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Abstract

Correlated pairs of random variables are a central concept in information-theoretically secure
cryptography. Secure reductions between di�erent correlations have been studied, and complete-
ness results are known. Further, the complexity of such reductions is intimately connected with
circuit complexity and e�ciency of locally decodable codes. As such, making progress on these
complexity questions faces strong barriers. Motivated by this, in this work, we study a restricted
form of secure reductions � namely, Secure Non-Interactive Reductions (SNIR) � which is still
closely related to the original problem, and establish several fundamental results and relevant
techniques for it.

We uncover striking connections between SNIR and linear algebraic properties of correlations.
Speci�cally, we de�ne the spectrum of a correlation, and show that a target correlation has a
SNIR to a source correlation only if the spectrum of the latter contains the entire spectrum
of the former. We also establish a �mirroring lemma� that shows an unexpected symmetry
between the two parties in a SNIR, when viewed through the lens of spectral analysis. We
also use cryptographic insights and elementary linear algebraic analysis to fully characterize the
role of common randomness as well as local randomness in SNIRs. We employ these results to
resolve several fundamental questions about SNIRs, and to de�ne future directions.

1 Introduction

Correlated pairs of random variables � or correlations, for short � are central to information-
theoretic cryptography. In particular, 2-party function evaluation can be securely reduced to sam-
pling from such a correlation, with information-theoretic security, against passive or active corrup-
tion [18, 19, 26, 22]. Among other things, such a reduction de�nes an important cryptographic
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complexity measure of a function [8, 28, 27, 7, 29] � namely, the number of samples of a correlation
that need to be used in a secure 2-party computation protocol for the function1. Proving lower
bounds for cryptographic complexity is a di�cult problem, thanks to its implications to circuit
complexity and locally decodable codes; even the existence of functions with super-linear crypto-
graphic complexity remains open. As such, it is prudent to approach cryptographic complexity
gently, through simpli�ed problems and models. Taking a cue from circuit complexity, where sim-
pler circuit models like AC0 have served as a platform for developing new ideas and sophisticated
techniques, here we consider a simpli�ed model of secure non-interactive reductions (SNIR). Note
that, without communication, it is impossible to compute non-trivial functions which take inputs
from both parties;2 hence we only consider the problem of sampling from a target correlation. In
a non-interactive reduction of a target correlation D to a source correlation C, two parties re-
ceive correlated randomness from the source C; then they carry out a local computation (possibly
randomized) and produce their outputs, which are to be jointly distributed according to D. The
security requirement, informally, requires that a party should learn nothing more about the other
party's output than is revealed by its own output, irrespective of what it receives from the source
correlation.

Apart from being a simpler model to analyze, SNIR in fact isolates one of two components
of an interactive secure reduction. A secure reduction can be viewed as consisting of two parts:
Firstly, an interaction phase transforms the views of the two parties arbitrarily, subject only to the
constraints of protocols (there is no element of security here); secondly, a local derivation step is
used to transform the views resulting from this interaction to the outputs. The security condition
solely applies to this second local derivation step. Thus the feasibility of an (interactive) secure
reduction from D to C splits into the question of whether there exists a correlation C ′ such that (i)
C ′ is the distribution of the views at the end of an interaction between the parties starting with C,
and (ii) D has a SNIR to C ′.

SNIR is also a natural and strictly stronger variant of a well-studied model in information-
theory, namely, (non-secure) non-interactive reduction � or non-interactive simulation as it is more
commonly known � which has attracted a signi�cant amount of research in both information-theory
and computer science literature [14, 32, 33, 5, 23, 16, 31].

Our Contributions. We introduce a spectral analysis toolkit for (statistically) secure non-
interactive reductions (SNIR), and use it to resolve several fundamental questions about SNIR.

As part of the toolkit, we derive the following results. The results refer to the spectrum of
a correlation, ΛC which we de�ne as the multi-set of singular values of the correlation operator
associated with the correlation C (see Section 2.2). Also they deal with �non-redundant� correlations
(since, as we shall see, redundancies � which can be introduced or removed using local operations �
do not have any e�ect on the existence of SNIRs).

Suppose there is a statistical SNIR, that reduces a non-redundant correlation D to a correlation
C with ε error, then:

� D has a statistical SNIR to C using deterministic protocols (Lemma 7).

� ΛD ⊆ ΛC⊗` for some ` ∈ N (Theorem 4).

1The choice of the exact correlation is not crucial and can be replaced by any �nite complete functionality, without
altering the complexity beyond constant factors [27].

2There does exist an alternate model of Zero Communication Reductions which allows non-interactive function
computation conditioned on a predicate [29]. But here we consider the standard model of secure 2-party computation,
except for the restriction of being non-interactive.
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� the �spectral representation� of the SNIR satis�es a symmetry property, that we term mirroring
(Theorem 5).

Furthermore, if D does not have a statistical SNIR to C, then it has no statistical SNIR to C even
when both parties have access to unlimited common randomness (Theorem 6).

These general results can in turn be used to derive a variety of results. In particular, we show
that there is no complete correlation for SNIR (Theorem 7). We also obtain a full characterization
of all the parameter changes that are possible via SNIR for two correlation classes of interest,
namely doubly symmetric binary correlation BSC (Theorem 8) and binary erasure correlation BEC
(Theorem 9). For OLE correlations over �nite �elds, we obtain a necessary condition for SNIR

(Theorem 10). We also derive results (Theorem 11 and Theorem 12) implied by impossibility
results in the one-way secure computation model [15], that BEC and oblivious transfer correlation
do not have a SNIR to BSC; we remark that the proof in [15], based on isoperimetric inequalities,
yields a quantitatively weaker form that leaves open the possibility of inverse-polynomial security.

Finally, we also relate SNIR to secure (interactive) reductions of a correlation D to another C.
Recall from the discussion earlier that a secure interactive protocol for D includes a SNIR from D
to the view of the two parties at the end of the interaction. In fact, a stronger statement is possible:
We show that when a correlation involves common information (as is the case with the view after
interaction, which includes the transcript � and possibly more � as common information), then D
should have a SNIR to one of the correlations obtained from C conditioned on a value for the common
information. (Lemma 4 and Lemma 12). This motivates a challenging (non-cryptographic) problem
of characterizing the spectrum of correlations that can be obtained as the view of an interaction
starting with a given correlation C. We leave this as an open problem.

Related Work. As mentioned above, (interactive) secure reductions and non-interactive (non-
secure) reductions have both been widely studied. In an independent, concurrent work Khorasgani
et al. [25, 24] also studied SNIRs. While these works also followed a linear-algebraic approach, their
motivations and results were di�erent. In particular, their results were mostly restricted to studying
speci�c simple target correlations�the binary symmetric and binary erasure correlations�which
admitted the use of Fourier analysis of boolean functions. In contrast, driven by the connections
to circuit complexity lower bounds, we derive results that apply to arbitrary target correlations,
including those which may have a high circuit complexity. On the other hand, for the simpler
target correlations, [25, 24] consider more �ne-grained questions related to the rate of reduction,
and the decidability of reduction to other correlations. We do not address these problems. Boyle
et al. [10, 11] introduced pseudorandom correlation generators which achieve the same objective
against computationally bounded adversaries.

While perhaps not explicitly studied previously, the notions of a correlation operator and the
spectrum of a correlation that are de�ned in this work have been implicitly present in spectral graph
theory (by representing a correlation as a bipartite graph). An important element of the spectrum of
a correlation was de�ned as maximal correlation by [32] for proving a seminal result of (non-secure)
interactive reductions; in [1], it was observed that this proof can be cast in the language of spectral
graph theory.

2 Technical Overview

Here we present an overview of the tools that we develop to derive impossibility results for SNIRs.
Our starting point is a linear-algebraic formulation of a SNIR. For this, a distribution over X × Y
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is represented by a |X | × |Y| matrix whose entry with row indexed by x ∈ X and column indexed
by y ∈ Y is simply the probability Pr[(x, y)] of Alice getting x and Bob getting y. In the following,
we consider a SNIR from a target correlation represented by a matrix D ∈ RmD×nD to a source
correlation represented by a matrix C ∈ RmC×nC . Restricting here to the case of perfect security,
a SNIR translates to a pair of stochastic �protocol� matrices (A,B) representing Alice and Bob's
actions (mapping a symbol from the source to a symbol in the target), and a pair of �simulation�
matrices (U, V ) such that

Aᵀ C B = D Aᵀ C = D V C B = Uᵀ D. (1)

The �rst identity is a straightforward linear algebraic interpretation of the correctness of the proto-
col, while the next two capture the security against a corrupt Bob and a corrupt Alice, respectively,
as linear algebraic constraints. These identities are proved in Theorem 3, more generally, for sta-
tistical SNIR. As we would be interested in allowing access to arbitrarily many copies of a given
correlation C0, one should interpret C as the tensor power C⊗`0 for an arbitrarily large integer `.
(However, w.l.o.g. we may consider D to be a single copy of the correlation we are interested in
obtaining. As such, when considering statistical security, we shall use the OD(·) notation to indicate
an upper bound that hides a factor that is a function of D alone.)

Once viewed linear algebraically, we start obtaining consequences, which may not be evident
a priori, through a series of steps that combine cryptographic intuition with linear algebraic ma-
nipulation. For ease of exposition, �rst we describe these steps for a perfect SNIR where many of
the delicate technicalities disappear. We shall also sometimes focus on the case when the marginal
distributions of Alice's and Bob's side of the correlations are uniform.

2.1 Restricting to Non-Redundant Correlations

Suppose two distinct symbols x1, x2 that Alice can obtain fromD are such that conditioned on either,
the distribution of the symbol obtained by Bob is the same. In this case, we may as well merge these
two symbols into a single symbol, on obtaining which, Alice can probabilistically interpret it as x1
or x2 locally. We refer to the presence of such symbols, for either party, as redundancy. It is easily
veri�ed that for the purposes of secure sampling, every correlation is equivalent to a non-redundant
correlation (obtained by merging groups of redundant symbols).

To understand the implications of having a SNIR from a non-redundant D to C, consider the
following: Suppose Alice and Bob are given samples from D; then Alice outputs the value she got,
but Bob locally samples an output based on the value he got as below.

� Bob's goal is that the joint distribution of what the two parties output should still correspond
to D. The existence of a SNIR provides a way for Bob to do this: He �rst feeds the output from
D to the simulator (V ), to obtain a simulated view � i.e., his side of an output from C. The
simulation guarantees that the joint distribution of Alice's output and Bob's view are as in a real
execution of the protocol; now Bob applies his protocol (B) to the outcome of the simulation, to
obtain his altered output.

� On the other hand, non-redundancy of D should imply � intuitively � that the only mapping Bob
can use is the identity mapping.

Linear algebraically, the �rst statement corresponds to DV B = AᵀCB = D, and the latter is the
assertion (which needs a proof) that, if D is non-redundant, then for any stochastic matrix X,
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DX = D ⇒ X = I. Taken together, this gives

V B = I, UA = I, (2)

where the second identity follows from the same argument with Alice's and Bob's roles reversed.
Thus, the protocol must in fact invert the simulation. This is possible only if the protocol is
deterministic, as applying a randomized strategy to the output of a process (namely, the simulation)
cannot guarantee that the output will match the input to simulation. That is, the protocol (on each
party's side) could be viewed as simply a partition of the alphabet of C, with symbols in each part
being mapped to a di�erent symbol in the alphabet of D. This tells us further that the simulation
should simply distribute each D symbol back to C symbols according to their relative probabilities.
When the marginal distribution for Alice (resp., Bob) from the correlations D and C are both
uniform, this simpli�es to

U =
nD
nC

Aᵀ
(
resp., V =

mD

mC
Bᵀ
)
. (3)

An Eigenvalue Condition. Our �rst result is a necessary condition for SNIR in terms of the
eigenvalues of matrices associated with the two correlations. Here, we �rst discuss the case of
uniform marginal distributions and perfect security, followed by the important extensions to the
general case.

Theorem 1 (Informal). A uniform-marginal correlation with matrix D ∈ RmD×nD has an SNIR to
a uniform-marginal correlation with matrix C ∈ RmC×nC only if all the eigenvalues of mDnDDD

ᵀ

are also eigenvalues of mCnCCC
ᵀ.

Given our observations above, we have a short derivation of this result in the special case of
uniform marginals. Using the two security conditions in (1) and the two equations in (3), we have

mCnCA
ᵀCCᵀ = mCnC(DV )Cᵀ = mDnCDB

ᵀCᵀ

= mDnCD(DᵀU) = mDnDDD
ᵀAᵀ.

Now, suppose λ is an eigenvalue of the symmetric matrix mDnDDD
ᵀ, with a corresponding eigen-

vector v. Then
(vᵀAᵀ) ·mCnC · CCᵀ = vᵀ(mDnD ·DDᵀ)Aᵀ = λvᵀAᵀ.

Hence we conclude that λ is an eigenvalue of mCnC · CCᵀ as well (with eigenvector Av).

2.2 Beyond Uniform Marginals: The Correlation Operator

So far, we represented a correlation of X ×Y as a matrix M , with rows indexed by Alice's alphabet
X and columns indexed by Bob's alphabet Y, with Mx,y = Pr[(x, y)]. However, when the marginal
distributions of this correlation are not uniform, the above linear-algebraic arguments do not go
through. This leads us to an alternate representation of a correlation in the form of what we call
the correlation operator. It is a linear transformation de�ned by the matrix M̃ as follows:3

M̃x,y =
Mx,y√
axby

where ax =
∑
y′∈Y

Mx,y′ and by =
∑
x′∈X

Mx′,y.

3Here we use the convention that symbols with 0 probability are omitted from the alphabets X and Y, so that all
the marginal probabilities ax and by are strictly positive.
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A correlation operator transforms a |Y|-dimensional (column) vector with entries of the form qy/
√
by

into a |X |-dimensional vector with entries of the form px/
√
ax, where p denotes the conditional

distribution of Alice's symbol according to M when Bob's symbol is conditioned to be according to
q (i.e., px =

∑
y qy Pr[x|y] =

∑
y qyMx,y/by). The transpose of this operator carries out a similar

transformation in the reverse direction. Here, note that the correlation operator operates on vectors
with �normalized probabilities� in their respective vector spaces; the probabilities over X (resp. Y)
lie on the plane tangential to the unit sphere, touching it at

√
a (resp.

√
b), since 〈p/

√
a,
√
a〉 = 1

(and, 〈q/
√
b,
√
b〉 = 1). The marginal distributions a and b themselves are represented by unit

vectors (
√
a and

√
b).

Clearly, the correlation operator and the marginal distributions together completely specify the
correlation. But in fact, as the geometric interpretation above may suggest, the correlation operator
encodes the marginal distribution as well.4 Indeed, as we shall see, the direction in which the
transformation is non-shrinking corresponds to the marginals in the respective vector spaces (unit
vectors

√
a,
√
b); the action of the transformation on the vector space orthogonal to the marginal

encodes the dependence component of the correlation.

Singular Value Decomposition (SVD). SVD provides us with a powerful tool to analyze the
linear-algebraic properties of a correlation operator. Given an m × n distribution matrix M , we
apply SVD to its correlation operator, to get

M̃ =ΨᵀMΣMΦM

where ΣM is an m × n dimensional non-negative diagonal matrix, ΨM and ΦM are orthogonal
matrices of dimensions m×m and n×n, respectively (i.e., Ψ−1M =ΨᵀM and Φ−1M = ΦᵀM ). It would

be convenient to de�ne the spectrum of M , ΛM as the multi-set of singular values of M̃ (i.e., the
non-zero entries in ΣM ).

Correlation Operator and Normalized Laplacian. A natural representation of a correlation
M is in the form of a weighted bipartite graph GM , with Alice's and Bob's alphabets forming the
two vertex sets, and symbols x and y connected by an edge of weight Mx,y. (By our convention of
omitting 0-probability symbols, there are no isolated vertices in GM .) This representation allows
one to use spectral graph theory to explore the correlation M . Indeed, the correlation operator
M̃ is closely related to the �Normalized Laplacian� L(GM ) of the bipartite graph described above.
Speci�cally, from the de�nitions it follows that

L(GM ) = I −

[
M̃

M̃ᵀ

]

Lemma 1. For any correlation M ∈ Rm×n, the multi-set of eigenvalues of L(GM ) is given by
{1± σ | σ ∈ ΛM} ∪ { 1, · · · , 1︸ ︷︷ ︸

m+n−2|ΛM |
times

}.

A formal proof of the lemma is deferred to Appendix A.

4There is a caveat: if the correlation involves common information � i.e., if it is over pairs that can be written
as ((x, c), (y, c)) where c indicates a piece of information available to both parties � then, the distribution of the
common random variable itself is not captured by the correlation operator. But as we shall see, this component of
the distribution can indeed be ignored when studying the feasibility of SNIRs.
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Using this connection, the basic properties of the spectrum of a correlation follow from well-
known results in spectral graph theory [12]. In particular, we see that all the elements in the
spectrum ΛM lie in the range [0, 1], and the largest one equals 1. The multiplicity of 1 in ΛM
is one, unless the correlation M involves non-trivial common information (i.e., multiple connected
components in the bipartite graph GM ). This singular value corresponds to the transformations

between unit vectors,
√
a
ᵀ
M̃ =

√
b
ᵀ
and M̃

√
b =

√
a. The second largest singular value, which

indicates an upper bound on the extent to which M is not a product distribution of the marginals,
has in fact been identi�ed and used previously as maximal correlation by Witsenhausen in a seminal
work that initiated the study of (non-secure) non-interactive reductions [32].

2.3 Spectral Protocols

Now we return to the question of generalizing Theorem 1 to correlations C and D whose marginals
need not be uniform. A �spectral view� of SNIR, in terms of the correlation operators C̃ and D̃, and
the spectra ΛC and ΛD provides us with just the right tools.

Given a SNIR (A,B) fromD to C, we consider the singular value decompositions C̃ =ΨᵀCΣCΦC
and D̃ = ΨᵀDΣDΦD. Then, we can show that the linear algebraic conditions for correctness
and privacy, originally formulated in the �probability domain,� yields analogous conditions in the
�spectral domain,� where the protocols (A,B) are represented by their spectral counterparts, (Â, B̂),
de�ned as follows:

Â =ΨCΔ
1/2
Cᵀ AΔ

−1/2
Dᵀ Ψ

ᵀ
D, B̂ = ΦCΔ

1/2
C BΔ

−1/2
D Φ

ᵀ
D.

Here, the notation ΔM denotes a diagonal matrix with the vector 1ᵀM along its diagonal; note

that M̃ = Δ
−1/2
Mᵀ MΔ

−1/2
M . The following lemma summarizes the properties of a SNIR, viewed in the

spectral domain.

Lemma 2. If (A,B) is a perfect SNIR from a non-redundant correlation D to a correlation C, then

ÂᵀΣCB̂ = ΣD ÂᵀΣC = ΣDB̂
ᵀ
ΣCB̂ = ÂΣD ÂᵀÂ = I, B̂ᵀB̂ = I. (4)

The lemma is formally proved in Appendix A. The condition ÂᵀΣCB̂ = ΣD is obtained by
simply rearranging the linear algebraic conditions for correctness and privacy in the �probability
domain� and using the de�nitions of Â, B̂,ΣC and ΣD. (It is also implied by the other equations.)
To show that ÂᵀÂ and B̂ᵀB̂ are identity, we exploit the conditions UA = I and V B = I, respectively,
from (2). For the remaining two �privacy� conditions we use the generalization of (3) to the case of
non-uniform marginals.

U =Δ−1DᵀA
ᵀ
ΔCᵀ , V =Δ−1D BᵀΔC . (5)

Compared to (1), the condition (4) in the �spectral domain� involves the diagonal matrices ΣC
and ΣD instead of C and D. Further, it is devoid of simulators (U, V ), which are replaced by
(Âᵀ, B̂ᵀ). Further, Â and B̂ have orthonormal columns, rather than being stochastic and determin-
istic.

Spectral Criterion. The spectral formulation of the conditions for SNIR in Lemma 2 lead us to
the following generalization of Theorem 1.
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Theorem 2 (Informal). A non-redundant correlation D has a perfect SNIR to C only if ΛD ⊆ ΛC
(as multi-sets).

This result follows from the conditions in Lemma 2. Speci�cally, using the second and third
conditions from (4), we have

ÂᵀΣCΣ
ᵀ
C = ΣDB̂

ᵀ
Σ
ᵀ
C = ΣDΣ

ᵀ
DÂ
ᵀ.

Since ΣD is a diagonal matrix, for j ∈ [mD], ξᵀjΣDΣ
ᵀ
D = (ΣD)2j,j ξ

ᵀ
j . Hence, premultiplying the

above expression by ξᵀj , we get

(Â·,j)
ᵀ
ΣCΣ

ᵀ
C = (ΣD)2j,j (Â·,j)

ᵀ.

Note that ΣC Σ
ᵀ
C is a diagonal matrix, and in the LHS of the above equation, each coordinate of

Â·,j is scaled by the corresponding element in the diagonal, whereas in the RHS, all coordinates are

scaled by the same scalar value. Hence, for every i such that Âi,j > 0, we require (ΣC)i,i = (ΣD)j,j .

Since ÂᵀÂ = I and, consequently, ‖Â·,j‖ = 1, there must be at least one i ∈ [mC ] with Âi,j > 0.
Thus, there exists i ∈ [mC ] such that (ΣC)i,i = (ΣD)j,j . In fact, we can further argue that if a
singular value appears multiple times in ΣD it should appear at least as many times in ΣC . For
λ > 0, let Sλ = {j ∈ [mD] | (ΣD)j,j = λ}, and Tλ = {i ∈ [mC ] | (ΣC)i,i = λ}. Consider the set

of columns {Â·,j |j ∈ Sλ}; recall that they are orthogonal to each other (since ÂᵀÂ = 1). Now, for

each j ∈ Sλ, we argued that Â·,j is supported entirely on rows i such that (ΣC)i,i = λ, i.e., on

rows indexed by Tλ. Hence, Â restricted to rows Tλ and columns Sλ has full column rank. Hence
|Tλ| ≥ |Sλ|.
Mirroring Lemma. Pursuing the implications of the above arguments further, we uncover a
surprising symmetry in the spectral images of a SNIR.

Consider any λ ∈ ΛD and j ∈ Sλ as de�ned above. Consider the row j in the equation
ÂᵀΣC = ΣDB̂

ᵀ (from (4)). We have,

(
ÂᵀΣC

)
j,i

=

{
λ · Âi,j if i ∈ Tλ,
0 otherwise,

since Â·,j is supported only on rows in Tλ, and for i ∈ Tλ, we have (ΣC)i,i = λ. On the other hand,(
ΣDB̂

ᵀ
)
j,·

is the jth row of B̂ᵀ scaled by (ΣD)j,j , or equivalently, it is λB̂
ᵀ
·,j . Thus, we obtain that

for all j ∈ Sλ, and i ∈ Tλ, Âi,j = B̂i,j , and for i 6∈ Tλ whenever de�ned, Âi,j = 0 and B̂i,j = 0. Note
that here we may expand the range Tλ to [min(mC , nC)]. Also, since this holds for any λ, we can
consider j to be in the union of all Sλ, or equivalently, j ∈ [rank(ΣD)]. This gives us the following
result:

Lemma 3 (Informal). Suppose a non-redundant correlation D ∈ RmD×nD has a perfect SNIR (A,B)
to a correlation C ∈ RmC×nC . Let d = rank(ΣD) and r = rank(ΣC). Then for each (i, j) ∈ [d]×[r],
Âi,j = B̂i,j. Further, for i /∈ [r] and j ∈ [d], Âi,j = 0 and B̂i,j = 0 (whenever de�ned).
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2.4 E�ect of Common Information

An important aspect of correlations is the presence or absence of common information. We say
that a correlation has (non-zero) common information if there is a bit of positive entropy on which
Alice and Bob can non-interactively agree with probability 1 [14]. A correlation C has common
information if and only if the bipartite graph GC contains two (or more) connected components
(the correlation corresponds to sampling an edge from the graph, and giving a node to each party;
they can agree on which connected component the edge lies in, and nothing more). Equivalently,

the matrix for C can be written as C =

[
αC0 0

0 (1− α)C1

]
, where C0, C1 are two correlations and

0 < α < 1.
In the context of (non-secure) non-interactive reductions, common information is a complete

correlation. That is, given common information in a source correlation, Alice and Bob can sample
from any target correlation. Indeed, the tools for proving infeasibility in this area focus on how far
source correlations are from having common information, measured using maximal correlation[20,
32, 4, 30, 5], or alternately, using the (reverse) hypercontractivity ribbon [4, 9, 23, 13, 6]. On the
other hand, in the context of interactive secure reductions, common information is a trivial resource
(against passive corruption) that does not help at all. Here we investigate the e�ect of common
information in the source for secure and non-interactive reductions.

We note that C̃ =

[
C̃0 0

0 C̃1

]
(which remains invariant to α). Hence, ΛC = ΛC0 ∪ ΛC1 (as

multi-sets). By Theorem 2, D has a perfect SNIR to C only if ΛD ⊆ ΛC0 ∪ΛC1 . But in fact, we
can obtain the following:

Lemma 4. Suppose C =

[
αC0 0

0 (1− α)C1

]
where C0, C1 are two correlations and 0 < α < 1.

Then, a non-redundant correlation D devoid of common information has a perfect SNIR to C only
if D has a perfect SNIR to C0 as well as a perfect SNIR to C1; in particular, ΛD ⊆ ΛC0 ∩ΛC1.

We prove the result in Section 7.

2.5 Statistical SNIR

Perfectly secure SNIR can often be impossible even due to �uninteresting� reasons; e.g. it is impossi-
ble to realize a common random bit with bias 1/3 using unbiased common random bits with perfect
correctness, however, this can be realized with negligible error. As such it is important to extend
our tools above to handle the case of statistical security. A signi�cant part of the technical e�ort
in this paper is directed towards this goal, as many of the several steps described above require a
careful analysis to be applicable to statistical security.

For statistical security in cryptographic protocols, one usually asks for errors (in correctness
and security) to be negligible in a security parameter k, while the protocol's complexity remains
polynomial in k. A weaker security guarantee often considered settles for a protocol family where for
any polynomial p, there is a protocol that achieves 1/p(k) error. Even weaker security guarantees
are considered in the information-theory literature: the error can be 1/p(k) for a �xed polynomial
p, or even any �xed function p such that p(k)→∞ as k →∞. It is this weakest form of security �
security with (merely) vanishing error � that we shall rule out, thereby achieving a strong notion of
impossibility. In this form, there is no restriction on the complexity of the protocol itself � which, in
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the case of a SNIR from D to C, corresponds to the number of samples from C used by the protocol.
That is, we seek to show that there is an error lower bound ε such that for any t ∈ N, D does not
have a SNIR to C⊗t (the tensor power notation indicating a correlation consisting of t independent
samples from C).

In deriving our technical results, we lower bound the error in a SNIR from D to C, wherein only a
single instance of C is allowed. Then, for this lower bound to be useful in the above sense, the error
bound should be independent of the dimensions of C (but can depend on spectral properties that
are invariant to tensor powering). As such, we keep track of the errors in our necessary conditions
for a SNIR with an error ε in the form of OD(ε), where the upper bound notation OD(·) hides
constants that can depend on D (but not on C).

We brie�y sketch the arguments we need for extending our results to statistical SNIR.

� Firstly, the linear algebraic characterization of SNIR in (1) extends to the setting with statistical
error, with a tight characterization in terms of the 1-norm of the error matrices (Theorem 3).

� Next, we extend (2) to the statistical setting, in Lemma 6. Recall that this was based on the
non-redundancy of the correlation D; speci�cally, in the perfect security case, we relied on the
fact that if D = DT for a stochastic matrix T , then T = I. We show an analogous result that
if D ≈ DT , then T ≈ I, in terms of the 1-norm of the error matrices. This proof relies on a
purely linear-algebraic technical claim (Claim 4) which in turn necessitates a careful application
of Gaussian elimination (Appendix C.4).

� For the case of perfect security, we had argued that a SNIR for a non-redundant correlation D
must be deterministic. Clearly, this is not the case any more for statistically secure SNIR, as a
protocol can incur a small error by behaving arbitrarily with a small probability, and still remain
secure. Nevertheless, we show that every (possibly randomized) SNIR protocol can be �rounded�
to a deterministic protocol with an error of ε getting ampli�ed to OD(

√
ε) (Lemma 7). The

following steps are shown for a deterministic protocol.

� A robust version of Lemma 2 is proven as Lemma 10. Among other things, this requires a robust
version of (5), which is proven as Lemma 8. Lemma 10 provides multiple error bounds in terms
of the 1-norm of various matrices related to the error matrices (corresponding to θ ∈ {0, 1} in
the lemma statement). The reason for this is that we cannot a�ord to multiply the bounds
with quantities that relate to C; instead, the lemma gives bounds for matrix expressions that
incorporate C in two di�erent ways, as are required in the subsequent proofs.

� Theorem 4 extends the spectral criterion ΛD ⊆ ΛC⊗t in Theorem 2 to the case of statistical
security. While all other extensions result in statements that incorporate an error term, it is
notable that the spectral criterion holds exactly! The reason for this is that if ΛD is not exactly
contained in ΛC⊗t for any t, then there must be an element in ΛD that maintains a constant gap
from all of ΛC⊗t′ , irrespective of how large t′ is (Lemma 9). The proof of Theorem 4 also requires
carefully keeping track of the how errors propagate in the spectral domain, using Lemma 10
mentioned above, as well as a technical bound proven as Lemma 11.

� Theorem 5 extends the Mirroring Lemma (Lemma 3) to the case of statistical security. For an
ε-SNIR, the statement here incurs an error of the form OD(

√
ε) /α2, where α denotes how close

an element in ΛC can approach an element in ΛD without equaling it. Again, this proof relies
on Lemma 10 and Lemma 11.

� Lemma 12 and Lemma 14 extend Lemma 4 to the case of statistical security. If a correlation D,
devoid of common information, has an ε-SNIR to C, then, by Lemma 12, D has an SNIR to one
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of its component correlation with error OD(ε), and, by Lemma 14, D has an SNIR to each of its
component correlations, but with error scaled inversely with the probability of the component.
Lemma 12 is used in Theorem 6 to show that common randomness does not aid in realizing SNIR;
Theorem 7 uses this lemma to show that no correlation is complete in the SNIR setting.

2.6 Applications

We demonstrate the utility of the toolset we built for analyzing SNIR via a few fundamental exam-
ples.

Incompleteness in SNIR. Our �rst result addresses the question of completeness in the SNIR

model and answers it in negative Theorem 7. There exist no �nite correlation such that every
target correlation has a statistical SNIR to possibly arbitrarily many copies of the correlation. This
is in contrast with multiple other models of secure computation with simple complete primitives.
Speci�cally, for interactive secure computation, all non-trivial correlations are complete (a trivial
correlation is one in which the variables are independent conditioned on common information); in
the case of (non-secure) non-interactive reduction (NIR), the complete correlations are exactly those
which have non-zero common information.

Our incompleteness result is a consequence of the ine�ectiveness of common information in SNIR.
Lemma 12 shows that SNIR to a correlation C implies SNIR to one of its component correlations. A
correlation D has no (non-secure) non-interactive reduction to a correlation C with strictly smaller
maximal correlation; this implies that, given any correlation C, we can always choose a correlation
D with a larger maximal correlation than all the component correlations of C.

Characterization of SNIR between Binary Symmetric Correlations. A binary symmetric
correlation with crossover probability p, denoted by BSCp, is a symmetric Boolean correlation that
corresponds to giving a uniform random bit to Alice, and then giving the same bit to Bob with
probability 1 − p and the opposite bit with probability p. Consider a protocol in which, given k
instances of BSCp, Alice and Bob each output the XOR of their k bits. It is not hard to show that
this is in fact a (perfect) SNIR from BSCq to BSCp, where q = p ∗ . . . ∗ p (k times) with the operator
∗ de�ned by p∗p′ = p(1−p′) +p′(1−p). Surprisingly, these are the only values of q for which there
is a (possibly statistical) SNIR from BSCq to BSCp. This result, which fully resolves the question
of SNIR between BSCs, follows directly from analyzing the spectra of the correlations of the form
BSCp and applying our spectral criterion for SNIRs.

Characterization of SNIR between Binary Erasure Correlations. BECp is a correlation
which can be de�ned as picking a random bit for Alice, and sampling Bob's output based on it; here
Bob gets an erasure symbol ⊥ with probability p and the same bit as Alice got with probability
1 − p. Consider a protocol in which, given k instances of BECp, Alice outputs the XOR of all her
bits, and Bob outputs ⊥ if at least one of the symbols he received is ⊥ and otherwise outputs the
XOR of all the bits. This is a SNIR from BECq to BECp, where 1−q = (1−p)k. Again, surprisingly,
these are the only values of q for which there is a (possibly statistical) SNIR from BECq to BECp.
Again, this result follows directly from our spectral criterion.

Necessary Conditions for SNIR between OLE Correlations. We demonstrate the usefulness
of spectral criterion by showing that it is impossible to obtain SNIR between OLE correlations over
�nite �elds with di�erent characteristics.

Application of Mirroring Lemma. We show that there is no statistical SNIR from binary
erasure correlation or oblivious transfer correlation (OT) (see (6)) to binary symmetric correlation.
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These results do not follow from the spectral criterion, but can be based on the Mirroring Lemma.
In this case, the source correlation C (BSC) has a certain symmetry (ΨC = ΦC) whereas the target
correlation D (BEC and OT) have markedly di�erent entries in ΨD and ΦD; this, we show, makes
it impossible for a spectral protocol to satisfy the Mirroring Lemma. Indeed, we provide a much
more general implication of mirroring lemma for symmetric sources in Lemma 13.

We remark that our impossibility result rules out an error lower than a positive constant, no
matter how many copies of BSC are used. In contrast, a quantitatively weaker result is implied by
a known impossibility result for One-Way Secure Computation [15]. (See Appendix G.1.)

We remark that independently, [25] also considered these problems regarding SNIR between BSC
and BEC correlations (using techniques tailored for these correlations). They obtain the above
three results, with two caveats: their de�nition of a SNIR allowed only deterministic protocols, and
required negligible security error. While the �rst caveat can be removed using our result in Lemma 7,
the second one appears inherent to their techniques. We also remark that [25] also shows that BSC
does not have a SNIR to BEC, using techniques similar to those in [15]; we have not obtained this
result, as our approach relying on the mirroring lemma seems to require a tedious analysis for this
example. This example gives a possible direction in which our toolkit could be expanded.

2.7 Future Directions

Our results and techniques suggest several exciting questions at the intersection of cryptography,
linear-algebra and complexity of functions. We mention a few of these directions here.

1. As mentioned at the beginning, SNIR forms one part of a pair of questions about the feasibility of
an (interactive) secure reduction from D to C. The question we do not address here is the (non-
cryptographic) question regarding what correlations can be created as the views of two parties in
an interaction. This is a purely �communication� problem, that �ts in with the rich literature of
communication complexity, which also studies the properties of communication protocols, albeit
the goals are very di�erent.

Apart from this broad direction, our results open up some concrete questions. Consider Alice
sending a single bit to Bob, based (probabilistically) on her sample from the correlation C. The
resulting view is described by the following correlation, where Q encodes Alice's communication
strategy as a diagonal matrix (with Qxx being the probability of sending 0 on receiving x):[

QC 0
0 (I −Q)C

]
.

How is the spectrum of this new correlation related to that of C, over all possible choices of Q? If
C corresponds to a (possibly noisy) string-OT, where Bob receives two strings (y0, y1) and Alice
receives (b, yb), if Alice sends b to Bob, then the maximal correlation greatly increases. However,
if C is of the form C⊗t1 it would appear that sending a single bit will have only limited e�ect on
the spectrum. Can this be quanti�ed?

2. How �complex� can the spectrum of a correlation be, in terms of the complexity of sampling from
it, or computing the probabilities? In particular, if a correlation is the tensor power of a smaller
correlation, all the values in the spectrum can be computed as monomials of a few variables.

3. The correlation operator M̃ essentially captures all the information about a correlationM (other
than the distribution of the common information). However, the spectrum of a correlation dis-
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cards the orthogonal transformations ΨM and ΦM that are part of the singular value decompo-
sition of the correlation operator M̃ . Can we obtain tighter criteria for SNIR based on them?

4. The correlation operator is a tool worthy of study on its own. We have not explored some natural
mathematical questions that would arise in such a study.

� Which linear transformations correspond to valid correlation operators? In particular, given
a valid correlation operator, can it be altered � say, by truncating the spectrum � to obtain
the correlation operator of meaningfully �simpler� correlations? (Truncating the spectrum to
retain only the top singular value yields the correlation operator corresponding to the product
distribution with the same marginal.)

� The correlation operator is quite symmetric in its de�nition (e.g., M̃ᵀ = M̃ᵀ). While not as
versatile as the correlation operator, asymmetric variants of it does capture certain interesting

details of a correlation. For instance, one can de�ne Δ−αMᵀMΔ
−(1−α)
M for any 0 ≤ α ≤ 1. We

leave it to future work to explore such variants.

5. Finally, there are information-theoretic problems on SNIR that we have not explored. For in-
stance, as pursued in [25], one may explore the exact constant rate at which a SNIR between
speci�c correlations is possible. Also, as pursued in [24], one may consider the question of decid-
ability (or even, e�cient decidability) of the existence of SNIR between such a pair of correlations.

3 Preliminaries

In this section, we set up the notation and make the necessary de�nitions and formally de�ne the
notion of non-interactive secure reduction.

Notation. Throughout the paper, we only consider �nite sets. Finite sets are denoted as X ,Y,
and so on; a random variable over set X is denoted as X and a member of X is denoted as x. For
convenience, we consider vectors with elements indexed by elements x ∈ X for a arbitrary set X ;
hence it makes sense to de�ne an X dimensional column vector. For an X dimensional column
(or row) vector v, the entry at the position x is denoted by (v)x. Similarly, for sets X and Y,
consider an X × Y dimensional matrix H. The row of H indexed by x and the column indexed
by y are denoted as vectors (H)x,· and (H)·,y, respectively, and the element indexed by (x, y) is
denoted as (H)x,y. The transpose is denoted by Hᵀ. Finally, |H| denotes the absolute value of H,
i.e., (|H|)i,j = | (H)i,j |, for all i ∈ [m] and j ∈ [n]. We remove the parentheses whenever there is
no scope for confusion and the vector/matrix itself is subscripted; i.e., (v)x , (H)·,x and (H)x,y are
simpli�ed to vx, H·,x and Hx,y, respectively.

For n ∈ N, an n dimensional column vector with all elements being 1 (resp. 0) is denoted by 1n

(resp. 0n). For i ∈ [n], ξni denotes the n dimensional unit vector along the `direction i'. That is,
(ξni )i = 1 and (ξni )j = 0 for all j 6= i. We drop the superscript when there is no scope for confusion

regarding the dimension of the vector. n× n dimensional identity matrix is denoted In×n and the
`zero matrix' (with all elements being 0) is denoted by 0n×n.

We write OD(ε) to denote an upper bound of the form f(D) · ε, for some �xed non-negative
function f .

De�nition 1 (Norms). For a m×n dimensional matrix H, 1-norm of the matrix, denoted by ‖H‖,
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is the sum of the absolute value of all elements in H, i.e.,

‖H‖ =
∑

(i,j)∈[m]×[n]

|Hi,j | = (1m)ᵀ|H|1n.

The 2-norm of an n dimensional vector v is de�ned as ‖v‖2 =
(∑

i∈[n] v
2
i

) 1
2
. C

De�nition 2. Let u and v be vectors of dimensions m and n, respectively. Then,

δ (u,v) = û− v̂,

where û and v̂ are the max(m,n) dimensional zero-paddings of vector u and v, respectively. C

De�nition 3. A matrix T with non-negative entries is said to be stochastic if T1 = 1. A stochastic
matrix in which every entry is either 0 or 1 is called a deterministic stochastic matrix or simply a
deterministic matrix. C

De�nition 4. For an m× n dimensional matrix M , we de�ne ΔM as the n× n diagonal matrix,
such that

(ΔM )i,j =

{
(1ᵀM)i if i = j,

0 otherwise.
C

Probability. Let X be a random variable distributed over a domain X . Probability with which
X takes on the value x ∈ X is denoted by PX(x) or simply as P(x), when the distribution is
apparent. Given two random variables X,X ′ over the same domain, we write SD (X,X ′) to denote
the statistical di�erence (a.k.a. total variation distance) between the two, which is computed as∑

x∈X
|PX(x)− PX′(x)|.

Throughout this paper, we would be interested in correlations, which are joint distributions over
a product of two sets. For �nite sets X and Y, a X × Y dimensional matrix H with non-negative
entries is a joint distribution matrix or simply a distribution matrix if∑

x

∑
y

Hx,y = 1.

We write (X,Y ) ∼ H to imply that the random variables (X,Y ) are distributed according to the
distribution law H; i.e., PXY (x, y) = Hx,y for all (x, y) ∈ X × Y. In the sequel, we will always
refer to a pair of random variables by its joint distribution matrix. We drop all-zero rows (and
all-zero columns) from joint distribution matrices, i.e., elements in X (and Y) which occur with
zero probability are suppressed.

When we say Alice and Bob receive a correlation (X,Y ), we mean Alice and Bob receive random
variables X and Y respectively. The objective of non-interactive secure reductions is for Alice and
Bob to securely realize a desired correlation among themselves using (potentially many copies) of
the correlation at hand without communicating with each other.
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Some Correlations of Interest. Below, we de�ne some correlations that are extensively studied
in information theory and cryptography which we use to illustrate the implications of our main
results.

For p ∈ [0, 1], the Binary Symmetric Correlation with crossover probability p over the al-
phabet {0, 1}×{0, 1}, and the symmetric Binary Erasure Correlation with erasure probability
p over the alphabet {0, 1} × {0, 1,⊥} are given by the following probability distribution matrices,
respectively.

BSCp =

[1−p
2

p
2

p
2

1−p
2

]
. BECp =

[1−p
2

p
2 0

0 p
2

1−p
2

]
.

The OLE correlation (for Oblivious Linear-function Evaluation) over a �nite �eld (or ring) F
is the correlation OLEF over the domain F2 × F2 such that, for all a, b, x, y ∈ F,

(OLEF)(a,x),(b,y) =

{
1
|F|3 if a · b = x+ y,

0 otherwise.
(6)

OLE correlation over F2 is alternately called the Oblivious Transfer correlation or OT for short.

Tensor product. When G and H are X ×Y and X ′×Y ′ dimensional matrices, tensor (Kronecker)
product of G and H, denoted as G ⊗H is an (X × X ′) × (Y × Y ′) dimensional matrix such that,
for all (x, x′) ∈ X × X ′ and (y, y′) ∈ Y × Y ′,

(G⊗H)(x,x′),(y,y′) = Gx,y ·Hx′,y′ .

G⊗H is essentially the product distribution of G and H, i.e., independent draws from distributions
G and H. We will use the following well known result about Kronecker product [21].

Claim 1. For matrices G,H and t ∈ N, (GH)⊗t = G⊗tH⊗t.

4 De�nitions

We de�ne the notion of secure non-interactive reduction (SNIR) in this section. Non-interactive
reduction of a distribution to another without the security guarantee called non-interactive reduction
(NIR) is well studied. We formally de�ne NIR and discuss some of its properties before de�ning SNIR.

De�nition 5. Let C and D be correlations over X × Y and R × S, respectively. For any ε ≥ 0,
an ε-non-interactive reduction (ε-NIR) from D to C is a pair of probabilistic algorithms A : X → R
and B : Y → S such that, when (X,Y ) ∼ C and (R,S) ∼ D,

SD ((A(X),B(Y )), (R,S)) ≤ ε. (7)

0-NIR is alternatively called a perfect NIR. C

De�nition 6. Let C and D be correlations over X ×Y and R×S, respectively. D is said to have
a statistical NIR to C if for all ε > 0, there exists a su�ciently large n for which, D has an ε-NIR to
C⊗n. C
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De�nition 7. Let C and D be correlations over X × Y and R × S, respectively. For any ε ≥ 0,
a ε-secure non-interactive reduction (ε-SNIR) from D to C is a pair of probabilistic algorithms
A : X → R and B : Y → S such that, when (X,Y ) ∼ C and (R,S) ∼ D, in addition to condition
(7), the following security conditions hold.

There exist a pair of probabilistic algorithms, SimA : R → X and SimB : S → Y such that,

SD ((X,B(Y )), (SimA(R), S)) ≤ ε, (8)

SD ((A(X), Y ), (R,SimB(S))) ≤ ε. (9)

0-SNIR is alternatively called a perfect SNIR. C

De�nition 8. Let C and D be distributions over X ×Y and R×S, respectively. D is said to have
a statistical SNIR to C if for all ε > 0, there exists a su�ciently large n for which, D has an ε-SNIR
to C⊗n. C

We begin with a linear algebraic characterization of secure non-interactive reductions (SNIR).
The following theorem is proved in Appendix B.

Theorem 3. Let ε ≥ 0, and let C and D be correlations over X ×Y and R×S, respectively. D has
a ε-SNIR to C if and only if there exist stochastic matrices A,B,U , and V of dimensions X × R,
Y × S, R×X , and S × Y, respectively, such that

Aᵀ C B = D + E Aᵀ C = D V + EA C B = Uᵀ D + EB,

where E,EA, and EB are matrices of dimensions R×S, R×Y, and X ×S, respectively, such that
‖E‖, ‖EA‖, ‖EB‖ ≤ ε.

Going forward, given distribution matrices C and D of dimensions mC × nC and mD × nD,
respectively, and stochastic matrices A and B of dimensions mC ×mD and nC × nD, respectively;
we say that (A,B) is a ε-SNIR of D to C if the conditions in Theorem 3 are satis�ed for some
stochastic matrices U and V of dimensions mD ×mC and nD × nC , respectively.

5 Basic Properties of SNIR

In this section, we will establish some fundamental properties of SNIR that will be crucially used
in arriving at the main results in the paper. In Lemma 5, we show that it is su�cient to study
SNIR between correlations in which there are no redundant symbols (see De�nition 9) in Alice's or
Bob's side. Lemma 6 establishes a relation between SNIR protocols and their simulators (used for
proving the security conditions) of a secure reduction. This relation is later used in Lemma 7 to
show that protocols inducing SNIR are necessarily deterministic. This allows us to focus on SNIR

with deterministic protocols in the sequel. Finally, the main result of this section characterizes the
simulators (U and V ) for a secure reduction in terms of the protocols (respectively, A and B).

We formally de�ne redundant correlations and the core of a correlation.

De�nition 9. A distribution matrix H over X × Y is said to be redundant if there exist distinct
x, x′ ∈ X and α ∈ R≥0 such that Hx,· = α · Hx′,· or there exist y, y′ ∈ Y and β ∈ R≥0 such that
H·,y = β ·H·,y′ . C
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By this de�nition, both the marginal distributions of a non-redundant distribution have full
support since an all zero column (or row) is trivially a scalar multiple of any other column (or row).

Consider a (potentially redundant) distribution matrix H over X × Y. Consider the partition
X1, . . . ,Xm and Y1, . . . ,Yn of X and Y, respectively, such that x, x′ ∈ Xi (resp. y, y′ ∈ Yj) if and
only Hx,· and Hx′,· (resp. H·,y and H·,y′) are non-zero scalar multiples of each other. Additionally,
we include all zero columns and rows in X1 and Y1, respectively. The distribution over such a
partition induced by H is called the core of the distribution H. Formally, the non-redundant core
of H, denoted by Hcore, is the m× n dimensional matrix such that, for all i ∈ [m] and j ∈ [n],

(Hcore)i,j =
∑
x∈Xi

∑
y∈Yj

Hx,y.

It is easy to verify that the core of any distribution is non-redundant and unique up to relabelling.
Lemma 5, Lemma 6 and Lemma 7 are formally proved in Appendix C.

Lemma 5. Consider distributions C and D over X ×Y and R×S, respectively. For any ε ≥ 0, D
has an ε-SNIR to C if and only if Dcore has an ε-SNIR to Ccore.

Lemma 6. Let C be a mC ×nC dimensional distribution matrix and D be a mD×nD dimensional
non-redundant distribution matrix. For any ε ≥ 0, if stochastic matrices A,B,U, V are such that

‖AᵀCB −D‖ ≤ ε ‖AᵀC −DV ‖ ≤ ε ‖CB − UᵀD‖ ≤ ε,

then ‖V B − I‖ ≤ OD(ε) and ‖UA− I‖ ≤ OD(ε).

Lemma 7. Let C and D be non-redundant distribution matrices of dimensions mC × nC and
mD × nD, respectively. For any ε ≥ 0, if there exist stochastic matrices A,B,U and V such that

‖AᵀCB −D‖ ≤ ε ‖AᵀC −DV ‖ ≤ ε ‖CB − UᵀD‖ ≤ ε,

then there exist deterministic stochastic matrices Ā, B̄ such that,

‖ĀᵀCB̄ −D‖ ≤ OD
(√
ε
)
‖ĀᵀC −DV ‖ ≤ OD

(√
ε
)
‖CB̄ − UᵀD‖ ≤ OD

(√
ε
)
.

The following is the main result of this section that characterizes the simulators for a secure
reduction in terms of the protocols.

Lemma 8. Let C and D be non-redundant distribution matrices of dimensions mC × nC and
mD ×nD, respectively. For any ε ≥ 0, if there exist deterministic stochastic matrices A and B, and
stochastic matrices U and V such that

‖AᵀCB −D‖ ≤ ε ‖AᵀC −DV ‖ ≤ ε ‖CB − UᵀD‖ ≤ ε,

then,

‖V −Δ−1D BᵀΔC‖ ≤ OD(ε) ‖U −Δ−1DᵀA
ᵀ
ΔCᵀ‖ ≤ OD(ε) .

Proof: For i ∈ [nC ], de�ne j∗i ∈ [nD] as the unique index (since B is deterministic) such that
Bi,j∗i = 1. De�ne row vectors c = 1ᵀC and d = 1ᵀD of dimensions nC and nD, respectively. It can
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be veri�ed that for all i ∈ [nC ], for all j 6= j∗i ,
(
Δ
−1
D BᵀΔC

)
j,i

= 0, and
(
Δ
−1
D BᵀΔC

)
j∗i ,i

= ci
dj∗

i

.

Hence, for each i ∈ [nC ],∑
j∈[nD]

∣∣∣ (Δ−1D BᵀΔC

)
j,i
− Vj,i

∣∣∣ =

∣∣∣∣∣ cidj∗i − Vj∗i ,i
∣∣∣∣∣+

∑
j 6=j∗i

Vj,i. (10)

Let AᵀC − DV = E; by our assumption, ‖E‖ ≤ ε. De�ne nC dimensional row vector e = 1ᵀE.
Since A is a stochastic matrix, 1ᵀAᵀ = 1ᵀ. Consequently,

e = 1ᵀE = 1ᵀAᵀC − 1ᵀDV = c−
nD∑
j=1

djVj,·

Hence, for all i ∈ nC ,

ci − dj∗i Vj∗i ,i = ei +
∑
j 6=j∗i

djVj,i.

Since D is non-redundant all entries of d are non zero. Hence, for all i ∈ [nC ],∣∣∣∣∣ cidj∗i − Vj∗i ,i
∣∣∣∣∣ ≤ 1

min
j∈[nD]

dj

|ei|+ ∑
j 6=j∗i

Vj,i

 .

Using this, along with (10), we get,

‖Δ−1D BᵀΔC − V ‖ =
∑
i∈[nC ]

∑
j∈[nD]

∣∣∣ (Δ−1D BᵀΔC − V
)
j,i

∣∣∣
≤
∑
i∈[nC ]

|ei|
min
j∈[nD]

dj
+
∑
j 6=j∗i

Vj,i

1 +
1

min
j∈[nD]

dj


≤ 1

min
j∈[nD]

dj
·

ε+
∑
i∈[nC ]

∑
j 6=j∗i

2Vj,i

 .

In the last inequality, we used 1 ≤ 1
mini di

, and since ‖E‖ ≤ ε,
∑

i∈[nD]|ei| ≤ ε. To bound the sum
in the RHS, we proceed as follows. Since each row i ∈ [nC ] of B has a unique non-zero entry (1 in
the column j∗i ),∑

j∈[nD]

(V B)j,j =
∑
j∈[nD]

∑
i∈[nC ]

Vj,iBi,j =
∑
i∈[nC ]

∑
j∈[nD]

Vj,i ·Bi,j =
∑
i∈[nC ]

Vj∗i ,i.

By Lemma 6, ‖V B − I‖ = OD(ε). Furthermore, since V is stochastic matrix with nD rows, all
entries of V add up to nD. Hence,

OD(ε) ≥
∑
j∈[nD]

(I − V B)j,j = nD −
∑
j∈[nD]

(V B)j,j = nD −
∑
i∈[nC ]

Vj∗i ,i

=
∑
i∈[nC ]

∑
j∈[nD]

Vj,i −
∑
i∈[nC ]

Vj∗i ,i =
∑
i∈[nC ]

∑
j 6=j∗i

Vj,i.

This concludes the proof. �
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6 Spectral Protocols

The properties of SNIR that were established in the previous section are used in this section to
analyze the protocols in the so called spectral domain. We then show that these spectral protocols
reveal more of the underlying structures in secure reductions that are not obvious when we analyze
the protocols themselves. The properties of secure reductions revealed by analyzing the secure
reductions in the spectral domain tend to be robust, in that, they easily extend to the statistical
case. First, we make the following de�nitions.

De�nition 10 (Spectrum of a Correlation). For any distribution matrix M of dimension m × n,
de�ne5

M̃ = Δ
−1/2
Mᵀ MΔ

−1/2
M .

Further de�ne ΣM , ΨM and ΦM to be given by a canonical singular value decomposition of M̃ ,
so that ΣM is an m × n dimensional non-negative diagonal matrix with the diagonal sorted in
descending order, ΨM and ΦM are unitary matrices of dimensions m×m and n× n, respectively,
and

M̃ =ΨᵀMΣMΦM .

The multi-set of non-zero singular values of M̃ is called the spectrum of M , and is denoted by
ΛM . C

We now describe the spectrum of the correlations of interest in this paper.

Binary Symmetric Correlation. For 0 < p < 1
2 , BSCp =

[1−p
2

p
2

p
2

1−p
2

]

ΣBSCp =

[
1 0
0 1− 2p

]
ΨBSCp =

[
1√
2

1√
2

1√
2
−1

2

]
ΦBSCp =

[
1√
2

1√
2

1√
2
−1

2

]
. (11)

Binary Erasure Correlation. For 0 < p < 1, when q = 1− p, BECp =

[ q
2

p
2 0

0 p
2

q
2

]

ΣBECp =

[
1 0 0
0
√
q 0

]
ΨBECp =

[
1√
2

1√
2

1√
2
−1

2

]
ΦBECp =


√

q
2

√
p

√
q
2√

1
2 0 −

√
1
2√

p
2 −√q

√
p
2

 . (12)

Oblivious Transfer Correlation OT = 1
8 ·


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1


5Recall that we use the convention that a distribution matrix does not have an all-0 row or column, and hence

the diagonal matrices ΔMᵀ and ΔM have strictly positive entries in their diagonals.
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ΣOT =


1 0 0 0
0 1√

2
0 0

0 0 1√
2

0

0 0 0 0

ΨOT =


1
2

1
2

1
2

1
2

0 −1√
2

1√
2

0
−1√
2

0 0 1√
2

1
2

−1
2

−1
2

1
2

ΦOT =


1
2

1
2

1
2

1
2

−1
2

1
2

1
2

−1
2

−1
2

1
2

−1
2

1
2

−1
2

−1
2

1
2

1
2

 . (13)

We will later show, in Lemma 15 that the spectrum of the OLE correlation over a �nite �eld F
consists of only the values 1 and 1√

|F|
.

De�nition 11 (Spectral Image of SNIR). Given correlations C ∈ RmC×nC and D ∈ RmD×nD , and
a SNIR from D to C given by (A,B), where A ∈ RmC×mD and B ∈ RnC×nD , we de�ne its spectral
image (Â, B̂) (where Â ∈ RmC×mD and B̂ ∈ RnC×nD) by

Â =ΨCΔ
1/2
Cᵀ AΔ

−1/2
Dᵀ Ψ

ᵀ
D, B̂ = ΦCΔ

1/2
C BΔ

−1/2
D Φ

ᵀ
D. C

Note that above, for brevity we have suppressed C and D in the notation for Â and B̂, as
they will be evident from context. Before turning to our main results, below we summarize a few
properties of the spectrum of a correlation (see Appendix D for the proof).

Lemma 9. Let M be a distribution matrix of dimension m× n. Then,

(i) Elements of ΛM lie in the range (0, 1], and max(ΛM ) = 1. Furthermore, if M has no common
information, then the second largest element of ΛM is strictly less than 1.

(ii) For all ` ∈ N, ΛM⊗` ⊆ ΛM⊗(`+1).

(iii) For all λ ∈ (0, 1), there exists β > 0 such that for all ` ∈ N and for all σ ∈ ΛM⊗` , either λ = σ
or |λ− σ| > β.

Our goal in this section is to prove robust versions of the Spectral Criterion (Theorem 2) and
the Mirroring Lemma (Lemma 3) as Theorem 4 and Theorem 5, respectively. Before proving those
theorems, we state the following lemmas that are crucially used in the proofs of the theorems. The
lemmas are formally proved in Appendix D.

The �rst lemma is the statistical equivalent of the results in Lemma 2 for perfect SNIR.

Lemma 10. Suppose a non-redundant correlation D ∈ RmD×nD has a deterministic ε-SNIR (A,B)
to a correlation C ∈ RmC×nC , for ε ≥ 0. Then,

(i). There exist matrices E1, E2 such that ‖E1‖ = OD(ε) and ‖E2‖ = OD(ε), and

ÂᵀÂ = ImD×mD + E1 B̂ᵀB̂ = InD×nD + E2.

(ii). There exist matrices Ê, ÊA, ÊB such that

ÂᵀΣCB̂ = ΣD + Ê, ÂᵀΣC = ΣDB̂
ᵀ + ÊA, B̂ᵀΣᵀC = ΣᵀDÂ

ᵀ + ÊB,

where ‖Ê‖ = OD(ε), and for all θ ∈ {0, 1},

‖ÊA(ΣᵀCΣC)θΣᵀCÂ‖ = OD(ε) , ‖ÊA(ΣᵀCΣC)θB̂‖ = OD(ε) ,

‖ÊB(ΣCΣ
ᵀ
C)θΣCB̂‖ = OD(ε) , ‖ÊB(ΣCΣ

ᵀ
C)θÂ‖ = OD(ε) .
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Next is a technical lemma that will be needed in both the proofs.

Lemma 11. Suppose a non-redundant correlation D ∈ RmD×nD has a deterministic ε-SNIR (A,B)
to a correlation C ∈ RmC×nC for ε ≥ 0. Then, for all i ∈ [mD],∥∥∥(ΣCΣᵀC − (ΣDΣᵀD)i,i · I) Â·,i∥∥∥2 = OD

(√
ε
)
.

Similarly, for i ∈ [nD], ∥∥∥(ΣᵀCΣC − (ΣᵀDΣD)i,i · I) B̂·,i∥∥∥2 = OD
(√
ε
)
.

6.1 Spectral Criterion

Theorem 4. A non-redundant correlation D has a statistically secure SNIR to C only if, there exists
` ∈ N such that ΛD ⊆ ΛC⊗` .

Proof: For all ε > 0, there exist a large enough `, and deterministic matrices A and B and stochastic
matrices U and V such that,

‖AᵀC⊗`B −D‖ ≤ ε, ‖AᵀC⊗` −DV ‖ ≤ ε, ‖C⊗`B − UᵀD‖ ≤ ε. (14)

If ΛD 6⊆ ΛC⊗t for all t ∈ N, by Lemma 9 (ii), there exists i ∈ [min(mD, nD)] such that for all
t, (ΣD)i,i 6∈ ΛC⊗t . Then, by Lemma 9 (iii), there exists β > 0 such that for all t ∈ N and all

λ ∈ ΛC⊗t , | (ΣD)i,i − λ| > β. Hence, when a = Â·,i,

aᵀ ·
(
Σ
⊗`
C (Σ⊗`C )ᵀ −

(
ΣDΣ

ᵀ
D

)
i,i
· I
)2
· a ≥ β4(aᵀ · a). (15)

But, (14) and Lemma 11 imply that

aᵀ ·
(
Σ
⊗`
C (Σ⊗`C )ᵀ −

(
ΣDΣ

ᵀ
D

)
i,i
· I
)2
· a = OD(ε) . (16)

By (i) in Lemma 10, aᵀ · a = 1 − OD(ε). This along with (15) and (16) imply that β4 = OD(ε).
However, this yields a contradiction (since β > 0 is a constant while ε can be arbitrarily small),
proving the theorem. �

6.2 Mirroring Lemma

Theorem 5. Suppose a non-redundant correlation D ∈ RmD×nD has a deterministic ε-SNIR (A,B)
to a correlation C ∈ RmC×nC for ε ≥ 0. Then, for i ∈ min(mD, nD) such that (ΣD)i,i > 0,

‖δ
(
Â·,i, B̂·,i

)
‖2 =

OD(
√
ε)

α2
i

,

where
αi = min

j:(ΣC)j,j 6=(ΣD)i,i

|(ΣC)j,j − (ΣD)i,i|.
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Proof: By Lemma 10, we have matrix ÊA such that

ÂᵀΣC = ΣDB̂
ᵀ + ÊA,

where ‖ÊAΣᵀCÂ‖ = OD(ε) and ‖ÊAB̂‖ = OD(ε). Fix i ∈ min(mD, nD) such that (ΣD)i,i > 0, and

de�ne λi = (ΣD)i,i. Since (ξi)
ᵀ
ΣD = λi(ξi)

ᵀ, denoting Â·,i and B̂·,i by a and b, respectively,

(ξi)
ᵀÂᵀΣC − (ξi)

ᵀ
ΣDB̂ = aᵀΣC − λibᵀ = (ξi)

ᵀÊA. (17)

Post-multiplying the above equation by the transpose of the LHS, we get,

(ΣᵀCa− λib)
ᵀ · (ΣᵀCa− λib) = (ξi)

ᵀÊAΣ
ᵀ
Ca− (ξi)

ᵀÊAλib. (18)

But,

(ξi)
ᵀÊAΣ

ᵀ
Ca− (ξi)

ᵀÊAλib = (ξi)
ᵀÊAΣ

ᵀ
CÂξi + (ξi)

ᵀÊAB̂ξi

=
(
ÊAΣ

ᵀ
CÂ
)
i,i

+
(
ÊAB̂

)
i,i
≤ ‖ÊAΣᵀCÂ‖+ ‖ÊAB̂‖ = OD(ε) .

The above bound implies that, (18) can be written as,

(ΣᵀCa− λib)
ᵀ · (ΣᵀCa− λib) = OD(ε) . (19)

De�ne the set S ⊂ [mC ] and the mC dimensional vector a|S as follows.

S = {j ∈ [mC ] : (ΣC)j,j = λi}, and (a|s)j =

{
(a)j if j ∈ S,
0 otherwise.

Let Σ be a mC × nC dimensional matrix such that,

(Σ)i,j =

{
1 if i = j ∈ [min(mC , nC)],

0 otherwise.

De�ne âᵀ = aᵀΣ and (â|S)ᵀ = (a|S)ᵀΣ. We have (a|S)ᵀ(ΣC − λiΣ) = 0 since (a|S)j = 0 if
(ΣC)j,j 6= λi. Hence,

aᵀΣC = λia
ᵀΣ + aᵀ(ΣC − λiΣ) = λiâ

ᵀ + (aᵀ − (a|S)ᵀ)(ΣC − λiΣ).

By Lemma 11, since (a|S)ᵀ
(
ΣCΣ

ᵀ
C − λ2i I

)
= 0,

(a− a|S)ᵀ
(
ΣCΣ

ᵀ
C − λ

2
i I
) (
ΣCΣ

ᵀ
C − λ

2
i I
)ᵀ

(a− a|S) = aᵀ
(
ΣCΣ

ᵀ
C − λ

2
i I
)2
a

(a)
= OD(ε) .

For all j /∈ S, |
(
ΣCΣ

ᵀ
C

)
j,j
−λ2i | ≥ α4. That is, for all j such that (a− a|S)j 6= 0, |

(
ΣCΣ

ᵀ
C

)
j,j
−λ2i | ≥

α4. Since α > 0 by de�nition,

OD(ε) = (a− a|S)ᵀ ·
(
ΣCΣ

ᵀ
C − λiI

)2 · (a− a|S) ≥ α4 · (a− a|S)ᵀ · (a− a|S)

⇒ (a− a|S)ᵀ · (a− a|S) =
OD(ε)

α4
⇒ ‖a− a|S‖2 =

OD(
√
ε)

α2
.
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ΣC−λiΣ is a m×n dimensional matrix with zero as non-diagonal entries and the absolute value of
each diagonal entry is at most 1. This follows from Lemma 9, which established that each diagonal
entry is at most 1. Hence,

‖(ΣC − λiΣ)ᵀ(a− a|S)‖2 ≤ 2‖a− a|S‖2 =
OD(
√
ε)

α2
.

For brevity, denote (ΣC − λiΣ)ᵀ(a− a|S) by v. Then, by (19),

OD(ε) = (ΣᵀCa− λib)
ᵀ · (ΣᵀCa− λib) = (λi(â− b) + v)ᵀ · (λi(â− b) + v)

≥ λ2i (â− b)ᵀ · (â− b) + 2λiv
ᵀ · (â− b).

Using Cauchy's inequality,

λ2i (â− b)ᵀ · (â− b) ≤ OD(ε) + 2‖v‖2 · ‖â− b‖2 ≤ OD(ε) +
OD(
√
ε)

α2
· ‖â− b‖2.

By de�nition of â, ‖â‖2 = ‖a‖2. By the statement (i) of Lemma 10, aᵀ · a = 1 − OD(ε) and
bᵀ · b = 1−OD(ε). Hence ‖â− b‖2 is upper bounded by 2. Using this bound,

(â− b)ᵀ · (â− b) ≤ OD(ε) +
OD(
√
ε)

α2
.

This concludes the proof. �

7 Common Information and SNIR

In this section, we study the role of common information in SNIR and establish that it does not
aid in secure reductions. Intuition suggests that the common information available to both parties
cannot be exploited to achieve SNIR. Speci�cally, having access to common randomness does not
aid in SNIR; this is shown in the following theorem.

Theorem 6. Let Cw be 1-bit common randomness correlation; i.e., Cw =

[
1
2 0
0 1

2

]
. If a non-

redundant correlation D without common information has a statistical SNIR to Cw ⊗ C0 for a cor-
relation C0, then D also has a statistical SNIR to C0.

In Appendix E, we state and prove Lemma 14�a robust variant of Lemma 4. The lemma shows
that if a correlation D devoid of common information has an ε-SNIR to C, then it has a SNIR to each
of its component distribution with error that depends inversely on the probability of the component.
When the reduction use arbitrarily large number of copies of common random bits, this dependence
makes the lemma ine�ective in proving the theorem. However, the following lemma implies that if
D has an ε-SNIR to C⊗`, then it has a OD(ε)-SNIR to C⊗`0 proving the theorem.

Lemma 12. Consider a non-redundant correlation D ∈ RmD×nD with zero common information.
For correlations C1, . . . , Ck and positive numbers α1, . . . , αk such that α1 + . . .+ αk = 1, let

C =


α1C1 0 0 . . . 0

0 α2C2 0 . . . 0
...

. . .
...

...
. . .

...
0 0 . . . 0 αkCk

 . (20)

If D has an ε-SNIR to C, then for some 1 ≤ i ≤ k, D has a OD(ε)-SNIR to Ci.
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A formal proof of the lemma is provided in Appendix E.1.

8 Applications

In this section, we demonstrate the use of the results above in studying SNIR between various
interesting classes of correlations.

Our �rst result shows that no �nite correlation is complete for SNIR even when Alice and Bob
share common information.

Theorem 7. [Incompleteness] For any correlation C, there exists a correlation D such that D
does not have a statistical SNIR to C.

Proof: We shall set D to be BSCp for an appropriately chosen p.
For correlations C1, . . . , Ck without common information and positive constants α1, . . . , αk, sup-

pose C can be represented as in (20). By Lemma 12, D has a ε-SNIR to C⊗` only if it has a
OD(ε)-SNIR to one of its component correlations; speci�cally, by Lemma 12, D has a OD(ε)-SNIR to
Ca1 ⊗Ca2 ⊗ . . .⊗Cak , for some (a1, . . . , a`) ∈ [k]`. This, trivially, implies that D has a OD(ε)-SNIR
to C⊗`0 , where C0 = C1 ⊗ C2 ⊗ . . .⊗ Ck. Thus, D has a statistical SNIR to C0 if it has a statistical
SNIR to C. Choose 0 < p < 1

2 such that 1− 2p > max(ΛC0); by Lemma 9 (i), such a p exists since
C1, . . . , Ck have no common information. By (11), ΛBSCp = {1, 1−2p}; hence, by Theorem 4, BSCp
has no statistical SNIR to C0 and hence to C; this proves the theorem. �

8.1 Applications of the Spectral Criterion

The spectral criterion in Theorem 4 can be used to analyze self-reductions of binary symmetric,
binary erasure and OLE correlations.

The �rst couple of results characterize self-reductions of binary symmetric correlations and
binary erasure correlations. De�ne the operator ∗ such that for p, q ∈ [0, 1],

p ∗ q = p(1− q) + q(1− p).

Naturally, for all k ∈ N, we can extend this notion to de�ne p∗k as p ∗ p ∗ . . . ∗ p (k times).
Formal proofs of the following two theorems are provided in Appendix F.

Theorem 8. For p, q ∈ (0, 12), BSCq has a statistical SNIR to BSCp if and only if q = p∗` for some
` ∈ N.

The necessity of the condition is shown using the spectral criterion. As observed in (11),ΛBSCp =
{1, (1−2p)}. Hence, by Theorem 4, BSCq has a statistical SNIR to BSCp only if (1−2q) = (1−2p)`

for some ` ∈ N. Necessity of the condition now follows from the fact that if (1−2q) = (1−2p)` then
q = p∗`. The protocol for SNIR of BSCp∗` to BSC⊗`p described in Section 2.6 shows the su�ciency
of the condition.

Theorem 9. For p, q ∈ (0, 1), BECq has a statistical SNIR to BECp if and only if 1− q = (1− p)`
for some ` ∈ N.
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The proof is similar to that of the previous theorem. As observed in (12), ΛBECp = {1,
√

1− p}.
Necessity of the condition follows from the fact that if

√
1− q =

√
1− q` then q = p`. The protocol

for SNIR of BECp` to BEC⊗`p described in Section 2.6 shows the su�ciency of the condition.
Next, we show a necessary condition for self-reductions between OLE correlations over �nite

�elds.

Theorem 10. OLEF has a statistical SNIR to OLEF′ only if both F and F′ have the same character-
istic.

In Appendix F, we will show that the spectrum of the OLE correlation over a �nite �eld F
consists exclusively of the values 1 and 1/

√
|F| (Lemma 15). Now, recall that |F| = pk for some

prime p and k ∈ N, where p is the characteristic of the �eld. Hence the only values in the spectrum
of OLE⊗`F , for a characteristic-p �eld F, are of the form pt/2 for integers t. Hence, together with
Theorem 4, this implies Theorem 10.

8.2 Applications of the Mirroring Lemma

In this section, we employ the mirroring lemma in Theorem 5 to argue impossibility of SNIR which
cannot be inferred using only the spectral criterion. To this end, we derive a strong necessary
condition for statistical SNIR to correlations with uniform marginals and positive semi-de�nite
distribution matrices. A formal proof of the lemma is given in Appendix F.

Lemma 13. Let C be a correlation with uniform marginals and ΨC = ΦC . A non-redundant
distribution D over mD × nD has a statistical SNIR to C only if, there exist partitions S1 t S2 t
. . . t Sl = [mD] and T1 t T2 t . . . t Tl = [nD] such that∑

i∈Sk

(D1)i =
∑
i∈Tk

(Dᵀ1)i , for all k ∈ [l],

and, for each j ∈ [min(mD, nD)] such that (ΣD)j,j > 0,(
Δ
−1/2
Dᵀ Ψ

ᵀ
D

)
i,j

=
(
Δ
−1/2
D Φ

ᵀ
D

)
i′,j

for all k ∈ [l], i ∈ Sk, i′ ∈ Tk.

As a direct consequence of this result, BEC does not have statistical SNIR to BSC. In the case of
perfect SNIR, this impossibility is trivial to see: it is impossible to arrange for Bob to output only
0 or ⊥, whenever Alice outputs 0 (perfect correctness).

Theorem 11. For all values p, q ∈ (0, 1), BECq has no statistical SNIR to BSCp.

Proof: We observe that, for all 0 < p < 1, BSCp has uniform marginal and, as described in (11),
ΨBSCp = ΦBSCp . Furthermore, for 0 < q < 1, it can be veri�ed using (12) that

(
Δ
−1/2

BECᵀ
q
Ψ
ᵀ
BECq

)
·,2

=

[
1
−1

] (
Δ
−1/2
BECq

Φ
ᵀ
BECq

)
·,2

=


√

1
1−q
0

−
√

1
1−q

 .
Impossibility follows directly from Lemma 13 as (ΣD)2,2 =

√
1− q > 0 as given in (12). �
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Theorem 12. OT has no statistical SNIR to BSCp for any 0 < p < 1
2 .

Proof: Inspecting (13), (ΣOT)2,2 = 1√
2
> 0 and

(
Δ
−1/2
OTᵀΨ

ᵀ
OT

)
·,2

=


0

−
√

2√
2

0

 (
Δ
−1/2
OT Φ

ᵀ
OT

)
·,2

=


−1
1
1
−1

 .
Impossibility follows directly from Lemma 13. �
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Supplementary Material

A Proofs Omitted from Section 2

Proof of Lemma 1: We shall demonstrate m + n orthogonal eigenvectors for L(GM ) with the
claimed eigenvalues; since L(GM ) can have no more orthogonal eigenvectors, this will prove the
claim.

Let ΣM = {σ1, . . . , σr}. Then, M̃ =
∑r

i=1 σiu
(i)v(i)ᵀ, where the vectors u(i) form a set of

orthonormal vectors, as do v(i). Let u(r+1), . . . ,u(m) and v(r+1), . . . ,v(n) extend these two sets into
orthogonal bases for Rm and Rn respectively. Then, it can be veri�ed that:

L(GM )

[
u(i)

v(i)

]
= (1− σi)

[
u(i)

v(i)

]
1 ≤ i ≤ r

L(GM )

[
−u(i)

v(i)

]
= (1 + σi)

[
−u(i)

v(i)

]
1 ≤ i ≤ r

L(GM )

[
u(i)

0

]
=

[
u(i)

0

]
r + 1 ≤ i ≤ m

L(GM )

[
0

v(i)

]
=

[
0

v(i)

]
r + 1 ≤ i ≤ n

These form the m+ n eigenvectors which can be veri�ed to be pairwise orthogonal. �

Proof of Lemma 2: Since (A,B) is a perfect SNIR from D to C, there exist stochastic matrices U
and V , such that

AᵀCB = D, AᵀC = DV, BᵀCᵀ = DᵀU.

Premultiplying and postmultiplying AᵀCB = D with Δ
−1/2
Dᵀ and Δ

−1/2
D , respectively, we get(

Δ
−1/2
Dᵀ A

ᵀ
Δ

1/2
Cᵀ

)(
Δ
−1/2
Cᵀ CΔ

−1/2
C

)(
Δ

1/2
C BΔ

−1/2
D

)
= Δ

−1/2
Dᵀ DΔ

−1/2
D .

Substituting Δ
−1/2
Cᵀ CΔ

−1/2
C and Δ

−1/2
Dᵀ DΔ

−1/2
D by ΨᵀCΣCΦC and ΨᵀDΣDΦD, respectively, and

rearranging, we get(
ΨDΔ

−1/2
Dᵀ A

ᵀ
Δ

1/2
CᵀΨ

ᵀ
C

)
ΣC

(
ΦCΔ

1/2
C BΔ

−1/2
D Φ

ᵀ
D

)
= ΣD ⇒ ÂᵀΣCB̂ = ΣD.

By Lemma 8, for perfect SNIR, V =Δ−1D BᵀΔC . Hence, substituting for V in AᵀC = DV ,

AᵀC = D(Δ−1D BᵀΔC)

⇒
(
Δ
−1/2
Dᵀ A

ᵀ
Δ

1/2
Cᵀ

)(
Δ
−1/2
Cᵀ CΔ

−1/2
C

)
=
(
Δ
−1/2
Dᵀ DΔ

−1/2
D

)(
Δ
−1/2
D BᵀΔ

1/2
C

)
⇒
(
ΨDΔ

−1/2
Dᵀ A

ᵀ
Δ

1/2
CᵀΨ

ᵀ
C

)
ΣC = ΣD

(
ΦDΔ

−1/2
D BᵀΔ

1/2
C Φ

ᵀ
C

)
⇒ ÂᵀΣC = ΣDB̂

ᵀ.
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Similarly, we can prove that BᵀCᵀ = DᵀU .

ÂᵀÂ =
(
ΨDΔ

−1/2
Dᵀ A

ᵀ
Δ

1/2
CᵀΨ

ᵀ
C

)
ΨCΔ

1/2
Cᵀ AΔ

−1/2
Dᵀ Ψ

ᵀ
D

=ΨDΔ
1/2
Dᵀ

(
Δ
−1
DᵀA

ᵀ
ΔCᵀ

)
AΔ

−1/2
Dᵀ Ψ

ᵀ
D =ΨDΔ

1/2
Dᵀ UAΔ

−1/2
Dᵀ Ψ

ᵀ
D = I.

Here, we used the equalities U =Δ−1DᵀAᵀΔCᵀ (by Lemma 8) and UA = I (by Lemma 6). Similarly,

we can prove that B̂ᵀB̂ = I. This concludes the proof. �

B Details omitted from Section 4

Theorem 3 (Restated.) Let ε ≥ 0, and let C and D be correlations over X × Y and R × S,
respectively. D has a ε-SNIR to C if and only if there exist stochastic matrices A,B,U , and V of
dimensions X ×R, Y × S, R×X , and S × Y, respectively, such that

Aᵀ C B = D + E Aᵀ C = D V + EA C B = Uᵀ D + EB,

where E,EA, and EB are matrices of dimensions R×S, R×Y, and X ×S, respectively, such that
‖E‖, ‖EA‖, ‖EB‖ ≤ ε.
Proof: Consider the protocol A,B that e�ects ε-SNIR of D using C. For all (x, y, r, s) ∈ X × Y ×

R× S, the protocol induces a joint distribution

PXY A(X)B(Y )(x, y, r, s) = PXY (x, y) · PA(r|x) · PB(s|y).

For all (r, x), let Ax,r = PA(r|x), and for all (s, y), let By,s = PB(s|y). A and B are clearly stochastic
under this assignment. Then,

PA(X)B(Y )(r, s) =
∑

(x,y)∈X×Y

PXY (x, y) · PA(r|x) · PB(s|y)

=
∑

(x,y)∈X×Y

Cx,y ·Ax,r ·By,s

=
∑

(x,y)∈X×Y

(Aᵀ)r,x · Cx,y ·By,s

= (AᵀCB)r,s .

Hence, by the correctness condition, when (R,S) ∼ D,

‖AᵀCB −D‖ =
∑

(r,s)∈R×S

∣∣∣ (AᵀCB)r,s −Dr,s

∣∣∣ = SD ((A(X),B(Y )), (R,S)) ≤ ε.

Furthermore,

PX,B(Y )(x, s) =
∑
y∈Y

PXY (x, y) · PB(s|y)

=
∑
y∈Y

Cx,y ·By,s = (CB)x,s .
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When (R̂, Ŝ) ∼ D, consider the distribution,

PR̂,Ŝ,SimA(R̂)(r, s, x) = PR̂,Ŝ(r, s) · PSimA
(x|r).

For all (x, r), let U(r, x) = PSimA
(x|r). Then,

PSimA(R̂),Ŝ(x, s) =
∑
r∈R

PR̂,Ŝ(r, s) · PSimA
(x|r)

=
∑
r∈R

Dr,s · Ur,x = (UᵀD)x,s .

Hence, by the �rst privacy condition, ‖CB − UᵀD‖ ≤ ε. The third condition can be proved
analogously. The arguments can be reversed to get the implication in the other direction. �

C Proofs Omitted from Section 5

C.1 Proof of Lemma 5

Lemma 5 (Restated.) Consider distribution C,D over X × Y and R× S, respectively. For any
ε ≥ 0, D has an ε-SNIR to C if and only if Dcore has an ε-SNIR to Ccore.
Proof: One can move from H to Hcore by a series of steps, merging a pair of rows or columns.

Below, Claim 2 shows that there are 0-SNIRs between the two correlations at each such step, and in
both directions. Combined with Claim 3 (invoked with ε = ε′ = 0) this shows that any distribution
H has a perfect SNIR to Hcore, and vice versa. Then, using Claim 3 again, an ε-SNIR from G to H
implies an ε-SNIR from G′ to H ′ where {G,G′} = {D,Dcore} and {H,H ′} = {C,Ccore}.

To complete the proof, we prove the two claims used.

Claim 2. Suppose C is a distribution over [m]×[n] and there exist i, i′ ∈ [m] such that Ci,· = α·Ci′,·
for some α ∈ R≥0. Consider the distribution D over ([m] \ {i′})× [n] such that

Dl,· =

{
Ci,· + Ci′,· if l = i,

Cl,· if l /∈ i, i′.

There is a 0-SNIR from C (or Cᵀ) to D (or Dᵀ) and from D (or Dᵀ) to C (or Cᵀ).

Proof: SNIR from D to C can be described as follows: Bob outputs whatever he receives (B = I),
and Alice outputs i on receiving i′ or i and outputs whatever she receives otherwise. Clearly, the
outputs of Alice and Bob are correlated according to D. This scheme is trivially secure against Bob
(V = I); i.e., since AᵀC = AᵀCB = D = DV . Simulator for Alice (U) works as follows: and on
input i, it outputs i with probability α

1+α and outputs i′ with the remaining probability, and when
the input is not i, it outputs whatever it receives. Since Ci,· =

α
1+α ·Di,·, we have CB = C = UᵀD.

It can be veri�ed that (A′, B′) is a 0-SNIR from C to D with simulators (U ′, V ′), when A′ = U ,
B′ = V , U ′ = A and V ′ = B. The statements for Cᵀ and Dᵀ can be proved analogously. �

Claim 3. For ε, ε′ ≥ 0, if D has a ε-SNIR to H and H has a ε′-SNIR to C, then D has a ε+ ε′-SNIR
to C.
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Proof: By Theorem 3, there exist stochastic matrices A,B,U, V of appropriate dimensions such
that,

AᵀHB = D + E, AᵀH = DV + EA, HB = UᵀD + EB,

where ‖E‖, ‖EA‖, ‖EB‖ ≤ ε. Similarly, there exist stochastic matrices A′, B′, U ′, V ′ of appropriate
dimensions such that,

(A′)ᵀCB′ = H + E′, (A′)ᵀC = HV ′ + E′A, CB′ = (U ′)ᵀH + E′B,

where ‖E′‖, ‖E′A‖, ‖E′B‖ ≤ ε′. Hence,

Aᵀ((A′)ᵀCB′)B = AᵀHB +AᵀE′B = D + E +AᵀE′B.

But

‖E +AᵀE′B‖ = 1ᵀ|E +AᵀE′B|1 ≤ 1ᵀ|E|1 + 1ᵀ|Aᵀ||E′||B|1 = ‖E‖+ 1ᵀ|E′|1 ≤ ε+ ε′.

Here, we used the facts: 1ᵀ|AᵀEB|1 ≤ 1ᵀ|Aᵀ||E||B|1, and 1ᵀ|Aᵀ| = 1ᵀ and |B|1 = 1 since A and
B are stochastic matrices. Next,

Aᵀ((A′)ᵀC) = AᵀHV ′ +AᵀE′A = DV V ′ + EAV
′ +AᵀE′A.

Similar to the above argument, we can show that ‖EAV ′+AᵀE′A‖ = ‖EA‖+‖E′A‖ ≤ ε+ε′. Similarly,
we can also show that, ‖CB′B − (UU ′)ᵀD‖ ≤ ε+ ε′. Hence, (AA′, BB′) is a (ε+ ε′)-SNIR from D
to C. �

This concludes the proof. �

C.2 Proof of Lemma 6

Lemma 6 (Restated.) Let C be a mC ×nC dimensional distribution matrix and D be a mD ×nD
dimensional non-redundant distribution matrix. For any ε ≥ 0, if stochastic matrices A,B,U, V are
such that

‖AᵀCB −D‖ ≤ ε ‖AᵀC −DV ‖ ≤ ε ‖CB − UᵀD‖ ≤ ε,

then ‖V B − I‖ ≤ OD(ε) and ‖UA− I‖ ≤ OD(ε).
Proof: When E = D − AᵀCB and EA = DV − AᵀC, we have ‖E‖, ‖EA‖ ≤ ε. We start with an

upper bound on ‖D −DV B‖:

‖D −DV B‖ = ‖AᵀCB + E − (AᵀC + EA)B‖ = ‖E − EAB‖
≤ ‖E‖+ ‖EAB‖ ≤ ‖E‖+ 1ᵀ|EA||B|1 = ‖E‖+ 1ᵀ|EA|1 = ‖E‖+ ‖EA‖ ≤ 2ε.

Here, we used the fact that, since B is a stochastic matrix, |B|1 = B1 = 1. Similarly, we can show
that ‖Dᵀ −DᵀUA‖ ≤ 2ε.

We will show that when D is non-redundant, if ‖D−DV B‖ ≤ 2ε, then ‖I−V B‖ = OD(ε). For
this, we use the following claim.
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Claim 4. If T is a n×n dimensional stochastic matrix, then there exist vectors z and m such that
(I − T )z = m, |z| ≤ 1, (m)i = 0 for 1 ≤ i ≤ n− 2 and (m)n ≥

‖I−T‖
n3 .

The claim is proved in Appendix C.4; here we sketch the proof. De�ne H = I − T . Since T
is stochastic, the diagonal entries of H are non-negative and o�-diagonal entries are non-positive,
furthermore, each of its rows sums up to zero. In addition to ensuring the above properties, by
appropriately relabelling the rows and columns of H, we can ensure that HnD,nD is the largest
element of the matrix and HnD,nD−1 is the smallest element in the last row. After transforming H
in this manner, we apply a partial Gaussian elimination (along the columns) on H which terminates
one step prior to the �nal step in which we obtain an upper triangular matrix. In the resulting matrix,
say M , all entries `above' the superdiagonal are zero. Exploiting the properties of H, we show that
MnD,nD ≥

‖H‖
n3
D
. Vector m is exactly the last column of M , i.e., m = (M)·,nD and z is the �nal

column of the linear transformation matrix Z that e�ected the partial Gaussian elimination. The
properties of H also imply that |z| ≤ 1.

We proceed to prove the lemma assuming the above claim. Since V B is stochastic, de�ning
I − V B = H, there exist vectors z and m such that (I − V B)z = Hz = m and |z| ≤ 1,

1ᵀ|Dm| = 1ᵀ|DHz| ≤ 1ᵀ|DH||z| ≤ 1ᵀ|DH|1 ≤ ‖DH‖ ≤ 2ε.

But, since mi = 0 for i ≤ nD − 2 and mnD,nD ≥
‖H‖
n3
D
> 0 (if ‖H‖ = 0 we are already done),

2ε ≥ 1ᵀ|Dm| ≥ max
j

∣∣ (m)nD
Dj,nD + (m)nD−1Dj,nD−1

∣∣
≥ ‖H‖

n3D
max
j

∣∣∣∣∣Dj,nD +
(m)nD−1
(m)nD

Dj,nD−1

∣∣∣∣∣
≥ ‖H‖

n3D
min
t∈R

max
j

∣∣∣Dj,nD + tDj,nD−1

∣∣∣.
Since D is non-redundant, the last two columns of D are not scalar multiples of each other. Hence,

β := min
t∈R

max
j

∣∣∣Dj,nD + tDj,nD−1

∣∣∣ > 0.

From this we obtain the bound, ‖H‖ ≤ 2n3
Dε
β . Similarly, we can prove that ‖Dᵀ − DᵀUA‖ ≤ 2ε

implies that ‖UA‖ = OD(ε), concluding the proof. �

C.3 Proof of Lemma 7

Lemma 7 (Restated.) Let C and D be non-redundant distribution matrices of dimensions mC×nC
and mD × nD, respectively. For any ε ≥ 0, if there exist stochastic matrices A,B,U and V such
that

‖AᵀCB −D‖ ≤ ε ‖AᵀC −DV ‖ ≤ ε ‖CB − UᵀD‖ ≤ ε,

then there exist deterministic stochastic matrices Ā, B̄ such that,

‖ĀᵀCB̄ −D‖ ≤ OD
(√
ε
)

‖ĀᵀC −DV ‖ ≤ OD
(√
ε
)

‖CB̄ − UᵀD‖ ≤ OD
(√
ε
)
.
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Proof: For i ∈ [nC ], choose j∗i ∈ [nD] such that Vj∗i ,i ≥ Vj,i for all j ∈ [nD]. De�ne an nC × nD
dimensional matrix B̄ such that

(
B̄
)
i,j∗i

= 1 and
(
B̄
)
i,j

= 0 for all j 6= j∗i . For i ∈ [mC ], choose

j†i ∈ [mD] such that U
j†i ,i
≥ Uj,i for all j ∈ [mD]. De�ne an mC ×mD dimensional matrix Ā such

that
(
Ā
)
i,j†i

= 1 and
(
Ā
)
i,j

= 0 for all j 6= j†i .

Claim 5. Ā and B̄ are deterministic stochastic matrices such that the following hold:

‖CᵀĀ− CᵀA‖ = OD
(√
ε
)
, (21)

‖CB̄ − CB‖ = OD
(√
ε
)
. (22)

The claim is proved in Appendix C.5; below we provide an overview of the proof. Clearly, both
Ā and B̄ are deterministic stochastic matrices by construction. The proof of (21) and (22) are
analogous, hence we can focus on (22). We note that,

‖C
(
B̄ −B

)
‖ ≤ 1ᵀC|B̄ −B|1

=
∑
i/∈S∪T

(1ᵀC)i ·
nD∑
j=1

|B̄ −B|i,j

+
∑
i∈S∪T

(1ᵀC)i ·
nD∑
j=1

|B̄ −B|i,j

 .

We bound the RHS of the above expression using a Markov bound. For this we de�ne two `bad'
sets: set S of i ∈ nC for which Vj∗i ,i does not carry most of the mass in column V·,i, and set T of
i ∈ nC for which (1ᵀC)i is not close to (1ᵀDV )i. Using the de�nitions of S and T , we can argue
that

∑
i/∈S∪T

(1ᵀC)i ·
nD∑
j=1

|B̄ −B|i,j

 ≈ ∑
i/∈S∪T

(1ᵀDV )i ·
nD∑
j=1

|B̄ −B|i,j

 = OD(ε) .

Here, we show the last bound using ‖V (B − B̄)‖ = OD(ε) which follows ‖V B − I‖ ≤ ‖V B̄ − I‖,
‖V B̄ − I‖ = OD(ε), and the triangular inequality. We conclude by arguing that

∑
i∈S∪T (1ᵀC)i =

OD(
√
ε) using the privacy condition ‖AᵀC −DV ‖ ≤ ε.

Inequalities (21) and (22) immediately imply the lemma as follows: By triangular inequality,
‖AᵀC −DV ‖ ≤ ε and (21) imply that ‖ĀᵀC −DV ‖ = OD(

√
ε). Similarly, ‖CB − UᵀD‖ ≤ ε and

(22) imply that ‖CB̄ − UᵀD‖ = OD(
√
ε). Since A is a stochastic matrix, |A|1 = 1. Hence,

‖AᵀC(B − B̄)‖ ≤ 1ᵀ|Aᵀ||C(B − B̄)|1 = 1ᵀ|C(B − B̄)|1 = ‖C(B − B̄)‖ ≤ OD
(√
ε
)
,

where the last inequality follows from (22). This, along with ‖AᵀCB − D‖ ≤ ε implies that
‖AᵀCB̄−D‖ = OD(

√
ε). Similarly, since B̄ is a stochastic matrix, the previous inequality and (21)

implies that ‖ĀᵀCB̄ −D‖ = OD(
√
ε). �

C.4 Proof of Claim 4

Claim 4 (Restated.) If T is a n× n dimensional stochastic matrix, then there exist vectors z and

m such that (I − T )z = m, |z| ≤ 1, (m)i = 0 for 1 ≤ i ≤ n− 2 and (m)n ≥
‖I−T‖
n3 .

Proof: De�ne H = I − T . We �rst observe that H satis�es the following properties w.l.o.g:

34



Hi,i ≥ 0, ∀1 ≤ i ≤ n, and Hi,j ≤ 0 if i 6= j,∑
j∈[n]

Hi,j = 0,

Hn,n ≥ Hi,j ,∀1 ≤ i, j ≤ n,
and Hn,n−1 ≤ Hn,j ,∀1 ≤ j ≤ n. (23)

Here, the �rst and second condition follows from T being stochastic. Below, we argue that, w.l.o.g.,
H can be assumed to, additionally, satisfy the last two properties. There exist k, l ∈ [nD] such that
Hk,k ≥ Hi,j for all i, j and Hk,l ≤ Hk,j for all 1 ≤ j ≤ nD. We simultaneously interchange rows k
and l, and columns k and l in H to satisfy the last two properties. However, this process amounts
to simply relabelling H, and the �rst two properties are invariant under such relabelling. Thus, we
conclude that H can be assumed to satisfy all the properties in (23), simultaneously.

Let M0 = H and, for 1 ≤ i ≤ n− 2, inductively de�ne matrices Mi = Mi−1Zi, where

(Zi)j,k =


1 if 1 ≤ j = k ≤ n,∣∣∣ (Mi−1)j,k
(Mi−1)j,j

∣∣∣ if j = i, (Mi−1)i,i 6= 0, and k > j,

0 otherwise.

We will, later, prove the following properties of Mi for 0 ≤ i ≤ n− 2.

(i). (Mi)j,k = 0 for 1 ≤ j ≤ i and j < k ≤ n.
(ii).

∑n
k=i+1 (Mi)j,k ≥ 0 for i < j ≤ n.

(iii). (Mi)j,k ≤ Hj,k for all i < j, k ≤ n.

We proceed to prove the claim assuming these properties. Let z and m be the last columns of
matrices Z1Z2 . . . Zn−2 and Mn−2, respectively; i.e., z = (Z1Z2 . . . Zn−2)·,n and m = (Mn−2)·,n.
Since

EZ1Z2 . . . Zn−2 = (M0Z1)Z2 . . . Zn−2 = (M1Z2)Z3 . . . Zn−2 = . . . = Mn−3Zn−2 = Mn−2,

we have Hz = (EZ1Z2 . . . Zn−2)·,n = (Mn−2)·,n = m.
We �rst show that |z| ≤ 1. Observe that, for 1 ≤ i ≤ n− 2, Zi are matrices with non-negative

entries such that all the diagonal elements of Zi are 1, (Zi)i,j ≥ 0 for j > i, and rest of the elements
are 0. Furthermore,

n∑
j>i

(Zi)i,j =

n∑
j=i+1

∣∣∣∣(Mi−1)i,j
(Mi−1)i,i

∣∣∣∣ ≤ 1.

This is argued using the properties (ii) and (iii) ofMi−1 as follows: By (ii), (Mi−1)i,i ≥ −
∑n

k=i+1 (Mi−1)i,k.
For k > i, (Mi−1)i,k ≤ Hi,k by (iii) and Hi,k ≤ 0 by (23). Hence

(Mi−1)i,i ≥
∣∣∣∣ n∑
k=i+1

(Mi−1)i,k

∣∣∣∣⇒ n∑
j=i+1

∣∣∣∣(Mi−1)i,j
(Mi−1)i,i

∣∣∣∣ ≤ 1. (24)

Given these observations, it is easy to see that if u is a non-negative vector such that (u)j = 0 for
all j ≤ i and (u)j ≤ 1 for all j > i, then (Ziu)j = 0 for all j < i and (Ziu)j ≤ 1 for all j ≥ i. Since
|z| = Z1Z2 . . . Zn−2ξi, we can use the above observation inductively to conclude that |z| ≤ 1.
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Next, we show that m satis�es the desired properties. By (i), for all j ≤ n− 2,

(m)j = (Mn−2)j,n = 0.

By (ii), (Mn−2)n,n−1 + (Mn−2)n,n ≥ 0 and, by (iii), (Mn−2)n,n−1 ≤ Hn,n−1. Hence,

(m)n = (Mn−2)n,n ≥ − (Mn−2)n,n−1 ≥ −Hn,n−1.

But Hn,j ≤ 0 for all j < n and the sum of all elements in row n of H is zero. Hence,

|Hn,n−1| ≥
|Hn,n|
n
≥ ‖H‖

n3
.

The last inequality used the bound Hn,n ≥ ‖H‖
n2 which follows from Hn,n ≥ Hi,j for all i, j. We

conclude by proving (i), (ii) and (iii).

Proof of (ii) and (iii). For i = 0, (ii) and (iii) follow from (23) since M0 = H. Suppose (ii) and
(iii) are satis�ed by Mi−1. If (Mi−1)i,i = 0, then Zi = I. Hence, for all i < j ≤ n and i < k ≤ n,
(Mi)j,k = (Mi−1)j,k ≤ Hj,k. This proves (iii). Furthermore, for i < j ≤ n,

n∑
k=i+1

(Mi)j,k =
n∑

k=i+1

(Mi−1)j,k =
n∑
k=i

(Mi−1)j,k − (Mi−1)j,i ≥ 0−Hj,i ≥ 0.

Here Hj,i ≤ 0 follows from (23) since i 6= j. This proves (ii).
Finally, consider the case where (Mi−1)i,i > 0. For all i < j, k ≤ n,

(Mi)j,k = (Mi−1Zi)j,k = (Mi−1)j,i

∣∣∣∣∣(Mi−1)i,k
(Mi−1)i,i

∣∣∣∣∣+ (Mi−1)j,k ≤ (Mi−1)j,k ≤ Hj,k.

Here we used the facts, (Mi−1)j,i ≤ Hj,i ≤ 0, since j 6= i and that (Mi−1)j,k ≤ Hj,k, for i ≤ j, k.
This proves (iii). For i < j ≤ n,

n∑
k=i+1

(Mi)j,k =
n∑

k=i+1

(Mi−1)j,i

∣∣∣∣(Mi−1)i,k
(Mi−1)i,i

∣∣∣∣+
n∑

k=i+1

(Mi−1)j,k

= (Mi−1)j,i

n∑
k=i+1

∣∣∣∣(Mi−1)i,k
(Mi−1)i,i

∣∣∣∣+
n∑

k=i+1

(Mi−1)j,k

(a)

≥ (Mi−1)j,i +

n∑
k=i+1

(Mi−1)j,k =

n∑
k=i

(Mi−1)j,k ≥ 0.

Properties (ii) and (iii) of Mi−1 imply the inequality (24). Further, by (iii), (Mi−1)j,i ≤ Hj,i and
by (23), Hj,i ≤ 0. (a) follows from these observations. This concludes the proof of (ii) and (iii).

Proof of (i). This statement is vacuously true for M0. Suppose (i), (ii) and (iii) hold for Mi−1.
If (Mi−1)i,i = 0, then Zi = I and, by (ii) and (iii), (Mi−1)i,k = 0 for k > i. Hence, in this case,
(Mi)i,k = 0 for k > i. If (Mi−1)i,i > 0, since (Mi−1)i,k ≤ 0 for i < k ≤ n by (iii)

(Mi)i,k = (Mi−1Zi)i,k = (Mi−1)i,i

∣∣∣∣(Mi−1)i,k
(Mi−1)i,i

∣∣∣∣+ (Mi−1)i,k = − (Mi−1)i,k + (Mi−1)i,k = 0.
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The induction hypothesis implies that (Mi−1)j,i = (Mi−1)j,k = 0, when j < i < k. Hence,

(Mi)j,k = (Mi−1Zi)j,k = (Mi−1)j,i

∣∣∣∣(Mi−1)i,k
(Mi−1)i,i

∣∣∣∣+ (Mi−1)j,k = 0.

This proves (i), concluding the claim. �

C.5 Proof of Claim 5

Claim 5 (Restated.) Let C and D be non-redundant distribution matrices of dimensions mC ×nC
and mD × nD, respectively. For any ε ≥ 0, suppose there exist stochastic matrices A,B,U and V
are such that

‖AᵀCB −D‖ ≤ ε ‖AᵀC −DV ‖ ≤ ε ‖CB − UᵀD‖ ≤ ε.

For i ∈ [nC ], choose j∗i ∈ [nD] such that Vj∗i ,i ≥ Vj,i for all j ∈ [nD], De�ne an nC×nD dimensional

matrix B̄ such that
(
B̄
)
i,j∗i

= 1 and
(
B̄
)
i,j

= 0 for all j 6= j∗i . For i ∈ [mC ], choose j†i ∈ [mD] such

that U
j†i ,i
≥ Uj,i for all j ∈ [mD]. De�ne an mC ×mD dimensional matrix Ā such that

(
Ā
)
i,j†i

= 1

and
(
Ā
)
i,j

= 0 for all j 6= j†i . Ā and B̄ are deterministic stochastic matrices such that the following
hold:

‖CᵀĀ− CᵀA‖ = OD
(√
ε
)
, (21)

‖CB̄ − CB‖ = OD
(√
ε
)
. (22)

Proof: We show (22); (21) can be proved analogously. De�ne 1× nC dimensional vector c = 1ᵀC

and 1× nD dimensional vector d = 1ᵀD. We de�ne sets S, T ⊆ [nC ] as follows.

S :=
{
i ∈ [nC ] : |c− dV |i ≥

√
ε · ci

}
T :=

j ∈ [nC ] : max
i∈[nD]

Vi,j ≤ (1−
√
ε)
∑
i∈[nD]

Vi,j

 .

Then,

‖C
(
B̄ −B

)
‖ ≤ ‖C|B̄ −B|‖ = 1ᵀ

(
C|B̄ −B|

)
1 = c|B̄ −B|1 =

nC∑
i=1

ci · nD∑
j=1

|B̄ −B|i,j

 .

Hence,

‖C
(
B̄ −B

)
‖ ≤

∑
i/∈S∪T

ci · nD∑
j=1

|B̄ −B|i,j

+
∑
i∈S∪T

ci · nD∑
j=1

|B̄ −B|i,j

 . (25)
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We focus on the �rst term in the RHS.

∑
i/∈S∪T

ci · nD∑
j=1

|B̄ −B|i,j

 (a)

≤ 1

1−
√
ε

∑
i/∈S∪T

(dV )i ·
nD∑
j=1

|B̄ −B|i,j


(b)

≤ 1

1−
√
ε

∑
i/∈S∪T

(1ᵀV )i ·
nD∑
j=1

|B̄ −B|i,j


≤ 1

1−
√
ε

∑
i/∈S∪T

(
nD∑
k=1

Vk,i

)
·

 nD∑
j=1

|B̄ −B|i,j

 . (26)

By the de�nition of S, (1 −
√
ε)ci < (dV )i for all i /∈ S; (a) follows from this. (b) follows from

d being a marginal distribution, hence speci�cally di ≤ 1 for all i ∈ [nD]. For i ∈ [nC ], de�ne
j∗i ∈ [nD] be the unique index such that B̄i,j∗i = 1. Since B̄ is a deterministic stochastic and B is

stochastic, every row of B̄ −B sums up to zero. Furthermore, for all i ∈ [nC ],
(
B̄ −B

)
i,j∗i
≥ 0 and(

B̄ −B
)
i,j
≤ 0 for all j 6= j∗i . Hence, for all i ∈ [nC ],

nD∑
j=1

|B̄ −B|i,j = 2
(
B̄ −B

)
i,j∗i

. (27)

Using this in (26), we get

∑
i/∈S∪T

ci · nD∑
j=1

|B̄ −B|i,j

 ≤ 2

1−
√
ε

∑
i/∈S∪T

(B̄ −B)
i,j∗i
·
nD∑
j=1

Vj,i

 . (28)

Next, we upper bound the RHS of the above inequality. First, we observe that ‖V B−I‖ ≥ ‖V B̄−I‖.
This is argued as follows:

‖V B − I‖ (a)
=

nD∑
j=1

1− (V B)j,j +
∑
j′ 6=j

(V B)j,j′

 (b)
= 2

nD∑
j=1

(
1− (V B)j,j

)

= 2nD −
nD∑
j=1

(
nC∑
i=1

Vj,i ·Bi,j

)
= 2nD −

nC∑
i=1

 nD∑
j=1

Vj,i ·Bi,j


(c)

≥ 2nD −
nC∑
i=1

max
j∈[nD]

Vj,i
(d)
= 2nD −

nC∑
i=1

 nD∑
j=1

Vj,i · B̄i,j


= 2

nD∑
j=1

1−
(
V B̄

)
j,j

= ‖V B̄ − I‖. (29)

Since V and B are stochastic, V B is also stochastic; this is used in (a). In (b), we used the fact
that every row of I − V B sums up to zero. Since B is stochastic,

∑nD
j=1 Vj,i ·Bi,j ≤ max

j∈[nD]
Vj,i for all

i ∈ nC ; this is used in (c). Finally, by de�nition of B̄, for all i ∈ nC ,
∑nD

j=1 Vj,i · B̄i,j = max
j∈[nD]

Vj,i;

this is used in (d).
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By Lemma 6, ‖V B − I‖ = OD(ε). Hence, by the above inequality, ‖V B̄ − I‖ = OD(ε). The
above two bounds along with the triangular inequality implies that ‖V (B̄ −B)‖ = OD(ε). But,

‖V (B̄ −B)‖ ≥
nD∑
i=1

|V (B̄ −B)|i,i ≥
nD∑
i=1

(
V (B̄ −B)

)
i,i

=

nC∑
i=1

nD∑
j=1

Vj,i ·
(
B̄ −B

)
i,j

(a)
=

nC∑
i=1

Vj∗i ,i · |B̄ −B|i,j∗i −∑
j 6=j∗i

Vj,i · |B̄ −B|i,j


≥

nC∑
i=1

Vj∗i ,i · |B̄ −B|i,j∗i −max
j 6=j∗i

Vj,i
∑
j 6=j∗i

|B̄ −B|i,j


(b)
=

nC∑
i=1

(
Vj∗i ,i −max

j 6=j∗i
Vj,i

)
|B̄ −B|i,j∗i

(c)

≥
∑
i/∈S∪T

(
Vj∗i ,i −max

j 6=j∗i
Vj,i

)
|B̄ −B|i,j∗i

(d)

≥ (1− 2
√
ε)
∑
i/∈S∪T

|B̄ −B|i,j∗i
nD∑
j=1

Vj,i

For all i ∈ [nC ],
(
B̄
)
i,j∗i
≥ (B)i,j∗i

and
(
B̄
)
i,j
≤ (B)i,j for all j 6= j∗i ; this is used in (a). (b) follows

from (27). By de�nition of B̄, Vi∗j ,j ≥ Vi,j for all i ∈ [nC ], this is used in (c). Finally, in (d), we

use the de�nition of T to argue that (1 − 2
√
ε)
∑nD

i=1 Vj,i ≤ Vj∗i ,i −max
j 6=j∗i

Vj,i. Using this bound and

‖V (B̄ −B)‖ = OD(ε) in (28), we get

∑
i/∈S∪T

ci · nD∑
j=1

|B̄ −B|i,j

 = OD

(
2ε

(1− 2
√
ε)(1−

√
ε)

)
= OD(ε) . (30)

To bound the �rst term in the RHS of (21), we �rst bound
∑

i∈S ci as follows.

‖AᵀC −DV ‖ ≤ ε⇒ |1ᵀ (AᵀC −DV )|1 ≤ ε⇒
∑
i∈[nD]

|c− dV |i ≤ ε.

Hence,

ε ≥
∑
i∈S
|c− dV |i ≥

√
ε
∑
i∈S

ci ⇒
∑
i∈S

ci ≤
√
ε. (31)

Next, we bound the size of set T . We have,

2nD − 2

nD∑
j=1

(V B)j,j
(a)
= 2nD − 2

nC∑
i=1

nD∑
j=1

(Vj,i ·Bi,j)
(b)

≥ 2nD − 2

nC∑
i=1

max
j∈[nD]

Vj,i.
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Here, (a) and (b) uses the same sequence of argument used in showing (29). Furthermore,

nD −
nC∑
i=1

max
j∈[nD]

Vj,i ≥ nD −
∑
i∈T

max
j∈[nD]

Vj,i −
∑
i/∈T

nD∑
j=1

Vj,i

(a)

≥ nD − (1−
√
ε)
∑
i∈T

nD∑
j=1

Vj,i −
∑
i/∈T

nD∑
j=1

Vj,i

= nD −
nC∑
i=1

nD∑
j=1

Vj,i +
√
ε
∑
i∈T

nD∑
j=1

Vj,i
(b)
=
√
ε
∑
i∈T

nD∑
j=1

Vj,i.

Here, (a) follows from the inequality max
j∈[nD]

Vj,i ≤ (1 −
√
ε)
∑nD

j=1 Vj,i, which is satis�ed for all

i ∈ T . Since V is a stochastic matrix,
∑nC

i=1

∑nD
j=1 Vj,i = 1; this is used in (b). Using the equality

‖V B − I‖ =
∑nD

i=1 2(1− (V B)j,j),

‖V B − I‖ =

nD∑
i=1

2(1− (V B)j,j) ≥ 2
√
ε
∑
i∈T

nD∑
j=1

Vj,i.

Thus, since ‖V B − I‖ = OD(ε) by Lemma 6,

∑
i∈T

nD∑
j=1

Vj,i = OD
(√
ε
)
. (32)

Since ci ≤ 1
1−
√
ε

(dV )i for all i /∈ S,

∑
i∈T\S

ci ≤
1

1−
√
ε

∑
i∈T\S

(dV )i ≤
1

1−
√
ε

∑
i∈T\S

nD∑
j=1

Vj,i (33)

Hence, using (32), ∑
i∈T\S

ci = OD

( √
ε

1−
√
ε

)
.

Since B and B̄ are stochastic matrices,
∑

j∈[nD]|B̄ − B|i,j is upper bounded by 2 for all i ∈ [nC ].
Hence, using (31) and (33), the second term in the RHS of (21) can be bounded as follows.

∑
i∈S∪T

ci ·
n∑
j=1

|B̄ −B|i,j ≤ 2
∑
i∈S

ci + 2
∑
i∈T\S

ci ≤ 2

(√
ε+OD

( √
ε

1−
√
ε

))
.

Applying the above bound and (30) in (25), we get

‖C
(
B̄ −B

)
‖ ≤ 2

(√
ε+OD

( √
ε

(1−
√
ε)(1− 2

√
ε)

)
+OD

( √
ε

1−
√
ε

))
= OD

(√
ε
)
.

By an analogous argument, we can also show that ‖C
(
Ā−A

)
‖ = OD(

√
ε). This concludes the

proof. �
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D Spectral Protocols for SNIR

Lemma 9 (Restated). Let M be a distribution matrix of dimension m× n. Then,

(i) Elements of ΛM lie in the range (0, 1], and max(ΛM ) = 1. Furthermore, if M has no common
information, then the second largest element of ΛM is strictly less than 1.

(ii) For all ` ∈ N, ΛM⊗` ⊆ ΛM⊗(`+1).

(iii) For all λ ∈ (0, 1), there exists β > 0 such that for all ` ∈ N and for all σ ∈ ΛM⊗` , either λ = σ
or |λ− σ| > β.

Proof: (i) follows from Lemma 1 and the fact that eigenvalues of L(GM ) lie in the range [0, 2],
with the minimum being 0 [12]. Further, the multiplicity of the singular value 1 is one unless the
correlation involves non-trivial common information, since the multiplicity of 0 as an eigenvalue of
L(GM ) equals the number of connected components in GM .

By the de�nition of tensor product,

ΛM⊗t+1 =
∏

σ∈ΛM⊗t

∏
λ∈ΛM

σ · λ.

Since 1 ∈ ΛM , the multiset ΛM⊗t is contained in ΛM⊗(t+1) . This proves (ii).
To prove (iii), let λ2 be the largest non-unity element of ΛM , i.e., λ2 = max{σ ∈ ΛM : σ < 1}.

We may assume that it exists since (iii) is true if all the elements of ΛM are 1. De�ne `∗ to be
the smallest integer such that λ`

∗
2 < λ. Recall that, for all ` ∈ N, each member of ΛM⊗` is the

product of ` (not necessarily distinct) elements of the set ΛM and 1 ∈ ΛM . Hence, for all ` > `∗, if

σ ∈ ΛM⊗` \ΛM⊗`∗ , then σ =
∏`′

i=1 σi, for some `′ such that ` ≥ `′ > `∗ and σi ∈ ΛM \ {1}, i ∈ [`′]
which are (not necessarily distinct) non-unity elements of ΛM . Therefore,

σ ≤ λ`′2 ≤ λ`
∗
2 < λ,

where the last inequality follows from the de�nition of `∗. Since λ`
∗
2 ∈ ΛM⊗`∗ , for all ` > `∗,

min
σ∈Λ

M⊗`

σ 6=λ

|σ − λ| = min
σ∈Λ

M⊗`∗
σ 6=λ

|σ − λ|.

We now obtain (iii) by taking
β = min

σ∈Λ
M⊗`∗

σ 6=λ

|σ − λ|,

which is strictly positive. This concludes the proof.
�

Lemma 10 (Restated). Suppose a non-redundant correlation D ∈ RmD×nD has a deterministic
ε-SNIR (A,B) to a correlation C ∈ RmC×nC , for ε ≥ 0. Then,

(i). There exist matrices E1, E2 such that ‖E1‖ = OD(ε) and ‖E2‖ = OD(ε), and

ÂᵀÂ = ImD×mD + E1 B̂ᵀB̂ = InD×nD + E2.
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(ii). There exist matrices Ê, ÊA, ÊB such that

ÂᵀΣCB̂ = ΣD + Ê, ÂᵀΣC = ΣDB̂
ᵀ + ÊA, B̂ᵀΣᵀC = ΣᵀDÂ

ᵀ + ÊB,

where ‖Ê‖ = OD(ε), and for all θ ∈ {0, 1},

‖ÊA(ΣᵀCΣC)θΣᵀCÂ‖ = OD(ε) , ‖ÊA(ΣᵀCΣC)θB̂‖ = OD(ε) ,

‖ÊB(ΣCΣ
ᵀ
C)θΣCB̂‖ = OD(ε) , ‖ÊB(ΣCΣ

ᵀ
C)θÂ‖ = OD(ε) .

Proof: By Lemma 8,
(
Δ
−1
DᵀAᵀΔCᵀ

)
= U − E0, where ‖E0‖ = OD(ε). Hence,

ÂᵀÂ =
(
ΨDΔ

−1/2
Dᵀ A

ᵀ
Δ

1/2
CᵀΨ

ᵀ
C

)(
ΨCΔ

1/2
Cᵀ AΔ

−1/2
Dᵀ Ψ

ᵀ
D

)
=ΨDΔ

1/2
Dᵀ

(
Δ
−1
DᵀA

ᵀ
ΔCᵀ

)
AΔ

−1/2
Dᵀ Ψ

ᵀ
D

=ΨDΔ
1/2
Dᵀ (I + (UA− I)− E0A) Δ

−1/2
Dᵀ Ψ

ᵀ
D

= I +ΨDΔ
1/2
Dᵀ ((UA− I)− E0A) Δ

−1/2
Dᵀ Ψ

ᵀ
D. (34)

By Lemma 6, ‖UA − I‖ = OD(ε). Since ‖E0‖ = OD(ε) and A is stochastic, ‖E0A‖ = OD(ε).

Furthermore, there exists a constant t that depends only on D such that both
∣∣∣Δ1/2

DᵀΨD

∣∣∣1 and∣∣∣Δ−1/2
Dᵀ Ψ

ᵀ
D

∣∣∣1 are both upper bounded by t · 1. Hence,

‖ΨDΔ
1/2
Dᵀ ((UA− I)− E0A) Δ

−1/2
Dᵀ Ψ

ᵀ
D‖

≤ 1ᵀ
∣∣∣ΨDΔ

1/2
Dᵀ (UA− I)Δ

−1/2
Dᵀ Ψ

ᵀ
D

∣∣∣1 + 1ᵀ
∣∣∣ΨDΔ

1/2
Dᵀ E0AΔ

−1/2
Dᵀ Ψ

ᵀ
D

∣∣∣1
≤ t21ᵀ|UA− I|1 + t21ᵀ|E0A|1 = t2 (‖UA− I‖+ ‖E0A‖) = OD(ε) .

This proves that ‖E1‖ = OD(ε). Similarly, we can prove that ‖E1‖ = OD(ε), concluding the proof
of (i).

We proceed to show (ii). Since (A,B) is an ε-SNIR from D to C, there exist matrices E,EA and
EB such that ‖E‖, ‖EA‖, ‖EB‖ ≤ ε, and

AᵀCB = D + E AᵀC = DV + EA, CB = UᵀD + EB.

The �rst equality implies that,(
Δ
−1/2
Dᵀ A

ᵀ
Δ

1/2
Cᵀ

)(
Δ
−1/2
Cᵀ CΔ

−1/2
C

)(
Δ

1/2
C BΔ

−1/2
D

)
= Δ

−1/2
Dᵀ DΔ

−1/2
D + Δ

−1/2
Dᵀ EΔ

−1/2
D .

Substituting Δ
−1/2
Cᵀ CΔ

−1/2
C and Δ

−1/2
Dᵀ DΔ

−1/2
D by ΨᵀCΣCΦC and ΨᵀDΣDΦD, respectively, and

rearranging,(
ΨDΔ

−1/2
Dᵀ A

ᵀ
Δ

1/2
CᵀΨ

ᵀ
C

)
ΣC

(
ΦCΔ

1/2
C BΔ

−1/2
D Φ

ᵀ
D

)
= ΣD +ΨDΔ

−1/2
Dᵀ EΔ

−1/2
D Φ

ᵀ
D.

42



Hence,

ÂᵀΣCB̂ = ΣD + Ê,where Ê =ΨDΔ
−1/2
Dᵀ EΔ

−1/2
D Φ

ᵀ
D.

Since the absolute value of each entry of ΨD and ΦD is at most 1, 1ᵀ|ΨD| ≤ mD1
ᵀ and |ΦD|1 ≤

nD1. Hence, ‖Ê‖ ≤ mDnD1
ᵀ|E|1 = OD(ε).

By Lemma 8, V −Δ−1D BᵀΔC = EV , where ‖EV ‖ = OD(ε). By substituting for V in the privacy
condition using this equality,

AᵀC = D(Δ−1D BᵀΔC + EV ) + EA = DΔ−1D BᵀΔC +DEV + EA (35)

= DΔ−1D BᵀΔC + E′A. (36)

Since ‖EV ‖ and ‖EA‖ are OD(ε), and D is a distribution matrix, ‖E′A‖ = ‖DEV + EA‖ = OD(ε).

Premultiplying the above equation by Δ
−1/2
Dᵀ and post multiplying it by Δ

−1/2
C ,

Δ
−1/2
Dᵀ A

ᵀ
Δ

1/2
Cᵀ Δ

−1/2
Cᵀ CΔ

−1/2
C = Δ

−1/2
Dᵀ DΔ

−1/2
D Δ

−1/2
D BᵀΔ

1/2
C + Δ

−1/2
Dᵀ E

′
AΔ
−1/2
C .

Using Δ
−1/2
Cᵀ CΔ

−1/2
C =ΨᵀCΣCΦC and Δ

−1/2
Dᵀ DΔ

−1/2
D =ΨᵀDΣDΦD,

Δ
−1/2
Dᵀ A

ᵀ
Δ

1/2
CᵀΨ

ᵀ
CΣCΦC =ΨᵀDΣDΦDΔ

−1/2
D BᵀΔ

1/2
C + Δ

−1/2
Dᵀ E

′
AΔ
−1/2
C .

De�ning ÊA =ΨDΔ
−1/2
Dᵀ E′AΔ

−1/2
C Φ

ᵀ
C , and rearranging and using the de�nitions of Â and B̂,

ÂᵀΣC = ΣDB̂
ᵀ + ÊA.

For θ ∈ {0, 1}, using C̃ = Δ
−1/2
Cᵀ CΔ

−1/2
C =ΨᵀCΣCΦC ,

ÊA(ΣᵀCΣC)θΣᵀCÂ

=
(
ΨDΔ

−1/2
Dᵀ E

′
AΔ
−1/2
C Φ

ᵀ
C

)
(ΣᵀCΨCΨ

ᵀ
CΣCΦCΦ

ᵀ
C)θΣᵀC

(
ΨCΔ

1/2
Cᵀ AΔ

−1/2
Dᵀ ΨD

)
=ΨDΔ

−1/2
Dᵀ E

′
AΔ
−1/2
C (C̃ᵀC̃)θC̃ᵀΔ

1/2
Cᵀ AΔ

−1/2
Dᵀ ΨD.

Using C̃ = Δ
−1/2
Cᵀ CΔ

−1/2
C and simplifying,

ÊA(ΣᵀCΣC)θΣᵀCÂ =ΨDΔ
−1/2
Dᵀ E

′
A

(
Δ
−1
C CᵀΔ−1CᵀC

)θ
Δ
−1
C CᵀAΔ

−1/2
Dᵀ ΨD.

There exists a constant t that depends only on D for which |Δ−1/2
Dᵀ Ψ

ᵀ
D|1 ≤ t · 1. Furthermore,

A,Δ−1CᵀC, and Δ
−1
C Cᵀ are stochastic matrices. Hence,

‖ÊA(ΣᵀCΣC)θΣᵀCÂ‖

= 1ᵀ|ÊA(ΣᵀCΣC)θΣᵀCÂ|1

≤ 1ᵀ|ΨDΔ
−1/2
Dᵀ ||E′A|

(
Δ
−1
C CᵀΔ−1CᵀC

)θ
Δ
−1
C CᵀA|Δ−1/2

Dᵀ ΨD|1

≤ t21ᵀ|E′A|
(
Δ
−1
C CᵀΔ−1CᵀC

)θ
Δ
−1
C CᵀA1 = t21|E′A|1 = OD(ε) .
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Next, for θ ∈ {0, 1}, we bound ‖ÊA(ΣᵀCΣC)θB̂‖. Proceeding as in the previous argument,

ÊA(ΣᵀCΣC)θB̂

=
(
ΨDΔ

−1/2
Dᵀ E

′
AΔ
−1/2
C Φ

ᵀ
C

) (
Σ
ᵀ
CΨCΨ

ᵀ
CΣCΦCΦ

ᵀ
C

)θ (
ΦCΔ

1/2
C BΔ

−1/2
D Φ

ᵀ
D

)
=ΨDΔ

−1/2
Dᵀ E

′
A

(
Δ
−1
C CᵀΔ−1CᵀC

)θ
BΔ

−1/2
D ΦD

There exists a constant t′ that depends only on D for which |Δ−1/2
Dᵀ Φ

ᵀ
D|1 ≤ t′ · 1. Furthermore, B

is a stochastic matrix. Hence,

‖EA(ΣᵀCΣC)θB̂‖ ≤ 1ᵀ|ΨDΔ
−1/2
Dᵀ | · |E′A|

(
Δ
−1
C CᵀΔ−1CᵀC

)θ
B · |Δ−1/2

Dᵀ ΦD|

≤ t · t′1ᵀ|E′A|
(
Δ
−1
C CᵀΔ−1CᵀC

)θ
B1 = t · t′1ᵀ|E′A|1 = OD(ε) .

The other statement in (ii) can be proved similarly. This concludes the proof. �

Lemma 11 (Restated). Suppose a non-redundant correlation D ∈ RmD×nD has a deterministic
ε-SNIR (A,B) to a correlation C ∈ RmC×nC for ε ≥ 0. Then, for all i ∈ [mD],∥∥∥(ΣCΣᵀC − (ΣDΣᵀD)i,i · I) Â·,i∥∥∥2 = OD

(√
ε
)
.

Similarly, for i ∈ [nD], ∥∥∥(ΣᵀCΣC − (ΣᵀDΣD)i,i · I) B̂·,i∥∥∥2 = OD
(√
ε
)
.

Proof: By Lemma 10, there are matrices ÊA and ÊB such that

ÂᵀΣC = ΣDB̂
ᵀ + ÊA, B̂ᵀΣᵀC = ΣᵀDÂ

ᵀ + ÊB,

and, for θ ∈ {0, 1},

‖EA(ΣᵀCΣC)θΣᵀCÂ‖ = OD(ε) ‖EB(ΣᵀCΣC)θÂ‖ = OD(ε) .

Hence,

ΣCΣ
ᵀ
CÂ = ΣCB̂Σ

ᵀ
D +ΣCE

ᵀ
A = ÂΣDΣ

ᵀ
D + EᵀBΣ

ᵀ
D +ΣCE

ᵀ
A

⇒ ΣCΣᵀCÂ− ÂΣDΣ
ᵀ
D = EᵀBΣ

ᵀ
D +ΣCE

ᵀ
A.

Denote
(
ΣDΣ

ᵀ
D

)
i,i

by λi. Then, ΣDΣ
ᵀ
Dξi = λiξi. Hence, post multiplying the above expression

by ξi, (
ΣCΣ

ᵀ
C − λiI

)
Â·,i =

(
EᵀBΣ

ᵀ
D +ΣCE

ᵀ
A

)
ξi. (37)

Premultiplying the above equation by (Â·,i)
ᵀ
(
ΣCΣ

ᵀ
C − λiI

)
,

(Â·,i)
ᵀ (
ΣCΣ

ᵀ
C − λiI

)2
Â·,i = (Â·,i)

ᵀ (
ΣCΣ

ᵀ
C − λiI

) (
EᵀBΣ

ᵀ
D +ΣCE

ᵀ
A

)
ξi.
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But, since λi ≤ 1,

‖Âᵀ
(
ΣCΣ

ᵀ
C − λiI

) (
EᵀBΣ

ᵀ
D +ΣCE

ᵀ
A

)
‖

≤
∑

θ∈{0,1}

‖Âᵀ(ΣCΣᵀC)θEᵀBΣ
ᵀ
D‖+ ‖Âᵀ(ΣCΣᵀC)θΣCE

ᵀ
A‖.

Since all entries in ΣD are non-negative and at most 1, ‖Âᵀ(ΣCΣᵀC)θEᵀBΣ
ᵀ
D‖ ≤ ‖Âᵀ(ΣCΣ

ᵀ
C)θEᵀB‖,

for i ∈ {0, 1}.
Hence, by the properties of ÊA and ÊB,

‖Âᵀ
(
ΣCΣ

ᵀ
C − λiI

) (
EᵀBΣ

ᵀ
D +ΣCE

ᵀ
A

)
‖ = OD(ε) .

Hence,

(Â·,i)
ᵀ
(
ΣCΣ

ᵀ
C −

(
ΣDΣ

ᵀ
D

)
i,i
· I
)2
Â·,i = OD(ε) .

The other statement can be proved analogously. This proves the lemma. �

E Proofs Omitted from Section 7

Lemma 14. Consider a non-redundant correlation D ∈ RmD×nD with zero common information
and a pair of non-redundant correlations C0 ∈ Rm0×n0 and C1 ∈ Rm1×n1, and α ∈ (0, 1) such that

C =

[
αC0 0

0 (1− α)C1

]
.

If D has an ε-SNIR (A,B) to C, then D has a 1
αi
· OD(ε)-SNIR (Ai, Bi) to Ci for i ∈ {0, 1}, when

α0 = α and α1 = 1− α.

Proof: Consider blocks of A,B,U , and V of appropriate dimensions,

A =

[
A0

A1

]
, B =

[
B0

B1

]
, U =

[
U0 U1

]
, V =

[
V0 V1

]
,

such that [
Aᵀ0 Aᵀ1

] [αC0 0
0 (1− α)C1

] [
B0

B1

]
= D + E,

[
Aᵀ0 Aᵀ1

] [αC0 0
0 (1− α)C1

]
= D

[
V0 V1

]
+
[
EA E′A

]
[
αC0 0

0 (1− α)C1

] [
B0

B1

]
=

[
Uᵀ0
Uᵀ1

]
D +

[
EB
E′B

]
,

where ‖E‖, ‖[EA E′A]‖, ‖[EB E′B]‖ ≤ ε.
De�ne D0 = Aᵀ0C0B0. Consider diagonal matrices MU and MV such that

αAᵀ0C0 = DV0 + EA, where ‖EA‖ = εA, (38)

αC0B0 = Uᵀ0D + EB, where ‖EB‖ = εB, (39)

U0A0 = MU + EU , where (MU )i,i = (U0A0)i,i , ∀i ∈ [mD], and ‖EU‖ = εU , (40)

V0B0 = MV + EV , where (MV )j,j = (V0B0)j,j , ∀j ∈ [nD], and ‖EV ‖ = εV . (41)
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Observe that εA, εB ≤ ε and since A0, B0, U0 and V0 are non-negative matrices and there exist k
that depends only on D such that ‖UA − I‖ ≤ kε and ‖V B − I‖ ≤ kε, we also have εU , εV ≤ kε.
We will show that MU and MV are very close to αI.

αD0 = α(Aᵀ0C0)B0 = DV0B0 + EAB0 = DMV +DEV + EAB0 and, (42)

αD0 = Aᵀ0(αC0B0) = Aᵀ0U
ᵀ
0D +Aᵀ0EB = Mᵀ

UD + EᵀUD +Aᵀ0EB. (43)

We have,

α (D0)i,j = Di,j (MV )j,j + (DEV )i,j + (EAB0)i,j

= (MU )i,iDi,j +
(
EᵀUD

)
i,j

+ (Aᵀ0EB)i,j .

Hence, for i ∈ [mD] and j0, j1 ∈ [nD],

(MU )i,iDi,j0 = Di,j0 (MV )j0,j0 + (DEV )i,j0 + (EAB0)i,j0 −
(
EᵀUD

)
i,j0
− (Aᵀ0EB)i,j0

(MU )i,iDi,j1 = Di,j1 (MV )j1,j1 + (DEV )i,j1 + (EAB0)i,j1 −
(
EᵀUD

)
i,j1
− (Aᵀ0EB)i,j1

Multiplying the �rst equation by Di,j1 and the second by Di,j0 and simplifying,

Di,j0Di,j1

(
(MV )j0,j0 − (MV )j1,j1

)
= −Di,j1

(
(DEV )i,j0 + (EAB0)i,j0 −

(
EᵀUD

)
i,j0
− (Aᵀ0EB)i,j0

)
+Di,j1

(
(DEV )i,j1 + (EAB0)i,j1 −

(
EᵀUD

)
i,j1
− (Aᵀ0EB)i,j1

)
Since D is a correlation, and A0 and B0 are stochastic, the quantity in the RHS lies in [−δ, δ], where
δ = 2(εA + εB + εU + εV ). Hence, if Di,j1 > 0 and Di,j0 > 0, then

|(MV )j0,j0 − (MV )j1,j1 | ≤
δ

Di,j1Di,j0

, where δ = 2(εA + εB + εU + εV ).

Since D has no common information (and hence has only one connected component), for every
j0, j1 ∈ [nD], there is a sequence `1, `2, . . . , `t0 , where `1 = j0, `t0 = j1, t0 ≤ nD, and for any t < t0,
there exists i ∈ [mD] such that Di,`t , Di,`t+1 > 0. Hence, for any t < t0,

|(MV )`t,`t − (MV )`t+1,`t+1
| ≤ 2δ

Di,`tDi,`t+1

.

Thus, we conclude that, there exists a constant γV > 0 that depends only on D such that for all
j0, j1 ∈ [nD],

|(MV )j0,j0 − (MV )j1,j1 | ≤ γV · δ.

This necessarily means that there exists α′ such that ‖MV − α′I‖ ≤ γV · δ. But, by (42),

αD0 − α′D = D(MV − α′I) +DEV + EAB0 ⇒ ‖αD0 − α′D‖ ≤ (γV + 1) · δ.

However, since D0 = Aᵀ0C0B0 is a correlation matrix, the above inequality implies that |α − α′| ≤
(γV + 1) · δ. Hence, by triangular inequality,

α‖D0 −D‖ ≤ 2(γV + 1) · δ ⇒ α‖Aᵀ0C0B0 −D‖ ≤ 2(γV + 1) · δ. (44)
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Since |α− α′| ≤ (γV + 1) · δ and ‖MV − α′I‖ ≤ γV · δ, by triangular inequality, for an appropriate
γ′V ,

‖MV − αI‖ ≤ (nD + 1)(γV + 1) · δ ⇒ ‖V0B0 − αI‖ ≤ (nD + 1)(γV + 1) · δ + εV ≤ γ′V · δ,

where the implication follows from (41). Since V0 is a non-negative matrix, HV0 is a stochastic
matrix, where H ∈ RnD×nD is a diagonal matrix such that Hj,j = 1

(V01)j
for all j ∈ [nD]. However,

the above inequality implies that |(V01)j − α| ≤ γ′V · δ for all j ∈ [nD]. Hence,∥∥∥∥∥HV0 − 1

α
V0

∥∥∥∥∥ ≤ 1ᵀ

∣∣∣∣∣H − I

α

∣∣∣∣∣V01 =

nD∑
j=1

∣∣∣∣∣(V01)j
α

− 1

∣∣∣∣∣ ≤ nDγ
′
V · δ
α

. (45)

Analogously, we can prove that there exists γ′U that depends only on D and a diagonal matrix H ′

such that H ′U0 is stochastic, and ∥∥∥∥∥H ′U0 −
1

α
U0

∥∥∥∥∥ ≤ mDγ
′
U · δ
α

. (46)

Hence, for appropriately chosen γ that depends only on D, de�ning HV0 = V ′0 and H ′U0 = U ′0,

‖Aᵀ0C0B0 −D‖ ≤
γ

α
(εA + εB + εU + εV ), (47)

‖Aᵀ0C0 −DV ′0‖ ≤
γ

α
(εA + εB + εU + εV ), (48)

‖C0B0 − U ′ᵀ0 D‖ ≤
γ

α
(εA + εB + εU + εV ). (49)

Here, the �rst bound follows from (44), the second bound follows from (38) and (45) and the �nal
bound follows from (39) and (46). The lemma now follows from (εA + εB + εU + εV ) = OD(ε). �

E.1 Proof of Lemma 12

Lemma 12 (Restated.) Consider a non-redundant correlation D ∈ RmD×nD with zero common
information. For non-redundant correlations C1, . . . , Ck and positive numbers α1, . . . , αk such that
α1 + . . .+ αk = 1, let

C =


α1C1 0 0 . . . 0

0 α2C2 0 . . . 0
...

. . .
...

...
. . .

...
0 0 . . . 0 αkCk

 .
If D has an ε-SNIR to C, then for some 1 ≤ i ≤ k, D has a OD(ε)-SNIR to Ci.
Proof: Let (A,B) be an ε-SNIR from D to C with simulators U and V . Similar to the proof of

Lemma 14, consider blocks of A,B,U , and V of appropriate dimensions such that[
Aᵀ1 . . . Aᵀk

]
C
[
Bᵀ1 . . . Bᵀk

]T
= D + E,[

Aᵀ1 . . . Aᵀk
]
C = D

[
V1 . . . Vk

]
+
[
E

(1)
A . . . E

(k)
A

]
C
[
Bᵀ1 . . . Bᵀk

]T
=
[
U1 . . . Uk

]T
D +

[
E

(1)
B . . . E

(k)
B

]
,
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where ‖E‖, ‖
[
E

(1)
A . . . E

(k)
A

]
‖, ‖
[
E

(1)
B . . . E

(k)
B

]
‖ ≤ ε. For i ∈ [k], de�ne Di = AᵀiCiBi and

consider diagonal matrices M
(i)
U and M

(i)
V such that

αAᵀiCi = DVi + E
(i)
A , where ‖E(i)

A ‖ = ε
(i)
A , (50)

αCiBi = Uᵀi D + E
(i)
B , where ‖E(i)

B ‖ = ε
(i)
B , (51)

UiAi = M
(i)
U + E

(i)
U , where

(
M

(i)
U

)
j,j

= (UiAi)j,j , ∀j ∈ [mD], and ‖E(i)
U ‖ = ε

(i)
U , (52)

ViBi = M
(i)
V + E

(i)
V , where

(
M

(i)
V

)
j,j

= (ViBi)j,j , ∀j ∈ [nD], and ‖EiV ‖ = ε
(i)
V . (53)

Claim 6. There exists i∗ ∈ [k] and a constant c that depends only on D such that

ε
(i∗)
A ≤ 5εαi∗ , ε

(i∗)
B ≤ 5εαi∗ ε

(i∗)
U ≤ 5cεαi∗ , ε

(i∗)
V ≤ 5cεαi∗ .

Proof: We have,

∥∥∥ [E(1)
A . . . E

(k)
A

] ∥∥∥ ≤ ε⇒ k∑
i=1

‖E(i)
A ‖ =

k∑
i=1

ε
(i)
A ≤ ε, (54)

∥∥∥ [E(1)
B . . . E

(k)
B

] ∥∥∥ ≤ ε⇒ k∑
i=1

‖E(i)
B ‖ =

k∑
i=1

ε
(i)
B ≤ ε. (55)

LetMU be a diagonal matrix such that (MU )j,j = (UA)j,j for all j ∈ [mi] and letMV be a diagonal

matrix such that (MV )j,j = (V B)j,j for all j ∈ [ni]. By the de�nition of M
(i)
U and M

(i)
V ,

k∑
i=1

E
(i)
U = UA−MU

k∑
i=1

E
(i)
V = V B −MV .

By Lemma 6, there exists c that depends only on D such that ‖UA−I‖ ≤ cε and ‖V B−I‖ ≤ cε. By
de�nition ofMU andMV , since UA and V B are stochastic, ‖UA−MU‖ ≤ c

2ε and ‖V B−MV ‖ ≤ c
2ε.

For all i ∈ [k], E
(i)
U and E

(i)
V are non-negative matrices. Hence,

k∑
i=1

ε
(i)
U =

k∑
i=1

‖E(i)
U ‖ =

∥∥∥ k∑
i=1

E
(i)
U

∥∥∥ ≤ c

2
ε, (56)

k∑
i=1

ε
(i)
V =

k∑
i=1

‖E(i)
V ‖ =

∥∥∥ k∑
i=1

E
(i)
V

∥∥∥ ≤ c

2
ε. (57)

De�ne sets

SA = {i ∈ [k] : ε
(i)
A > 5αiε} SB = {i ∈ [k] : ε

(i)
B > 5αiε}

SU = {i ∈ [k] : ε
(i)
U >

5c

2
αiε} SV = {i ∈ [k] : ε

(i)
V >

5c

2
αiε}.
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From the de�nitions of SA, SB, SU and SV and the bounds (54),(55),(56), and (57), respectively.∑
i∈SA

αi ≤
1

5

∑
i∈SB

αi ≤
1

5

∑
i∈SU

αi ≤
1

5

∑
i∈SV

αi ≤
1

5
.

We conclude that there exist i∗ ∈ [k] such that i∗ /∈ SA ∪ SB ∪ SU ∪ SV since∑
i∈SA∪SB∪SU∪SV

αi < 1.

This concludes the proof for the claim. �

At this point, we appeal to the proof of Lemma 14, speci�cally (47), (48) and (49), to conclude
that there exist V ′i and U ′i such that, for a constant γ that depends only on D,

‖Aᵀi∗Ci∗Bi∗ −D‖ ≤
γ

αi∗
(ε

(i∗)
A + ε

(i∗)
B + ε

(i∗)
U + ε

(i∗)
V ) ≤ 5(c+ 2)γε

‖Aᵀi∗Ci∗ −DV
′
i∗‖ ≤

γ

αi∗
(ε

(i∗)
A + ε

(i∗)
B + ε

(i∗)
U + ε

(i∗)
V ) ≤ 5(c+ 2)γε,

‖Ci∗Bi∗ − U ′ᵀi∗D‖ ≤
γ

αi∗
(ε

(i∗)
A + ε

(i∗)
B + ε

(i∗)
U + ε

(i)
V ) ≤ 5(c+ 2)γε.

This concludes the proof of the theorem. �

F Details omitted from Section 8

F.1 Proof of Theorem 8

Theorem 8 (Restated.) For p, q ∈ (0, 12), BSCq has a statistical SNIR to BSCp if and only if
q = p∗k for some k ∈ N.
Proof: For all p ∈ [0, 1] and k ∈ N, a perfect SNIR of BSCp∗k to BSC⊗kp i.e., k independent copies

of BSCp can be realized as follows. When (X1, Y1), . . . , (Xk, Yk) are k independent copies of BECp,
Alice outputs X1 ⊕ . . . ⊕ Xk and Bob outputs Y1 ⊕ . . . ⊕ Yk, where ⊕ denotes the Boolean XOR
operation.

De�ne Zi = Xi ⊕ Yi, then Zi for all i ∈ [k] are independently and identically distributed as
Bernoulli(p). Hence,

P(X1 ⊕ . . .⊕Xk 6= Y1 ⊕ . . .⊕ Yk) = P(Z1 ⊕ . . .⊕ Zk = 1) = p∗k.

Indeed, by symmetry of BECp, for every (x1, . . . , xk) ∈ {0, 1}k,

P(X1 ⊕ . . .⊕Xk 6= Y1 ⊕ . . .⊕ Yk|X1 = x1, . . . , Xk = xk) = p∗k.

This guarantees perfect privacy against a corrupt Alice. Privacy against Bob follows, similarly, since
the correlation BSCp is symmetric w.r.t. Alice and Bob.

We next show that BSCq has a statistical SNIR to BSCp only if q = p∗k for some k ∈ N. By (11),
ΛC⊗k = {(1− 2p)i : 0 ≤ i ≤ k} for all k ∈ N. Hence, by Theorem 4, BSCq has a statistical SNIR to
BSCp only if (1− 2q) = (1− 2p)t for some t ∈ N. Observe that, for any p, q ∈ (0, 12),

1− 2(p ∗ q) = 1− 2(p(1− q) + (1− p)q) = (1− 2p)(1− 2q).

Hence, if (1− 2q) = (1− 2p)t then q = p∗k. This concludes the proof. �
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F.2 Proof of Theorem 9

Theorem 9 (Restated.) For p, q ∈ (0, 1), BECq has a statistical SNIR to BECp if and only if
1− q = (1− p)k for some k ∈ N.
Proof: For all p ∈ [0, 1] and k ∈ N, a perfect SNIR of BEC1−(1−p)k to BEC⊗kp can be realized as

follows. When (X1, Y1), . . . , (Xk, Yk) are k independent copies of BECp, Alice outputs X1⊕ . . .⊕Xk,
and Bob outputs Y1 ⊕ . . .⊕ Yk if Yi ∈ {0, 1} for all i ∈ [k], and ⊥ otherwise.

Irrespective of X1, . . . , Xk, the probability with which Bob outputs ⊥ is (1− (1− p)k). Hence,
Alice and Bob's outputs are correlated according to BEC1−(1−p)k . The event in which Alice reports
erasure (event that at least one of Y1, . . . , Yk is ⊥) is independent of X1, . . . , Xk. Hence the protocol
guarantees privacy against Alice. Since each Xi is uniformly and independently distributed, if any
of the Yi is ⊥, Alice's output is independent of Bob's view. This guarantee privacy against Bob.

In Appendix G.2, we provide a simple argument (without using results from the spectral analysis)
to show that BECp has a perfect SNIR to BECp only if 1−q = (1−p)k for some k ∈ N. Here, we will
consider statistical SNIR of BECq to BECp. By (12), ΛC⊗` = {(1 − p)

1
2 : 0 ≤ i ≤ `} for all ` ∈ N.

Hence, by Theorem 4, BECq has a statistical SNIR to BECp only if 1− q = (1− p)k for some k ∈ N.
This concludes the proof. �

Lemma 15. Let C denote the correlation OLEF. Then the singular values of C̃ are 1, 1√
|F|

and 0.

Proof: Let a1, a2, a3, . . . , a|F| be an enumeration of the elements in F such that a1 is the additive

identity of the �eld. For each k ∈ [|F|], de�ne F × F dimensional matrix M (ak) such that, for all
ai, aj ∈ F, (

M (ak)
)
ai,aj

=

{
1 if ai + aj = ak,

0 otherwise.
(58)

Since C has uniform marginals, C̃ = 1
|F|M , where

M =



M (a1·a1) M (a1·a2) . . . M (a1·a|F|)

M (a2·a1) M (a2·a2) . . . M (a2·a|F|)

...
. . .

M (ai·a1) M (ai·a2) . . . M (ai·a|F|)

...
. . .

M (a|F|·a1) M (a|F|·a2) . . . M (a|F|·a|F|)


. (59)

For simplicity, we show that the eigenvalues of M are |F|,±
√
|F| and 0. Since M is a symmetric

matrix, this implies that its spectrum consists of singular values |F|,
√
|F| and 0. Since C̃ = 1

|F|M ,

this implies that spectrum of C̃ consists of singular values 1, 1√
|F|

and 0.

Suppose w =
[
va1 va2 va3 . . . va|F|

]
, where va for a ∈ F are F dimensional row vectors, is

such that vM = λv. That is, noting a1 · a = a1 for all a ∈ F,

wM =

[∑
a∈F

vaM
(a1)

∑
a∈F

vaM
(a·a2) ∑

a∈F
vaM

(a·a3) . . .
∑
a∈F

vaM
(a·a|F|)

]
= λ ·

[
va1 va2 va3 . . . va|F|

]
= λ ·w. (60)
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For i ∈ {2, 3, . . . , |F|}, de�ne

w(i) =
[
va1 va2·

ai
a2

va3·
ai
a2

. . . va|F|·
ai
a2

]
.

Then, using (60),

w(i)M =

[∑
a∈F

vaM
(a1)

∑
a∈F

va· ai
a2

M (a·a2) ∑
a∈F

va· ai
a2

M (a·a3) . . .
∑
a∈F

va· ai
a2

M (a·a|F|)
]

=

[∑
a∈F

vaM
(a1)

∑
a∈F

vaM
(a·a2·a2ai )

∑
a∈F

vaM
(a·a3·a2ai ) . . .

∑
a∈F

vaM
(a·a|F|·

a2
ai

)
]

= λ ·
[
va1 va2·a2ai

va3·a2ai
. . . va|F|·

a2
ai

]
.

Hence,

|F|∑
i=2

w(i)M =

[
|F|∑
i=2
va1

∑
a∈F

va
∑
a∈F

va . . .
∑
a∈F

va

]
M

= λ ·

[
(|F| − 1)va1

|F|∑
i=2
vai

|F|∑
i=2
vai . . .

|F|∑
i=2
vai

]
.

Hence, w.l.o.g., every eigenvector of M is of the form w =
[
u v v . . . v

]
, where u and v are F

dimensional row vectors. Using the description ofM in (59), and noting that
[
u v v . . . v

]
M =

λ ·
[
u v v . . . v

]
, we get u+

|F|∑
i=2

v

M (a1) = λ · u, (61)

and, since
∑

a∈FM
(a) = 1|F|×|F|,

uM (a1) + v

|F|∑
i=2

M (ai) = uM (a1) + v
(
1|F|×|F| −M (a1)

)
= λ · v. (62)

Let u · 1 = α, v · 1 = β and ua = (u)a and va = (v)a for all a ∈ F. By (61), for all a ∈ F,

λua =
(
uM (a1)

)
a

+

|F|∑
i=2

(
vM (a1)

)
a

= u(M (a1))·,a +

|F|∑
i=2

v(M (a1))·,a

= u(a1−a) + (|F| − 1) · v(a1−a). (63)

The �nal inequality used the fact that
(
M (a1)

)
a′,a

= 1 if a′ = a1 − a (where '−' is subtraction in

the �eld F) and 0 otherwise; this follows from (58). By (62), for all a ∈ F,

λva =
(
uM (a1)

)
a

+
(
v1|F|×|F|

)
a
−
(
vM (a1)

)
a

= u(a1−a) − v(a1−a) + β. (64)

51



Since a1 is the additive identity of the �eld, for all a ∈ F, we denote a1 − a simply by −a and note
that a1 − (−a) = a. For all a ∈ F, by (63) and (64),

λua = u(−a) + (|F| − 1)v(−a) λu(−a) = ua + (|F| − 1)va

λva = u(−a) − v(−a) + β λv(−a) = ua − va + β.

From these equations we get

(λ− 1)(ua + u(−a)) = (|F| − 1)(va + v(−a)), (65)

(λ+ 1)(va + v(−a)) = 2β + (ua + u(−a)), (66)

(λ+ 1)(ua − u(−a)) = −(|F| − 1)(va − v(−a)), (67)

(λ− 1)(va − v(−a)) = −(ua − u(−a)). (68)

First, consider the case where β = 0. When u or v is non-zero (this is the only interesting case),
there exists a ∈ F such that va − v(−a) or va + v(−a) is non-zero. This is because, since β = 0
and |F| > 1, the above equations imply that va − v(−a) 6= 0 if and only if ua − u(−a) 6= 0, and
va + v(−a) 6= 0 if and only if ua + u(−a) 6= 0. Suppose va + v(−a) 6= 0 and ua + u(−a) 6= 0. Then, by

(65), va + v(−a) = λ−1
|F|−1(ua + u(−a)). Using this in (66), we get

(λ2 − 1)(ua + u(−a)) = (|F| − 1)(ua + u(−a)).

Since ua + u(−a) 6= 0, this implies that λ2 = |F| or λ ∈ {−
√
|F|,

√
|F|}.

Next, consider the case where β 6= 0. By (63) and (64),

λα = λ
∑
a∈F

ua =
∑
a∈F

u(a1−a) + (|F| − 1) · v(a1−a) = α+ (|F| − 1)β,

λβ = λ
∑
a∈F

va =
∑
a∈F

u(a1−a) − v(a1−a) + β = α+ (|F| − 1)β.

First equation implies that β = λ−1
|F|−1α; using this in the second equation, we get

(λ− |F|+ 1)(λ− 1)α = (|F| − 1)α.

Since β = λ−1
|F|−1α, if β 6= 0, then α 6= 0. Hence

(λ− |F|+ 1)(λ− 1) = (|F| − 1)⇒ λ ∈ {0, |F|}.

We conclude the proof by providing eigenvectors corresponding to eigenvalues 0,
√
|F| and |F|.

Eigenvalue |F| is achieved by the row vector 1F
2
. Since each column of M contains exactly |F|

rows which are 1 and it is 0 in the remaining rows, we get 1F
2
M = |F| ·1F2

. Consider the row vector
w =

[
1F (−1F) 0F 0F . . . 0F

]
. Then, wM =

[
v1 v2 . . . v|F|

]
, where, for each i ∈ [|F|],

vi = 1FM (a1) − 1FM (a2·ai) = 0.

The �nal equality follows from the fact that, for all a ∈ F, each column of M (a) contains exactly
one entry which is 1 while the remaining entries are 0. Thus, w is an eigenvector corresponding to
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eigenvalue 0. De�ne F dimensional vector v such that (v)a1 = 1 and (v)ai = −1
|F|−1 for all 2 ≤ i ≤ |F|.

The row vector
w =

[
v

√
|F|−1
|F|−1 · v

√
|F|−1
|F|−1 · v . . .

√
|F|−1
|F|−1 · v

]
is an eigenvector with eigenvalue

√
|F|. This is argued as follows: It can be easily veri�ed that

vM (a1) = v. Hence, v +

|F|∑
i=2

√
|F| − 1

|F| − 1
· v

M (a1) =
√
|F| · v,

and

vM (a1) +

√
|F| − 1

|F| − 1
· v

|F|∑
i=2

M (ai) = v +

√
|F| − 1

|F| − 1
· v
(
1|F|×|F| −M (a1)

)
=

(
1−

√
|F| − 1

|F| − 1

)
· v

=
√
|F| ·

√
|F| − 1

|F| − 1
· v.

The above two equalities together imply that wM =
√
|F| ·w, concluding the proof. �

Lemma 13 (Restated.) Let C be a correlation with uniform marginals and ΨC = ΦC . A non-
redundant distribution D over mD × nD has a statistical SNIR to C only if, there exist partitions
S1 t S2 t . . . t Sl = [mD] and T1 t T2 t . . . t Tl = [nD] such that∑

i∈Sk

(D1)i =
∑
i∈Tk

(Dᵀ1)i , for all k ∈ [l],

and, for each j ∈ [min(mD, nD)] such that (ΣD)j,j > 0,(
Δ
−1/2
Dᵀ Ψ

ᵀ
D

)
i,j

=
(
Δ
−1/2
D Φ

ᵀ
D

)
i′,j

for all k ∈ [l], i ∈ Sk, i′ ∈ Tk.

Proof: De�ne the set G = {j ∈ [min(mD, nD)]; for each i ∈ [mD], let ui be a G dimensional vector

such that (ui)j =
(
Δ
−1/2
Dᵀ Ψ

ᵀ
D

)
i,j

for all j ∈ G; similarly, for each i ∈ [nD], let vi be a G dimensional

vector such that (vi)j =
(
Δ
−1/2
D Φ

ᵀ
D

)
i,j

for all j ∈ G.
De�ne a relation ∼ over [mD] such that i ∼ i′ if ui = ui′ . Since ∼ is an equivalence relation,

it induces a partition S1 t S2 t . . . t Sl = [mD]. Similarly, de�ne a relation ∼ over [nD] such that
i ∼ i′ if vi = vi′ . Let the partition induces by this equivalence relation be T1 t T2 t . . .t Tl′ = [nD].
We claim the following:

Claim 7. For all k ∈ [l], there exists k′ ∈ [l′] such that ui = vi′ for all i ∈ Sk and i′ ∈ Tk′, and∑
i∈Sk

(D1)i =
∑
i∈Tk′

(Dᵀ1)i . (69)
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Before we prove the claim, we show that the above claim implies the theorem. Since ui = ui′

if and only if i ∼ i′, there is a unique k′ ∈ [l′] such that ui = vi for all i ∈ Sk and i′ ∈ Tk′ . This
uniqueness and (69) implies that l = l′. Thus, the map from k to k′ implied by the claim proves
the theorem.

We now proceed to prove the claim.
For ` ∈ N and ε ≥ 0, suppose D has a ε-SNIR to C⊗`. That is, there exist deterministic matrices

A and B, and stochastic matrices U and V , such that

‖AᵀC⊗`B −D‖ ≤ ε, ‖AᵀC⊗` −DV ‖ ≤ ε, and ‖C⊗`B − V ᵀD‖ ≤ ε.

Fix i∗ ∈ [mD]; for all j ∈ G, de�ne

Rj =

{
i ∈ [m`

C ] : ∃i′ such that
(
Δ
−1/2
Dᵀ Ψ

ᵀ
D

)
i′,j

= (ui∗)j and (A)i,i′ = 1

}
, (70)

R′j =

{
i ∈ [n`C ] : ∃i′ such that

(
Δ
−1/2
D Φ

ᵀ
D

)
i′,j

= (ui∗)j and (B)i,i′ = 1

}
, (71)

Qj = (Rj \R′j) ∪ (R′j \Rj).

Then, for all j ∈ G,(
AΔ

−1/2
Dᵀ Ψ

ᵀ
D

)
i,j

=
(
BΔ

−1/2
D Φ

ᵀ
D

)
i′,j

= (ui∗)j if and only if i ∈ Rj , i′ ∈ R′j .

Hence, there exists αj > 0 that depends only on D (but not on n) such that, for all i ∈ Qj ,∣∣∣ (AΔ−1/2
Dᵀ Ψ

ᵀ
D

)
i,j
−
(
BΔ

−1/2
D Φ

ᵀ
D

)
i,j

∣∣∣ ≥ αj .
Hence, ∥∥∥A(Δ

−1/2
Dᵀ Ψ

ᵀ
D)·,j −B(Δ

−1/2
D Φ

ᵀ
D)·,j

∥∥∥2
2
≥ |Qj | · α2

j . (72)

For any j such that (ΣD)j,j > 0, by Lemma 9 (iii), there exists βj that depends only on D (but not

on C⊗` or n) such that

0 < βj ≤ |
(
Σ
⊗`
C

)
i,i
− (ΣD)j,j |, for all i ∈ [m`

C ] such that
(
Σ
⊗`
C

)
i,i
6= (ΣD)j,j .

Hence, by Theorem 5,

(Â·,j − B̂·,j)ᵀ · (Â·,j − B̂·,j) =
OD(
√
ε)

β2j
. (73)

Since ΨC = ΦC and Δ
1/2
C = Δ

1/2
Cᵀ = 1√

mC
I = 1√

nC
I,

B̂·,j =
(
ΦCΔ

1/2
C

)⊗`
BΔ

−1/2
D Φ

ᵀ
Dξj =

1

m
`
2
C

Φ
⊗`
C B(Δ

−1/2
D Φ

ᵀ
D)·,j ,

Â·,j =
(
ΨCΔ

1/2
Cᵀ

)⊗`
AΔ

−1/2
Dᵀ Ψ

ᵀ
Dξj =

1

m
`
2
C

Φ
⊗`
C A(Δ

−1/2
Dᵀ Ψ

ᵀ
D)·,j .
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Using the above equalities and the identity (Φ⊗`C )ᵀΦ⊗`C = I, we get

m`
C · (Â·,j − B̂·,j)ᵀ · (Â·,j − B̂·,j)

=
(
A(Δ

−1/2
Dᵀ Ψ

ᵀ
D)·,j −B(Δ

−1/2
D Φ

ᵀ
D)·,j

)ᵀ (
A(Δ

−1/2
Dᵀ Ψ

ᵀ
D)·,j −B(Δ

−1/2
D Φ

ᵀ
D)·,j

)
=
∥∥∥A(Δ

−1/2
Dᵀ Ψ

ᵀ
D)·,j −B(Δ

−1/2
D Φ

ᵀ
D)·,j

∥∥∥2
2
. (74)

Inequalities (73), (74), and (72) imply that there exists a constant γ that depends only on D such
that

|Qj |
m`
C

≤ γ ·
√
ε

α2
j · β2j

. (75)

Let Sk and Tk′ be the equivalence classes such that Sk = {i′ ∈ [mD] : ui′ = ui∗} and Tk′ = {i′ ∈
[nD] : vi′ = ui∗}. By de�nitions (70) and (71),

R =
⋂
j∈G

Rj =
{
i ∈ [m`

C ] : (A)i,i′ = 1 for some i′ ∈ Sk
}
,

R′ =
⋂
j∈G

R′j =
{
i ∈ [m`

C ] : (B)i,i′ = 1 for some i′ ∈ Tk′
}
.

By (75) and a union bound, it follows that

1

m`
C

· |(R \R′) ∪ (R′ \R)| ≤
∑
j∈G

γ ·
√
ε

α2
j · β2j

= OD
(√
ε
)
⇒ |(|R| − |R′|)| = OD

(√
ε
)
. (76)

We will show that this implies (69). Let AᵀC⊗`B = D + E, where ‖E‖ ≤ ε. Then,

(D + E)1 = AᵀC⊗`B1 = AᵀC⊗`1 =
1

m`
C

Aᵀ1.

Since |Rk| =
∑

i∈Sk
(Aᵀ1)i, we get∑

i∈Sk

(D1)i − ε ≤
|R|
m`
C

≤
∑
i∈Sk

(D1)i + ε. (77)

Similarly, ∑
i∈Tk′

(Dᵀ1)i − ε ≤
|R′|
m`
C

≥
∑
i∈Tk′

(Dᵀ1)i + ε. (78)

Inequalities (76), (77), and (78) imply (69) as ε tends to zero. This concludes the proof.
�
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G Additional Observations

G.1 Connection with One-Way Secure Computation

One-Way Secure Computation (OWSC) is a cryptographic model that has attracted a fair amount
of attention recently [15, 2, 3], and has some relevance to SNIR. In particular, positive results in
SNIR can sometimes be translated into positive results for OWSC, and hence negative results for
OWSC would imply negative results for SNIR in those cases.

OWSC deals with secure reductions between two functions which are in the form of channels
(one input, one output), with the only interaction allowed being the invocation of a given channel
in one direction. For a correlation M , it is natural to associate a randomized channel fM such that
Pr[fM (x) = y] = PrM [y|x]. If a correlation D has a SNIR to C, then it an be converted into an
OWSC protocol for fD over gC , provided fD has a �secure random self-reduction.� Here, a secure
random self-reduction stands for secure protocol for fD which uses a (clear) communication channel
in one direction, and a correlation D. Many correlations of interest do have such random a self-
reduction. When it exists, an impossibility of OWSC of fD over gC implies that D does not have a
SNIR to C. This connection can be used to get a weaker version of Theorem 11 from a result in [15].
(The weakness, as mentioned earlier, is quantitative: the result in [15] leaves open the possibility of
inverse-polynomial security error, whereas we rule out security error below a certain constant.)

G.2 Theorem 9 for Perfect Security

As mentioned in the proof of Theorem 9, we can show that BECq has a perfect SNIR to BECp only
if 1− q = 1− p∗k for some k ∈ N from elementary arguments. Here we give the details.

To show the only if part, recollect that by Lemma 7, SNIR using BEC⊗np uses only deterministic
maps from R1, . . . , Rn and S1, . . . , Sn. Speci�cally for SNIR of BECq, these maps must be Boolean
functions. Let fA be the function corresponding to the map a ← (r1, . . . , rn). We say that a
co-ordinate i has no in�uence on fA for input r = (r1, . . . , rn) if

fA(r1, . . . , ri−1, ri, ri+1, . . . , rn) = fA(r1, . . . , ri−1, 1− ri, ri+1, . . . , rn).

Let ej be the n bit string that is 1 in co-ordinate j and is 0 everywhere else.

Claim 8. If co-ordinate i has no in�uence on fA for input r = (r1, . . . , rn), then for all j ∈ [n], it
has no in�uence on the input r ⊕ ej.

Proof: Case 1 � Suppose fA(r) = fA(r ⊕ ej). By our assumption fA(r) = fA(r ⊕ ei). If fA(r ⊕
ei ⊕ ej) 6= fA(r ⊕ ej), consider the event S = (s1, . . . , sn) such that sk = ⊥ for k ∈ {i, j} and
sk = rk for k ∈ [n] \ {i, j}. This event has non-zero probability. But then the distribution of
BEC⊗np (fA(R)|S = (s1, . . . , sn)) is neither a point distribution nor a uniform distribution over
{0, 1}. This implies that the reduction is not secure.

Case 2 � fA(r) 6= fA(r ⊕ ej). If fA(r ⊕ ei ⊕ ej) 6= fA(r ⊕ ej), consider the same event
S = (s1, . . . , sn) as in case 1. The distribution of BEC⊗np (fA(R)|S = (s1, . . . , sn)) is neither a point
distribution nor a uniform distribution over {0, 1}. This, again, implies that the reduction is not
secure. �
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