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Abstract. Mimblewimble is a cryptocurrency protocol promising to overcome notorious
blockchain scalability issues. To this day, one of the major factors hindering its wider adop-
tion is the lack of non-interactive transactions, that is, payments where only the sender
needs to be online. We analyze and fix a proposal by Yu, which, inspired by stealth ad-
dresses, introduces non-interactive transactions to Mimblewimble.

1 Introduction

Mimblewimble (MW) was first proposed by an anonymous author in 2016 [Jed16]. It was built on the
top of three ideas initially envisioned for Bitcoin [Nak08]: confidential transactions [Max15], Coin-
Join [Max13a], and transaction cut-through [Max13b]. Initially investigated by Poelstra [Poe16],
a formal model and an analysis of MW was provided by Fuchsbauer, Orrù and Seurin (FOS)
[FOS19] in 2019. In 2020, Burkett [Bur20] proposed an extension of Mimblewimble supporting
non-interactive transactions, later described in more detail by Gary Yu [Yu20]. We will refer to this
extension as MW-Yu. In this work, we study and asses the security of MW-Yu [Yu20, §2.1], in
the definitional framework of [FOS19] and fix discovered vulnerabilities.

MW and its variants use a group G (which we denote additively) of prime order p with two
generators G and H. As with confidential transactions [Max15], a coin is a Pedersen commitment
C = Cmt(v, q) := vH + qG to its value v using some randomness q ∈ Zp, together with a so-
called range proof π guaranteeing that v is contained in some interval of admissible values. In MW,
knowledge of the opening q for the commitment enables spending the coin. Similarly to Bitcoin, a
transaction in MW is a list of output coins Ĉ ∈ Gn̂ and input coins C ∈ Gn, where

Ĉi = v̂iH + q̂iG for i ∈ [n̂] and Ci = viH + qiG for i ∈ [n] .

Leaving fees and minting transactions aside, a transaction is balanced if and only if
∑
v̂−

∑
v = 0

(where for a vector v = (v1, . . . , vn), we let
∑
v :=

∑n
i=1 vi). For coins as defined above, this is

equivalent to ∑
Ĉ −

∑
C = (

∑
q̂ −

∑
q)G , (0)

a quantity called the kernel excess E ∈ G in MW. If the transaction is balanced, then knowledge
of the openings q̂, q of all involved coins implies knowledge of the discrete logarithm logE of
the excess E to base G. Intuitively, if the producer of the transaction proves knowledge of logE
then, together with the binding property of Pedersen commitments, this should guarantee that the
transaction is balanced. In MW this is done by generating a signature σ under public key E, using
its discrete logarithm

∑
q̂ −

∑
q as the signing key. FOS [FOS19] prove that when using Schnorr

signatures over G, balancedness follows from the hardness of computing discrete logarithms in G in
the random-oracle model. They moreover show that as long as a user owning coin C in the ledger
keeps the opening private, no one can steal C (i.e., creating a transaction that spends C).

Transactions in Mimblewimble can be easily merged non-interactively, in a similar way to Coin-
Join [Max13a]. Consider two transactions tx0 = (Ĉ0,C0,π0, E0, σ0) and tx1 = (Ĉ1,C1,π1, E1, σ1).
The aggregate transaction tx results from the concatenation of inputs and outputs, that is,

tx =
(
Ĉ0‖Ĉ1,C0‖C1,π0‖π1, E0‖E1, σ0‖σ1

)
,



where we let “‖” denote concatenation. As outputs in one transaction that also appear as inputs
in the other cancel out in Equation (0) for tx, they can simply be removed from the input and
output list (together with their range proofs), while validity of tx will be maintained. This has
been called transaction cut-through in the literature [Max13b]. In a cryptocurrency based on MW,
ledger is defined as the (cut-through) of the aggregation of all transactions. Since every spent
coin (“spent transaction output”, TXO) is removed by cut-through, the outputs in the ledger
are precisely the unspent TXOs (UTXO), representing the current state of the ledger. In other
cryptocurrencies, instead, the history of all transactions needs to be stored to ensure that the
UTXO set is cryptographically valid. FOS [FOS19] further remarked that if the signature scheme
supports aggregation, then σ0‖σ1 can be replaced by their aggregation to save space. Thus, the
only trace of a transaction whose outputs have been spent in the ledger is the value E.

Even if the inputs and outputs in an aggregate transaction tx are ordered lexicographically, one
can still determine which inputs and outputs come from the same component transaction, since
tx will contain an excess value E which equals the difference between the sum of the outputs and
inputs of the original transaction. This can be prevented by using kernel offsets [Dev20b], where
E is replaced by E + tG for a random t←$Zp and t is included in the transaction. The aggregate
of two transactions with E0, t0 and E1, t1 will then contain E0‖E1, t0 + t1.

Most implementations of MW create new transactions via an interactive protocol between
sender and receiver in on order to produce the Schnorr signature σ,1 whose secret key depends on
the openings of the sender’s and the receiver’s coins. FOS [FOS19] proposed a transaction protocol,
where the sender creates all output coins, and can thus complete the transaction by computing σ on
its own. The sender then shares (through a separate private channel) a transaction along with the
secret key associated to one of the output coins. The receiver can then create a transaction spending
this coin, merge it with the received transaction and then broadcast the aggregate transaction to
the miners. The downside of this approach is that there is a window of time in which both sender
and receiver can spend a coin, which can lead to deniability issues for payments.

Non-interactive transactions. In 2020, Yu [Yu20] posted on ePrint an extension of MW for
achieving non-interactive transactions by adding stealth addresses [vS13,Tod14]. Each user has a
wallet (or stealth address) (A,B) ∈ G2. Given a destination wallet, a sender can derive a one-time
address, unique for every transaction, to which she sends the money. These one-time addresses are
unlinkable to the wallet they correspond to, yet the owner of the wallet is (the only one) able to
derive the secret key for it. In detail, the sender chooses a uniform element r←$Zp and defines
the one-time key for stealth address (A = aG,B = bG) as P = H(rA) · G + B, where H is a
cryptographic hash function. Being provided R := rG, the owner of (A,B) can derive the secret
key, that is, the logarithm of P to base G as p := H(aR) + b.

Integrating stealth addresses into MW is not straightforward, as the currency itself does not
provide addresses for sending money. Yu’s proposal [Yu20], built on the top of Burkett’s [Bur20],
received multiple feedbacks from the community, and as a consequence it was further updated with
notes describing possible attacks and countermeasures. In essence, the idea is to extend an output
(C, π) in MW by a one-time key P chosen by the sender for a destination address, as well as an
ephemeral key R that allows the receiver to compute the one-time secret key. To prevent the value
P from being modified (which would mean stealing it from the receiver), a signature ρ on P under
signing key R (of which the sender knows the logarithm) is added. An output is thus of the form
(C, π,R, ρ, P ).

Moreover, the mechanism for letting the receiver derive the secret key for P can now also be
used to let the receiver obtain the opening of the commitment C (Yu [Yu20, §2.1.1] does this by
setting q = H(H(rA)G+B)). Note that knowing the view the so-called “view key” (a,B) of stealth

1 For instance, in Grin this is documented in the grin-wallet documentation. In Beam this is documented in the
developer documentation.
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address (aG,B), one can derive from R both P (and thus check if the payment is for that address)
and q (and thus check if C commits to a given amount).

Usually in cryptocurrencies, when spending an output linked to a key P , the transaction is
signed with the secret key of P . In Mimblewimble however, aggregation of transactions should hide
which inputs and outputs come from the same component transaction. Yu therefore proposes to use
logarithms of all P values in the inputs and all values R̂ contained in the outputs to “authenticate”
the spending, in a similar way to how MW lets the opening of the input coins authenticate the
output coins via Equation (0). Namely by proving knowledge of the logarithm of

∑
R̂−

∑
P .

Yu proposes to simply arrange the R̂ values so that the above results in the excess E (which is
defined by (0)). However, this is only possible if one of the outputs goes back to the sender (who
can choose the q value of the corresponding C arbitrarily); for all other coins, R̂ (together with
the stealth address) defines q, which defines E, for which R̂ has to be chosen. We therefore modify
the scheme and introduce a stealth excess X :=

∑
R̂ −

∑
P , under which we add (as for E) a

signature to the transaction. Our scheme then supports transactions for which all outputs are sent
to destination addresses.

At the time of writing, the core proposal in [Yu20, §2.1] is still affected by further issues. The
ones known before our analysis are the following:

– As illustrated in [Yu20, §2.9.1], MW-Yu is susceptible to a rogue-key attack [Yu20, §2.9.3]. A fix
was also proposed, which requires the addition of one signature per transaction input, namely
a signature proving knowledge of the logarithm of P . The security and correctness analysis of
this proposed change are not detailed further.

– Mixing NIT with non-NIT transactions, as envisaged in [Yu20], leads to correctness issues within
the balance equations.2 No argument for why the security is preserved is given, especially w.r.t.
[Yu20, Eq. 2 ]. (We do not considered “mixed transactions” in our scheme.)

Our contributions. In Section 3 we discuss further issues that emerged after the publication
of [Yu20]. We propose and formally define a new protocol for non-interactive transactions, greatly
inspired by [Yu20], that overcomes the found issues (Section 2). We then provide arguments for
the security of our protocol against specific types of attacks by following the provable-security
methodology and sketching security reductions to hardness assumptions in idealized models. To do
so, we use multiple security experiments that capture relevant attack scenarios. We then analyze
our protocol with respect to them them. In particular, we consider the following types of attacks:

(i) creating money other than via “minting” transactions (inflation resistance);
(ii) stealing money from the ledger (theft prevention);
(iii) stealing money from a transaction not yet merged with the ledger (transaction-binding);
(iv) breaking privacy by decomposing an aggregate transaction into its components or learning

anything about the transacted amounts or the destination addresses (transaction privacy).

Inflation resistance and theft prevention are straightforward adaptations of the notions from [FOS19,
Def. 10 and 11]; transaction-privacy is stronger than FOS’s privacy notion [FOS19, Def. 11], which
only requires that amounts are hidden (in MW there are no addresses and FOS do not consider
kernel offsets). Transaction-binding prevents attacks specific to MW with non-interactive transac-
tions (it appears that for MW, as analyzed in [FOS19], attacks of this type are covered already by
theft-prevention).

For inflation resistance and theft prevention, we assume that the discrete logarithm problem is
hard in the underlying group G and for transaction privacy we additionally make the decisional
Diffie-Hellman (DDH) assumption. For transaction-binding, we introduce a new assumption (see
Section 4.1), which states that an adversary that can ask for random values in Zp (with p = |G|)
cannot arrange these values (using every value at most once) into two vectors x and y so that

2 https://forum.mwc.mw/t/non-interactive-transaction-and-stealth-address/32
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∑
x =

∑
y (mod p). Concretely, for the security of our scheme it suffices to require the size

of these vectors to be upper-bounded by the maximum number inputs of pending transactions an
attacked user creates (i.e., transactions broadcast to miners that are not yet included in the ledger).
We note that this problem can be solved in sub-exponential time thanks to the k-list tree algorithm
[Wag02]. In order to be protected against active adversaries ready to invest substantial computing
power, a user therefore needs to limit the number of its pending transactions at any point in time.

2 A new proposal for MW with non-interactive transactions

2.1 Preliminaries

Let ε denote the empty string. We assume the existence of a group G of prime order p and two
“nothing-up-my-sleeve” generators G,H ∈ G (that is, we assume the discrete logarithm of H to
base G is not known to anyone). The length of the prime p is the security parameter λ. (A typical
choice could be the group Secp256k1 and hence λ = 256.) For X ∈ G, we let logX denote the
discrete logarithm of X to base G, that is logX = x with X = xG.

Pedersen commitments. We model the employed cryptographic hash function as a random
oracle and denote it by H(·). We employ a homomorphic commitment scheme, specifically Pedersen
commitments, for which a value v ∈ Zp is committed by sampling q←$Zp and setting

C := vH + qG .

A commitment is opened by sending (v and) q and testing C
?
= vH+qG. Commitments are perfectly

hiding (i.e., no information about the value is leaked) and computationally binding (i.e., under the
discrete logarithm (DL) assumption, no adversary can change their mind about a committed value,
that is, find a commitment and two different openings to it).

Schnorr signatures. We use (key-prefixed) Schnorr signatures. A signature on a message m ∈
{0, 1}∗ under public key X = xG ∈ G, is computed via Sch.Sign(x,m), which picks a uniform
r←$Zp and returns a signature (R, s) ∈ G× Zp with R := rG and s := r + H(X,R,m) · x mod p.
The verification algorithm Sch.Vf(X,m, (R, s)) checks whether sG = R+H(X,R,m)·X (see Fig. 2).
Schnorr signatures are unforgeable under the DL assumption in the random oracle model (ROM),
and their security has been extensively studied in the past literature [Seu12].

We use Schnorr signatures for different types of values (e.g., signatures σ under excesses E or
signatures ρ under R). We assume that these are “domain-separated”, which can easily achieved
by including the type in the message that is being signed. We also assume that random oracles H
used elsewhere in the scheme (e.g. to derive the value q) are domain-separated from H used for
Schnorr signatures.

In Section 5 we show that in the algebraic group model [FKL18] combined with the ROM,
Schnorr signatures are simulation-sound zero-knowledge proofs of knowledge of the secret key, a
property that we will be central in the security analysis of our protocol. The statements for the proof
system are public-key/message pairs (X,m) for which the witness is x = logX. Zero-knowledge
means that there exists a simulator (which here controls the random oracle) that can simulate
proofs for any statements without being given a witness that are indistinguishable from honestly
generated proofs. Proof of knowledge (PoK) means that there exists an extractor that from any
prover (which here is assumed to be algebraic) that produces a valid proof for a statement (X,m)
can extract the witness logX. Proofs are simulation-sound (also called simulation-extractable for
PoKs) if a witness can be extracted from a prover even if the prover can obtain simulated proofs
for statements (Xi,mi) of its choice (except the one it is proving).
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inputs outputs

C0 ← P0, ψ0 Ĉ0, π̂0, R̂0, ρ̂0, P̂0

C1 ← P1, ψ1 Ĉ1, π̂1, R̂1, ρ̂1, P̂1

...
...

s, f, t, E, σ, y,X, χ

inputs outputs

C0 ← P0, ψ0 Ĉ0, π̂0, R̂0, ρ̂0, P̂0

C1 ← P1, ψ1 Ĉ1, π̂1, R̂1, ρ̂1, P̂1

...
...

s, f, t,E,σ, y,X,χ

Fig. 1. Left: Visualization of a (simple) MW-NIT transaction. Inputs consist of a value Pi form a previous transaction
output and a signature ψi. Outputs consist of a commitment Ĉi to the value of the output, an associated range proof π̂i,
an ephemeral key R̂i, a signature ρ̂i under R̂i, and the destination address P̂i. The kernel consists of the supply s,
the fee f , the offsets t and y, the excess signature σ (valid under E) and the stealth excess signature χ (valid under
X). The excess E and the stealth excess X can be computed as in (1) and (2). Right: Visualization of an aggregated
non-interactive Mimblewimble transaction. The excesses and their signatures are lists of the excesses and signatures
from the composing transactions.

Range proofs. We employ a proof system for statements on commitments, in particular for the
NP language defined by the following relation asserting that a committed value is contained in an
admissible interval: {(

C, (v, r)
)

: C = Cmt(v, r) ∧ v ∈ [0, vmax]
}

In particular, we use a zero-knowledge proof system Zkp for proofs of knowledge of a witness
(v, r) for a statement C. (Note that we do not assume Zkp to be simulation-sound [FOS19, Def. 8],
whereas FOS required this in their proof of theft prevention. Our scheme could thus be instantiated
with a more efficient range proof system than theirs.) We denote the prover algorithm by π ←
Zkp.P(C, (v, r)) and the verifier by b← Zkp.Vf(C, π).

2.2 Data structures

The extension of Mimblewimble to non-interactive transactions introduces the notion of addresses.

A stealth address is a pair (A = aG,B = bG) ∈ G2, for which we call (a,B) ∈ Zp ×G the view
key and (a, b) ∈ Z2

p the spend key.

A transaction in MW-NIT is composed of (see also Figure 1):

– A list of outputs: tuples of the form out = (Ĉ, π̂, R̂, ρ̂, P̂ ), each implicitly associated to an
output address (A,B), composed of:
• an ephemeral key R̂ = r̂G ∈ G, chosen by the sender, which defines two keys as:

(k̂, q̂) := H(r̂A, (A,B), R̂)

(note that k̂ and q̂ can be computed from the view key and R̂ since r̂A = aR̂)
• a commitment Ĉ := v̂H + q̂G to the coin value v̂, using randomness q̂
• a range proof π̂ proving knowledge of an opening of Ĉ to a value v ∈ [0, vmax]
• a one-time output public key P̂ ∈ G, computed from k̂ as P̂ := k̂B (note that the spend

key is required to compute log P̂ )
• a signature ρ̂ under verification key R̂ on message Ĉ‖π̂‖P̂ (and possibly a time stamp)

– A list of inputs of the form (P,ψ) where
• P ∈ G is the one-time public key of the transaction output being spent (each value P is

only allowed once in the ledger) and
• ψ is a signature under verification key P on the spent output

– The kernel, which is composed of:
• the supply s ∈ [0, vmax], indicating the amount of money created in the transaction
• the fee f ∈ [0, vmax], indicating the fee paid for the current transaction
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• the offset t ∈ Zp
• the excess E ∈ G, defined as the difference between the commitments in the outputs

(including the fee) and the inputs (including the supply), shifted by the offset. If Ci is the
i-th input commitment, that is, the value contained in the output in which Pi appears, then

E :=
∑
Ĉ + fH −

∑
C − sH − tG , (1)

which can be seen as E := E′− tG in terms of the true excess E′ :=
∑
Ĉ+fH−

∑
C− sH

• a signature σ under E on the empty message ε

• the stealth offset y ∈ Zp
• the stealth excess X ∈ G, defined as the difference between the ephemeral keys R̂i from

the outputs and the one-time keys Pi from the inputs, shifted by the stealth offset y

X :=
∑
R̂−

∑
P − yG (2)

• a signature χ under X on the message E

A (simple, i.e., non-aggregated; see below) transaction is thus of the form:

tx =
(
(P ,ψ), (Ĉ, π̂, R̂, ρ̂, P̂ ), (s, f, t, σ, y, χ)

)
2.3 Transaction creation

Consider a transaction output out = (C, π,R, ρ, P ) spent to a stealth address (A′, B′).

– Given the corresponding view key (a′, B′), one can compute the shared keys as:

(k, q) := H(a′R, (a′G,B′), R)

(where q is the opening for the commitment C).

– Given the corresponding spend key (a′, b′), one can compute the secret key for P as logP = kb′.

To create a transaction that spends transaction outputs outi of values vi from source addresses Pi,
for i ∈ [n], and creates outputs of values {v̂i}i∈[n̂] for destination addresses {(Ai, Bi)}i∈[n̂], creating
an amount s of new money and paying f in fees so that

∑
v̂+f =

∑
v+s, first compute all values

qi and pi := logPi, for i ∈ [n], as above and proceed as follows:

– for each input index i ∈ [n], compute the signature on the output being spent

ψi ← Sch.Sign(pi, outi)

– for each output index i ∈ [n̂]:

• select a random ephemeral key r̂i←$Zp and set R̂i := r̂iG

• compute the shared secrets for the destination address (Ai, Bi)

(k̂i, q̂i) := H(r̂iAi, (Ai, Bi), Ri) (3)

and from them compute the output commitment and the one-time public key

Ĉi := v̂iH + q̂iG (4)

P̂i := k̂iBi (5)

• compute the range proof π̂i ← Zkp.P(Ĉi, (v̂i, q̂i))

• compute the signature under the output ephemeral key (possibly including a time stamp)

ρ̂i ← Sch.Sign(r̂i, Ĉi‖π̂i‖P̂i) (6)
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– sample uniformly at random t←$Zp and compute

e :=
∑
q̂ −

∑
q − t = logE

with E as in (1), and, from that, a signature under the excess σ ← Sch.Sign(e, ε)
– sample uniformly at random y←$Zp and compute

x :=
∑
r̂ −

∑
p− y = logX

with X as in (2), and, from that, a signature under the stealth excess χ← Sch.Sign(x,E)

The final transaction is

tx :=
(
(Pi, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i)i∈[n̂], (s, f, t, σ, y, χ)

)
. (7)

2.4 Transaction aggregation

Aggregate transactions are essentially a concatenation of the composing transactions. In contrast
to Jedusor’s [Jed16] and FOS’ [FOS19] protocols, MW-NIT does not perform any cut-through, as
it turns out this is insecure (see Section 3.3). Given transactions tx0, tx1, the aggregate transaction
tx is computed as follows:

– if a P value in the input of one transaction appears in the inputs of the other, or a P value in
the output of one transaction appears in the outputs of the other, abort

– concatenate the inputs of tx0 and tx1 as well as their outputs, and sort them lexicographically
(this is required to hide which inputs and outputs comes from which transaction)

– compute the supply (from the supplies si of txi), the fee, offset, and stealth offset of tx as follows:

s := s0 + s1 f := f0 + f1 t := t0 + t1 y := y0 + y1

– concatenate the lists of excesses, together with the associated signatures σ, and the lists of
stealth excesses, together with the associated signatures χ and sort each list lexicographically

The aggregate transaction is of the form

tx =
(
(Pi, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i)i∈[n̂], (s, f, t, (Ei, σi)i∈[n̄], y, (Xi, χi)i∈[n̄])

)
. (8)

Note that simple transactions do not (need to) contain the (stealth) excesses, as they can be
computed from other values of the transaction via Equations (1) and (2) (therefore displayed in
light gray in Figure 1). In contrast, aggregate transactions (also displayed in Figure 1) will contain
a list of excesses E and stealth excesses X together with lists for the associated signatures σ and χ.

2.5 Transaction verification

Simple transactions. A transaction

tx =
(
(Pi, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i)i∈[n̂], (s, f, t, σ, y, χ)

)
referencing outputs

(
outi = (Ci, πi, Ri, ρi, Pi)

)
i∈[n]

is valid if all of the following hold:

(i) all input signatures are valid: for all i ∈ [n] : Sch.Vf(Pi, outi, ψi) = true
(ii) all range proofs are valid: for all i ∈ [n̂] : Zkp.Vf(Ĉi, π̂) = true
(iii) all output signatures are valid: for all i ∈ [n̂] : Sch.Vf(R̂i, Ĉi‖π̂i‖P̂i, ρ̂i) = true (where the

message could also contain a time stamp, which is checked for legitimacy)
(iv) the excess signature is valid: Sch.Vf(E, ε, σ) = true, for

E :=
∑
Ĉ −

∑
C + (f − s)H − tG

(v) the stealth excess signature is valid: Sch.Vf(X,E, χ) = true, for

X :=
∑
R̂−

∑
P − yG

7



Aggregate transactions. An aggregate transaction of the form (8) referencing outputs
(
outi =

(Ci, πi, Ri, ρi, Pi)
)
i∈[n]

is verified by checking that inputs are sorted lexicographically, verifying (i)–

(iii) as for simple transactions, and checking the following variants of (iv) and (v):

(iv′) for all i ∈ [n̄] : Sch.Vf(Ei, ε, σi) = true
(v′) for all i ∈ [n̄] : Sch.Vf(Xi, Ei, χi) = true
(vi′) additionally, the following “balance equations” are checked:∑

E =
∑
Ĉ −

∑
C + (f − s)H − tG (9)∑

X =
∑
R̂−

∑
P − yG (10)

2.6 Output verification

We finally define when a holder of a view key should accept a given transaction output as payment
to his stealth address. Given a view key (a,B), an amount v and a transaction output out =
(Ĉ, π̂, R̂, ρ̂, P̂ ), compute (k, q) := H(aR̂, (aG,B), R̂), and accept the payment if

Ĉ = vH + qG and P̂ = kB .

3 Fallacies in the initial proposal

We list below the main attacks that were found during the review of Yu’s scheme [Yu20] and which
motivated most of the design decisions for our scheme in Section 2.

3.1 Correctness

In Yu’s protocol [Yu20, §2.2.2], there are no stealth excesses X (nor the corresponding signatures χ).
A valid transaction must satisfy

E =
∑
R̂−

∑
P , (11)

instead of Item (v) in Section 2.5. This can be achieved if one of the outputs, say the i-th, goes
back to the creator of the transaction (e.g., because it is a “change output”). She can just sample
qi uniformly and set R̂i := E +

∑
P −

∑
j 6=i R̂j (for which she knows logRi).

However, one cannot create a transaction whose outputs are all linked to destination addresses,
e.g., a transaction with a single output: R (together with the address) determines the coin opening q,
which defines the value E; but (re-)defining R so that (11) holds would lead to a new value E.
(Using Yu’s notation [Yu20, Eq. 2 ], the value ro depends on q, which in turn is computed from ro.)

In order not to require that there is always a change output (and because it enables us to give
a rigorous security analysis of our scheme), we introduced stealth excesses X, that along with the
signature χ accounts for the “excess” in stealth addresses. We also introduce a stealth offset, so
privacy of aggregated transactions is preserved.

3.2 Security: the feed-me attack

Analogously to how the stealth addresses were originally defined [vS13], and how they are currently
used (e.g. in Monero3, in Yu’s scheme [Yu20, §2.2.2], the one-time output key is defined “additively”
as:

P̂i := k̂iG+B.

instead of “multiplicatively”, as in our scheme in Equation (5). It turns out that computing the
one-time key additively leads to an attack that affects the transaction binding property. This

3 See https://www.getmonero.org/resources/moneropedia/stealthaddress.html
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vulnerability was originally found by @south lagoon77, alias kurt.4 Using the notation of the
preceding sections, Alice, an honest user with address (aG,B), creates two transactions tx0 and
tx1, both with one input and one output, transferring respectively v0 to Bob and v1 > v0 to Charlie:

(. . . , C0) ← P0, ψ0 | . . . , R̂0, ρ̂0, . . .
t0,E0,y0,X0,...

(tx0)

(. . . , C1) ← P1, ψ1 | . . . , R̂1, ρ̂1, . . .
t1,E1,y1,X1,...

(tx1)

Both transaction are broadcast to the miners. A malicious miner can now forge a new transaction,
transferring the amount v1 − v0 to himself, as follows:

(. . . , C1) ← P1, ψ1 | . . . , R̂0, ρ̂0, . . . ‖ . . . R∗, ρ∗, . . .
t0,E0,y∗,X0,...

, (tx∗)

copying the input of tx1 and the output and the excesses from tx0. It computes a second output
“honestly”, choosing r∗←$Zp, setting R∗ = r∗G and signing any P value (knowing logP ) via ρ∗.
(The miner can also create the corresponding coin C∗, so that Equation (9) is satisfied for tx∗,
by setting C∗ := Cmt(v1 − v0, q1 − q0), where q0 and q1 are the openings of C0 and C1, which
the miner can either obtain by knowing Alice’s view key, or by having sent the outputs that are
now being spent by tx0 and tx1 to Alice in the first place.) Finally, the miner computes y∗ so that
Equation (10) is also satisfied for tx∗, that is

X0 + y∗G = R∗ +R0 − P1 .

By validity of tx0, we have X0 + y0G = R0 − P0 and thus

y∗G = R∗ − P1 + P0 + y0G . (12)

The crucial observation now is that if the miner knows the values k0 and k1 that define P0 and P1,
resp. (which it can either obtain by knowing Alice’s view key or by being the creator of the outputs
spent by tx0 and tx1), then it knows the discrete logarithm of P0 − P1 = (k0 − k1)G, as the value
B from Alice’s address cancels out. The miner can thus compute y∗ satisfying (12).

To prevent these forms of attacks, in our scheme the one-time keys are defined as Pi = kiB in
Equation (5). The term P0 − P1 then becomes (k0 − k1)B. In Section 4.4, we show that as long as
the adversary cannot find values k0 and k1, output by the random oracle and with k0−k1 = 0 (and,
more generally, values k0,1, . . . , k0,n0 , k1,1, . . . , k1,n1 so that

∑
k0 −

∑
k1 = 0), our scheme satisfies

transaction binding. This precisely is guaranteed by the assumption we introduce (Section 4.1). Note
that all values ki,j must be distinct, as every transaction must have a unique P value. Moreover,
note that the number of elements (n0 + n1) is upper-bounded by the number of inputs in pending
transactions of the attacked user.

3.3 Security: on transaction cut-through

Suppose that, in an aggregate transaction, an output (C, π,R, ρ, P ) of one transaction is referenced
as input (P,ψ) of another transaction. One may wonder if, as with original MW, cut-through can
be applied, that is the spent output and the input referring to it are removed from the aggregate
transaction.

While validity of the coin-balance equation (9) would be maintained, this is not the case for
the “address equation” (10). One may thus consider (as Yu does [Yu20, §2.1.1] for (sufficiently old
parts of) the ledger) to add a value “RmP” defined as the difference of the sum of all removed R̂
values and all removed P̂ values to the aggregated transaction. The check in Equation (10) would

4 See: https://twitter.com/davidburkett38/status/1466460568525713413
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be replaced by
∑
R̂ −

∑
P + RmP =

∑
X + yG, where the sums are only over the indices that

have not been removed in the outputs (
∑
R̂) and the inputs (

∑
P ).

However, since “RmP” is not bound to anything, this scheme would be insecure. Consider a
miner that collects transactions and aggregates them. Then she simply replaces one of the remaining
R̂ values by a value of which she knows the discrete logarithm, puts a new P̂ value, produces a
corresponding signature ρ̂ and defines RmP as

∑
X + yG +

∑
P minus the sum of the R̂ values

including her own. This results in a valid transaction in which the miner now owns one of the
outputs (assuming the miner knows the view key of the stealth address it stole the coin from;
otherwise it made the coin unspendable by its owner).

We suspect that Yu assumed all R and P values remain for each (possibly aggregated) trans-
action when included in the blockchain, as in [Yu20, Eq. 3 ], it says:

SUM(R− P ′)spent at height

which suggests that all these values need to be present. In addition, we note that simply removing
cut-through inputs or outputs would make Equations 3 and 4 incorrect.

Example. Consider two 1-input/1-output transactions tx1 and tx2 (assume that all supplies and
fees are 0).

(. . . C0) ← P0, ψ0 | C1, π1, R1, ρ1, P1
t1,E1,σ1,y1,X1,χ1

(tx1)

← P1, ψ1 | C2, π2, R2, ρ2, P2
t2,E2,σ2,y2,X2,χ2

(tx2)

where tx1 spends some coin C0 creating one output, which is then spent by tx2 (that is, we have
Sch.Vf(P1, C1, ψ1) = true). If tx1 and tx2 could be merged as

(. . . C0) ← P0, ψ0 | C2, π2, R2, ρ2, P2
t1+t2,(E1,E2),(σ1,σ2),y1+y2,(X1,X2),(χ1,χ2),RmP

which is valid if ψ0 and ρ2 (and π2), as well as σ1, σ2, χ1 and χ2, are valid on their respective
messages, and the following holds:

C2 − C0 = E1 + E2 + (t1 + t2)G

R2 − P0 + RmP = X1 +X2 + (y1 + y2)G

Then a miner could simply choose r∗, p∗, set R∗2 := r∗G, P ∗2 := p∗G, create ρ∗2 honestly, define
RmP∗ := X1 +X2 + (y1 + y2)G−R∗2 + P0 and create the following (valid!) transaction:

(. . . C0) ← P0, ψ0 | C2, π2, R
∗
2, ρ2, P

∗
2 t1+t2,(E1,E2),(σ1,σ2),y1+y2,(X1,X2),(χ1,χ2),RmP∗

for which she knows the temporary spending key p∗.

On keeping ρ and ψ. One may wonder then if it is possible to keep the R and P values but
remove the signatures ρ and ψ, or at least one of them? Again, each of these removals would
lead to an attack. We start with considering removing ρ but keeping ψ, that is, an aggregated
transaction in the example above looks as follows:

(. . . C0) ← P0, ψ0 | R1, P1 ‖ ψ1 | C2, π2, R2, ρ2, P2
t1+t2,(E1,E2),(σ1,σ2),y1+y2,(X1,X2),(χ1,χ2)

Intuitively, not having ρ means that P1 is not bound to R1 anymore, which the following attack
leverages, where given tx1 and tx2, the miner replaces tx2 by a transaction it owns: The miner
chooses p∗1 and r∗2, sets P ∗1 := p∗1G and R∗2 := r∗2G, computes ψ∗1 and ρ∗2 honestly and sets X∗1 :=
(r∗2 − p∗1 − y1)G and computes χ∗1 honestly. It also chooses p∗2, sets P ∗2 := p∗2G, creates a signature
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ρ∗2 on it using r∗2, and computes X∗2 and χ∗2 honestly. Then the following is a valid transaction for
which the miner knows the key to spend the output:

(. . . C0) ← P0, ψ0 | R1, P
∗
1 ‖ ψ1 | C2, π2, R

∗
2, ρ
∗
2, P

∗
2 t1+t2,(E1,E2),(σ1,σ2),y1+y2,(X∗1 ,X

∗
2 ),(χ∗1,χ

∗
2)

Finally, we show that removing ψ but keeping ρ also leads to attacks, similarly to the rogue key
attack observed in [Yu20, §2.9.3]. In this scenario, the above aggregated transaction would look as
follows:

(. . . C0) ← P0, ψ0 | C1, π1, R1, ρ1, P1 ‖ C2, π2, R2, ρ2, P2
t1+t2,(E1,E2),(σ1,σ2),y1+y2,(X1,X2),(χ1,χ2)

(Note that C1 and π1 need to be present for ρ1 to be verifiable.) Consider an honest transaction
tx1

(. . . C0)← P0, ψ0 | C1, π1, R1, ρ1, P1
t1,E1,σ1,y1,X1,χ1

A miner can steal the output as follows (again, assuming it knows the view key of its holder and
thus the opening of C1).

The miner computes a fresh output (C2, π2, R2, ρ2, P2) honestly (i.e., knowing the logarithms
of R2 and P2), picks random R∗1 and X2 (knowing the corresponding logarithms) and sets P ∗1 :=
R∗1 +R2−P0−X1−X2− t1G. It signs P ∗1 (as well as C1 and π1) under R∗1 as ρ∗1 and produces χ2

under X2. It then publishes the following transaction:

(. . . C0) ← P0, ψ0 | C1, π1, R
∗
1, ρ1, P

∗
1 ‖ C2, π2, R2, ρ2, P2

t1+t2,(E1,E2),(σ1,σ2),y1,(X1,X2),(χ1,χ2)

Note that the transaction is valid, since we have

R∗1 +R2 − P0 − P ∗1 = X1 +X2 + t1G

and the miner knows the key to spend the output.

3.4 Security: the modified replay attack

Recall the replay attack for MW with non-interactive transactions mentioned by Yu [Yu20, §2.9.2]:
a user is paid via some output out, which the user later spends. Then an adversary pays the user
again, creating the exact same output; if the user accepts it, the adversary can replay the user’s
previous spend, making the latter lose the money.

The attack is prevented (without having the user store all previously spent outputs) by using
time stamps and signatures (ψ, in our notation), which Yu [Yu20, §2.9.3] introduces in order to
prevent rogue-key attacks. In his words, “Each Input must attach its own signature for [Pi], as a
second proof for the coin ownership”. While it is not specified which message is signed, it is crucial
that the entire output (and not just C) is signed, in particular, including the time stamp.

Otherwise, the above replay attack can be adapted: if the adversary created the output out then
it can later simply change the time stamp (so the user accepts it), recompute ρ, and send it to the
user again. If the signature contained in the user’s spendings did not sign the time stamp (or ρ),
then the previous spend would be valid again and the replay attack can still be mounted. This is
why in MW-NIT we define ψ as a signature on the entire output.

4 Security analysis

4.1 Assumptions

In our security analysis, we assume that the range proofs are proofs of knowledge of the com-
mitted value v and the opening q. (Note that for the employed Pedersen commitment, a proof of
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language membership, that is not “of knowledge” is vacuous, as for any C there always exists an
opening (v = 0, q = logC).) We thus assume that there exists an extractor that from (an adversary
outputting) a range proof can extract the values v and q.

We assume that (key-prefixed) Schnorr signatures are a strongly simulation-sound zero-knowledge
proof of knowledge of the secret key. In Section 5, we show that this is the case in an idealized model,
namely the combination of the random-oracle model and the algebraic group model [FKL18]. We
also assume that the discrete logarithm (DL) problem is hard in the group underlying the sys-
tem, and for transaction privacy that the decisional Diffie-Hellman (DDH) assumption holds. We
furthermore make the following “subset-sum”-type hardness assumption:

Assumption 1. Let nmax ∈ N. Consider a (polynomial-time) adversary that has access to a
random oracle returning values in Zp (where p is the order of the discrete-log hard group G). Then
it is infeasible for the adversary to find vectors of values x and y output by the oracle so that:

–
∑
x =

∑
y mod p

– no value appears twice in x‖y
– |x|+ |y| ≤ nmax

It is possible to frame this problem as a generalized birthday problem, which is solvable by k-list
tree [Wag02] in time O(nmax · 2dlog pe/(1+blognmaxc)). The k-list algorithm, when provided access to
k random oracles H1, . . . ,Hk, allows to find different values a1, . . . , ak such that

H1(a1) + H2(a2) + · · ·+ Hk(ak) = 0 (mod p). (13)

Consider k = nmax, and let H1, . . . ,H|x| be random oracles that forward any query to the random
oracle H using the same input, and return whatever H replies, and oracles H|x|, . . . ,Hnmax−1 that
forward the query to H, but swap the sign of the response before returning. Then, the k-list
algorithm finds elements (a1, . . . , anmax) such that (H1(a1), . . . ,Hnmax(anmax)) satisfies (13), which
is also a valid solution also for Assumption 1.

4.2 Inflation resistance

Definition. Informally, inflation resistance guarantees that the only way to create money in an
aggregate cash system, such as Mimblewimble, is explicitly via the supply contained in transactions.
The notion is formalized by the following game, formalized in [FOS19, Def. 10]:

Inflation-resistance game. The adversary is given the system parameters (for MW-NIT
they contain the elements G and H and potential parameters for the range proof), and its
task is to produce a (valid) ledger and a transaction tx∗ (accepted by the ledger) that spends
an amount that exceeds the supply of the ledger (plus its own supply).

In addition to the amount v̂ of the outputs of tx∗, for MW-NIT the adversary must also
return view keys (ai, Bi), which have to accept the outputs outi of tx∗. Letting s denote the
ledger supply, s∗ the supply and f∗ the fee of tx∗, the adversary wins if

s <
∑
v̂ + f∗ − s∗ . (14)

Below we argue the following:

If the used range proof system is extractable and if the discrete-logarithm assumption holds
in the underlying group, then MW-NIT satisfies inflation resistance in the ROM.
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Security argument. Our analysis follows closely that of [FOS19, Theorem 13] for MW-FOS,
since a ledger (or transaction) in MW-NIT contains an MW-FOS ledger (or transaction). A small
difference is that FOS did not consider fees and kernel offsets, but these are easily added to the
argument. Consider a successful adversary that returns a ledger(

C,π,R,ρ,P , (s, f, t,E,σ, y,X,χ)
)

and a transaction

tx∗ =
(
(P ′i , ψ)i∈[n′], (Ĉi, π̂i, R̂i, ρ̂i, P̂i)i∈[n̂], (s

∗, f∗, t∗,E∗,σ∗, y∗,X∗,χ∗)
)
,

with all P ′i contained in the ledger, that is, P ′ = (Pi)i∈I for some I ⊆ N, together with output values
(v̂i)i∈[n̂] and view keys (ai, Bi)i∈[n̂]. The reduction extracts all values vi and openings qi for all the
output coins Ci contained in the ledger from the respective range proofs πi; thus Ci = Cmt(vi, qi).
Since the ledger is valid, from (9) we have (note that there are no inputs in a ledger):∑

E =
∑
C + Cmt(f, 0)− Cmt(s, 0)− Cmt(0, t) . (15)

We first show that the ledger must be balanced w.r.t. the values vi extracted from the output coins
Ci, that is

s =
∑
v + f . (16)

The pair
(∑

v + f − s,
∑
q − t

)
is an opening of the right-hand side of (15). Thus if (16) did not

hold then the pair would be an opening to a non-zero value of
∑
E. Together with the signatures σ

under keys E, this precisely represents a break of the security notion EUF-NZO, defined in [FOS19,
Def. 5].

Let q̂i be the commitment openings derived from R̂i and the view key (ai, Bi). Since the latter
accepted the i-th output of tx∗, we have Ĉi = Cmt(v̂i, q̂i). From validity of tx∗ we have∑

E∗ =
∑
Ĉ −

∑
i∈I Ci + Cmt(f∗, 0)− Cmt(s∗, 0)− Cmt(0, t∗) ,

where I is the set of indices of the outputs in the ledger that are spent by tx∗. The same reasoning
as for the ledger shows that tx∗ must be balanced, that is

s∗ +
∑

i∈I vi =
∑
v̂ + f∗ , (17)

otherwise (
∑
v̂ −

∑
i∈I vi + f∗ − s∗,

∑
q̂ −

∑
i∈I qi − t), together with E∗ and σ∗ would represent

a break of EUF-NZO. Together this yields

s
(16)
=
∑
v + f ≥

∑
i∈I vi

(17)
=
∑
v̂ + f∗ − s∗ ,

which contradicts the condition (14) required for the adversary to win.
Thus, to break inflation-resistance, the adversary must break either knowledge-soundness of the

range proofs or the notion EUF-NZO. In [FOS19, Lemma 16], it is shown that Pedersen commit-
ments and Schnorr signatures together satisfy EUF-NZO (via a tight security reduction to DL in
the ROM).

4.3 Theft resistance

We define two notions that protect users from losing coins. The first one is an adaptation of the
notion from [FOS19] to a scheme with non-interactive transactions. The notion guarantees that
coins in the ledger belonging to a user can only be spent by that user.

The main difference between MW-FOS and MW-NIT is that the former relies on the coin keys
(the opening of the commitments) being kept secret, while in MW-NIT, the spender knows (and
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defines) the openings of the receivers’ coins.5 Instead, in MW-NIT, the security relies on the secrecy
of the “spend key” for the user’s stealth address. We strengthen the notion by assuming that the
view key is known to the adversary (as delegating scanning for transactions should not endanger
the security of these transactions).

Theft-resistance (from ledger). For any coin belonging to a user in the ledger (that is,
it was accepted w.r.t. the user’s view key), no matter how it was received (e.g., sent by the
adversary), as long as the coin has never been spent before and the user keeps her spend key
safe, no one except her can spend it (even if her view key is publicly known).

This is formalized via a game akin to [FOS19, Fig. 8], where there is one honest user simulated
by the experiment and the adversary can command the user’s actions (create minting transactions
for that user and make the user spend coins of hers) and the user never accepts a coin it has already
owned. The adversary wins the game if it spends any of the honest user’s coins.

Remark. Note that this notion does not prevent (a pure) replay attack, where the user, after spending
some output, is sent the exact same output again by the adversary, who can then replay the user’s
previous spending. Formally speaking, when an output was spent and is received a second time,
then it has already been spent, so it is outside the scope of this definition. (Such replay attacks are
protected against by transaction-binding, the next security notion described below.)

Further, note that the formal game for theft resistance for a scheme with non-interactive trans-
actions is a lot simpler than the one from [FOS19], which had to take care of the interactive spending
protocol. In particular, this involved an instruction for the honest user to receive coins, and the
definition of the coins an honest user owns in [FOS19] is cumbersome, whereas for non-interactive
transactions, anything which the honest user accepts is considered an output belonging to her.

Below we argue the following:

If Schnorr signatures are simulation-sound proofs of knowledge of their secret keys (cf. Sec-
tion 5) and the the discrete-logarithm assumption holds in the underlying group, then MW-
NIT satisfies theft-resistance.

Security argument. Consider a user with stealth key (A = aG,B) owning an output out =
(Ĉ, π̂, R̂, ρ̂, P̂ ) in the ledger. Then P̂ is a temporary address derived from the user’s stealth address
(A,B) and R̂ as P̂ := k̂B (see (3) and (5)). (If this was not the case, the user would not have
accepted the coin.) Spending this coin requires a signature under P̂ on the output, but an honest
user, unless she spends that output, never signs the output with a key related to her spending key
B.

We show that a theft can be used to break the DL assumption assuming simulation-extractability
of Schnorr signatures. The reduction receives a DL challenge B∗ ∈ G, chooses a∗ ← Zp, sets the
honest user’s stealth address to (A∗ := a∗G,B∗) and gives the adversary the view key (a∗, B∗).

Whenever the user is asked to spend an output out′ = (C ′, π′, R′, ρ′, P ′) belonging to her, the
reduction computes the transaction as specified, except that it does not know the logarithm of P ′

(since it does not know the logarithm of B∗). The reduction thus queries its simulation oracle for
a signature ψ on out′ under P ′.

When an output out = (Ĉ, π̂, R̂, ρ̂, P̂ ) belonging to the user is spent by the adversary, then the
transaction contains in its input a signature ψ∗ on out under P̂ . By the definition of the security
game, the honest user has never spent out before. This means that the reduction has never queried
a simulated signature on out under P̂ . Therefore, by simulation-extractability, the reduction can
extract p̂ = log P̂ , and since P̂ = k̂B∗, it can thus compute the solution p̂k̂−1 to its DL challenge (by
collision resistance of the hash function used to derive k̂, the probability that k̂ = 0 is negligible).

5 Note that this is unavoidable for non-interactive transactions: knowing the (sum of) the receivers’ keys is necessary
to compute the kernel signature σ.
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4.4 Transaction-binding

Definition. While the previous notion states that once a user’s coin is in the ledger it cannot be
purloined, we define an additional notion, which guarantees that nothing can be “stolen” from a
transaction before it is added to the ledger (this protects against malicious miners, for example).
In particular, we want to guarantee that if a user produces a transaction tx then no one can create
a transaction that contains one of the inputs of tx while not containing all its outputs.

Thus, while theft-resistance protects the outputs of a transaction, transaction-binding in some
sense protects the inputs: even if an honest user spends a coin by putting it as an input into a
transaction (and broadcasts it to be included in a block), then this input cannot later appear in
another transaction, except for a transaction that contains all the outputs of the original transac-
tion: since transactions can be aggregated, further inputs and outputs can be added to the original
transaction. We formalize transaction-binding via the following game:

Transaction-binding. The ledger is controlled by the experiment (which in reality is taken
care of by the consensus mechanism). The experiment also simulates all honest users, and
the adversary can ask for spawning new users, for which the experiment will create stealth
addresses and give the corresponding view keys to the adversary.

The adversary can instruct honest users to spend coins (which are in the ledger and owned
by the corresponding user) to addresses of the adversary’s choice (belonging to honest users
or the adversary), and the experiment computes the corresponding transaction and gives
it to the adversary. The adversary can commit any transactions (computed by itself or the
experiment) to the ledger.

The adversary’s goal is to create a transaction (which is accepted by the ledger) which
contains input coins from an honest transaction (that has not been committed to the ledger
(otherwise→ theft-resistance)), but does not contain all the output coins of that transaction
that belong to honest users.

Two remarks are in order.

(1) About honest users. While it might seem restrictive that only stealing output coins of honest
users is considered a break of the notion, it is not. In aggregate cash systems like Mimblewimble,
an adversary can always “steal” output coins it owns from a transaction tx: it can simple create
a transaction that spends these coins and then merge this transaction with tx; the result is a
transaction in which some of the output coins have been replaced by new coins. We do thus not
consider this an attack and transaction-binding gives no guarantees against it.

(2) Replay attacks. As users are not supposed to keep track of all the coins they have ever owned,
they could be tricked into accepting a coin they had already owned and spent (the spender just
needs to select the same r value). After receiving the coin again, the adversary could replay the
transaction that spent the first instance of the coin and the user would lose her coin. This is
prevented by including a time stamp [Yu20, §2.1.1] in the output (which is part of the message
signed under the key R̂). In order to be successful, the adversary would thus have to change the
time stamp of the replayed attack, and this would also be considered a break of transaction-binding
because the original output must be replaced by a new output with a different time stamp. The
precision of the timestamp determines also the anonymity set of the transaction output.

Below we argue the following:

If Schnorr signatures are strongly simulation-sound proofs of knowledge of their secret keys
(cf. Section 5), the discrete-logarithm assumption holds in the underlying group, and As-
sumption 1 (cf. Section 4.1) holds for nmax defined as the maximal number of inputs of
pending transactions by any user, then MW-NIT satisfies transaction-binding.
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Argument intuition. As this is the most complex notion to analyze, we start with some intuition
in a simplified scenario. Consider an adversary that sends Alice a transaction with one output
out = (C, π,R, ρ, P ) and that Alice creates a transaction

tx =
(
(P,ψ), (Ĉ, π̂, R̂, ρ̂, P̂ ), (s, f, t, σ, y, χ)

)
spending out to Bob. Moreover, assume this is the only transaction Alice ever makes. The adver-
sary’s goal is now to replace the output in tx by a different output (C∗, π∗, R∗, ρ∗, P ∗), yielding
a “forged” transaction tx∗, which we assume to be a simple (i.e., non-aggregate) transaction. We
consider three different cases:

(I) R∗ = R̂. Since the output in tx∗ is different, either the message C∗‖π∗‖P ∗ (possibly including
the time stamp) signed by ρ∗, or ρ∗ itself is different. This means that ρ∗ is a “strong” forgery
(since the message could have remained the same).

For consistency with the remaining cases, we reduce (I) to strong simulation-extractability of
Schnorr and hardness of DL. Given a DL challenge R̂, the reduction embeds it in the output of tx.
Although it does not know log R̂, the reduction can still compute (k̂, q̂) = H(a′R̂, (a′G,B′), R̂) using
Bob’s view key (a′, B′) (recall that Bob must be honest). From this, the reduction can compute Ĉ,
π̂ and P̂ . For the signatures ρ̂ and χ̂, whose secret keys require knowledge of log R̂, the reduction
queries its simulation oracle.

If the adversary is successful in case (I), from ρ∗ the reduction can extract log R̂ (since ρ∗ or
the queried message must be different) and thus solve the DL challenge.

(II) R∗ 6= R̂ and X∗ = X, that is, the stealth excess of tx∗ is the same as that of tx. From
the definitions of the stealth excesses in (2), we get R∗ − P − y∗G = R̂ − P − yG and thus
R̂ = R∗+ (y−y∗)G. Since ρ∗ proves knowledge of logR∗, this means the adversary must also know
log R̂.

As in case (I), the reduction embeds a DL challenge as R̂ and uses its oracle to obtain the
signatures ρ̂ and χ̂ to compute tx.

If the adversary is successful in case (II), from ρ∗ the reduction can extract r∗ = logR∗ (since
ρ∗ is for a key different from that of the queried signature ρ̂) and thus compute the DL solution
r∗ + y − y∗.

(III) R∗ 6= R̂ and X∗ 6= X, that is, the stealth excess X∗ := R∗ − P − y∗G of tx∗ is different from
the stealth excess of tx. Since χ∗ contained in tx∗ proves knowledge of x∗ := logX∗ and ρ∗ proves
knowledge of r∗ := logR∗, this means that the adversary must also know logP = r∗ − y∗ − x∗.

This can again be used to solve a DL challenge; however, now we cannot set P to be the
challenge, since P is computed by the adversary. Instead, the reduction embeds a DL challenge B
into Alice’s stealth address (aG,B). When the reduction creates tx, it does not know p := logP ,
so it queries its simulation oracle for signatures ψ and χ (whose secret keys are or depend on p),
all other values are computed as prescribed.

If the adversary is successful in case (III), from ρ∗ the reduction extracts r∗ (no ρ signatures
have ever been simulated), and from χ∗ the reduction extracts x∗ (the simulated signature χ was
under X 6= X∗) and computes p := r∗− y∗−x∗ as above. From Alice’s view key, the reduction can
now compute k with P = kB and returns the DL solution p · k−1 = logB.

While the above provide a general intuition, the actual argument is made more complex by con-
sidering the “complete” scenario:

– Alice may create other transactions, of which the adversary might reuse parts in its tx∗

– The transaction tx∗ might be an aggregated transaction, meaning that it has a list of stealth
excesses, of which parts can be reused from transactions by Alice and others may be “fresh”.
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Security argument. We distinguish three types of attacks, which generalize the ones above. Let
tx∗ be the adversary’s forgery.

(I) tx∗ contains an output whose R̂ value is the same as in the output of an honest transaction,
but the output is different

(II) there exists a transaction tx′ with stealth excess X ′ and output values R′ by the user, so that
X of tx∗ contains X ′, but tx∗ does not contain all values R′

(III) tx∗ does not contain all the R̂ values of the attacked transaction tx′ and the stealth excess list
X of tx∗ does not contain the stealth excess X ′ of tx′

We start by showing how breaks of Type (I) are reduced to strong simulation-extractability of
Schnorr proofs and hardness of computing DL in G. The reduction receives a DL instance R∗ ∈ G
and guesses which output index ι in which transaction tx′ will have its R-value reused, but the
message mι signed by ρ̂ι under R̂ι altered (thus Ĉι or P̂ι or π̂ι (or its timestamp)) or ρ̂ι modified.
When creating this transaction, the reduction sets R̂ι := R∗ (and thus does not know its discrete
logarithm). It completes the transaction as follows: since the receiver of the output is an honest
user, the reduction knows its view key (aι, Bι) and can thus compute:

(k̂ι, q̂ι) := H(aιR
∗, (Aι, Bι), R

∗) .

From this, it computes C, P and π as prescribed for this output. Knowing all q values, it also
computes σ. It queries its Schnorr simulation oracle for the signature ρ̂ι and the stealth excess
signature χ. Assume the adversary’s break is of Type (I) and that the reduction guessed correctly
which output was modified (namely the one having R∗ embedded). Then the returned transaction
contains a signature ρ∗ under R∗ on a message m∗ composed of the corresponding values Ĉ, π̂, P̂
(and possibly a time stamp) so that (m∗, ρ∗) 6= (m̂, ρ̂) (otherwise the outputs are the same). Since
(R∗,m∗) has not been queried to the simulation oracle (recall that ρ and χ signatures are domain-
separated, cf. Section 2.1), by simulation extractability of Schnorr, the reduction can extract logR∗

and thus solve the DL challenge.

The reduction of Type (II) is very similar: the reduction guesses which transaction tx′ will have
its stealth excess included in tx∗, and which index ι will be such that R̂′ι in tx′ will not be present
in tx∗. The reduction embeds a DL challenge R∗ as R̂′ι and simulates the transaction (querying
signatures ρ̂′ι and χ′ to its Schnorr oracle) exactly as in for Type (I) above.

By validity of tx′, it satisfies the “balance equation” (10)

X ′ =
∑
R̂′ −

∑
P ′ − y′G , (18)

where R̂′ι = R∗, and all values r′i = log R̂′i, for i 6= ι, and p′i = logP ′i are known to the reduction.

Since tx∗ is of Type (II) for the stealth excess list X of tx∗, we have Xi∗ = X ′ for some i∗. By
validity of tx∗ we further have ∑

i 6=i∗ X
∗
i +X ′ =

∑
R̂−

∑
P̂ − yG (19)

Plugging (18) into (19) yields∑
i 6=i∗ X

∗
i +

∑
i 6=ι R̂

′
i +R∗ −

∑
P ′ − y′G =

∑
R̂−

∑
P − yG . (20)

From the signatures χi contained in tx∗, the reduction can extract the values xi = logXi (since the
only simulated χ signature was for X ′ 6= Xi for all i 6= i∗). From the signatures ψi contained in tx∗,
the reduction can extract the values pi = logPi (since no ψ signatures are simulated). From the
signatures ρi contained in tx∗, the reduction can extract the values ri = log R̂i (since by assumption,
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R′ι (for which a ρ signature was simulated) is not among R̂). Taking the logarithm to base G of
(20) and substituting all logarithms of group elements known to the reduction thus yields:

logR∗ = −
∑

i 6=i∗ x
∗
i −

∑
i 6=ι r

′
i +
∑
p′ + y′ +

∑
r −

∑
p− y ,

meaning the reduction can solve the DL challenge.

It remains to show how breaks of type (III) can again be reduced to the hardness of DL (assuming
simulation-extractability of Schnorr signatures), and additionally making Assumption 1.

The challenger now embeds a DL challenge B into the wallet (aG,B) of an honest user U .
Whenever the adversary asks for a transaction spending coins from U ’s wallet, the input signatures
ψ under the keys P , as well as the stealth excess signature χ, are simulated. At the end of the
execution, the adversary returns a forged transaction tx∗ of the form

tx∗ =
(
(P ,ψ), (Ĉ, π̂, R̂, ρ̂, P̂ ), (s, f, t,E,σ, y,X,χ)

)
,

where P contains an input P ′ from an honest transaction tx′, the vector R̂ does not contain some
value Rι from the outputs of tx′ and X ′ is not contained in X. In tx∗ we distinguish two types of
inputs and two types of stealth excesses:

– let P̄i denote the inputs that appear in outputs of transactions created by U , and P ∗i be those
that do not

– let X̄i denote the stealth excesses that appear in transactions created by U and X∗i be those
that do not

For all X̄i appearing in a transaction txi by U , let Pi,j and R̂i,j denote the values contained in the
inputs and outputs of txi and let yi be its stealth offset. By validity of txi we have:

X̄i =
∑

j R̂i,j −
∑

j Pi,j − yiG . (21)

For these values Pi,j and the values P̄i contained in tx∗ (which all belong to U), we have, by
construction, Pi,j = ki,j ·B and P̄i = ki ·B for values ki,j and ki known to the reduction. (They are
the respective first elements of H(aR′, (A,B), R′) from (5) for some values R′ chosen by the sender
of that transaction to U .) Moreover, the reduction knows the values ri,j := log R̂i,j , as they were
chosen by U .

From the signatures ψi corresponding to the values P ∗i and χi corresponding to X∗i contained
in tx∗, we can extract the following (since, by definition, P ∗i and X∗i are values that have not been
used by U and thus no signatures have been simulated for them):

– p∗i := logP ∗i
– x∗i := logX∗i

Moreover, from the signatures ρi contained in tx∗ we can extract (as no ρ signatures are simulated)

– ri := log R̂i

Since tx∗ is valid, it satisfies the “balance equation” (10), that is:∑
X∗ +

∑
X̄ =

∑
R̂−

∑
P ∗ −

∑
P̄ − y∗G .

where P ′ = P̄i for some i. Substituting X̄i via (21), taking the logarithm to base G, and using the
values known to the reduction, this yields:∑

x∗i +
∑∑

ri,j −
∑∑

ki,j · logB −
∑
yi︸ ︷︷ ︸

= log
∑

X̄

=
∑
ri −

∑
p∗i − (

∑
ki) logB︸ ︷︷ ︸

= log
∑

P̄

− y∗ . (22)
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From this equation, the reduction can compute logB if∑∑
ki,j 6=

∑
ki , (23)

that is, if the sum of P values in the inputs of U ’s transactions (those whose stealth excess was
included in tx∗) is different from the sum of P values in the inputs of tx∗ (those that are contained
in inputs of U ’s transactions).

We show that an adversary achieving a transaction-binding break of Type (III) by having
equality in Equation (23) has solved the problem in Assumption 1. In particular, from the values
in (23), which are random-oracle outputs, we will construct two vectors x and y, with no repeating
values such that

∑
x =

∑
y (mod p). Since the reduction can solve the DL challenge if the

inequality in (23) holds, this completes the proof.
We first show that there are no repetitions on the LHS and RHS of (23). There are no repetitions

among the ki,j values: this follows from all P values in outputs in the ledger being distinct and
U not committing any double-spendings. Moreover, there are no repetitions among the ki values
either, as otherwise tx∗ would not be a valid transaction.

Next, there is at least one value ki which does not appear among the ki,j , namely the value k′

corresponding to P ′ from the attacked honest transaction tx′. Indeed, for Type (III) k′ is among
the ki (since P ′ is among the inputs of tx∗); on the other hand, tx′, which is the only transaction of
U ’s that has P ′ among its inputs, does not appear on the right hand side of (22) (since X ′ is not
contained in X).

Removing all values that appear on both sides in Equation (23) yields thus a solution to the
problem in Assumption 1.

4.5 Transaction privacy

This section considers an attacker that passively observes blocks, and attempts to recover informa-
tion about the transaction graph or the transacted amounts. In Jedusor’s original proposal [Jed16],
no guarantee of privacy was given besides hiding transaction amounts. In particular, the initial
version of Mimblewimble allows disaggregation of transactions [Dev20a], that is, link inputs and
outputs that come from the same original transaction. As a consequence, one could infer how money
was being spent across the network.

Grin introduced transaction offsets and network protocol changes such as Dandelion that
provide stronger anonymity guarantees. To accommodate for this new privacy feature, and for
the new features of non-interactive transactions, we present a stronger privacy notion than the
one provided in [FOS19], which cannot be achieved without offsets. We stress that our analysis is
limited to the cryptographic properties of the scheme and that we do not consider possible external
attack vectors, e.g. network adversaries.

Definition. Informally, our scheme provides three basic anonymity guarantees:

– a transaction hides the amounts contained in its inputs and outputs as well as
– the destination addresses of the outputs (and inputs), except to the receivers of the transaction;
– in an aggregated transaction, it is not possible to tell which inputs and outputs belonged to the

same component transaction.

The above follow immediately from the following simulation-based definition:

Transaction privacy. There exists a simulator which can simulate a transaction when
given the following inputs:
– transaction outputs out1, . . . , outn
– the number of transactions ` that were aggregated, and the total number of outputs n̂
– the supply and the fee
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so that no adversary, which is given an “address oracle” creating and returning stealth
addresses (Aj , Bj), can distinguish whether a second oracle, on inputs

– the number of component transactions `

– for every component transaction i:

• a vector transaction outputs outi together with associated values vi and spending
keys (ai, bi), so that each view key (ai,j , bi,jG) accepts the pair (outi,j , vi,j)
• output values v̂i and associated addresses returned from the first oracle (Ai,Bi)
• the supply si and the fee fi

either (1) returns the aggregation of the transactions txi created for the respective values,
or (2) runs the simulator on input the list out1‖ . . . ‖out`, ordered lexicographically, the
numbers ` and

∑`
i=1 |v̂i| (i.e., the total number of outputs), as well as

∑`
i=1 si and

∑`
i=1 fi.

Below, we argue the following:

If Schnorr signatures, interpreted as proofs of knowledge of secret keys, and the range proofs
are zero-knowledge and if DDH is hard in G, then MW-NIT satisfies transaction privacy in
the random oracle model.

Security argument. We first define the simulator. On input out = (Ci, πi, Ri, ρi, Pi)
n
i=1, `, n̂, s

and f , it does the following:

– pick random values Ĉ1, . . . , Ĉn̂, R̂1, . . . , R̂n̂, P̂1, . . . , P̂n̂←$G
– pick random values E2, . . . , E`, X2, . . . , X`←$G, as well as t, y←$Zp
– set E1 :=

∑
Ĉ −

∑
C + (f − s)H − tG−

∑`
i=2Ei

and X1 :=
∑
R̂−

∑
P − yG−

∑`
i=2Xi (note that we could have ` = 1)

– using the respective simulators guaranteed by zero-knowledge, simulate the range proofs π̂i for
statements Ĉi, for all i ∈ [n̂], as well as the following signatures: for all i ∈ [n]: ψi on message
outi under key Pi; for i ∈ [n̂]: ρi on Ĉi‖π̂i‖P̂i under R̂i; for i ∈ [`]: σi on ε under Ei and χi on Ei
under Xi.

We now show that assuming indistinguishability of simulated range proofs and simulated Schnorr
signatures and under the DDH assumption, a real transaction is indistinguishable from a simulated
transaction. We start with a real transaction and consider a sequence of hybrid games.

0. In the “real” game, the component transactions are created as described (in Section 2.3) using
the spending keys; they are then aggregated (Section 2.4).

1. In the first hybrid, all range proofs and Schnorr signatures (cf. Section 5) in the transaction are
simulated. By the zero-knowledge property of both primitives, this change is indistinguishable
from the honest computation of the range proofs and the signatures.

2. For every output, in the generation of the key shares in Equation (3), the first argument r̂i,jAi,j
of the hash function is replaced by a random value Di,j←$G. This is indistinguishable by the
DDH assumption, noting that log R̂i,j and logAi,j are never used in the simulation of the game
(the former because ρi,j and χi are simulated; Ai,j is created by the challenger but logAi,j is
not used anywhere)

3. The game aborts if the adversary at some point queries (Di,j , (Ai,j , Bi,j), Ri,j) for some i, j to
the random oracle. Since the adversary has no information on Di,j , the probability of aborting is
negligible. Note that in Hybrid 3, the values ki,j and qi,j are uniformly random and independent
of the Ai,j and Ri,j .

We now argue that a transaction generated in Hybrid 3 is distributed equivalently to a transaction
computed by the simulator, which concludes the proof.
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Sch.Setup(1λ)

(p,G, G)← GrGen(1λ)

Select H : {0, 1}∗ → Zp
return par := (p,G, G,H)

Sch.Sign(sk,m)

(p,G, G,H, x) := sk ; r←$Zp ; R := rG

c := H(xG,R,m) ; s := r + cx mod p

return σ := (R, s)

Sch.KeyGen(par)

(p,G, G,H) := par ; x←$Zp ; X := xG

sk := par ‖x ; pk := par ‖X
return (sk, pk)

Sch.Ver(pk,m, σ)

(p,G, G,H, X) := pk ; (R, s) := σ

c := H(X,R,m)

return (sG = R+ cX)

Fig. 2. Key-prefixed Schnorr signature scheme Sch[GrGen] based on a group generator GrGen.

In a transaction produced in Hybrid 3, since the coin openings q̂ are uniformly random, and
by the definition of E1, . . . , E`, we have that for fixed values s :=

∑
si and f :=

∑
fi, the tuple

((Ĉi)
`
i=1, (Ei)

`
i=1,

∑
ti) is uniformly random conditioned on∑

Ei =
∑∑

Ĉi,j −
∑∑

Ci,j + (f − s)H − (
∑
ti)G .

But that is exactly how the simulator produces these values. Analogously, since the values k̂ are
uniformly random, and by the definition of X1, . . . , X`, the tuple ((R̂i)

`
i=1, (Xi)

`
i=1,

∑
yi) is uni-

formly random conditioned on
∑
Xi =

∑∑
R̂i,j −

∑∑
Pi,j − (

∑
yi)G. Again, this is how the

simulator generates this tuple. Finally, in a transaction produced in Hybrid 3, all range proofs and
signatures are simulated, as in outputs of the simulator.

5 Strong simulation-extractability of Schnorr Signatures

Key-prefixed Schnorr signatures, formally defined in Figure 2, can be reinterpreted as zero-knowledge
proofs of knowledge of the secret key, that is, proofs for the NP language defined by the following
relation: {(

(X,m), x
)

: X = xG
}
.

To prove a statement (X,m) with witness x, return π ← Sch.Sign(x,m); to verify a proof π for
statement (X,m), run Sch.Ver(X,m, π).

We show that this proof system satisfies strong simulation extractability in the algebraic group
model [FKL18] (see below) and the random oracle model (this combination of models was also used
in [FPS20] to show tight security of Schnorr signatures under the discrete-logarithm assumption).

Strong simulation extractability for the above language means that from any adversary that
returns a proof π∗ for a statement (X∗,m∗), the witness x∗ = logX∗ can be extracted; and this is the
case even if the adversary gets access to an oracle that on inputs (Xi,mi) returns simulated proofs
πi for these statements. The only restriction is that the pair ((X∗,m∗), π∗) must be different from
all query/response pairs ((Xi,mi), πi) (note that forging a fresh proof π∗ on a queried statement
is considered a break of strong simulation-extractability if the extractor fails to extract a witness
from π∗).

(Note that this notion is stronger than forms of related-key-attack security for signature schemes
(akin to UNF-CRO as defined in [FOS19]), where the adversary can only query signatures under
keys for which it knows the difference in secret keys w.r.t. the challenge key.)

Claim 1 The above proof system is strongly simulation-extractable in the algebraic group model
and the random oracle model.
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In the algebraic group model [FKL18], adversaries are assumed to return representations of any
group elements that they return. This means that, after being given input group elements Y1, . . . ,
whenever the adversary returns a group element Z, it must also return coefficients υ1, . . . with
Z =

∑
υiYi.

Note however that the group-element part of the statement (which the adversary need not have
produced by itself) need not be accompanied by a representation. That is, in the proof X∗ does
not have a representation, and moreover, representations of other elements output by the adversary
can depend on X∗ (in addition to elements the adversary received as input).

Proof sketch of Claim 1. In the ROM, a Schnorr signature under any key X on m can be simulated
without knowing a witness (secret key): choose uniform c and s from Zp, set R := sG − cX
and program the random oracle so that H(X,R,m) = c (Since R is uniform and independent,
the probability that the hash value has already been defined is negligible). Thus, our reduction
simulates proofs for statements (X,m) this way.

Consider an adversary that has made queries (Xi,mi), which where answered with (Ri, si) with

Ri = siG− ciX with ci = H(Xi, Ri,mi) . (24)

When the (algebraic) adversary returns a valid statement/proof pair ((X∗,m∗), (R∗, s∗)), so that
(X∗,m∗, R∗, s∗) 6= (Xi,mi, Ri, si) for all i, the extractor extracts the witness, that is, the discrete
logarithm of X∗, as follows. A valid proof satisfies

R∗ = s∗G− c∗X∗ with c∗ = H(X∗, R∗,m∗) . (25)

Now consider the point when H(X∗, R∗,m∗) gets defined. This must be during a random-oracle
query by the adversary, since a successful adversary cannot have made a simulation query for
(X∗,m∗) which returned R∗. (As there is only one valid value s∗, this would mean that the adversary
returned the oracle’s response.)

If R∗ was created by the adversary then it must have come with a representation (γ∗, ξ∗,ρ∗)
with

R∗ = γ∗G+ ξ∗X∗ +

qs∑
i=1

ρ∗iRi = γ∗G+ ξ∗X∗ +

qs∑
i=1

ρ∗i siG−
qs∑
i=1

ρ∗i ciX
∗ ,

where the equality follows from (24). If R∗ was defined during a simulation query, that is R∗ = Ri
for some i, then set γ∗ := si, ξ

∗ := −ci and ρ∗ := 0. Together with (25), this yields(
c∗ + ξ∗ −

∑qs
i=1 ρ

∗
i ci
)
X∗ =

(
s∗ − γ∗ −

∑qs
i=1 ρ

∗
i si
)
G .

Since c∗ was chosen at random after the adversary (or the experiment) chose γ∗, ξ∗, ρ∗1, . . . and
ρ∗qs , the probability that c∗ + ξ∗ −

∑qs
i=1 ρ

∗
i ci 6≡p 0 is overwhelming, in which case the extractor can

efficiently compute the discrete logarithm of X∗ from the above equation.
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