
Gradecast in Synchrony and Reliable Broadcast in

Asynchrony with Optimal Resilience, Efficiency, and

Unconditional Security

Ittai Abraham∗ Gilad Asharov†

March 3, 2022

Abstract

We revisit Gradecast (Feldman and Micali, STOC’88) in Synchrony and Reliable Broadcast
(Bracha, Information and Computation’87) in Asynchrony. For both tasks ,we provide new
protocols that have three desirable properties: (1) optimal resilience, tolerating t < n/3 ma-
licious parties; (2) are communication-efficient, where honest parties send just O(nL) bits for
a dealer with a message of L = Ω(n) bits; (3) and are unconditionally secure, (or statistically
secure), without needing to rely on any computational or setup assumptions. To the best of our
knowledge, no previous work obtains all three properties simultaneously.

1 Introduction

Feldman and Micali’s Gradecast [FM88] (in Synchrony), and Bracha’s Reliable Broadcast [Bra87]
(in Asynchrony) are fundamental protocols from the 1980s. In this paper we provide new protocols
for both Gradecast and Reliable Broadcast that obtain three desirable properties:

1. Communication Efficient: The total number of bits that honest parties send and receive
is just O(nL) bits for a dealer that has a message of size L = Ω(n) bis. We call this com-
munication efficient because this is asymptotically optimal: just sending L bits requires each
party to receive L bits for a total of O(nL).

2. Unconditionally secure: There are no restrictions on the computational power of the
adversary and there are no setup assumptions. The protocol acheives statistical security.

3. Optimal Resilience: Tolerating a malicious adversary controlling t < n/3 parties. This is
the optimal resilience for statistical security.

The classic protocol of Bracha [Bra87] is optimally resilient but not communication efficient,
broadcasting L bits requires O(n2L) bits. The protocol of Cachin and Tessaro [CT05] is optimally
resilient and nearly (up to polylog factors) communication efficient, but relies on a collision resistant

∗VMWare Research. iabraham@vmware.com
†Department of Computer Science, Bar-Ilan University. Gilad.Asharov@biu.ac.il. Sponsored by the Israel

Science Foundation (grant No. 2439/20), by JPM Faculty Research Award, by the BIU Center for Research in
Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office, and by the European Union’s Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No. 891234

1

iabraham@vmware.com
Gilad.Asharov@biu.ac.il

hash function and hence is not unconditionally secure. The recent protocol of Das , Xiang, and
Ren [DXR21] is optimally resilient and communication efficient, but still relies on a collision resistant
hash function and hence is not unconditionally secure.

Our work shows, perhaps surprisingly, that optimally resilient and communication efficient
solutions can be unconditionally secure.

A central contribution of this work is the observation that fundamentally, there is no need to
make any computational assumptions or setup assumptions (a collision resistant hash function is
both a computational assumption and a setup assumption).

1.1 Gradecast in Synchrony

Feldman and Micali’s Gradecast protocol [FM88], is a useful building block in synchronous protocols
[BDH10b,BDH10a,FGH+02,KK09]. Its formal definition:

Definition 1.1. In Gradecast a dealer has an input and each party outputs a value and a grade
{0, 1, 2} such that:

1. (Validity) If the dealer is honest then all honest parties output the dealer’s input and grade 2.

2. (Non-equivocation) if two honest parties each output a grade ≥ 1 then they output the same
value.

3. (Agreement) if an honest party outputs grade 2 then all honest parties output the same output
and with grade ≥ 1.

In is known that for unconditional security tolerating t < n/3 malicious parties is the best one
can hope for [FLM85]. Hence such a protocol is said to have optimal resilience. If the number
of bits of the dealer’s input is L, then the message complexity of the FM’s Gradecast protocol is
O(n2L) bits. In this paper we ask the question: Can we reduce the message complexity at the cost
of moving from perfect security to unconditional security? We show:

Theorem 1.2. Let ε > 0 and t ∈ N and n ≥ 3t+ 1. There exists an n-party gradecast protocol that
for input of length L > n/3 ·(log n3/ε) bits achieves validity with probability 1, and non-equivocation
and agreement with probability 1− ε. The protocol tolerates up to t malicious parties and requires
the transmission of O(nL) bits.

1.2 Reliable Broadcast in Asynchrony

Bracha’s Reliable Broadcast [Bra87], is a useful building block in asynchronous protocols. The
recent paper of Das, Xiang, and Ren [DXR21] has a detailed survey of the usefulness of communi-
cation efficient Reliable Broadcast. In particular, it implies Asynchronous Verifiable Secret Sharing
and Asynchronous Distributed Key Generation [AJM+21].

Definition 1.3. In Reliable Broadcast a dealer has an input and each party that terminates outputs
a value such that:

1. (Validity) If the dealer is honest then all honest parties terminate and output the dealer’s
input.

2. (Non-equivocation) if two honest terminate then their output is the same value.

3. (Termination) if an honest party terminates then all honest parties will eventually terminate.

Here too, it is known that t < n/3 is the optimal resilience. If the number of bits of the dealer’s
input is L, then the message complexity of Bracha’s Reliable Broadcast protocol is O(n2L) bits. In
this paper we ask the question: Can we reduce the message complexity at the cost of moving from
perfect security to unconditional security?

2

Theorem 1.4. Let ε > 0 and t ∈ N and n ≥ 3t + 1. There exists an n-party reliable broadcast
protocol that for input of length L > n/3 · (log n3

ε) achieves validity with probability 1, and non-
equivocation and termination with probability 1− ε. The protocol tolerates t malicious parties and
requires the transmission of O(nL) bits.

Our result is an improvement of a recent result of Das, Xiang, and Ren [DXR21] in both security
and asymptotic efficiently. In that paper a similar result was obtained in the Random Oracle model,
under the assumption that the adversary is computationally bounded. Our result is unconditionally
secure. Moreover, asymptotically, the use of a hash function requires a domain of size log(n/ε2)
and hence at least O(nL log(n/ε2) + n2) bits. Our result provides a log(1/ε) better asymptotic
communication complexity.

Prior to the recent result of Das, Xiang, and Ren, the best result was by Cachin and Tassero
[CT05], which for optimal resilience, also required the Random Oracle model, computationally
bounded adversaries, and O(nL log(n/ε2) log n+ n2) bits.

1.3 Techniques

At a high level our work uses the uni-variant (trivial) Schwartz–Zippel lemma [Sch80,Zip79]. The
Schwartz–Zippel lemma is a fundamental tool of unconditional randomized algorithm design and
has numerous applications in many domains. In this work we show its applicability to fault tol-
erant distributed computing by showing how it can provide new trade-offs (better communication
efficiency, with less assumptions) for core protocols that have been studied for over 30 years.

Reed solomon codes [Ree60]. Another primitive that we rely on is Reed-Solomon code. Let
F be a finite field such that |F| > n where n is the number of parties, and let α1, . . . , αn be distinct
field elements. To encode a message m = (m0, . . . ,mt) where each mi ∈ F, the encoding algorithm
defines a polynomial P (x) = m0 + m1x + . . . + mtx

t and outputs (P (α1), . . . , P (αn)). Since two
polynomials of degree-t can agree on at most t points, the distance of two messages is at least n− t.
Thus, we can correct up to (n − t − 1)/2 errors. When t < n/3, this means that we can correct
up to t errors. Moreover, the decoding procedure is efficient. That is, given a possibly corrupted
codeword (δ1, . . . , δn) ∈ Fn that is of distance at most t from a codeword (δ′1, . . . , δ

′
n), the output

of the algorithm is a polynomial P (x) such that for every αi it holds that δ′i = P (αi).

2 Gradecast Protocol for t < n/3 (Synchrony)

We prove the following theorem:

Theorem 2.1. Let ε > 0 and t ∈ N and n ≥ 3t+ 1. Protocol 2.2 is an n-party gradecast protocol
such that for input of length L > n/3 · (log n3/ε) bits tolerates up to t malicious parties and requires
the transmission of O(nL) bits. Security is unconditional, and the probability of error is ε.

Concrete instantiation: for statistical error probability of 2−40 we get the sizes as mentioned in
Table 1.
The protocol. The dealer encodes its input using a finite field F. We let ||F|| = L/t, i.e., |F| = 2L/t.

Observe that L > n/3 · (log n3/ε) implies that n3

|F| < ε and that |F| > n. The dealer first encodes
its message using a degree-t polynomial and sends that polynomial to all parties. The parties then
exchange random points on the polynomial to check its validity. Once t+ 1 honest parties receive
2t + 1 “good points”, the parties can reconstruct the polynomial from the points themselves, and
essentially correct the polynomials that other honest parties exist. The protocol is as follows:

3

n L >

100 0.253 KB
1,000 3.534 KB

10,000 45.34 KB
100,000 0.55 MB

1,000,000 6.53 MB

Table 1: Concrete instantiations. For statistical error probability of 2−40, the table shows the
minimum input length L > n/3 · (log n3/ε) for which Theorem 2.1 holds.

Protocol 2.2: Gradecast for t < n/3 (Synchrony)

• Input: The dealer holds t+ 1 field elements, a0, . . . , at ∈ F.

• Public parameters: n distinct non-zero field elements α1, . . . , αn.

• The protocol:

Round 1 – the dealer:

1. Encode F (x) =
∑t

i=0 aix
i and send F (x) to each party Pi.

Round 2 – each party Pi (each party sends a random share):

1. Denote by Fi(x) the polynomial received by party Pi.

2. Choose βi ∈ F uniformly at random.

3. Send (βi, Fi(βi)) to all parties.

Round 3 – each party Pi (send share if happy):

1. Let {(βj , γj)}j∈[n] be the message received, where (βj , γj) is the message received from
party Pj . If Fi(βj) = γj for at least 2t+ 1 indices j ∈ [n], then Pi is happy.

2. If Pi is happy, then it sends to each other party Pj the message (YourPoint, Fi(αj)).

Round 4 – each party Pi (reconstruct the polynomial):

1. If t + 1 messages (YourPoint, γi) with the same value γi, then send to all parties the
message (Reconstruct, γi) to all parties.

2. Otherwise, forward (Reconstruct,⊥) to everyone.

• Output – each party Pi: Let (Reconstruct, δik) be the message Pi receives from party Pk in
the previous round (if a value was not received from some party Pk then let δik = ⊥). If received
at least 2t+1 values that are non-⊥, use Reed-Solomon decoding procedure to decode (δi1, . . . , δ

i
n)

and let F ′i (x) be the reconstructed polynomial obtained from the robust interpolation.

1. If there is no unique decoding (or did not receive at least 2t + 1 messages), output ⊥ with
grade 0.

2. Otherwise, if (1) Pi is happy in round 3; and (2) Fi(x) = F ′i (x); and (3) in round 4 its value
has received 2t+1 messages (YourPoint, γ′i) with γ′i = F ′i (αi); then output F ′i (x) with grade
2.

3. Otherwise, output F ′i (x) with grade 1.

4

Proof of Theorem 2.1: We start with analyzing the efficiency of the protocol: in round 1, the
dealer sends n · (t + 1)||F|| = O(nL) bits where recall that ||F|| = L/t. In rounds 2, 3 and 4, each
party sends at most constant number of points to each other party, i.e., a total of n2||F|| bits. Thus,
we get that the total communication is O(n2) words, or O(n2||F||) = O(nL) bits. We now show
that validity, non-equivocation and agreement hold with all but an ε error probability. We will
show agreement before non-equivocation.

Validity. We first show that if the dealer is honest and holds the message (a0, . . . , at), then all
honest parties output the same message (a0, . . . , at) with grade 2.

Clearly, the dealer sends the same polynomial F (x) in the first round. Moreover, each honest
party evaluates the polynomial on a random point, and sends it to each other party. Since all honest
parties hold the same polynomial F (x), they are all happy in round 3. Thus, party Pj receives the
point (YourPoint, F (αj)) from at least 2t+ 1 parties in round 4 and sends (Reconstruct, F (αj))
to all other parties. That is, at least 2t+1 parties sends points on the same polynomial of degree-t,
F (x). As a result, the robust interpolation succeeds to all parties, and results with F (x). All honest
parties interpolate F (x) and output grade 2.

Agreement. We show that except for probability ε, if an honest party outputs grade 2 then all
honest parties output the same output and with grade ≥ 1. An honest party outputs grade 2 if
(see Output, Step 2 in Protocol 2.2):

1. It was happy at round 3, that is, it received from at least 2t + 1 parties random points that
agree with Fi(x).

2. There is a unique robust interpolation at the end of round 4 to a polynomial F ′i (x) and
Fi(x) = F ′i (x).

3. It received (YourPoint, γi) with the same γi from at least 2t + 1 other parties, and it holds
that γi = F ′i (αi), where F ′i (x) is the polynomial it has reconstructed;

Since the honest party that outputs grade 2 has received at least 2t+1 round 3 messages (YourPoint, γi)
with the same γi, it means that at least t+ 1 honest parties sent it a point and therefore are happy.
We will show below (Lemma 2.3) that except for probability ε, all honest parties are happy hold
the same polynomial. Thus, all honest parties that are happy in round 3 hold the same polynomial,
denoted as Fi(x). Thus, each other honest party Pk in round 3 receives (YourPoint, Fi(αk)) with
the same value Fi(αk) from at least t+ 1 parties. Since all honest parties that are happy hold the
same polynomial, and since |I| ≤ t, each honest party Pk cannot receive any other message that
has plurality t + 1. This implies that Pk must send (Reconstruct, Fi(αk)) to all other parties.
Since this holds for any honest party, we get that there all parties receive at least 2t+ 1 points on
the same polynomial Fi(x), and therefore there is a unique decoding to that polynomial Fi(x). We
conclude that all honest parties output the same polynomial Fi(x) with grade at least 1.

To conclude the proof (of agreement), we prove the following lemma:

Lemma 2.3. All honest parties that are happy at round 3 have the same polynomial F (x), except
for a probability

(
n
2

)
t
|F| < ε.

Proof: First, for every two distinct fixed polynomials f(x), g(x) of degree-t it holds that:

Pr
β←F

[f(β) = g(β)] =
t

|F|
.

5

To see that, consider the polynomial p(x) = f(x)− g(x). This is a polynomial of degree at most t.
If f(β) = g(β) then p(β) = 0, i.e., β is a root of the polynomial p(x). Since p(x) is a polynomial of
degree at most t, it has at most t roots.

Now, assume that not all honest parties that are happy and hold the same polynomial. This
implies that there exists two honest parties Pk, Pj that are happy but hold two distinct polynomials,
say Fk(x), Fj(x), respectively. Since each party is happy it must have received 2t + 1 points that
agree with its polynomial. Let Agreek ⊆ [n] (resp. Agreej ⊆ [n]) be the set of parties that sent
points that were accepted by Pk (resp. Pj). Since |Agreek| ≥ 2t + 1 and |Agreek| ≥ 2t + 1, and
|Agreek∪Agreej | ≤ 3t+1, we get that |Agreek∩Agreej | ≥ t+1. That is, there is at least one honest
party in the intersection, i.e., at least one honest party that sent a random point that agreed with
both Fk(x) and Fj(x). In any case, either Pk received a correct point from some honest party that
does not hold Fk(x), or Pj received a correct point from some honest party that does not hold
Fj(x). This occurs with probability at most t/|F|. The claim then holds by a union bound over all
pairs of parties Pk, Pj . That is: (

n

2

)
t

|F|
<
n3

|F|
=

n3

2L/t
< ε ,

where the last step is true since L > n/3 · (log n3

ε).

Non-equivocation. We show that if two honest parties output a grade ≥ 1, then they output
the same value. A party Pi outputs grade 1 only if:

1. It received at least 2t+ 1 round 4 messages (Reconstruct, ·);
2. Those 2t+ 1 points have a unique interpolation.

Let Fi(x), Fj(x) be the output of honest parties Pi, Pj , respectively, that both have grade ≥ 1.
We now show that Fi(x) = Fj(x). To output grade ≥ 1, both must have received 2t + 1 round 4
messages, (Reconstruct, ·). Thus, they must have received round 4 messages from at least t + 1
honest parties. Each such honest party have received at least t+1 round 3 messages, (YourPoint, γ)
with the same value γ, which implies that there is at least one honest party that is happy at round 3.
As we saw from Lemma 2.3, except for probability ε, all honest parties that are happy hold the same
polynomial in round 3. Denote that polynomial as F ′(x). We now show that Fi(x) = Fj(x) = F ′(x).

In round 3, the happy honest parties send (YourPoint, F ′(αk)) to each honest party Pk. There-
fore, to reach t + 1 values that are the same, (except for probability ε) the only message that can
be sent by an honest Pk in round 4 is the message (Reconstruct, F ′(αk)). Since Pi and Pj have a
unique interpolation, i.e., there exists a unique polynomial of degree-t that is of distance at most
t from the values they have received, then it must be that this decoded codeword is F ′(x). The
only errors are obtained from the points of the corrupted parties, and those are of distance at most
t. We remark that some honest parties might output ⊥. It might be that some honest parties
received 2t+1 points on F ′(x) while others did not (i.e., corrupted parties might contribute correct
points to only some subset of honest parties). Recall that non-equivocation requires that all honest
parties that output some output with grade ≥ 1 output the same value, and there is no guarantee
that all honest parties output the same output.

3 Reliable Broadcast Protocol for t < n/3 (Asynchrony)

We prove the following theorem:

6

Theorem 3.1. Let ε > 0 and t ∈ N and n ≥ 3t + 1. Protocol 3.2 is an n-party reliable broadcast
protocol such that for input of length L > n/3 ·(log n3

ε) bits tolerates t malicious parties and requires
the transmission of O(nL) bits. The security is unconditional, and the probability of error is ε.

Protocol 3.2 works in the private channel model, i.e., when the adversary cannot see the messages
exchanged between honest parties (while it can arbitrarily delay them). In Section 3.1 we add one
more round to the protocol and remove this assumption.

We recall that in the asynchronous model, the adversary can arbitrarily delay the transmission
of messages between honest parties. Yet, each message from an honest party to another honest
party would eventually arrive. The adversary can send arbitrary messages, and therefore there is
no guarantee on the messages sent from corrupted parties to honest parties.

Before proceeding to the protocol, we describe some writing conventions for asynchronous pro-
tocols, following [CR93]. The protocol is a sequence of instructions. Upon activation, the player
scans all instruction in the specified order. Each instruction has one of the three following possible
forms:

• 〈instruction〉. Here the instruction is carried out at the first activation of the protocol.

• Wait until 〈condition〉. Then 〈instruction〉. If the condition is satisfied, and this instruction
was not executed in the previous activation, then the instruction is execution. Otherwise, the
instruction is ignored.

• If 〈condition〉 then 〈instruction〉. Here, if the condition is satisfied, then the instruction is
execution, even if it was already executed in a previous activation.

Protocol 3.2: Reliable Broadcast for t < n/3 (asynchrony)

• Input: The dealer holds t+ 1 field elements a0, . . . , at ∈ F.

• Initialization: Each Pi sets Fi = F ′i = ⊥, Agreei = ∅.

• The protocol:

1. The dealer: Encode F (x) =
∑t

i=0 aix
i and send F (x) to each party Pi.

2. Each party Pi: Wait until a polynomial is received from the dealer, and set it as Fi. Then,
send to each party Pj the point (βi,j , Fi(βi,j)) for a random βi,j ∈ F.

3. Each party Pi:
(a) Wait until the message (βj,i, γj,i) is received from party Pj . If Fi(βj,i) = γj,i then add j

to Agreei.

(b) Wait until |Agreei| ≥ 2t + 1. Then, Pi is set itself as happy. Moreover, it sends Happy

to each party Pj .

4. Each party Pi:
(a) Wait until Pi is happy, and 2t + 1 messages of Happy were received from parties that

are in Agreei, then set F ′i (x) := Fi(x).
Moreover, send (YourPoint, Fi(αj)), (Reconstruct, (αi, Fi(αi))) and the message Ready
to each party Pj , and move to Output step.

5. Each party Pi that did not send Ready:
(a) Wait until t + 1 messages (YourPoint, γi) with the same value γi are received. Then,

send to each other party (Reconstruct, (αi, γi)).

7

(b) If Pi sent already (Reconstruct, (αi, γi)) but still did not send a Ready message, and
upon each time a (Reconstruct, (·, ·)) message arrives, then:
If a total of 2t + 1 messages (Reconstruct, (αj , γj)) arrived, then use Reed-Solomon
decoding procedure to find the unique degree-t polynomial Gi(x) for which Gi(αj) = γj
for at least 2t+ 1 points. If such a polynomial exists, then set F ′i (x) := Gi(x) and send
(YourPoint, F ′i (αk)) and Ready to each party Pk.
If no such polynomial exists, then wait to receive more (Reconstruct, (·, ·)) messages.

• Output – each party Pi: If F ′i (x) 6= ⊥ and you have sent Ready, and once a total of 2t + 1
Ready messages were received (including yourself), output F ′i (x).

Proof of Theorem 3.1:

Validity: We claim that if the dealer is honest then all honest parties output the same polynomial
F (x) that the dealer holds as input. We show:

Claim 3.3. The following holds:

1. The first honest party that sends the message Ready to all parties holds the polynomial F (x)
that the dealer holds as input.

2. For every i ∈ [n], the ith honest party that sends the message Ready to all parties hold the
same polynomial F (x) as the first honest party that sent Ready.

Proof: There are two options that an honest party would send the Ready message:

1. If the party is happy and received at least 2t + 1 Happy messages, then it holds the same
polynomial that it has originally received from the dealer. When 2t + 1 Ready messages
would arrive, the party would terminate and output that polynomial.

2. If the party has received 2t + 1 messages of the form (Reconstruct, (·, ·)) and there exists
a unique decoding, then the party sets its polynomial to output to the decoded polynomial,
and sends the message Ready to all other parties.

Clearly, the first honest party that sent Ready message must have received 2t+ 1 Happy messages,
since otherwise there are not 2t+ 1 messages of the form (Reconstruct, (·, ·)) sent. This is because
a party sends Reconstruct only together with a Ready message, and no honest party yet sent a
Ready message. This party holds the same polynomial F (x) that the dealer holds as input.

Now, assume (by induction) that the first i honest parties that sent Ready hold the same
polynomial F (x) as the dealer holds as input. We claim that the (i + 1)th party that sends
Ready holds the same polynomial F (x). If the party sends Ready because it receives 2t+ 1 Happy

messages, then it must hold the polynomial F (x) which it has received from the dealer. If the party
sends Ready because it received 2t+ 1 messages (Reconstruct, (·, ·)) then the honest parties that
sent these messages must have send Ready messages already (since those are sent together with
Reconstruct) and by our assumption, those honest parties hold the polynomial F (x). As a result,
the only possible polynomial of degree-t that can be decoded is the polynomial F (x).

The above shows that all honest parties that sends Ready message hold the same polynomial
F (x) that the dealer holds as input. We also claim that all honest parties would eventually ter-
minate. For that we show that there is a path in which the execution terminates. All honest
parties receive the same polynomial from the dealer and send a random point to each other. The
adversary might introduce delays, but if a party does not terminate earlier due to unique decoding,

8

it would eventually receive 2t + 1 “good points” and send a Happy message. Moreover, again, if
not terminate earlier due to unique decoding, every honest party would (eventually) receive 2t+ 1
Happy messages. We are guaranteed therefore that all honest parties will send the Ready message,
eventually, and therefore eventually all honest parties will terminate.

Termination and non-equivocation: Assume that an honest party Pj terminates with output
F ′j(x). We will show that all other honest parties must terminate with the same polynomial F ′j(x).

Pj terminates only if it has received 2t + 1 message Ready. This implies that there is a set of
parties S of honest parties of cardinality at least t+ 1 that sent Ready message to Pj . Each honest
party sends, together with the Ready message, also a message Reconstruct and YourPoint to each
other party. We will show that all honest parties that have sent Ready message must hold the same
polynomial (except for probability ε). Assuming this is true, each party in S sent to each other
honest party Pj the message (YourPoint, γj) with the same value γj , i.e., Pj received the same
point at least t + 1 times. Then, it forwards that point as a Reconstruct message to each other
honest party.

This implies that each honest party eventually sends a YourPoint message on the same polyno-
mial, and therefore all honest parties eventually receive 2t+1 points on the same polynomial F ′j(x).
The robust interpolation then succeeds and results with F ′j(x), and each honest party eventually
sends also a message Ready. As a result, eventually, each honest party will receive 2t+ 1 messages
Ready and terminate.

To conclude, we claim that at any point of time, all honest parties that sent the Ready message
hold the same polynomial with all but probability ε. This is similar to Claim 3.3. All we have to
show is that all honest parties that are happy hold the same polynomial. This clearly holds for
an honest dealer (and with probability 1) whereas for a corrupted dealer this holds with all but
probability ε. We have:

Claim 3.4. If the dealer is corrupted, then all honest parties that are happy in Round 3 hold the
same polynomial F (x), except for a probability

(
n
2

)
· t
|F| .

Proof: As in the proof of Lemma 2.3, for every two distinct and fixed polynomials f(x), g(x) of
degree-t it holds that Prβ←F[f(β) = g(β)] = t

|F| . If there are two honest parties that do not hold
the same probability then it must be the some honest party received a point that is “correct” from
a party that does not hold the same polynomial, which occurs with probability at most t/|F|. The
claim then holds by a union bound over all pairs of parties.

We note that this assumes that the channel between the two honest parties is private. Otherwise,
the adversary might choose the polynomial Fj(x) for some party Pj only after it saw the point βi,j
from Pi.

This concludes the proof of Theorem 3.1.

3.1 Reliable Broadcast without Assuming Private Channels

Protocol 3.2 works in the private channels model, where the adversary might choose the polynomials
it sends to some honest party Pj based on the the choice of βi,j the party Pj receives from some
honest Pi. Therefore, we rewrite the first steps of the protocol:

1. The dealer: Encode F (x) =
∑t

i=0 aix
i and send F (x) to each party Pi.

2. Each party Pi: Wait until a polynomial is received from the dealer, and set it as Fi. Then,
send MessageRecieved to each party Pj .

9

3. Each party Pi: If already received a polynomial from the dealer, and upon receiving the
message MessageRecieved from Pj , send to Pj the point (βi,j , Fi(βi,j)) for a random βi,j ∈ F.

4. Continue Protocol 3.2 from Step 3.

Note that now for every pair of honest parties, the two parties check that the polynomials agree
only after confirming receiving them from the dealer. Thus, the two polynomials are fixed and
therefore if they are not the same, they agree on a random point with probability at most t/|F| as
in Claim 3.4.

Acknowledgement

We thank Sourav Das, Xiang Zhuolun and Ling Ren for pointing out the need to address private
and non-private channels.

References

[AJM+21] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and
Alin Tomescu. Reaching consensus for asynchronous distributed key generation. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
PODC’21, page 363–373, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[BDH10a] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Brief announcement: Simple grade-
cast based algorithms. In DISC, volume 6343 of Lecture Notes in Computer Science,
pages 194–197. Springer, 2010.

[BDH10b] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Simple gradecast based algorithms.
CoRR, abs/1007.1049, 2010.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput.,
75(2):130–143, November 1987.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 42–51. ACM, 1993.

[CT05] C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In 24th IEEE
Symposium on Reliable Distributed Systems (SRDS’05), pages 191–201, 2005.

[DXR21] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and
its applications. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, page 2705–2721, New York, NY, USA, 2021.
Association for Computing Machinery.

[FGH+02] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam Smith.
Detectable Byzantine Agreement secure against faulty majorities. In Proc. 21st ACM
Symposium on Principles of Distributed Computing — PODC 2002, pages 118–126, 7
2002.

10

[FLM85] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. In Proceedings of the Fourth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’85, page 59–70, New York, NY, USA,
1985. Association for Computing Machinery.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC
’88, page 148–161, New York, NY, USA, 1988. Association for Computing Machinery.

[KK09] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. J. Comput. Syst. Sci., 75(2):91–112, February 2009.

[Ree60] Gustave Reed, Irving S.; Solomon. Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng, edi-
tor, Symbolic and Algebraic Computation, EUROSAM ’79, An International Symposiu-
mon Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceedings,
volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.

11

	Introduction
	Gradecast in Synchrony
	Reliable Broadcast in Asynchrony
	Techniques

	Gradecast Protocol for t<n/3 (Synchrony)
	Reliable Broadcast Protocol for t<n/3 (Asynchrony)
	Reliable Broadcast without Assuming Private Channels

