in the time interval [q+v + 1, q+u1

]. But there are at most ⌈log(n)⌉ − 1 descendants of (non-leaf node) v, let
these be denoted by u1, . . . , ul with l ∈ [⌈log(n)⌉− 1] and u0 := v. Now, by the above, for each time interval
[q+ui−1

+ 1, q+ui
] (i ∈ [⌈log(n)⌉−1]) there is at most one (concurrent) update from ID weakly processed by ID∗.

Since ul is the root of the challenge graph, which was created in query q∗, and by assumption q+1 ≥ q+v , a
simple counting argument implies that (qL′)+ > q∗, a contradiction.

5.5 Proofs of Lemmas 4 and 5

At the core of the proofs of both of the lemmas in the previous section (Lemmas 2 and 6) lies the fact that
an adversary cannot commit to subtrees outside the users’ states containing wrong information in a way
that will not push users out of consistent states. This is captured by the following game and lemma:

Definition 12. The ability of the adversary to open wrong commitments to the parts of the ratchet tree the
users do not see is modeled through the following OPEN game, played by an PPT adversary A. The game is
syntactically equivalent to the CGKA security game from Definition 5, except for the challenge queries, which
now take a different shape, and the winning condition. In this game, A is able to issue a query OPEN.Chall(q)
at any point, with q being a query of the form q = CGKA.Proc(ID, ·) already made in the CGKA game, and
output a ratchet tree Tq.

The game outputs 1← OPEN if, after such a OPEN.Chall(q) query, the following is true for Tq:

� Tq is a well-formed ratchet tree, every node except for its leaves has indegree two, it has no blank leaves
and it contains at least one ratchet tree leaf (i.e., one containing a public verification key);

� PHash.Ver(Tq) = 1, i.e. parent hash verifies;

� the state of every node v in Tq corresponds to that output by some add or update query qv < q;
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� the label ℓ(v
Tq

root) (as in Def. 3) of the node at the root of Tq is the same as the label of some node in
Pq(ID);

� there exist a query qi to which some node state in Tq correspond to, that has not been weakly processed
by ID at time q or before.

Else, 0← OPEN. Finally, we say that A wins the OPEN game if 1← OPEN.

We now show that no adversary can win game OPEN with more than negligible probability.

Lemma 7. The probability that any adversary A making at most Q queries in the CGKA security game
wins the OPEN game with respect to any q ∈ [Q] is negligible.

In order to prove this, we first prove the existence of an extractor algorithm that can return the queries
(weakly) processed by any user at any point in the game. This is formalized in the following lemma.

Lemma 8. There exists an efficient algorithm E that, given access to the random oracle queries, the public
transcript, and private states of all parties, can compute the set of operations Q that any user ID has weakly
processed in any query q = CGKA.Proc(γID,M).

Proof. Note first that, having access to the private states of the party, E can learn if ID accepts M, just by
running CGKA.Proc. Also, it is clear from M which adds and removes are processed, as well as any update
that is explicitly processed. We will prove the statement of the lemma by induction, showing that E can
compute the set of operations weakly but not explicitly processed by ID, as well as the set of users in the
group with whom ID could still have consistent states with.

To begin, note that if M is the first message ID processes, either because they set up the group, or are
added to it, E can easily extract all the updates weakly processed by ID. In the first case, these are none,
and in the second they are given by the ratchet tree ID receives as part of the welcome message, as by the
first bullet point of Definition 10. Before continuing, we argue that in the latter case these are all updates
ID weakly processes, i.e. any update satisfying the second bullet point of said definition must be one of those
given by the ratchet tree ID receives. Suppose that was not the case, and that there was some user ID′

whom, after processing some round message and, through it, explicitly processed some update U , was in a
consistent state with ID. From the fact the states were consistent, we know the respective round hash values
for both parties must be the same. However, that of ID′ was computed using as input some key sampled
in U which, by assumption, was not used in the computation of ID’s round hash value. This is however, a
contradiction to the collision resistance of the RO H3.

Now, let U i
ID be the set of users with whom ID could still have consistent states with respect to their state

γi
ID; i.e. those for which a sequence of round messages as described in the second case of Definition 10 exists.

More in detail, if ID′ ∈ U i
ID, there is a sequence of round messages M′

1, . . . ,M
′
ri that ID′ would process with

respect to their state at query q′ (recall this corresponds to either the last update query issued by id′ and
weakly processed by ID or the time ID′ joined the group), and which would bring them to a state consistent
with γi

ID. We will show how E can compute the sets U i
ID along with the queries weakly processed by ID. The

initial set U i
ID can be determined by E as follows. If ID sets up the group, this set starts empty; whereas if

ID is added to the group by ID′ through an add query CGKA.Add sampled in query q′, this set is U1
ID = Uq′

ID′ .
Further, E can track the impact of adds and removes in these sets as follows. Whenever ID processes and
accepts a round message in query q̃ containing a remove or an add, E respectively removes the corresponding
party from U q̃

ID, and adds it if it was added by a party that is in U q̃−1
ID . To justify the latter, observe that a

newly added party will be added with a state consistent with that of the party who added them.
It remains to show that E, given knowledge of the updates weakly processed by ID up until that point,

and the set Uq−1
ID of parties with whom ID has not been pushed to inconsistent states with, can extract

the updates that are weakly processed by ID when processing M and compute Uq
ID. Let γq be the state of

ID after processing M, and let γq−1 be its state before it. In particular, we want to identify the set Q′ of
updates that were weakly processed but not explicitly processed by ID when transitioning from γq−1 to γq.

We start with some terminology and a couple of observations. Given a pair of openings ov = (ov,1, ov,2)
associated to node v, received in M during query process q (and supposed to be commitments to the keys
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on the subtree under v’s parents), we say that ov is a correct opening pair if there is are queries to the RO
with output ov,1 and ov,2 and input a tuple (ovi,1, ovi,2, pkvi), for i ∈ {1, 2} where ovi,j are hash values in
the image of the RO, and pki is either equal to blank, or is the public key associated to the corresponding
parent of v in the output of some update query q′ issued by user ID′ and taking place before q. In the former
case, we require that ovi,1 and ovi,2 are also correct openings, or their parents, should the corresponding key
be blank, and so on. Moreover, we require that, either the update pki to which belongs to was (one of, if
several were concurrent) the last affecting that node which ID weakly processed, or that the state of ID′ at
time q′ is consistent with that of ID at q − 1. This will ensure that if it corresponds to an update not yet
weakly processed by ID, this it will be possible for ID to weakly process it at q. Last, we further require that
one of the pkvi

belongs to the same update as the pkv. This, is also needed to ensure ID would process any
such update, as any user for which those two nodes are in their state will not accept a round message not
satisfying that.

Now, we observe that, for ID to weakly process in q the query to which pk corresponds to or, in fact,
any update query coming from a user in v’s subtree other than that setting the new key for v, it must be
that the opening pair ov is a correct opening pair. Indeed, for ID to weakly process such update query,
there must exist a user ID∗ in the subtree under v that would, with respect to some of its states and a
certain chain of round messages, ultimately explicitly process said update, and end up in a state consistent
with γq. However, said user’s state will necessarily include a key for (the resolution of) the parents of v, as
well as two openings corresponding to the node’s parents (of the nodes in the resolution). Thus, were these
openings not correct, either because they were never output by the RO, or because their inputs were not of
the right format, or sampled by a user with an inconsistent state, we would have a contradiction to either
the preimage or collision resistance of the RO, or the fact that said user would explicitly process the update,
respectively. Also, note that that user, before processing that last message in the chain, would have a state
consistent with that of ID at q − 1, and would thus accept said update.

Further, observe that it must be the case that, for any update coming from a user in v’s subtree to be
weakly (and only weakly) processed by ID, there must be a path of correct openings all the way from v to a
leaf. Indeed, ID∗’s state will contain public keys (and implicitly openings) for each of the nodes in its path.
Were the above not true, the fact that ID and ID∗ end up sharing the same round hash would again imply
a contradiction with the properties of the RO.

In order to identify the exclusively weakly processed updates and update Uq
ID, E performs the following

steps for each of the non-leaf nodes v ∈ Resq(co-path(ID)), i.e. in the resolution of ID’s co-path after processing
M, for which its opening pair is correct, following the observations above.

We distinguish several cases. Case (1), v ∈ Resq−1(co-path(ID)), i.e. v is not a node introduced in ID’s
state in q. E now looks at each of the two openings ov,1 and ov,2 and distinguishes two further situations

in each case, depending on whether the opening values are new. Case (1.1) oqv,i = oq−1
v,i , i.e. the opening

ov,i does not change by processing M, and (1.2) the opposite, oqv,i ̸= oq−1
v,i . In case (1.1), E does not add

any update to Q′ and stops further examining any values or nodes in the subtree under the corresponding
parent of v. The reason being that in this case it is not possible for ID to have weakly processed any update
coming from a user in said subtree. To see why this is the case, assume for contradiction that it is not. Then
there exists some user under said subtree that could explicitly process some update and end up in a state
consistent with ID, making ID to have weakly processed it. This user must have been in consistent states
with ID before processing the update, and in particular have the same transcript hash value as ID at that
time. However, when processing the message through which they explicitly processed this update, the labels
for v must necessarily change for them, i.e. the labels for v they input into their computation of the round
hash must be different for this process query and the previous one. But then it is impossible for the two of
them to have the same round hash value in both rounds and therefore impossible for them to have consistent
states, by the collision resistance of random oracle H3.

In case (1.2), E recovers the inputs (owi,1, owi,2, pki) of the RO query with output ov,i (these exist and
have this form by the assumption on ov,i belonging to a correct opening pair), where wi is the corresponding
effective parent of v. Then it checks that (owi,1, owi,2) is a correct opening pair, ignoring the subtree under
wi if not, and makes the same distinction as before, now applied on the owi,j , iteratively excluding subtrees
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under any node for which its opening pair is not correct, or for which its key corresponds to updates already
weakly processed by ID. At the end of this iterative process, E compiles a list of all the updates given by
the keys in the correct openings, which had not yet been weakly processed by ID. It remains to determine
for which of these updates there are users in Uq−1

ID which could explicitly process them through processing
some round message and arrive at a state consistent with γq. To this end, first note that, following the
observation above, only users for which there is a path of correct opening pairs from their path to v will be
able to process some message and end up in such a consistent state. Thus, E considers the users in Uq−1

ID for
which such a path exists, and looks at the nodes in this path and the resolution of its copath which contained
keys (those the openings were committing to) belonging to updates in the previously mentioned list. The
updates from this list for which this is the case are then added to Q′. To see why, note that if ID∗ is such a
user, the message M∗ output by collecting all the operations and updates processed or explicitly processed
by ID in M, together with those in Q′, with the same ordering applied, will be accepted by ID∗ (with respect
to their state after processing the corresponding messages M∗

1, . . . ,M
∗
rq−1

given by the fact ID∗ ∈ Uq−1
ID ).

Moreover, by setting the openings in M∗ corresponding to the parents of nodes in the resolution of ID∗’s
copath, to be the same as those given by the RO queries, we ensure that ID∗ will derive a state consistent
with γq. Last, E removes from Uq

ID those user for which such path of correct opening pairs from their leaf to
v does not exist.

We now examine case 2), where v has been added to ID’s state as a result of processing M. In particular,
this means that v is in the resolution of a node blanked by some removal in M. Recall that ID receives
from the server the states of nodes in a subtree spanning the paths and (resolutions of) co-paths of removed
members. A subtree that, in particular, contains a state from v. E first checks whether the key at v after
processing M matches that in the subtree (this will not be the case if there was some update concurrent with
the removal included in the round message), and adds no query to Q′ if this is the case. If it is not, then
whichever update the new key at v corresponds to was explicitly processed by ID at q, and E then performs
the same steps as in the previous case, looking at the keys commited in the openings if these are correct,
and working its way down the subtree under v through examining the RO queries, all the way to the ratchet
tree leaves. Note that the removals taking place in M would also be processed by whichever users under v’s
subtree could still remain in consistent states with ID, since these will receive node states for the same nodes
in the resolutions of all blanked descendants of v (and any openings sent to ID can also be mirrored in the
last round message M′

t sent to said user).

Proof of Lemma 7. Now, in order to prove the statement of the Lemma, we will argue for contradiction,
assuming an adversary A that wins the OPEN game exists. We will show that if A had a non-negligible
probability of winning the game at some given query, then it must have had it also with respect to an earlier
query. Since there is no chance for A to win the game with respect to the first process query (as this must
correspond to either the group creator processing their own update or a user joining the group right after
initialization), this will show that all queries corresponding to node states in Tq must have been processed by
ID at time or before q, giving us the desired contradiction. Accordingly, consider an execution of the OPEN
game, and let q be the first query of the form q = CGKA.Proc(ID, ·) where A could win, i.e. the first query
for which a tree Tq, computable in polynomial time by A and satisfying all conditions in Def. 12 exists.

By assumption, there is a node v ∈ Pq(ID) in the state of ID at time q, with label ℓv, which is the same
as the label of the root node of Tq. Recall that if the state of v contains openings ov = (ov,1, ov,2) and a
public key pkv, then ℓv = H3(o1v, o

2
v,

pγ(v)). Note that we could assume w.l.o.g. that v ∈ Res(co-path(ID)).
Indeed, note that for any node in Tq

⋂
Pq(ID), by collision resistance of H3, the states of that node in Tq

and Pq(ID) must match. Moreover, ID must have weakly processed (in fact, explicitly processed) any query
setting any keys for nodes in path(ID). Thus if Tq satisfies the conditions of Def. 12, then so must a subtree
of it rooted at a node in Res(co-path(ID)).

Moreover, by assumption, we know that PHash.Ver(Tq) = 1. Recall this means that every non-blank
node in the Tq has a complete public state; and that for any internal node w, its associated IDv is that of
a user whose leaf is in the sub-tree rooted at w, and if w1 and w2 are w’s effective parents, we have that
either:
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(a) h2
w1

= H4(pkw,PKpr
w , h2

w, {pky}y∈R) and h1
w1

= ℓ(w2) or

(b) h2
w1

= H4(pkw,PKpr
w , h2

w,PKpr
w2

) and Htrans,w1
= Htrans,w2

.

for R = Res(w2) \ Unmerged(w). Moreover, Sig.Versvkw((pkw,PKpr
w , hw,Htrans,w, confTagw), σw) = 1.

Let ID1 be the user located at the end of the path from a ratchet tree leaf in Tq to v which, again, we
know exists by assumption. For ease of exposition, we will assume w.l.o.g. that ID1 is the left-most leaf in
the subtree of Tq under v .(where Tq is the ratchet tree of the whole group in the view of ID; even though
ID does not have a full view of Tq, they do know which users are associated to which leaves.) ID1’s path in
Tq will contain a number of updates from some of the users under v’s subtree, which allow us to partition
said path as follows. Let v1 be the leaf of ID1, and v1, . . . , vk = v the nodes in said path. As noted above,
every key associated to the vi must stem from either an add 9in the case of v1 or an update query, since all
the signature at each v’s state verifies. We can partition this path into sub-paths given by sets of nodes that
were sampled in the same update: vi and vi+1 are in the same sub-path exactly when vi+1 verifies through
vi, according to PHash.Ver. We denote the different updates that make up said path, and such that each
corresponds to one element in the partition, as q1, . . . , qm, in order, with q1 being the update setting the
key for v1, and qm the one setting the key for v. Accordingly, we denote by IDi the user who authored qi.
Let qi be an update corresponding to a partition element with two or more nodes, i.e. to which two or more
nodes in the path correspond to. Then, we denote by qi,j , j ∈ (1, . . . ,mi) the updates that correspond to
the nodes that are in Res(co-path(ID1)), i.e. in the resolution of ID1’s co-path, which for which their child
corresponds to qi. If there any blank nodes in between those sampled by qi and qi+1, we denote by qbi,j those
updates corresponding to nodes in the resolution of said blank nodes, and which are not q1. Here j < j′ if
qi,j (resp. qbi,j) was sampled by a party whose index is to the left of the party who sampled qi,j′ (resp. qbi,j′).

As before, we denote the user who sampled qi,j (resp. qbi,j) by IDi,j (resp. IDb
i,j).

Along the way we will distinguish based on whether the parent hash of the lowest node in path(ID1)
sampled by any given qi verifies through conditions (a) or (b) above. Recall that condition (a) corresponds
to the case where IDi was aware of qi−1 at the time qi, and had already weakly processed it by that time
(as we will now show). In turn, condition (b) corresponds to the case where qi and qi−1 were concurrent, in
the sense that both users were in consistent states when sampling them and were not aware of the existence
of the opposite update when sampling theirs. Thus, for ease of notation, we will write qi−1 ◁ qi to represent
the first case, and qi−1 ∼ qi, to represent the second one. For any query qi,j , i.e. those affecting only the
nodes on v’s copath, we say, similarly, that qi,j ◁ qj and qi,j ∼ qj if the node Int(IDi, IDi,j) verifies through
condidions (a) and (b), respectively.

We will now prove the following claim, from which the Lemma will follow easily. Informally, it states
that from its state at q1 onwards, there is a chain of round messages that ID1 would accept and that would
bring them to a state consistent with ID’s current state, along the way explicitly processing all updates
corresponding to nodes in the path and copath of ID1.

Claim. For any j ∈ (1, . . . ,m − 1), such that qj ◁ qj+1, there is a sequence of efficiently computable round
messages M1, . . . ,Mrj that ID1 would process and accept with respect to their state at q1, and such that

the state of ID1 after processing that last message Mrj , γ
qrk
ID1

, is consistent with that of IDj+1 at time qj+1,

i.e. with γ
qj+1

IDj+1
.

Proof of Claim. First, we make the following observation: if q̃ ◁ q̂ < q, then it must be that the user ˆID
that issued the update in q̂ had already weakly processed q̃ at the time q̂. Indeed, by the fact that parent
hash verifies at the node where the both update paths meet, we know that ˆID had some key from q̃ in their
state. If there are not blank nodes in between the nodes set by q̂ and the node set by q̃, then the update
in q̃ must have been explicitly processed by ˆID, since a node they sampled belongs to the copath of ˆID. If,

instead, there is at least one blank node in between q̂ and q̃ and (̂ID) did not explicitly process (̃q) at any

point, then, by the minimality of q, it must be that ˆID had already weakly processed q̃ at q̂. To see why,
note that ˆID introduced the node corresponding to q̃ into their state at some point before ˆID, by processing
a round message containing at least one remove operation. However, since ˆID accepted that round message,
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it must be that the parent hash verification of said tree passed and, moreover, that it was a well-formed
tree containing at least one user leave (that of the removed party). Further, all node states in it must have
corresponded to past queries, except with negligible probability, since the adversary is not allowed use of
signing keys and all node states come with a signature. Thus, that tree would have satisfied all constraints in
Def. 12 and, moreover, have contained a node state corresponding to an operation not yet weakly processed
by ˆID. In particular, this means A could have won the OPEN game with respect to some query earlier than q,
which is a contradiction to the minimality of q.

We will prove the claim by induction on j, but will first start with a couple of simplified case, capturing
most of the arguments used in the inductive argument, in order to build intuition. Suppose first j = 1,
i.e. q1 ◁q2, and we assume that there are no blank nodes between the nodes sampled by q1 and those sampled
by q2. We will show the claim is true for this particular case.

We first show that ID2 was at some point in a state consistent with that of ID1 at q1. To see this, first note
that at least one node state set by q1 is part of ID2’s state at q2, from parent hash verification. Now, if q1
corresponds to the query where ID1 processed their welcome message, then the state of ID1 after processing
the corresponding round message must have been consistent with that of IDA, the party who added them,
at the time they issued the add operation. However, since ID2 also must have processed the corresponding
add query from IDA, their state must have also been consistent with IDA’s at that time and, by transitivity
of =, also with ID1’s at q1. If, in turn, q1 was sampled by ID1 after they joined the group, then we know it
must have been explicitly processed by ID2 (since by assumption there are no blank nodes between nodes
from q1 and nodes from q2, i.e. the highest node sampled by q1 is the parent of a node sampled in q2 and
therefore a node in the copath of ID2), which, by Proposition 3, means their state before processing it was
consistent with that of ID1 at q1.

Now, from the time the state of ID2 was consistent with ID1’s at q1 all the way to q2, ID2 must have
processed a series of round messages (we know they processed at least one: the one containing q1). For
any q1,j such that q1,j ◁ q1, we know that ID had already weakly processed q1,j at q1, by the observation
at the beginning of the claim’s proof. Now, note that all packets from the q1,j such that q1,j ∼ q1 will be
accepted by ID1 with respect to its state at q1, since by parent hash verification of nodes sampled by q1 (in
particular the check involving Htrans), ID1 was in consistent states at that time with the corresponding user
ID1,j , and moreover, by the equality check involving the predecessor keys PKpr, ID considered those parties
as belonging to the corresponding subtree. This is necessary, as ID1 will only accept an packet corresponding
to some node u if it is signed by a user belonging to the subtree under u. Note that if PKpr was not part of
the state or not included in the signatures, a tree resulting from rearranging update paths from users that
update concurrently and from consistent states, would pass parent hash verification. For example, consider
the case where all users update concurrently, with the left update always winning; the tree where the update
paths of any even-index users are rearranged would still verify (this issue is similar as the one that earlier
versions of parent hash for TreeKEM suffered of [5]).

Consider now all other packets included in the round message MID2,1 that ID2 processed and through
which they processed q1, which were either adds or removes, or corresponded to node states for nodes that
are either Int(ID1, ID2), nodes above it, or parent of these. All this packets would also be accepted by ID1

with respect to γq1
id1

, since they were accepted by ID2 at a time where their state was consistent with it; and
the information used to determine aceptance of this packets is based on values that lie in the intersection
of the states of both parties. Indeed, the acceptance of update or add packets is based uniquely on values
corresponding to the key schedule and membership set, and the acceptance of removes is based also on values
stored on node states. Since the nodes mentioned are in the states of both parties, and the node states must
match by the fact that the states are consistent, the statement follows. Thus, the message M1 containing
the packets corresponding to the q1,j such that q1,j ∼ q1, and all other packets from MID2,1 that are either
adds, removes or correspond to the node states above will be accepted by ID1. Moreover, if this message
contains, for packets corresponding to the q1,j , the same openings as the corresponding nodes in Tq, and, for
all other node states, the same openings included in the message MID2,1 to ID2, then ID1 after processing
M1 will be in a state consistent with ID2 after they weakly processed q1. To see this, note that the states
of nodes in ID1’s state below Int(ID1, ID2) will match exactly those in Tq, and that those for the remaining
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nodes must match those in ID2’s state. Since by parent hash verification, we know h1
w2

= ℓ(w1), where w1

and w2 are the left and right parents of Int(ID1, ID2), we know the label both parties compute for w1 must
be the same as well.

As to the remaining round messages processed by ID2 from this time until q2, it must be that none of
this included any changes to the subtree under the highest node sampled by q1. Indeed, since we are for now
assuming that there are no blank nodes in between those sampled by q1 and q2, for ID2 to process something
affecting that node after processing q1, they would have to explicitly process q1 again in order to have a
node state from that query in their state at q2. However, by Corollary 3, we know this cannot be the case,
since explicitly process implies weakly process. Thus, all other messages processed by ID2 from that point
onwards until q2 must have only affected nodes that are, are above, or are parents of Int(ID1, ID2). By the
same argument as before, ID1 would process and accept the corresponding round messages M2, . . . ,Mr1 ,
containing those same packets, in the same order, bringing them to a state consistent with ID2’s at q2. This
proves the claim above for simpler case where j = 1, there are no blank nodes between the nodes sampled
by q1 and q2.

Before we move on, we will now discuss the effect of blank nodes between the nodes sampled by q1 and q2
in the above argument. First note that now we do not have the guarantee that ID2 explicitly processed q1,
however this is taken care of by the observation from the beginning of the claim, which implies ID2 weakly
processed q1 before q2. By Proposition 3, this implies ID2 was at some point in a state consistent with that
of ID1 when issuing q1.

Further, we now need to show that ID2 did not process any other operations affecting nodes on the
subtree under the highest node sampled in Tq by q1. Above we relied on the fact that ID1 would have to
explicitly process q1 twice but, again, we do not have this guarantee. We argue as follows. In the case wjere
blanks between q1 and q2, if ID2 weakly processed but did not explicitly process q1, say by processing round
message MID2,1, it must be that they processed and accepted a round message containing some removal after
they processed MID2,1. Let MID2,2 be some round message, processed and accepted by ID2 between weakly
processing q1 (through processing MID2,1) and issuing q2, where ID2 weakly processed such an operation
affecting the nodes on the subtree under the highest node sampled in Tq by q1. First, note that if ID2

processed no round messages including removals between processing MID2,2 and time q2, then they must have
processed some round message in that interval setting the key of some node in Res(lparent(Int(ID1, ID2))) to
one set by q1. But this node must have already been part of ID2’s state at that time, meaning they would
have explicitly processed q1 after already weakly processing it, a contradiction to Corollary 3. Thus, ID2

must have processed some round message containing a remove after processing MID2,2 and, in particular, it
must have been such a message that put the key from q1 into their state. However, for ID2 to accept such a
message the received tree corresponding to the removed user(s) path and co-path resolution must have been
consistent with said key from q1. Since we know the openings left by MID2,2 were not consistent with it,
ID2 must have processed yet another MID2,3 in between these two messages, in particular including openings
now again consistent with the key from q1. Assume MID2,3 is the last such round message processed by ID2

before they the aforementioned round message that put the key from q1 into their state. We know that that
round message containing a remove must have contained a tree T that was consistent with the openings
sent in MID2,3 (and thus such that all queries corresponding to node states in T had already been weakly
processed by ID2 at the time, by the argument at the beginning of the claim’s proof). Now T must contain
some query q′ that ID2 weakly processed between (and including) MID2,2 and MID2,3, such that q1 ◁ q′ in
T . If there are no blank nodes between q′ and q1, then whoever issued q′ must have explicitly processed q1,
implying ID2 weakly processed q1 a second time in that interval, a contradiction. Else, we can recurse and
repeat the same argument with respect to ID′, which must eventually lead us to some user weakly processing
q1 twice, since we are considering progressively lower nodes in the tree.

The remaining part of the argument that is affected by these blank nodes is that now there are queries qb1,j
that we need to show ID1 would weakly process by the time they process Mr1 . To see this is the case, note
that all such blank nodes between q1 and q2 must have been created (in the view of ID2) between (possibly
including) them processing q1 and the query q2. Moreover, during this interval, ID2 cannot have processed
any removes coming from the subtree under the highest node sampled by q1 in Tq, following the argument
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above. However, note that if we were to construct the sequence of round messages for ID1 as before, we
would now need to include any updates affecting nodes in the subtree under Int(ID1, ID2) but outside the
subtree under the highest node sampled by q1. Further, note that these might no longer be reflected in Tq,
since there could have been several of them, and earlier ones could have been overwritten. Nevertheless, we
can use the algorithm E from Lemma 8 to determine which operations affecting these nodes were processed
by ID2 in this time interval, and add those to the crafted messages to ID1, with the corresponding openings.
Further, tree that the server would need to send to ID1 for each message containing a remove would contain
exactly the same node states as the tree received by ID2 in their corresponding messages. Thus, they would
be accepted by ID1. In particular, any of the nodes corresponding to the qb1,i either corresponds to an update
ID2 explicitly processed (either after or in one of the messages where the blanks were created), or would
have been included in at least one of such trees. In the first case, ID1 would also explicitly process such
query in the process; in the second, again, by minimality of q, we know that ID1 must have weakly processed
the corresponding query. This proves the claim for j = 1 in the general case, where blank nodes can exist
between q1 and q2.

Now, we will start the induction proof of the claim. Let j ∈ (2, . . . ,m − 1) and suppose that qj ◁ qj+1

and, further, that for any j′ < j for which qj′ ◁ qj′+1, a sequence M1, . . . ,Mr′j
as in the claim exists. For the

base case, we consider the case where j is the minimal such index for which qj ◁ qj+1. In that case all, for all
j′ < j, qj′ ∼ qj′+1, and thus, by parent hash verification (in particular by the fact that the transcript hash
values in those updates match), we know that all IDj′ were consistent with each other with respect to their

respective states γ
qj′

ID′j
. In particular, it means that ID1 would accept any packet from those updates that

was included in a round message. Moreover, as above, we will show that IDj+1 must have weakly processed
q1 at some point, which in turn implies that IDj+1 must have at some point had a state consistent with that
of ID1 at q1. To show this, note that by parent hash or verification of the node Int(IDj+1, ID1), we know
that, at qj+1, the label of the left parent of said node, in the view of IDj+1 corresponded exactly to the label
of that subtree of Tq, to which the node(s) sampled by q1 belong to. By minimality of q, we know then that
IDj+1 must have weakly processed q1.

Similar to above, M1 can now be constructed as containing all qj′ for j′ ∈ {1, . . . , j}, together with all
the qj′,ĵ′ such that qj′,ĵ′ ∼ qj′ , as well as all queries contained in the message that IDj+1 processed when
they weakly processed q1, and which affected nodes outside of the subtree under the highest node sampled
by qj . A similar argument to the one above shows that ID1 would accept all these individual packets and
thus the round message, and, if this round message contained the correct openings (those given by T for
nodes the subtree under the highest node sampled by qj , and those given by the round message for IDj+1 for
the remaining nodes), then ID1 will transition to a state consistent with that of IDj+1 at the time the latter
processed q1. The exact same argument above shows that there is a sequence M2, . . . ,Mrj of round messages
ID1 would process and accept after processing M1 that bring them to a state consistent with that of IDj+1 at
qj+1. Moreover, along the way, ID1 processes all qb

j,ĵ
that they had not already weakly processed, as before,

those would correspond to nodes whose states must have been included by the server in the corresponding
round messages including the removals that caused any blank nodes between the nodes sampled by qj and
those sampled by qj+1 (note that no such qb

j,ĵ
) exist if no such blank nodes exist). Finally, just as before,

ID1 must also before q1 have processed any qj′,ĵ for j′ ≤ j for which qj′,ĵ ◁ qj′ . Indeed, we know the label
of the highest node sampled by qj in T matches the label of the same node in ID1’s state after processing
q1, so by minimality of q, ID1 must have processed all queries corresponding to this subtree. This concludes
this case.

Now, we consider the inductive step, where j is not minimal, i.e. there exist queries qκ satisfying qκ ◁qκ+1

with κ < j, and we assume that the claim is true for any such κ < j. Let qj′ be the query where j′ < j,
qj′−1 ◁ qj′ , and such that j′ is maximal satisfying those two properties. In particular, j′ is such that for

all ĵ ∈ {j′ + 1, . . . , j − 1} (if such interval exists) we have qj′ ∼ qĵ . By the induction hypothesis there is a
sequence of messages M1, . . . ,Mrj′−1

which ID1 would process with respect to their state at q1 and which
ushers them into a state consistent with that of IDj′ at time qj′ .

In this case, using the same argument as above, IDj+1 processed all qj′ , . . . , qj , by minimality of q, before
qj+1. Thus, IDj+1 was at some point in the past in a state consistent with IDj′ at qj′ , and thus with ID1
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after they processed Mrj′−1
. Moreover, it must be that since that point and all the way to qj+1, IDj+1 has

not weakly processed any updates, adds or removes affecting nodes in the subtree under the left parent of
Int(ID1, IDj′). To see why, note first that all the qj′ , . . . , qj , must have processed at the same time since
they all had the same transcript hash values. At the time just before processing those, qj′ had to have
already weakly processed all updates below qj′ . Indeed, we know that there is a tree that would agree with
IDj′ ’s state at that time and which would contain the nodes for all those queries (following the fact that
the parent hash verification of Int(ID1, IDj′) is through condition (a)). But since the state IDj′ had at time
qj′ , is consistent with IDj ’s state at the time they processed qj′ , such tree must have also been consistent
with IDj+1’s state, showing, again, by minimality of q, that IDj+1 had weakly processed those queries by
then. Moreover, we know that at qj+1 their state was also consistent with the subtree under the highest
node affected by qj in Tq. Thus, if IDj+1 processed anything else in between weakly processing qj′ and time
qj+1 affecting those nodes on the subtree under the highest node affected by qj′ , then must have processed
some other round message afterwards that brought their state consistent with the subtree under qj+1 again.
In particular, they must have processed something that affected the left parent of Int(ID1, IDj+1), and later
processed something that set the key at the highest node sampled by qj in T to be the same one as they
already had in their state at the time of weakly processing qj′ (and therefore also qj). This means that they
must have weakly processed qj twice, which is a contradiction to Corollary 3. Thus, it must be that since
the time IDj+1 weakly processed qj′ and all the way to qj+1, IDj+1 has not weakly processed any updates,
adds or removes affecting nodes in the subtree under the left parent of Int(ID1, IDj′).

In particular, this means that we can treat this as the case where j is minimal, and argue that there is a
sequence of round messages M′

1, . . . ,M
′
r′j

that IDj′ would process from time qj′ that would put them into a

state consistent with IDj+1 at qj+1, where IDj′ would along the way weakly process all queries corresponding
to nodes between qj′ and qj ; and, moreover, such that those messages would contain no changes from the
subtree under qj′ . But then, the corresponding sequence of round messages M1

1, . . . ,M
1
r′j

, sent this time

to ID1 after they processed Mrj′−1
, and containing the same packets as the M′

1, . . . ,M
′
r′j

, would have the

same effect and would also be accepted, since they only concern nodes that in the intersection of the states
of the two parties. Thus, if we let Mrj′−1+k ← M1

k for k ∈ {1, . . . , r′j} then the sequence of messages
M1, . . . ,Mrj′−1+r′j

=: Mrj brings ID1 from their state at q1 to a state consistent to IDj+1’s at qj+1, along
the way weakly processing all the necessary queries. This completes the proof of the claim.

(End of proof of Claim)
If qj is the maximal query in ID1’s path in Tq for which qj−1 ◁ qj , then we know from the proved claim

above that there is a sequence of round messages that ID1 would process from its state in q1 that lead them
to a state consistent with that of IDj at qj . Moreover, for any j′ > j, qj′−1 ∼ qj′ , just by definition of
qj . Thus, we will argue now that there exists one last message Mm that ID1 would process with respect
to their state after processing Mrj−1

, and which will take them to a state consistent with that of ID at the
time they weakly processed qm. First, observe that ID’s state before weakly processing qm, in particular the
corresponding openings, must have been consistent with the subtree of Tq below qj , since they must have
been in consistent states with IDm at qm and therefore with IDj at qj (since qj ∼ qm). Moreover, after
processing the round message through which they weakly processed qm, their state must still be consistent
with said subtree of Tq, just because of the assumption that ℓ(T ) is equal to the label ℓ(v) is ID’s state. This
implies that this round message through which they processed qm contained no changes for that subtree
of Tq in question, following the same argument used above. Thus, following the arguments in the proof of
the claim, the round message, now sent to ID1 containing the same packets as the one sent to ID would be
accepted and would prompt ID1 into a state consistent with that of ID.

However, this implies that all queries q̃ in Tq such that q̃ ∼ qj would be explicitly processed by ID1

by processing this message, and thus weakly processed by ID at this time. Moreover, all other queries
corresponding to all other nodes in Tq were already weakly processed by ID1 at the time before they processed
Mm. In particular, since the states of ID and ID1 before they each weakly processed qj were consistent, so
must have been their round hash value at that round. Thus, by minimality of q, again, ID must have already
weakly processed all those queries by that time. This concludes the proof.
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Finally, we turn to the proofs of Lemmas 4 and 5.

Proof of Lemma 4. Before starting the proof we make the following observation. Let ID and ID∗ be in consis-
tent states after each processing queries q = CGKA.Proc(γID,M) and q∗ = CGKA.Proc(γID∗ ,M), respectively,
and assume that ID∗ joined the group at the same time or after than ID. Then, by collision resistance
of H5, the sequence of transcript hash values (and round hash values) ID∗ has computed throughout their
execution, up to time q∗, must be a suffix of those ID has computed up to time q. In particular, for any
query of the form CGKA.Proc(γ∗

ID, ·) in the protocol execution where ID∗ accepts the received round message,
there must be a query CGKA.Proc(γID, ·) where ID accepts the received round message; and moreover, their
states between any two pairs of such corresponding queries must be consistent, by Proposition 2. Indeed,
this must be the case since accepting and processing a round message always changes the users’ state, as
e.g. the transcript hash is updated by hashing in a new round hash value. We can thus draw a 1-to-1
correspondence between processed messages by one and the other. More formally, if (q∗1 , . . . , q

∗
k) are the

process queries q∗i = CGKA.Proc(γ
q∗i−1

ID∗ , ·) that ID∗ processed since joining the group up until q, then there
is a bijection q∗i 7→ qi between those and the k last process queries (q1, . . . , qk), qi = CGKA.Proc(γ

qi−1

ID , ·),
that ID processed before q, such that the states of ID and ID∗ between qi and qi+1 and between q∗i and q∗i+1,
respectively, are consistent.

We will start by arguing that every update U that ID∗ weakly processed at or before time q was also
weakly processed at or before time q by ID. Consider first the case where ID∗ weakly processed U at the
moment of joining the group, i.e. ID the tree T that ID received as part of the welcome message contained
a node with a public key which was part of U . Because ID∗ accepted the welcome message, we know that
PHash.Ver(T ) = 1, and that it has the format required in Def. 12, that is, indegree two everywhere except at
the leaves, no blank leaves, the state at each node corresponds to some update sampled during the protocol
execution (since the signatures at each node verify), and at least one of its leaves contains a public signing
key. Moreover, since the state of ID∗ after processing q∗1 is consistent with that of ID after processing q1, it
holds that the label of T must match the label of vroot in ID’s state, γq1

ID , at that time. However, if T contained
a node state corresponding to some query not yet processed by ID, we could then build an adversary against
the OPEN game that would win using T with respect to query where ID processed q1. It follows that ID had
at that time already processed U .

Next, consider the alternative case, where ID∗ weakly processed an update U after joining the group,
through query q∗i , i ≥ 2. By definition, there exists a user ID′ and a series of efficiently computable round
messages M′

1, . . . ,M
′
t such that ID′, with respect to their state γ′ at time q′ID∗ , would process (and accept) all

M′
i in order; and such that ID′ would explicitly process U by processing M′

t and arrive at a state consistent

with γ
q∗i
ID∗ . Here, recall q′ID∗ is either q′ID∗ = CGKA.Upd(γ′) the last update from ID′ weakly processed by ID∗

or, if such update does not exist, the query in which ID′ processed their welcome message into the group,
initializing state γ′. Now, note that since the state of ID at qi is consistent with that of ID∗ at q∗i , then so it
is with the state of ID′ after processing M′

t. We will show that there must exists a similar sequence of round
messages from q′ID, the query where ID′ last issued an update weakly processed by ID or, if such update does
not exist, the query in which ID′ processed their welcome message into the group. Assume first that q′ID∗ is
the query where ID′ processed their welcome message. In that case, q′ID∗ ≤ q′ID, so (a subsequence of) the
M′

i satisfy the definition with respect to ID, meaning ID weakly processed U in qi. If that is not the case,
ID∗ must have weakly processed query q′ID∗ at or after joining. If ID∗ did so at the moment of joining, then
we know that ID must have also weakly processed said query, so q′ID∗ ≤ q′ID (in fact, equality holds here) so,
again, the M′

i satisfy the definition with respect to ID. Last, assume ID∗ weakly processed q′ID∗ in q∗i , with

i ≥ 2. But then, we know that the state of ID′ at q′ID∗ is consistent with ID∗’s state, γ
q∗i−1

ID∗ , and therefore also
with ID’s, γ

qi−1

ID . Thus the M′
i, preceded with whatever round messages ID′ processed between q′ID and q′ID∗

satisfy the definition with respect to ID∗.
Finally, this last argument shows, in fact, that if ID∗ weakly processes U in q∗i , for i ≥ 2, then so does

ID in qi. This completes the last part of the lemma statement, regarding the ordering of weakly processed
queries (and, in particular, implies that q′ID∗ = q′ID in the last case above).
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Proof of Lemma 5. There are three actions that trigger ID to add a key to their local state: processing an
add operation, and adding the new InitKey of the added party; explicitly processing an update operation;
and processing a remove operation, where they add extra keys to the resolution of their copath. Statement
1 is trivially true for keys added through the first or second action. We will first show that statement 2 is
also true for these keys.

Consider now the case where ID added pkv to their state by processing an add operation, adding party IDA,
and assume for contradiction that they weakly processed an update U ′ affecting v in query q′ ∈ {q+1, . . . , q∗}.
This update must be authored by IDA, but since their leaf v is in the state of ID, they must have then explicitly
processed it, which would mean v would no longer be in ID’s state, a contradiction.

Now, consider the case where pkv was introduced in ID’s state by explicitly processing Update Uv in q
and, again, assume for contradiction they weakly processed some U ′ in q′ ∈ [q + 1, . . . , q∗] affecting v. For
pkv to still be part of ID’s state at q∗, they must have not explicitly processed any Update coming from the

subtree under v. However, by the definition of weakly processing, there must be a user ˆID under v’s subtree
whose Update was explicitly processed by ID in q′, which is a contradiction.

Thus, it remains to show the lemma for keys pkv that were added by ID to their state by processing a
remove operation. This is, however, a straight forward application of Lemma 7. Observe that pkv must have
then been part of a tree sent by the server which satisfied all conditions in Def. 12, because ID accepted them
round message containing it. Indeed, the checks a party does on this tree before accepting the round message
that contains it ensure that it satisfies the requirements estipulated in the lemma: parent hash verifies and,
by virtue of consisting of the path(s) and co-path resolution(s) of one (or more) user(s), it will have no blank
leaves, indegree two except at the leaves, and contain a leaf with a public verification key. The fact that
all node states correspond to previous queries follows, in turn, by the fact the adversary is not allowed to
corrupt signatures. Moreover, its label must match that of the intersection of the removed user(s)’s path(s)
and P(ID). Thus, it must be that all keys in it correspond to operations ID had already weakly processed. If
that was not the case, we could build an adversary for the OPEN game which would win using the mentioned
tree. with respect to ID and the tree(s) received from the server as part of the round message.

It remains to show that statement 2 is true for v, i.e. that ID cannot have weakly processed an update U+

coming from a user in the subtree under v, after weakly processing U . However, note that if this is the case,
ID must have explicitly processed an update between q and q∗, and later process another round message
again making them weakly process U twice, following the same argument as in the proof of Lemma 7, which
is a contradiction to Corollary 3.
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A Glossary

Continuous Group-key Agreement
CGKA Asynchronous Continuous Group Key Agreement Def. 1
CGKA.Gen Key generation. Def. 1
CGKA.Init Initialization of a group. Def. 1
CGKA.Add Adding a member. Def. 1
CGKA.Rem Removing a member. Def. 1
CGKA.Upd Updating. Def. 1
CGKA.Dlv Server collects protocol messages and delivers a round message. Def. 1
CGKA.Proc Processing a round message. Def. 1
CGKA.Key Extraction of group key. Def. 1

Ratchet Trees
Tn = (V n

T , En
T) Ratchet tree associated to round n p.8

γ(v) State associated to a node v which contains: p.8
(skv , pkv) PKE associated to v,
PKpr predecessor keys associated to v,
hv parent hash associated to v,
IDv identifier corresponding to a party,
σv signature under the private signing key of IDv ,
Htrans,v transcript hash at the time of sampling,
confTagv confirmation tag at the time of sampling,
ov = (o1, o2) hashes that are part of a Merkle tree,
Unmerged(v) set of keys of unmerged leaves belonging to the subtree rooted at v,
(sskv , svkv) signing and verification key-pair if v is a leaf,

Res(v) Resolution of a node. Def. 2
Re-key Hierarchical derivation of seeds and keys along a path. Alg. 1

CoCoA: Local state
P(ID) P(ID) = path(ID) ∪ Res(co-path(ID)). p.13
γ Local state stored by a user which contains: Tab. 2

γ.ID identifier for the party,
γ.G set of current group members,
γ.ssk the party’s signing key,
γ(v) for each v ∈ path(γ.ID),
pγ(v) public part for each v ∈ Res(co-path(γ.ID)),
γ.Htrans current value of the transcript hash,
γ.epochSecret(n) epoch secret,
γ.appSecret(n) application secret,
γ.confKey(n) confirmation key,
γ.initSec(n) initialization secret,
γ′ pending state.

ℓ Map that takes nodes in Tn to labels. Def. 3
Hround(n) Round hash. Def. 3

CoCoA: Parent hash
(Sig.Sig, Sig.Ver) Signature scheme. p.18
PHash.Sig Computation of new parent hash values and signatures. p.18
PHash.Ver Verification of the authenticity of a tree. p.18

CoCoA: User generated messages
(MAC.Tag,MAC.Ver) MAC. Tab. 3
Init messages Tab. 3

ID The identifier of the group creator.
G List of group members.
P = (pj = (pkj , hj ,Htrans, σj)) Public states for every v ∈ path(ID).
S = (sj,l = (ej,l, σ

s
j,l))j,l Encryptions of the seeds.

σs
j,l Signature under sskID of ej,l.

Update messages Tab. 3
ID The identifier of the updating user.
c Number of updates by ID since last processed round message.
P = (pkj , hj ,Htrans, confTag, σj)j New public states for every v ∈ path(ID).

confTag Confirmation tag under γ.confKey of γ.Htrans

σj Signature under sskID of (pkj , hj , confTag, ).
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S = (ej,l, confTag, σ
s
j,k)j,l Encryptions of the new seeds

σs
j,k Signature under sskID of (ej,l, confTag).

Remove messages Tab. 3
ID The identifier of the removed/added user.
confTag Confirmation tag under γ.confKey of γ.Htrans

σ Signature of confTag under sender’s signing key.
Add messages Tab. 3

ID The identifier of the removed/added user.
confTag Confirmation tag under γ.confKey of γ.Htrans

σ Signature of confTag under sender’s signing key.
pkID Public key of ID.
W Welcome message sent next round.

CoCoA: Round messages
Mi Round message sent to party IDi which contains: Tab. 4

R vector of Remove messages,
A vector of Add messages,
ci update counter, if IDi updated, 0 otherwise,
Hround round hash value,
Oi openings to verify Hround,
γ(v) public states of nodes needed to update P(IDi),
uv = (ID, p, s) public state of each relevant updated v,
W welcome message (for new parties),
T entire ratchet tree (for new parties).

CoCoA: CGKA security
C Challenger in the security game. Def. 5
A Adversary in the security game. Def. 5
create-group(G) C initializes the group. Def. 5
add-user(ID, ID′) ID adds ID′ to the group. Def. 5
remove-user(ID, ID′) ID removes ID′ from the group. Def. 5
update(ID) ID refreshes its current local state. Def. 5
process(M, ID) M is sent to ID which immediately processes it. Def. 5
start-corrupt(ID) γ and the randomness of ID except for sskID leak to A. Def. 5
end-corrupt(ID) End of the leakage of ID’s γ and randomness to A. Def. 5
challenge(q∗) A chooses a query q∗ for the challenge. Def. 5

CoCoA: Round hash
extract(M, γ) Extracts a list of updates, removes, adds and indices. p.15
update-info(U,R,A,≺, γ, v) Outputs the new public key pkv at node v. p.15
retrieve-labels(γ, v,O) O is a vector of tuples of the form (vi, h, h

′). It outputs
(v, hl, hr) if ∃!(vi, hl, hr) ∈ O with vi = v, hl = h

and hr = h′, and ⊥ otherwise.

p.15

openRH(ID,Tℓ) Outputs a vector of hash values, corresponding to
the labels of nodes that are parents of a node

in P(ID) but are not in P(ID).

Alg. 2

verifyRH(γ,M, O) Outputs 0 or 1 depending on whether the round hash
included in the round message is equal to the one

computed using the updated ratchet tree.

Alg. 3

CoCoA: Hash functions
H1 Hash function used to obtain new seeds. Alg. 1
H2 Hash function used to obtain PKE keys. Alg. 1
H3 Hash function used to define the map ℓ and the round hash. Def. 3
H4 Hash function used to define the parent hash. p.18
H5 Hash function used to define the key schedule. p.14
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