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Abstract. This paper introduces a new type of public-key encryption
scheme, called Multi-Designated Receiver Signed Public Key Encryption
(MDRS-PKE), which allows a sender to select a set of designated receivers
and both encrypt and sign a message that only these receivers will be
able to read and authenticate (confidentiality and authenticity). An
MDRS-PKE scheme provides several additional security properties which
allow for a fundamentally new type of communication not considered
before. Namely, it satisfies consistency—a dishonest sender cannot make
different receivers receive different messages—off-the-record—a dishonest
receiver cannot convince a third party of what message was sent (e.g.,
by selling their secret key), because dishonest receivers have the ability
to forge signatures—and anonymity—parties that are not in the set
of designated receivers cannot identify who the sender and designated
receivers are.

We give a construction of an MDRS-PKE scheme from standard as-
sumptions. At the core of our construction lies yet another new type of
public-key encryption scheme, which is of independent interest: Public
Key Encryption for Broadcast (PKEBC) which provides all the security
guarantees of MDRS-PKE schemes, except authenticity.

We note that MDRS-PKE schemes give strictly more guarantees than
Multi-Designated Verifier Signature (MDVS) schemes with privacy of
identities. This in particular means that our MDRS-PKE construction
yields the first MDVS scheme with privacy of identities from standard
assumptions. The only prior construction of such schemes was based on
Verifiable Functional Encryption for general circuits (Damgard et al.,
TCC ’20).

* This is the full version of article [33], (©IACR 2022, https://doi.org/10.1007/978-3-
031-07085-3_22.
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Erratum

The Off-The-Record security proof of the MDRS-PKE construction given in the
prior full version of this paper |34] as well as in the published version [33] is
wrong. To fix the issue, in this new version we modify the construction by adding
a strongly unforgeable one-time signature scheme (that we use to bind MDVS
signatures and PKEBC ciphertexts together) and update all the security proofs
of the MDRS-PKE construction accordingly. We note that the security proof of
our new construction relies on the unforgeability of the underlying MDVS; while
the type of unforgeability we require the underlying MDVS scheme is stronger
than the notion considered by Damgard et al. |[16] (in particular, our notion
provides adversaries with access to a signature verification oracle, which we use
to handle decryption queries), the MDVS construction given in [12] does satisfy
this new stronger notion (and is based on standard assumptions).

In this new version we also assume perfect correctness from the PKE scheme
underlying the PKEBC construction, and updated the security analysis of our
PKEBC construction accordingly.

While the two changes mentioned above are the main ones, there are other
minor updates in this new full version.



1 Introduction

1.1 Public Key Encryption security properties

The most common use case for cryptography is sending a message to a single
receiver. Here one usually desires to have confidentiality (only the desired receiver
can read the message) and authenticity (the receiver is convinced that the message
is from the declared sender). Although one might be interested in signatures
that can be publicly verified (e.g. for a judge to verify a contract), when trying
to protect the privacy of personal communication one often wants the opposite:
not only is the intended receiver the only one that can verify the signature, but
even if this person sells their secret key, no third party will be convinced of the
authenticity of the message. This latter property is called off-the-record in the
Designated Verifier Signature (DVS) literature [16}24127-29}31,39H41], and is
achieved by designing the scheme so that the receiver’s secret key can be used to
forge signatures. One may take this a step further and require anonymity, i.e.
third parties cannot even learn who the sender and receiver are (this is called
privacy of identities in the (M)DVS literature) |16]E|

Another setting of interest is where the message is sent to many recipients.
Consider, for example, the case of sending an email to multiple receivers. Apart
from all the security properties listed above, here one would additionally require
consistency: all the (intended) receivers will get the same email when decrypting
the same ciphertext, even if the sender is dishonest. We note that it is crucial
that a receiver can decrypt ciphertexts using only their secret key, i.e. without
having to use the public key of the sender and other receivers. It is common in the
literature to assume that the receiver knows who the sender and other receivers
are so that their public keys can be used for decryption [6},[30]. But in many
contexts adding this information in plain to the ciphertext would violate crucial
properties, e.g., in broadcast encryption the ciphertext size would not be small
any longer and in MDVS schemes anonymity (privacy) would be violated [30].

Many different schemes have been introduced in the literature that satisfy
some of the properties listed here, see In this work we propose two new
primitives, Public Key Encryption for Broadcast (PKEBC) and Multi-Designated
Receiver Signed Public Key Encryption (MDRS-PKE), which we explain in the
following two subsections.

1.2 Public Key Encryption for Broadcast

The first type of primitive that we introduce, PKEBC, can be seen as an extension
of Broadcast Encryption (BE) [19] which additionally gives consistency guarantees

3 With off-the-record, a third party will know that either the alleged sender or the
receiver wrote the message, whereas anonymity completely hides who the sender and
receiver are. However, anonymity only holds when the receiver is honest whereas
off-the-record provides guarantees against a dishonest receiver.



in the case of a dishonest senderﬁ More specifically, we expect PKEBC schemes
to provide the following guarantees:

Correctness If a ciphertext ¢ is honestly generated as the encryption of a
message m with respect to a vector of receivers, say R:= (Bob, Charlie), then
we want that if Bob is honest and decrypts ¢ using its secret key, it obtains a
pair ((Pkgops PRChariic) M) Where pkp,, and pkey e are, respectively, Bob’s
and Charlie’s public keys;

Robustness Let ¢ be the ciphertext from above. We do not want Dave, who is
honest but yet not an intended receiver of ¢, to think ¢ was meant for himself.
In other words, we do not want Dave to successfully decrypt c.

Consistency Now consider a dishonest party Alice who wants to confuse Bob
and Charlie, both of whom are honest. We do not want Alice to be capable of
creating a ciphertext ¢ such that when Bob decrypts ¢, it obtains some pair
((PRpobs PRCharlie), M), but when Charlie decrypts ¢ it obtains some different
pair. Instead, we want that if Bob obtains a pair ((pkg,y,, PRcharie)s 71?), then
so will Charlie (and vice-versa).

Confidentiality Now, suppose that Alice is honest. If Alice encrypts a message
m to Bob and Charlie (who are both honest), we do not want Eve, who is
dishonest, to find out what m is.

Anonymity Finally, suppose there are two more honest receivers, say Frank
and Grace, to whom Alice could also be sending a message to. If, again,
Alice encrypts a message m to both Bob and Charlie, and letting ¢ be the
corresponding ciphertext, we do not want Eve to find out that the receivers
of ciphertext ¢ are Bob and Charlie; in fact, we do not want Eve to learn
anything about the intended receivers of ¢, other than the number of receivers.

The formal definitions of PKEBC are given in [Sect. 3| In [Sect. 4] we show
how to construct a PKEBC from standard assumptions. Our construction is a
generalization of Naor-Yung’s scheme [35] that enhances the security guarantees
given by the original scheme. In particular, as we will see if the underlying
PKE scheme is anonymous, then this anonymity is preserved by the PKEBC
construction.

One important difference from other public key schemes for multiple parties
is that to decrypt, a receiver only needs to know their own secret keyﬂ the
decryption of a ciphertext yields not only the underlying plaintext but also the
set of receivers for the ciphertext. This then allows the corresponding public keys
to be used as needed[f]

4 Though BE usually requires the ciphertext size to be sublinear in the number of
receivers, which PKEBC does not.

® This problem has been noticed before. See [6},30].

5 We note that this is only important since we want to achieve anonymity, otherwise
once could send the public keys of the other parties together with the ciphertext.



1.3 Multi-Designated Receiver Signed Public Key Encryption

Our main primitive has all of the properties listed in Namely, a
MDRS-PKE scheme is expected to provide the following guarantees:

Correctness If a ciphertext ¢ is honestly generated as the encryption of a
message m from a sender Alice to a vector of receivers R := (Bob, Charlie)
then we want that if Bob is honest and decrypts ¢ using its secret key, it
obtains a triple (SpKajice, (TPKBob» TPKCharlic)s 7)), Where spk ;.. is Alice’s
public sending key, and rpkg,,, and rpkq .. are, respectively, Bob’s and
Charlie’s receiver public keys;

Consistency Now consider a dishonest party Donald who is a sender and wants
to confuse Bob and Charlie, both of whom are honest. We do not want
Donald to be able to create a ciphertext ¢ such that when Bob decrypts
¢, it obtains some triple (spkpgpads (PXBobs PRChartic)s 1), but when Charlie
decrypts ¢ it obtains some different triple (or does not even decrypt). Instead,
we want that if Bob obtains a triple (spkp,,.14: (PXBobs PRCharlic), 1), then
so will Charlie (and vice-versa).

Unforgeability We do not want that Eve can forge a ciphertext as if it were
from an honest sender, say Alice, to a vector of receivers Bob and Charlie.

Confidentiality If an honest sender Alice encrypts a message m to Bob and
Charlie (who are both honest), we do not want Eve, who is dishonest, to find
out what m is.

Anonymity Suppose there is another honest sender, say Heidi. If Alice encrypts
a message m to Bob, and letting ¢ be the corresponding ciphertext, we do
not want Eve to find out that Alice is the sender or that Bob is the receiver;
Eve should at most learn that someone sent a message to a single receiver.

Off-The-Record Suppose Alice sends a message to Bob, Charlie and Donald.
Donald, being dishonest, might be enticed to try convincing Eve that Alice
sent some message. However, we do not want Donald to have this capability.

The formal definitions of MDRS-PKE are given in [Sect. 5} In|Sect. 6| we show
how to construct a MDRS-PKE from standard assumptions. As we will see, our
construction essentially consists of using the MDVS scheme to sign messages,
using the PKEBC scheme to encrypt the signed messages, together with their
MDVS signatures, and then using a Digital Signature Scheme (DSS) to bind the
PKEBC ciphertext and the MDVS signature together.

Since an MDRS-PKE scheme is an extension of an MDVS scheme with privacy
of identities and confidentiality, for completeness, we show in[Appendix F|that any
MDRS-PKE scheme yields an MDVS scheme with privacy of identities. Since we
give an MDRS-PKE scheme which is secure under standard assumptions, this in
particular implies that our construction is the first achieving privacy of identities
from standard assumptions. The only previous construction of an MDVS scheme
with privacy of identities relied on a Verifiable Functional Encryption scheme for
general circuits [16].




1.4 Applications to Secure (Group) Messaging

As we now discuss, one main application of MDRS-PKE schemes is secure
messaging, and in particular secure group messaging.

Suppose Alice and Bob are using a secure messaging application to chat with
each other. Of course, they expect the messenger to provide basic guarantees
such as Correctness—if Alice sends a message to Bob, Bob receives this message—
Confidentiality—no one other than Alice and Bob should learn the contents of
the messages—and Authenticity—if Alice reads a message m, then Bob must
have sent m. Another desirable guarantee they could expect from the messenger
is Anonymity: suppose that in parallel to Alice and Bob’s chat, Charlie and
Dave are also chatting; then, if a third party Eve intercepts a ciphertext ¢ from
Alice and Bob’s chat and Eve cannot a priori tell that ¢ came from and/or is
addressed to Alice or Bob, then Eve should not gain any additional information
about the identity of ¢’s sender and/or receiver from inspecting the contents of
ciphertext ¢ itself (in other words, Eve cannot tell if the ciphertext is from Alice
and Bob’s chat, from Alice and Charlie’s chat, from Bob and Charlie’s chat, or
from Charlie and Dave’s chat). Finally, imagine that Bob, who wants to keep the
history of his chat with Alice, outsources the storage of the chat’s ciphertexts
to an external storage service which reliably, but not authentically, stores these
ciphertexts. An important additional guarantee Alice expects from the messaging
application is Off-The-Record Deniability (Off-The-Record) [11,/16]: if, somehow,
Eve manages to access whatever is stored by Bob’s storage service, Eve cannot
tell by inspecting the stored ciphertexts, even if Bob chooses to cooperate with
Eveﬂ if these ciphertexts are authentic ones corresponding to real messages sent
by Alice to Bob in their chat, or if they are fake ones generated by Bob (in case
Bob is cooperating with Eve) or generated by anyone else (in case Bob is not
cooperating with Eve) to incriminate Alice.

A related, yet very different property that secure messaging applications
like Signal [15] provide is Forward Secrecy [25]. Informally, Forward Secrecy
guarantees that even if Eve stores any ciphertexts received by Bob and later
hacks into Bob’s computer to learn his secret key, Eve cannot learn the decryptions
(i.e. the plaintexts) of the ciphertexts she previously intercepted. Off-The-Record,
on the other hand, does not give any guarantees about hiding the contents of
previously exchanged messages. However, it hides from Eve whether Alice really
sent a message m to Bob or if Bob faked receiving m. Furthermore, Forward
Secrecy assumes Bob is honest: if Bob were dishonest, he could simply store
the decryptions of the ciphertexts he receives to later disclose them to Eve.
Off-The-Record does not make such assumption: even if Bob is dishonest, Eve
cannot tell if it was Alice sending a message m, or if Bob faked receiving m from
Alice (in case Bob is dishonest), or anyone else faked Alice sending m to Bob (in
case Bob is honest). Finally, as one can deduce, Forward Secrecy is incompatible
with parties keeping a history of their chats, whereas this is not the case for
Off-The-Record. A different problem is Alice’s computer getting hacked by Eve.

” By Bob collaborating with Eve we mean that Bob shares all his secrets (including
secret keys) with Eve.



In such scenario it would be desirable to still give the Off-The-Record guarantee
to Alice: Eve should not be able to tell if Alice ever sent any message or not.
However, current Off-The-Record notions [16], including the one given in this
paper, do not capture this.

A natural generalization of two party secure messaging is secure group mes-
saging [2|16]. Suppose Alice, Bob and Charlie now share a group chat. The key
difference between Alice, Bob and Charlie sharing a group chat or having multiple
two party chats with each other is Consistency: even if Charlie is dishonest, he
cannot create confusion among Alice and Bob as to whether he sent a message
to the group chat or not |16]. In other words, honest group members have a
consistent view of the chat. Surprisingly, for the case of MDVS, this guarantee
was only recently introduced by Damgard et al. in [16].

To achieve Off-The-Record in the group messaging case, one must consider
that any subset of the parties participating in the group chat may be dishonest [16].
This property, also known as Any-Subset Off-The-Record Deniability (or more
simply Off-The-Record) was first introduced by Damgard et al. in [16]. Returning
to Alice, Bob and Charlie’s group chat, this property essentially guarantees that
regardless of who (among Bob and Charlie) cooperate with Eve in trying to
convince her that Alice sent some message, Eve will not be convinced because
any of them (or the two together) could have created a fake message to pretend
that Alice sent it.

1.5 Related Work

A closely related type of encryption scheme are Broadcast Encryption (BE)
schemes [104/19]. However, BE schemes do not give the consistency guarantee that
PKEBC give; the main goal of BE schemes is actually making ciphertexts short—
ideally the size of ciphertexts would be independent from the number recipients.
Conversely, the size of the ciphertexts of the PKEBC scheme construction we
give in this paper grows quadratically with the number of recipients.

Another line of work, initiated by Diament et al., considered a special type
of BE schemes, called Dual-Receiver Encryption (DRE) schemes, which allow
a sender to send messages to two (and only two) receivers |17]. In subsequent
work, Chow et al. introduce a notion of Soundness for DRE schemes [14]—which
resembles our consistency notion when we restrict ourselves to the two party
case—and show that the DRE scheme given in [17] satisfies their soundness
notion. Chow et al. also introduce Dual-Receiver Key Encapsulation Mechanisms
(DKEM)—a Key Encapsulation variant of DRE schemes that allows a sender
to encapsulate a key for two receivers—along with a soundness notion that is
analogous to the one for DRE schemes. In [21], Gegier shows how to construct
DKEM schemes using Deterministic Encryption schemes. In contrast to PKEBC
schemes, however, these schemes require the public keys of the intended receivers
for decryption and do not give anonymity guarantees.

As already mentioned, PKEBC schemes allow receivers to decrypt a ciphertext
meant for multiple receivers using their secret key only. This problem had been
noticed before by Barth et al. in [6], and by Libert et al. in [30]. Barth et al.



modify the definition of BE schemes in a way that allows receivers to decrypt
ciphertexts without knowing who the other recipients are a priori |6]. Libert et
al. strengthens this by guaranteeing that receivers do not learn who the other
receivers are, even after decrypting ciphertexts.

Other closely related works are Multi-Designated Verifier Signature (MDVS)
schemes [16]. They provide consistency, authenticity, and off-the-record and
sometimes also anonymity (called privacy). However, to the best of our knowledge,
MDVS schemes require the public keys of the sender and other designated receivers
to be used to verify signatures, and the existing literature does not discuss how
the receiver gets that information, e.g. sending this information in plain would
violate privacy. Thus, existing constructions of MDVS with privacy can only
be used if the number of combinations of possible sender and receivers is small
enough that all combinations can be tried by the verifier.

2 Preliminaries

We now introduce conventions and notation we use throughout the paper. We
denote the arity of a vector Z by |Z| and its i-th element by x;. We write a € Z to
denote 3i € {1,...,|Z|} with a = z;. We write Set(Z) to denote the set induced
by vector &, i.e. Set(Z) == {z; | z; € &}.

Throughout the paper we frequently use vectors. We use upper case letters to
denote vectors of parties, and lower case letters to denote vectors of artifacts such
as public keys, messages, sequences of random coins, and so on. Moreover, we use
the convention that if V is a vector of parties, then @ denotes V’s corresponding
vector of public keys. For example, for a vector of parties V= (Bob, Charlie),
U = (Pkpop» PRCharlie) 19 V’s corresponding vector of public keys. In particular,
V1 is Bob and v; is Bob’s public key pkg,,, and V5 is Charlie and vy is Charlie’s
public key pkey .- More generally, for a vector of parties V with corresponding
vector of public keys ¥, V;’s public key is v;, for i € {1,..., |‘7\}

3 Public Key Encryption for Broadcast Schemes

We now introduce the first new type of scheme we give in this paper, namely
Public Key Encryption for Broadcast (PKEBC). A PKEBC scheme IT with
message space M is a quadruple IT = (S, G, E, D) of Probabilistic Polynomial
Time Algorithms (PPTs), where:

— S: on input 1, generates public parameters pp;

— G on input pp, generates a receiver key-pair;

— E: on input (pp, ¥, m), where ¥ is a vector of public keys of the intended
receivers and m is the message, generates a ciphertext c;

— D: on input (pp, sk, c¢), where sk is the receiver’s secret key, D decrypts ¢
using sk, and outputs the decrypted receiver-vector/message pair (¢, m) (or
L if the ciphertext did not decrypt correctly).



3.1 The Security of PKEBC Schemes

We now state the definitions of Correctness, Robustness, Consistency, and IND-
CCA-2 and IK-CCA-2 security for PKEBC schemes. Before proceeding to the
actual definitions, we first introduce some oracles the game systems from Defini-
tions and [3| use. In the following, consider a PKEBC scheme IT = (S, G, F, D)
with message space M. The oracles below are defined for a game-system with
(an implicitly defined) security parameter k:

Public Parameters Oracle: Opp

1. On the first call, compute and store pp + S(1¥); output pp;
2. On subsequent calls, output the previously generated pp.

Secret Key Generation Oracle: Ogk(B;)

1. If Ogk was queried on B; before, simply look up and return the previously
generated key for Bj;

2. Otherwise, store (pk;, sk;) <— G(pp) as B;’s key-pair, and output (pk;, sk;).
Public Key Generation Oracle: Opg(B;)

1. (pk]-, Skj) — OSK(Bj);
2. Output pk;.

Encryption Oracle: OE(V,m)
L 74 (Opk(V1),---, Opr(Viy));
2. Create and output a fresh encryption ¢ < Eyp #(m).

In addition to the oracles above, the game systems from Definitions [T and [2]
further provide adversaries with access to the following oracles:

Decryption Oracle: Op(B;j,c)

1. Query Osi(B;) to obtain the corresponding secret-key sk;;

2. Decrypt c using skj, (¢,m) <= Dyp sx; (c), and then output the resulting
receivers-message pair (¢, m), or L (if (¥, m) = L, i.e. the ciphertext is
not valid with respect to B;’s secret key).

Definition 1 (Correctness). Consider the following game played between be-
tween an adversary A and game system G

— A9pPp,OpPk,0s5k,08,0p

A wins the game if there are two queries qg and qp to O and Op, respectively,
where qg has input (V,m) and gp has input (Bj,c), satisfying B; € V, the
input ¢ in qp is the output of qg, the output of qp is either L or (0", m') with
(¥,m) # (7',m’), and A did not query Osk on input B;.



The advantage of A in winning the Correctness game, denoted Adv®" (A),
is the probability that A wins game G as described above.

The following notion captures the guarantee that if a ciphertext ¢ is an
honestly generated ciphertext for a vector of receivers 1% (for some message), then
no honest receiver B who is not one of the intended receivers of ¢ can successfully
decrypt ¢ (i.e. if B ¢ V then the decryption of ¢ with B’s secret key outputs
1). As one might note, this notion is a variant of the weak robustness notion
introduced in [1], but adapted to PKEBC schemes.

Definition 2 (Robustness). Consider the following game played between an
adversary A and game system GRoP:

— A©9PpP,OpPk,0sKk,0E,0p

A wins the game if there are two queries qg and qp to O and Op, respectively,
where qg has input (‘7, m) and qp has input (Bj,c), satisfying B; & ‘7, the input
¢ in qp 1s the output of qg, the output of qp is (0',m') with (¢/,m’) # L, and A
did not query Osi on input B;.

The advantage of A in winning the Robustness game is the probability that A
wins game GR® as described above, and is denoted AdvROb(A).

Remark 1. Correctness and robustness are properties only relevant to honest
parties. It is common in the literature to either define such security notions
without any adversary or to consider a stronger adversary that is unbounded or
has access to the honest parties’ secret keys. We choose the weaker definitions
above for two main reasons: first, it has been proven that analogous correctness
and robustness notions [1,|5] for PKE schemes—also defined with respect to
computationally bounded adversaries who are not given access to the secret keys
of honest parties—imply (corresponding) composable security notions (see [5]
and [26]); second, since the remaining PKEBC security notions (e.g. IND-CCA-2
security) are defined with respect to computationally bounded adversaries that
cannot obtain the secret keys of honest parties, there is no advantage in considering
strengthened correctness and robustness security notions. Nevertheless, we note
that our security proofs actually consider such stronger correctness and robustness
notions (i.e. we prove our PKEBC construction satisfies such stronger notions).

We now introduce the notion of consistency. Essentially, this notion captures
the guarantee that a dishonest sender cannot create confusion between any pair
of honest receivers as to whether they received some message m with respect to
a vector of receivers V that includes both parties.

Definition 3 (Consistency). Consider the following game played between an
adversary A and game system G :

— A©9prpP,OpPk,0sKk,0pD

A wins the game if there is a ciphertext ¢ such that Op is queried on inputs
(Bi,c) and (Bj,c) for some B; and Bj (possibly with B; = Bj), there is no prior

10



query on either B; or B; to Osk, query Op(B;,c) outputs some (U, m) satisfying
(v, m) # L with pk; € U (where pk; is B;’s public key), and query Op(Bj,c)
does not output (U, m).

The advantage of A in winning the Consistency game is denoted Adv“""5(A)
and corresponds to the probability that A wins game G as described above.

Remark 2. Similarly to Consistency is a security property only rele-
vant to honest receivers, for which reason disallows adversaries from
querying for the secret keys of honest receivers. It was proven in [32] that an
analogous Consistency notion for MDVS schemes (introduced in [16]) implies
composable security. Yet, and similarly to the case of Correctness and Robust-
ness, our security proof actually shows something stronger: that our PKEBC
construction is provably secure with respect to such a stronger consistency notion
(in which the adversary can query for any party’s secret key and still win the
game).

The two following security notions are the multi-receiver variants of IND-
CCA-2 security (introduced in [36]) and IK-CCA-2 security (introduced in [7]).
The games defined by these notions provide adversaries with access to the oracles
Opp and Opg defined above as well as to oracles O and Op. For both notions,
Op is defined as follows:

Decryption Oracle: Op(Bj,c)

1. If ¢ was the output of some query to O, output test;

2. Otherwise, compute and output (7, m) <= Dyp s, (c), where sk; is B;’s
secret key.

The Op oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, Op is as follows:

Encryption Oracle: Og (17, Mo, M1)

1. For game system G'l')\'D'CCA'Q, encrypt myp, under ¥ (the vector of public
keys corresponding to V'); output c.

Adversaries do not have access to Ogx in either notion.

Definition 4 (IND-CCA-2 Security). Consider the following game played be-
tween an adversary A and a game system G{L\'D'CCA'Q, with b € {0,1}:

— Y « A9PrP,OrPk,0r,0p

A wins the game if b = b and every query OE(V,mo,ml) satisfies |mq| = |ma|.
We define the advantage of A in winning the IND-CCA-2 game as

Adp™PCA2(A) = |Pr[AGEP A2 = win] + Pr[AGP A2 = yin] — 1.

For the IK-CCA-2 security notion, Og behaves as follows:

11



Encryption Oracle: OE(VO, Vi ,m)

IK-CCA-2
Gb

1. For game system , encrypt m under 9, the vector of public

keys corresponding to Vb, creating a fresh ciphertext c; output c.

Definition 5 (IK-CCA-2 Security). Consider the following game played between
an adversary A and a game system G{L('CCAQ, with b € {0,1}:

— VY « A9PP,OpPk,0Or,0p

A wins the game if ¥ =b and every query Op(Vy, Vi, m) satisfies |Vo| = |Vi].
We define the advantage of A in winning the IK-CCA-2 security game as

Ad’UIK-CCA_Z(A) — PI‘[AG’IOK_CCA_Q — Win] + PI’[AGI]_K_CCA_2 — Win} — 1’

We say that an adversary A (e, t)-breaks the (n,dg, ¢, ¢p)-Correctness (resp.
-Robustness, -Consistency, IND-CCA-2, IK-CCA-2) of IT if A runs in time at most
t, queries the oracles it has access to on at most n different partiesﬁ makes
at most gg and gp queries to oracles O and Op, respectively, with the sum
of lengths of all the party vectors input to Og being at most dg, and satisfies
Adv®" (A) > & (resp. Adv"P(A) > e, Adv™"(A) > &, Adv"™PCA2(A) > ¢,
Adv™C“A2(A) > ¢). Finally, we say that IT is

(€Corr,ERobs ECons, EIND-CCA-2, EIK-CCA-2, t, 1, dE, 4B, gD )-Secure,

if no adversary A:

Ecorrs t)-breaks the (n,dg, ¢, ¢p)-Correctness of IT;

€Rrob)-breaks the (n,dg, ¢g, gp)-Robustness of IT;

(
(
— (Econs, t)-breaks the (n,dg, qg, qp)-Consistency of II;
(eIND-cca-2, t)-breaks the (n,dg, qr, ¢p)-IND-CCA-2 security of IT; or
(

EIK-CCA-2, t)-breaks the (n,dg, ¢g, gp)-IK-CCA-2 security of I1.

4 A PKEBC Scheme from Standard Assumptions

We now present our construction of a PKEBC scheme. The construction is a
generalization of Naor-Yung’s scheme [35] that enhances the security guarantees
given by the original scheme. In particular, if the underlying PKE scheme is
anonymous, then this anonymity is preserved by the PKEBC construction. First,
while the scheme should preserve the anonymity of the underlying PKE scheme,
parties should still be able to obtain the vector of receivers from ciphertexts,

8 Here, querying on most n parties means that the number of different parties in
all queries is at most n. In particular, the number of different parties in a query
Og((Bi1,B2,Bs),(...)) is 3, assuming B1 # By # B3 # Bi; the number of different
parties in a query Op(Bj,-) is 1.
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using only their own secret key. For this reason, the underlying PKE scheme is
used to encrypt not only the messages to be sent, but also the vector of receivers
to which each message is being sent to. As one might note, however, to preserve
the anonymity of the underlying PKE scheme, the NIZK proof that proves the
consistency of the ciphertexts for the various receivers can no longer be a proof for
a statement in which the public keys are part of the statement. This introduces
an extra complication since for some PKE schemes such as ElGamal, for every
ciphertext ¢ and message m, there is a public key pk and a sequence of random
coins 7 such that c is an encryption of m under pk, using r as the sequence of
random coins for encrypting m. In particular, this means that the NIZK proof
is not actually proving the consistency of the ciphertexts. To solve this issue,
we further add a (binding) commitment to the vector of receiver public keys
used to encrypt each ciphertext, and then use the NIZK proof to show that
each ciphertext is an encryption of this same message under the public keys
of the vector to which the commitment is bound. Note, however, that this is
still not sufficient: despite now having the guarantee that if the NIZK proof
verifies then all ciphertexts are encryptions of the same plaintext with respect a
vector of public keys, since a party can still decrypt ciphertexts not meant for
itself without realizing it, it could happen that a receiver decrypts the wrong
ciphertext, thus getting the wrong vector of receivers-plaintext pair. To avoid
this, the commitment additionally commits to the message being sent, and the
sequence of random coins used to create the commitment are now encrypted
along with the vector of public keys of the parties and the message being sent.
This then allows a receiver to recompute the commitment from the vector of
parties and message it decrypted. Given the commitment is binding, this implies
that if the recomputed commitment matches the one in the ciphertext then
decryption worked correctly (as otherwise the recomputed commitment would
not match the one in the ciphertext).

We note that our security reductions are tight, and that there are tightly
secure instantiations of each of the schemes we use as building blocks for our
construction. For instance, ElGamal could be used as the underlying IND-CPA
secure encryption scheme, as it is tightly multi-user multi-challenge IND-CPA
secure [8]. For completeness, we show in the appendix that ElGamal is also
tightly multi-user multi-challenge IK-CPA secure under the DDH assumption (see
Appendix GJ). Furthermore, we could also use ElGamal as the statistically binding
commitment scheme needed by our construction, and the tightly unbounded
simulation sound NIZK scheme from [20].

Algorithm [1] gives a construction of a Public Key Encryption for Broadcast
scheme IT = (S, G, E, D) from a Public Key Encryption scheme ITpkg = (G, E, D),
a Commitment Scheme ITcs = (Geors, Commit, Verify) and a Non Interactive
Zero Knowledge scheme ITNizk = (Gors, Prove, Verify, S == (Scrs, Ssim)). Con-
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sider relation Rcons defined as
Rcons = {((CISC87 comm, 6)7 (107 67 m, ’F‘)) |
el = |v]
A comm = IIcg. Commiters (U, m; p) (4.1)
A (%) € (L., Jdl} b € {0,1},

Cj,b = HPKE-Eujyb(p, 17, m; T’j,b)) }
In Algorithm [1} we consider the language induced by Rgons, which is defined as

Lcons = {(crscs, comn, €) |
3(p, ¥,m,7)
((CI’SCS, comm, 5)7 ([)7 177 m, F)) € RCons}-

(4.2)

Algorithm 1 Construction of a PKEBC scheme IT = (S, G, E, D).

S(lk)
return (1%, ITnizx . Geors(1%), Hes. Geors(1¥))

G(pp = (1’“, CTSNIZK, CTSCS))
(pky, sko) + Mpxr.G(1¥)
(pkl, Skl) — HPKE.G(lk)
return (pk := (pkg, pk;), sk := ((pky, sko), (pk;, sk1)))

E(pp := (1k7 CISNIZK, CTSCS), U = ((pk1,07pk1,1)’ AU (Pkw\,(ﬁpk\m,l))’ m € M)
p < RandomCoins
comn < Igs. Commiters g (U, m; p)
for (pk; ,',pk; ') € ¥ do
(rj,0,75,1) < (RandomCoins, RandomCoins)
(¢j,0,¢5.1) < (ITpke-Ep; o (p, U, m;575,0), TpkE- B 4 (p, U, m;57j,1))
= ((r1,0,71,1)5 -+ (T3]0, 7}5),1))
= ((e1,00¢1,1), - (€30 ¢1,1))
p + TNz - Provecrsy i ((crscs, comm, &) € Loons, (7, m, p, 7))
return (p, comm, ¢

oL 3

D(pp = (1*, ersnizx, crscs), skj = ((PK; o, 5kj,0), (Pk; 1,5K;,1)), ¢ i= (p, comm, &))
if IIn1zk .- VerifycrsNIZK ((crscs, comm, €) € Lcons, p) = valid then
for i€ {1,...,|c]} do
(p, Ti= ((Pk1,o/7pk1,1,)v ..
if (p, 7, m) # L A (pk; o, Pk; 1) = (Pk; o’ Pk; ;') then
if comm = IIcs. Commiters g (¥, m; p) then
return (¥, m)

+ (PE)51,0"> PR 5,17)) s m) 4= ke Dy 1 r(¢i0)

return L

4.1 Security Analysis of PKEBC Construction

Due to space constraints, the full proofs of the following results are in the appendix

(see [Appendix H).
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Theorem 1. If Ilpkg is

(EPKE-IND-CPA; EPKE-IK-CPA, LPKE, "PKE, (EPKE) -SECUTE, (4.3)
1INz 18
(EN1ZK-Complete ENIZK -Sound  ENIZK-ZK > ENIZK-SS > (4.4)
INIZK, QP NI1ZK > 4V N1ZK ) -S€CuTe, .
and HCS 8
(€CS-Hiding £CS-Binding tCS, cs, Binding)-secure, (4.5)

then no adversary A (e, t)-breaks IT’s

(¢ = qpPNizK, 4D = Qv NizK)-Correctness,
with
€ > £CS-Binding T ENIZK-Complete)

and tNizg = t + tcorr, where teor 18 the time to run I1s G Corr game.

Remark 3. states that II’s correctness holds against computationally
bounded adversaries who do not have access to the secret keys of honest parties.
However, since we use an underlying PKE with perfect correctness, the proof of
implies something stronger, namely that IT is correct according to
a stronger correctness notion wherein adversaries are allowed to query for the
secret key of any honest receiver.

Theorem 2. If Ilpkg is

(gPKE-IND-CPA7 EPKE-IK-CPA, tPKE, NPKE; QEPKE)‘SGCUTG; (46)

with tpke & NPKE - ta +tp (where tg and tp are, respectively, the times to run
IIpkg.G and Ipkg.D) and with npkg > 1, and Ics is

(€Cs-Hiding £ CS-Binding tCS, gcs, Binding)-secure, (4.7)
then no adversary A (e)-breaks II’s Robustness, with

€ > 2 EPKE-IND-CPA + €CS-Binding-

Remark 4. Note that states that II’s robustness holds against com-
putationally unbounded adversaries; such adversaries can compute the private
key of any party from its public key.

In the following we assume, without loss of generality for any practical purpose,
that the NIZK proof verification algorithm is deterministic. For instance, the
NIZK scheme given in [20] has deterministic proof verification and is tightly
unbounded simulation sound. The reason for this assumption is that an adversary
could potentially come up with a NIZK proof for a valid statement which would
only be considered as valid by the NIZK verification algorithm sometimes.
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Theorem 3. If Ilpkg is

(EPKE-IND-CPA; EPKE-IK-CPA; tPKE, "PKE; (EpPKE ) -S€Cure, (4.8)
INizk 18
(EN1ZK-Complete ENIZK -Sound  ENIZK-ZK > ENIZK-SS > (4.9)
INIZK , QP NIZK > 4V N1ZK ) -S€CUTe, .
Ilcg is
(€CS-Hiding £CS-Binding tCS, cs, Binding)-secure, (4.10)

and IINizk .V is a deterministic algorithm, then no adversary A (e,t)-breaks II’s

(ap = qvNizk)-Consistency,

with € > €0S-Binding + ENIZK-Sound @Nd With tN1zK & T + tcons, where tcons s the
time to run IT’s G game.

Remark 5. states that II’s consistency holds against computationally
bounded adversaries who do not have access to the secret keys of honest parties.
However, similarly to its proof implies IT is consistent with respect
to a stronger notion which allows adversaries to query for the secret key of any
honest receiver.

Theorem 4. If IIpkg is

(EPKE-IND-CPA; EPKE-IK-CPA» tPKE; "PKE» {EpKE ) -S€CUTE, (4.11)
NS VATEE
(EN1ZK-Complete ENTZK -Sound  ENTZK-ZK > ENTZK-SS» (4.12)
tN1ZK, 4PNIZK > IV N1ZK ) -S€CUTe, .
and Ilag is
(€CS-Hiding £ CS-Binding» tCS, gcs, Binding)-secure, (4.13)

then no adversary A (e, t)-breaks IT’s

(n = npxE, dE = qEPKE:
qr = min(qgpNizK, 908 ), 4D = qvnizk ) -IK-CCA-2 security,
with

€ > 4 - EPKE-IND-CPA
+ 2 - (en1zK-zK + EPKE-IK-CPA + ENIZK-SS)
+ £CS-Hiding
IPkE, tcs = T+ tik-cca2 + 4B - 155, T tScrs)
tN1zk =t + tik-cca-2,
where tik-cca-2 1S the time to run Il’s G'lf'CCAQ game experiment, tsg, 15 the
runtime of Ssim, and tg, s S the runtime of Scrs.
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Theorem 5. If Ilpkg is

(EPKE-IND-CPA; EPKE-IK-CPA, LPKE; "PKE, (EpPKE ) -S€Cure, (4.14)
INizk 18
(ENIZK—CompIete75NIZK—Sound> ENIZK-ZK, ENIZK-SS, (4 15)
INIZK > 4P NI1ZK > 4V N1ZK ) -S€cure, '
and Ilag is
(€CS-Hiding £CS-Binding, tCS, cs, Binding)-secure, (4.16)

then no adversary A (e, t)-breaks IT’s

(n = npke, dE = ¢EpPKE;
qr = min(gpNizk, 9cs), 40 = qvnizk)-IND-CCA-2 security,

with

€ > 4 - EPKE-IND-CPA
+ 2 (en1zK-zK + ENIZK-SS)
+ £CS-Hiding
tpkE ~ U+ linD-ccA-2 + GE - 1S5, T tScrss
tN1zK, tos =~ T+ tinD-cca-2,

where tinp-cca-2 98 the time to run II’s G{;\'D'CCAQ game, tsg,  is the runtime of
Ssim, and ts.ps 1S the runtime of Scrs.

5 Multi-Designated Receiver Signed Public Key
Encryption Schemes

We now introduce Multi-Designated Receiver Signed Public Key Encryption
(MDRS-PKE) schemes. An MDRS-PKE scheme IT = (S, Gs, Gg, E, D, Forge)
with message space M is a six-tuple of PPTs, where:

— S: on input 1, generates public parameters pp;

— Gg: on input pp, generates a sender key-pair;

— GR: on input pp, generates a receiver key-pair;

E: on input (pp, ssk, ¥, m), where ssk is the secret sending key, ¥ is a vector
of public keys of the intended receivers, and m is the message, generates a
ciphertext c;

— D: on input (pp, rsk, c), where rsk is the receiver’s secret key, D decrypts ¢
using rsk, obtaining a triple sender/receiver-vector/message (spk, ¥, m) (or
L if decryption fails) which it then outputs;
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— Forge: on input (pp, spk, ¥, m, §), where spk is the sender’s public key, ¥ is
a vector of public keys of the intended receivers, m is the message and § is
a vector of designated receivers’ secret keys—with |§] = |U| and where for
1€ {1,...,|U|}, either s; = L or s; is the secret key corresponding to the i-th
public key of v, i.e. v;—generates a ciphertext c.

5.1 The Security of MDRS-PKE Schemes

Below we state the definitions of Correctness, Consistency, Unforgeability, IND-
CCA-2 security, IK-CCA-2 security and Off-The-Record for MDRS-PKE schemes.
Before proceeding to the actual definitions, we first introduce some oracles the
game systems for MDRS-PKE use. In the following, consider an MDRS-PKE
scheme IT = (S, Gg, Gg, E, D, Forge) with message space M. The oracles below
are defined for a game-system with (an implicitly defined) security parameter k:

Public Parameter Generation Oracle: Opp

1. On the first call, compute pp < S(1*); output pp;
2. On subsequent calls, simply output pp.

Sender Key-Pair Oracle: Ogg(A;)

1. On the first call on input A;, compute and store (spk;, ssk;) <= Gs(pp);
output (spk;, ssk;);

2. On subsequent calls, simply output (spk;, ssk;).
Receiver Key-Pair Oracle: Orx(B))

1. Analogous to the Sender Key-Pair Oracle.
Sender Public-Key Oracle: Ogpk(A;)

1. (spk;,ssk;)  Ogk(4;); output spk;.
Receiver Public-Key Oracle: Orpx(B;)

1. Analogous to the Sender Public-Key Oracle.
Encryption Oracle: Og(A;,V,m)

1. (spk;,ssk;) + Ogi(4;);

2. ¥4+ (Orpr(V1), .. "ORPK(VIVI));

3. Output ¢ < FEyp(ssk;, ¥, m).

Decryption Oracle: Op(Bj,c¢)

L. (rpk;,rsk;) < Ork(Bj);
2. (spk;, ¥ = (rpky,...,TPkz), m) < Dyp(rsk;,c);
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3. If, for each party A; previously input to either Ogg, Ospx or Og,
spk; # Ogpk (A;), then output L;

4. Tf, for some I € {1,...,|V|}, there is no party B; that was previously
input to either Ork, Orpr, O or Op such that v; = Orpx(V}), then
output L;

5. Output (spk, ¥, m).

We now introduce the game-based notions. Let IT = (S, Gg, Gg, E, D, Forge)
be an MDRS-PKE.

Definition 6 (Correctness). Consider the following game played between an
adversary A and game system GO :

— A9pPpP,Ospk,0sk,0OrrPK,OrK,08,0D

A wins the game if there is a query qr to Op and a later query qp to Op such
that gg has input (A;, v, m) and qp has input (Bj,c) with B; € V and c being the
output of qg, the output of qp is (spk,’, ', m’) with (spk,’, v, m') # (spk;, ¥, m)—
where spk; is A;’s public key and U is the vector of public keys corresponding to
V—and A did not query Osk on A; nor Ork on Bj.

The advantage of A in winning the Correctness game, denoted Adv®™ (A),

is the probability that A wins game G as described above.

As already noted in Correctness is a property only relevant to
honest parties. As these parties are not corrupted, their keys do not leak to the
adversary. hence disallows adversaries from querying for the secret
keys of honest parties. Note that the analogous Correctness notion for MDVS
schemes introduced in [32]—which also does not allow adversaries to query for
the secret keys of honest parties—is known to imply the composable security of
MDVS schemes (see [32]). As noted in the MDRS-PKE construction
we give actually satisfies a stronger Correctness notion analogous to the one
mentioned in as long as both of the underlying (PKEBC and MDVS)
schemes satisfy analogous Correctness notions.

The following notion captures Consistency for MDRS-PKE schemes, and is
analogous to the PKEBC Consistency notion.

Definition 7 (Consistency). Consider the following game played between an
adversary A and game system GCo"s:

— A9pPp,Ospk,0sk,OrrPr,OrK,08,0pD
A wins the game if there are two Op queries, say qp; and qp;, on inputs,
respectively, (B;, c) and (B;,c") with ¢ = ¢ such that:

1. the outputs of qp; and qp; differ;

2. either the receiver public key rpk; of Bj is part of the vector of receiver public
keys output by qp;, or the receiver public key rpk, of B; is part of the vector
of public keys output by qp;;
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3. there is no query Orx (B;) (resp. Ork(B;)) prior to qp; (resp. qp;); and

4. there is no sender A (resp. no receiver B) which had not been input to a
query Ospr, Osk or O (resp. Orpi, Ork or Og) prior to both qp,; and
qp; and whose public key is output by one of these queries.

The advantage of A in winning the Consistency game is denoted Adv“""*(A)
and corresponds to the probability that A wins game G as described above.

Remark 6. Note that Op is defined in such a way that, if the MDRS-PKE
decryption of some ciphertext outputs a sender public key that matches no
previously queried sender’s public key, or if one of the receiver public keys in
the vector matches no previously queried receiver’s public key, then the oracle
outputs L. The last condition in the definition above ensures that the outputs of
the two decryption queries are not different just because, by chance, there is a
party—whose public key is in the MDRS-PKE decryption of the ciphertext—that
had not been input to any query before the two queries ¢; and g;, but that was
given as input to some query made between the g; and g; queries

The following security notion is analogous to the Unforgeability security
notion for MDVS schemes. For the case of a single receiver, it informally states
that if a sender A is honest, then no dishonest party can forge a ciphertext that
fools an honest receiver into believing A sent some message that A actually did
not send.

Definition 8 (Unforgeability). Consider the following game played between
adversary A and game system GUNfore:

— A9pPpr,Ospk,0sk,0OrrPK,OrK,08,0D

A wins the game if it makes a query Op(B;,c) that outputs (spk;,v,m) # L,
there is a sender A; and a vector of receivers V with B; e V such that spk; is A;’s
sender public key (i.e. Ospr(A;) = spk;) and ¥ is the vector of receiver public
keys corresponding to V (i.e. |V| = |7] and for each l € {1,...,|7|}, Orpx(V}) =
vy), there was no query Op(A;, V’,m’) with (A;', V’,m’) = (A, v,m), no query
Osk(A;) and no query Ork (B;).

The advantage of A in winning the Unforgeability game is the probability that
A wins game GY"8 s described above, and is denoted Adv'"™"8(A).

The following security notions are the MDRS-PKE variants of Definitions
and [p} The games defined by these notions provide adversaries with access to
the oracles Opp, Ospr, Osk and Orpk defined above as well as to oracles Og
and Op. For both notions, Op is defined as follows:

9 Looking ahead, this condition seems necessary to allow us to prove the Consistency of
our MDRS-PKE construction (see [2]): without this condition, we do not know how to
reduce an adversary from breaking the Consistency of our MDRS-PKE construction
to one breaking the consistency of the underlying MDVS (and another breaking the
consistency of the underlying PKEBC scheme) because the verification oracle of the
MDVS security notions only allows the adversary to input parties, not public keys.
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Decryption Oracle: Op(Bj,c)

1. If ¢ was the output of some query to O, output test;

2. Otherwise, proceed as in the default Op oracle.

The Op oracle provided by the IND-CCA-2 games differs from the one provided
by the IK-CCA-2 games; for IND-CCA-2, O is as follows:

Encryption Oracle: Og(4;, V,mo, my)

GIND—CCA—2
b

1. For game system , encrypt mp under ssk; (A;’s sender secret

key) and ¢ (V’s corresponding vector of receiver public keys); output c.

Definition 9 (IND-CCA-2). Consider the following game played between an
adversary A and a game system G{L\'D'CCAQ, with b € {0,1}:

— b «— AOPP.Ospk,Osk,;OrPK,0r,0OpD
A wins the game if ¥ =b and for every query Op(A;,V,mg, m1):

— |mo| = |ma|; and

— there is no query on A; to Ogg.

We define the advantage of A in winning the IND-CCA-2 game as
AdvIND_CCAQ(A) =[Pr[AGNP A2 — yin] + PrIAGNP-CA2 — yin] — 1]

For the IK-CCA-2 security notion, Og behaves as follows:
Encryption Oracle: Og((4;,0, 170), (Ai717‘71),m)

1. For game system G{;('CCA'z, encrypt m under ssk; p (A4; p’s secret key)

and ¥, (the vector of public keys corresponding to Vb), creating a fresh
ciphertext c; output c.

Definition 10 (IK-CCA-2). Consider the following game played between an
adversary A and a game system GI-CCA2 with b € {0,1}:

— B « A9pPpP,Osrk,0Osk,Orpk,Or,0D
A wins the game if b’ = b and for every query ((A; o, 170), (A1, 171), m) to Op:

— [Vo| = V1]; and
— Ogk s not queried on neither A; o and A; 1.

We define the advantage of A in winning the IK-CCA-2 security game as

Adp"™ A2 (A) =|PrAGE A2 = yin] + Pr[AGY A2 = yin] — 1|.
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Remark 7. The IND-CCA-2 and IK-CCA-2 notions for MDRS-PKE schemes cap-
ture, respectively, confidentiality and anonymity. Even though one could define
stronger variants of these notions wherein the adversary is allowed to query
for the secret key of any sender, we chose these definitions because they are
weaker, but yet strong enough to imply composable security (see 34,22 for the
analogous case of the Outsider Security Model for Signcryption). Nonetheless,
our MDRS-PKE construction satisfies the stronger IND-CCA-2 and IK-CCA-2
security notions in which the adversary is allowed to query for the secret key of
every senderm

The following notion captures the Off-The-Record property of MDRS-PKE
schemes, and resembles the (Any-Subset) Off-The-Record security notion intro-
duced in [16] for MDVS schemes. This notion defines two game systems, G§TR
and G9TR. The game systems also provide adversaries with access to oracles O
and Op defined below:

Encryption Oracle: Og(type € {sig,sim}, 4;,V, m,C C Set(V))
For b € {0,1}, oracle O of game system GQTR behaves as follows:

1. Let (spk;, ssk;) < Osk (4;);
2. Let v = (vy,... ’UIVI) and §= (sq,.. .7s|‘7|), where, for i = 1,...,|V|:
_ (U‘ S) _ ORK(V@) if Vi e C
©o (Orpr(V;), L) otherwise;
3. (co,c1) = (I1.Epp(ssk;, v, m), I1. Forge,, (spk,, U, m, 5));
4. If b =0, output cg if type = sig and c; if type = sim;
5. Otherwise, if b = 1, output c;.
Decryption Oracle: Op(Bj,c)
1. If ¢ was the output of some query to O, output test;

2. Otherwise, proceed as in the default Op oracle.

Definition 11 (Off-The-Record). Consider the following game played between
an adversary A and game system GETR:

— VY « A9PpP,Osrk,0sk,OrPk,OrK,Or,0D

A wins the game if it outputs a guess bit b’ with b = b and for every query
Og(type, A, V,m,C), 1. there is no query Ov i (B;) with B; € Set(V)\ C; and
2. there is no query Ogsg (A;).

A’s advantage in winning the Off-The-Record game is

AdUOTR(A) = Pr[AGgTR = win] + Pr[AG(l)TR = win] — 1|.

10 We note, however, that for technical reasons we do need an additional property from
the underlying MDVS scheme. For more details refer to |12}[13].
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We say that an adversary A (e,t)-breaks the (ng,ng,dg,qg, gp)-Correctness
(resp. -Consistency, -Unforgeability, -IND-CCA-2, -IK-CCA-2, -Off-The-Record)
of IT if A runs in time at most ¢, queries Ogpr, Osk, O and Op on at most
ng different senders, queries Orpx, Ork, O and Op on at most ng different
receivers, makes at most gp and ¢p queries to O and Op, respectively, with
the sum of lengths of the party vectors input to Og being at most dg, and A’s
advantage in winning the (corresponding) security game is at least €. Finally, we
say that II is

(5Corra €Cons; EUnforgy EIND-CCA-2; €IK-CCA-2, EOTR; t,ns,nr,dg,qE, qD)—secure7

if no adversary A:

ECorrs t)-breaks the (ng,ng,dg, ¢r, ¢p)-Correctness of II;

ECons; t)-breaks the (ng,ng,dg, g, qp)-Consistency of IT;

EIND-cCA-2, t)-breaks the (ng,ng,dg, ¢g, gp)-IND-CCA-2 security of IT;

(
(
— (&unforg, t)-breaks the (ng,nr,dr, qr, ¢p)-Unforgeability of IT;
(
(eik-cca-2, t)-breaks the (ng,ng,dg, g, qp)-IK-CCA-2 security of IT; or
(

€0TR, t)-breaks the (ns,ngr,dg, ¢r, ¢p)-Off-The-Record security of IT.

Remark 8. As one may note, due to the Off-The-Record property of MDRS-PKE
schemes (see , any receiver B; can generate a ciphertext that
decrypts correctly under B;’s own receiver secret key using only its own secret
key and the public keys of the sender and any other receivers. It is thus crucial
that, when defining ciphertext Unforgeability (see , the adversary is
not allowed to query for the secret key of any receiver with respect to which it is
trying forge a signature.

It is equally important that the adversary is not allowed to query for the secret
keys of honest receivers in the Off-The-Record security notion :

as honest receivers do not participate in the ciphertext forgery, due to the
Unforgeability of ciphertexts —Which in particular guarantees that
if a receiver is honest, then it only decrypts ciphertexts generated by the actual
sender, assuming the sender is honest—if an adversary could query for the secret
key of an honest receiver Bj, it would be able to distinguish real ciphertexts
generated by the sender—which B; would decrypt successfully using its secret
key—from fake ciphertexts generated by dishonest receivers—which, by the
Unforgeability of ciphertexts, B; would not decrypt successfully.

Finally, the adversary can also not be given access to the secret key of any
honest receiver B; in the Consistency game of [Definition 7| as otherwise, by the
Off-The-Record guarantee (Definition 11)), it would be able to use B;’s receiver
secret key to forge a ciphertext ¢ that B; would decrypt successfully (as if it
really had been sent by the actual sender), whereas any other honest (designated)
receiver’s decryption of ¢ would fail.
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6 A Multi-Designated Receiver Signed Public Key
Encryption Scheme from Standard Assumptions

In this section we show how to construct an MDRS-PKE from a PKEBC
IIpkese = (S, G, E, D), an MDVS IIvpvs = (S, Gs, Gy, Sig, Vfy, Forge) and a
(One-Time Strongly Unforgeable) Digital Signature Scheme ITpss = (G, Sig, Vfy).
The construction is simple: to encrypt one first samples a fresh DSS key-pair
(vk, sk) and then uses the MDVS scheme to sign the message, the vector of
PKEBC public keys of the receivers, and the verification key vk; next, one uses
the PKEBC scheme to encrypt the message, the MDVS signature, the public
MDVS signer key of the sender and the vector of public MDVS verifier keys
of the receivers; finally one signs the resulting (PKEBC) ciphertext using the
initially sampled DSS secret key. The final ciphertext is then a triple consisting
of the DSS verification key vk, the PKEBC ciphertext ¢ and the DSS signature
0. on c.

Remark 9. Even though our MDRS-PKE construction allows parties to locally
generate their keys, to achieve the Off-The-Record guarantee it is required that
dishonest receivers know their secret keys. This is only so as otherwise one could
mount attacks that break the Off-The-Record guarantee. For instance, consider
an honest sender Alice that sends a message m to Bob. Bob, who is dishonest
wants to convince a non-designated receiver, Eve, that Alice sent m. To do that,
Bob could have Eve generating the keys for Bob herself, and give him only the
public key (that Bob would claim as being his public key). When Alice sends m,
Eve can now learn that Alice sent m as it can use Bob’s secret key. Furthermore,
since no one other than Eve has Bob’s secret key, Eve knows that it cannot be
a fake message, implying that it must be Alice’s message. Current composable
notions capturing the security of MDVS schemes solve this problem by assuming
a trusted third party which generates all key-pairs and gives everyone access to
their own key-pair [32]|E This in particular implies that Bob would have access
to its own secret key, and so even if Eve would know Bob’s secret key, she would
not be able to tell if Alice was the one sending messages or if Bob was faking
Alice’s messages.

6.1 Security Analysis of the MDRS-PKE Construction

Due to space restrictions, the full proofs of the following results are in the

appendix (see [Appendix II).

Theorem 6. If IIpkgpc is

(EPKEBC—COH’)ePKEBC—ROba EPKEBC-Cons; EPKEBC-IND-CCA-2; EPKEBC-IK-CCA-2; (6 1)

PKEBC; "PKEBC; A EPKEBC: dEPKEBC> QDPKEBC)-S%W’@;

1 The composable notions capturing the security of MDVS given in [32] actually assume
something even stronger: every dishonest party has access to the secret keys of every
other dishonest party.
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Algorithm 2 Construction of an MDRS-PKE IT = (S, Gs, Gg, E, D, Forge)

from a PKEBC HPKEBC = (S, G, E7 D), an MDVS HMDVS =
(Setup, Gs, Gy, Sign, Vfy, Forge), and a DSS IIpss = (G, Sig, Vfy).
S(1%)

PPrpys < Mvpvs-S(1¥)
PPpxepc — Trkesc.S(17)
return pp = (PPypvs: PPrKceBC) 1)

Gs(pp)
(spkypys, sskmpvs) < IImpvs.Gs(PPupys)
return (spk := spky;pyg, S5k := (spk, sskmpvs))

Gr(pp)
(vPEMpys vSkmpvs) <= Ivpvs. Gv (PPypvs)
(PkpkEpC> skpKEBC) < ITPKEBC- G(PPPKEBC
return (rpk = (Vpkl\/IDVS7 PkPKEBC)7 rsk = (rpk, (vskmDVS, SkPKEBC)))

Epp(ssk, U = (rpky, ..., 1Pk 5), m)
UpkEBC = (TPK; -PhprppC: - - - » TPK 5| -PkpkEBC)
vpvs = (rpky VPKypyss - - - » TPK 5] - VPEMDYS)

(vk, sk) < IIpss.G(pp.1%)

o+ IInpvs-Sigy, s (Sskmpvs, Tupvs, (TpPKEBC, M, VK))
¢ + MpkeBC- Eppppc (FPKEBC, (SPRypys, TMDVS; ™, 7))
o’ HDss.Sigsk(C)

return (vk,o’,c)

Dy (rsk, ¢ := (vk, o', c))
if ITpss. Vfy,(c’,0’) = 0 then
return L
(TpkEBC, (SPK = sPkypyss MDVS, M, 7)) < HpkEBc-Deppyppo (Tsk.skpkesc, ¢)
if (UpkmBC, (SPK, DMDVS, m,0)) = LV |TpkeBc| # |OMpvs| then

return L

U= (('UIVIDVSM VPKEBC1), - - - (UMDVSWPKEBC\ ’ UPKEBC\HPKEBC\))

if rsk.rpk ¢ ¥ then
return L

if ITnovs - Vi nys (spk, vskmDVs, UMDVS, (VPKEBC, M, VK), 0) # valid then
return L

return (spk, ¥, m)

Forge,,(spk, U := (rpky, ..., rpk|5 ), m, 5= (rski, ..., rsk 5 ))
UpKEBC = (rPk; -PkprEBC) - - - » TPK| 5| -PhpkEBC)
UMpvVs = (rPk;-VPKypyss - - - TPK 5] -VPRy DY)
SMmpvs = (rski.vskmpvs, - - -, TSK| . VSkMDVS)

(Vk7 Sk) <+ Ilpss. G(pp.lk)
o < IIipvs. Forge, (spkypyss UMDVS, (FPKEBC, M, VK), SMDVS)
PPMDVS
¢ + IIpkesC-Fp (vpxEBC, (SPEMDYVS, DMDVS, ™M, 0))
) PKEBC
o' <+ IIpgs.Sigg(c)
return (vk,o’,c)

25



IIyipys s

(gMDVS—CorthDVS—Consa EMDVS-Unforgs EMDVS-OTR; (6 2)

IMDVS, SMDVS> PV MDVS s dSMDVS, 4SMDVS s QVMDVS)'SeCUTe;

and HDSS 18

(EDSS-Corrs EDSS-1-sEUF-CMA; tDSS, MDSS s 4SDss s 4V pss ) -Secure, (6.3)

then no adversary A (e, t)-breaks IT’s

(ns = nsMpvs:
ng = min(npkEBC, NV MDVS)s
dp = min(dgpkesc, dsmpvs),

¢ = min(¢epkERC, ISMDVS> "DSS; 4SDSS )
qp = min(¢ppxEpc, ¢V MpVs: ¢V pss)) - Correctness,

with € > EPKEBC-Corr +EMDVS-Corr +EDSS-Corrs a1d tPKEBC; tMDVS, tDSS R t4tcorr,
where tcor is the time to run IT7s GO game.

Remark 10. Similarly to if ITpkgpc’s correctness holds even when the
adversary is allowed to query for the secret key of any receiver, and Ilypys’s
correctness holds even when the adversary is allowed to query for the secret keys
of any signer or verifier, then II’s correctness holds even when the adversary is
allowed to query for the secret keys of any sender and receiver.

Theorem 7. If IIpkgpc is

(5PKEBC—Corr75PKEBC—Roba EPKEBC-Cons; EPKEBC-IND-CCA-2; EPKEBC-IK-CCA-2,

tPKEBC, "PKEBC, dEPKEBC (EPKEBC» D PKEBC) -S€CUTE, (64)
Iypvs s
(5MDVS-Corr75MDVS-Consa EMDVS-Unforg; EMDVS-OTR; (6 5)
IMDVS; NSMDVSs PV MDVS s ASMDVS; ISMDVS > 4V MDVS) -SECUTE, .
IIpss is
(EDSS-Corrs EDSS-1-EUF-CMA, tDSS» MDSS, 4SDSS > 4V DSs ) -S€cure, (6.6)

and ITpgs. Viy is a deterministic algorithm, then no adversary A (e,t)-breaks IT’s

(ns = nsmpvs, PR = MIN(NPKEBC, "V MDVS)s
dg = min(dgpkesc, dsmpvs), 6 = MIN(¢EprEBC: ISMDVS)
min(qDPKEBC, quDvs)) —Consistency,

qp

with € > €pKEBC-Cons T EMDVS-Cons, @1d tPKEBC, IMDVS & t + tcons, Where tcons
is the time to run IT’s G game.
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Theorem 8. If II\ipys is

(EMDVS-Corry€MDVS-Conss EMDVS-Unforg, EMDVS-OTR, 67)
IMDVS; NSMDVS» MV MDVS > SMDVS» ISMDVS» 4V MDVS ) ~SECUTE,

and Ilpss s
(EDSS-Corrs EDSS-1-EUF-CMA, tDSS; MDSS, 4SDsS s ¢V Dss ) ~Secure, (6.8)
then no adversary A (e, t)-breaks IT’s
(ns = nsMpvs, MR = NV MDVS;

dg = dSMDVS> qE = min(quDVS7 npss; QSDSS)v
¢p = min(qvnmpvs, ¢vpss)) - Unforgeability,

with € > €Dpss-1-sEUF-CMA + EMDVS-Unforg, aNd tpss, tMDvVS & € + tunforg, Where
tunforg @5 the time to Tun II’s G Unforg game.

Theorem 9. If IIpkgpc is

(EPKEBC-Corr,EPKEBC-Robs EPKEBC-Cons; EPKEBC-IND-CCA-2; EPKEBC-IK-CCA-2, (6.9)
tPKEBC, "PKEBC; dEPKEBC: {EPKEBC» IDPKEBC) -S€CUTE,

IIvipvs 45

(EMDVS-CorryEMDVS-Conss EMDVS-Unforg» EMDVS-OTR,

tMDVS,; RSMDVS> 2V MDVS s ASMDVS: 4SMDVS» 4V MDVS) -SECUTE,
(6.10)

and Ilpss s

(EDSS-Corr, EDSS-1-sEUF-CMA; tDSS; MDSS s 4SDss s 4V Dgs ) -Secure, (6.11)

then no adversary A (e, t)-breaks IT’s

(ns ‘= NSMDVS)

ng ‘= min(npKEBC, MV MDVS ),

dp = min(dgpkepc; dsmpvs)

(
in

¢p = min(¢pprEac: IV MDVS: qVDSS))—IND—CCA—Z security,

¢ = Min(¢EpkERC) ISMDVS> DSS 4SDSS )
with

€ > 2 - (€DSS-1-EUF-CMA + EMDVS-Unforg + EPKEBC-Rob)
+ 4 - EPKEBC-Corr T EPKEBC-IND-CCA-2,

and with tpss, tMDVS, tPKEBC = t+tinD-cca-2, where tinp-cca-2 1S the time to run
IT’s GIND-CCA2 g
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Remark 11. Note that Definitions [9] and [I0] do not allow an adversary to query
for the secret keys of any sender A; that is given as input to a query to Og.
Furthermore, we do not know how such a reduction could go through without
requiring any additional properties from the underlying MDVS scheme. In [12}/13],
Chakraborty et al. introduce Bounded Message Validity and prove the IND-
CCA-2 and IK-CCA-2 security of the MDRS-PKE scheme we give in this paper
(Algorithm [2). We refer the interested reader to [13] for further details.

Theorem 10. If HPKEBC 8

(5PKEBC-Corra5PKEBC-Rob7 EPKEBC-Cons; EPKEBC-IND-CCA-2; EPKEBC-IK-CCA-2; (6 12)

tPKEBC, "PKEBC, EPKEBC, (EPKEBC QDPKEBC)'%CW@
IIyipys s

(sMDVS—Corr »EMDVS-Cons; EMDVS-Unforg; EMDVS-OTR;

IMDVS; SMDVS: MV MDVS > ASMDVS» 4SMDVS s QVMDVS)‘SBCW@,
(6.13)

and Ilpss s

(EDSS-Corrs EDSS-1-sEUF-CMA; tDSS; MDSS s 4SDss s 4V Dgs ) -Secure, (6.14)

then no adversary A (e, t)-breaks IT’s

(ns ‘= NSMDVS»

ng = min(npkEBC, MV MDVS),
dp = min(dgpkesc, dsmpvs),

qp = min(¢epKEBC, ISMDVS: MDSS; 4SDSS)»
gp = min(¢pprEBc; IV MDVS: qVDSS))-IK-CCA-Z security,
with

€ > 2 (€DSS-1-EUF-CMA + EMDVS-Unforg + EPKEBC-Rob)

+ 4 - EPKEBC-Corr + EPKEBC-IK-CCA-2 + EPKEBC-IND-CCA-2;5

and with tDSS;tMDV87tPKEBC ~t+ tIK-CCA—2; where tIK-CCA—2 is the time to run
IT’s G'K-CCA2 pames.

Theorem 11. If ITypys is

(EMDVS—Corr »EMDVS-Cons; EMDVS-Unforg; EMDVS-OTR;

IMDVS, RSMDVS: MV MDVS > ASMDVS > ISMDVS > 4V MDVS ) -SECUTe,
(6.15)

and HDSS 18

(EDSS-Corrs EDSS-1-EUF-CMA, tDSS, DSS, 4SDSS: 4V DSS ) -SECUTE, (6.16)
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then no adversary A (e, t)-breaks IT’s

(ns = NSMDVS; MR ‘= NV MDVS)
dg = dsvpvs, E = min(quDvs, nDSS7qSDSS)’
¢p = min(qvypvs, @vpss)) - Off-The-Record security,

with € > 2-€pss-1-sEUF-CMA + EMDVS-0TR, and tpss, tvMpvs ~ t+1oTR, where toTr
is the time to run IT’s GOTR games.

Remark 12. Tt is easy to see from the proof of [Theorem 11]that if ITppys satisfies
a stronger Off-The-Record notion in which the adversary is allowed to query for
the secret key of any sender, then I would also satisfy the analogous stronger
Off-The-Record notion for MDRS-PKE schemes in which the adversary is allowed
to query for the secret key of any sender.
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Appendix

A Game-Based Security Definitions for Public Key
Encryption Schemes

A Public Key Encryption (PKE) scheme IT with message space M is a triple
of PPTs II = (G, E, D). Below we state the Correctness and the multi-user
multi-challenge variants of IND-CPA and IK-CPA security for PKE schemes (first
introduced in [23] and [7], respectively). Throughout the rest of this section, let
II = (G, E, D) be a PKE scheme. As before, we assume the game systems of the
following definitions have (an implicitly defined) security parameter k.

Definition 12. A PKE scheme II = (G, E, D) with message space M is per-
fectly correct if:

Vm € M Y(pk, sk) € Supp(I.G(1%))  Pr[I1.D(sk, I1.D(pk,m)) = m] = 1.
Definitions and provide adversaries with access to oracle Opg:
Public Key Generation Oracle: Opg(B;)

1. On the first call on Bj, compute and store (pk;, sk;) < G(1%); output
pk;;
2. On subsequent calls, simply output pk;.

The IND-CPA game systems provide adversaries with access to the additional
oracle Of defined below:

Encryption Oracle: Og(B;, mg, m1)

1. For game system G{L\'D‘CPA, the oracle encrypts my, under B;’s public key,
Pk, creating a fresh ciphertext c;

2. The oracle outputs the resulting ciphertext ¢ back to the adversary.

Definition 13. For b € {0, 1}, consider the following game played between an
adversary A and game system GND-CPA;

— b+ A9Px.0E

A wins the game if b’ = b and for every query Og(B;, mo,m1), |mo| = |ma|.
We define the advantage of A in winning the IND-CPA security game as

Adv™PPA(A) ==|Pr[AGRNP-PA — yin| 4+ Pr[AGNP-PA — yin] — 1|,
Similarly to the IND-CPA game systems, the IK-CPA game systems provide

adversaries with access to oracle Opg and to an oracle O which behaves as
follows:

Encryption Oracle: Og(B, o, Bj1,m)
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1. For game system G}PA_ encrypt m under Bjp’s public key, Pk b
creating a fresh ciphertext c;

2. Output the resulting ciphertext ¢ back to the adversary.

Definition 14. Consider the following game played between an adversary A and
game system GY<-PA with b € {0,1}:

— VY «— A9Pk,0Or

A wins the game if b’ = b.
We define the advantage of A in winning the IK-CPA security game as

Adv" " PA(A) ==|Pr[AGEP* = win] + Pr[AGY“™A = win] — 1.

We say A (einp.cpa, t)-breaks (resp. (eik.cpa, t)-breaks) the (n,gg)-IND-CPA
(resp. (n,qg)-IK-CPA) security of a PKE scheme IT if A runs in time at most
t, queries the oracles it has access to on at most n different parties, makes
at most gg queries to oracle Og, and satisfies Adv'ND'CPA(A) > einp-cpa (Tesp.
Adv"™PA(A) > eicpa).

Finally, we say that IT is (einp-cpa,€ik-cPa,t, 1, gg)-secure if it is correct
and no adversary A (einp.cpa, t)-breaks the (n, gg)-IND-CPA security of I1, or
(eik-cpa, t)-breaks the (n, qg)-IK-CPA security of IT.

B Game-Based Security Definitions for Digital Signature
Schemes

A Digital Signature Scheme (DSS) IT for a message space M is a triple II =
(G, Sig, Vfy) of PPTs. Below we state the definitions of Correctness and (One-
Time) Strong Existential Unforgeability under Chosen Message Attacks for DSS
schemes. The notions ahead make use of oracles Oy i, Og and Oy, which, for a
DSS IT = (G, Sig, Vfy), are defined as:

Key-Pair Generation Oracle: Oy k(i € N)

1. On the first query on i, compute and store (vk;, sk;) « G(1*);
2. Output vk;.

Signing Oracle: Og(i,m)

1. Compute o < Sig,, (m), where sk; is the signing key associated with i;
output o.

Verification Oracle: Oy (i,m, o)
1. Compute d < Vfy, . (m,o), where vk; is the verification key associated

with 7; output d.
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Definition 15. Consider the following game played between an adversary A and
game system GO

1. A9vk,0s,0v

A wins if there are two queries qs and qy to Og and Oy, respectively, where qg
has input (i,m) and qy has (matching) input (i,m,o)—o being the output of
qs—and the output of qv is 0.

We define the advantage of A in winning the correctness game as

Adv®" (A) := Pr[AG®" = win].

Definition 16. Consider the following game played between adversary A and
game system G1-SEUF-CMA.

1. A9vk,0s,0v

A wins the game if there is a query to Oy on some input (i*,m*, c*) that outputs
1, there is no query to Og on input (i*,m*) that output o*, and for each i € N
there is only at most one query to Og with input i.

The advantage of adversary A in winning game G1SEUF-CMA

18
Advl_SEUF_CMA(A) — Pr[AGl—SEUF—CMA — Win]~

An adversary A (ecor, t)-breaks the (n, gs, qv)-Correctness of a DSS IT if it
runs in time ¢, queries Oy g, Og and Oy on at most n different indices, makes
at most gg and gy queries to oracles Og and Oy, respectively, and satisfies
Advcc’"(A) > €corr- Similarly, A (e1.seur.cma, t)-breaks the (n,gs, gy )-1-sEUF-
CMA security of IT if A runs in time at most ¢, queries Oy g, Og and Oy
on at most n different indices, makes at most gg and ¢y queries to, respec-
tively, Og and Oy, and satisfies Advl'SEUF'CMA(A) > €1.seUF-cMA- Finally, IT
is (ecorr, €1-sEUF-CMA, t, 1, @5, qv )-secure if no adversary A (ecor,t)-breaks the
(n,qs, qv)-Correctness of II, or (¢1.sgur.cma,t)-breaks the (n,qs,qy)-1-sEUF-
CMA security of IT.

C Game-Based Security Definitions for Binding
Commitment Schemes

A Commitment Scheme (CS) for a message space M is a protocol consisting
of a pair of PPT algorithms IT = (G¢rs, Commit). We now move to introduce
game-based notions capturing the security of CS protocols. We assume the game
systems ahead have (an implicitly defined) security parameter k.

The game systems of Definitions [17] and [18| provide adversaries with access to
an oracle Og, defined as:

CRS Generation Oracle: Og

1. On the first call, compute and store crs + Gcrs(1¥); output crs;
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2. On subsequent calls, output the previously generated crs.

captures the hiding property of Commitment Schemes. We
give a game-based notion capturing this property which resembles the IND-CPA
notion for PKE schemes. For b € {0,1}, GE'd'"g provides adversaries with access
to oracle Og defined above, and to an oracle Ocomms¢t Whose behavior is defined
below:

Encryption Oracle: Ocommit(mo, m1)

1. Pick randomness p uniformly at random,;
2. For game system Ggiding, compute comm + Commit.s(mp; p); output
comm.
Definition 17. Consider the following game played between an adversary A and
a game system Gg'dmg, with b € {0,1}:
— b/ < A051OCO7nmit

A wins the game if b’ = b.
We define the advantage of A in winning the Hiding game as

Adeiding(A) ::’Pr[AGgiding _ Win] 4 PI‘[AGTiding — win} — 1.

An adversary A (€Hiding, t)-breaks the (¢)-Hiding property of a CS IT if it runs
in time ¢, makes at most ¢ queries to Ocommit, and satisfies Adeidi“g(A) > EHiding-

Definition 18] which captures the binding property of Commitment Schemes,
provides adversaries with access to an oracle Ogommir defined as follows:

Commit Oracle: Ocommit(m, p)
1. Compute comm = Commitcrs(m;p)g output comm.

Definition 18. _C_onsider the following game played between an adversary A and
game system GBinding .

— AOS yOcommit

A wins the game if there are two queries q and ¢ to Ocommit where q has input
(m, p) and outputs comm and ¢’ has input (m’,p') and outputs comm’, satisfying
m # m’' and comm = comm’.

The advantage of A in winning the Binding game is denoted Adv® "8 (A)
and corresponds to the probability that A wins game GB""e 45 described above.

An adversary A (€ginding, t)-breaks the Binding property of a CS IT if A runs
in time at most ¢ and satisfies Ade'”d'"g(A) > EBinding- If A is computationally

12 Here, p denotes the random coins used by Commit, meaning that Commit(y(-; p) is
a deterministic algorithm.
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unbounded, we instead write that A (eginding)-breaks the Binding property of IT
if AdUBinding(A) Z EBinding -

We say a CS II is (€Hiding, EBinding, T, ¢)-secure if no adversary A (EHiding, t)-
breaks the (g)-Hiding property of IT, or (£ginding, t)-breaks the Binding property of
I1. For a Statistically Binding Commitment Scheme (i.e. one for which the Binding
property holds against computationally unbounded adversaries), we say instead
that I7 is (Eiding, EBinding, t» ¢, Binding)-secure if no adversary A (eiding, t)-breaks
the (q)-Hiding property of IT, and no (possibly computationally unbounded)
adversary (€ginding)-breaks the Binding property of II.

D Game-Based Security Definitions for Non Interactive
Zero Knowledge Schemes

For a binary relation R, let Lg be the language Ly = {z | 3w, (z,w) € R}
induced by R. A Non Interactive Proof System (NIPS) for Lg is a triple of PPT
algorithms IT = (G¢rs, Prove, Verify) where:

- GCRS(lk): given security parameter 1%, outputs a common reference string
crs;

— Provecs(x,w): given a common reference string crs and a statement-witness
pair (z,w) € R, outputs a proof p;

— Verify,,.s(x,p): given a common reference string crs, a statement x and a
proof p, either accepts, outputting valid (= 1) or rejects, outputting invalid

(=0).

In the following definitions, let IT = (G¢rs, Prove, Verify) be a NIPS for
a relation R, and let k& be the security parameter. The security notions below
(Definitions and provide adversaries with access to oracles Og and Oy,
defined as:

CRS Generation Oracle: Og

1. On the first call, compute and store crs < Ggors(1¥); output crs;

2. On subsequent calls, output the previously generated crs.
Verify Oracle: Oy (z,p)
1. Compute b = Verify,,.(x, p); output b.
additionally provides adversaries with access to an oracle Op:
Prove Oracle: Op(z,w)
1. Compute p = Provegs(x,w); output p.
Definition 19. Consider the following game played between an adversary A and

game system GComplete.
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— A0s,0p,0v

A wins the game if there are two queries qp and qyv to Op and Oy, respectively,
where qp has input (x,w) and qy has input (z',p), satisfying x = x’, the input p
in qy is the output of qp, the output of qv is invalid, and (z,w) € R.

The advantage of A in winning the Completeness game, denoted Adv“™P*(A),
corresponds to the probability that A wins game GCO™Plete s described above.

We say that an adversary A (€complete, t)-breaks the (¢p, ¢y )-Completeness of
a NIPS scheme I7 if A runs in time at most ¢, makes at most gp and gy queries
to oracles Op and Oy, respectively, and satisfies Advcmplete(A) > EComplete-

Definition 20. Consider the following game played between an adversary A and
game system G°und:

— A09s,0v

A wins the game if there is a query to Oy on input (x,p), satisfying x & Lg,
such that the oracle outputs valid.

The advantage of A in winning the Soundness game corresponds to the prob-
ability that A wins game G s described above and is denoted Adv>°"™(A).

An adversary A (esound; t)-breaks the (gy )-Soundness of a NIPS scheme IT
if A runs in time at most ¢, makes at most ¢y queries to Oy and satisfies
AdUSound(A) = €Sound-

A NIZK scheme IT = (G¢rs, Prove, Verify, S = (Scrs, Ssim)) for a relation
R consists of a NIPS scheme T’ = (G¢rs, Prove, Verify) for R and a simulator
S = (SCRS7 SS'im)7 where:

— Scprs(1F): given security parameter 1%, outputs a pair (crs, 7);
— SSim(crs,7)(¥): given a pair (crs,7) and a statement x, outputs a proof p.

Consider a NIZK scheme IT = (G¢rs, Prove, Verify, S = (Scrs, Ssim)). The
following security notion, which defines game systems G§X and G4X, provides

adversaries with access to two oracles, Og and Op, whose behavior depends on
the underlying game system. For GEX (with b € {0, 1}):

CRS Generation Oracle: Og

1. On the first call, compute and store crs < Ggrs(1¥) if b = 0 , and
(crs,T) + Scrs(1¥) if b = 1; output crs;

2. On subsequent calls, output the previously generated crs.
Prove Oracle: Op(z,w)

— If b = 0, output m < Provegs(x,w);
— If b =1, output 7 <= Ssim (crs,r)(T)-

Definition 21. For b € {0,1}, consider the following game played between an
adversary A and game system G£K:
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— b« AOs:Op

A wins the game if b’ = b and every query Op(z,w) satisfies (x,w) € R.
The advantage of A in winning the Zero-Knowledge security game for II is

Adv™(A) =|Pr[AG5" = win] + Pr[AG%X = win] — 1|.

We say that an adversary A (ezk,t)-breaks the (¢p)-ZK security of a NIZK
scheme [T if it makes at most gp queries to Op and satisfies AdeK(A) > e7k.-
We now introduce Simulation Soundness for NIZK [37]. The game system

defined by this notion provides adversaries with access to oracles Og, Op and
Oy defined as:

CRS Generation Oracle: Og

1. On the first call, compute and store (crs, 7) < Scrs(1¥); output crs;

2. On subsequent calls, output the previously generated crs.
Prove Oracle: Op(z)

1. Compute p = Ssim (crs,r)(2); output p.
Verify Oracle: Oy (z,p)

1. Compute b = Verify,,s(z,p); output b.

Definition 22. Consider the following game played between an adversary A and
game system GSS:

— AUs,0p,0v

A wins the game if it makes a query Oy (x,p) with x € Lg that outputs valid
and no query Op(x) output p.

The advantage of A in winning the Simulation Soundness game, denoted
AdeS(A), is the probability that A wins game G35 as described above.

An adversary A (ess, t)-breaks the (gp, gv)-Simulation Soundness of a NIZK
scheme [T if it makes at most gp and ¢y queries to Op and Oy, respectively,
and satisfies Adv>>(A) > ess.

Finally, we say that a NIZK scheme IT is (€complete; ESounds EZK, €55 &, P, qv )-
secure if no adversary A (Ecomplete, t)-breaks the (¢gp, gy )-Completeness of IT,
(€sound, t)-breaks the (qy)-Soundness of IT, (ezk, t)-breaks the (¢p)-Zero-Knowledge
of I1, or (ess, t)-breaks the (¢p, gy )-Simulation Soundness of IT.

E Game-Based Security Definitions for Multi-Designated
Verifier Signature Schemes

A Multi-Designated Verifier Signature scheme (MDVS) IT is a 6-tuple II =
(S, Gs, Gy, Sig, Vfy, Forge). The security games for MDVS schemes have an im-
plicitly defined security parameter k£, and provide adversaries with access to some
of the following oracles:
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Public Parameter Generation Oracle: Opp

1. On the first call to Opp, compute pp + S(1¥); output pp;
2. On subsequent calls, simply output pp.
Signer Key-Pair Generation Oracle: Ogx(A;)

1. On the first call to Osk on input A;, compute (spk;, ssk;) < Gs(pp),
and output (spk;, ssk;);

2. On subsequent calls, simply output (spk;, ssk;).
Verifier Key-Pair Generation Oracle: Oy (B;)

1. Analogous to the Signer Key-Pair Generation Oracle.
Signer Public-Key Oracle: Ogpx(A;)

1. (spk;,ssk;) < Ogk(4;); output spk,.
Verifier Public-Key Oracle: Oy pg(By)

1. Analogous to the Signer Public-Key Oracle.
Signing Oracle: Og(A;,V,m)

1. (spk;,ssk;) < Osr(4;);

2. 7= (Ovpr(V1),--.,Ovpk(Vp));

3. Output o < Sig,,(sski, v, m).
Verification Oracle: Oy (A4;, B; € Set(V),V,m, o)

1. spk, < Ospr(4;);

2. 7= (Ovpr(V1),--.,Ovpk(Vp));

3. (vpkj,vskj) — Ovik(By);

4. Output d < Vfy,,(spk;, vsk;, ¥,m, o), where d € {0,1}.

We now introduce the relevant game-based notions for MDVS schemes. Let
I = (S, Gs, Gy, Sig, Vfy, Forge) be an MDVS scheme.

Definition 23 (Correctness). Consider the following game being played be-
tween an adversary A and game system GO :

1. A9PP,0sk,Ovk,0spk,Ovrk,0s,0v

A wins the game if there are two queries qs and qy to Og and Oy, respectively,
where qs has input (A;, V,m) and qv has input (A;', Bj, V’,m’,a), satisfying
(A;,V,m) = (A4, V',m)), B; e V, the input o in qy is the output of the oracle
Ogs on query qg, and the output of the oracle Oy on the query qy is 0.

The advantage of A in winning the Correctness game is the probability that
A wins game G as described above, and is denoted Advc""(A).
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Definition 24 (Consistency). Consider the following game being played be-
tween an adversary A and game GOS:

1. A9rPP,0Osk,0vk,Ospk,OvpPk,0s,0v

A wins if it queries Oy on inputs (Ai,Bj,V,m,U) and (A/,Bj’,‘?’,m’,a’)
with (Ai,v,m, o) = (A/,Vﬂm',a’) and such that {B;, B;'} C V, the out-
puts of the two queries differ, and there is no query Oy g (Bj) prior to query
Ov (A, Bj, V,m, o), nor query Oy i (B;') prior to query Oy (A, Bj', V'.om!, ).

The advantage of A in winning the Consistency game is the probability that
A wins game G as described above, and is denoted Adv“°"(A).

Remark 15. As mentioned in [12], the Unforgeability notion below is not equiva-
lent to the one introduced in [16] in that it provides adversaries with access to a
signature verification oracle. While the notion we assume is stronger than the one
originally given in [16], there exist MDVS schemes satisfying this notion, namely
the one from [12], and therefore the claims of the paper remain unaffected.

Definition 25 (Unforgeability). Consider the following game being played
between an adversary A and game system GUnfre;

1. A9rPP,0sk,0vk,Ospk,OvrPk,0s,0v
A wins if it makes a query Oy (A;*, B;™, V*, m*, o*) with B;* € V* that outputs
1, for every query Og(A;',V',m'), (A;*,V* m*) # (A, V',m') and there is no
Osk query on A;* nor Oy query on B;*.

A’s advantage is denoted AdvU™"(A) and corresponds to the probability that
A wins GUrfere,

The Off-The-Record security notion defines two game systems, G§™R and
G9TR which provide adversaries with access to (modified) oracles Og and Oy
described below:

Signing Oracle: Og(type € {sig, sim}, 4;,V,m,C C Set(V))
For game system GgTR, the oracle behaves as follows:

1. (spk;, ssk;) < Osk(Ai);

2. Let ¥ = (vy, .. "UIVI) and §= (s, .. .,s|‘7|) where, for i € {1,..., \‘7\}

_ (1}4 5') o OVK(VZ) ifvV,ecC
O (Ovpk (V;), L) otherwise;

3. (00,01) « (I1.8ig,,(sski, U, m), II. Forge,, (spk;, U, m, 5));

4. If b = 0, output og if type = sig and oy if type = sim; otherwise, if
b =1, output oy.

Verification Oracle: Oy (A;, B; € Set(V),V,m, o)
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1. If o was output by a query to Og on an input (type, 4;’, V'om/, C) such
that (A", V', m/) = (A;,V,m) and with B; € V, output test;
2. Otherwise, compute b < Vfy,,(spk;, vsk;, ¥, m, 0); output b.
Definition 26 (Off-The-Record). For b € {0, 1}, consider the following game

being played between an adversary A and game system GgTR:

1. A9PP,0sk,Ovk,0spk,Ovrk,0s,0v

We say that A wins the game if it outputs a guess bit b’ with b’ = b, and for every
query Og(type, A;, V,m,C): 1. there is no query Ov i (Bj) with B; € Set(V)\C;
and 2. there is no query Osx (A;') with A;" = A;.

The advantage of A in winning the Off-The-Record security game is

Adv°TR(A) == [Pr[AGY™® = win] + PrlAG{™R = win] — 1|.

We say an adversary A (g, t)-breaks the (ng,ny, ds, gs, gy )-Correctness (resp.
-Consistency, -Unforgeability and -Off-The-Record) of IT if A runs in time at most
t, queries Osk, Ospk, Og and Oy on at most ng different signers, Oy g, Oy prk,
Og and Oy on at most ny different verifiers, makes at most gg and qy queries
to Og and Oy, respectively, with the sum of the verifier vectors’ lengths input
to Og being at most dg, and satisfies Adv“°"(A) > ¢ (resp. Adv™"(A) > «,
Adv""™(A) > ¢ and Adv®TR(A) > ¢). We say that IT is

(ECorn €Cons) EUnforg; EOTR) t,ns,ny,ds, gs, QV)-SGCUYG
if no adversary:

— (ecorr, t)-breaks the (ng,ny,ds, qgs, qv )-Correctness of II;

— (Econs, t)-breaks the (ng,ny,ds, qs, gv )-Consistency of IT;

— (Eunforg, t)-breaks the (ng,nv,ds, ¢s, gv)-Unforgeability of IT; or

— (eoTr, t)-breaks the (ng,ny,ds, gs, qv )-Off-The-Record security of I7.

E.1 Privacy of Identities

The following security notion is the multi-challenge variant of the Privacy of
Identities notion from [16]. Similarly to the Off-The-Record security notion, this
notion defines two game systems, GF' and GY' and provides adversaries with
access to (modified) oracles Og and Oy defined below:

Signing Oracle: OS((Ai,O,I%), (Ai71,171),m)
For game system GtP,', the oracle behaves as follows:

1. (spk; p,sskipb) < Osk(Aip);
2. 9 = (Ovpr(Vb1),.- ~aOVPK(Vb,|‘7|))§

3. 0 < Sigy,(sski b, Up, m); output 7.
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Verification Oracle: Oy (A;, B; € Set(V),V,m,0)

1. If o was output by a query to Og, output test;

2. spk; < Ogpr(Ai);

3. ¥v= (OVPK(Vl),...,OVPK(V”;'));

4. (vpk;, vskj) < Ovk(Bj);

5. b < Vfy,,(spk,, vsk;, ¥, m,0); output b.
Definition 27 (Privacy of Identities). For b € {0,1}, consider the following
game played between an adversary A and GF':

1. A9rPP,0sk,0vk,Ospk,Ovpk,0s,0v

A wins the game if it outputs a guess bit b’ with b = b and for every query

((Ai,o,vo),(Ai71,‘71),m) to oracle Og: 1. |Vo| = |VA|; 2. for all queries B; to

Ovk, B; ¢ Set(VO)USet(Vl); and 8. for all queries A;" to Osk, A;' ¢ {A;0,Ai1}.
We define the advantage of A as

Adv™'(A) = |Pr[AGH = win] + Pr[AGY' = win] — 1|.

An adversary A (e, t)-breaks the (ng,ny,ds, qs, gv )-Identity-Privacy of IT if A
runs in time at most ¢, queries Ogsg, Ospr, Og and Oy on at most ng different
signers, Oy i, Ovpr, Og and Oy on at most ny different verifiers, makes at
most gs and gy queries to Og and Oy, respectively, with the sum of the verifier
vectors’ lengths input to Og being at most dg and the advantage of A in winning
the game being at least € (i.e. Adv"'(A) > ¢). Finally, we say that IT is

(5Corr» €Cons; EUnforg; EOTR; EPI, ta ns,nv, dSv qs, QV)-SGCHI“G
if it is
(ECorr, €Cons; EUnforgs EOTR; t,ng,nv,ds,qs, qv)-secure

and no adversary A (epy, t)-breaks the (ng,ny,ds, qs, gy )-Privacy of II.

F Multi-Designated Verifier Signature Scheme with
Privacy from Standard Assumptions

The construction of an MDVS scheme achieving Privacy of Identities (see
from standard assumptions is straightforward from the MDRS-PKE
scheme construction given in Algorithm For completeness, we give an explicit
construction in Algorithm

13 In particular, one can reduce any adversary breaking the privacy of identities of the
MDVS to one breaking the IK-CCA-2 security of the underlying MDRS-PKE.
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Algorithm 3 MDVS construction IT = (S, Gg, Gy, Sig, Vfy, Forge) from
MDRS-PKE scheme HMDRS—PKE = (57 Gs, GR, E7 D, Forge).

S(1%)
return Tyvprs-pxe-S(1F)

Gs(pp)
return ITvyprs-pkE-Gs (pp)

Gv (pp)
return ITvprs-pkE- GRr(pP)

Sig(pp, sski, U, m)
return II\prs-PKE .- Epp(ssk;, U, m)

Vfy(pp, spk;, rsk;, U, m, c)
?
return (spk;, ¥, m) = IInDRs-PKE - Dpp (rskj, ¢)

Forgey, (spk, 7, m, 5)
return HMDRS,pKE.Fm‘gepp(spki7 v, m, §)

G Tight Multi-User Multi-Challenge IK-CPA Security of
ElGamal

Throughout this section, let G = (g) be some fixed cyclic group of prime order ¢
(i.e. |G] = q), and g be a (fixed) generator of G.

Definition 28. Forb € {0, 1}, consider the following game between an adversary
A and GEDH :

1. (z,y,2) & Ly X Lg X Lg;
2. (X7KZ07ZI) = (nggy7gwy7gz);
3.V A(X,Y, Zy).

A wins the game if b = b. A’s advantage in winning DDH is:
AdvPPH(A) =|Pr[AGEP" = win] + Pr[AGPP" = win] — 1|.

We say that an adversary A (eppy, t)-breaks the DDH assumption (for group G) if
A runs in time at most ¢ and satisfies AdvDDH(A) > eppH; conversely we say that
the DDH assumption (epph,t)-holds (for G) if no adversary A (eppw,t)-breaks
the DDH assumption (for G).

For the cyclic group G from above, the ElGamal [18] PKE scheme works as
follows:

Key-Pair Generation

1. Pick b < Z4 uniformly at random, and compute B = g%
2. Output the key-pair (pk := B, sk :=b).
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Encryption

1. On input (pk := B,m € G), pick r < Z, uniformly at random;
2. Output as ciphertext ¢ :== (o == g", 8 := B"-m).

Decryption

1. On input (sk = b,c = (o, 3) € G?), compute a~?;
2. Output a~t- B.

It is well known that ElGamal is tightly Multi-User Multi-Challenge IND-CPA
secure under DDH [8]: if an adversary A (g, t)-breaks the (n, ¢z )-IND-CPA security
of ElGamal, then there is an adversary A’ that (¢’,t’)-breaks the DDH assumption
(for the same group G) with &’ > ¢/2 — (n+1)/g and t' =t + O(TP - (n + qg)),
|E| where TP is an upper bound on the time to compute an exponentiation
However, to the best of our knowledge only the Single-User Single-Challenge
IK-CPA security of ElGamal has been proven [7]. For completeness, we show that
ElGamal is also tightly Multi-User Multi-Challenge IK-CPA secure under DDH.
Our proof will rely on the self-reducibility of DDH, and in particular we will use
the following helpful lemma from [8, Lemma 5.2] (adapted to the fixed group G
from above):

Lemma 1 (Adapted from |8, Lemma 5.2]). There is a probabilistic algorithm
R running in time O(T*P)—where TP is an upper bound on the time to
compute an exponentiation in G—that, on input (g%, g% ¢¢,x) € G x {0,1},
where a,b,c € Zg, outputs a triple (g“l,gb/,gc/) € G3, where o',V ,d € Zg,
satisfying:

’ Hc:aobmodq ‘c;éa~bm0dq‘

a =a

=0 b is random

d=4d b mod q\c’ s random
a’ 1s random

r=1 b is random

d =d -V mod q|c" is random

In the table, random means that the element is distributed uniformly over Zg,
independently of anything else.

Theorem 12. If there is an adversary A that (e,t)-breaks the (n,qg)-IK-CPA
security of the ElGamal PKE scheme, then there is an adversary A’ that (¢',t')-
breaks the DDH assumption (for the same group G), with

' Tn [8] the adversary’s runtime is actually bounded by t' = t + O(T**® - (n - qg)).
However, by a simple adaptation of their reduction (analogous to the one we give in
the proof Of one can actually obtain bound t' =t + O(T“® - (n + qg)).

!5 The advantage bounds stated in |8, Theorem 5.3] are slightly different. We wrote
different bounds here because we found a minor issue with the security proof (that
leads to slightly different bounds, see . Nevertheless the claims made
in [8] remain unaffected.
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— & >¢/a— (n+tD)/q; and

-t/ =t+O(T*? - (n+ qg)), where TP is an upper bound on the time to
compute an exponentiation.

Proof. Consider the IK-CPA game systems G{“PA and GIX-“PA for the ElGamal
PKE scheme. We give reductions Cy and C; satisfying:

(1) CoGEPH = C;GPPH with probability at least 1 — (n+1)/g;
(2) CQGgDH = GIOK—CPA.
(3) C1GHPH = GIK-CPA,

We now specify reductions Cy and C;j. In the following, let R be the probabilistic
algorithm from and (X,Y,Z) be the DDH challenge given by GPPH:

- OPK(Bj):
1. On the first call on By, run R on (X,Y, Z, 1), to obtain (Xp,, Y5, Z5,);
store (Bj, (XB,,YB;, Zp,)); output pk; == Xp;
2. On subsequent calls for B;, simply output pk; := Xp;.

- OE(BJ"(), Bj}l, m):
For b € {0,1}, reduction C;, proceeds as follows:

1. For t/ € {0,1}, let (B;, (XB7,b”YBj,b’7ZBj,b’)) be the tuple stored by

Opg for party B; s (if there is no such tuple, issue query Opi (B;p));
2. Run R on input (XB]_ Y, 28, 0), obtaining a triple (X',Y”’, Z');

b (YAl IR

output ¢ = («, 8), where « =Y and B=2"-m.
— When A outputs a guess ba:
1. Cp outputs ba @ b as the guess.

It is easy to see, by taking into account the table defined in that Cy
and C; satisfy Conditions [(2)] and [(3)] specified above:

— parties’ public keys are independent from each other and are distributed
uniformly at random over Gj

— each ciphertext ¢ := (a, ) output by O when queried on input (B, o, Bj1,m)
is such that 1. « is independent from everything else and is distributed
uniformly at random over G; and 2. if log, (X) = logy (%) then, for b’ € {0, 1},
letting (X', Y, Z') be the triple generated by reduction Cy using algorithm R,
where X' is B;p’s public key and Y := g% is o, we have 8 = Z'-m = X'"-m,
implying it has exactly the same distribution as GI-CPA.

At this point, it only remains to prove that condition is satisfied. To that
end we will define an event SAME-DIST such that if it occurs condition is
satisfied, and will then bound its probability.
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Let NR be the event that log,(X) = logy (Z). For each party B; that an
adversary queries, reductions Cy and C; sample a triple (Xp,,Y5;,Zp;) by
running R on input (X,Y, Z,1), and set Xp, as B;’s public key: let Py,..., P,
be the n distinct parties that the adversary queried for, and for i =1,...,n, let
(X[, Y/, Z!) be the triple sampled by the reduction for party P; (meaning that
X} is P;’s public key). We define NR; as the event that log,(X;) = logy.(Z).
Finally, we define event SAME-DIST:

SAME-D|ST:_NRA< A NR)

i€{1,. )

It is easy to see that if SAME-DIST occurs all the adversary sees is independent
of which reduction (Cqy or Cy) it is interacting with—note in particular that the
second group element [ of each ciphertext ¢ = (a, ) is distributed uniformly at
random over G—and so indeed condition is satisfied.

We now obtain a lower bound on Pr[SAME-DIST]. Consider the opposite

event, SAME-DIST. We have
Pr[SAME-DIST] = Pr|NR V ( \Y NR,»)]
i€{1,...,n}

=PrNR]+Pr| \/ NR NR]
ie{1,...,n}
<PrNR]+ > Pr[NR; |NR]
ie{l,...,n}

where the last step follows from the union bound. To conclude the proof, note
that since the triple (X,Y, Z) output by GPP" is such that X, Y and Z are
all picked uniformly at random (from G) and independently from each other
from G, we have Pr[NR] = /4, and that from [Lemma 1] we have Vi € {1,...,n},
Pr[NR; | NR] = 1/¢; so, with probability at least 1 — (n+1)/q, CoGPPH = C; GPPH.

O

Remark 14. We noticed a minor issue with the exact bounds claimed in [8|
Theorem 5.3] regarding the tight IND-CPA security of ElGamal under DDH. In
the paper it is claimed that the adversary A’ has an advantage ¢’ > /2 — 1/2%,
where ¢ < 2 (q being the order of group G). However, in the proof of (8|
Theorem 5.3], when making an argument analogous to ours establishing that
CoGP?P" = C,;GPPH it is not considered the possibility that the algorithm R
mentioned above, which is used to rerandomize DDH challenges, outputs a triple
(X', Y’ Z") such that log,(X’) = logy(Z") when given an input (X,Y, Z,-) such
that log,(X) # logy (Z). By if log,(X) # logy (Z) then the triple
(X',Y', Z") output by R will be one where Z’ is uniform at random over G and is
independent of all X, Y, Z, X’ and Y’; the event mentioned above actually occurs
with probability 1/q. Suppose the event occurs when reduction C, is sampling the
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public key of a party B;, and let (X;,Y;, Z;) be the corresponding DDH triple—
i.e. (X;,Y;, Z;) was output by R on input (X,Y, Z, 1), with log,(X) # logy (Z),
where X; is B;’s public key and (X;,Y;, Z;) satisfies logg(Xi) = logy, (Z;): for
each query the adversary makes to O on input (Bj; o, Bj 1, m) with B;, = B;,
by [Cemma 1] the DDH triple (X’,Y”, Z’) sampled by R on input (X;,Y;, Z;,0)
will satisfy log,(X’) = logy~(Z’). This means that in such case the challenge
ciphertext ¢ = (Y’, Z’) does not hide in an information theoretical sense the bit
b of Cy, contrary to what is claimed in the proof of |8, Theorem 5.3].
Nevertheless, by following an argument very similar to the one we used to
prove that ElGamal is tightly IK-CPA secure under DDH, one can also prove it
is tightly IND-CPA secure under DDH (with the same parameters). This means
that despite this minor issue, the claims made in the paper remain unchanged.

H PKEBC Construction Security Proofs

In this section we give the (missing) full security proofs for the PKEBC construc-

tion given in

H.1 Helper Claim

Definition 29 (n-Party e-Public Key Collision-Resistance). PKE scheme
ITpkg = (G, E, D) is n-Party e-Public Key Collision-Resistant if

(pkl, Skl) — HPKE.G(lk)
Pr | |{pk,,....pk,}| <n <e.
(pkn, Skn) — HPKE.G(lk)
Lemma 2 (Adapted from [13, Lemma 2]). If IIpkg is

(5PKE—IND—CPAa EPKE-IK-CPA; tPKE; NPKE; 4Epkr ) -SECure,

with tpke L MPKE - ta + tp—where tg and tp are, respectively, the times to
run Ilpkg.G and Ipkg.D—then Ilpkg is npkg-Party e-Public Key Collision-
Resistant, with € < 2 - EpKE-IND-CPA-

H.2 Proof of Theorem [Il

We prove a stronger result. Namely, we consider an alternative correctness notion

for PKEBC schemes that only differs from in that it allows the

adversary to query for the secret key of any receiver and still win the game.
This proof proceeds in a sequence of games [9,38].
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G s G The only difference between G and G is that in GZ the crscg
output by Og is perfectly binding (see .

One can reduce distinguishing the two games to breaking the Binding property
of the underlying I1cs scheme: since the reduction has access to the secret keys
of any party and can pick the randomness for the commitment itself, it can
handle any oracle queries. It then follows from that no adversary
(ecs-Binding)-breaks the Binding property of Ilcg, implying

PI‘[;&C}COrr = win] - PI‘[AGEU = win]’ < ECS-Binding -

GT » G2: The only difference between the games is that in G2 for each
ciphertext ¢ := (p, comm, ¢) output by Og for a query with input (V, m), if Op
is queried on input (Bj,c) with B; € ‘7, Op no longer verifies p’s validity using
IInzk -V, and instead simply proceeds as if p would verify as being valid.

As before, one can reduce distinguishing the two games to breaking the
completeness of the underlying ITnizx because the reduction has all secret keys
and therefore can handle any queries. (Note that for this game hop the reduction
does not need to pick the randomness for proving NIZK statements itself.) Since
A can only make up to gg < gpynizik queries to O and gp < qynizx queries
to Op, it follows from that no adversary (en1zk-Complete; tN1zK )-breaks
the (¢pNizKs v N1zZK )-Completeness of IInizk, implying

’PI‘[AGE] = win] - PI‘[AG = win] S ENIZK-Complete-

GZ «» GB: The only difference between the games is that in GE when Op
is queried on an input (Bj,c), where ¢ := (p, comm, ¢) was output by a query
OE(V, m) such that B; € ‘7, Op no longer tries decrypting each ¢; o of ¢'satisfying
v; = pk; using IIpkg.D, and instead simply assumes the output is (p,U,m), the
tuple encrypted by IIpkg.F—with p being the random coins used by Ilcg to
compute the commitment comm.

Note that the probability of winning G is 0: consider any query (’)E(V, m)
and any later query Op(Bj,c) where ¢ = (p, comm, €) is the output of the first
query and where B; € v

— Since IIpkg is now assumed to be a correct PKE scheme, then for the least
1 e{1,...,|¢]} satisfying V; = Bj, B;’s decryption of ¢; ¢ of ¢ is going to
be (¢, m), where ¥ is the vector of public keys corresponding to V. By the
definition of IT.D this then implies that if no (7", m") # (¥, m) is output—
corresponding to the decryption of some ¢y o where I’ < [—then I1.D outputs
(¥, m);

— Since crscg is binding, for any (', m') # (¥, m) (with (¢',m’) # L) and any

.
g comm # [1cs. Commiters.s (U, m'; p'),

implying Op does not output (¢, m’) # (¥, m).
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To conclude, it follows from [Eq. (4.3)|that ITpkg is perfectly correct, implying

Pr[AG = win| = Pr[AGIE = win] = 0.

H.3 Proof of Theorem [2

We prove a stronger statement. Namely, we consider an alternative Robustness
security notion for PKEBC schemes that only differs from in that it
now allows the adversary to query for the secret key of any receiver and still win
the game.

GReb s GI: The only difference between the games is that in G 1o two parties
have the same public key.

Since tpkg i, npke - tg + tp (where t¢ and tp are, respectively, the times to
run ITpkg. G and ITpkg.D) and npkg > 1, it follows from [Eq. (4.6) and [Lemma 2|
that

‘PI‘[AGROb = win} — PI‘[AGDJ = win} < 2 - EPKE-IND-CPA-

We now bound Pr[AGT = win|. First, note that an adversary A wins this
stronger robustness game if there are two queries ¢gg and gp to O and Op,
respectively, where gg has input (V,m) and gp has input (Bj,c), satisfying
B; & V', the input ¢ in gp is the output of gg, and the output of gp is (7', m’)
with (¢',m’) # L. By the definition of II.D, the output of gp being some pair
(v",m') # L implies pk; € ¥'; since B; & V, it follows from the fact that all
parties have distinct public keys that pk; ¢ U (where pk; is B;’s public key and
U is the vector of public keys corresponding to the vector of parties ‘7), implying
(0", m') # (¥, m). Also by the definition of II.D, the output of gp being some pair
(¢,m') # L implies there is a sequence of random coins p’ such that

. —/ / /
comm = ITcg. Commiters.o (U, m'; p').

Noting that this is only possible if crscg is non-binding, it follows from [Eq. (4.7)|
that no adversary (ECS_Binding)—breaks the Binding property of IIcs, implying

PJr[AGIII = win] < €¢S-Binding-

H.4 Proof of Theorem [3

We prove a stronger result. Namely, we consider an alternative Consistency
security notion for PKEBC schemes that only differs from in that it
allows the adversary to query for the secret key of any receiver (and still win the
game).
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GCors s GI: The only difference is that in GH the crscg output by Og is
perfectly binding (see [Appendix CJ).

One can reduce distinguishing the two games to breaking the Binding property
of the underlying IIcs scheme because the reduction has access to the secret keys
of any party and can pick the randomness for the commitment itself, and so it
can handle any oracle queries. It then follows from that no adversary
(ecs-Binding)-breaks the Binding property of Ilcg, implying

PI‘[AGcons = Win] - PI‘[.AG}'II = Win]‘ S €(CS-Binding -

GT «» GZ: The difference between the games is that in G2, whenever Op is
queried on an input (Bj, ¢), with ¢ := (p, comm, €), such that (crscs, comm, ¢) ¢
Lcons (crscg being the one generated by Opp), Op outputs L.
is perfectly indistinguishable from G unless A makes a decryption query
on a ciphertext ¢ := (p, comm, ) such that the NIZK proof p verifies as being
a valid one for statement (crscs,comm,é) € Lcons, and with respect to the
crscg output by Og, but (crscs, comm,€) € Loons- As before, one can reduce
distinguishing the two games to breaking the soundness of the underlying ITnizk
because the reduction has all secret keys and therefore can handle any queries.
Since A can only make up to gp < gy nizi queries to Op, it follows from [Eq. (4.9)|
that no adversary (eN1zK-Sound, EN1zK )-breaks the (qy nizk )-Soundness of IINizk,
implying
Pr[AGT = win] — Pr[AG2 = win]| < enx1zK-Sound-

To conclude this proof, we will prove the following claim:

Claim. For any adversary A:
Pr[AG = win] = 0.

Proof. A wins G2, if it queries Op on inputs (B;, ¢) and (By, c) for some B; and
Bj (possibly with B; = B;) and some ciphertext ¢, and the first query outputs
(,m) # L with pk; € ¥ (where pk; is B;’s public key), whereas the second
outputs either L or some (¢, m') with (¢',m’) # (¥, m).

Consider any two queries ¢p; and ¢p ; that A makes to Op on inputs (B;, ¢)
and (Bj, '), respectively, satisfying ¢ = ¢, and such that ¢p ; outputs (¥;, m;)
with (v;,m;) # L and pk; € ;. First, note that if A does not make any two
queries satisfying these conditions, then it does not win G2. In the following, let
¢ = (p, comm, €) be the ciphertext input to ¢p; and ¢p ;.

By the soundness of IINizk, there is a vector of public keys ¢ and a message
m such that comm is a commitment to (¥,m), and for every ciphertext ¢, of &
there is a sequence of random coins 7, such that c, ; is the IIpkg encryption
of (p,¥,m) under key v, ; using . as the encryption’s (sequence of) random
coins; by the binding of crscg, both ¥ and m are unique; the definition of I1.D
implies (¥;, m;) = (¥, m) and implies the existence of [,I’ € {1,...,|7]} satisfying,
respectively, pk; = v; and pk; = vp. Furthermore, by the definition of I1.D, ¢p ;
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(resp. gp,;) will not output (¥ o, mi,a) from (pi.a, ¥ia, Mia) < IIpke.-Ds, (Ca0)
(resp. (¥,8,myp) from (p; s, 5,m;p) < Ilpke.-De,(cs0)) for any a with
Vo # Pk, (resp. any 8 with vg # pk;), because either v o # ¥ (vesp. vj 5 # v),
or pk; # vs (resp. Pk; # vg). Again from the definition of II.D, ¢gp; outputs,

for some I € {1,...,|0|}, (¥, msy) from (p; 1, Tig,mig) < Hpke.Dsk, (ci0), with
v, = pk; and where ¢;o € ¢. Similarly, ¢p ; either outputs L, or outputs, for
some I' € {1,...,|d]}, (U, mju) from (pju, U, mjr) < IHpke.De,(cr o),

with v = Pk; and where ¢y o € ¢. Note that, since given a fixed sequence of
random coins p, IIcg.Commit is a deterministic algorithm, if (p;;, ¥ 1, M) =
(pj,irsVjr,mj ) then the outputs of ¢p ; and ¢p ; are the same. Recall from before
that the soundness of IInizk implies all ciphertexts c, ; of ¢ are encryptions of
the same triple (p, ¥, m) under some sequence of random coins r, ;. Since by

Eq. (4.8) IIpky is perfectly correct, A cannot win G2.
This concludes the proof of the claim, and thus also of O

H.5 Proof of Theorem [4]

This proof proceeds in a sequence of game hops. For simplicity of notation, we
will refer to G'ﬁK'CCA'2 as GgCA, for 8 € {0,1}. The winning condition for each of
the games we introduce ahead is the same as for G§“A—in particular, A has to
output 0 to win each of these games. For any given adversary A, we bound A’s
advantage

Ady™CA2(A) = ‘Pr[AGSCA = win] + Pr[AGSA = yin] — 1‘
- ’Pr[AGSCA — win] — Pr[AGSCA win]’

by bounding: the difference between the probability of A winning G§* and
winning GT: for i € {1,...,9}, the difference between the probability of A
winning G* and winning G**!; and by bounding the difference between the
probability that A wins GI and the probability that A loses G{“A. In other
words, we bound

Pr[AGgCA = win] — Pr[AGI:EI = win)]

)

for i € {1,...,9}, bound,

Pr[AGi = win] — PI‘[AGiJ’_l = win]

)

and bound

Pr[AGH = yin] 4+ (Pr[AGS$? = win] — 1)‘

= |Pr[AGT = win] — Pr{AGS®A £ win
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Putting things together, this then implies:

Adv™CA2(A) < [PrAGS = win] — Pr[AGE = win]

+ Z Pr[AG’ = win] — Pr[AG""! = win]

+|Pr[AGTY = yin] — PrlAGS$®” + win]

GgCA ~ GI: This game is just like GSCA, except that Og generates crsnizk
using Scrs, and for each challenge ciphertext ¢* := (p, comm, €), the NIZK proof
p is generated by Ss;,, meaning it is now simulated.

One can reduce an adversary A distinguishing the two game systems to one
breaking the ZK property of the underlying IINizk: the reduction has access to
all secret keys and therefore can handle any queries the adversary may make;
to generate crsnizk and the NIZK proofs of ciphertexts the reduction can rely
on the Op oracle provided by IINizk’s ZK game. Since A can only make up to

e < gpnizi queries to Op, it follows from [Eq. (4.12)]

Pr[AGSCA = win] — Plr[AGI:EI = win]| < eNizK.zK-

GT » G2: Game G2 is just like G, except that for each [ € {1,...,]d},
ciphertext ¢;1 of vector & = ((61,0,61,1), e, (C‘E‘Lo,CIg‘)l)) of the challenge ci-
phertext ¢* := (p, comm, ¢) is now an encryption of (p, ¥}, m*)—where p is some
sequence of random coins, independent of the one used by Ilcs. Commit—instead
of (p, U5, m*)—where p is the sequence of random coins used by IIcs. Commit.
We can reduce distinguishing the two game systems (and therefore bound
the difference in A’s winning probabilities) to breaking the IND-CPA security of
the underlying ITpkg scheme: the reduction holds all secret keys and therefore
can handle any decryption queries; for generating NIZK proofs the reduction can
simply use simulation trapdoor (which does not require knowledge of a witness).

Since dg < qgpkgp and n < npkg, it follows from [Eq. (4.11)

PI‘[AGm = win} — PI‘[AG = win] < EPKE-IND-CPA-

GZ «» GB: The difference between the games is that in GH, for each | €
{1,...,]d}, ciphertext ¢;; (of vector ¢ = ((01,0,0171), ce (0‘5‘,0,C|5|71)) of the
challenge ciphertext ¢* := (p, comm, ¢)) is now encrypted under public key (v);.1,
instead of being encrypted under public key (vg)i1.

By an argument similar to the one for GI ~» G2 one can reduce distinguishing
the two games to breaking the IK-CPA security of the underlying IIpkg. Since

dr < qgpkg and n < npkg, it again follows from that

PI‘[AG = win] - PI‘[AG}m = win] § EPKE-IK-CPA-
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GH «» GB: The difference between the games is that in G decryption queries for
a party Bj—with secret key ((pk; ,skjo0), (Pk;1,5kj,1))—on a ciphertext c :=
(p, comm, &)—with ¢ := ((01,0, ci,1),- -5 (€0 c|5‘,1))—behave slightly differently:
rather than decrypting, for I € {1,...,|¢]}, ciphertext ¢; o using sk; o, it now
decrypts ¢;,1 using sk;; instead.

It is easy to see that G2 and GZ are perfectly indistinguishable unless
A makes a decryption query for a receiver B; on ciphertext ¢ = (p, comm, ¢)
such that the NIZK proof p verifies with respect to (crscs,comm, @) (crscs
being the one generated by Opp), but (crscs, comm, ) € Lcons. S0, one can
reduce distinguishing G2 and G2 to breaking the simulation soundness of the
underlying ITnizk: on one hand the reduction holds all secret keys, so it can
handle any decryption querieﬂ on the other hand, even though the reduction
does not know the simulation trapdoor, it can rely on the Op oracle provided by
ITnizk’s Simulation Soundness game to generate proofs for false statements (see

Definition 22)). Since A sees at most gg < ¢pnzi simulated proofs (namely the

ones in the challenge ciphertext) and makes at most ¢p < gy nizx decryption

queries, it follows from [Eq. (4.12)| implying

Pr[AGJ:ﬂ = win] — Pr[AGIZI = win]| < eNizk-ss-

GH « GB: Game GH is just like GH, except that for every [ € {1,...,|d},
ciphertext ¢; o of vector ¢ = ((01,0,01’1), ce (0‘5170,c|5‘,1)) of the challenge ci-
phertext ¢* := (p, comm, €) is now an encryption of (¢, 05, m*)—where ' is some
sequence of random coins independent of the one used by Ilcs. Commit—instead
of (p, 5, m*)—where p is the sequence of random coins used by Ics.Commit—
similarly to G2.

By following an argument similar to the one used for GI ~» G2 where
decryption queries are now handled using the alternative decryption key—one
can bound the difference in A’s winning advantage for G2 and for GB. Since

dr < gepkg and n < npkg, it follows from [Eq. (4.11)]

PI‘[_A(;m = win} — PI‘[AG = win] < EPKE-IND-CPA-

GE ~» GE: The only difference between G and G is that in GB, for each
challenge ciphertext ¢* := (p, comm,¢), comm is now a commitment to (U7, m)
instead of being a commitment to (T, m).

Once again we can reduce distinguishing the two games to breaking the hiding
property of the underlying I1¢s: the main thing to note is that the sequence of
random coins encrypted in each ciphertext in ¢ is independent from the sequence
used by Ilcs.Commit. With this in mind, it is easy to see that a reduction
analogous to the one used for hop GH ~» G2 can be used. Since ¢ < gcs, it

16 To verify the validity of a ciphertexts’s NIZK proof the reduction relies on the Oy
oracle provided by the Simulation Soundness game of the underlying IInizk.
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follows from [Eq. (4.13)

PI‘[;‘X(}IZI = win] — PI‘[AG = win]| < €CS-Hiding-

GE «» GZ: The difference between G8 and G is that in G, for every | €
{1,...,|€l}, ciphertext ¢; ¢ (of vector ¢ := ((01’0,61’1)7 R (0‘5‘70,c|5|71)) of the
challenge ciphertext ¢* := (p, comm, ¢)) is an encryption of (p, 07, m*)—where p
is the sequence of random coins used by Ilcs.Commit—instead of (p, ¥, m*)—
where p' is some sequence of random coins, independent of the one used by
I cs. Commit.

By an argument analogous to the one for GO GE', we have

PI[AG = win} — PI“[AGm = win] < EPKE-IND-CPA-

G2 « GB: This game hop is analogous to GZ - GE in GE, for every [ €
{1,...,|€l}, ciphertext ¢; ¢ (of vector ¢ := ((01’0,6171), A (C‘g"o,C|g|71)) of the
challenge ciphertext ¢* := (p, comm, ¢)) is now encrypted under public key (vi); 1,
instead of being encrypted under public key (v§)i 1.

Again, by an argument analogous to the one for GI ~ G2, we have

PI‘[.AG}EZ| = win] - PI‘[_AC}E = win] S EPKE-IK-CPA-

GE «» GZ: This game hop is analogous to G& ~» G&: a decryption query for
a party Bj—with secret key ((pk; q,skjo0), (Pk; 1, 8kj1))—on a ciphertext ¢ :=
(p, comm, &)—with &:= ((c1,0,¢1,1), - - -, (¢|@,0, ¢jz,1))—behaves slightly differently:
rather than decrypting, for [ € {1,...,|¢]}, ciphertext ¢; 1 using sk; 1, it returns
to decrypting ¢; o using sk; o.

By following an argument analogous to the one for G& ~» GH it follows

Pr[AGIE = win] — Pr[AG = win]| < enrzk_ss-

GH - GI0: This game hop is analogous to GI ~ G2: for every [ € {1,...,|d},

ciphertext ¢; 1 (of vector ¢ = ((61’0,01,1),...7(C|5|70,C‘g|’1)) of the challenge

ciphertext ¢* := (p, comm, €)) is now an encryption of (p, v, m*)—where p is the

sequence of random coins used by Ics. Commit—instead of (p, 05, m*)—where 5

is some sequence of random coins, independent of the one used by Ilcg. Commit.
By following an argument similar to the one for GZ ~ G2, it follows

PI"[AG = win] - PI‘[AGm = win] § EPKE-IND-CPA -
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G ., G%CA: The only difference between the game systems is that the crsnizk
output by oracle Og returns to the one generated by IInizk-Gors, and the NIZK
proof p in each challenge ciphertext returns to a real one generated by IInizk.P.

Taking into account that A wins G$ if it outputs 1 and wins GI if it
outputs 0, by following an argument similar to the one for GSCA ~ GH it follows

PI‘[;&(}D:(II = win} — PI‘[AG%CA 7é win] < ENIZK-ZK-

H.6 Proof of Theorem [G

Follows from a straightforward adaptation of [Theorem 4fs proof. a

I MDRS-PKE Construction Security Proofs

In this section we give the full security proofs for the MDRS-PKE construction
given in

1.1 Proof of Theorem

We prove this result via game hopping.

G s GI: The only difference between games G and G is that in G some
decryption queries are handled differently. More concretely, when Op is queried
on an input (Bj, ¢ = (vk,o’,c¢’)) where ¢ was output by a query Og(4;, V,m),
Op no longer verifies if ¢’ is a valid signature on ¢’ with respect to vk, and
instead simply assumes that it is.

One can reduce distinguishing the two games to breaking the correctness
of IIpgs: since the reduction holds all MDVS and PKEBC secret keys and can
sign ciphertexts using the Og oracle from ITpgs’s G game, it can handle
any oracle queries. Since A only makes at most gg < min(npss, ¢gspgg) and
dp < qvpgs queries to O and Op, respectively, it follows from
that no adversary (¢tpss, €pss-corr)-breaks the

(npss, 4spsss 9V pgs )-Correctness
of IIpsg, implying

Pr[AGn:I = win] — Pr[AGCorr = win]| < epss-corr-
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G s GZ: The only difference between games G2 and G is that in G2 once
again some decryption queries are handled differently. More concretely, when
Op is queried on an input (Bj, ¢ := (vk, o', ¢’)) where ¢ was output by a query
Ogp(A;, V,m) such that B; € V, Op works as follows: let (spk;, Umpvs, m, o) be
the plaintext that was encrypted by [Ipkgpc.F under vpkgpe (which resulted
in ciphertext ¢), where spk; is A;’s public key,

Umpvs = (VPKypysys - - - 7VpkMDVS|{;‘\)7 and
UpkeBC = (PKpKEBCT: - - - PRPKEBC|7)

are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to V', and where

0« IIvpvs.Sigy,  (sskmpvsi, Umpvs, (TpkEBC, M, VK)),

is an MDVS signature on (Upkrpc,m, vk), with sskyvpys; being A;’s secret
MDVS signing key and vk being the DSS verification key in ¢; oracle Op no
longer decrypts ¢’ using ITpkgpc.D with Bj’s PKEBC secret key, and instead
simply assumes decryption outputs (Upkgesc, (SpX;, OMDVS, M, 0)).

One can reduce distinguishing the two games to breaking the correctness
of Ilpkgpc: since the reduction holds all MDVS and DSS secret keys, has ac-
cess to the decryption oracle from Ilpkgpc’s Correctness game, and can ac-
cess all PKEBC secret keys the adversary may query through the Ogg oracle
of ITpkrpc’s Correctness game, it can handle any oracle queries. If A only
queries for at most ng < npkgpc different receivers, the sum of lengths of
the vectors input to O is at most dg < dppkgrpc, and A makes at most
de < qepxepc and ¢p < ¢ppkmepc queries to oracles Op and Op, respec-

tively, since from [Equation 6.1 no adversary (tpxkEBC,EPKEBC-Corr)-breaks the
(nPKEBC, dEPKEBC, IEPKEBC, ¢DPKEBC)-Correctness of ITpkrpc, we have

‘Pr[AG = win] — Plr[A(}l:EI = win]| < epKEBC-Corr-

G2« GB: Game GR is just like GZ, except that once again some decryption
queries work differently. Essentially, in the same way that G2 differed from
GIassuming that the ciphertext ¢ in each ciphertext ¢ == (vk,o’,¢’) output by
a query to O decrypts correctly when Op is queried on (B}, c), B; being one
of the parties in the vector input to Or—G3 differs from in that it assumes
that also each MDVS signature o generated by O using ITypys.Sig also verifies
as being valid when Op is queried on a matching input. To be more precise, for
a query Og(4;, v, m), let (Upkrpc,m, vk) be the plaintext that was signed by
IT\ipvs.Sig using ssk; and vypys, where ssk; is A;’s secret key,

Umpvs = (VPRMDys - -+ VPEMDYs 1), and

UpkeBC = (PKpKEBCT: - - - » PRPKEBC|7)

o7



are, respectively, the vectors of_’public MDVS verifier keys and public PKEBC
receiver keys corresponding to V', let o be the resulting signature

o« Ivpvs.Sigy,  (sskupvsi, Umpvs, (UpkEBC, M, VK)),

and let ¢ be the ciphertext output by the Og query. Then, when queried on input
(Bj,c) such that B; € V, Op no longer verifies if ¢ is valid by running

IIvipvs. Vfy(pp, spk;, vsk;, Umpvs, (UpkEBC, M, VK))

and instead simply assumes the MDVS signature verification outputs 1.

One can reduce distinguishing the two games to breaking the correctness
of the underlying IT\pys because the MDVS correctness game gives access to
a signing oracle, a signature verification oracle and to the secret keys of every
signer and verifier (and so the reduction can handle any oracle queries). So, if
A only queries for at most ng < ngypyg (resp. nr < nyvpyg) different sender
keys (resp. different receiver keys), makes up to ¢g < gsypys queries to Og and
up to ¢p < qvypyvs queries to Op, and the sum of lengths of the party vectors

input to O is at most dg < dgypvg, since from no adversary
(EMDVS-Corr, tMDVs )-breaks the

(nsMDvs: MV MDVSs dSMDVS ¢SMDVss 4V Mpys )-Correctness

of ITyipvs, it follows

Pr[AGB] = win] — Pr[AG = win]| < emMDVS-Corr-

To conclude the proof, note that no adversary can win GR

1.2 Proof of Theorem

We proceed via game hopping.
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Algorithm 4 Description of Op for game system G in the proof of [Theorem 7l

INITIALIZATION
viypgg < 0

Op(Bj,c:= (vk,o’,c"))
if (vk,c’,0’) € viypgg then
CONSISTENTDSSVERIFICATION(vk, ¢/, o)
if vEypgglvk, ¢/, 0’] = 0 then
return L
(UpkEBC, (SPK = SPky\pyg, DMDVS, ™M, 0)) IpkeBC-Dppreppe (Tk; -skpKEBC, ¢')
if (UpkEBC, (SPK, UMDVS, M, 0)) = L V |UpkEBC| # |UMDVS| then

return L
7= ((vMDVS1, VPKEBC1); - - - » (VMDVS |#pgppc| VPKEBC [9pkapc|))
if ﬂ A € S with Ospi (A) = spk then
return L
if 3l e {l,...,]9]}: (} B€ R with Orpr(B) = v;) then
return L
if rsk.rpk ¢ U then
return L
if ITnipvs. nyPPI\/IDVS (Spk, rsk;.vskMpDvVs, TMDVS, (UPKEBC% m, Vk), O') # valid then
return L

return (spk, ¥, m)

CONSISTENTDSSVERIFICATION(vk, c, o’)
nyDSS[Vk’ CI: UI] « IIpss. nyvk(c/7 U/)

GCrs o, GI: The only difference between games G and G is that in GI
decryption queries are handled according to Algorithm [ Since ITpss. Vfy is a
deterministic algorithm, it follows from

Pr[AGIII = win] — Pr[AG‘rCO”S = win]| = 0.
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Algorithm 5 Description of Op for game system G2 in the proof of [Theorem 7l
INITIALIZATION
dec + 0 > Write once map: for each x, if x € dec, then cannot modify value dec[z].
viypgg < 0

Op(Bj,c:= (vk,o’,c"))
if (vk,c’,0’) € viypgg then
CONSISTENTDSSVERIFICATION(vk, ¢’, o)
if vEypgglvk, ¢/, 0'] = 0 then
return L
if (rpk;.Pkpkppc: c’) € dec then
CONSISTENTDECRYPTION(B;, rpk;, rsk;, c)
(TpEBC, (SPk = SPkypygs TMDVS, M, 0)) 4= dec[rpk, .Pkpkppc, ']
if (pxmBC, (sPk, OmpVS, M, 0)) = LV |UpkeBc| # |Ompvs| then

return L
7= ((vMDVS1, VPKEBC1): - - - » (UMDVS|5pgppc | VPKEBC |7pippal))
if # A €S with Ospr(A) = spk then
return L
if 3l € {17 ey |’L7‘} : (ig B € R with ORPK(B) = ’Ul) then
return L
if rsk.rpk ¢ ¥ then
return L
if ITnvipvs. nyPPMDVS (Spk, vskMDVS, UMDVS (ﬁpKEgc, m, Vk), 0‘) # valid then
return L

return (spk, ¥, m)

CONSISTENTDECRYPTION(B;, rpk;, rsk;, c)
(FpKEBC, (5PK, TMDVS, M, 0)) = ITPKEBC-Dpppyppc (15K -SkPKEBC, ¢')
if (1‘)’pKEBc7 (spk, OmpDVs, m, o)) = 1 then > Decryption failed.
dec(rpk; .phpxppc, €] ¢ L
else
For each pk € Upkepc: dec[pk, '] « (ﬁpKEBC, (spk := spky;pygs UMDVS, M, o’))

CONSISTENTDSSVERIFICATION(vk, ¢/, o)
nyDSS[Vk’ CI: UI] « IIpss. nyv}{(c/’ U/)

GT s GZ: The only difference between games G2 and G¥is that in G2 decryption
queries are handled according to Algorithm [5| Note that in G2 it is assumed that
for any x, if « € dec then dec|x] is not modified.

One can reduce distinguishing G2 and G or breaking the aforementioned
assumption (that for any z, if z € dec then dec[z] is not modified) to breaking
the consistency of the underlying ITpkgpc because the reduction can query for
the PKEBC secret key of any receiver that the adversary may query for. If
A only queries Orpr, Ork, Op and Op on at most ng < npkgpc different
receivers, makes at most ¢r < ¢rpkrpc and ¢p < ¢ppkrpc queries to O and
Op, respectively, and the sum of lengths of the party vectors A inputs to Op is

at most dg < dgpkwpc, then it follows from that
Pr[AG = win] — PI"[AGIII = win]‘ < EPKEBC-Cons-
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Algorithm 6 Description of Op for game system GH in the proof of [Theorem 7l

INITIALIZATION

vEyMpys < 0
dec <+ 0 > Write once map: for each x, if x € dec, then cannot modify value dec[z].

viypss 0

Ob(Bj,ci= (vk,o’,c))
if (vk,c’,0’) & viypgg then
CONSISTENTDSSVERIFICATION (vk, ¢, o)
if vEypgglvk, ¢/, 0'] = 0 then
return L
if (rpkj Phpkrpc, ¢') & dec then
CONSISTENTDECRYPTION(B;;, rpk;, rsk;, c)
(17PKEBC, (spk ‘= spkyipvs UMDVS, M, U)) <~ deC[rpkj ‘PRpKEBC) C/]
if (UpkeBC, (SPk, UMDVs,m,0)) = LV  |UpkeBc| # |Oupvs| then

return L
U= (('UMDVSh VPKEBC1)s -« - 5 (UMDVS\EPKEBC\ ) 'UPKEBCWPKEBC\))
if 3 A€ S with Ospx(A) = spk then
return L
if 3e{1,...,|v]}: (39 B € R with Orpk(B) = v;) then
return L
if rsk.rpk ¢ ¥ then
return L
if 3 query Ork (B;) then > Bj’s secret key was not queried.

if (spk, ¥mpvs, (UPKEBC, M, vk),0) & viyypys then
CONSISTENTMDVSVERIFICATION (rsk; .vsk, spk, ¥MDVs, (JPKEBC, M, Vk), 0)

if vfy\pyvs[spk, Ompvs, m, o] = 0 then

return L
else > 3 query Ork (Bj)
if ITvpvs. nyPPMDVS (spk, rsk;.vsk, UmMpvs, m, o) = 0 then
return L

return (spk, ¥, m)

CONSISTENTMDV SVERIFICATION (vsk, spk, Umpvs, m, o)
vEy\pvs [SPK, OMDVS, M, 0] <= IIMDvs. ViYenpvs (spk, vsk, TmMDVS, M, 0)

CONSISTENTDECRYPTION(B;, rpk;, rskj, c)
(FpKEBC, (SPK, TMDVS, M, 0)) = ITPKEBC-Dpppyppc (15K -SkPKEBC, ¢')
if (1‘)’pKEBc7 (spk, OmDVs, M, o)) = 1 then > Decryption failed.
dec[rpk; .pPkpippc, '] L
else
For each pk € Tpkepc: dec(pk, '] « (UPKEB07 (spk := spky;pygs UMDVS, M, o’))

CONSISTENTDSSVERIFICATION(vk, ¢’, o)
nyDSS[Vk’ c’r UI] « IIpss. nyvk(cl7 U/)

G2« GB: The only difference between games G and GZis that in G2 decryption
queries are handled according to Algorithm [6}

Considering the consistency notions for MDVS schemes and
for MDRS-PKE schemes , it is easy to see that one can reduce
distinguishing the two games to breaking the consistency of the underlying
MDVS scheme ITypys: note that the reduction holds all PKEBC secret keys, all
dishonest receiver’s MDVS key-pairs and all senders MDVS key-pairs, and that
it can rely on the Oy oracle of provided by ITypys’s consistency game GO
to handle decryption queries. It then follows from that if A only
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queries for at most ng < ngypys (resp. ng < nyypys) different sender keys
(resp. different receiver keys), makes up to ¢g < gsypys queries to O and up to
gdp < qvumpvs queries to Op, and the sum of lengths of the party vectors input
to Op is at most dg < dsypyvs, then

Pr[AGH = win] — Pr[AGZ = win|| < expvs.cons:

To conclude the proof, note that the probability of an adversary A to win
GH is 0, implying:
PI"[AGBI = win] = 0.

1.3 Proof of Theorem

Proof. This proof proceeds via a sequence of games.

GUrfere ., G The difference between GH and GY™°'e s that in GZ, when Op is
queried on an input (Bj, ¢ == (vk, o', ¢’)) such that there is a query Og(A4;, V,m)
that output ¢* = (vk*,0’", ™) with ¢ # ¢* and vk = vk*, Op simply outputs L.

One can reduce distinguishing the two games to breaking the 1-sEUF-CMA
security of ITpgs: the reduction holds all MDVS and PKEBC secret keys and
can sign ciphertexts using the Qg oracle from ITpgg’s GSEUF-CMA game so it
can handle any oracle queries. If A only makes at most ¢g < min(npss, ¢spss)

and ¢p < qvpgg queries to O and Op, respectively, since from [Equation 6.8/ no
adversary (tDss, 6Dss_1_sEUF_CMA)—bI‘eakS the

(nDss, 4spsss v pss)-1-SEUF-CMA

of Ilpgs, it follows
PI‘[AGDJ = win] - Pr[A(_}Unforg = win] < €DSS-1-sEUF-CMA -

We can now directly reduce to the Unforgeability game of ITyipys. To see
why, note that GI already outputs L for any query Op(Bj,c = (vk,0’,)) such
that there was a query Og(A4;, v, m) that output ¢* := (vk*,o’", /™) with ¢ # ¢*
and vk = vk*. At this point we then only have to argue that for the remainder of
the Op queries either the adversary does not win the MDRS-PKE unforgeability
game or a reduction to the unforgeability game of the underlying ITyipys would
win. So, for any Op(Bj, ¢ = (vk,o0’,¢')) query it only remains to consider the
two following cases:

— at least one prior O query output ¢* = ¢; or

— all prior Og(A;, V, m) queries output some ¢* := (vk*, o’*, ¢*) with vk* # vk.

We begin with the latter case; in this case if Op outputs something other
than L then the MDVS signature encrypted by ¢ verified as being valid on a
triple (UpkEBC, M, vk) which was never signed (because vk was not output as part
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of any O ciphertext). Therefore in this case we can reduce to the underlying
IIpys’s unforgeability.

Now consider the former case: at least one prior O query output ¢* = c.
Let (spk;,¥,m) # L be the output of the Op(Bj,c) query above. (Note that
Op queries outputting L do not allow the adversary to win the MDRS-PKE
unforgeability game.) Again, we proceed by case distinction:

Case I There is a sender/receiver-vector pair (A;/,V’) matching (spk;,7) for
which there was no prior query Og(4;’, V', m).
In this case one can use the adversary to win the unforgeability game of the
underlying MDVS scheme: a reduction just has to keep track of the inputs
and outputs of the O queries and then, upon a query Op(Bj,¢), use this
information to make a query to Oy to verify a signature on a message m
with respect to a sender A;, a receiver vector 1% (with B; € \7) using B; as
the verifier, such that there was no prior query to O on (4;, v, m).

Case II There is no sender/receiver-vector pair (4;’, V') matching (spk;, #) for
which there was no prior query Og(4;", V', m).
This means for every sender/receiver-vector pair (4;", V') matching (spk;, 7)
there was a query Og(A4;’,V’,m). So, in this case the adversary does not
win the unforgeability game of the MDRS-PKE.

Since from [Equation 6.7/ no adversary (empvs-unforg, tMDVs )-breaks the

(nsMDVS, "V MDVS: dSMDVS 4SMDVS» 4V Mpvs )- Unforgeability

of IIyipvs, if A only queries for at most ng < nsypys (resp. nr < nyuvpys)
different sender keys (resp. different receiver keys), makes up to ¢g < gsmpvs
queries to O and up to gp < gy ypys queries to Op, and the sum of lengths of
the party vectors input to O is at most dg < dsypvg, it follows

Pr[AGIIl = Win] < EMDVS-Unforg -

I.4 Proof of Theorem
follows from a straightforward adaptation [Theorem 10[s proof. O

1.5 Proof of Theorem [10|

Ciphertexts of our MDRS-PKE scheme are triples ¢ := (vk, o’,¢’) where vk and
o’ are, respectively, a verification key and a signature of the underlying ITpss, and
c is a ITpkgpc ciphertext. At a high level, our goal is to reduce an adversary from
distinguishing MDRS-PKE’s G{)K‘CCA‘2 and GYCA2 games to one distinguishing
the analogous games for (the underlying) IIpkgpc. If the adversary makes a
decryption query

Op(Bj,c = (vk,o’,c))
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where ¢ was output by a challenge query to O the reduction can simply output
test as this is a disallowed query; if ¢ was not output by a query to O and
the PKEBC ciphertext ¢’ of ¢ was also not output (as part of any ciphertext
output by Og) then we can use the decryption oracle Op of the IK-CCA-2
games of I[Ipkgpc. However there is a problem when ¢ was not output by any
challenge query but its ¢’ component was because this disallows us from using
the decryption oracle Op of ITpkgpc’s IK-CCA-2 security games. To get around
this we will show—via a sequence of hybrids starting from G'BK'CCA‘2 and ending
in GE', for 8 € {0,1}—that such queries can be handled by simply outputting L,
thus enabling a reduction to the IK-CCA-2 security of the underlying ITpkgpc
scheme. Consider any query Op(Bj, ¢ = (vk,o’,c)) such that ¢ was not output
by a challenge query to O but ¢’ was (in the sense above); the following hybrids
highlight the main steps of the proof:

G%l: if any Op query output ¢* == (vk*,o’",¢'™) with vk = vk*, Op outputs L;

G%: if any query OE((ALO,VE)), (Ai71,‘71),m) output ¢* = (vk*,o’", ") with
B; ¢ ng (and vk # vk*), Op outputs L;

G%: if any query OE((Ai,OaV_E))a (Ai71,\71),m) output ¢* = (vk*, o', ") with
B; e 175 and vk # vk*, Op outputs L.

In G% we know how to handle any decryption queries for ciphertexts that were not
output by O but whose PKEBC component was, and hence we are (essentially)
set to make the final reduction to the IK-CCA-2 security of IIpkgpc. In the
following, let 8 € {0,1}.

G'ﬁK'CCA'2 ~ GE/EJ: The difference between Gﬂﬁ:I and G'BK'CCA‘2 is that in GEE some
decryption queries are handled differently: when Op is queried on an input
(Bj,c = (vk,0’,c')) such that there is a query O ((4;,0, Vo), (Ai1, Vi), m) that
output ¢* := (vk*,o’", ™) with ¢ # ¢*, ¢/ = ¢* and vk = vk*, Op simply outputs
1.

One can reduce distinguishing the two games to breaking the 1-sEUF-CMA
security of IIpgs: since the reduction holds all MDVS and PKEBC secret keys
and can sign ciphertexts using oracle Qg from ITpgg’s G1SEUF-CMA game it can
handle any oracle queries. If A only makes at most ¢p < min(npss, ¢gspgs) and

ap < qvpgs queries to O and Op, respectively, since from no
adversary (tDss, €Dss_1_sEUF_CMA)—bI‘eakS the
(nDss, gspsss ¢V pss)-1-SEUF-CMA

of Ilpgs, it follows

PI‘[AG%] = win] — PI‘[.AC;:'BK-CC'L\-2 = win] < €DSS-1-sEUF-CMA -
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GEE ~ G%]: In G% some decryption queries are once again handled differently;
when Op is queried on an input (Bj,c = (vk,o0’,c¢’)) and there is a query
OE((Ai,m Vo), (Ai 1, Vl),m) that output ¢* := (vk*, o', ™) with ¢ # ¢*, ¢/ = ¥,
vk # vk*, and B; ¢ V[}, Op outputs L.

One can reduce distinguishing G%l and Gﬂﬁ:I to breaking ITpkgppc’s robustness

(as defined in [Definition 2)). The main things to note are:

1. a reduction to ITpkgpc’s robustness can access the secret keys of any party
whose keys the adversary may query for, and can rely on oracle Op provided
by Ilpkepc’s robustness game to handle decryption queries;

2. for a query OE((Ai,o,VE)), (Ai,l,ﬁ),m), the reduction can make a query
Ogr(4ig, V'g, m) to the robustness game of IIpkgpc; and

3. if a query Op(Bj, c = (vk,o’,¢')) does not output L, then the decryption by
B, of the PKEBC ciphertext ¢ (that is part of ¢) did not result in L either.

If A only queries for at most ng < npkgpc different receivers, the sum of

lengths of the vectors input to O is at most dg < dppkrpc, and A makes at
most ¢r < gepkgrpc and ¢p < ¢ppkepc queries to oracles O and Op, from

it then follows

‘PI‘[AG e win] — PT[AGEE = Win] < EPKEBC-Rob-

G%] ~ G%: In G% some decryption queries are handled differently: when
Op is queried on an input (Bj,c¢ = (vk,0’,c)) such that there is a query
OE((Ai,mVo), (Ai71,V1),m) that output c¢* := (vk*,o'",c") with ¢ # ¢*, vk #
vk*, ¢ =", and B; € V/}, Op works as follows: let

(spki,ﬁvv_éMDvsvva)
be the plaintext that was encrypted by ITpkgpc. £ under v‘éPKEBC (which resulted
in ciphertext ¢’), where spk; 5 is A; g’s public key,

Usnpvs = (VPRMpDyst 6o - - VPRMDYS|7,5)> and
Uspkepc = (PRpKEBC §) - - - aPkPKEBC|ﬁ|,g)
are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to Vg, and where
0 IYMDVS-*‘Svl'gpp]m)\,S (SSkMDVSi,ﬂv v%MDVS? (U_EPKEBC7 m,vk)),

is an MDVS signature on (U3pyppc, M, vk), with sskmpvs; g being A; g's secret
MDVS signing key and vk being the DSS verification key in ¢; if the signature
o’ verifies as valid for ¢’ under verification key vk, oracle Op no longer decrypts
¢’ using IIpkepc.D with B;’s PKEBC secret key, and instead simply assumes
decryption outputs

(VBpkEgC: (SPK; 85 Usnpys: T 0))-
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By considering a reduction and an argument similar to the one in the proof of

for the step GT ~ G2["] we have

’PI‘[AG% = Win] - PI‘[AG = win} § EPKEBC-Corr-

G% ~ G%: In G% some decryption queries are handled differently: when
Op is queried on an input (Bj,c¢ = (vk,0’,c)) such that there is a query
OE((Ai,07 ‘7}3), (A, ‘71),m) that output ¢* := (vk*, o', ™) with ¢ # ¢*, ¢/ = ¥,
vk # vk*, and B; € V[}, Op simply outputs L. Before moving to showing that

[PrAGT = win] - PrAGT = win]| < exipvs uniorg

(by explaining why one can make a reduction to the Unforgeability notion of
the underlying ITypys scheme), we want to note that, at this point, for any
Op(Bj,c = (vk,0’,)) query the adversary makes such that there is a query to
Og that output ¢* = (vk*,o’", ™) with ¢ # ¢* and ¢/ = ¢/*, Op simply outputs
L (i.e. we are essentially set to make the reduction to the IK-CCA-2 security of
the underlying [Ipkgpc scheme).

G%] already outputs L for any query Op(Bj,c = (vk,o’,c’)) such that:

— there was a query Op ((4;,0, Vo), (Ai1, Vh), m) that output ¢* := (vk*,0’", ")
with ¢ # ¢*, ¢ = ¢* and vk = vk* (see G‘r'ﬂK‘CCA‘2 ~ G%l)7 or

— there was a query Og ((4;,0, Vo), (Ai1, V1), m) that output ¢* := (vk*,o’", ")
with ¢ # ¢, ¢ = ¢*, vk # vk* and B; ¢ Vj (see G%J ~ G%])

Thus we only have to make sure that we can use the adversary to break

the unforgeability of IIypys for the remainder of the queries, i.e. queries to
Op(Bj,c = (vk,0’,)) such that:

1. there is no query O ((4; 0, Vo), (Aiq, ), m) that output ¢* := (vk*,o’", ")
with ¢ # ¢*, ¢ = ¢* and vk = vk*; and
2. there is no query O ((4;,0, Vo), (Ai1, V1), m) that output ¢* := (vk*,o’", ")
with ¢ # ¢*, ¢ = ", vk # vk* and B; ¢ V}; and
3. there is a query OE((AZ»,O, V%), (A1, ‘71)7m) that output ¢* == (vk*,o’", ")
with ¢ # ¢*, ¢ = ", vk # vk* and B; € ‘/_:;j
Note that since B; € V_"g and because we are assuming the correctness of IIpkggc,

the reduction does not need to attempt to decrypt ¢’, and instead can simply
assume that the decryption is

(VBpkeBC: (SPK; 85 Unpvs: 7 0)),

17 The reduction has to be slightly modified: for query O ((A,-,o7 ‘70), (A1, \7'1), m) the

reduction makes a query Og(4; g, \7g, m) to ITpkesc’s Correctness game.
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as explained in step G%l > G%—this is necessary because we need the MDVS
keys the reduction obtains from the decryption of ¢’ to match the ones from the
underlying GUMr8 | as otherwise we cannot win ITyipys’s unforgeability game; on
the other hand we are also assuming there was no query to O that output the
same verification key vk. Since the ITpgg verification key is part of the messages
that are signed and/or verified using ITyipys, then if o verifies as being a valid
signature on (U3pyppc, M, vk) with respect to sender public key spk;, 5 and vector
of verifier public keys v,y using B;’s secret verification key rsk;.vsk, the
reduction wins the Unforg game of ITypys (see . Finally, if A only
queries for at most ng < ngypvys (resp. ng < nyypys) different sender keys
(resp. different receiver keys), makes up to qg < gsypys queries to O and up
to ¢p < qvmpyg queries to Op, and the sum of lengths of the party vectors
input to Op is at most dg < dsypys, since from no adversary

(EMDVS-Unforg; tMDVs )-breaks the

(nsMpvs, PV MDVSs dSMDVS, 45 MDvs» 4V mpys)-Unforgeability

of ITyipvs, it follows

Pr[AG% = win] — Pr[AG%] = win]| < eMDVS-Unforg-

G% ~ G%: The only difference between these games is that in G% the distribution
of PKEBC key-pairs returns to being the distribution induced by ITpkgpc’s G
algorithm. (This step is necessary to allow us to reduce to the IND-CCA-2 and
IK-CCA-2 security of ITpkgpc.) It then follows

PI‘[AG = Win] - PI‘[AG% = win} S EPKEBC-Corr-

At this point we are finally set to make the security reductions to the IND-
CCA-2 and IK-CCA-2 security of the underlying IIpkg. For convenience, we now
introduce one last hybrid, intermediate between G%' and GE{|

G ~ GB: The only difference between G and G8 is that in GH, the PKEBC
ciphertext of each challenge query OE((AZ‘}O7VO)7 (Aia, Vl),m) is now an en-
cryption of (spki’l, UiMDVS, M, o) under vopgEpc, where spk, ; is 4;1’s public
key,
vimpvs = (VPRrDVS 110 - - VPRMDYS |5,1) and
vipkeBC = (PKpkEBC1 1) -+ PRPKEBC|7),1)

are, respectively, the vectors of public MDVS verifier keys and public PKEBC
receiver keys corresponding to Vi, and where

0« Ilypvs.Sigy,  (sskmpvsi 1, Vinpvs, (V1pKEBC, M, VK)),

is an MDVS signature on (v1pkgpc, ™M, vk), with ssknpys; 1 being A;1’s secret
MDVS signing key and vk being the DSS verification key in c. So, if A only queries
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for at most nyp < npkgpc different receivers, the sum of lengths of the vectors
input to Of is at most dg < dgpkgpc, and A makes at most ¢g < gEpkrRC
and ¢p < ¢gppgrpc queries to oracles O and Op, respectively, since from

Equation 6.9)that no adversary (tpkeBc, EPKEBC-IND—ccA-2)-breaks the

(nPKEBC, dEPKEBC: (EPKEBC: ¢DpKEBRC)-IND-CCA-2 security

of HPKEBC7 it follows
’PI‘[AG = win] — PI“[AG% = win} S EPKEBC-IND-CCA-2-

In a similar manner, we can now reduce an adversary distinguishing G® and
GH to one distinguishing the GI<CA2 and GY-CA2 games of the underlying
IIpkgpc scheme because we can handle all decryption queries—either by using
the Op oracle of ITpkgpc’s IK-CCA-2 games, or by outputting L. It follows

Pr[AGE = win] — Pr[AGY = win]| < epkpnc-ik-cca2-

1.6 Proof of Theorem [I1]
This proof proceeds via a sequence of games. In the following, let 5 € {0, 1}.

GOTR o, G%l: This game hop is analogous to GU'8 ~ G from the proof of

It then follows
’Pr[AGDﬁJ — win] - Pr{AGI™® = win]’ < EDSS1-SEUF-CMA.

By an argument similar to the one given in the proof of one can
see that at this point we can directly reduce an adversary distinguishing G%] and
GEE to one distinguishing the GJ™® and G9™R games of the underlying ITypvs
scheme. (The main idea behind the argument is that one can use the Oy oracle
of ITyipvs’s underlying OTR game for handling decryption queries where the
verification key vk was never output as part of a ciphertext by a query to Og; see
) If A only queries for at most ng < ngypys (resp. nr < nyvpvs)
different sender keys (resp. different receiver keys), makes up to ¢g < gsmpvs
queries to O and up to ¢p < qvympys queries to Op, and the sum of lengths of
the party vectors input to O is at most dg < ds\pys, since from
no adversary (empvs.oTR, tmpvs )-breaks the

(nsmpvs, MV MDVS, dsMDVS, 4smpvss @v mpvs )-Off-The-Record security

of HMDVSy it follows

Pr[AG}EO:I = win] — Pr[AGI:IEI = win]| < eMDVS.OTR-
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