
Practical Post-Quantum Signature Schemes from
Isomorphism Problems of Trilinear Forms

Gang Tang1[0000−0002−1135−466X], Dung Hoang Duong2[0000−0001−8057−4060],
Antoine Joux3[0000−0003−2682−6508], Thomas Plantard4[0000−0003−2521−2520],
Youming Qiao1[0000−0003−4334−1449], and Willy Susilo2[0000−0002−1562−5105]

1 Centre for Quantum Software and Information, School of Computer Science,
Faculty of Engineering and Information Technology, University of Technology Sydney,

NSW, Australia.
Youming.Qiao@uts.edu.au, gang.tang-1@student.uts.edu.au

2 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522,

Australia.
{hduong,wsusilo}@uow.edu.au

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany.
joux@cispa.de

4 Emerging Technology Research Group, PayPal, San Jose, USA.
tplantard@paypal.com

Abstract. In this paper, we propose a practical signature scheme based
on the alternating trilinear form equivalence problem. Our scheme is
inspired by the Goldreich-Micali-Wigderson’s zero-knowledge protocol
for graph isomorphism, and can be served as an alternative candidate
for the NIST’s post-quantum digital signatures.
First, we present theoretical evidences to support its security, especially
in the post-quantum cryptography context. The evidences are drawn
from several research lines, including hidden subgroup problems, multi-
variate cryptography, cryptography based on group actions, the quantum
random oracle model, and recent advances on isomorphism problems for
algebraic structures in algorithms and complexity.
Second, we demonstrate its potential for practical uses. Based on algo-
rithm studies, we propose concrete parameter choices, and then imple-
ment a prototype. One concrete scheme achieves 128 bit security with
public key size ≈ 4100 bytes, signature size ≈ 6800 bytes, and running
times (key generation, sign, verify) ≈ 0.8ms on a common laptop com-
puter.

1 Introduction

Since the 1990s, several researchers observed the digital signature scheme ob-
tained from the zero-knowledge proof protocol for graph isomorphism (GI) [41]
by Goldreich, Micali and Wigderson (GMW), via the Fiat-Shamir transfor-
mation [39]. However, this scheme based on GI is not secure, as GI has long
been considered as easy to solve in practice [62,63], not to mention Babai’s



quasipolynomial-time algorithm [6]. Still, this design pattern can be easily adapted
to accommodate other isomorphism problems, and has been studied in multi-
variate cryptography and isogeny-based cryptography.

In multivariate cryptography, Patarin [71] first proposed to use polynomial
isomorphism (PI) to replace graph isomorphism in the GMW identification pro-
tocol. Depending on the degrees and the number of polynomials involved, PI is
actually a family of problems. The most studied cases include cubic forms and
systems of quadratic polynomials. For systems of quadratic polynomials, there
are also subcases such as homogeneous vs inhomogeneous (as explained in Ex-
ample 3 of Section 4.2). Some problems, such as the isomorphism of quadratic
polynomials with one secret, turn out to be easy [37,15,51]. The other proposal
of Patarin in [71], namely utilizing hidden field equations, turns out to be more
fruitful, as witnessed by the celebrated Rainbow scheme by Ding and Schmidt
[28] which makes to the third round of the NIST call for proposals on post-
quantum cryptography [3].

In isogeny-based cryptography, Couveignes [25] first proposed the use of class
group actions on elliptic curves in cryptography. He adapted the GMW identifi-
cation protocol to this action. Stolbunov [80] suggested to apply the Fiat-Shamir
transformation to this identification protocol to get a signature scheme. However,
the use of ordinary elliptic curves has issues including the subexponential-time
quantum algorithm [23] and the slow performance. The attention then turned
to supersingular elliptic curves [54], which lead Castryck, Lange, Martindale,
Panne and Renes to propose the so-called CSIDH scheme based on a group
action deduced from rational endomorphisms [22]. Since their work, there has
been considerable progress on this signature scheme recently [38,11,31]. How-
ever, signature protocols based on class group actions met with several technical
difficulties, such as computing the group action efficiently. Indeed, this was one
key motivation to develop the SeaSign [38] and the CSI-FiSh [11] schemes. While
these works come close to yield an efficient secure protocol based on class group
actions, recent works [72,13] indicate that these parameters originally proposed
in [22] do not achieve the claimed security level in the face of quantum attacks,
leading to re-evaluations of those protocols; see [4] for more details.

These quantum attacks reaffirm the importance of quantum algorithms in
post-quantum cryptography. Indeed, these attacks are based on careful analyses
and clever uses of the quantum algorithms [72,13] for the dihedral Hidden Sub-
group Problem (HSP) [57,74,58] and for the elliptic curve isogeny problem [23].
The Hidden Subgroup Problem (HSP) is one of the most prominent family of
problems in quantum computation. HSP and the related hidden shift problem
are of particular relevance to post-quantum cryptography. Generalizing Shor’s
quantum algorithms for integer factoring and discrete logarithm [79], they can
also accommodate certain lattice problems [74] (the HSP for dihedral groups)
and isogeny problems [23] (the abelian hidden shift problem).

In this paper, we consider the alternating trilinear form equivalence (ATFE)
problem, defined as follows. Let Fq be the finite field of order q. A trilinear
form φ : Fnq × Fnq × Fnq → Fq is alternating, if φ evaluates to 0 whenever two
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arguments are the same. Let A be an invertible matrix of size n × n over Fq.
Then A sends φ to another alternating trilinear form φ ◦ A, defined as (φ ◦
A)(u, v, w) := φ(At(u), At(v), At(w)). The ATFE problem then asks, given two
alternating trilinear forms φ, ψ : Fnq × Fnq × Fnq → Fq, whether there exists an
invertible matrix A such that φ = ψ ◦A.

ATFE can be formulated as an HSP instance over GL(n, q), the general linear
group of degree n over Fq. The research on HSP suggests that for GL(n, q) and
symmetric groups, current quantum algorithm techniques cannot provide further
speedup compared to classical algorithms [43,67,48]. This was termed by Moore,
Russell, and Vazirani as “the strongest such insights we have about the limits
of quantum algorithms” [68]. As far as we know, this insight had not been used
to directly support the security of any practical post-quantum cryptosystems.
In this paper, we will, for the first time, utilize this insight to investigate the
practical use of ATFE in post-quantum cryptography.

Remark 1. Our use of HSP to support ATFE in post-quantum cryptography
follows the use of HSP to support lattices in post-quantum cryptography. That
is, by [74], certain lattice problems reduce to HSP over dihedral groups. However,
to the best of our knowledge, it is not known that the HSP over dihedral groups
reduces to lattice problems. Similarly, here ATFE can be formulated as a HSP
over general linear groups, but the reverse direction is not known.

1.1 Theoretical preparations

Theoretical evidences for using ATFE in cryptography, besides HSP, are based
on works from several research lines. Detailed discussions on the complexity,
cryptography, and algorithm aspects of ATFE can be found in Sections 4 and 5.
Here we present a brief summary illustrating some key ideas.

Recent advances in complexity theory [44,46] and algorithms [59,18,46] reveal
a much clearer picture on the complexity of isomorphism problems of algebraic
structures. In [46], it is shown that ATFE is complete for the Tensor Isomor-
phism complexity class (TI) [44]. This puts ATFE into a family of problems
which have been studied in various areas including cryptography, machine learn-
ing, computer algebra, and quantum information. These problems are known to
be difficult to solve in practice, a sharp contrast to graph isomorphism and
code equivalence, which, despite being notoriously difficult for algorithms with
rigorous worst-case analyses, allow for effective heuristic algorithms in practice
[63,77].

The TI-completeness notion is useful in connecting ATFE with many algo-
rithmic problems. However, as the reductions produce instances which are quite
structured, from the algorithmic viewpoint it is most useful for worst-case anal-
ysis. For cryptographic uses of ATFE, average-case hardness or even stronger
criteria are required. This is where cryptography based on group actions comes
into the theme. Using group actions in cryptography has been studied by Bras-
sard and Yung [17], Couveignes [25], and more recently in two papers [53,4],
among others. In Section 4.2, we present evidence for ATFE to satisfy the one-way
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[17] and pseudorandom [53] assumptions, which generalize the discrete logarithm
hardness assumption and the Decisional Diffie-Hellman assumption, respectively.

To use ATFE in cryptography requires to pin down the algorithm for ATFE
with the best time complexity. At first sight, ATFE seems little studied be-
fore. Fortunately, the Tensor Isomorphism-completeness of ATFE allows us to
tap into years of research from multivariate cryptography, computational group
theory, and theoretical computer science. This is because ATFE is polynomial-
time equivalent to the cubic form isomorphism problem (CFI; see Definition 7),
the quadratic form map isomorphism problem (QFMI; see Definition 8), and
the class-2 p-group isomorphism problem (pGpI; see Definition 9). There is a
large body of works in multivariate cryptography tackling CFI and QFMI, and
in computational group theory and theoretical computer science tackling pGpI.
The research in these communities produce non-trivial algorithms, utilizing tools
and algorithmic ideas such as Gröbner basis, individualization and refinement,
birthday paradox, and the min-rank attack. Still, these problems remain difficult
to solve in practice.

1.2 Our contribution

In this paper, we propose and study a digital signature scheme based on the
ATFE problem through the following steps.

1. We carefully study the hardness of ATFE and provide theoretical evidences
for using ATFE in cryptography based on works from several research lines
including hidden subgroup problems, multivariate cryptography, cryptogra-
phy based on group actions, security proofs for cryptographic protocols in
the quantum oracle model, and recent advances on isomorphism problems
from algorithms and complexity.

2. We propose a post-quantum signature scheme based on the ATFE problem.
Our scheme is inspired by the GMW zero-knowledge interaction protocol [41]
for graph isomorphism. Our scheme is proven to be secure in the Random
Oracle Model (ROM) based on the hardness of the ATFE problem.

3. We also provide some discussion and support for proving our schemes’ se-
curity in the quantum random oracle model (QROM) based on [29,60]; see
Section 3.2.

4. In Section 5, we go over many relevant algorithms from the study of CFI,
QFMI, and pGpI and combine them with certain experiment studies on al-
ternating trilinear forms, to pin down the best algorithm for ATFE to our
best knowledge.

5. Based on the algorithmic study in Section 5, we propose criteria for set-
ting the parameters of these schemes to achieve a fixed security level in
Section 6.1. Further concrete instantiations lead to concrete schemes whose
public key and signature sizes are reported in Table 1.

6. We implement a prototype of the basic scheme as in Table 1 using C, and
report its preformance in Table 2. For more details see Section 6.2.
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Public key Private key Signature

Concrete Scheme 1 6384 6156 5018

Concrete Scheme 2 8160 6800 5542

Concrete Scheme 3 4080 3400 6816

Concrete Scheme 4 10560 7744 6309
Table 1. Output parameters for four concrete schemes based on ATFE for the 128-bit
security. The sizes are measured in bytes.

7. Borrowing ideas from isogeny-based cryptography [38,11], we also observe a
variant of this scheme with Merkle trees, which helps to reduce the public
key size. See Appendix A for details.

Set-Up Sign Verify

Concrete Scheme 1 285.9 471.7 416.5

Concrete Scheme 2 383.1 660.0 578.9

Concrete Scheme 3 190.7 795.4 708.8

Concrete Scheme 4 514.0 861.1 765.2

Table 2. Running times (in microsecond, µs, averaged over 105 runs) for Concrete
Schemes 1 to 4 on Linux 5.11.0-37-generic with Intel Core i7-8565U CPU (1.80 GHz).

From the above, we belive that the main message is that this digital signature
is potential for practical uses. In Section 1.3, we provide a comparison of our
signature scheme with those are in the third round of NIST’s Post-quantum
Standardization process, and it shows that our scheme is comparable to those
practical ones in terms of key sizes and running time. We also expect that our
implementation can be be further improved and optimized, that we will leave
as a future work. This scheme is also simple in both terms of conceptual and
implementation viewpoints.

Our digital signature scheme can be served as an alternative candidate for
post-quantum signatures. This also aligns to the recent announcement of NIST [69]
at PQCrypto 2021 on calling for a general-purpose digital signature scheme
which is not based on structured lattices, which are currently the most promis-
ing candidates of post-quantum signature standardization [3].

1.3 Comparison with 3rd round NIST’s post-quantum signature
schemes

Post-quantum cryptography has seen tremendous growth in the past few years.
The National Institute of Standards and Technology (NIST) initiated the selec-
tion of proposals on post-quantum cryptographic algorithms for potential stan-
dardisation in November 2016, and the selection process came to the third round
in mid 2020 [3]. There are three finalist proposals for signature schemes in the
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third round, namely Dilithium [7], Falcon [40], and Rainbow [78]. Dilithium and
Falcon are based on lattice problems, and Rainbow is based on multivariate poly-
nomials. Besides these schemes, the progress on isogeny-based signature schemes
has been impressive in the past few years [38,11,27], and the SQISign scheme
[27] probably comes closest to be practical.

We briefly review the public key and signature sizes of these schemes at
NIST security level I or II, according to their latest specifications. The public
key and signature sizes of Dilithium are 1312 bytes and 2420 bytes. The public
key and signature sizes of Falcon-512 are 897 bytes and 666 bytes. Rainbow’s
signature size is small (528 bits), but it requires relatively large public key size
(≈ 58,800 bytes). The recently proposed SQISign achieves 204-byte signature
size and 64-byte public key size. The running times of Dilithium, Falcon and
Rainbow are very fast. As it would probably not be very instructive to list specific
running times, we just mention that the running times of these schemes (sign
and verify) are mostly within the range between 0.1ms and 1ms on a common
laptop computer. On the other hand, the SQISign requires 2500ms for signing
and 50ms for verification.

Based on the above observations, we believe that the parameters and running
times of concrete schemes as shown in Tables 1 and 2 fall into the range for
practical uses, when compared with the most promising schemes. Of course,
Dilithium and Falcon take the lead in terms of these parameters. However, we
offer as well a new direction with a different security basis and still a strong
theoretical support.

1.4 On interactions with other research lines

From discussions above, this work has connections to many works from several
research lines. We now provide some remarks to clarify the situations for readers
with different backgrounds.

For experts on multivariate cryptography, we wish to deliver the message
that Patarin’s signature scheme based on polynomial isomorphism [71] could be
practical if we are careful about the parameter choices, and replacing polynomial
isomorphism with alternating trilinear form equivalence. Indeed, this scheme
of Patarin was thought to be not practical, because the original parameters
proposed were quickly broken [37,15,16]. Furthermore, some variants such as
isomorphism of quadratic polynomials with one secret were shown to be easily
solvable [15,14,10,51]. One main reason is that in the 2000’s, signatures of say
3000 bytes would be considered as too large. Now in post-quantum cryptography,
signatures of 5000 bytes are acceptable at least at the brainstorming stage. (For
example, Dilithium produces signatures of 2420 bytes and SPHINCS+ [52], an
alternate candidate in NIST round 3 [3], produces signatures of 7856 bytes.)
With this in mind, it is actually reasonable to use cubic form isomorphism (CFI)
to experiment with various parameters, assuming that the best algorithm runs
in time say qn ·poly(n, log q) [15]. Utilizing ATFE has one advantage over CFI, as
alternating trilinear forms require less storage than cubic forms (

(
n
3

)
vs
(
n+2
3

)
),

which results in better public key sizes.
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For experts on isogeny-based cryptography, especially those who are famil-
iar with SeaSign [38] and CSI-FiSh [11], s/he would quickly recognise that our
scheme has the same structure. The key difference lies in using a different ac-
tion. The class group action as in CSIDH [22] has smaller group and set element
representations, but is more difficult to compute. The group action here (general
linear groups acting on alternating trilinear forms) is easy to compute but the
group and set elements are of larger sizes, resulting in larger public key and
signature sizes.

Organization of the paper. In Section 2, we describe the alternating trilinear
form equivalence problem (ATFE) and several variants. We describe the proposed
schemes in Section 3, prove its security in the Random Oracle Model, and discuss
its security in the Quantum Random Oracle Model (QROM). The Merkle variant
is described in Appendix A. In Section 4, we discuss on the complexity and
cryptography aspects of ATFE. In Section 5, we present a detailed study of
algorithms for ATFE. In Section 6, we propose concrete parameters, describe our
implementation, and report on its performance.

2 Preliminaries

2.1 Defining ATFE and variants

Our proposed signature protocol relies on the assumed hardness of the alternat-
ing trilinear form equivalence (ATFE) problem over finite fields. To define this
problem we need some preparations.

Alternating trilinear forms with a natural group action. Let Fq be the finite field
of order q. A trilinear form φ : Fnq × Fnq × Fnq → Fq is alternating, if φ evaluates
to 0 whenever two arguments are the same. Let ATF(n, q) be the set of all
alternating trilinear forms defined over Fnq . The general linear group GL(n, q) of
degree n over Fq naturally acts on ATF(n, q) as follows: A ∈ GL(n, q) sends φ to
φ ◦ A, defined as (φ ◦ A)(u, v, w) := φ(At(u), At(v), At(w)). This action defines
an equivalence relation ∼ on ATF(n, q), namely φ ∼ ψ if and only if there exists
A ∈ GL(n, q), such that φ = ψ ◦A.

Algorithmic representations. It is well-known that an alternating trilinear form
φ : Fnq × Fnq × Fnq → Fq can be represented as

∑
1≤i<j<k≤n ci,j,ke

∗
i ∧ e∗j ∧ e∗k,

where ci,j,k ∈ Fq, ei is the ith standard basis vector, e∗i is the linear form sending
u = (u1, . . . , un)t ∈ Fnq to ui, and ∧ denotes the wedge (or exterior) product.
Indeed, we can view e∗i ∧e∗j ∧e∗k as an alternating trilinear form, sending (u, v, w),
where u = (u1, . . . , un)t, v = (v1, . . . , vn)t, w = (w1, . . . , wn)t are in Fnq , to

det

ui vi wiuj vj wj
uk vk wk

. Therefore, in algorithms we can store the alternating trilinear

form φ as (ci,j,k : 1 ≤ i < j < k ≤ n), ci,j,k ∈ Fq, which requires
(
n
3

)
· dlog qe

many bits.
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The action of GL(n, q) on ATF(n, q) can be represented concretely as follows.
Let A = (ai,j) ∈ GL(n, q). It sends e∗i ∧ e∗j ∧ e∗k to

∑
1≤r<s<t≤n dr,s,te

∗
r ∧ e∗s ∧ e∗t ,

where dr,s,t = det

ai,r ai,s ai,taj,r aj,s aj,t
ak,r ak,s ak,t

. For general φ ∈ ATF(n, q), the action of A

can be obtained by linearly extending this action to each term e∗i ∧ e∗j ∧ e∗k.

Formal statements of the algorithmic problems. We can now formally state the
alternating trilinear form equivalence problem.

Definition 1. The decision version of the alternating trilinear form equivalence
problem (ATFE) is the following.

Input Two alternating trilinear forms φ, ψ : Fnq × Fnq × Fnq → Fq.
Output “Yes” if there exists A ∈ GL(n, q) such that φ = ψ◦A. “No” otherwise.

Definition 2. The promised search version of the alternating trilinear form
equivalence problem (psATFE) is the following.

Input Two alternating trilinear forms φ, ψ : Fnq × Fnq × Fnq → Fq, with the
promise that φ ∼ ψ.

Output Some A ∈ GL(n, q) such that φ = ψ ◦A.

Definition 3. The promised search version of the alternating trilinear form
equivalence problem with m-instances (m-psATFE) is the following.

Input m alternating trilinear forms φ1, . . . , φm : Fnq × Fnq × Fnq → Fq, with the
promise that φi ∼ φj for any i, j ∈ [m].

Output Some A ∈ GL(n, q) and i, j ∈ [m], i 6= j, such that φi = φj ◦A.

Remark 2. It is not known whether the search version of ATFE reduces to the
decision version in polynomial time. In [45], it was shown that for some related
problems, such as the quadratic form map isomorphism (cf. Definition 8), search

to decision can be done in time qO(n) (improving from qn
2 · poly(n, log q)). So it

is expected that for ATFE, a search to decision reduction can be achieved in time
qO(n). However, a polynomial-time search to decision reduction seems difficult.

On the one hand, m-psATFE generalises the original version. On the other
hand, it is easy to get a non-tight reduction from m-psATFE to the original
version of psATFE. So we believe that m-psATFE is of the same difficulty as
psATFE.

2.2 Digital signatures

Definition 4. A signature scheme consists of a triplet of polynomial-time (pos-
sible probabilistic) algorithms (KeyGen,Sign,Verify) such that for every pair
of outputs (PK,SK)← KeyGen(1λ) and any n-bit message µ, we have

Verify(PK, µ,Sign(SK, µ)) = 1

holds true, except with negligible probability (in λ).
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A signature is said to be secure if it is impossible for an attacker to forge a
valid signature. Explicitly, the standard definition of security for digital signature
schemes are given in the game between the challenger C and an adversary A as
the following.

– The challenger C generates (PK,SK)← KeyGen(1λ) and gives PK to A.
– A is allowed to make the following queries at maximum Q times. For i =

1, · · · , Q:

• A chooses a message µi and sends to C
• C computes σi ← Sign(SK, µi) and sends σi to A.

– A outputs a forgery (µ∗, σ∗)
– A wins if Verify(PK, µ∗, σ∗) = 1 and µ∗ /∈ {µ1, · · · , µQ}.

We say that a signature scheme is Existentially UnForgeable under adaptive Cho-
sen Message Attacks (EUF-CMA) if no probabilistic polynomial-time adversary
A wins the game above with non-negligible probability λ−O(1).

3 Signature schemes based on ATFE

Our scheme is inspired by the zero-knowledge protocol for graph isomorphisms
by Goldreich, Micali and Wigderson (GMW) [41]. As a high level, we will incor-
porate the ATFE to obtain a generalized GMW-like scheme and then apply the
Fiat-Shamir transformation [39] to obtain a signature scheme. This basic scheme
is described in Section 3.1. We emphasize that one may think it is straightfor-
ward to just replace the graph isomorphisms in GMW to ATFE, which is exactly
the route we go, but the technical details are involved; see Section 3.1 for the de-
tail. In Appendix A, we introduce a variant of the basic scheme in Section 3.1 by
utilizing Merkle tree techniques that have been employed in many constructions
including some isogeny-based signatures [38,11].

3.1 The basic scheme

The original GMW protocol [41] has two graphs as input. For the purpose of
using it in identification and signature, it is useful to generalize this to more
than two graphs, as already observed by several researchers including Patarin
[71] and De Feo and Galbraith [38].

We present this slightly generalized scheme based on ATFE in Algorithms 1, 2,
and 3. It involves four parameters: n ∈ N and a prime power q to specify
ATF(n, q), the round number r, and the number of alternating trilinear forms
in the public key C = 2c. Note that we use C = 2c to simplify the analysis; in
fact any number C would do.

Note that by randomly sampling φ ∈ ATF(n, q), we sample independently
randomly

(
n
3

)
field elements from Fq. By randomly sampling A ∈ GL(n, q), we

can sample a random matrix from M(n, q) until we get an invertible one, or use
the method described in Section 6.2.
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Algorithm 1: Key generation.

Input: The variable number n ∈ N, a prime power q, the alternating trilinear
form number C = 2c.

Output: Public key: C alternating trilinear forms φi ∈ ATF(n, q) such that
φi ∼ φj for any i, j ∈ [C].

Private key: C matrices A1, . . . , AC , such that φi ◦Ai = φC .
1 Randomly sample an alternating trilinear form φC : Fnq × Fnq × Fnq → Fq.
2 Randomly sample C − 1 invertible matrices, A1, . . . , AC−1 ∈ GL(n, q).
3 For every i ∈ [C − 1], φi ← φC ◦Ai.
4 For every i ∈ [C − 1], Ai ← A−1

i .
5 AC ← In.
6 return Public key: φ1, φ2, . . . , φC . Private Key: A1, . . . , AC .

Algorithm 2: Signing procedure.

Input: The public key φ1, . . . , φC ∈ ATF(n, q). The private key
A1, . . . , AC ∈ GL(n, q). r ∈ N, C = 2c. The message M. A hash
function H : {0, 1}∗ → {0, 1}`, with the promise that b`/cc ≥ r.

Output: The signature S on M.
1 for i ∈ [r] do
2 Randomly sample Bi ∈ GL(n, q).
3 ψi ← φC ◦Bi.
4 end

5 Compute L = H(M|ψ1| . . . |ψr) ∈ {0, 1}`.
/* For the next step we need b`/cc ≥ r. */

6 Slice L into b`/cc bit strings in {0, 1}c, and set b1, . . . , br ∈ [C] to be the
integer represented by the first r bit strings.

7 for i ∈ [r] do
8 Di ← AbiBi. ; // Note that φbi ◦Di = ψi.
9 end

10 return S = (b1, . . . , br, D1, . . . , Dr).

It is straightforward to verify the correctness of the scheme. We now analyze
its security. It is well-known that the Goldreich-Micali-Wigderson (GMW) pro-
tocol satisfies completeness, special soundness, and special honest-verifier zero
knowledge properties. These allow us to prove the security of the digital signature
scheme as follows.

Theorem 1. The basic signature scheme described above is EUF-CMA secure in
the Random Oracle Model (ROM) under the hardness of the m-psATFE problem.

Proof. We proceed the proof by contradiction. Assume that there exists an ad-
versary A that having maximum Q queries to the hash function H, which is
modelled as random oracle, can break the EUF-CMA security, as described in
Section 2.2, of the signature scheme. We will build an algorithm B that solves the
ATFE with non-negligible probability using A. The proof follows the standard
one in Fiat-Shamir-type signature, we present it here for completeness.
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Algorithm 3: Verification procedure.

Input: The public key φ1, . . . , φC ∈ ATF(n, q). The signature
S = (b1, . . . , br, D1, . . . , Dr), bi ∈ [C], Di ∈ GL(n, q). The message M.
The A hash function H : {0, 1}∗ → {0, 1}`, with the promise that
b`/cc ≥ r.

Output: “Yes” if S is a valid signature for M. “No” otherwise.
1 for i ∈ [r] do
2 Compute ψi = φbi ◦Di.
3 end

4 Compute L′ = H(M|ψ1| . . . |ψr) ∈ {0, 1}`.
/* For the next step we need b`/cc ≥ r. */

5 Slice L′ into b`/cc bit strings in {0, 1}c, and set b′1, . . . , b
′
r ∈ [C] to be the

integer represented by the first r bit strings.
6 if for every i ∈ [r], bi = b′i then
7 return Yes
8 else
9 return No

At the beginning, B is given an instance of the C-psATFE problem, that are
C alternative trilinear forms φ1, . . . , φC : Fnq × Fnq × Fnq → Fq such that φi ∼ φj
for any i, j ∈ [C]. The goal of B is to find i 6= j and some A ∈ GL(n, q) such
that φi = φj ◦A.

Let L1, . . . , LQ be random elements in {0, 1}l, which B will use to answer hash
queries from the adversary A, and let R be an entry from the set of possible ran-
dom tapes of adversary A. The algorithm B will take (R,φ1, . . . , φC , L1, . . . , LQ)
as input. When A makes a signing query on the message M , then B executes
the following steps:

– Take the next hash query value input to B, and let this be Lj for j ∈ [Q].
– Slice Lj into bl/cc bit strings in {0, 1}c and let bj1, . . . , bjr ∈ [C] be the

integer represented by the first r bit strings of Lj .
– For i ∈ [r], choose randomly Di ← GL(n, q) and set ψi := φbji ◦Di.
– Define Lj := H(M |ψ1| . . . |ψr). If this value has already been defined then

we pick another values of Di’s.
– Return a signature (bj1, . . . , bjr, D1, . . . , Dr) to the adversary A.

One can easily see that the distribution of the signature generated by B is statis-
tically closed to that generated by the signing algorithm in Algorithm 2. In this
case, the adversary A can verify the signature as in the verification procedure
in Algorithm 3.

Assume now that A outputs a valid forgery (b∗1, . . . , b
∗
j , D

∗
1 , . . . , D

∗
r) for a mes-

sage M∗. We let L∗ be the corresponding hash query of the adversary, i.e., L∗ is
defined by H(M∗|ψ∗1 | · · · |ψ∗r ) by the algorithm B. We let (ψ∗1 , · · · , ψ∗r ) be the as-
sociated commitments computed from (b∗1, . . . , b

∗
j , D

∗
1 , . . . , D

∗
r), i.e., ψ∗i = φb∗i ◦D

∗
i

for i ∈ [r]. Now the challenger B runs A a second time using the same random-
ness R as before. By the General Forking Lemma [12], A will output another

11



forgery (b′1, . . . , b
′
j , D

′
1, . . . , D

′
r) with associated commitments (ψ′1, · · · , ψ′r) for

the same message M∗ such that ψ∗i = ψ′i for i = 1, · · · , r and L∗ 6= L′, where L′

is programmed to be H(M∗|ψ′1| · · · |ψ′r). Since L∗ 6= L′, then there exist i ∈ [r]
such that b∗i 6= b′i. Now B outputs A := D∗i (D′i)

−1 as an answer for the given
C-psATFE instance.

In fact, we have φb∗i ◦A = φb∗i ◦D
∗
i (D′i)

−1 = ψ∗i ◦ (D′i)
−1 = ψ′i ◦ (D′i)

−1 = φb′i .
Hence B already finds an invertible matrix A ∈ GL(n, q) and two indices b∗i 6= b′i
such that φb∗i ◦A = φb′i . This completes the proof.

3.2 Security in Quantum Oracle Model (QROM)

Recently, the security of the Fiat-Shamir transformation in the quantum random
oracle model (QROM) was established in [29,60]. Using these works, we follow
the route of arguments in [11] to provide evidences – but not a rigorous proof – to
support the security of our scheme in QROM. Indeed, to prove QROM security
for concrete schemes based on Fiat-Shamir transformations is not trivial even
based on [29,60]. For example, the QROM security of Dilithium, one finalist in
the NIST call for proposals, is only proved assuming some conjecture [7].

In order to utilize [29,60], a key is to establish the collapsing property [60] or
the quantum computational unique response property [29] of the GMW protocol
for ATFE. This property is a generalization of the computational unique response
property. In the context of the GMW protocol for ATFE, this property essentially
asks, given φ, ψ ∈ ATF(n, q) such that φ ∼ ψ, to produce different A,B ∈
GL(n, q) such that φ = ψ ◦ A = ψ ◦ B, if there exist such A and B. Then note
that AB−1 is a non-trivial automorphism of ψ. This then leads us to ask the
following.

Definition 5 (Alternating trilinear form automorphism, ATFA). Given
a random φ ∈ ATF(n, q), decide if the automorphism group Aut(φ) = {A ∈
GL(n, q) : φ◦A = φ} is trivial, and if not, compute a non-trivial automorphism.

The same problem for graph isomorphism, known as the graph automorphism
problem, has received considerable attention [56]. From the worst-case analysis
viewpoint, it was considered a difficult problem before Babai’s breakthrough on
graph isomorphism [6]. For random graphs, it is well-known that most graphs
have the trivial automorphism group [32,82] as long as the number of edges is
between [cn,

(
n
2

)
− cn] for some constant c.

ATFA seems a difficult problem. The algorithm in [46] actually shows that for
most φ ∈ ATF(n, q), |Aut(φ)| ≤ qO(n), but it runs in time qO(n). In [24,65,50],
alternating trilinear forms in ATF(7, q) and ATF(8, q) over finite fields of char-
acteristic not 3 are classified, and the automorphism groups are computed. To
use such information, we will need to solve the ATFE problem for the alternating
trilinear form at hand, and one of the canonical forms presented in [65]. As ATFE
is considered as difficult (see Section 4.1), the classification information seems
not very helpful, and this is only available for n = 7 or 8.
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We believe it an interesting direction to explore ATFA further, and whether
it is possible to prove formally the security of our protocol assuming that ATFA
is hard, perhaps using the weakly collapsing property in [60].

4 Complexity and cryptography aspects of ATFE

4.1 ATFE in complexity theory

In Section 1.1, we mentioned the recent introduction of the Tensor Isomorphism-
complete class (TI) in [44], which captures many isomorphism problems aris-
ing from multivariate crytography, machine learning, quantum information, and
computer algebra. In [46], ATFE was proved to be TI-complete. Among those
TI-complete problems, the following algorithmic problems are of particular rel-
evance to our discussion.

Definition 6. The 3-tensor isomorphism problem (3TI) is the following.

Input Two 3-way arrays D = (di,j,k), E = (ei,j,k), where di,j,k, ei,j,k ∈ Fq and
i, j, k ∈ [n].

Output “Yes” if there exist A = (ai,r), B = (bj,s), C = (ck,t) ∈ GL(n, q),
such that D = (A,B,C) ? E, where (A,B,C) ? E := F = (fi,j,k), fi,j,k =∑
r,s,t∈[n] ai,rbj,sck,ter,s,t. “No” otherwise.

3TI appears in quantum information, characterising equivalence classes of
tripartite states under stochastic local operation and classical communication
(SLOCC) [44].

Definition 7. The cubic form isomorphism problem (CFI) is the following.

Input Two cubic forms (homogeneous degree-3 polynomials) f, g ∈ Fq[x1, . . . , xn].

Output “Yes” if there exists A = (ai,j) ∈ GL(n, q), such that f = A ? g, where
the action of A on g is by sending xi to

∑
j∈[n] ai,jxj. “No” otherwise.

CFI has been studied in multivariate cryptography [15] and theoretical com-
puter science [1,2].

Definition 8. The quadratic form map isomorphism problem (QFMI) is the fol-
lowing.

Input Two tuples of quadratic forms f = (f1, . . . , fm), g = (g1, . . . , gm), where
fi, gj ∈ Fq[x1, . . . , xn] are quadratic forms (homogeneous degree-2 polynomi-
als).

Output “Yes” if there exist A = (ai,j) ∈ GL(n, q), B = (bi,j) ∈ GL(m, q), such
that ∀i ∈ [m], f ′i = A ? gi, where f ′i =

∑
j∈[m] bi,jfj, and the action of A on

gi is by sending xi to
∑
j∈[n] ai,jxj. “No” otherwise.

13



QFMI has been studied in multivariate cryptography. It was first raised by
Patarin [71] and has been studied in several works including [37,16,10]. Several
variants of this problem have also been studied, such as replacing quadratic forms
with quadratic polynomials (from homogeneous to possibly inhomogeneous), or
restricting B to be the identity matrix (also known as the one secret version of
the problem).

Definition 9. The class-2 and exponent-p p-group isomorphism problem (pGpI)
is the following.

Input Two sets of matrices A = {A1, . . . , Am}, B = {B1, . . . , Bm} ∈ GL(n, p),
with the promise that A (resp. B) generates a p-group G (resp. H) of class
2 and exponent p.

Output “Yes” if G and H are isomorphic (as abstract groups). “No” otherwise.

pGpI has long been known to be one bottleneck case of the group isomorphism
problem, which asks whether two finite groups are isomorphic. It is studied in
both computational group theory [70,81,19] and theoretical computer science
[59,18,44].

The following theorem is important for our understanding of ATFE.

Theorem 2 ([44,46]). The following problems are equivalent under polynomial-
time reductions: ATFE, 3TI, CFI, QFMI, and pGpI.

Theorem 2 allows us to tap into research areas such as multivariate cryptog-
raphy, computational group theory, and theoretical computer science, to under-
stand the complexity of ATFE. In particular, we have seen that CFI and QFMI are
known to be difficult in multivariate cryptography, and pGpI is known to be dif-
ficult in computational group theory. This gives us confidence in the worst-case
hardness of ATFE. However, for cryptographic uses, ATFE needs to be difficult
in the average-case sense. This is addressed in the next subsection.

4.2 ATFE and cryptography based on group actions

Let G be a group and S a set. A group action is a function α : G × S → S
satisfying certain axioms. For the purpose of this article we don’t need to spell
out these axioms; instead, it is enough to realize that the functions underlying
isomorphism problems are all group actions.

Cryptography based on group actions, as a framework, has been studied by
Brassard and Yung [17], Couveignes [25], and more recently in two papers [53,4].
We review this framework and explain the roles of the discrete logarithm problem
and ATFE in this framework.

In [17], Brassard and Yung defined the group action α to be one-way, if there
exists s ∈ S, such that αs : G → S, defined as αs(g) = α(g, s), is a one-way
function. In [53], this is slightly relaxed to αs is a one-way function for a random
s ∈ S. The following example, known at least since [25], shows how to interpret
the discrete logarithm problem as a problem about group action.
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Example 1. To illustrate the notion of one-way group actions, let us consider an
important group action in cryptography. Let Cp be the cyclic group of order p,
and let Aut(Cp) be the automorphism group of Cp. Note thatG = Aut(Cp) ∼= Z∗p,
the multiplicative group of units in Zp. Then given a ∈ Z∗p and g ∈ Cp, a
sends g to ga. Let S = Cp \ {id} where id is the identity element, and let
α : Aut(Cp) × S → S be the group action just defined. Then α is one-way, if
and only if αg is one-way for some g ∈ S, if and only if the discrete logarithm
problem (with a fixed generator) is one-way.

Clearly, the action underlying ATFE being one-way in the relaxed sense is
equivalent to saying that the problem of solving psATFE is hard on average.

In [25], Couveignes studied what he called hard homogeneous spaces, which
is in fact also a group action with certain properties. In particular, he defined the
parallelization problem for a group action α as follows. Given s1, t1, s2 ∈ S with
the promise that there exists g ∈ G such that α(g, s1) = t1, compute α(g, s2). For
the group action defining discrete logarithm as in Example 1, its parallelization
problem is hard on average is equivalent to the Computational Diffie-Hellman
assumption.

Recently, the notion pseudorandom group actions was independently intro-
duced in [53] and [4].5 Briefly speaking, a group action α : G × S → S is
pseudorandom, if efficient algorithms cannot distinguish the following two distri-
butions. The first distribution is the random distribution, namely (s, t) ∈ S × S
where s, t ∈R S. The second distribution is the pseudorandom distribution,
namely (s, t) ∈ S × S where s ∈R S, and t = α(g, s) where g ∈R G. In [53],
it was observed that this assumption generalizes the Decisional Diffie-Hellman
assumption. We reproduce this example here.

Example 2. Let Cp, G = Aut(Cp), and S = Cp \ {id} be from Example 1. Note
that the action of G on Cp is transitive, i.e. for any g, h ∈ S, there exists a ∈ G
such that ga = h. In particular, for a fixed g ∈ S, when a is uniformly sampled
from G, ga is uniformly sampled from S. Let G act on S × S diagonally, i.e.
a ∈ G sends (g, h) to (ga, ha). Then the random distribution (of this diagonal
action) is ((g, h), (g′, h′)) = ((g, ga), (gb, gc)) where g ∈R S, a, b, c ∈R G. The
pseudorandom distribution is ((g, h), (gb, hb)) = ((g, ga), (gb, gab)) where g ∈R
S and a, b ∈R G. Distinguishing these two distributions is then exactly the
Decisional Diffie-Hellman problem.

We give an example suggesting that the pseudorandom group action is a use-
ful criterion for cryptographic uses in the context of multivariate cryptography
as follows.

Example 3. Consider the quadratic form map isomorphism problem (QFMI)
from Definition 8, where GL(n, q)×GL(m, q) acts on tuples of quadratic forms
f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]. Consider the following two variations. First,
we relax fi to be quadratic polynomials, that is, fi’s are allowed to have linear
and constant terms. Call this Variant 1 of QFMI. Second, we relax fi’s to be

5 In [4] this is called weak pseudorandom group actions.
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quadratic polynomials with constant terms being 0, that is, fi’s are allowed to
have linear terms but no constant terms. Call this Variant 2 of QFMI.

The experience in multivariate cryptography (cf. Bouillaguet’s thesis [14])
suggests that Variant 2 is easier than Variant 1, which is in turn easier than QFMI
itself. From the pseudorandom group action viewpoint, Variant 1 is clearly not
pseudorandom, as the constant terms are not changed under the group action.
Variant 2 is also not pseudorandom: in the setting m = n (the most studied sit-
uation), the rank of the n linear forms from fi’s is an invariant under the group
action, which can be computed easily to distinguish the random and pseudoran-
dom distributions. (Note that over Fq, the rank of n linear forms in n variables
is not full with probability ≥ 1/qΘ(1).)

It is clear that the pseudorandom assumption is stronger than the one-way
assumption and the assumption that solving paralleization is hard. In [53,4],
pseudorandom group actions are shown to have applications ranging from pseu-
dorandom functions, to signature, and to oblivious transfer. The candidate pseu-
dorandom group actions are the 3-tensor action as in Definition 6 (proposed in
[53]) and the class group action underlying CSIDH [22] (proposed in [4]). Note
that certain technical modifications are required to address some computational
issues in the class group action underlying CSIDH. Furthermore, certain applica-
tions of pseudorandom group actions in [4] require the group to be commutative.

The main conjecture in this article is the following.

Conjecture 1. The group action underlying ATFE is pseudorandom.

To prove ATFE to be pseudorandom (even based on certain assumptions)
seems difficult. Instead, as customary for this type of question, we provide certain
arguments to support Conjecture 1.

– Several researchers have noted that the mathematics of alternating trilinear
forms is “much harder” [5], or “much more complicated (and interesting)”
[30], especially when compared to alternating bilinear forms. For example,
in general one cannot expect to classify alternating trilinear forms when n
is large enough.

– A basic approach to refute an action from being pseudorandom is to identify
easy-to-compute isomorphism invariants, which are quantities unchanged by
the group action. Such isomorphism invariants are also expected to be non-
trivial for random instances. For example, rank is an isomorphism invariant
for the action of GL(n, q) × GL(n, q) on M(n, q) by left and right multipli-
cations. It is non-trivial because at least 1/qΘ(1) fraction of M(n, q) are of
non-full rank.
As far as we known, for 3TI, CFI, QFMI, and pGpI, ATFE, despite having
been studied in several areas for decades, no such isomorphism invariants
are found. For example, tensor rank is certainly an isomorphism invariant
for 3TI, but it is NP-hard [49], and most tensors are of full-rank, which makes
it not useful for breaking the pseudorandom assumption.

– There are some non-trivial attack strategies in [53] supporting 3TI to be
pseudorandom, including utilizing supergroups and invariant theory. These
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attack strategies works for certain settings (such as unitary groups and spe-
cial linear groups), but do not work with general linear groups. Such argu-
ments can be used to support Conjecture 1 as well.

5 Algorithms for ATFE

In this section we study algorithms for ATFE, which are crucial to pin down the
parameter choices of our signature scheme. Based on these, we state the best
algorithm for ATFE, based on the current literature, runs in time

O
(
q2/3·n · n2·ω · log2(q)

)
, (1)

where ω is the matrix multiplication exponent. This is based on the heuristic
(but still analysable) algorithm to be explained below.

Let us first list known algorithms with rigorous analyses for ATFE. It should
be noted that current algorithms actually solve the search version of ATFE, so
the following applies to psATFE as well.

– The brute-force algorithm for ATFE enumerates A ∈ GL(n, q) and then

verifies if φ = ψ ◦A. This runs in time qn
2 · poly(n, log q).

– Worst-case algorithms: One can adapt the dynamic programming method in
[59] to obtain an algorithm for ATFE in time q

1
4n

2+O(n).
– Average-case algorithms: An average-case algorithm for ATFE needs to solve

the problem for inputs of the form φ, ψ for most φ ∈ ATF(n, q) and arbitrary
ψ ∈ ATF(n, q). In [46], an average-case algorithm for ATFE in time qO(n)

was presented, which works for all but 1
qΩ(n) fraction of φ ∈ ATF(n, q).6

However, the constant hidden in the big O is at least 4 [46, arXiv version,
Appendix C], therefore it is still not useful in practice.

– Quantum algorithms: as described in Section 1, known research on the hidden
subgroup problem over general linear groups has mostly produced negative
evidences. This may partly explain why there seems no non-trivial quantum
algorithms in this setting, unlike the dihedral hidden subgroup problem.
Still, it may be possible to use Grover search [47] to help speeding up some
procedures useful for solving ATFE; see Remark 5.

From the above, we see that average-case algorithms are known to run in time
qO(n). For practical purposes, however, it is desirable to obtain an algorithm in
time qn · poly(n, log q). The main purpose of this section is to explore ways of
developing heuristic algorithms in time q2/3·n ·poly(n, log q). This seems to be a
previously uncharted territory of heuristic algorithms for ATFE, but, thanks to
Theorem 2, we can borrow ideas and experiences from multivariate cryptography
and computational group theory. Conversely, any progress on ATFE should help
with making progress on CFI and pGpI that have withstood attacks for decades.

6 In [46] an algorithm in such time was presented for CFI, but its algorithmic idea can
be readily applied to ATFE.
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5.1 A useful isomorphism invariant

To start with, we introduce the following notion which will be important for
discussions on heuristic algorithms.

Definition 10. Let φ ∈ ATF(n, q). For u ∈ Fnq , let φu : Fnq × Fnq → Fq be the
alternating bilinear form defined by φu(v, w) = φ(u, v, w).

The rank of φu as an alternating bilinear form is an important invariant under
isomorphism. That is, if φ = ψ◦A, then A must sends u ∈ Fnq with rk(φu) = r to
some v ∈ Fnq with rk(ψv) = r. Also note that the rank of an alternating bilinear
form must be an even number.

Given φ ∈ ATF(n, q) and r ∈ N, let Rφ,r := {u ∈ Fnq : rk(φu) = r}. The sizes
of Rφ,r, r ∈ N, form an important isomorphism invariant of φ. At present, there
seems little research into the sizes of Rφ. So we run experiments to get an idea
for small n and q. Our experiment results are summarized in Table 3.

2 4 6 8 10

(7, 5)100 5.76 16218.24 61900 N/A N/A

(8, 5)1 0 2064 388020 N/A N/A

(8, 7)1 0 17100 5747700 N/A N/A

(9, 2)100 0.01 9.77 281.62 291.60 N/A

(9, 3)100 0 30 7064.24 12587.76 N/A

(9, 5)1 0 216 409908 154300 N/A

(10, 3)100 0 0.96 2451.74 56595.3 N/A

(12, 3)1 0 0 10 25312 50918
Table 3. Experiment results on rank statistics. The first columns are of the form
(n, q)a, where a denotes the number of experiments run. The first row is the value of r.
The results are averaged over these many experiments. All these experiments produce
φ with Rφ,0 = {0}.

Remark 3. Some interesting observations can be made regarding Table 3. For
odd n = 2k + 1 and random φ ∈ ATF(n, q), it seems that |Rφ,2(k−1)| is slightly
larger than qn−1, and |Rφ,2(k−2)| is slightly larger than qn−6. For even n = 2k
and random φ ∈ ATF(n, q), it seems that |Rφ,2(k−2)| is slightly larger than qn−3,
and |Rφ,2(k−3)| is slightly larger than qn−10. It would be interesting to formally
prove certain properties of rank statistics for random φ ∈ ATF(n, q).

Remark 4. Rank statistics has been used to tackle pGpI in [18]. Following the
approach in [18], one can design a heuristic algorithm in time qn · poly(n, log q).
However, that approach requires to enumerate all low rank matrices, which seems
to prohibit from getting an algorithm in time qcn · poly(n, log q), c < 1.
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5.2 The heuristic algorithm with running time in Equation (1)

We now describe the heuristic algorithm in time O
(
q2/3·n · n2·ω · log2(q)

)
. This

algorithm closely follows the algorithm for QFMI in [16] based on the Gröbner
basis method.

Setting up the equations. One approach to set up a system of polynomials to
solve ATFE is as follows. Let φ, ψ ∈ ATF(n, q). We set up two n × n variable
matrices X and Y , and impose that XY = I, where I is the identity matrix. (So
X and Y are inverses to each other.) This gives us n2 quadratic equations. Then
instead of setting up equations in the form φ(X(u), X(v), X(w)) = ψ(u, v, w),
we set it as

φ(X(u), X(v), w) = ψ(u, v, Y (w)). (2)

This helps us to get quadratic equations instead of cubic ones. This gives us
(
n
3

)
equations. In total, we have

(
n
3

)
+ n2 quadratic equations in 2n2 variables.

The direct Gröbner basis method: experimental results. To directly solve the
above system of polynomial equations seems difficult. This echoes the experiences
in directly solving QFMI and CFI by the Gröbner basis method in [15,16,14]. For
example, in [14, Chap. 16] it was reported that for CFI, Gröbner basis attacks
succeeded for n = 6 (in about 400 seconds) and n = 7 (in about 17000 seconds),
but failed for n = 8.

We experimented with this direct attack for ATFE on a workstation7 using
Maple [61]. We carried out successful computations for n = 6 and q = 5 in
about 700 seconds, but could not achieve a successful one for n = 7 and q = 5
(using several monomial orders and both the quadratic and cubic methods): our
experiments suggested that the memory usage went beyond 87 GB.

Maybe surprisingly, the Gröbner basis attack can be improved by adding
more, seemingly redundant equations to the system. More precisely, we add equa-
tions to encode Y X = I on top of XY = I, and complete φ(X(u), X(v), w) =
ψ(u, v, Y (w)) with equations encoding φ(X(u), v, w) = ψ(u, Y (v), Y (w)), φ(u, v, w) =
ψ(Y (u), Y (v), Y (w)), and φ(X(u), X(v), X(w)) = ψ(u, v, w). On top of this, we
fix a subset of the variables and randomly assign values to them, before calling
the Gröbner basis algorithm. This is in the spirit of hybrid Gröbner basis al-
gorithms and also exploit the fact that many solutions may exist, especially in
small dimension. This leads to a very fast attack on n = 7 and permits breaking
n = 8. However, n = 9 remains out of range of this improvement.

Since the behaviours of Gröbner basis algorithms in our case on small sizes
seemed not uniform, we didn’t extrapolate the time needed by Gröbner basis
attacks. Instead, we performed a theoretical anlysis as follows.

The direct Gröbner basis method: theoretical asymptotic analyses. From the the-
oretical analysis side, while a rigorous analysis of the Gröbner basis algorithm
is notoriously difficult, it is possible to give some estimates based on certain

7 Processor: 2.6 GHz 18-core Intel(R) Xeon(R) Gold 6132; Memory 87 GB.
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assumptions. 8 Following the approach in [16,14], we can give an upper bound
on the regularity for these equations, assuming that these polynomials form a
semi-regular sequence and using the results of Bardet et al. [8,9].

Let (f1, . . . , fm), fi ∈ F[x1, . . . , xn], be a sequence of polynomials. Generalis-
ing the classical notion of regular sequences of polynomials (for m = n), Bardet
and Faugère introduced the notion of semi-regular sequences of polynomials (for
m > n), and Bardet et al. studied the degree of regularities of the ideal spanned
by these polynomials in [8,9]. An asymptotic estimate on the degree of regularity
for semi-regular sequences of m = αN quadratic polynomials in N variables, α
a constant, is given in [9] as

N
(
α− 1

2
−
√
α(α− 1)

)
− a1

2(α(α− 1))1/6
·N1/3−

(
2− 2α− 1

4
√
α(α− 1)

)
+O(1/N1/3),

(3)
where a1 ≈ −2.33811.

To apply Eq. (3) to ATFE, we need to assume that (i) the equations form
a semi-regular sequence, and (ii) Eq. (3) applies to the setting when α is not
necessarily a constant. These were assumed for QFMI and CFI in [16,14], and we
assume so here as well. By Eq. (2), we have

(
n
3

)
+n2 quadratic equations in 2n2

variables. Using Eq. (3) (with α = n
12 + 1

4 + 1
6n and N = 2n2), we obtain that the

degree of regularity is asymptotically 3n. Therefore the F5 algorithm of Faugère
[33] is expected to perform

O(Nω·3n) = O(26ω·n·log2(n)) (4)

many arithmetic operations.
We would like to emphasize that the above estimation is heuristic, and only

gives an upper bound. So while it is useful as a guidance, it is necessary to
perform experiments.

The XL method: theoretical asymptotic analyses. Another approach of solving
system of polynomial equations is the eXtended Linearisation (XL) method [21].
The XL method with a sparse matrix (such as Wiedemann) solver was proposed
in [83] as an alternative to F4/F5 [33]. For the purpose of theoretical analyses
here, the sparse matrix solver could improve the matrix multiplication exponent
ω to 2 in Equation (4). In particular, this implies that we need to take into
account n12 in determining the underlying finite field order q. Because of this,
for the sake of security, we will use 2 instead of ω in the choice of parameters
(cf. Section 6.1). It will be interesting to experiment with XL for solving the
polynomial equation system in Equation (2), and we leave this in a future work.

Gröbner basis attack with partial information. To make progress, we can set
the first row of the variable matrix X to be known, which amounts to say that
the image of e1 under X is known. This also gives a linear constraint on the

8 We would like to thank Charles Bouillaguet for his help with understanding these
methods here.

20



columns of Y . We then essentially solve a system of polynomials in 2(n2 − n)
many variables. Such ideas have been used to solve CFI in [15].

We experiment with the improved Gröbner basis method with guessing one
row (but without fixing a subset of variables and randomly assigning values to
them). It turns out that, in this setting, the maximum degrees for the Gröbner
basis computation to succeed are 3 for n up to 13. Furthermore, we can even
use results from the Gröbner basis computation at degree 2 to solve the system.
We take these as evidence that the Gröbner basis with partial information runs
much faster than the method without partial information, and make the following
assumption.

Assumption 1. Suppose φ, ψ ∈ ATF(n, q) such that φ = ψ ◦ A. Suppose the
first column of A is known. Then the Gröbner basis computation reveals the rest
entries of A in time O(n2·ω · log(q)).

Assumption 1 is consistent with the discoveries in [37] that the inhomoge-
neous version of QFMI can be solved by the Gröbner basis method in time O(n9),
and in [15] that CFI can be solved with the Gröbner basis method with partial
information in time O(n6).

Making use of the birthday paradox. We now combine Assumption 1 with birth-
day paradox, following the idea in [16]9. The key idea is to make use of those u
whose φu has low rank.

Let us describe the idea in a concrete setting. Let φ, ψ ∈ ATF(n, q). For
u ∈ Fnq , φu is the bilinear form defined in Definition 10, and assume that there

exists r ∈ N, such that |Rφ,r| ≈ q2n/3. Then we sample qn/3 vectors, say S ⊆ Rφ,r
and T ⊆ Rψ,r respectively, in time O(q2n/3). By the birthday paradox, there
exist u ∈ S and v ∈ T , such that Au = v with constant probability. Knowing
the image of A on one vector should help with recovering the whole A by using
e.g. the Gröbner basis attack with partial information.

Note that the above relies on the assumption10 that there exists r such that
|Rφ,r| ≈ q2n/3. For other parameters this method still gives improvement but,
because it needs to balance sampling vectors to get S and T and the use of
birtday paradox, so q2/3·n is the best it can achieve.

Combining Assumption 1 with the above, we have a heuristic algorithm in
time O

(
q2/3·n · n2·ω · log2(q)

)
.

5.3 Attacks based on min-rank

Several attacks on the hidden field equation proposal [71] rely on solving the
min-rank problem: given matrices A0, A1, . . . , Am ∈ M(n, q), let A = {A0 +

9 There is another algorithm in [16] with time complexity qn/2·poly(n, log q), but it was
designed for characteristic 2 fields, which we do not use for concrete instantiations
in Section 6.1.

10 By Table 3, for n = 10 which will be used to instantiate our scheme in Section 6.1,
we see that |Rφ,6| ≈ q7, where 7 ≈ 20/3. On the other hand for odd n there is no
such r.
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∑n
i=1 αiAi : αi ∈ Fq} be the affine subspace of M(n, q). The min-rank problem

asks to compute a matrix of minimum rank in A. It is NP-complete [20], but
several non-trivial algorithms have been developed for this problem.

The min-rank problem is of relevance to ATFE because of the rank statistics
in Section 5.1. To make the connection more obvious, we review the well-known
connection between alternating trilinear forms and 3-way arrays.

Definition 11. Given φ ∈ ATF(n, q), written as φ =
∑

1≤i<j<k≤n ai,j,ke
∗
i ∧e∗j∧

e∗k (cf. Section 2.1), we define a 3-way array (br,s,t)r,s,t∈[n], br,s,t ∈ Fq, by setting
br,s,t = φ(er, es, et). Then for t ∈ [n], construct a matrix Bt = (br,s,t)r,s∈[n]. Let
u = (u1, . . . , un)t ∈ Fnq . Then it is easy to verify that rk(φu) = rk(

∑n
i=1 uiBi).

As we have seen in Section 5.2, the rank statistics is useful for algorithmic
purposes. In particular, in the algorithm in Section 5.2, it is useful to get some
u ∈ Fnq of such that φu is of minimum rank among non-zero vectors. Note though
that for isomorphism testing purposes, just one such u seems not quite helpful.
Instead, we need a large fraction, if not all, of the u whose φu is of minimum
rank in order to create a collision.

So we examine some algorithms for the min-rank problem and their potential
consequences on ATFE. Note that the instance of the min-rank problem relevant
to us is the following: given A1, . . . , An ∈ M(n, q) be n matrices, and A be the
linear subspace of M(n, q) spanned by Ai’s. The problem is to find a non-zero
matrix A ∈ A of rank ≤ r.

The kernel attack. In [42], the kernel method on the min-rank problem was
proposed. In our context, because we have n matrices of size n×n, this method
works as follows. Let A ∈ A be of rank ≤ r. Suppose v ∈ Fnq is in the kernel
of A. Then construct (

∑
i∈[n] xiAi)v = 0, which consists of n linear equations

in the variables x1, . . . , xn. It can be expected that the solution space is of 1-
dimensional, and any non-zero solution gives rise to λA for some nonzero λ ∈ Fq.
So the problem is to sample a non-zero vector in ker(A). Since | ker(A)| = qn−r

we expect to get one after qr many samplings.
To adapt the above to our setting incurs an extra cost. Recall the matri-

ces Bi’s in Definition 11, constructed from an alternating trilinear form φ ∈
Λ(n, q). Let B be the space of matrices spanned by Bi’s. Suppose for some
B =

∑
i∈[n] uiBi ∈ B, we have rk(B) = r. For v ∈ ker(B), set up the equa-

tions (
∑
i∈[n] xiBi)v = 0, and let S be the solution space. So S contains u =

(u1, . . . , un) as promised, but S also contains v due to the alternating property.
In other words, dim(S) is at least 2, and we need to go through all the lines in
dim(S). This adds a multiplicative factor of q to the original sampling.

To use the above in solving ATFE, we can combine the above with the birth-
day paradox idea from [16] as follows. Let φ, ψ ∈ ATF(n, q) be the input to
ATFE. Suppose min{rk(φu) : u ∈ Fnq } = min{rk(ψu) : u ∈ Fnq }, which should
holds with high probability. Let r be this minimum rank and it is known to us
(by carrying out experiments from Table 3). Suppose Rφ,r and Rψ,r (defined in
Section 5.1) are of size ≈ s, which can also be determined before hand using
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experiments. By birthday paradox, to create a collision it is enough to sampling√
s many u ∈ Fnq from Rφ,r and Rψ,r, respectively. Each sampling requires qr · q

many operations, so total sampling needs qr+1 ·
√
s many operations. After that

we get a collision (i.e. u and v such that Au = v for some A sending φ to ψ)
with constant probability by trying over

√
s ·
√
s = s many possibilities. Because

of Assumption 1, the rest can be solved in polynomial time.
From the above we see that the main multiplicative factors are qr+1 ·

√
s and

s. From Table 3 and Remark 3, when n = 9, we seem to have r = 4 and s = q3 in
this case. So qr+1 ·

√
s becomes q6.5 > q2/3·n. Combining with Assumption 1, the

running time of the algorithm is not competitive with O
(
q2/3·n · n2·ω · log2(q)

)
.

Remark 5. The Grover search should be helpful in the above setting. Note that it
is easy to formulate searching a (non-zero) matrix of minimum rank as a marked
search problem. Using the terminologies above, the multi-target Grover search

can return a matrix of rank r (minimum rank) in quantum time
√

qn

s . Therefore

getting
√
s-many min-rank matrices requires quantum time qn/2. This is better

than qr+1 when n ≤ 2(r + 1).

We also studied attacks based on the Kipnis-Shamir relinearisation attack
[55] and that with the Gröbner basis method [36,34,35] in Appendix B.

6 Implementation results

6.1 Parameter Choices

The following analysis on parameters with respect to a fixed security level is
modelled after CSI-FiSh [11]. We present here the choice of parameters for the
basic scheme in Section 3.1. The choice of parameters for the Merkle variant is
presented in Appendix A.

To achieve the security level as λ bits, there are four parameters to determine:
n and q as in ATF(n, q), the round number r, and the number of alternating
trilinear forms generated in each round which is C = 2c. Some key criteria are
as follows.

– First, by Equation (1) from the algorithmic study of ATFE, we use

2

3
· n · log2(q) + 2ω · log2(n) + log2(log2(q)) ≥ λ. (5)

to estimate the bit complexity for solving ATFE. Here ω is the matrix mul-
tiplication exponent, and we take ω = 2 for the sake of added security.

– As discussed in [11], as customary it is reasonable to assume that the prob-
ability of a successful attack is at most Q × E, where Q is the number of
hash function evaluations and E is the soundness error of the zero-knowledge
Goldreich-Micali-Wigderson protocol. Therefore we require C−r ≤ 2−λ, lead-
ing to

r · c ≥ λ. (6)
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It is possible to improve this a little bit by “slowing down” the hash function
as indicated in [11], but we shall not explore this here.

– The scheme implies that the public key, private key, and signature sizes in
terms of bytes are as follows.

PubKeySize = 2c ·
(
n

3

)
· dlog2(q)e/8, (7)

PriKeySize = 2c · n2 · dlog2(q)e/8, (8)

SigSize = r · (c+ n2 · dlog2(q)e)/8. (9)

We list our reasons for parameter choices.

The choice of n. As the public key size grows in n3, we wish to keep n as small as
possible. By the attack methods described in Section 5, the only attack method
that is insensitive to q is the Gröbner basis attack. So we need to set up n such
that the Gröbner basis attack fails.

The practical experiments with Gröbner basis as reported in Section 5.2
indicate setting n ≥ 9. This is partly due to an important distinction between
n = 8 and n = 9. That is, when n = 8, the dimension of ATF(8, q) (56) is less
than the dimension of GL(8, q) (64). This weakness disappears at n = 9, when
the dimension of ATF(9, q) (84) exceeds the dimension of GL(9, q) (81). Because
of these, we choose n to be 9, 10, and 11 as first test beds.

The choice of q. Since the only thing that matters in our analysis about q is its
size, it seems reasonable to set q to be a prime for simpler and hopefully faster
implementation.

The choice of r and c. It seems reasonable to set r and C = 2c to be roughly the
same. This is because C controls the public key size and r controls the signature
size. Making r and C close helps to achieve the best performance regarding the
sum of public key and signature sizes. We also need to ensure that q2/3 ≤ n12

so that q2/3n ≤ n12n by the Gröbner basis method analysis.
Based on the above, we provide two sets of parameter choices for the basic

scheme as follows. Note that we include both n = 8 and n = 9, as odd and even
numbers seem to demonstrate different behaviours regarding the rank statistics
(Table 3), which in turn affects the attack methods.

6.2 A prototype implementation

In this section, we provide a prototype implementation of the basic scheme using
C to evaluate its practical efficiency. We first explain some optimizations we have
performed on our prototype. We then propose some concrete parameter sets and
report the running times of our implementation.

1. First, to efficiently generate random invertible matrix Ai over Fq, we generate
each time two random matrices Li ∈ Fn,nq and Ui ∈ Fn,nq such that
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– Li,j
$← Fq if i > j, Li,j = 0 if i < j and Li,i = 1,

– Ui,j
$← Fq if i < j, Ui,j = 0 if i > j and Ui,i

$← F∗q .
Consequently, we can efficiently compute Ai = LiUi. The LU decomposition
guarantees a bijection between the set of the invertible matrices in Fq and
the qn(n−1)(q− 1)n possible combinations of Li and Ui. It allows us to avoid
determinant computation as well as re-sampling in case Ai is a singular
matrix.

2. Secondly, we use a dedicated technique to perform modular reduction. Op-
erating on matrices and tensors require multiple computations of a sum of
products of elements over Fq. To perform those inner products efficiently,
we will start by computing the sum of products in Z and then performing
a modular reduction, which we employ the algorithm proposed recently by
Plantard in [73]. It allows us to efficiently reduce the resulting inner prod-
uct, which is smaller than nq2, to a number smaller than q by in just 2
multiplications, 2 bit-shifts and one addition; see [73] for more detail. In
such situation, this choice is outperforming the usage of Pseudo-Mersenne
number [26] as well as Montgomery reduction [66]. However, it requires two
specific corrections:
– the result is ≤ q not < q. This slight redundancy needs to be corrected

at the final stage of computations; and
– the modular arithmetic uses a Montgomery-like representation, i.e., in

our computations, x mod q will be represented by x ·(−264) mod q. How-
ever, the computation output do not need to be in such representation.
Furthermore, to pick random elements in Fq or F∗q , one can assume those
elements being already in such representation. Nevertheless, when ini-
tializing the identity matrix we will simply initiate 1 in the diagonal
directly to −264 mod q.

Our experience suggests that the main overhead lies at the computation of
the group action. The procedure described in Section 2.1 requires O(n6) many
operations. To bring this down we can first turn alternating trilinear forms into
3-way arrays as in Definition 11, and then perform 3n many matrix multiplica-
tions. This results in a procedure with O(n4) many operations. The alternating
structure helps to reduce the constant hidden in the big O notation.

Remark 6. For modular arithmetics, we also implemented the Montgomery clas-
sic method [66], the reduction modulo a Pseudo-Mersenne method [26], as well
as Seiler’s method [76]. Our experiments suggested that, while there were no sig-
nificant differences among these four methods, the method we use in this paper
following [73] is the most efficient, as shown in Table 4.

Some concrete proposals. Based on the above analysis, we propose some con-
crete instantiations in Tables 5. For timing, we performed 105 tests for each func-
tion and computed the average. Our tests were performed on a Linux 5.11.0-37-
generic with Intel Core i7-8565U CPU (1.80 GHz) and compiled with g++10.3.0
with ”-Ofast -flto -fwhole-program -march=native” options.
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Time in µs

Method Set-Up Sign Verify

[73] 383.1 660.0 578.9

[66] 414.1 678.8 616.1

[26] 412.8 682.8 598.8

[76] 425.0 692.7 609.1
Table 4. The timings for four modular arithmetic methods for Option 2 in Table 5.
The results were averaged over 105 tests for each method.

Parameters Size in Byte Time in µs

n q r c λ Public key Private key Signature Set-Up Sign Verify

Option 1 9 524287 26 5 128 6384 6156 5018 285.9 471.7 416.5

Option 2 10 131071 26 5 128 8160 6800 5542 383.1 660.0 578.9

Option 3 10 131071 32 4 128 4080 3400 6816 190.7 795.4 708.8

Option 4 11 65521 26 5 128 10560 7744 6309 514.0 861.1 765.2
Table 5. Proposed concrete instantiations of the proposed scheme.

Acknowledgement.

We thank the reviewers for their careful reading and several questions and sug-
gestions. We thank Luca De Feo for his careful reading and pointing out some
typos. Y.Q. was partly supported by the Australian Research Council Discovery
Projects DP200100950. D.H.D. and W.S. were partly supported by the Aus-
tralian Research Council Linkage Projects LP190100984. A.J. was supported by
the European Union’s H2020 Programme under grant agreement number ERC-
669891.

References

1. M. Agrawal and N. Saxena. Automorphisms of finite rings and applications to
complexity of problems. In STACS 2005, pages 1–17, 2005.

2. M. Agrawal and N. Saxena. Equivalence of f-algebras and cubic forms. In STACS
2006, pages 115–126, 2006.

3. G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu, C.
Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone. Status
report on the second round of the NIST post-quantum cryptography standardiza-
tion process. Technical report, National Institute of Standards and Technology,
July 2020.

4. N. Alamati, L. D. Feo, H. Montgomery, and S. Patranabis. Cryptographic group
actions and applications. In Advances in Cryptology - ASIACRYPT 2020, pages
411–439. Springer, 2020.

5. MD Atkinson. Alternating trilinear forms and groups of exponent 6. Journal of
the Australian Mathematical Society, 16(1):111–128, 1973.

6. L. Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
STOC 2016, pages 684–697, 2016.

26



7. S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G.
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A The Merkle tree variant

Merkle trees [64] are used widely in signature scheme designs, including recent
works on isogeny-based signatures [38,11]. Our use is completely analogous to
that in [11].

Let us first give a sketch here. Recall that the public key in the basic scheme
is (φ1, . . . , φC), φi ∈ ATF(n, q), where C = 2c. Let h be a hash function. Build
a complete binary tree T of depth c. For each node v we assign (a, b), where
a ∈ {0, 1, . . . , c} denotes the depth v is on, and b ∈ [2a]. In particular, the
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children of (a, b) are (a+ 1, 2b− 1) and (a+ 1, 2b). Then label the leaf node (c, i)
with `c,i := h(φi|C + i|MerkleKey), where MerkleKey ∈ {0, 1}λ) is a random
bit string, included in both public and private keys. Each internal node (a, b) is
labelled by `a,b := h(`a+1,2b−1|`a+1,2b|2a + b|MerkleKey). The public key is then
the label of the root and MerkleKey. The private key consists of MerkleKey,
φC , and the original matrices A1, . . . , AC ∈ GL(n, q). The signing procedure
is the same except that now we need to also include, for i ∈ [r], φbi , and the
authentication path of φbi on the Merkle tree, which consists of hash values
of those nodes adjacent to the path from (c, bi) to the root. The verification
procedure starts by verifying that φbi ’s are on the tree, and the rest is the same.

It is possible to reduce the private key size to say 32 bytes, by using a
pseudorandom generator to generate Ai and φC .

For the choice of parameters of the Merkle tree variant, Equations (5) and (6)
still apply. For the other parameters, we have the following (in terms of bytes),
assuming we use a hash function producing 256-bit outputs.

PubKeySize = 48, (10)

PriKeySize = (2c · n2 · dlog2(q)e+

(
n

3

)
· dlog2(q)e+ 128)/8, (11)

SigSize = r · (c+ n2 · dlog2(q)e+

(
n

3

)
· dlog2(q)e+ 256 · c)/8. (12)

Note that for public key and private sizes, 16 bytes are needed for MerkleKey.
Therefore, the choices of n and q are the same as the basic scheme. For r and

c, it is desirable to set r as small as possible, because it is key in the signature
size. However, note that r cannot be set too small, as this implies large c which
results in a large key generation time.

B On the Kipnis-Shamir relinearisation attack

The Kipnis-Shamir relinearisation attack. Suppose we wish to solve a system of
m quadratic equations in n variables x1, . . . , xn. When m ≈ n2/2, the lineari-
sation method assigns new variables yi,j for quadratic monomials xixj , solves
the resulting linear equations, and recovers a solution to xi’s from the solu-
tion to linear equations. In [55], Kipnis and Shamir develops the relinearisation
method which allows to work in the setting when m = ε · n2 for small constant
ε. Furthermore the relinearisation helps to relieve the problem that many solu-
tions to linear equations do not correspond to the original solutions to quadratic
equations.

An application of the Kipnis-Shamir relinearisation to the min-rank problem
is to compute rank-1 matrices in the matrix space, as one can write out the 2×2
minors and solve the system of quadratic equations; see [75] for a concrete use.
This does not apply to our setting because by Table 3, a random alternating
trilinear form φ ∈ ATF(n, q) do not yield φu of rank ≤ 3 when n ≥ 8.

There are two ways to extend the above idea to rank-r matrices.
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The first approach is straightforward: write out the (r+ 1)× (r+ 1) minors,
assign a new variable to each degree-(r+1) term, and solve the linear equations.
However, if there are many rank-r matrices (just as in our case; cf. Table 3),
the solution space could be of large dimension, so many solutions do not cor-
respond to original solutions. To address this issue one needs to add in more
relations among these newly introduced variables (the relinearisation idea), but
this quickly becomes messy so not easy to understand or analyse.

The second approach was to combine the Kipnis-Shamir method with the
Gröbner basis method. This was introduced by Faugère, Levy-dit-Vehel and
Perret in [36] and further developed in [34,35]. This will be explained next.

The Kipnis-Shamir and Gröbner basis attack. In [36,34,35] the Kipnis-Shamir
method was rephrased and combined with the Gröbner basis method. When the
number of matrices is (n − r)2, the algorithm there runs in time O(nω·(n−r)

2

).
When n− r = 3, experiments also suggest the efficiency in practice.

It is unclear whether these results apply to our setting, as from Definition 11,
we have n (instead of (n−r)2) matrices Bi’s of size n×n with certain structural
restrictions. It is certainly of value to investigate this in the future.

32


	Practical Post-Quantum Signature Schemes from Isomorphism Problems of Trilinear Forms 

