
A preliminary version of this paper appears in the proceedings of EUROCRYPT 2022. This is the
full version.

Efficient Schemes for

Committing Authenticated Encryption

Mihir Bellare1 Viet Tung Hoang2

March 2, 2022

Abstract

This paper provides efficient authenticated-encryption (AE) schemes in which a ciphertext is
a commitment to the key. These are extended, at minimal additional cost, to schemes where the
ciphertext is a commitment to all encryption inputs, meaning key, nonce, associated data and
message. Our primary schemes are modifications of GCM (for basic, unique-nonce AE security)
and AES-GCM-SIV (for misuse-resistant AE security) and add both forms of commitment
without any increase in ciphertext size. We also give more generic, but somewhat more costly,
solutions.

1 Department of Computer Science & Engineering, University of California San Diego, USA. Email:
mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in part by NSF grant CNS-1717640
and a gift from Microsoft.

2 Department of Computer Science, Florida State University, USA. Email: tvhoang@cs.fsu.edu. URL:
cs.fsu.edu/~tvhoang/. Supported in part by NSF grants CNS-2046540 (CAREER), CICI-1738912, and CRII-
1755539.

1



Contents

1 Introduction 4

2 Preliminaries 8

3 Committing AE Framework 10

4 Some Building Blocks 14

5 A Committing Variant of GCM 17

6 A Committing Variant of AES-GCM-SIV 20

7 Adding Key-Committing Security To Legacy AE 25

References 29

A Relations Among Committing Notions 33

B GHASH As a Weakly Regular Hash 34

C A Lower Bound on Multi-collision Resistance 34

D Proof of Lemma 4.1 36

E Proof of Proposition 4.2 37

F Proof of Proposition 4.3 38

G Proof of Proposition 4.4 39

H An Attack on the ITP Construction 41

I Proof of Proposition 4.5 42

J Proof of Theorem 5.1 44

K Proof of Theorem 5.1 44

L Proof of Theorem 3.1 48

M Proof of Theorem 3.2 48

N Proof of Proposition 6.1 50

O Proof of Proposition 6.3 53

P Proof of Proposition 6.4 54

Q Proof of Theorem 6.5 56

R Proof of Theorem 6.6 57

2



S Proof of Theorem 7.2 60

T Proof of Theorem 7.3 62

3



1 Introduction

Symmetric encryption is the canonical primitive of cryptography, with which the field is often
identified in the popular mind. Over time, the primitive has evolved. Failures of privacy-only
schemes lead to the understanding that the goal should be authenticated encryption [9, 37]. The
underlying syntax, meanwhile, has gone from randomized or counter-based [7] to nonce-based [47,
46].

Recent attacks and applications [39, 29, 3, 26, 4] motivate another evolution. Namely, a cipher-
text should be a commitment to the key, and beyond that, possibly even to other or all the inputs
to the encryption process.

In this paper we contribute definitions and new schemes for such committing authenticated
encryption. Our schemes combine efficiency, security and practicality attributes that may make
them attractive for inclusion in cryptographic software libraries or for standardization.

Background. In a nonce-based symmetric encryption scheme SE, encryption takes key K, nonce
N , associated data A and message M to deterministically return a ciphertext C ← SE.Enc(K,
N,A,M), with decryption recovering via M ← SE.Dec(K,N,A,C) [47, 46]. AE security asks for
both privacy and authenticity of the message. In its most basic form, called UNAE (Unique-Nonce
AE security) this is under the assumption that nonces are unique, meaning never reused across
encryptions [47, 46]. MRAE (Misuse-resistant AE security) is stronger, asking in addition for
best-possible security under any reuse of an encryption nonce [48].

A central scheme is GCM [41]. It is a government standard [24] and is used in TLS [49].
Other standardized and widely-used schemes are XSalsa20/Poly1305 and ChaCha20/Poly1305 [16,
14, 15]. All these are UNAE-secure. AES-GCM-SIV [50, 31] is a leading MRAE scheme poised for
standardization.

For both UNAE and MRAE, proofs are the norm, but the bar is now high: not only multi-
user (mu) security [12] —reflecting that deployment settings like TLS have millions of users— but
with bounds that are good, meaning almost the same as for the single-user setting. Dedicated
analyses show that GCM has such UNAE security [12, 40, 33], and likewise for the MRAE security
of AES-GCM-SIV [19]. Henceforth when we refer to UNAE or MRAE, it means in the mu setting

Committing security. We formalize, in a systematic way, different notions of what it means for
a ciphertext C ← SE.Enc(K,N,A,M) to be a commitment. For the purposes of this Introduction,
we can confine attention to two notions, CMT-1 and CMT-4. The primary, CMT-1 notion asks
that the commitment be to the key K. In the game formalizing this, the adversary returns a
pair ((K1, N1, A1,M1), (K2, N2, A2,M2)) satisfying K1 6= K2, and is successful if SE.Enc(K1, N1,
A1,M1) = SE.Enc(K2, N2, A2,M2). Extending this, CMT-4 asks that the commitment be, not just
to the key, but to K,N,A,M , meaning to all the inputs to SE.Enc. The game changes only in
the requirement K1 6= K2 being replaced by (K1, N1, A1,M1) 6= (K2, N2, A2,M2). As a mnemonic,
think of the integer ℓ in the notation CMT-ℓ as the number of inputs of SE.Enc to which we commit.

Clearly CMT-4 → CMT-1, meaning any scheme that is CMT-4-secure is also CMT-1-secure,
and it is easy to see that the implication is strict. (There exist CMT-1-secure schemes that are not
CMT-4-secure.)

In Section 3, we also consider CMT-3, simpler than, but equivalent to, CMT-4; we give alterna-
tive, decryption-based formulations of all these definitions but show the two equivalent for schemes
that, like all the ones we consider, satisfy the syntactic requirement of tidiness [43]; and finally we
extend the notions from 2-way committing security to s-way committing security for a parameter
s ≥ 2 which will enter results.

Simple counterexamples show that neither UNAE nor MRAE security imply even CMT-1-

4



security. And the gap is real: attacks from [39, 4, 29] show that GCM, XSalsa20/Poly1305,
ChaCha20/Poly1305 and OCB [47] are all CMT-1-insecure.

Prior notions. The notion of key-committing (KC) security, asking that a ciphertext is a com-
mitment to the key, starts with Abdalla, Bellare and Neven (ABN) [3], who called it robustness
and studied it for PKE and IBE. Their definitions were strengthened by Farshim, Libert, Pater-
son and Quaglia [25]. Now calling it key-robustness, Farshi, Orlandi and Ro̧sie (FOR) [26] bring
it to randomized symmetric encryption. Albertini, Duong, Gueron, Kölbl, Luykx and Schmieg
(ADGKLS) [4] and Len, Grubbs and Ristenpart (LGR) [39] consider it for nonce-based symmetric
encryption, giving definitions slightly weaker than CMT-1.

Grubbs, Lu and Ristenpart (GLR) [29] consider committing to the header and message. CMT-4
is stronger in that it asks for the commitment to be not just to these but also to the key and nonce.
However, we do not consider or require what GLR [29] call compact commitment.

Why commit to the key? The canonical method for password-based encryption (PKCS#5 [36])
uses a symmetric encryption scheme SE, such as GCM, as a tool. In a surprising new attack,
LGR [39] show that absence of key-committing (KC) security in SE leads to a break of the overlying
password-based encryption scheme. This attack is circumvented if SE is CMT-1-secure.

Broadly, we have seen protocols failing due to absence of key-committing security in an underly-
ing encryption scheme and then fixed by its being added. ABN [3] illustrate this when the protocol
is PEKS [18]; they also note that when encryption strives to be anonymous, key-committing secu-
rity is necessary for unambiguous decryption. FOR [26] illustrate the issue for an encryption-using
Oblivious Transfer protocol and note that encryption not being key-committing has lead to attacks
on Private Set Intersection protocols [38]. ADGKLS [4] describe in detail three real-world security
failures —the domains are key rotation, envelope encryption and subscribe-with-Google— arising
from lack of key-committing security.

Why commit to everything? CMT-4 is a simple, optimally-strong goal: we commit to every-
thing. This means all 4 of the inputs to the encryption algorithm: key, nonce, associated data and
message. Some motivation comes from applications; for example, GLR [29] show that committing
to header and message is needed for an AE scheme to provide message franking, a capability in
messaging systems that allows a receiver to report the receipt of abusive content. But the larger
benefit is to increase ease of use and decrease risk of error or misuse. An application designer is
spared the burden of trying to understand to exactly which encryption inputs the application needs
a commitment; with CMT-4, she is covered.

Path to schemes. Our starting points are existing AE schemes. Given one such, call it SE,
we will modify it to a CMT-1 scheme SE-1 and then further into a CMT-4 scheme SE-4. These
modifications must of course retain AE security: for XX ∈ {UN,MR}, if SE is XXAE-secure then
so are SE-1,SE-4. The ciphertext overhead (length of ciphertext in new scheme minus that in old)
is kept as small as possible, and is zero for our primary schemes. Computational overhead will
always be independent of the length of the message.

Proofs of AE security for our schemes are in the multi-user setting, with bounds as good as
those for the starting schemes. This requires significant analytical effort.

Modern encryption standards are purely blockcipher based, meaning do not use a cryptographic
hash function like SHA256; this allows them to most effectively exploit the AES-NI instructions
for speed, and also lowers their real-estate in hardware. We aim, as much as possible, to retain
this. For CMT-1, we succeed, reaching this without cryptographic hash functions. The extension to
CMT-4 however requires a function H that we would instantiate via a cryptographic hash function.

The step from CMT-1 to CMT-4 is done via a general, zero ciphertext-overhead transform,

5



Scheme
AE Committing Ciphertext Starts

security security overhead from

CAU-C1 UNAE CMT-1 0 GCM

HtE[CAU-C1, ·] UNAE CMT-4 0 GCM

CAU-SIV-C1 MRAE CMT-1 0 AES-GCM-SIV

HtE[CAU-SIV-C1, ·] MRAE CMT-4 0 AES-GCM-SIV

UtC[SE, ·] UNAE CMT-1 1 block any UNAE SE

HtE[UtC[SE, ·], ·] UNAE CMT-4 1 block any UNAE SE

RtC[SE, ·, ·] MRAE CMT-1 1 block any MRAE SE

HtE[RtC[SE, ·, ·], ·] MRAE CMT-4 1 block any MRAE SE

Figure 1: Summary of attributes of our schemes. Ciphertext overhead is length of ciphertext
in our scheme minus that in the scheme from which it starts. Computational overhead is always
independent of message length. A “·” as an argument to a transform refers to some suitable
auxiliary primitive discussed in the text.

called HtE, that we discuss next. Figure 1 summarizes the attributes of the different new schemes
that we give and will discuss below.

From CMT-1 to CMT-4 via HtE. We give a generic way to turn a CMT-1 scheme into into a
CMT-4 one. (That is, once you can commit to the key, it is easy to commit to everything.)
The transform incurs no ciphertext overhead and preserves both UNAE and MRAE security. The
computational overhead involves processing only the nonce and associated data, and is independent
of message length.

We now give some detail. Given a symmetric encryption scheme SE-1, and a functionH, our HtE
(Hash then Encrypt) transform defines the scheme SE-4← HtE[SE-1,H] in which SE-4.Enc(K,N,A,M)
lets L← H(K, (N,A)) and returns SE-1.Enc(L,N, ε,M). Here outputs of H have the same length
as keys of SE-1. There is no ciphertext overhead: ciphertexts in SE-4 have the same length as
in SE-1. The computational overhead, namely the computation of H, is independent of message
length. Theorem 3.1 shows that SE-4 is CMT-4 assuming SE-1 is CMT-1 and H is collision resis-
tant. Theorem 3.2 shows that if H is a PRF then (1) If SE-1 is UNAE then so is SE-4, and (2) If
SE-1 is MRAE then so is SE-4. All these results are with good bounds.

We stress that we avoid assuming H is a random oracle; we instead make the standard-model
assumption that it is a collision-resistant PRF. Section 3 discusses instantiations of H based on
HMAC [5], SHA256 or SHA3.

CAU schemes. GCM [41] is a UNAE scheme that, due to its standardization [24] and use in
TLS [49], is already widely implemented. Attacks [39, 4, 29] however show that it is not CMT-1-
secure. Making only a tiny modification to GCM, we obtain a new scheme, that we CAU-C1, that is
UNAE and CMT-1 secure. Theorem 5.1 establishes CMT-1 security of CAU-C1, and Theorem 5.2
establishes UNAE security with good mu bounds.

CAU-C1 changes only how the last block GCM block is encrypted so that the tag is a Davies-
Meyer hash. (See Figure 9.) The locality and minimality of the change means that it should be easy
to modify existing GCM code to obtain CAU-C1 code, making CAU-C1 attractive for implementation.
With regard to performance, CAU-C1 incurs essentially no overhead; in particular, the ciphertext
size remains the same as in GCM.

We can obtain a UNAE and CMT-4-secure scheme, that we call CAU-C4, by applying our
above-discussed HtE transform to CAU-C1 and a suitable collision-resistant PRF H. Ciphertext

6



overhead continues to be zero: CAU-C4 ciphertexts have the same size as CAU-C1, and thus GCM,
ones.

With the above, we have obtained CMT-1 and CMT-4 UNAE schemes that offer minimal
overhead, good quantitative security and ease of implementation. We now turn to MRAE, doing
the same. Here our starting point is AES-GCM-SIV [50, 31], a leading MRAE scheme poised
for standardization. We give CAU-SIV-C1, a tiny modification of AES-GCM-SIV that is MRAE
and CMT-1-secure. Theorem 6.5 establishes CMT-1 security of CAU-SIV-C1, and Theorem 6.6
establishes MRAE security with good mu bounds. Again, applying HtE to CAU-SIV-C1 yields a
MRAE and CMT-4 scheme CAU-SIV-C4 that continues to be a small modification of AES-GCM-SIV.
There is no growth in ciphertext size.

Generic transforms. With the four schemes discussed above, we have obtained CMT-1 and
CMT-4 security for both UNAE and MRAE schemes, with zero ciphertext overhead and almost
zero computational overhead. These schemes however are intrusive, making small modifications to
GCM or AES-GCM-SIV. We now give ways to add committing security via generic transforms that
invoke the given scheme only in a blackbox way. The price we will pay is some ciphertext overhead.

We give a generic transform UtC that takes any UNAE scheme SE and returns a scheme SE←
UtC[SE,F] that is UNAE and CMT-1-secure. Here F is a committing PRF, a primitive we introduce
that generalizes the notion of a key-robust PRF from FOR [26]. We build a cheap committing PRF,
that we call CX, from (only) a blockcipher. Proposition 7.1 proves its security with good bounds.
Theorem 7.2 establishes CMT-1 security of SE, and also shows that SE inherits the mu UNAE
security of SE without degradation in the bound. Ciphertexts in SE are one block longer than
those in SE. Applying HtE to SE and a suitable collision-resistant PRF H, we obtain a UNAE
CMT-4 scheme, leaving ciphertext overhead at one block.

UtC however does not preserve MRAE security. We give a second generic transform, RtC, that
takes any MRAE scheme SE and returns a scheme SE← RtC[SE,F,H] that is MRAE and CMT-1-
secure. Here F as before is a committing PRF that we set to CX, and H is a collision-resistant
PRF that we instantiate via the Davies-Meyer method. Theorem 7.3 establishes CMT-1 security
of SE, and also shows that SE inherits the mu MRAE security of SE without degradation in the
bound. Ciphertexts in SE are one block longer than those in SE. Again, applying HtE to SE yields
a MRAE CMT-4 scheme, leaving ciphertext overhead at one block.

Extensions and remarks. For an integer parameter s ≥ 2, we can extend CMT-1 to a notion
CMTs-1 of multi-input committing security. Here the adversary returns an s-tuple ((K1, N1, A1,
M1), . . . (Ks, Ns, As,Ms)) in which K1, . . . ,Ks are all distinct, and is successful if SE.Enc(K1, N1,
A1,M1), . . . ,SE.Enc(Ks, Ns, As,Ms) are all the same. CMT-4 is likewise extended to CMTs-4.
Clearly CMT-n implies CMTs-n (n ∈ {1, 4}). Our results however consider CMTs-n (not just
CMT-n) and prove bounds on its being violated that degrade quickly with s. This allows us to give
better guarantees for security against partitioning oracle attacks [39]. Namely, we can show that,
with use of one of our CMT-1 schemes, the probability that an attacker can speed up the attack
by a factor s decreases quickly as a function of s.

Our CMT-1 notion is strong, allowing the adversary to pick both keys, but in many applications,
one key is randomly and honestly chosen and the adversary only gets to pick the other. This means
that, for AES-based instantiations of our schemes in which tags are 128 bits, there are no known
264 time attacks that violate security of these applications.

Related work. We start by noting a few “firsts.” (1) Prior nonce-based committing schemes
were only for UNAE. We are giving the first ones for MRAE. (2) We give the first schemes that
commit to all encryption inputs, meaning achieve CMT-4. (3) We give the first schemes (our four

7



CAU schemes) that have zero ciphertext overhead (4) We give analyses of multi-input committing
security with bounds that degrade quickly in the number s of inputs.

FOR [26] take a broad, systematic approach, giving general methods to build key-committing
primitives. Their key-committing encryption schemes however are randomized rather than nonce-
based. Also, they don’t show multi-user security with good bounds.

Many of the schemes of GLR [29] are randomized. Their leading nonce-based scheme, Commit-
ting Encrypt-and-PRF (CEP), has a block of ciphertext overhead, unlike our CAU schemes. CEP
also seems to fare somewhat more poorly than our schemes with regard to performance and extent
of software change. They don’t show good multi-user security.

The DGRW scheme [23] is randomized, not nonce-based. It uses a compression function that
is assumed collision resistant and RKA-PRF-secure [8]. Instantiating the latter via Davies-Meyers
yields a blockcipher-based scheme, but speed with AES-NI is reduced because the blockcipher key
changes with each message block. They incur ciphertext overhead, and don’t show good multi-user
security.

It should be noted that GLR [29] and DGRW [23] are targeting and achieving properties beyond
key-commiting security, as needed for message franking. In particular, their schemes, unlike ours,
produce a compact commitment to the message.

ADGKLS [4] consider nonce-based schemes and give a generic way to add key-committing
security to a UNAE scheme. Their transform uses a pair of collision-resistant PRFs. UtC generalizes
this, using instead our (new) committing PRF abstraction; instantiation with CX yields efficiency
improvements over ADGKLS. They also give a padding-based key-committing extension of GCM,
but, unlike our CAU-C1, it increases ciphertext size.

LGR [39] say “our results suggest that future work should design, standardize, and add to
libraries, AE schemes designed to be key-committing.” Our schemes are intended as a response.

2 Preliminaries

Notation and terminology. Let ε denote the empty string. For a string x we write |x| to refer
to its bit length, and x[i : j] is the bits i through j (inclusive) of x, for 1 ≤ i ≤ j ≤ |x|. By
Func(Dom,Rng) we denote the set of all functions f : Dom→ Rng and by Perm(Dom) the set of all
permutations π : Dom→ Dom. We use ⊥ as a special symbol to denote rejection, and it is assumed
to be outside {0, 1}∗. In the context that we use a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, the
block length of a string x, denoted as |x|n, is max

{

1,
⌈

|x|/n
⌉}

. If X is a finite set, we let x←$ X
denote picking an element of X uniformly at random and assigning it to x.

Symmetric Encryption. A (nonce-based) symmetric encryption (SE) scheme SE specifies deter-
ministic algorithms SE.Enc : K ×N × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and SE.Dec : K ×N × {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ ∪ {⊥}. Here K,N are the associated key and nonce spaces. The encryption
algorithm takes as input a key K ∈ K, a nonce N ∈ N , associated data A ∈ {0, 1}∗ and a message
M ∈ M, and returns a ciphertext C ← SE.Enc(K,N,A,M). The decryption algorithm takes as
input K,N,A,C and returns either a message M ∈ {0, 1}∗ or the special symbol ⊥ indicating
invalidity or rejection. The correctness requirement says that decryption reverses encryption, nam-
ely if C ← SE.Enc(K,N,A,M) then SE.Dec(K,N,A,C) returns M . We assume that there is a
ciphertext-length function SE.len : N → N such that the length of SE.Enc(K,N,A,M) is exactly
SE.len(|M |) bits for all K,N,A,M .

We say that SE is tidy [43] if M ← SE.Dec(K,N,A,C) implies that SE.Enc(K,N,A,M) re-
turnsC. Combining correctness and tidiness means that functions SE.Enc(K,N,A, ·) and SE.Dec(K,
N,A, ·) are the inverse of each other. The schemes we consider will be tidy.

8



Game Greal
SE (A)

b′←$ANew,Enc,Vf; return b′

New()

v ← v + 1; Kv←$K
Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
C ← SE.Enc(Ki, N,A,M)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
V ← SE.Dec(Ki, N,A,C); return (V 6= ⊥)

Game Grand
SE (A)

b′←$ANew,Enc,Vf; return b′

New()

v ← v + 1

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
C←$ {0, 1}SE.len(|M|)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
return false

Figure 2: Games defining misuse-resistance security of a SE scheme SE.

AE security. Let SE be a symmetric encryption scheme with key space K and nonce space N .
We now define its security as an authenticated encryption (AE) scheme in the multi-user setting,
following the formalization of [12]. The first, basic requirement, called unique-nonce AE (UNAE),
asks for security assuming encryption never repeats a nonce for any given user. The second,
advanced requirement, called misuse-resistant AE (MRAE) drops this condition. Consider games
Greal

SE (A) and Grand
SE (A) in Fig. 2. We define the mrae advantage of an adversary A as

Advmrae
SE (A) = Pr[Greal

SE (A)]− Pr[Grand
SE (A)] .

To avoid trivial wins, we forbid the adversary from repeating a query to either its Enc or its Vf
oracles. Moreover, if the adversary previously received C ← Enc(i,N,A,M) then later it is not
allowed to query Vf(i,N,A,C). We can now recover UNAE security by restricting attention to
unique-nonce adversaries, these being ones that never repeat an (i,N) pair across their Enc queries.
(That is, a nonce is never reused for a given user.) We stress that there is no such restriction on
decryption queries. If A is a unique-nonce adversary, then we write its advantage as Advunae

SE (A)
for clarity.

Systems and Transcripts. Following the notation from [32], it is convenient to consider inter-
actions of a distinguisher A with an abstract system S which answers A’s queries. The resulting
interaction then generates a transcript θ =

(

(X1, Y1), . . . , (Xq, Yq)
)

of query-answer pairs. It is
known that S is entirely described by the probabilities pS(θ) that correspond to the system S
responding with answers as indicated by θ when the queries in θ are made.

We will generally describe systems informally, or more formally in terms of a set of oracles they
provide, and only use the fact that they define corresponding probabilities pS(θ) without explicitly
giving these probabilities.

Multi-collision resistance. Let H : Dom→ Rng be a function. Let s ≥ 2 be an integer. An s-
way collision forH is a tuple (X1, . . . ,Xs) of distinct points in Dom such thatH(X1) = · · · = H(Xs).
For an adversary A, define its advantage in breaking the s-way multi-collision resistance of H as

Advcoll
H,s(A) = Pr[(X1, . . . ,Xs) is an s-way collision for H]

where the probability is over (X1, . . . ,Xs)←$A. When s = 2 we recover the classical notion of
collision resistance.

9



Game Gprf
F (A)

v ← 0; b←$ {0, 1}
b′←$ANew,Eval

return (b′ = b)

New()

v ← v + 1

Kv←$ {0, 1}k
fv←$ Func(Dom,Rng)

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥
C1 ← F(Ki,M); C0 ← fi(M)

return Cb

Game Gprp
E (A)

v ← 0; b←$ {0, 1}
b′ ← ANew,Eval

return (b′ = b)

New()

v ← v + 1

Kv←$ {0, 1}k
πv←$ Perm({0, 1}n)

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥
C1 ← E(Ki,M); C0 ← πi(M)

return Cb

Figure 3: Games defining PRF security of F and PRP security of E.

AXU hashing. Let G : {0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}n be a keyed hash function. We say that
G is c-almost xor universal if for all (M,A) 6= (M ′, A′) and all ∆ ∈ {0, 1}n,

Pr
K←$ {0,1}n

[GK(M,A)⊕GK(M ′, A′) = ∆] ≤ c ·max{|M |n + |A|n, |M ′|n + |A′|n}
2n

.

PRFs and PRPs. For a function F : {0, 1}k × Dom → Rng and an adversary A, we define the
advantage of A in breaking the (multi-user) PRF security of F [6] as

Advprf
F (A) = 2Pr[Gprf

F (A)]− 1 ,

where game Gprf
F (A) is shown in Fig. 3. For a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n and an

adversary A, we define the advantage of A in breaking the multi-user PRP security of E as

Advprp
E (A) = 2Pr[Gprp

E (A)]− 1 ,

where game Advprp
F (A) is defined in Fig. 3. Mouha and Luykx [42] show that if we model E

as an ideal cipher then for any adversary making q evaluation queries and p ideal-cipher queries,
Advprp

E (A) ≤ (q2 + 2pq)/2k+1.

3 Committing AE Framework

Let SE be a symmetric encryption scheme with key space K and nonce space N . We define
a hierarchy of levels of committing security CMTD-1 ← CMTD-3 ↔ CMTD-4, where the “D”
indicates these are decryption-based. For each ℓ ∈ {1, 3, 4} we also recast CMTD-ℓ as an encryption-
based notion CMT-ℓ that is simpler but equivalent if SE is tidy. We give relations between the
notions, and then extend all this to s-way committing security for s ≥ 2.

Think of ℓ here as indicating that we commit to the first ℓ inputs of the encryption algorithm.
Since popular schemes, and the ones in this paper in particular, are tidy, the CMT-ℓ notions
become our focus moving forward. The Introduction had discussed only CMT-1 and CMT-4; here
we introduce the ℓ = 3 notions as simpler than, but equivalent to, the ℓ = 4 ones, something our
results will exploit.

This section concludes with a simple transform, called EtH, that promotes ℓ = 1 security to
ℓ = 4 security with minimal overhead.

What is committed? In asking that a ciphertext C ← SE.Enc(K,N,A,M) be a committal, the
question is, to what? We consider this in a fine-grained way. We define a function WiCℓ (What
is Committed) that on input (K,N,A,M) returns the part of the input to which we want the

10



Game Gcmtd-ℓ
SE (A)

(

C, (K1, N1, A1,M1), (K2, N2, A2,M2)
)

←$A
Require: WiCℓ(K1, N1, A1,M1) 6= WiCℓ(K2, N2, A2,M2)

Return ((M1 = SE.Dec(K1, N1, A1, C) and M2 = SE.Dec(K2, N2, A2, C))

Game Gcmt-ℓ
SE (A)

(

(K1, N1, A1,M1), (K2, N2, A2,M2)
)

←$A
Require: WiCℓ(K1, N1, A1,M1) 6= WiCℓ(K2, N2, A2,M2)

Return (SE.Enc(K1, N1, A1,M1) = SE.Enc(K2, N2, A2,M2))

ℓ 1 3 4

WiCℓ(K,N,A,M) K (K,N,A) (K,N,A,M)

CMTD-1 CMTD-3 CMTD-4

CMT-1 CMT-3 CMT-4

Figure 4: Games defining committing security of a symmetric encryption scheme SE. Below them
are the associated what-is-committed functions WiCℓ, and then the relations between the notions.
The gray arrows hold for tidy SE.

ciphertext to be a commitment. It is defined as shown in the table in Figure 4. Thus, when
ℓ = 1, we are asking that we commit to the key; this corresponds to robustness [3], also called
key-robustness [26] or key-committing [4] security. When ℓ = 3, we commit to the key, nonce and
associated data. Finally ℓ = 4 means we commit, additionally, to the message, and thus to all the
inputs of SE.Enc.

The D-notions. Let ℓ ∈ {1, 3, 4} be an integer representing the level of committing security.
Consider game Gcmtd-ℓ

SE (A) in Fig. 4, and define the advantage of adversary A as Advcmtd-ℓ
SE (A) =

Pr[Gcmtd-ℓ
SE (A)]. In the game, the adversary provides a ciphertext C together with a pair of tuples

(K1, N1, A1,M1) and (K2, N2, A2,M2). (No entry of a tuple is allowed to be ⊥.) The adversary
wins if both decryptions of C equal the respective adversary-provided messages. The game requires
that the outputs of the WiCℓ function on the adversary-provided tuples be different, precluding
a trivial win. The only difference between the different levels indicated by ℓ is in the value of
WiCℓ(K,N,M,A) as given in the table. We denote the resulting notions by CMTD-ℓ for ℓ ∈
{1, 3, 4}.

Our CMTD-1 notion is stronger than the key-committing notion in prior work [4], since we
allow the adversary to specify different nonces N1 and N2. In contrast, the key-committing nonce
requires the two nonces to be the same.

On the other hand, achieving CMTD-4 security requires processing the associated data under
a collision-resistant hash function. To see why, note that in settings where messages are the empty
string, a ciphertext is a compact commitment of the associated data.

The E-notions. Let ℓ ∈ {1, 3, 4} be an integer representing the level of committing security.
Consider game Gcmt-ℓ

SE (A) in Fig. 4, and define the advantage of adversary A as Advcmt-ℓ
SE (A) =

11



Game Gcmtd-ℓ
SE,s (A)

(C, (K1, N1, A1,M1), . . . , (Ks, Ns, As,Ms))←$A
Require: WiCℓ(K1, N1, A1,M1), . . . ,WiCℓ(Ks, Ns, As,Ms) are all distinct

Return (∀ i : Mi = SE.Dec(Ki, Ni, Ai, Ci))

Game Gcmt-ℓ
SE,s (A)

((K1, N1, A1,M1), . . . , (Ks, Ns, As,Ms))←$A
Require: WiCℓ(K1, N1, A1,M1), . . . ,WiCℓ(Ks, Ns, As,Ms) are all distinct

Return (SE.Enc(K1, N1, A1,M1) = · · · = SE.Enc(Ks, Ns, As,Ms))

CMTDs-1 CMTDs-3 CMTD-4

CMTs-1 CMTs-3 CMTs-4

Figure 5: Games defining s-way committing security of a symmetric encryption scheme SE for
s ≥ 2. Below them are the relations between the notions. The gray arrows hold for tidy SE.

Pr[Gcmt-ℓ
SE (A)]. In the game, the adversary provides a pair of tuples (K1, N1, A1,M1) and (K2, N2,

A2,M2). (No entry of a tuple is allowed to be ⊥.) The functions WiCℓ are unchanged. The game
returns true (the adversary wins) if the encryptions of the two tuples are the same. We denote the
resulting notions by CMT-ℓ for ℓ ∈ {1, 3, 4}.

Relations. The bottom of Fig. 4 shows the relations between the notions of committing security.
An arrow A→ B, read as A implies B, means that any scheme SE that is A-secure is also B-secure.
A gray arrow means the implication holds when SE is tidy. The relations in the picture are justified
in Appendix A.

Multi-input committing security. The notions above considered an adversary successful if it
opened a ciphertext in two different ways (D) or provided two encryption inputs with the same
output (E). We now generalize from “two” to an integer parameter s ≥ 2, the prior notions being the
special case s = 2. The games, in Figure 5, are parameterized, as before, with symmetric encryption
scheme SE, but now also with s. Again there are “D” and “E” variants. The functions WiCℓ remain
as in Figure 4. The advantages of an adversary A are defined as Advcmtx-ℓ

SE,s (A) = Pr[Gcmtx-ℓ
SE,s (A)]

for x ∈ {d, ε} and ℓ ∈ {1, 3, 4}. We denote the resulting notions by CMTXs-ℓ for X ∈ {D, ε} and
ℓ ∈ {1, 3, 4}. Their relations remain as before and for completeness are also illustrated in Figure 5.

Why generalize? It is easy to see that CMTX-ℓ implies CMTXs-ℓ for all s ≥ 2 and X ∈ {D, ε},
meaning if a scheme SE is CMTX-ℓ-secure then it is also CMTXs-ℓ for all s ≥ 2. So why consider
s > 2? The reason is that we can give schemes for which the bound on adversary advantage gets
better as s gets larger, indeed even decaying exponentially with s. Indeed, one can break CMT-1-
security of the scheme CAU-C1 in Section 5 in about 264 operations. However, for any adversary A
that spends at most 280 operations, the chance that it can break CMT3-1 security of CAU-C1 is at
most 2−62. This allows us to offer a much stronger guarantee for situations like the Partitioning
Oracle attack [39]. Recall that here, breaking CMTs-1 security speeds up the time to find the
underlying password used for key derivation by a factor of s. Thus our results say that despite
investing 280 operations, A can at best speed up its password search by a factor of two.

12



SE.Enc(K,N,A,M)

L← H(K, (N,A))

C ← SE.Enc(L,N, ε,M)

Return C

SE.Dec(K,N,A,C∗‖T ′)

L← H(K, (N,A))

M ← SE.Dec(L,N, ε, C)

Return M

Figure 6: The scheme SE = HtE[SE,H] defined via the Hash-then-Encrypt transform applied to a
symmetric encryption scheme SE and a function H.

Discussion. Practical schemes tend to be tidy, and all the ones we consider are, so, moving forward,
we make tidiness an implicit assumption and focus on the E notions. Our primary focus is (s-way)
CMT-1 because this is already non-trivial, what was targeted in many previous works, and enough
for many applications. Below we give a generic way to promote CMT-1 security to CMT-4 security.

From CMT-1 to CMT-4. We give a way to turn CMT-1 security into CMT-4 security, for both
unique-nonce and misuse-resistance security. (That is, if you can commit to the key, it is easy to
commit to everything.) It takes the form of a transform we call HtE (Hash then Encrypt). The
ingredients are a base symmetric encryption scheme SE with key space {0, 1}k , and a function
H : {0, 1}k × {0, 1}∗ → {0, 1}k . The encryption and decryption algorithms of the scheme SE =
HtE[SE,H] are shown in Fig. 6. The key-space and nonce-space remain that of SE.

With regard to performance, HtE preserves ciphertext length, meaning we are promoting CMT-1
to CMT-4 without increase in ciphertext size. The computational overhead, which is the compu-
tation of H(K, (N,A)), is optimal, since achieving CMT-4 requires processing the associated data
with a collision-resistant hash function. In practice, associated data is often short (for example, IP
headers are at most 60B), and thus HtE typically incurs just a constant computational overhead
over the base scheme SE.

With regard to security, intuitively, if H is collision-resistant then the subkey L is a commitment
to the master key K, the nonce N and the associated data A. As a result, if the ciphertext is a
commitment to the subkey L then it is also a commitment to (K,N,A). Hence the CMT-1 security
of SE implies the CMT-3 security of SE, and thus, as per the relations in Figure 4, also its CMT-4
security. Furthermore we will show that HtE preserves both unique-nonce and misuse-resistance
security assuming H is a PRF.

We note that we do not assume H is a random oracle, instead making the standard-model
assumption that it is a collision-resistant PRF.We now give formal results confirming the intuition
above. The following shows that HtE indeed promotes CMT-1 security to CMT-4 security. The
proof is in Appendix L.

Theorem 3.1 Let SE be an SE scheme with key length k, and let H : {0, 1}k × {0, 1}∗ → {0, 1}k
be a hash function. Let SE = HtE[SE,H]. Fix an integer s ≥ 2 and let t = ⌈√s ⌉. Then given an
adversary A, we can construct adversaries B0 and B1 such that

Advcmt-4
SE,s

(A) ≤ max
{

Advcoll
H,t(B0),Advcmt-1

SE,t (B1)
}

.

Each Bi runs A and then runs H on s pairs (nonce, associated data) of A.

The next result shows that HtE preserves both unique-nonce and misuse-resistance security,
provided that H is a good PRF. The proof is in Appendix M.

Theorem 3.2 Let SE be an SE scheme with key length k, and let H : {0, 1}k × {0, 1}∗ → {0, 1}k
be a hash function. Let SE = HtE[SE,H]. Then given an adversary A that makes at most q queries

13



of totally σa bits for (nonce, AD) pairs and at most B queries per (user, nonce, AD) triples, we
can construct adversaries B and D such that

Advmrae
SE

(A) ≤ Advprf
H (B) +Advmrae

SE (D) .

If A is unique-nonce then so is D, and we can rewrite the bound as

Advunae
SE

(A) ≤ Advprf
H (B) +Advunae

SE (D) .

Adversary B makes at most q queries on at most σa bits. Its running time is about that of A plus
the time to encrypt/decrypt A’s queries. Adversary D makes q queries of the total length as A, but
it makes only B queries per user. Its running time is about that of A plus O(σa log(B)).

We now discuss the choice of H. If nonce length is fixed, one can instantiate H(K, (N,A)) via
HMAC-SHA256(K‖N‖A)[1 : k] or SHA3(K‖N‖A)[1 : k]. We stress that if one considers using
SHA256(K‖N‖A)[1 : k], one must beware of the extension attack, to avoid which one should only
use this if k = 128 [21].

4 Some Building Blocks

We give building blocks, technical results and information that we will use later. Some of the results
are interesting in their own right, and may have applications beyond the context of committing AE.

Multi-user PRP/PRF Switching. Lemma 4.1 below generalizes the classical PRP/PRF Switch-
ing Lemma [11] to the multi-user setting; see Appendix D for a proof. If one uses a hybrid argument
on the standard single-user PRP/PRF Switching Lemma, one will obtain a weak bound uB2/2n,
where u is the number of users. If there are Θ(q) users and some user makes Θ(q) queries then this
bound is in the order of q3/2n, whereas our bound is just q2/2n in this case.

Alternatively, if one parameterizes on q only, as in [40], one will end up with another weak
bound q2/2n. In the setting where each user makes approximately B queries, this bound is even
weaker than the trivial bound uB2/2n. Lemma 4.1 instead uses a different parameterization to
obtain a sharp bound qB/2n. The idea of using both B and q as parameters in multi-user analysis
is first introduced in [19].

Lemma 4.1 (Multi-user PRP/PRF Switching Lemma) Let E : {0, 1}k × {0, 1}n → {0, 1}n
be a blockcipher. For any adversary A, if it makes at most q evaluation queries in total, with at
most B queries per user, then

Advprf
E (A) ≤ Advprp

E (A) + Bq

2n
.

Simplifying UNAE/MRAE proofs. In UNAE/MRAE proofs, an adversary can adaptively in-
terleave encryption and verification queries. Proofs will be simpler if the adversary is orderly,
meaning that (i) its verification queries are made at the very end, and (ii) each verification query
does not depend on the answers of prior verification queries, but may still depend on the answers
of prior encryption queries. Proposition 4.2 shows that one can consider only orderly adversaries
in UNAE/MRAE notions with just a small loss in the advantage; see Appendix E for a proof. The
idea of restricting to orderly adversaries has been used in prior works [19, 10]. They show that
one can factor an UNAE/MRAE adversary A into two adversaries B0 and B1 attacking privacy
and authenticity respectively, where B1 is orderly. Here we instead transform A to another orderly
UNAE/MRAE adversary B.

14



H
� H

�

X Z

Y

Figure 7: Illustration of the cascade of the two hash functions H0 and H1.

Proposition 4.2 Let SE be a symmetric encryption scheme such that its ciphertext is at least
τ -bit longer than the corresponding plaintext. For any adversary A that makes qv verification
queries, we can construct another orderly adversary B of about the same running time such that

Advmrae
SE (A) ≤ Advmrae

SE (B) + 2qv
2τ

.

Adversary B has the same query statistics as A. Moreover, if A is unique-nonce then so its B, and
thus in that case we can rewrite the bound as

Advunae
SE (A) ≤ Advunae

SE (B) + 2qv
2τ

.

For both notions, if every ciphertext of SE is exactly τ -bit longer than its plaintext then the term
2qv/2

τ can be improved to qv/2
τ .

Committing AE via collision-resistant hash. Intuitively, from the definition of committing
AE, to achieve this goal, one needs to include the image of the key under some (multi)collision-
resistant hash function in the ciphertext. This connection has been recognized and explored in
prior works. For example, (i) the OPAQUE protocol [35] recommends the use of the Encrypt-then-
HMAC construction, (ii) Albertini et al. [4] suggest using a hash-based key-derivation function to
add key-committing security into legacy AE schemes; and (iii) Dodis et al. [23] propose a hash-
based AE design for Facebook’s message franking. The definition was recalled in Section 2. We
now give some new fundamental results.

The Truncated Davies-Meyer construction. A common way to build a collision-resistant
compression function from a blockcipher is the Davies-Meyer construction. Our paper makes ex-
tensive use of this construction to have a cheap commitment of the key for obtaining committing
security. It appears in both the AE schemes of Sections 5 and 6. While the collision resistance of
the Davies-Meyer construction is well-known [17], its multi-collision resistance has not been studied
before. Moreover, in our use of Davies-Meyer, we usually have to truncate the output, and even
ordinary collision resistance of truncated Davies-Meyer has not been investigated.

In particular, let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher. Let m ≤ n be an integer, and
define DM[E,m] : {0, 1}k × {0, 1}n → {0, 1}m via

DM[E,m](X,Y ) =
(

EX(Y )⊕Y
)

[1 : m] .

We write DM[E] for the special case m = n (meaning there is no truncation). Proposition 4.3
below analyzes the multi-collision resistance of DM[E,m]; see Appendix F for a proof. The result
is in the ideal-cipher model, that is, the adversary is given oracle access to both E and its inverse,

15



and the number of ideal-cipher queries refers to the total queries to these two oracles.

Proposition 4.3 Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an
ideal cipher. Let s ≥ 2 and m ≤ n be integers. For an adversary A that makes at most p ≤ 2n−1−s
ideal-cipher queries,

Advcoll
DM[E,m],s(A) ≤ 21−m +

(

p

s

)

· 2(1−m)(s−1) .

For the case s = 2 and m = n, our bound is 21−n+p(p−1)/2n, which slightly improves the classical
bound p(p+1)/2n of Black, Rogaway, and Shrimpton [17]. For a general s, in Appendix C, we show
that for an ideal hash function on range {0, 1}m, there is an attack on the s-way multi-collision
resistance of advantage

1

4
·
(

p

s

)

· 2−m(s−1) .

Thus the Truncated Davies-Meyer construction achieves essentially the best possible multi-collision
resistance that we can hope for the output length m.

The Iterative Truncated-Permutation construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n
be a blockcipher. Let r < n be a positive integer, and let m ≤ 2n be a positive even integer. Let
pad : {0, 1}r × {1, 2} → {0, 1}n be a one-to-one mapping. Define ITP[E, r,m] : {0, 1}k × {0, 1}r →
{0, 1}2m via

ITP[E, r,m](K,X) = EK(pad(X, 1))[1 : m/2]‖EK(pad(X, 2))[1 : m/2] .

The ITP construction is used in the key-derivation function of AES-GCM-SIV, where r = 96 and
m = n = 128, and pad(X, i) is the concatenation of X and an (n− r)-bit encoding of i. For proving
the committing security of the variants of AES-GCM-SIV in Section 6, we need to show that in using
ITP to derive subkeys, one is also committing the master key and the nonce to one of the subkeys.
Proposition 4.4 below analyzes the multi-collision resistance of ITP; see Appendix G for a proof.
The analysis is difficult because ITP was not designed for collision resistance. This result is in the
ideal-cipher model, meaning that the adversary is given oracle access to both E and E−1, and the
number of ideal-cipher queries refers to the total queries to both oracles. Note that for r ≤ 3n/4
and m = n (which holds for the situation of AES-GCM-SIV), ITP has birthday-bound security or
better.

Proposition 4.4 Let m, r, n be positive integers such that r < n, and m ≤ 2n is even. Let
E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal cipher. Let s ≥ 2
be an integer. For an adversary A that makes at most p ≤ 2n−3 − s ideal-cipher queries,

Advcoll
ITP[E,r,m],s(A) ≤ 21−m +

4ps

s! · 2(m−2)(s−1) +
2m/2+1 · ps

s! · 2(m/2+n−r−2)s
.

Compared to the lower bound
(p
s

)

· 2−m(s−1), the ITP construction has some security degradation
due to the last term in the bound of Proposition 4.4. In Appendix H, we give an attack that
matches this term, implying that the bound of Proposition 4.4 is tight.

Multi-collision resistance on a cascade. Let c ≥ 2 be an integer. For each i ∈ {0, . . . , c−1},
let Hi : Li × Ri → Rngi be a hash function such that Rngi ⊆ Ri+1. Define the cascade H0 ◦H1

of H0 and H1 as the hash function H such that H(X,Y,Z) = H1

(

Z,H0(X,Y )
)

; see Fig. 7 for an
illustration. The cascade H0 ◦ · · · ◦Hi of H0, . . . ,Hi is defined recursively as (H0 ◦ · · · ◦Hi−1) ◦Hi.

16



Cascading appears in AE schemes of Section 6 where one first commits the master key into a subkey,
and then includes a commitment of the subkey into the ciphertext. The following result shows how
to bound the multi-collision resistance of H0 ◦ · · · ◦Hc−1; see Appendix I for a proof.

Proposition 4.5 Let H be the cascade of hash functions H0,H1, . . . ,Hc−1 as above. Let s ≥ 2 be
an integer, and let t = ⌈ c

√
s ⌉. Then for any adversary A, we can construct adversaries B0, . . . ,Bc−1

such that

Advcoll
H,s(A) ≤ max

{

Advcoll
H0,t(B0), . . . ,Advcoll

Hc−1,t(Bc−1)
}

.

Each adversary Bi runs A, and then runs the cascade of H0, . . . ,Hmin{c−2,i} on the s inputs of A.

5 A Committing Variant of GCM

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that achieves both CMT-1
and unique-nonce security with the same speed and bandwidth costs as GCM. In this entire
section, let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. Following Bellare and Tackmann [13],
we consider a generalization CAU of GCM. This scheme loosely follows the encrypt-then-MAC
paradigm, where the encryption scheme is the CTR mode, and the MAC is the Carter-Wegman
construction via an almost-xor-universal (AXU) hash function. (The name CAU is a mnemonic for
the use of the CTR mode and an AXU hash function.) In GCM, the function G is instantiated by
a 1.5-AXU hash GHASH.

The scheme CAU. We now describe the scheme CAU. Let G : {0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}n
be an AXU hash function. Let N = {0, 1}r be the nonce space, where r < n is an integer. In GCM,
n = 128 and r = 96. For a string N ∈ N , we write pad(N) to refer to N‖0n−r−1‖1. Let τ ≤ n be
the tag length. The scheme CAU[E,G, τ ] is specified in Fig. 8; it only accepts messages of at most
2n−r − 2 blocks. See also Fig. 9 for an illustration.

Specification of CAU-C1. The code of CAU-C1[E,G, τ ] is shown in Fig. 8. Like CAU, it only
accepts messages of at most 2n−r−2 blocks. Compared to CAU, the change occurs in how we derive
the tag, as illustrated in Fig. 9. In particular, in CAU, one obtains the tag by using the Carter-
Wegman paradigm, applying a one-time pad EK(pad(N)) to the output R of the AXU hash.
In contrast, in CAU-C1, we use a different Carter-Wegman flavor, enciphering V ← R⊕pad(N).
However, to ensure committing security, instead of using T ← EK(V )[1 : τ ], we employ the
Truncated Davies-Meyer method, outputting T ← DM[E, τ ](K,V ).

We note that if one instead computes T ← DM[E, τ ](K,R) then the resulting scheme will not
have unique-nonce security. In particular, once we obtain a valid ciphertext C under nonce N and
associated data A, the pair (A,C) remains valid for any nonce N ′, and thus breaking authenticity
is trivial. Xor’ing pad(N) to R ensures that the tag T depends on all of N,A,C.

Farshim, Orlandi, and Roşie [26] also point out that in Encrypt-and-MAC, if the encryption
scheme and the PRF can use the same key, and the PRF is committing, then the composition has
key-committing security. Their result is however for probabilistic AE, so it does not imply the
key-committing security of CAU-C1.

Discussion. Our CAU-C1 scheme has several merits. (1) The change to CAU is small, making it
easy to modify existing CAU code to get CAU-C1 code. (2) The speed of CAU-C1 is about the same as
CAU for moderate and large messages. Moreover, the absence of any ciphertext overhead over CAU
means there is no additional bandwidth cost. In contrast, prior proposed solutions [35, 4, 26, 23, 29]
have to sacrifice either speed or bandwidth. (3) As we will show later, for short tag length, CAU-C1
has much better UNAE security than CAU.

17



Enc(K,N,A,M)

// 0 ≤ |Mm| < n and |Mi| = n otherwise

Y ← pad(N); M1 · · ·Mm ←M

//Encrypt with CTR mode and IV Y + 1

For i← 1 to m− 1 do Ci ←Mi⊕EK(Y + i)

Cm ←Mm⊕EK(Y +m)
[

1 : |Mm|
]

; C ← C1 · · ·Cm

//Use Carter-Wegman on G

L← EK(0n); R← GL(A,C); T ← Tag(K,Y,R)

Return C‖T

Dec(K,N,A,C‖T )
// 0 ≤ |Cm| < n and |Ci| = n otherwise

Y ← pad(N); C1 · · ·Cm ← C

//Decrypt with CTR mode and IV Y + 1

For i← 1 to m− 1 do Mi ← Ci⊕EK(Y + i)

Mm ← Cm⊕EK(Y +m)
[

1 : |Cm|
]

; M ←M1 · · ·Mm

//Use Carter-Wegman on G

L← EK(0n); R← GL(A,C); T ′ ← Tag(K,Y,R)

If T ′ 6= T then return ⊥ else return M

Tag(K,Y,R) //CAU

S ← EK(Y )⊕R
Return S[1 : τ ]

Tag(K,Y,R) //CAU-C1

V ← Y⊕R; S ← EK(V )⊕V
Return S[1 : τ ]

Figure 8: The common blueprint for encryption (top) and decryption (middle) of CAU[E,G, τ ] and
CAU-C1[E,G, τ ]. The two schemes only differ on how they implement the internal procedure Tag,
as shown in the bottom panels.

It however does have some limitations. (1) Since it requires modifying CAU’s code, one may
not be able to use CAU-C1 in some legacy systems. (2) In the encryption algorithm of CAU-C1, the
blockcipher call for the tag must be computed strictly after all other blockcipher calls are completed.
In contrast, in CAU, all blockcipher calls can be done in parallel. This slowdown can be significant
for tiny messages.

CMT-1 security of CAU-C1. The following Theorem 5.1 analyzes CMT-1 security of CAU-C1; the
proof is in Appendix J. The result is in the standard model, although it relies on the multi-collision
of the truncated Davies-Meyer that is justified in the ideal-cipher model via Proposition 4.3.

Theorem 5.1 Let CAU-C1[E,G, τ ] be as above. Let s ≥ 2 be an integer. Then for any adversary
A, we can construct an adversary B such that

Advcmt-1
CAU-C1[E,G,τ ],s(A) ≤ Advcoll

DM[E,τ ],s(B) .

Adversary B runs A and makes s other calls on E.

Discussion. Note that an adversary can break the two-way CMT-1 security of CAU-C1[E,G, τ ] by
using about 2τ/2 operations. If one aims for at least birthday-bound security and one’s application
requires two-way CMT-1 security, we must not truncate the tag, namely τ must be 128. However, if
we only need to resist the Partitioning-Oracle attack and can tolerate a small speedup in adversarial
password search, we can use, say τ = 96. From Proposition 4.3, with τ = 96, for any adversary B

18



E
K

N

E
K

� N � N �

C

M� M �

� C
�

E
K

N �

M�

C
�

A

G
L

T

���

E
K

Y

R

T

E
K

Y

R

T

��� ������

���τ ���τ

Figure 9: A pictorial comparison of the encryption schemes of CAU and CAU-C1. The two scheme
have the same blueprint on the top panel. They however have different implementations for the
internal procedure Tag, illustrated in the bottom panels. Here the trapezoid MSBτ outputs the
τ -bit prefix of the input.

that spends at most 264 operations, it can find a 5-way multi-collision on DM[E, τ ] with probability
at most 2−60, and thus B can at best speed up its password searching by a factor of four.

Unique-nonce security of CAU-C1. For the scheme CAU-C1[E,G, τ ] to have unique-nonce se-

19



curity, in addition for the hash G to be AXU, we also need it to be weakly regular, a notion that
we define below.

Let G : {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed hash function. We say that G is
weakly c-regular if GK(ε, ε) = 0n for every K ∈ {0, 1}n, and for all Y ∈ {0, 1}n and (A,M) ∈
{0, 1}∗ × {0, 1}∗\(ε, ε),

Pr
K←$ {0,1}n

[GK(A,M) = Y ] ≤ c · (|M |n + |A|n)
2n

.

Why does CAU-C1 need a weakly regular hash function? In CAU-C1, in each encryption, we encrypt
the i-th block of the message by running the blockcipher on pad(N)+i, and obtain the tag by calling
the blockcipher on V ← pad(N)⊕R, where R is the output of the hash G. The weak regularity of G
ensures that these inputs are different. In contrast, CAU obtains the tag by running the blockcipher
on pad(N), and thus does not need a weakly regular hash.

In Appendix B we show that the hash function GHASH of GCM is weakly 1.5-regular. The
following result confirms that CAU-C1 has good unique-nonce security. See Appendix K for a
proof.

Theorem 5.2 Let CAU-C1[E,G, τ ] be as above, building on top of a c-AXU, weakly c-regular hash
function G and a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. Then for an adversary A that makes
at most q queries of σ blocks and qv verification queries in total, with at most B blocks per user,
we can construct another B of at most σ + q queries such that

Advunae
CAU-C1[E,G,τ ](A) ≤ Advprf

E (B) + (4c+ 2)Bσ + (2c+ 2)Bq

2n
+

2qv
2τ

.

The running time of B is about that of A plus the time to use G on A’s messages and associated
data.

On short tags. When the tag length τ is short, CAU-C1 has much better unique-nonce security
than CAU. In particular, Ferguson [27] gives a (single-user) attack of qv decryption queries, each
of ℓ blocks, to break the security of CAU with advantage qvℓ/2

τ . In contrast, CAU-C1 enjoys a
smaller term qv/2

τ .

CAU-C4 for CMT-4-security. Applying the HtE transform of Section 3, with a suitable choice
of H, to CAU-C1, yields a CMT-4 and UNAE scheme that we call CAU-C4. There is no increase in
ciphertext size. The computational overhead, running H on the key, nonce and associated data, is
independent of the message length.

6 A Committing Variant of AES-GCM-SIV

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that achieves both CMT-1
and misuse-resistance security with the same speed and bandwidth costs as AES-GCM-SIV. In this
entire section, let n be an even integer, and let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher, with
k ∈ {n, 2n}. We will consider a generalization CAU-SIV of AES-GCM-SIV that we describe below.
The name CAU-SIV is a mnemonic for the use of (i) the classic SIV paradigm [48] in achieving
misuse-resistance security, (ii) (a variant of) the CTR mode and (iii) an AXU hash function. We
first recall the syntax and (multi-user) CPA security notion for IV-based encryption, which is needed
to analyze the CTR variant.

IV-based Encryption. An IV-based symmetric encryption scheme SE consists of two algorithms,
the randomized encryption algorithm SE.Enc and the deterministic decryption algorithm SE.Dec,
and is associated with a key space K and an initialization-vector (IV) length n.

20



Game Gind
SE (A)

v ← 0; b←$ {0, 1}
b′←$ANew,Enc

return b′

New()

v ← v + 1

Kv←$K

Enc(i,M)

If i 6∈ {1, . . . , v} return ⊥
C1←$ SE.Enc(Ki,M); C0←$ {0, 1}|C1|

return Cb

Figure 10: Game defining the multi-user chosen-plaintext security of an IV-based encryption
scheme SE.

The encryption algorithm SE.Enc : K × {0, 1}∗ → {0, 1}∗ takes as input a secret key K ∈ K
and a message M . It then samples IV←$ {0, 1}n, deterministically computes a ciphertext core C ′

from (K,M, IV), and then outputs C ← IV‖C ′. If we want to enforce SE.Enc to use a specific
initialization vector IV, we will write SE.Enc(K,M ; IV).

The decryption algorithm SE.Dec : K × {0, 1}∗ → {0, 1}∗ ∪ {⊥} takes as input a secret key
K ∈ K and a ciphertext C, and returns either a message M or an error symbol ⊥. For correctness,
we require that if C←$ SE.Enc(K,M) then M ← SE.Dec(K,C).

(Multi-user) CPA security for IV-based encryption. Let SE be an IV-based symmetric
encryption scheme with keyspace K. For an adversary A, define its advantage in breaking the
multi-user chosen-plaintext security of SE as

Advind
SE (A) = 2Pr[Gind

SE (A)]− 1 ,

where game Gind
SE (A) is defined in Fig. 10.

The PRF GMAC+. Like CAU, the scheme CAU-SIV is based on a c-AXU hash. As shown in [19],
the hash function POLYVAL of AES-GCM-SIV is 1.5-AXU. In CAU-SIV, the AXU hash function is
used to build a PRF that Bose, Hoang, and Tessaro [19] call GMAC+. We begin with the description
of this PRF.

For strings X and Y such that |X| < |Y | = n, let X ⊞ Y denote the string obtained by
setting the first bit of (0n−|X|‖X)⊕Y to 0. Let r < n be an integer, and let N = {0, 1}r . Define
GMAC+[E,G] : {0, 1}k+n ×N × {0, 1}∗ × {0, 1}∗ → {0, 1}n via

GMAC+[E,G](Kin‖Kout, N,A,M) = E
(

Kout,X
)

,

where X ← N ⊞G(Kin,M,A). See Fig. 12 for an illustration of GMAC+.

The key-derivation function KD1. In each encryption, CAU-SIV derives subkeys by applying
a key-derivation function (which we call KD1) on the given nonce. Specifically, KD1 is exactly
the ITP hash function in Section 4 with padding pad(N, i) = N‖[i]n−r, where [i]n−r denote an
(n − r)-bit encoding of an integer i. The code of KD1 is given in the second-top panel of Fig. 11
for completeness.

The core of the scheme KD1 is the Truncated-Permutation construction TP[E,m] : {0, 1}k ×
{0, 1}n → {0, 1}m that TP[E,m](K,x) = EK(x)[1 : m], where m < n is a positive integer. Propo-
sition 6.1 below gives a sharper bound on the PRF security of the Truncated-Permutation con-
struction than what can be obtained via the Multi-user PRP/PRF Switching Lemma. The proof,
which is in Appendix N, is based on the Chi-Squared technique of Dai, Hoang, and Tessaro [22]. If
we ignore the PRP term then our bound is still meaningful even if q > 2n.

Proposition 6.1 Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher. For any adversary A of q
queries in total and at most B ≤ 2n−1 queries per user, we can construct B of q queries and about

21



Enc(K,N,A,M)

Kin‖Kout ← KD1[E, k + n](K,N)

IV← Tag(Kin‖Kout, N,A,M)

C ← CTR[E, add].Enc(Kout,M ; IV)

Return C

Dec(K,N,A,C)

Kin‖Kout ← KD1[E, k + n](K,N)

M ← CTR[E, add].Dec(Kout, C)

IV← Tag(Kin‖Kout, N,A,M)

If IV 6= C[1 : n] then return ⊥
Return M

KD1[E, ℓ](K,N)

For i← 1 to 2ℓ/n do Yi ← EK(N‖[i]n−r)[1 : n/2]

Return Y1‖ · · · ‖Y2ℓ/n

Tag(Kin‖Kout, N,A,M) //GMAC+ or GMAC2

X ← N ⊞G(Kin,M,A); Y ← E
(

Kout, X
)

; Y ← Y⊕X
Return Y

CTR[E, add].Enc(K,M ; IV)

// 0 ≤ |Mm| < m; other |Mi| = n

M1 · · ·Mm ←M

For i = 1 to m− 1 do

Ci ← EK

(

add(IV, i)
)

⊕Mi

Cm ← EK

(

add(IV,m)
)[

1 : |Mm|
]

⊕Mm

Return IV‖C1 · · ·Cm

CTR[E, add].Dec(K,C)

// 0 ≤ |Cm| < m; other |Ci| = n

IV‖C1 · · ·Cm ← C

For i = 1 to m− 1 do

Mi ← EK

(

add(IV, i)
)

⊕Ci

Mm ← EK

(

add(IV,m)
)[

1 : |Cm|
]

⊕Cm

Return M1 · · ·Mm

Figure 11: The schemes CAU-SIV and CAU-SIV-C1 whose encryption and decryption schemes are
given in the top-left and top-right panels, respectively. Procedure Tag implements GMAC+ (for
CAU-SIV) or GMAC2 (for CAU-SIV-C1); the latter contains the highlighted code, but the former
does not.

the same running time such that

Advprf
TP[E,m](A) ≤ Advprp

E (B) + min{2
√

nBq · 2m/2−n, Bq/2n} .

In the single-user setting —namely when B = q— if we ignore the
√
n factor and the PRP term then

our bound degenerates to min{B · 2m/2−n, B2/2n}, which matches a classical result of Stam [51].
This single-user bound is recently shown to be asymptotically tight by Gilboa and Gueron [28].

In the multi-user case, there is a matching attack, assuming that B ≥ 2m/2. In particular, the
adversary A will attack u = q/B users, each of B queries. For each user i, the adversary will run
the single-user attack in [28] to obtain a guess bit bi. Since this is a matching attack and B ≥ 2m/2,
its advantage is Θ(B) · 2m/2−n. From the definition of the PRF notion, if b is the challenge bit of

game Gprf
TP[E,m](A) then

Pr[bi = b] =
1

2
+ Θ(B) · 2m/2−n .

Finally, A will output the majority of the bits b1, . . . , bu as its guess. As b1, . . . , bu are independent
and identically distributed, by using Chernoff’s bound, one can show that the majority decision
will amplify the bias Θ(B) · 2m/2−n by a factor of Θ(

√
u) = Θ(

√
Bq). In other words,

Advprf
TP[E,m](A) = Θ(

√

Bq) ·Θ(B) · 2m/2−n = Θ(
√

Bq) · 2m/2−n .

Security of KD1. From Proposition 6.1, it is straightforward that KD1 is also a good (multi-user)
PRF; the formal result is stated below for completeness.

22



E
K

A M

���

G
K
��

N

T

E
K

A M

���

G
K
��

N

T

Figure 12: The GMAC+ construction (left) and its variant GMAC2 (right).

Lemma 6.2 Let E : {0, 1}k × {0, 1}n → {0, 1}m be a blockcipher, and let ℓ be a multiple of n.
Define KD1[E, ℓ] as above, and let t = ℓ/n. Then for any adversary A of q queries in total and at
most B queries per user, we can construct an adversary B of about the same running time and 2qt
queries such that

Advprf
KD1[E,ℓ](A) ≤ Advprp

E (B) + min{2t ·
√

nBq · 2−3n/4, 4Bqt2/2n} .

CTR mode. CAU-SIV is based on the following variant of the CTR mode. Let r < n be an integer.
(For AES-GCM-SIV, r = 96 and n = 128.) Let add be an operation on {0, 1}n ×{0, 1, . . . , 2n−r− 1}
such that

add(X, i) = 1‖X[2 : r]‖(X[r + 1 : n] + i mod 2n−r) .

The encryption and decryption schemes of CTR[E, add] are defined in the bottom panels of Fig. 11.
They are essentially the same as the standard CTR mode, except that they use the add operation
instead of the modular addition in mod 2n.

The (multi-user) chosen-plaintext security of this CTR variant is already analyzed in the ideal-
cipher model by Bose, Hoang, and Tessaro [19]. The following result shows the standard-model
counterpart; the proof is in Appendix O.

Proposition 6.3 Let CTR be as above, and let E : {0, 1}k × {0, 1}n → {0, 1}n be the underlying
blockcipher. For an adversary A whose queries consist of totally σ blocks with at most B blocks
per user, we can construct an adversary B of about the same running time that makes at most σ
queries such that

Advind
CTR[E,add](A) ≤ Advprp

E (B) + 3σB

2n
.

23



The scheme CAU-SIV. The scheme CAU-SIV[E,G, add] is described in Fig. 11. Informally, one
first uses KD1 on the given nonce to derive subkeys Kin ∈ {0, 1}n and Kout ∈ {0, 1}k . One then
follows the classic SIV paradigm [48] in building a misuse-resistant AE scheme: first use the PRF
GMAC+ on the triple (N,A,M) to derive an initialization vector IV, and then run CTR with that
particular IV to encrypt M . However, unlike the standard SIV with key separation, here both
GMAC+ and CTR use E on the same key Kout. There is, however, a domain separation in the use
of the blockcipher: GMAC+ will only run E on an input whose most significant bit is 0, whereas
CTR runs E on inputs of most significant bit 1.

The CAU-SIV-C1 scheme. We now show how to add CMT-1 security to CAU-SIV. Recall that
CAU-SIV internally uses a PRF GMAC+ that is based on an AXU, weakly regular hash function G.
The scheme CAU-SIV-C1 introduces an extra xor in GMAC+, resulting in a new PRF construction
that we call GMAC2, and that is the only difference between the two AE schemes. In particular,

GMAC+[E,G](Kin‖Kout, N,A,M) = E
(

Kout,X
)

,

where X ← N ⊞ G(Kin,M,A). In contrast, GMAC2 employs the Davies-Meyer construction to
break the invertibility of E, namely,

GMAC2[E,G](Kin‖Kout, N,A,M) = E
(

Kout,X
)

⊕X .

See Fig. 12 for a side-by-side pictorial comparison of GMAC+ and GMAC2. The code of CAU-SIV-C1
is given in Fig. 11.

The difference of CAU-SIV-C1 and CAU-SIV is tiny, just a single xor. As a result, the speed and
bandwidth costs of CAU-SIV-C1 are about the same as CAU-SIV for all message sizes. While one
must intrusively modify CAU-SIV’s code to obtain CAU-SIV-C1, since CAU-SIV is new, we anticipate
that there will be very few legacy situations that one cannot adopt CAU-SIV-C1.

Security of GMAC2. The following result shows that GMAC2 is a good (multi-user) PRF; see
Appendix P for a proof.

Proposition 6.4 Let GMAC2[E,G] be as above, building on top of a c-AXU hash function G and
a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. For an adversary A that makes at most q queries in
total with at most B blocks per user, we can construct an adversary B of about the same running
time that makes at most q queries such that

Advprf
GMAC2[E,G]

(A) ≤ Advprp
E (B) + (2c+ 1)qB

2n
.

Committing Security of CAU-SIV-C1. Theorem 6.5 below confirms that the extra xor indeed
hardens CAU-SIV-C1, ensuring CMT-1 security. The proof is in Appendix Q. Intuitively, the syn-
thetic IV of CAU-SIV-C1 is obtained by a two-step chain of hashing: (i) first use the Iterative
Truncated Permutation construction ITP[E, r, n] to commit the master key K and the nonce N to
the n-bit prefix of the blockcipher subkey Kout, and then (ii) use the Davies-Meyer construction
DM[E] to commit Kout. Thus from Proposition 4.5, the CMT-1 security of CAU-SIV-C1 is reduced
to the multi-collision resistance of ITP[E, r, n] and DM[E] that are justified in Propositions 4.3
and 4.4.

Theorem 6.5 Let SE = CAU-SIV-C1[E,G, add] be as described above, building on top of a block-
cipher E : {0, 1}k × {0, 1}n → {0, 1}k. Let r < n be the nonce length. Let s ≥ 2 be an integer, and

24



Game Gbind
F,s (A)

(K1,M1, . . . ,Ks,Ms)←$A // (K1,M1), . . . , (Ks,Ms) must be distinct

For i← 1 to s do (Pi, Li)← F(Ki,Mi)

Return (P1 = · · · = Ps)

Figure 13: Game defining the binding security of a committing PRF F.

let t =
⌈√

s
⌉

. Then for any adversary A, we can construct adversaries D0 and D1 such that

Advcmt-1
SE,s (A) ≤ max

{

Advcoll
ITP[E,r,n],t(D0),Advcoll

DM[E],t(D1)
}

.

Each of D0 and D1 runs A and then makes at most 6s other blockcipher calls.

Misuse-Resistance Security of CAU-SIV-C1. The following result shows that CAU-SIV-C1 also
has good misuse-resistance security; the proof is in Appendix R.

Theorem 6.6 Let SE = CAU-SIV-C1[E,G, add] be as described above, building on top of a c-AXU
hash function G and a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. Then for any adversary A that
makes at most q queries of totally σ blocks with at most B blocks per (user, nonce) pair and D
queries per user, we can construct an adversary B of max{6q, σ + q} queries such that

Advmrae
SE (A) ≤ 2 ·Advprp

E (B) + 6
√
nDq

23n/4
+

7σB + (2c+ 7)qB

2n
.

The running time of B is at most that of A plus the time to encrypt/decrypt the latter’s queries.

CAU-SIV-C4 for CMT-4-security. Applying the HtE transform of Section 3, with a suitable
choice of H, to CAU-SIV-C1, yields a CMT-4 and MRAE scheme that we call CAU-SIV-C4. There
is no increase in ciphertext size. The computational overhead is independent of the message length.

7 Adding Key-Committing Security To Legacy AE

In this section, we describe two generic methods UNAE-then-Commit (UtC) and MRAE-then-
Commit (RtC) that transform an AE scheme SE into a CMT-1-secure one. The former preserves
unique-nonce security, whereas the latter preserves misuse-resistance security. As a stepping stone,
we define a new primitive that we call committing PRF, which we will describe below.

Committing PRFs. A committing PRF F is a deterministic algorithm, and associated with a
message space M and key space {0, 1}k . It takes as input a key K ∈ {0, 1}k and a message
M ∈ M, and then produces (P,L) ∈ {0, 1}ℓ × {0, 1}λ. We refer to ℓ as the commitment length of
F, and λ as the mask length of F.

We require that F be a good PRF, meaning that its outputs (P,L) are indistinguishable from
(P ∗, L∗)←$ {0, 1}ℓ × {0, 1}λ. In addition, for an adversary A and an integer s ≥ 2, we define the
advantage of A breaking the s-way binding security of F as

Advbind
F,s (A) = Pr[Gbind

F,s (A)] ,

where game Gbind
F,s (A) is defined in Fig. 13. Informally, a committing PRF is a combination of a

PRF and a commitment scheme, where the string P is a commitment of the key K and the message
M .

25



CX[E](K,M)

a← ⌈ℓ/n⌉; b← ⌈λ/n⌉
For i← 1 to a+ b do Xi ← pad(M, i); Vi ← EK(Xi)

V1 ← V1⊕X1

P ← (V1 · · ·Va)[1 : ℓ]; L← (Va+1 · · ·Va+b)[1 : λ]

Return (P,L)

E
K

M

E
K

E
K

E
K

� M � M � M �

P L

Figure 14: The committing PRF scheme CX[E, pad], illustrated for the case ℓ = λ = 2n and
pad(M, i) is the concatenation of M and an (n−m)-bit encoding of i.

For s = 2, our notion of committing PRF can be viewed as a PRF counterpart of the notion of
right collision-resistant PRG in [26]. We however will give practical instantiations via a blockcipher
whereas the construction in [26] is theoretical, using hardcore predicates.

An efficient committing PRF. We now describe an efficient committing PRF Counter-then-
Xor (CX) that is built on top of a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. Here the message
spaceM = {0, 1}m and the key space is {0, 1}k, with m < n. Let pad denote a one-to-one encoding
that turns a pair (M, i) ∈ {0, 1}m × {1, . . . , 2n−m} into an n-bit string. The commitment length
ℓ ≥ n and the mask length λ satisfy ⌈ℓ/n⌉+ ⌈λ/n⌉ ≤ 2n−m. The construction CX[E, pad] is shown
in Fig. 14.

The following result shows that CX is a good committing PRF scheme. Part (a) is a straight-
forward application of the (multi-user) PRP/PRF Switching Lemma, with an observation that for
each query that A0 makes to CX, it translates to d = ⌈ℓ/n⌉+⌈λ/n⌉ PRP queries on the blockcipher.
For applications in this paper, d ≤ 5. Part (b) is a direct corollary of Proposition 4.3, since the
first block of P is obtained from the Davies-Meyer construction DM[E].

Proposition 7.1 Let CX[E, pad] be as above, and let s ≥ 2 be an integer. Let d = ⌈ℓ/n⌉+ ⌈λ/n⌉.
a) For any adversary A0 making q queries in total with at most B queries per user, we can construct
an adversary B of about the same running time that makes at most dq queries such that

Advprf
CX[E,pad](A0) ≤ Advprp

E (B) + d2 · Bq

2n
.

b) For any adversary A1, we can construct another adversary B of about the same running time

26



UtC[F, SE].Enc(K,N,A,M)

(P,L)← F(K,N)

C ← SE.Enc(L,N,A,M)

Return P‖C

UtC[F, SE].Dec(K,N,A, P ∗‖C)

(P,L)← F(K,N)

If P ∗ 6= P then return ⊥
Else return SE.Dec(L,N,A,C)

Figure 15: The encryption (left) and decryption (right) schemes of the resulting AE scheme under
the UtC transform.

and resources such that

Advbind
CX[E,pad],s(A1) ≤ Advcoll

DM[E],s(B) .

The UNAE-then-Commit (UtC) transform. Let SE be an AE scheme with key space {0, 1}k
and nonce spaceN . Let F be a committing PRF scheme of message spaceN and mask length k. The
scheme UtC[F,SE] is shown in Fig. 15. Informally, under UtC, a ciphertext contains a commitment
P of the master key K, ensuring CMT-1 security. The security of UtC[F,SE] is analyzed below; the
proof is in Appendix S.

Theorem 7.2 Let SE and F be as above. Let s ≥ 2 be an integer.
a) For any adversary A0, we can construct an adversary B0 of about the same running time and
using the same resources as A0 such that

Advcmt-1
UtC[F,SE],s(A0) ≤ Advbind

F,s (B0) .

b) For any adversary A1 of at most B queries per (user, nonce) pair, we can construct an adversary
B1 and B2 such that

Advunae
UtC[F,SE](A1) ≤ Advprf

F (B1) +Advunae
SE (B2) .

The running time of B1 is about that of A1 plus the time to encrypt/decrypt the queries of A1 via
SE, and its queries statistics is the same as A1. Adversary B2 has the same number of queries
and the total query length as A1, but it makes at most B queries per user. It has about the same
running time as A1.

Discussion. Albertini et al. [4] also give a generic transform. (An instantiation of this transform
is now deployed in the latest version of the AWS Encryption SDK, an open-source client-side
encryption library [1].) It can be viewed as a specific instantiation of UtC, in which the committing
PRF F is built on top of two collision-resistant PRFs. One of these two collision-resistant PRFs
however may have to provide up to 256-bit output (since this output is used as a key of the
legacy SE), obstructing an obvious instantiation via Davies-Meyer on AES. As a result, Albertini
et al. instantiate them via SHA-256. Not only is this instantiation slower than our Count-then-
Xor construction, but using it in UtC also requires an additional primitive in addition to AES.
In addition, we realize that UtC achieves CMT-1 security, whereas Albertini et al. only claim
key-committing security.

For unique-nonce security, using UtC actually improves the concrete security of SE, because
UtC uses an independent subkey for SE per (user, nonce). The same mechanism was used in
AES-GCM-SIV [31] to improve the concrete security of GCM-SIV [30]. The UtC transform can add
CMT-1 security to an existing AE scheme SE without being intrusive. This is an important benefit
if SE is a widely deployed scheme like GCM. However, a ciphertext in UtC is always, say 128-bit

27



RtC[F, SE, H ].Enc(K,N,A,M)

(P,L)← F(K,N)

C ← SE.Enc(L,N,A,M)

T ← H(P,C[1 : n])

Return T ‖C

RtC[F, SE, H ].Dec(K,N,A, T ‖C)

(P,L)← F(K,N)

T ∗ ← H(P,C[1 :n])

If T 6= T ∗ then return ⊥
Return SE.Dec(L,N,A,C)

Figure 16: The encryption (left) and decryption (right) algorithms of the scheme given by the RtC

transform.

longer than the corresponding ciphertext in SE; this bandwidth cost can be significant for some
applications.

We note that UtC does not preserve misuse-resistance security. In particular, the commitment P
depends only on the nonce N and the master key K. Thus even in the single-user setting, an
adversary can trivially break the misuse-resistance security of UtC[F,SE] by making two encryption
queries of the same nonce but different messages, and checking if the two ciphertexts have the same
ℓ-bit prefix.

The MRAE-then-Commit (RtC) transform. Let SE be an AE scheme with key space {0, 1}λ
and nonce space N . Let F be a committing PRF scheme of message space N , key space {0, 1}k ,
commitment length ℓ, and mask length λ (that is also the key length of SE). Assume that each
ciphertext in SE is at least n-bit long. Let H : {0, 1}ℓ × {0, 1}n → {0, 1}n be a collision-resistant
PRF. We can instantiate F via CX, and H via the Davies-Meyer construction. (The PRF security of
this particular choice of H can be trivially obtained from Lemma 4.1.) The scheme RtC[F,SE,H] is
shown in Fig. 16. Intuitively, RtC creates a two-step chain of commitments K → P → T , where K
is the master key, P is the commitment generated by F, and T is the hash output, which is a
part of the ciphertext. This leads to an underlying cascade of two hash functions whose collision
resistance an adversary has to break in order to break the CMT-1 security of RtC[F,SE,H]. Thus
from Proposition 4.5, the CMT-1 security of RtC[F,SE,H] is reduced to the committing security of
F and the collision resistance of H. The proof of the following is in Appendix T.

Theorem 7.3 Let SE and F be as above.

a) Let s ≥ 2 be an integer, and let t = ⌈√s ⌉. For any adversary A0, we can construct adversaries
B0 and B1 such that

Advcmt-1
RtC[F,SE,H],s(A0) ≤ max

{

Advbind
F,t (B0),Advcoll

H,t(B1)
}

.

Each of B0 and B1 runs A0, and then runs RtC[F,SE,H] to encrypt one out of the s messages that
A0 outputs, and then evaluates F on s inputs.

b) For any adversary A1 of at most B queries per (user, nonce) pair and at most q queries, we can
construct adversaries B2, B3, and B4 such that

Advmrae
RtC[F,SE,H](A1) ≤ Advprf

F (B2) +Advmrae
SE (B3) +Advprf

H (B4) +
Bq

2n
.

Adversary B2 has the same query statistics as A1, and its running time is at most that of A1 plus
the time to use RtC to encrypt/decrypt the latter’s queries. Adversaries B3 and B4 have the same
number of queries and the total query length as A1, but they make only B queries per user. The
running time of B3 is about that of A1 plus the time to run H on q inputs, and B4 has about the
same running time as A1.

28



Discussion. The transform RtC also preserves unique-nonce security, but in this setting, it is
inferior to the UtC transform. For misuse-resistance security, using RtC also improves the concrete
security of SE, because RtC uses an independent subkey for SE per (user, nonce). The same
mechanism was used in AES-GCM-SIV [31] to improve the concrete security of GCM-SIV [30].

While the RtC transform can add key-committing security to an existing AE scheme SE without
being intrusive, its ciphertext is always, say 128-bit longer than the corresponding ciphertext in
SE. This bandwidth cost can be significant for some applications.
Connection to libsodium’s approach. The libsodium library [2] suggests the following trans-
formation to add key-committing security to an AE scheme SE. Assume that a ciphertext of SE can
be parsed as a concatenation of a tag T and a ciphertext core C∗. Let H : {0, 1}∗ → {0, 1}m be a
cryptographic hash function. To encrypt (N,A,M) under key K, let T‖C∗ ← SE.Enc(K,N,A,M),
let T ∗ ← H(K‖N‖T ), and output T ∗‖T‖C∗. To decrypt (N,A, T ∗‖T‖C∗) with key K, first check
if T ∗ = H(K‖N‖T ). If they agree then return SE.Dec(K,N,A, T‖C∗), else return ⊥.

The transform above works for the AE schemes in the libsodium libraries (namely GCM and
ChaChaPoly1305) if we model (i) the hash function H as a random oracle, (ii) AES as an ideal
cipher, and (iii) ChaCha20 permutation as an ideal permutation. The RtC transform can be viewed
as a way to refine libsodium’s approach to (i) work with a generic AE scheme and (ii) instantiate
the hash function via the Davies-Meyer construction instead of SHA-256. While the libsodium’s
transform is suggested for unique-nonce security, we points out that RtC also works for misuse-
resistance security.

Acknowledgments

We thank the EUROCRYPT 2022 reviewers for their careful reading and valuable comments.

References

[1] AWS Encryption SDK 2.0. https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/int
2020. 27

[2] The Sodium cryptography library (Libsodium). https://libsodium.gitbook.io/doc, 2021.
29

[3] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 480–497. Springer, Heidelberg, Feb. 2010. 4, 5, 11

[4] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx, and S. Schmieg. How to abuse and
fix authenticated encryption without key commitment. In 31st USENIX Security Symposium,
2022. 4, 5, 6, 8, 11, 15, 17, 27

[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer, Heidelberg,
Aug. 1996. 6

[6] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The cascade
construction and its concrete security. In 37th FOCS, pages 514–523. IEEE Computer Society
Press, Oct. 1996. 10

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In 38th FOCS, pages 394–403. IEEE Computer Society Press, Oct. 1997. 4

29

https://docs.aws.amazon.com/ encryption-sdk/latest/developer-guide/ introduction.html
https://libsodium.gitbook.io/doc


[8] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 491–506. Springer, Heidelberg, May 2003. 8

[9] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545. Springer, Heidelberg, Dec. 2000. 4

[10] M. Bellare, R. Ng, and B. Tackmann. Nonces are noticed: AEAD revisited. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 235–265.
Springer, Heidelberg, Aug. 2019. 14

[11] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006. 14, 37, 54, 55, 65

[12] M. Bellare and B. Tackmann. The multi-user security of authenticated encryption: AES-GCM
in TLS 1.3. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 247–276. Springer, Heidelberg, Aug. 2016. 4, 9

[13] M. Bellare and B. Tackmann. Nonce-based cryptography: Retaining security when randomness
fails. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of
LNCS, pages 729–757. Springer, Heidelberg, May 2016. 17

[14] D. Bernstein. Chacha, a variant of salsa20. In Workshop record of SASC, volume 8, pages 3–5,
2008. 4

[15] D. Bernstein. The salsa20 family of stream ciphers. In New stream cipher designs: The
eSTREAM finalists, Lecture Notes in Computer Science, volume 4986. Springer, 2008. 4

[16] D. J. Bernstein. The poly1305-AES message-authentication code. In H. Gilbert and H. Hand-
schuh, editors, FSE 2005, volume 3557 of LNCS, pages 32–49. Springer, Heidelberg, Feb. 2005.
4

[17] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based hash-
function constructions from PGV. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 320–335. Springer, Heidelberg, Aug. 2002. 15, 16

[18] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 506–522. Springer, Heidelberg, May 2004. 5

[19] P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user security, faster key
derivation, and better bounds. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 468–499. Springer, Heidelberg, Apr. / May 2018. 4, 14,
21, 23

[20] S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 327–350.
Springer, Heidelberg, May 2014. 44

30



[21] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to
construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
430–448. Springer, Heidelberg, Aug. 2005. 14

[22] W. Dai, V. T. Hoang, and S. Tessaro. Information-theoretic indistinguishability via the chi-
squared method. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403
of LNCS, pages 497–523. Springer, Heidelberg, Aug. 2017. 21, 50

[23] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage. Fast message franking: From invisible
salamanders to encryptment. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 155–186. Springer, Heidelberg, Aug. 2018. 8, 15, 17

[24] M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D, November 2007. 4, 6

[25] P. Farshim, B. Libert, K. G. Paterson, and E. A. Quaglia. Robust encryption, revisited. In
K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 352–368.
Springer, Heidelberg, Feb. / Mar. 2013. 5

[26] P. Farshim, C. Orlandi, and R. Roşie. Security of symmetric primitives under incorrect usage
of keys. IACR Trans. Symm. Cryptol., 2017(1):449–473, 2017. 4, 5, 7, 8, 11, 17, 26

[27] N. Ferguson. Authentication weaknesses in GCM. Manuscript, available in NIST webpage,
2005. 20

[28] S. Gilboa and S. Gueron. The advantage of truncated permutations. Discrete Applied Mathe-
matics, 294:214–223, 2021. 22

[29] P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryp-
tion. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 66–97. Springer, Heidelberg, Aug. 2017. 4, 5, 6, 8, 17

[30] S. Gueron and Y. Lindell. GCM-SIV: Full nonce misuse-resistant authenticated encryption at
under one cycle per byte. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages
109–119. ACM Press, Oct. 2015. 27, 29

[31] S. Gueron and Y. Lindell. Better bounds for block cipher modes of operation via nonce-based
key derivation. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS
2017, pages 1019–1036. ACM Press, Oct. / Nov. 2017. 4, 7, 27, 29

[32] V. T. Hoang and S. Tessaro. Key-alternating ciphers and key-length extension: Exact bounds
and multi-user security. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 3–32. Springer, Heidelberg, Aug. 2016. 9

[33] V. T. Hoang, S. Tessaro, and A. Thiruvengadam. The multi-user security of GCM, revisited:
Tight bounds for nonce randomization. In D. Lie, M. Mannan, M. Backes, and X. Wang,
editors, ACM CCS 2018, pages 1429–1440. ACM Press, Oct. 2018. 4

[34] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963. 52

31



[35] S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol secure against
pre-computation attacks. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 456–486. Springer, Heidelberg, Apr. / May 2018.
15, 17

[36] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC 2898,
Sep. 2000. https://datatracker.ietf.org/doc/html/rfc2898. 5

[37] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation.
In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–299. Springer, Heidelberg,
Apr. 2001. 4

[38] M. Lambæk. Breaking and fixing private set intersection protocols. Cryptology ePrint Archive,
Report 2016/665, 2016. https://eprint.iacr.org/2016/665. 5

[39] J. Len, P. Grubbs, and T. Ristenpart. Partitioning oracle attacks. In M. Bailey and R. Green-
stadt, editors, 30th USENIX Security Symposium. USENIX Association, 2021. 4, 5, 6, 7, 8,
12

[40] A. Luykx, B. Mennink, and K. G. Paterson. Analyzing multi-key security degradation. In
T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages
575–605. Springer, Heidelberg, Dec. 2017. 4, 14

[41] D. A. McGrew and J. Viega. The security and performance of the Galois/counter mode (GCM)
of operation. In A. Canteaut and K. Viswanathan, editors, INDOCRYPT 2004, volume 3348
of LNCS, pages 343–355. Springer, Heidelberg, Dec. 2004. 4, 6

[42] N. Mouha and A. Luykx. Multi-key security: The Even-Mansour construction revisited. In
R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 209–223. Springer, Heidelberg, Aug. 2015. 10

[43] C. Namprempre, P. Rogaway, and T. Shrimpton. Reconsidering generic composition. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274.
Springer, Heidelberg, May 2014. 4, 8

[44] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004. 35

[45] J. Patarin. The “coefficients H” technique (invited talk). In R. M. Avanzi, L. Keliher, and
F. Sica, editors, SAC 2008, volume 5381 of LNCS, pages 328–345. Springer, Heidelberg, Aug.
2009. 44

[46] P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS
2002, pages 98–107. ACM Press, Nov. 2002. 4

[47] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In M. K. Reiter and P. Samarati, editors, ACM CCS
2001, pages 196–205. ACM Press, Nov. 2001. 4, 5

[48] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In
S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
Heidelberg, May / June 2006. 4, 20, 24

32

https://datatracker.ietf.org/doc/html/rfc2898
https://eprint.iacr.org/2016/665


[49] J. Salowey, A. Choudhury, and D. McGrew. AES Galois Counter Mode (GCM) Cipher Suites
for TLS. RFC 5288, Aug. 2008. https://datatracker.ietf.org/doc/html/rfc5288. 4, 6

[50] J. Salowey, A. Choudury, and D. A. McGrew. AES Galois Counter Mode (GCM) cipher suites
for TLS. RFC 5288, August 2008. 4, 7

[51] A. J. Stam. Distance between sampling with and without replacement. Statistica Neerlandica,
32(2):81–91, 1978. 22

A Relations Among Committing Notions

The implications indicated by the leftward arrows are trivial. Below, we will justify the remaining
ones.

CMTD-3→ CMTD-4. Suppose A is an adversary that violates CMTD-4, outputting (C, (K1, N1,
A1,M1), (K2, N2, A2,M2)) such that for each i ∈ {1, 2}, we have Mi = SE.Dec(Ki, Ni, Ai, C), but
(K1, N1, A1,M1) 6= (K2, N2, A2,M2). If (K1, N1, A1) 6= (K2, N2, A2) then A violates CMTD-3 and
we are done, so suppose (K1, N1, A1) = (K2, N2, A2). But since SE.Dec is deterministic it must
be that SE.Dec(K1, N1, A1, C) = SE.Dec(K2, N2, A2, C), meaning M1 = M2 and thus (K1, N1, A1,
M1) = (K2, N2, A2,M2), which contradicts our assumption that these two tuples are distinct.

CMT-3→ CMT-4. Suppose A is an adversary that violates CMT-4, outputting ((K1, N1, A1,
M1), (K2, N2, A2,M2)) such that C1 = C2 but (K1, N1, A1,M1) 6= (K2, N2, A2,M2), where Ci ←
SE.Enc(Ki, Ni, Ai,Mi) for each i ∈ {1, 2}. If (K1, N1, A1) 6= (K2, N2, A2) then A violates CMT-3
and we are done, so suppose (K1, N1, A1) = (K2, N2, A2). From the correctness requirement,
Mi = SE.Dec(Ki, Ni, Ai, Ci) for each i ∈ {1, 2}. Since C1 = C2 and (K1, N1, A1) = (K2, N2, A2),
the determinism of SE.Dec implies that M1 = M2, and thence (K1, N1, A1,M1) = (K2, N2, A2,M2),
which contradicts our assumption that these two tuples are distinct.

CMTD-ℓ→ CMT-ℓ. Fix ℓ ∈ {1, 3, 4}. Let Ae be an adversary attacking the CMT-ℓ security of
SE. We build an adversary Ad attacking the CMTD-ℓ security of SE as follows. Adversary Ad

runs ((K1, N1, A1,M1), (K2, N2, A2,M2))←$Ae, and then sets C1 ← SE.Enc(K1, N1, A1,M1) and
returns (C1, (K1, N1, A1,M1), (K2, N2, A2,M2)).

To analyze the advantage of the adversaries, without loss of generality, assume that WiCℓ(K1, N1,
A1,M1) 6= WiCℓ(K2, N2, A2,M2). Let C2 ← SE.Enc(K2, N2, A2,M2). The correctness requirement
implies that for each i ∈ {1, 2}, we have Mi = SE.Dec(Ki, Ni, Ai, Ci). If Ae wins then C1 = C2,
meaning that M2 = SE.Dec(K2, N2, A2, C1), and thus Ad also wins. Hence

Advcmt-ℓ
SE (Ae) ≤ Advcmtd-ℓ

SE (Ad) .

CMT-ℓ→ CMTD-ℓ for tidy schemes. Fix ℓ ∈ {1, 3, 4}. Suppose that SE is tidy. Let Ad be an
adversary attacking the CMTD-ℓ security of SE. We build an adversary Ae attacking the CMT-ℓ
security of SE as follows. Adversary Ae runs (C, (K1, N1, A1,M1), (K2, N2, A2,M2))←$Ad, and
returns ((K1, N1, A1,M1), (K2, N2, A2,M2)).

To analyze the advantage of the adversaries, without loss of generality, assume that WiCℓ(K1, N1,
A1,M1) 6= WiCℓ(K2, N2, A2,M2). If Ad wins then Mi = SE.Dec(Ki, Ni, Ai, C) for each i ∈ {1, 2}.
From the tidiness of SE, this means that C = SE.Enc(Ki, Ni, Ai,Mi), and thus Ae also wins. Hence
Hence

Advcmtd-ℓ
SE (Ad) ≤ Advcmt-ℓ

SE (Ae) .

33

https://datatracker.ietf.org/doc/html/rfc5288


GHASH[F](K,A,M)

t← n/2; X ← (A0∗)‖(M0∗)‖
[

|A|
]

t
‖
[

|M |
]

t
X1 · · ·Xm ← X ; Y ← 0n // |Xi| = n

For i← 1 to m do Y ← (Y⊕Xi) •K
Return Y

Figure 17: The GHASH function.

B GHASH As a Weakly Regular Hash

Description of GHASH. Let n ≥ 2 be an even integer. Let F be be a finite field of 2n elements,
meaning that we can interpret a string in {0, 1}n as an element of F and vice versa. Assume that 0n

is the zero element in F, and the addition in F is the same as ⊕ in {0, 1}n. Let • be the finite-field
multiplication in F. For a string x, let x0∗ denote x0p, where p ≥ 0 is the smallest integer such
that |x| + p is a multiple of n. For a number i ≥ 0, we write [i]t to denote a t-bit representation
of i. The hash function GHASH[F] : {0, 1}n ×{0, 1}∗ ×{0, 1}∗ → {0, 1}n is defined in Fig. 17. Note
that GHASH[F](K, ε, ε) = 0n for every K.

Weak regularity of GHASH. We now show that GHASH is weakly 1.5-regular. Fix (A,M) 6=
(ε, ε) and Y ∈ {0, 1}n. Let

X ← (A0∗)‖(M0∗)‖
[

|A|
]

t
‖
[

|M |
]

t
,

where t = n/2. Parse X as X1 · · ·Xm, where each |Xi| = n. Note that

m = |X|/n ≤ |A|n + |M |n + 1 ≤ 1.5(|A|n + |M |n) ,

since |A|n, |M |n ≥ 1. Let

f(x) = (X1 • xm)⊕(X2 • xm−1)⊕ · · · ⊕(Xm • x)⊕Y .

Note that f is a polynomial of degree at most m, and since (A,M) 6= (ε, ε), f is non-zero. Hence f
has at most m roots. If we pick K←$ {0, 1}n then the chance that K is one of those m roots is at
most m/2n ≤ 1.5(|M |n + |A|n)/2n. Hence

Pr
K←$ {0,1}n

[GHASH[F](K,A,M) = Y ] = Pr
K←$ {0,1}n

[f(K) = 0n]

≤ 1.5(|M |n + |A|n)
2n

and thus GHASH is weakly 1.5-regular.

C A Lower Bound on Multi-collision Resistance

To understand what we can expect for the multi-collision resistance of a hash function, in Propo-
sition C.1 below, we give an attack on a hash function H : Dom → Rng that we will model as a
random oracle.

Proposition C.1 Let H : Dom→ Rng be a hash function that we model as a random oracle. Let
N = |Rng|. Let p be an integer such that 2s ≤ p ≤ N/6 and

(

p
s

)

≤ N s−1. Then we can construct
an adversary A of O(p log(p)) time such that

Advcoll
H,s(A) ≥

(

p

s

)

· N
−(s−1)

4
.

34



Proof: The adversary A is as follows. It picks arbitrary, distinct M1, . . . ,Mp ∈ Dom and then
searches for X1, . . . ,Xs ∈ {M1, . . . ,Mp} such that (X1, . . . ,Xs) is an s-way multi-collision for H.
To implement this in O(p log(p)) time, A computes Vi ← H(Mi) for every i ≤ p, sorts the list
(V1, . . . , Vp), and then looks for a sequence of s consecutive points in the sorted list that are the
same. (The running time of the adversary can be improved to O(p) at the cost of a failure rate 1/p
by using cuckoo hashing [44].)

To analyze the adversary’s advantage, we need the following inequality.

Lemma C.2 (Bonferroni’s inequality) For any events A1, . . . , An,

Pr[A1 ∪ · · · ∪An] ≥
(

n
∑

i=1

Pr[Ai]
)

−
(

∑

1≤i<j≤n

Pr[Ai ∩Aj]
)

.

Back to the analysis of the adversary’s advantage, let

∆ =

(

p

s

)

·N−s ≤ 1

N
.

We claim that

Advcoll
H,s(A) ≥

N ·∆
4

=

(

p

s

)

· N
−(s−1)

4
.

To justify this claim, we view each H(Mi) as throwing a ball into N possible bins in a uniformly
random way, and the p throws are independent. For each i ∈ {1, . . . , N}, let Badi be the event
that there are at least s balls in the i-th bin. Note that

Pr[Badi] ≥
(

p

s

)

1

N s

(

1− 1

N

)p−s

= ∆ ·
(

1− 1

N

)p−s
≥ ∆ ·

(

1− 1

N

)N/6
≥ ∆

41/6
≥ 3∆

4
for every i ∈ {1, . . . , N}, where the third last inequality is due to the hypothesis that p ≤ N/6,
and the second last inequality is due to the fact that (1 − 1/x)x ≥ 1/4 for every integer x ≥ 2.
Moreover, for every 1 ≤ i < j ≤ N ,

Pr[Badi ∩ Badj] ≤
(

p

s

)(

p− s

s

)

N−2s ≤ ∆2 .

By Bonferroni inequality,

Advcoll
H,s(A) = Pr

[

N
⋃

i=1

Badi

]

≥
(

N
∑

i=1

Pr[Badi]
)

−
(

∑

1≤i<j≤N

Pr[Badi ∩ Badj]
)

≥ 3∆ ·N
4

− N(N − 1)

2
∆2 ≥ ∆ ·N ·

(3

4
− N ·∆

2

)

≥ ∆ ·N
4

.

This concludes the proof.

35



Game G1(A)
v ← 0; b′ ← ANew,Eval; return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥
C ← E(Ki,M)

return C

Game G2(A)
v ← 0; b′ ← ANew,Eval; return (b′ = 1)

New()

v ← v + 1; πv←$ Perm({0, 1}n)

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥
C ← πi(M)

return C

Games G3(A) , G4(A)
v ← 0; b′ ← ANew,Eval; return (b′ = 1)

New()

v ← v + 1; Sv←$ ∅

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥
C←$ {0, 1}n
If C ∈ Si then

bad← true; C←$ {0, 1}n\{C}
Si ← Si ∪ {C}; return C

Game G5(A)
v ← 0; b′ ← ANew,Eval; return (b′ = 1)

New()

v ← v + 1

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥
C←$ {0, 1}n
return C

Game G6(A)
v ← 0; b′ ← ANew,Eval; return (b′ = 1)

New()

v ← v + 1; fv←$ Func({0, 1}n, {0, 1}n)

Eval(i,M)

If i 6∈ {1, . . . , v} return ⊥
C ← fi(M)

return C

Figure 18: Games in the proof of Lemma 4.1. Game G3 contains the corresponding highlighted
code but game G4 does not.

D Proof of Lemma 4.1

Consider games G1–G6 in Fig. 18. By definition,

Advprf
E (A) = Pr[G1(A)]− Pr[G6(A)] ,

whereas

Advprp
E (A) = Pr[G1(A)]− Pr[G2(A)] .

To justify the claim of this lemma, it suffices to show that

Pr[G2(A)]− Pr[G6(A)] ≤
Bq

2n
.

In other words, the advantage of A in distinguishing the games G2 and G6 is at most Bq/2n. We
shall prove this for any (even computationally unbounded) adversary that makes totally at most q
queries to Eval, with at most B queries per user. As we consider even computationally unbounded
adversaries, without loss of generality, assume that A is deterministic. Assume further that the
adversary will not repeat prior queries to Eval.

36



We now explain the game chain from G2 to G6. Game G3 is the same as G2, but instead of eagerly
sampling a permutation πi←$ Perm({0, 1}n) for each user i, we lazily implement πi by maintaining
a set Si of the current defined outputs of πi, and each call πi(M) is implemented via a uniform
sampling from {0, 1}n\Si. Hence

Pr[G2(A)] = Pr[G3(A)] .

In game G4, in each call πi(M), we instead sample the answer C←$ {0, 1}n. If C ∈ Si then this
sets the flag bad to be true, but unlike game G3, we will not resample C from {0, 1}n\Si. From
the Fundamental Lemma of Game Playing [11], the two games G3 and G4 are identical-until-bad,
and thus

Pr[G3(A)]− Pr[G4(A)] ≤ Pr[G4(A) sets bad] .

We now bound the chance that game G4 sets bad to be true. For each query Eval(i,M), the
current size of Si is at most B, since there are at most B prior queries to user i. Thus if we pick
C←$ {0, 1}n independent of Si, the chance that C ∈ Si, which is also the chance that this query
triggers bad to be true, is at most B/2n. Summing this over at most q queries, by the Union Bound,

Pr[G4(A) sets bad] ≤
Bq

2n
,

and thus

Pr[G3(A)]− Pr[G4(A)] ≤
Bq

2n
.

Back to the game chain, game G5 is exactly the same as G4; we only simplify the code. Hence

Pr[G4(A)] = Pr[G5(A)] .

Finally, gameG6 is the same asG5, but we now eagerly sample a function fi←$ Func({0, 1}n, {0, 1}n)
for each user i instead of lazily implementing it. Therefore,

Pr[G5(A)] = Pr[G6(A)] .

Summing up,

Pr[G2(A)]− Pr[G6(A)] =
5

∑

i=2

Pr[Gi(A)]− Pr[Gi+1(A)] ≤
Bq

2n

as claimed.

E Proof of Proposition 4.2

The adversary B runs A, and acts as a proxy for New or Enc queries of A. For each verification
query of A, however, B stores that in a list L, and simply returns false to A. When A terminates
with its guess b′, for each query (i,N,A,C) in L, if there is no prior encryption query C ←
Enc(i,N,A,M) then B will query Vf(i,N,A,C), otherwise it will terminate and return 1. If one
of those verification queries results in a true answer then B will return 1, otherwise it returns b′.
Note that B is orderly. Moreover, if A is nonce-respecting then so is B.
In the real world, if some verification query could result in a true-answer then B will answer 1
anyway (even if it can’t make this query due to the restriction). If all verification queries are
destined to give false answers then B correctly simulates Greal

SE (A), and it either gives the same
answer as A, or returns 1. Hence

Pr[Greal
SE (B)] ≥ Pr[Greal

SE (A)] .

Let Bad be the event that in the ideal world, there is a verification query Vf(i,N,A,C) and then

37



later there is an encryption query C ← Enc(i,N,A,M). If Bad doesn’t happen then B correctly
simulates Grand

SE (A) and has the same answer as A, and thus

Pr[Grand
SE (B)] ≤ Pr[Grand

SE (A)] + Pr[Bad] .

To bound Pr[Bad], note that for each verification query Vf(i,N,A,C), it can be targeted by at
most

s
∑

j=0

2j ≤ 2s+1

encryption queries where s = |C|−τ is the maximum length of the corresponding message. However,
the chance that one those those 2s+1 encryption queries can result in C is at most

2s · 1

2|C|
=

2

2τ
.

Summing this over qv verification queries,

Pr[Bad] ≤ 2qv
2τ

.

Hence

Pr[Grand
SE (B)] ≤ Pr[Grand

SE (A)] + 2qv
2τ

,

and thus

Advmrae
SE (B) ≥ Advmrae

SE (A)− 2qv
2τ

.

Moreover, recall that if A is nonce-respecting then so is B, and in that case the bound above can
be rewritten as

Advunae
SE (B) ≥ Advunae

SE (A)− 2qv
2τ

.

On the other hand, if every ciphertext in SE is always τ -bit longer than its plaintext then each
verification query Vf(i,N,A,C) can be targeted by at most 2s (instead of 2s+1) encryption queries,
where s = |C| − τ is the length of the corresponding message. As a result, the term 2qv/2

τ can be
improved to qv/2

τ .

F Proof of Proposition 4.3

Without loss of generality, assume that the adversary won’t make redundant queries. That is,
(i) it will not repeat a prior query, (ii) if it queries C ← E(K,M) then later it will not query
E−1(K,C), and (iii) if it queries M ← E−1(K,C) then later it will not query E(K,M). We will
store the ideal-cipher queries of the adversary in a transcript, in the order of the queries are made.
For the i-th query of the adversary, if it is a forward query C ← E(K,M) then we store an entry
(i,K,M,C,+). Otherwise, if it is a backward query M ← E−1(K,C) then we store a corresponding
entry (i,K,M,C,−).
Let S be the collection of ordered subsets I = (r1, . . . , rs) in {1, . . . , p}, with r1 < · · · < rs.
For I = (r1, . . . , rs) with (ri,Ki,Mi, Ci, ∗) as the corresponding entry of the ri-th queries in the
transcript, let Bad(I) be the event that

(C1⊕M1)[1 : m] = · · · = (Cs⊕Ms)[1 : m] .

Let

Bad =
⋃

I∈S

Bad(I) .

38



If Bad does not happen. We now show that if Bad doesn’t happen then the chance that the
adversary can produce an s-way multi-collision is at most 21−n. Suppose that Bad indeed does not
happen. Let

(

(K1,X1), . . . , (Ks,Xs)
)

be the output of the adversary. We consider the following
cases.

Case 1: For each (Ki,Xi), there is a corresponding entry (ri,Ki,Xi, Ci, ∗) in the transcript. With-
out loss of generality, assume that r1 < · · · < rs, and let I = (r1, . . . , rs). Then (K1,X1, . . . ,Ks,Xs)
is an s-way multi-collision if and only if Bad(I) happens. As Bad does not happen, the adversary
does not create an s-way multi-collision.

Case 2: There is some (Ki,Xi) such that there is no entry (∗,Ki,Xi, ∗, ∗) in the transcript. Recall
that the output

(

(K1,X1), . . . , (Ks,Xs)
)

forms an s-way multi-collision if

(E(K1,X1)⊕X1)[1 : m] = · · · = (E(Ks,Xs)⊕Xs)[1 : m] .

Now, as there is no entry (∗,Ki,Xi, ∗, ∗) in the transcript, given E(K1,X1), . . . , E(Ki−1,Xi−1), E(Ki+1,Xi+1),
. . . , E(Ks,Xs), the random variable EK(Xi) is uniformly distributed over a set of at least 2n−p−s ≥
2n−1 values. Thus the chance that A creates an s-way multi-collision is at most 2n−m/2n−1 = 21−m.

Bounding the chance that Bad happens. We claim that for each I ∈ S,

Pr[Bad(I)] ≤ 2s−1

2(s−1)m
. (1)

This claim will be justified later. By the union bound,

Pr[Bad] = Pr
[

⋃

I∈S

Bad(I)
]

≤
∑

I∈S

Pr[Bad(I)] ≤
(

p

s

)

· 2s−1

2(s−1)m
=

(

p

s

)

· 2(1−m)(s−1) .

We now prove the claim in Equation (1). Fix I = (r1, . . . , rs) ∈ S, and let (ri,Ki,Mi, C,∗) be
the corresponding entry of the ri-th queries in the transcript. Fix i ∈ {2, . . . , s}. We consider the
following cases.

Case 1: The ri-th entry is (ri,Ki,Mi, Ci,+). Then given Mi and all prior queries/answers before
the ri-th query, Ci is uniformly distributed over a set of at least 2n− p ≥ 2n−1 values, and thus the
conditional probability that (Ci⊕Mi)[1 : m] = (C1⊕M1)[1 : m] is at most 2n−m/2n−1 = 21−m.

Case 2: The ri-th entry is (ri,Ki,Mi, Ci,−). Then given Ci and all prior queries/answers before
the ri-th query, Mi is uniformly distributed over a set of at least 2n − p ≥ 2n−1 values, and thus
the conditional probability that (Ci⊕Mi)[1 : m] = (C1⊕M1)[1 : m] is at most 2n−m/2n−1 = 21−m.

Multiplying these conditional probabilities for all i ∈ {2, . . . , s}, we obtain

Pr[Bad(I)] ≤ 2(s−1)(1−m) ,

justifying the claim in Equation (1).

Wrapping things up. Summing up,

Advcoll
DM[E,m],s(A) ≤ 21−m +

(

p

s

)

· 2(1−m)(s−1) .

G Proof of Proposition 4.4

Let ℓ = m/2. For b ∈ {1, 2}, let b be the other element in {1, 2}. We say that a query C ← E(K,M)
or M ← E−1(K,C) is well-formed if M is of the form pad(X, b) with b ∈ {1, 2}. For a well-formed

39



query E(K, pad(X, b)), we will immediately grant the adversary the free query E(K, pad(X, b)).
Likewise, for a well-formed query pad(X, b)← E−1(K,C), we will immediately grant the adversary
the free query E(K, pad(X, b)). Totally there are at most 2p queries.

Without loss of generality, assume that the adversary won’t make redundant queries. That is,
(i) it will not repeat a prior query, (ii) if it queries C ← E(K,M) then later it will not query
E−1(K,C), and (iii) if it queries M ← E−1(K,C) then later it will not query E(K,M). We will
store all ideal-cipher queries (including the granted ones) in a transcript, in the order of the queries
are made. For a forward query C ← E(K,M), we store an entry (K,M,C,+). Likewise, for a
backward query M ← E−1(K,C), we store a corresponding entry (K,M,C,−).
We call a pair P =

[

(K, pad(X, b), C, ∗), (K, pad(X, b), C ′, ∗)
]

—ordered by their appearance in the
transcript—a couple. A couple is positive if both its queries are forward ones, and is negative
otherwise. The child Child(P ) of this couple is ITP[E, r,m](K,X). In other words, Child(P ) is
C[1 : ℓ]‖C ′[1 : ℓ] if b = 1, and Child(P ) = C ′[1 : ℓ]‖C[1 : ℓ] otherwise. Let Bad be the event that
there are s couples P1, . . . , Ps of the same child.

If Bad does not happen. We now show that if Bad doesn’t happen then the chance that the
adversary can produce an s-way multi-collision is at most 21−m. Suppose that Bad indeed does not
happen. Let

(

(K1,X1), . . . , (Ks,Xs)
)

be the output of the adversary. We consider the following
cases.

Case 1: For each (Ki,Xi), there is a corresponding unordered couple

{(Ki, pad(Xi, 1), Ci, ∗), (Ki, pad(Xi, 2), C
′
i, ∗)}

in the transcript. Then
(

(K1,X1), . . . , (Ks,Xs)
)

is not an s-way multi-collision because Bad does
not happen.

Case 2: There is some (Ki,Xi) such that there is no couple {(Ki, pad(Xi, 1), Ci, ∗), (Ki, pad(Xi, 2), C
′
i, ∗)}

in the transcript. Thus given the queries/answers of the adversary and its output,

E(Ki, pad(Xi, 1))‖E(Ki, pad(Xi, 2))

is (conditionally) uniformly distributed over a set of at least (2n − 2p − s)2 ≥ 22n−1 values. Hence
ITP[E, r,m](Ki,Xi) = E(Ki, pad(Xi, 1))[1 : ℓ]‖E(Ki, pad(Xi, 2))[1 : ℓ] is (conditionally) uniformly
distributed over a set of at least 22n−1/22n−m = 2m−1 values. As a result, the chance that the
adversary creates an s-way multi-collision is at most 21−m.

Bounding the chance that Bad happens. Let Badx,i be the event that (i) Bad happens, and
(ii) among its couples P1, . . . , Ps, there are exactly i positive couples, and s− i negative ones, and
(iii) Child(P1) = x. Then

Pr[Bad] ≤ Pr
[

⋃

x,i

Badx,i

]

≤
∑

x∈{0,1}m

s
∑

i=0

Pr[Badx,i] .

Let U be the random variable for the number of positive couples. For each x ∈ {0, 1}m, let Vx be
the random variable for the number of queries E−1(K,C) such that C[1 : ℓ] ∈ {x[1 : ℓ], x[ℓ+1 : m]}.
Now, recall that the output of each query, given the prior queries and answers, is (conditionally)
uniformly distributed over a set of at least 2n−2p ≥ 2n−0.5 elements. Thus for each positive couple,
its child is (conditionally) uniformly distributed among a set of at least 22(n−0.5)/22n−m = 2m−1

elements. Moreover, for each b ∈ {1, 2}, there are at most 2r strings in {0, 1}n that are of form
pad(X, b). Consider the event that when we query E−1(K,C), it results in an answer of the form
pad(X, b), and the granted query ends up with an answer C ′ such that C ′[1 : ℓ] = x[ℓ + 1 : m] if
b = 1, and C ′[1 : ℓ] = x[1 : ℓ] if b = 2. This happens with probability at most 2r+1 ·2n−ℓ/22(n−0.5) =

40



2r+1−ℓ−n. Then

Pr[Badx,i] ≤ E
[

(

U

i

)

2(1−m)i ·
(

Vx

s− i

)

2(r+1−ℓ−n)(s−i)
]

.

By using the fact that
(a
b

)

≤ ab/b! for every integer a, b ≥ 0,
s

∑

i=0

Pr[Badx,i] ≤
s

∑

i=0

E
[U i

i!
2(1−m)i · (Vx)

s−i

(s− i)!
2(r+1−ℓ−n)(s−i)

]

=
1

s!
·E

[

s
∑

i=0

(

s

i

)

U i2(1−m)i · (Vx)
s−i2(r+1−ℓ−n)(s−i)

]

=
1

s!
·E

[( U

2m−1
+

Vx

2ℓ+n−r−1

)s]

.

By using the fact that (a+ b)s ≤ (2 ·max{a, b})s = 2s ·max{as, bs} for every a, b ≥ 0, we can bound
the last expectation by

2s · E
[( U

2m−1

)s
+

( Vx

2ℓ+n−r−1

)s]

=
E[U s]

2(m−2)s
+

E[(Vx)
s]

2(ℓ+n−r−2)s
.

Summing up,

Pr[Bad] ≤ 1

s!

∑

x

E[U s]

2(m−2)s
+

E[(Vx)
s]

2(ℓ+n−r−2)s
.

On the one hand,
∑

x

E[U s] = 2n · E[U s] ≤ 2n · ps .

On the other hand, as Vx ≤ p,
∑

x

E[(Vx)
s] ≤

∑

x

E[Vx] · ps−1 = E
[

∑

x

Vx

]

· ps−1 .

In the sum
∑

x Vx, each query can be counted up to 2ℓ+1 times, and thus
∑

x

Vx ≤ 2ℓ+1 · p .

Taking expectation of both sides gives us
∑

x

E[(Vx)
s] ≤ 2ℓ+1 · ps .

Summing up,

Pr[Bad] ≤ 4ps

s! · 2(m−2)(s−1) +
2ℓ+1 · ps

s! · 2(ℓ+n−r−2)s
.

Wrapping up. Summing up,

Advcoll
ITP[E,r,m],s(A) ≤ 21−m +

4ps

s! · 2(m−2)(s−1) +
2ℓ+1 · ps

s! · 2(ℓ+n−r−2)s
.

H An Attack on the ITP Construction

Let ℓ = m/2. Let Q = 2n+ℓ−r and a = 2(r−n) · 2n−ℓ/(2n − 1). Let p be an integer such that
2s ≤ p ≤ Q/6 and

∆ =

(

p

s

)

· as ≤ 2−ℓ .

41



In this section, we give a multi-collision attack on ITP[E, r,m] for 2p ideal-cipher queries.

The attack. The adversary A picks arbitrary distinct keys K1, . . . ,Kp ∈ {0, 1}k . For each i ≤ p,
it computes Vi ← E−1(Ki, 0

n). If Vi is of the form pad(Xi, 1) for some Xi ∈ {0, 1}r then it computes
Zi ← E(Ki, pad(Xi, 2)). Note that

ITP[E, r,m](Ki,Xi) = 0ℓ‖Zi[1 : ℓ] .

The adversary then searches for s indices i1, . . . , is such that Zi1 , . . . , Zis have the same ℓ-bit prefix.
This can be done in O(p log(p)) by sorting the pairs (i, Zi) by the ℓ-bit prefix of Zi. It then outputs
(Ki1 ,Xi1), . . . , (Kis ,Xis).

Analysis. Let M = 2ℓ − 1. For each i ≤ p, view ITP[E, r,m](Ki,Xi) as throwing a ball into 2ℓ

bins, where the value of the bin corresponds to the number that the string Zi[1 : ℓ] encodes. The p
throws are independent, but for each i, there is a non-zero chance that ball i does not land into
any bin. This corresponds to the case that E−1(Ki, Yi) doesn’t have a form pad(Xi, 1). For each i
and for any t ∈ {1, . . . ,M}, the chance that ball i lands to bin t is a.

Let Badi be the event that there are s balls that land into bin i. There is an s-way multi-
collision if there is some bin that contains at least s balls, which happens with probability at least

Pr
[

⋃M
i=1 Badi

]

. From the Bonferroni’s inequality as stated in Lemma C.2,

Pr
[

M
⋃

i=1

Badi

]

≥
M
∑

i=1

Pr[Badi]−
∑

1≤i<j≤M

Pr[Badi ∪ Badj ] .

Note that for every i ∈ {1, . . . ,M},

Pr[Badi] ≥
(

p

s

)

as(1− a)p−s = ∆(1− a)p−s

≥ ∆ ·
(

1− 1

Q

)p−s
≥ ∆ ·

(

1− 1

Q

)Q/6
≥ ∆

41/6
≥ 3∆

4
,

where the third last inequality is from the hypothesis that p ≤ Q/6, and the second last inequality
is from the fact that (1− 1/x)x ≥ 1/4 for every x ≥ 2. In contrast,

Pr[Badi ∩ Badj] ≤
(

p

s

)(

p− s

s

)

a2s ≤
(

p

s

)(

p

s

)

a2s = ∆2

for every 1 ≤ i < j ≤M . Hence

Advcoll
ITP[E,r,m],s(A, s) ≥

3∆ ·M
4

− M(M − 1) ·∆2

2

≥ ∆ ·M
4
≥

(

p

s

)

· 2ℓ−3 · 2−(n+ℓ−r)s ,

where the second inequality is due to the hypothesis that ∆ ≤ 2−ℓ and thus ∆(M − 1) ≤ 1.

I Proof of Proposition 4.5

As a stepping stone, we first consider the multi-collision resistance on the cascade of two hash
functions H0 and H1. However, we now consider a more general, parameterized bound, via the
t0-way multi-collision of H0 and t1-way multi-collision of H1, with t1 = ⌈s/(t0− 1)⌉, for any t0 ≥ 2.

Lemma I.1 Let H be the cascade of two hash functions H0 and H1 as illustrated in Fig. 7. Let
s ≥ t0 ≥ 2 be integers such that t1 = ⌈s/(t0− 1)⌉ ≥ 2. Then for any adversary A, we can construct

42



adversaries B0 and B1 such that

Advcoll
H,s(A) ≤ max

{

Advcoll
H0,t0(B0),Advcoll

H1,t1(B1)
}

.

Each adversary Bi runs A, and then runs H0 on s inputs of A.

Proof: We first describe the adversaries B0 and B1. Adversary B0 runs
(

(X1, Y1, Z1), . . . , (Xs, Ys, Zs)
)

←$A .

It then partitions (X1, Y1), . . . , (Xs, Ys) based on the outputs under H0. We note that if (Xi, Yi) =
(Xj , Yj) then they are still treated as two pairs (of the same value). Let P1, . . . , Pa be the resulting
partitions. If there is a partition of at least t0 pairs of distinct values then B0 will output those
pairs.

Adversary B1 also runs
(

(X1, Y1, Z1), . . . , (Xs, Ys, Zs)
)

←$A .

Let Vi ← H0(Xi, Yi) for every i ≤ s. If there are t1 pairs of distinct values in (V1, Z1), . . . , (Vs, Zs)
then B1 will output those pairs.

Assume that A succeeds in creating an s-way multi-collision. We will show that either B0 creates
a t0-way multi-collision on H0 or B1 creates a t1-way multi-collision on H1. We say that a value
(A,B) has degree d if there are exactly d pairs in (X1, Y1), . . . , (Xs, Ys) of this value. For each i,
let (Ai, Bi) be the value of maximum degree in Pi, and let di be the degree of (Ai, Bi). Assume
that B0 does not create a t0-way multi-collision on H0, meaning that every partition Pi contains at
most t0 − 1 pairs of distinct values. In other words,

di ≥
|Pi|
t0 − 1

.

Let Si be the set of indices j such that (Xj , Yj) has value (Ai, Bi). Note that the sets S1, . . . , Sa

are disjoint, and each |Si| = di. Then the pairs

{(Vj , Zj) | j ∈ S1 ∪ · · · ∪ Sa}
have distinct values. Indeed, fix i and j in S1 ∪ · · · ∪ Sa. If (Xi, Yi) and (Xj , Yj) are in different
partitions then Vi 6= Vj . Otherwise, if (Xi, Yi) and (Xj , Yj) are in the same partition, since A must
output distinct inputs for H, we must have (Xi, Yi, Zi) 6= (Xj , Yj , Zi), and thus Zi 6= Zj . Hence
there are at least

a
∑

i=1

|Si| =
a

∑

i=1

di ≥
a

∑

i=1

|Pi|
t0 − 1

=
s

t0 − 1
> t1 − 1

pairs of distinct values in (V1, Z1), . . . , (Vs, Zs), and thus B1 will succeed.

Back to the proof of Proposition 4.5, let t′ = ⌈s/(t− 1)⌉ ≥
⌈

( c
√
s)c−1

⌉

≥ 2. Let H ′ be the cascade
of H1, . . . ,Hc−1. Note that H is the cascade of H0 and H ′. Using Lemma I.1, we can construct
adversaries B0 and B′ such that

Advcoll
H,s(A) ≤ max

{

Advcoll
H0,t(B0),Advcoll

H′,t′(B′)
}

.

Repeating the argument above to bound Advcoll
H′,t′(B′) eventually leads to the claimed bound on

Advcoll
H,s(A). Each constructed adversary Bi runs the cascade of H0, . . . ,Hmin{c−2,i} on s inputs

of A.

43



J Proof of Theorem 5.1

We construct an adversary B attacking the multi-collision resistance of DM[E, τ ] as follows. It
runs

(

(N1,K1,M1, A1), . . . , (Ns,Ks,Ms, As)
)

←$A. Let Ci‖Ti be the ciphertext of (Ni, Ai,Mi)
under CAU-C1 with key Ki, and suppose that Ti ← E(Ki, Vi)⊕Vi. Adversary B then outputs
(

(K1, V1), . . . , (Ks, Vs)
)

. Note that this output is legitimate since K1, . . . ,Ks are distinct. If A
succeeds then T1 = · · · = Ts, and thus B also can create an s-way multi-collision. Then

Advcmt-1
CAU-C1[E,G,τ ],s(A) ≤ Advcoll

DM[E,τ ],s(B) .

Note that B needs to get the hash keys to obtain Vi. Thus it will need to run E(Ki, 0
n) for every

i ≤ s.

K Proof of Theorem 5.1

Our proof is based on the H-coefficient technique of Patarin [45, 20], which we will recall below.

The H-coefficient technique. The H-coefficient technique considers a deterministic distin-
guisher A that tries to distinguish a “real” system S1 from an “ideal” system S0. The adversary’s
interactions with those systems define transcripts T1 and T0, respectively. The following result
bounds the distinguishing advantage of A.

Lemma K.1 [45, 20] Suppose we can partition the set of valid transcripts for the ideal system into

good and bad ones. Further, suppose that there exists a constant ǫ ≥ 0 such that 1 − pS1
(θ)

pS0
(θ) ≤ ǫ

for every good transcript θ. Then, the advantage of A in distinguishing S1 and S0 is at most
ǫ+ Pr[T0 is bad] .

The proof. Let CAU-C1[H, τ ] be the idealized version of CAU-C1[E,H, τ ] in which each call to
E(Ki, ·) is replaced by a corresponding call to a truly random function fi←$ Func({0, 1}n, {0, 1}n).
Note that game Grand

CAU-C1[H,τ ](A) coincides with game Grand
CAU-C1[E,H,τ ](A). To bound the gap between

the real games, we construct the following adversary B attacking the PRF security of E. It runs A
and simulates game Greal

CAU-C1[E,H,τ ](A), but each call to E(Ki, ·) is replaced by a corresponding call

to Eval(i, ·). Then
Advprf

E (B) = Pr[Greal
CAU-C1[E,H,τ ](A)]− Pr[Greal

CAU-C1[H,τ ](A)]
= Advunae

CAU-C1[E,H,τ ](A)−Advunae
CAU-C1[H,τ ](A) .

Adversary B makes at most σ + q queries, with at most 2B queries per user. From the Multi-user
PRP/PRF Switching Lemma,

Advprf
E (B) ≤ Advprp

E (B) + 2B(σ + q)

2n
.

We will use the H-coefficient technique to bound Advunae
CAU-C1[H,τ ](A), even for a computationally

unbounded A. The real system corresponds to game Greal
CAU-C1[H,τ ] whereas the ideal system corre-

sponds to game Grand
CAU-C1[H,τ ]. Since we consider computationally unbounded adversaries, without

loss of generality, assume that A is deterministic. From Proposition 4.2, without loss of generality,
we can assume that A is orderly. This can cause a difference of at most qv/2

τ in the advantage;
we will account for this difference in the final bound. When the adversary finishes querying, in the
real world, we will grant it the hash keys of all users, and in the ideal world, we will give it fresh
uniformly random n-bit strings. This key revelation can only help the adversary.

44



Defining bad transcripts. A transcript consists of the revealed hash keys Li and the following
information:

• For each query C‖T ← Enc(i,N,A,M), let M = M1 · · ·Mm and C = C1 · · ·Cm, with |Mm| =
|Cm| < n and |Mj | = |Cj | = n otherwise. Let V = H(Li, A,C)⊕pad(N) and for each j < m,
let Pj = Mj⊕Cj . If |Mm| = 0 then let P ← P1 · · ·Pm−1, otherwise P ← P1 · · ·Pm, where
Pm ← fi(pad(N) + m) in the real world, and Pm ← (Cm⊕Mm)‖Z with Z←$ {0, 1}n−|Mm| in
the ideal world. We will store a corresponding entry (enc, i,N,A,M,C‖T, V, P ).

• For each query Vf(i,N,A,C‖T ), we will store an entry (vf, i,N,A,C‖T, V ), where V ←
H(Li, A,C)⊕pad(N). Note that we do not need to keep track of the answers of the verifi-
cation queries, since for any valid transcript in the ideal world, the answers of all verification
queries must be false.

Entries are stored in the transcript in the order that the queries are made. A verification queries
(vf, i,N,A,C‖T, V ) is vacuous if there is another entry (enc, i,N,A,C‖T ∗, V ). Without loss of
generality, assume that A makes no vacuous verification queries, since it will get false answers in
either world.

A transcript is bad if one of the following happens:

(1) There are two (possibly the same) entries (enc, i,N,A,M,C‖T, V, P1 · · ·Pm) and (enc, i,N∗, A∗,
M∗, C∗‖T ∗, V ∗, P ∗1 · · ·P ∗ℓ ) and an index t ∈ {1, . . . , ℓ} such that V = pad(N∗) + t. In the real
world, T = (P ∗t ⊕V )[1 : τ ], but this might not happen in the ideal world.

(2) There are two different entries (enc, i,N,A,M,C‖T, V, P ) and (enc, i,N∗, A∗,M∗, C∗‖T ∗, V ∗, P ∗)
such that V = V ∗. In the real world, T = T ∗, but this might not happen in the ideal world.

(3) There is an entry (enc, i,N,A,M,C‖T, V, P ) such that V = 0n. In the real world, T = Li[1 : τ ]
but this might not happen in the ideal world.

(4) There is an entry (vf, i,N,A,C‖T, V ) such that V = 0n. This forces the correct tag for the
verification query to be Li[1 : τ ] in the real world, but there is no constraint in the ideal world.

(5) There are two entries (enc, i,N,A,M,C‖T, V, P1 · · ·Pm) and (vf, i,N∗, A∗, C∗‖T ∗, V ∗) and an
index t ∈ {1, . . . ,m} such that V ∗ = pad(N)+ t. This forces the correct tag for the verification
query to be (Pt⊕V ∗)[1 : τ ] in the real world, but there is no constraint in the ideal world.

(6) There are entries (enc, i,N,A,M,C‖T, V, P ) and (vf, i,N∗, A∗, C∗‖T ∗, V ∗) such that V = V ∗.
This forces the correct tag for the verification query to be T in the real world, but there is no
constraint in the ideal world.

If a transcript is not bad and is valid for the ideal system then we say that it is good.

Probability of bad transcript. Let T0 be the random variable for the transcript in the ideal
world. We now bound the probability that T0 is bad. We will fix the queries and answers of the
adversary, but still treat the revealed keys as random. That is, we are dealing with the conditional
probability that T0 is bad, given a fixed choice of the queries and answers of the adversary. Our
bound holds for any such choice, and thus it also holds for the unconditional probability that T0 is
bad.

For each j ∈ {1, . . . , 6}, let Badj be the set of transcripts that violate the j-th constraint of badness.
Then from the union bound,

Pr[T0 is bad] = Pr[T0 ∈ Bad1 ∪ · · · ∪ Bad6] ≤
6

∑

j=1

Pr[T0 ∈ Badj ] .

We first bound the probability that T0 ∈ Bad1. Consider two (possibly the same) entries (enc, i,N,A,
M,C‖T, V, P1 · · ·Pm) and (enc, i,N∗, A∗,M∗, C∗‖T ∗, V ∗, P ∗1 · · ·P ∗ℓ ). If A = M = ε then V =

45



pad(N) that is different from pad(N∗) + t, for any t ∈ {1, . . . , 2n−r − 2}. If (A,M) 6= (ε, ε), since
H is weakly c-regular, the chance that there is t ∈ {1, . . . , ℓ} such that V = H(Li, A,C)⊕pad(N)
equals to pad(N∗) + t is at most

cℓ · (|A|n + |C|n)
2n

≤ c(|A|n + |M |n)(|A∗|n + |M∗|n)
2n

.

Summing over all pairs of enc entries of the same user,

Pr[T0 ∈ Bad1] ≤
cσB

2n
.

We now bound the probability that T0 ∈ Bad2. Consider two different entries (enc, i,N,A,M,C‖T,
V, P ) and (enc, i,N∗, A∗,M∗, C∗‖T ∗, V ∗, P ∗). If (A,C) = (A∗, C∗) then we must have N 6= N∗,
otherwise that will lead to M = M∗, violating the definitional restrictions. Consequently, V =
H(Li, A,C)⊕pad(N) and V ∗ = H(Li, A

∗, C∗)⊕pad(N∗) must be different. If (A,C) 6= (A∗, C∗)
then sinceH is c-AXU, the chance that V = H(Li, A,C)⊕pad(N) and V ∗ = H(Li, A

∗, C∗)⊕pad(N∗)
are the same is at most

c ·max{|A|n + |C|n, |A∗|n + |C∗|n}
2n

≤ c(|A|n + |M |n + |A∗|n + |M∗|n)
2n

.

Summing over all pairs of enc entries of the same user,

Pr[T0 ∈ Bad2] ≤
cqB

2n
.

We now bound the probability that T0 ∈ Bad3. Consider an entry (enc, i,N,A,M,C‖T, V, P ). If
A = M = ε then V = pad(N) 6= 0n. If (A,M) 6= (ε, ε), since H is weakly c-regular, the chance
V = H(Li, A,C)⊕pad(N) equals to 0n is at most

c · (|A|n + |C|n)
2n

=
c(|A|n + |M |n)

2n
.

Summing over all enc entries,

Pr[T0 ∈ Bad3] ≤
cσ

2n
≤ cσB

2n
.

We now bound the probability that T0 ∈ Bad4. Consider an entry (vf, i,N,A,C‖T, V ). If A =
C = ε then V = pad(N) 6= 0n. If (A,C) 6= (ε, ε), since H is weakly c-regular, the chance
V = H(Li, A,C)⊕pad(N) equals to 0n is at most

c · (|A|n + |C|n)
2n

.

Summing over all vf entries,

Pr[T0 ∈ Bad4] ≤
cσ

2n
≤ cσB

2n
.

We now bound the chance that T0 ∈ Bad5. Consider entries (enc, i,N,A,M,C‖T, V, P1 · · ·Pm) and
(vf, i,N∗, A∗, C∗‖T ∗, V ∗). If A∗ = C∗ = ε then V ∗ = pad(N∗) that is different from pad(N) + t for
any t ∈ {1, . . . , 2n−r − 2}. If (A∗, C∗) 6= (ε, ε), since H is weakly c-regular, the chance that there is
t ∈ {1, . . . ,m} such that V ∗ = H(Li, A

∗, C∗)⊕pad(N∗) equals to pad(N) + t is at most

cm · (|A∗|n + |C∗|n)
2n

≤ c(|A|n + |M |n)(|A∗|n + |M∗|n)
2n

.

Summing over all pairs of enc and vf entries of the same user,

Pr[T0 ∈ Bad5] ≤
cσB

2n
.

Finally, we bound the chance that T0 ∈ Bad6. Consider two entries (enc, i,N,A,M,C‖T, V, P )
and (vf, i,N∗, A∗, C∗‖T ∗, V ∗). If (A,C) = (A∗, C∗) then since the adversary makes no vacuous

46



verification queries, we must have N 6= N∗. As a result, V = H(Li, A,C)⊕pad(N) and V ∗ =
H(Li, A

∗, C∗)⊕pad(N∗) must be different. If (A,C) 6= (A∗, C∗) then since H is c-AXU, the chance
that V = H(Li, A,C)⊕pad(N) and V ∗ = H(Li, A

∗, C∗)⊕pad(N∗) are the same is at most

c ·max{|A|n + |C|n, |A∗|n + |C∗|n}
2n

≤ c(|A|n + |M |n + |A∗|n + |M∗|n)
2n

.

Summing over all pairs of enc entries of the same user,

Pr[T0 ∈ Bad6] ≤
cqB

2n
.

Summing up,

Pr[T0 is bad] ≤ cB(4σ + 2q)

2n
.

Transcript ratio. Fix a good transcript θ. Suppose that there are exactly u users in θ. Suppose
that the answers for encryption queries of user i in θ consist of totally Ni bits. For each user i,
partition the entries (vf, i,N,A,C‖T, V ) in θ according to V , and let Si be the collection of those
partitions. For each P ∈ Si, let Tags(P ) denote the set of the corresponding tags T , and let V (P )
denote the corresponding value V . Note that

u
∑

i=1

∑

P∈Si

|P | ≤ qv .

Let T1 and T0 be the random variables of the transcript of the interaction of the adversary with
systems S1 and S0, respectively. On the one hand, the event T0 = θ is the composition of the
following independent events:

• When we sample u keys Li←$ {0, 1}n, they end up the same as the values defined in θ. This
happens with probability 2−nu.

• For each user i, the answers of its encryption queries end up the same as the values (of totally
Ni bits) defined in θ. This happens with probability 2−Ni .

Hence

pS0
(θ) = Pr[T0 = θ] = 2−nu

u
∏

i=1

2−Ni .

On the other hand, since θ is good, the event T1 = θ is the composition of the following independent
events:

• When we sample u keys Li←$ {0, 1}n, they end up the same as the values defined in θ. This
happens with probability 2−nu.

• For each user i, the (possibly truncated) answers of the distinct queries to the truly random
function fi end up the same as the values (of totally Ni bits) defined in θ. This happens with
probability 2−Ni .

• For each user i and each P ∈ Si, if we query V (P ) to the truly random function fi, the answer
R must satisfy (R⊕V (P ))[1 : τ ] 6∈ Tags(P ). This happens with probability 1− |Tags(P )|/2τ ≥
1− |P |/2τ .

Thus

pS1
(θ) = Pr[T1 = θ] ≥ 2−nu

u
∏

i=1

(

2−Ni ·
∏

P∈Si

(1− |P |/2τ )
)

.

47



Hence

pS1
(θ)

pS0
(θ)
≥

u
∏

i=1

∏

P∈Si

(1− |P |/2τ ) ≥ 1−
u

∑

i=1

∑

P∈Si

|P |/2τ ≥ 1− qv/2
τ ,

where the second inequality is obtained by repeatedly using the fact that for every x, y ∈ [0, 1],
(1− x)(1− y) ≥ 1− (x+ y).

Wrapping up. From Lemma K.1,

Advunae
CAU-C1[H,τ ](A) ≤

cB(4σ + 2q)

2n
+

qv
2τ

.

Hence

Advunae
CAU-C1[E,H,τ ](A) ≤ Advprf

E (B) + B(4c+ 2)σ +B(2c+ 2)q

2n
+

qv
2τ

.

If we remove the restriction that A is orderly, from Proposition 4.2,

Advunae
CAU-C1[E,H,τ ](A) ≤ Advprf

E (B) + (4c + 2)Bσ + (2c + 2)Bq

2n
+

2qv
2τ

.

L Proof of Theorem 3.1

We first describe the adversaries B0 and B1. Adversary B0 runs
(

(K1, N1, A1,M1), . . . , (Ks, Ns, As,Ms)
)

←$A .

Due to the equivalence between CMTs-3 and CMTs-4, without loss of generality, assume that
(K1, N1, A1), . . . , (Ks, Ns, As) are distinct. Adversary B0 partitions (K1, N1, A1), . . . , (Ks, Ns, As)
based on the outputs under H. Let P1, . . . , Pa be the resulting partitions. If there is a partition of
at least t elements then B0 will output those.

Adversary B1 also runs
(

(K1, N1, A1,M1), . . . , (Ks, Ns, As,Ms)
)

←$A .

Let Li ← H(Ki, (Ni, Ai)) for every i ≤ s. If there are t distinct subkeys in (L1, N1, ε,M1), . . . ,
(Ls, Ns, ε,Ms) then B1 will output those tuples.

Let Ci ← SE(Ki, Ni, Ai,Mi); note that Ci = SE.Enc(Li, Ni, ε,Mi). Assume that A succeeds in
creating an s-way multi-collision, meaning that C1 = · · · = Cs. If there is a partition Pi of at least t
elements then B0 creates a t-way multi-collision on H. Assume to the contrary that |Pi| ≤ t− 1 for
every i ∈ {1, . . . , a}. Then the number a of partitions is at least

⌈

s

t− 1

⌉

≥ ⌈√s ⌉ = t .

Thus among the subkeys L1, . . . , Ls, there are at least t distinct ones, and B1 can output the
corresponding tuples (Li, Ni, ε,Mi) and wins. Hence

Advcmt-4
SE,s

(A) ≤ max
{

Advcoll
H,t(B0),Advcmt-1

SE,t (B1)
}

as claimed.

M Proof of Theorem 3.2

Let G0 be game Greal
HtE[SE,H](A) and G2 be game Grand

HtE[E,H](A). Consider game G1 in Fig. 19.

From G0 to G1. Game G1 is similar to G0, but with the following differences.

48



Game G1(A)
v ← 0; b′←$ANew,Enc,Vf

Return (b′ = 1)

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} then return ⊥
If Users[i, N,A] = ⊥ then

New(); Users[i, N,A]← v

u← Users[i, N,A]; C ← SE.Enc(Lu, N, ε,M)

Return C

New()

v ← v + 1

Lv←$ {0, 1}k

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} then return ⊥
If Users[i, N,A] = ⊥ then

New(); Users[i, N,A]← v

u← Users[i, N,A]; M ← SE.Dec(Lu, N, ε, C)

Return (M 6= ⊥)

Figure 19: Game G1 in the proof of Theorem 3.2.

Adversary DNew,Eval

v ← 0; u← 0; b′←$ANew,Enc,Vf

Return b′

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} then return ⊥
If Users[i, N,A] = ⊥ then

Users[i, N,A]← u← u+ 1; New()

u∗ ← Users[i, N,A]

C ← Enc(u∗, N, ε,M); Return C

New

v ← v + 1

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} then return ⊥
If Users[i, N,A] = ⊥ then

Users[i, N,A]← u← u+ 1; New()

u∗ ← Users[i, N,A]

b← Vf(u∗, N, ε,M); Return b

Figure 20: Constructed adversary D in the proof of Theorem 3.2.

• In an encryption query Enc(i,N,A,M), instead of generating a genuine subkey L, if there is a
prior verification query Vf(i,N,A,C) then we reuse the same subkey. Otherwise we’ll pick L
at random.

• In a verification queryVf(i,N,A,C), if there is a prior queryEnc(i,N,A,M) orVf(i,N,A,C∗),
then we use the prior subkey L. Otherwise, we’ll generate a fresh subkey.

We bound the gap between G0 and G1 by constructing an adversary B attacking the (multi-user)
PRF security of H. Adversary B runs A and simulates game G0. However, each call to H(Ki, ·) is
replaced by the corresponding call to Eval(i, ·). Thus

Pr[G0(A)]− Pr[G1(A)] ≤ Advprf
H (B) .

From G1 to G2.We bound the gap between G1 andG2 by constructing an adversary D attacking
SE as in Fig. 20. Game Greal

SE (D) corresponds to game G1(A), and game Grand
SE (D) corresponds to

game G2(A). Hence
Pr[G1(A)]− Pr[G2(A)] ≤ Advmrae

SE (D) .

We now briefly describe how to implement the map Users in O(σa log(B)) time. Tuples (i,N,A)
and their values u∗ are partitioned according to (i,N, |A|). Within a partition, the tuples are stored
in a binary search tree, with A as the key, and u∗ as the value. Let P1, . . . , Pd be the resulting
partitions, and let σt be the size of Pt when A finishes querying. Since each binary search tree has

49



size at most B, the total cost of updates and look-ups in the trees is

d
∑

t=1

O(σt log(B)) = O(σa log(B))

as claimed.

Wrap-up. Summing up,

Advmrae
HtE[SE,H](A) = Pr[G0(A)]− Pr[G2(A)] ≤ Advprf

H (B) +Advmrae
SE (D) .

If B is unique-nonce then so is D, and we can rewrite the bound as

Advunae
SE

(A) ≤ Advprf
H (B) +Advunae

SE (D) .

N Proof of Proposition 6.1

We begin by giving a brief review of the Chi-Squared method of Dai, Hoang, and Tessaro [22].

The Chi-Squared method. Suppose that we want to bound the advantage of a computationally
unbounded adversary A in distinguishing a “real” system S1 from an “ideal” system S0. Without
loss of generality, assume that A is deterministic and makes exactly q queries. Since the adversary
is deterministic, for any i ≤ q − 1, the answers for the first i queries completely determine the
first i+ 1 queries. For a system S ∈ {S1,S0} and strings z1, . . . , zi, let pS,A(z1, . . . , zi) denote the
probability that the answers for the first i queries that A receives when interacting with S are
z1, . . . , zi. If pS,A(z1, . . . , zi) > 0, let pS,A(zi+1 | z1, . . . , zi) denote the conditional probability that
the answer for the (i+1)-th query when A interacts with system S is zi+1, given that the answers
for the first i queries are z1, . . . , zi respectively.

For each Z = (z1, . . . , zq), let Zi = (z1, . . . , zi) and let Z0 be the empty string. We write pS,A(· | Zi)
and pS,A(· | Z0) to refer to probabilities pS,A(· | z1, . . . , zi) and pS,A(·) respectively. We require
that if pS1,A(Zi) > 0 then so is pS0,A(Zi). For each i ≤ q and each vector Zi−1 = (z1, . . . , zi−1),
define

χ2(Zi−1) =
∑

zi

(

pS1,A(zi | Zi−1)− pS0,A(zi | Zi−1)
)2

pS0,A(zi | Zi−1)
,

where the sum is taken over all zi such that pS0,A(zi | Zi−1) > 0. Lemma N.1 below bounds the
statistical distance SD

(

pS0,A(·), pS1,A(·)
)

between pS0,A(·) and pS1,A(·), namely the best possible
distinguishing advantage of A between S1 and S0.

Lemma N.1 (The Chi-Squared Lemma) [22, Lemma 3] Suppose whenever pS1,A(Zi) > 0 then
pS0,A(Zi) > 0. Then

SD
(

pS0,A(·), pS1,A(·)
)

≤
(1

2

q
∑

i=1

E[χ2(Xi−1)]
)1/2

,

where the expectation is taken over vectors Xi−1 of the i− 1 first answers sampled according to the
interaction with S1.

The proof. Consider games G1–G3 in Fig. 21. Game G1 corresponds to game Gprf
E (A) with

challenge bit 1, and game G3 corresponds to game Gprf
E (A) with challenge bit 0. Thus

Advprf
E (A) = Pr[G1(A)]− Pr[G3(A)] .

Game G2 is similar to game G1, but each call to E(Ki, ·) is replaced by another call to a truly
random permutation πi(·). To bound the gap between G1 and G2, we construct a (multi-user)

50



Game G1(A)
v ← 0; b′ ← ANew,Eval

Return (b′ = 1)

New()

v ← v + 1

Kv←$ {0, 1}k
Eval(i,X)

If i 6∈ {1, . . . , v} return ⊥
Return E(Ki, X)[1 : m]

Game G2(A)
v ← 0; b′ ← ANew,Eval

Return (b′ = 1)

New()

v ← v + 1

πv←$ Perm({0, 1}n)
Eval(i,X)

If i 6∈ {1, . . . , v} return ⊥
Return πi(X)[1 : m]

Game G3(A)
v ← 0; b′ ← ANew,Eval

Return (b′ = 1)

New()

v ← v + 1

fv←$ Func({0, 1}n, {0, 1}m)

Eval(i,X)

If i 6∈ {1, . . . , v} return ⊥
Return fi(X)

Figure 21: Games in the proof of Proposition 6.1.

PRP adversary B as follows. Adversary B runs A and forwards A’s queries to its corresponding
oracles. Finally, when A outputs a bit b′, so does B. Thus game G1 corresponds to game Gprp

E (B)
with challenge bit 1, and game G2 corresponds to game Gprp

E (B) with challenge bit 0. Hence

Advprp
E (B) = Pr[G1(A)]− Pr[G2(A)] .

Next, we will use the Chi-Squared method to show that

Pr[G2(A)]− Pr[G3(A)] ≤ 2
√

nBq · 2m/2−n . (2)

On the other hand, since the difference between G2 and G3 is whether we truncate truly random
permutations or truly random functions, by using the Multi-user PRP/PRF Switching Lemma,

Pr[G2(A)]− Pr[G3(A)] ≤ Bq/2n ,

and thus

Pr[G2(A)]− Pr[G3(A)] ≤ min{2
√

nBq · 2m/2−n, Bq/2n} .

Summing up,

Advprf
E (A) = Pr[G1(A)]− Pr[G3(A)]

≤ Advprp
E (B) + min{2

√

nBq · 2m/2−n, Bq/2n} .

We now justify the claim in Equation (2). Let S1 be the system that implements game G2 and
S0 be the system that implements game G3. Without loss of generality, assume that A makes
exactly q queries. Let X = (X1, . . . ,Xq) be the random variable for the q answers in S1, and let
Xi = (X1, . . . ,Xi) for every i ≤ q. Fix i ≤ q. Let Ui be the random variable for the user that the
i-th query targets. Let Qi be the number of queries for user Ui before the i-th query is made, and
let Hi,x be the the number of those Qi queries that end up with the answer x. Let N = 2n and
M = 2m. Then

χ2(Xi) =
∑

x∈{0,1}m

M ·
(N/M −Hi,x

N −Qi
− 1

M

)2

=
M

(N −Qi)2

∑

x∈{0,1}m

(Qi

M
−Hi,x

)2
≤ 4M

N2

∑

x∈{0,1}m

(Qi

M
−Hi,x

)2
,

where the inequality is due the fact that Qi ≤ B ≤ N/2. Taking expectation of both sides, we

51



obtain

χ2(Xi) ≤
4M

N2

∑

x∈{0,1}m

E
[(Qi

M
−Hi,x

)2]

.

Fix x ∈ {0, 1}m. On the one hand, we will show that

Pr
[(Qi

M
−Hi,x

)2
≥ 1.5nB

]

≤ 2−2n . (3)

On the other hand, as both Qi/M and Hi,x are smaller than B, we have
(Qi

M
−Hi,x

)2
≤ B2 .

Thus

E
[(Qi

M
−Hi,x

)2]

≤ B2

22n
+ 1.5nB ≤ 2nB .

Hence from Lemma N.1, the distinguishing advantage of A against S1 and S0 is at most

(1

2

q−1
∑

i=0

χ2(Xi)
)1/2

≤
(

q−1
∑

i=0

2M

N2

∑

x∈{0,1}m

E
[(Qi

M
−Hi,x

)2])1/2
≤ 2
√
nMBq

N
,

justifying Equation (2).

To prove the claim in Equation (3), it suffices to consider i > 1, as otherwise Qi = Hi,x = 0. We
will first give a much tighter bound in the single-user setting, showing that

Pr
[(Qi

M
−Hi,x

)2
≥ 1.5nB

]

≤ 2−4n .

We will then obtain Equation (3) for the multi-user case by applying a hybrid argument with a
blow-up factor qB ≤ 22n.

The single-user case. For the single-user setting, Qi = i− 1, and Hi,x has the hypergeometric
distribution HypGeo(i − 1, N/M,N).1 The following classic result gives a strong concentration
bound for hypergeometric variables.

Lemma N.2 [34] Let X be a random variable of distribution HypGeo(r, S,N), and let µ = E[X] =
rS/N . Then for every λ > 0,

Pr[|X − µ| ≥ λr] ≤ 2e−2λ
2r .

Using Lemma N.2 for Hi,x with λ =
√

1.5n/(i − 1), we obtain

Pr

[

∣

∣

∣

Qi

M
−Hi,x

∣

∣

∣
≥

√

1.5n(i− 1)

]

≤ 2e−3n ≤ 2−4n .

As i− 1 ≤ B,

Pr
[(Qi

M
−Hi,x

)2
≥ 1.5nB

]

= Pr

[

∣

∣

∣

Qi

M
−Hi,x

∣

∣

∣
≥
√
1.5nB

]

≤ Pr

[

∣

∣

∣

Qi

M
−Hi,x

∣

∣

∣
≥

√

1.5n(i− 1)

]

≤ 2−4n .

The multi-user case. Consider the following games Gt,s, with t ∈ {1, . . . , q} and s ∈ {0, . . . , B−
1The hypergeometric distribution HypGeo(r, S,N) describes the number of red balls when we sample uniformly

without replacement of r balls from a set of S red balls and N − S blue balls.

52



Game G1(A)
v ← 0; b′←$ANew,Enc; Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i,M)

If i 6∈ {1, . . . , v} return ⊥
M1 · · ·Mm ←M ; IV←$ {0, 1}n
For j ← 1 to m do

V ← add(IV, j); X ← E(Ki, V )

Cj ← X⊕Mj

Return IV‖C1 · · ·Cm

Games G2(A) , G3(A)
v ← 0; b′←$ANew,Enc; Return (b′ = 1)

New()

v ← v + 1

Enc(i,M)

If i 6∈ {1, . . . , v} return ⊥
M1 · · ·Mm ←M ; IV←$ {0, 1}n
For j ← 1 to m do

V ← add(IV, j); X ←$ {0, 1}n
If Tbl[i, V ] 6= ⊥ then

bad← true; X ← Tbl[i, V ]

Tbl[i, V ]← X ; Cj ← X⊕Mj

Return IV‖C1 · · ·Cm

Game G4(A)
v ← 0; b′←$ANew,Enc; Return (b′ = 1)

New()

v ← v + 1

Enc(i,M)

If i 6∈ {1, . . . , v} return ⊥
C←$ {0, 1}|M|; IV←$ {0, 1}n
Return IV‖C

Figure 22: Games G1–G4 in the proof of Proposition 6.3. Game G2 contains the corresponding
highlighted code, but game G3 does not.

1}. In game Gi,r, one picks a random variable Vt,s from the distribution HypGeo(s,N/M,N). One
wins this game if (Vt,s − s/M)2 ≥ 1.5nB.

In the multi-user setting, the adversary can be viewed as playing the qB games above simultane-

ously; in gameGt,s it targets user Ui = t withQi = s queries. The probability Pr

[

(

Qi

M −Hi,x

)2
≥ 1.5nB

]

is at most the chance that the adversary wins some game. For each fixed t and s, the chance the
adversary wins the game Gt,s, as shown in the single-user setting, is at most 2−4n. Hence by the
union bound, the chance that the adversary wins some game is at most qB/24n. Without loss of
generality, assume that qB ≤ 22n, otherwise the claim in this theorem is moot. Then

Pr

[

(Qi

M
−Hi,x

)2
≥ 1.5nB

]

≤ qB

24n
≤ 2−2n .

O Proof of Proposition 6.3

Without loss of generality, assume that for each query Enc(i,M), the length |M | is a multiple of
n. Indeed, a query Enc(i,M) with a fragmentary M can be simulated by (i) padding M to obtain
a full-block message M ′, (ii) querying Enc(i,M ′), and (iii) truncating the answer.

Consider games G1–G4 in Fig. 22. From the definition,

Advind
CTR[E,add](A) = Pr[G1(A)]− Pr[G4(A)] .

We now describe the game chain. In game G2, each call to E(Ki, ·) is replaced by a corresponding
call to a truly random function fi←$ Func({0, 1}n, {0, 1}n). These functions are lazily implemented
by maintaining a table Tbl of the defined points. To bound the gap between G1 and G2, we

53



construct the following adversary B attacking the PRF security E. Adversary B runs A and
simulates game G1, but each call to E(Ki, ·) is replaced by a corresponding query to Eval(i, ·).
Then B’s real world corresponds to game G1, and its ideal world corresponds to game G2, and
thus

Advprf
E (B) = Pr[G1(A)]− Pr[G2(A)] .

Adversary B therefore makes at most σ queries, with B queries per user. From the Multi-user
PRP/PRF Switching Lemma,

Advprf
E (B) ≤ Advprp

E (B) + Bσ

2n
.

In game G2, if there are two queries Enc(i,M0) and Enc(i,M1) that internally call fi(IV0+ i) and
fi(IV1+ j) respectively, and IV0+ i = IV1+ j, then they will get the same answer. Instead, in game
G3, the answers are chosen independently. The two games are identical until the flag bad is set,
and thus from the Fundamental Lemma of Game Playing [11],

Pr[G2(A)]− Pr[G3(A)] ≤ Pr[G3(A) sets bad] .

We now bound the chance that game G3 sets bad. Consider the j-th encryption query. Suppose
that it targets user i and let Lj be the block length of the message. Note that the adversary can
choose Lj adaptively, and thus it is actually a random variable, depending on the output of the
game. This query leads to Lj distinct calls to fi. Since (i) there are at most B prior calls to fi, (ii)
marginally, the (n− 1)-bit suffix of each call is uniformly random, and (iii) two calls from different
queries are independent, the probability that this query triggers bad is at most

B ·E[Lj ]

2n−1
.

Summing this over all queries,

Pr[G3(A) sets bad] ≤
2B

2n
·E

[

∑

j

Lj

]

≤ 2Bσ

2n
.

Game G4 is a simplification of game G3, and thus

Pr[G4(A)] = Pr[G3(A)] .

Summing up,

Advind
CTR[E,add](A) = Pr[G1(A)]− Pr[G4(A)]

=

3
∑

i=1

Pr[Gi(A)]− Pr[Gi+1(A)] ≤ Advprp
E (B) + 3Bσ

2n
.

P Proof of Proposition 6.4

Consider games G1–G4 in Fig. 23. From the definition,

AdvGMAC2[E,G](A) = Pr[G1(A)]− Pr[G4(A)] .

We now describe the game chain. In game G2, each call to E(Ki
out, ·), where Ki

out is the blockcipher
subkey of the master key Ki, is replaced by a corresponding call to a truly random function
fi←$ Func({0, 1}n, {0, 1}n). These functions are lazily implemented by maintaining a table Tbl of
the defined points. To bound the gap between G1 and G2, we construct the following adversary
B attacking the PRF security E. Adversary B runs A and simulates game G1, but each call to
E(Ki, ·) is replaced by a corresponding query to the oracle Eval(i, ·) of B. Then B’s real world

54



Game G1(A)
v ← 0; b′←$ANew,Eval

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k+n

Eval(i, (N,A,M))

Kin‖Kout ← Ki

X ← N ⊞G(Kin,M,A)

Y ← E
(

Kout, X
)

⊕X
Return Y

Games G2(A) , G3(A)
v ← 0; b′←$ANew,Eval

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k+n

Eval(i, (N,A,M))

Kin‖Kout ← Ki

X ← N ⊞G(Kin,M,A); V ←$ {0, 1}n
If Tbl[i,X ] 6= ⊥ then

bad← true; V ← Tbl[i,X ]

Tbl[i,X ]← V ; Y ← V⊕X ; Return Y

Game G4(A)
v ← 0; b′←$ANew,Eval; Return (b′ = 1)

New()

v ← v + 1

Enc(i, (N,A,M))

If i 6∈ {1, . . . , v} return ⊥
Y ←$ {0, 1}n
Return Y

Figure 23: Games G1–G4 in the proof of Proposition 6.4. Game G2 contains the corresponding
highlighted code, but game G3 does not.

corresponds to game G1, and its ideal world corresponds to game G2, and thus

Advprf
E (B) = Pr[G1(A)]− Pr[G2(A)] .

Adversary B therefore makes at most q queries, with at most B queries per user. From the Multi-
user PRP/PRF Switching Lemma,

Advprf
E (B) ≤ Advprp

E (B) + Bq

2n
.

In game G2, if there are two encryption queries on the same user i that make the same call to fi
then the two answers are the same. In contrast, in game G3, the two answers are independent.
The two games are identical until the flag bad is set, and thus from the Fundamental Lemma of
Game Playing [11],

Pr[G2(A)]− Pr[G3(A)] ≤ Pr[G3(A) sets bad] .

We now bound the chance that game G3 sets bad, for a computationally unbounded adversary.
Note that what the adversary receives are simply independent, uniformly random n-bit strings.
Moreover, these strings are also independent of the event that game G3 sets bad. Since we consider
a computationally unbounded adversary, without loss of generality, assume that the adversary is
deterministic and non-adaptive (meaning all of its queries are created before seeing the outputs).
Consider two queries (i, (N,A,M)) and (i, (N∗,M∗, A∗)) of the same user i. These queries make
the same call to fi if and only if

G(Ki
in, A,M) ⊞N = G(Ki

in, A
∗,M∗)⊞N∗ .

In other words, G(Ki
in, A,M)⊕G(Ki

in, A
∗,M∗) is either (N⊕N∗)‖0n−r−1‖1 or (N⊕N∗)‖0n−r. We

consider the following cases.

Case 1: (A,M) 6= (A∗,M∗). Since G is c-AXU, the chance that the random variable

G(Ki
in, A,M)⊕G(Ki

in, A
∗,M∗)

55



is one of the two values above is at most

2c ·max
{

|A|n + |M |n, |A∗|n + |M∗|n
}

2n
≤ 2c · (|A|n + |M |n + |A∗|n + |M∗|n)

2n
.

Case 2: (A,M) = (A∗,M∗), and thus we must haveN 6= N∗. This caseG(Ki
in, A,M)⊕G(Ki

in, A
∗,M∗) =

0n, but the two values above are non-zero.

Summing over every pair of queries on the same user,

Pr[G3(A) sets bad] ≤
2cqB

2n
.

Game G4 is a simplification of game G3, and thus

Pr[G4(A)] = Pr[G3(A)] .

Summing up,

AdvGMAC2[E,G](A) = Pr[G1(A)]− Pr[G4(A)]

=

3
∑

i=1

Pr[Gi(A)]− Pr[Gi+1(A)] ≤ Advprp
E (B) + (2c+ 1)qB

2n
.

Q Proof of Theorem 6.5

Define H0 via H0(K,N) = Y1 · · ·Y2k/n, where Yi = E(K, [i]n−r)[1 : n/2]. Let H1 be the Davies-
Meyer construction DM[E]. Let h be the cascade of H0 and H1 as illustrated in Fig. 7. Below, we
will construct an adversary B breaking the s-way multi-collision resistance of h.

Suppose that A outputs
(

(N1,K1,M1, A1), . . . , (Ns,Ks,Ms, As)
)

. Let Ti‖Ci be the ciphertext of
(Ni, Ai,Mi) under SE with key Ki, let Li be the corresponding subkey for the blockcipher, and
suppose that Ti = DM[E](Li,Xi). Note that Li = H0(Ki, Ni) and Ti ← H1(Li,Xi). In other words,
Ti = h(Ki, Ni,Xi). If A wins then we must have T1 = · · · = Ts, creating an s-way multi-collision
on h. We will use this observation to construct B.

Adversary B runs
(

(N1,K1,M1, A1), . . . , (Ns,Ks,Ms, As)
)

←$A. Then for each i ≤ s, it computes
the internal Xi that is used to derive the tag Ti under the Davies-Meyer construction. Finally, B
outputs

(

(K1, N1,X1), . . . , (Ks, Ns,Xs)
)

. This output is legitimate since K1, . . . ,Ks are distinct.
To obtain X1, . . . ,Xs, adversary B has to make 2s additional blockcipher calls to get the s hash
keys. If A wins then B successfully creates an s-way multi-collision on h, and thus

Advcmt-1
SE,s (A) ≤ Advcoll

h,s (B) .

From Proposition 4.5, one can construct adversaries D0 and D1 such that

Advcoll
h,s (B) ≤ max

{

Advcoll
H0,t(D0),Advcoll

H1,t(D1)
}

.

Also, each of D0 and D1 runs B and then calls H0 on s inputs. Note that an s-way multi-collision
on H0 is also a multi-collision on ITP[E, r, n] with pad(N, j) = N‖[j + 2]n−r. Hence

Advcoll
H0,t(D0) ≤ Advcoll

ITP[E,r,n],t(D0) .

Summing up,

Advcmt-1
SE,s (A) ≤ max

{

Advcoll
ITP[E,r,n],t(D0),Advcoll

DM[E],t(D1)
}

.

Since a call to H0 leads to at most 4 blockcipher calls, each Di effectively runs A and then makes
at most 6s other blockcipher calls.

56



Game G1(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

Kv←$ {0, 1}k

Enc(i, N,A,M)

Kin‖Kout ← KD1[E, k + n](Ki, N)

IV← GMAC2[E,H ](Kin‖Kout, N,A,M)

C ← CTR[E, add].Enc(Kout,M ; IV)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
Kin‖Kout ← KD1[E, k + n](K,N)

M ← CTR[E, add].Dec(Kout, C)

IV← GMAC2[E,H ](Kin‖Kout, N,A,M)

If IV 6= C[1 : n] then return ⊥
Return M

Game G2(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

For N ∈ N do

Kv,N
in ←$ {0, 1}n; Kv,N

out ←$ {0, 1}k

Enc(i, N,A,M)

Kin ← Ki,N
in ; Kout ← Ki,N

out

IV← GMAC2[E,H ](Kin‖Kout, N,A,M)

C ← CTR[E, add].Enc(Kout,M ; IV)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
Kin ← Ki,N

in ; Kout ← Ki,N
out

M ← CTR[E, add].Dec(Kout, C)

IV← GMAC2[E,H ](Kin‖Kout, N,A,M)

If IV 6= C[1 : n] then return ⊥
Return M

Figure 24: Games G1 and G2 in the proof of Theorem 6.6.

R Proof of Theorem 6.6

From Proposition 4.2, without loss of generality, we can assume that A is orderly. The difference
in the advantage of A is at most q/2n; we will account for this difference in the final bound.

Let CTR[f, add](M) be a variant of CTR[E, add](K,M) in which each call to EK(·) is replaced by
a corresponding call to f(·). Let CTR[Perm({0, 1}n), add] be the idealized version of CTR[E, add]
in which each call to E(Ki, ·) is replaced by a corresponding call to πi←$ Perm({0, 1}n). Let
GMAC2[E,H](Kin, N,A,M) be a variant of GMAC2[E,H](Kin‖Kout, N,A,M) in which each call
to E(Kout, ·) is replaced by a corresponding call to f(·). Let GMAC2[Perm({0, 1}n),H] be the
idealized version of GMAC2[E,H] in which each call to E(Ki

out, ·) is replaced by a corresponding
call to πi←$ Perm({0, 1}n).

Consider gamesG1–G8 in Fig. 24, Fig. 25, and Fig. 26. GameG1 corresponds to gameGreal
CAU-SIV-C1[E,H,add](A),

and game G8 to game Grand
CAU-SIV-C1[E,H,add](A). Then

Advmrae
CAU-SIV-C1[E,H,add](A) = Pr[G1(A)]− Pr[G8(A)] .

We now describe the game chain. In game G2, instead of using KD1 to derive subkeys for each
(i,N), we pick the subkeys uniformly at random. To bound the gap between G1 and G2, we
construct an adversary D attacking the PRF security of KD1 as follows. Adversary D runs A and
simulates game G1, but each call to KD1[E, k + n](Ki, ·) is replaced by a corresponding call to
Eval(i, ·). Then

Advprf
KD1[E,k+n](D) = Pr[G1(A)]− Pr[G2(A)] .

Adversary D makes at most q queries with at most D queries per user. Using Lemma 6.2 with
t = 1 + ⌈k/n⌉ ≤ 3, one can construct an adversary B0 making at most 6q queries with at most 6D

57



Game G3(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

For N ∈ N do

Kv,N
in ←$ {0, 1}n

fi,N ←$ Func({0, 1}n, {0, 1}n)

Enc(i, N,A,M)

IV← GMAC2[fi,N , H ](Ki,N
in , N,A,M)

C ← CTR[fi,N , add].Enc(M ; IV)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
M ← CTR[fi,N , add].Dec(C)

IV← GMAC2[fi,N , H ](Ki,N
in , N,A,M)

If IV = C[1 : n] then return ⊥
Return M

Game G4(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

For N ∈ N do

Kv,N
in ←$ {0, 1}n

fi,N ←$ Func({0, 1}n, {0, 1}n)
gi,N ←$ Func({0, 1}n, {0, 1}n)

Enc(i, N,A,M)

IV← GMAC2[fi,N , H ](Ki,N
in , N,A,M)

C ← CTR[gi,N , add].Enc(M ; IV)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
M ← CTR[gi,N , add].Dec(C)

IV← GMAC2[fi,N , H ](Ki,N
in , N,A,M)

If IV = C[1 : n] then return ⊥
Return M

Figure 25: Games G3–G4 in the proof of Theorem 6.6.

queries per user such that

Advprf
KD1[E,k+n](D) ≤ Advprp

E (B0) +
6
√
nDq

23n/4
.

In game G3, each call to E(Ki,N
out , ·) is replaced by a corresponding call to a truly random function

fi,N ←$ Func({0, 1}n, {0, 1}n). To bound the gap between G2 and G3, we construct an adversary
B1 attacking the PRF security of E as follows. It runs A and simulates game G2, and keeps an
array Users that translates a pair (i,N) of A to its user index. In particular, in each encryp-
tion/verification query of A to user i with nonce N , if Users[i,N ] is not defined then B1 creates a
new user v via the New oracle and stores Users[i,N ] ← v, otherwise B1 retrieves v ← Users[i,N ].
Moreover, each call to E(Ki,N

out , ·) is replaced by a corresponding call to Eval(v, ·). Then
Advprf

E (B1) = Pr[G2(A)]− Pr[G3(A)] .

Adversary B1 makes at most σ+ q queries, with at most 2B queries per user. From the Multi-user
PRP/PRF Switching Lemma,

Advprf
E (B1) ≤ Advprp

E (B1) +
2B(σ + q)

2n
.

We now have two adversaries B0 and B1 attacking the PRP security of E. We can use the standard
hybrid argument to create a unified adversary B attacking E as follows. Adversary B tosses a fair
coin b←$ {0, 1}, and then runs Bb. Then

Advprp
E (B) = 1

2

(

Advprp
E (B0) +Advprp

E (B1)
)

.

Back to the game chain, recall that in game G3, each encryption/verification query on user i and
nonce N results in running GMAC2 and CTR on the same random function fi,N . However, due to
a domain separation, GMAC2 runs fi,N on inputs starting with 0, whereas CTR runs fi,N on inputs
starting with 1. In game G4, we instead run GMAC2 and CTR on independent random functions

58



Game G5(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

For N ∈ N do

Kv,N
in ←$ {0, 1}n

πv,N ←$ Perm({0, 1}n); π∗
v,N ←$ Perm({0, 1}n)

Enc(i, N,A,M)

IV← GMAC2[πi,N , H ](Ki,N
in , N,A,M)

C ← CTR[π∗
i,N , add].Enc(M ; IV)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
M ← CTR[π∗

i,N , add].Dec(C)

IV← GMAC2[πi,N , H ](Ki,N
in , N,A,M)

If IV = C[1 : n] then return ⊥
Return M

Game G6(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

For N ∈ N do

Kv,N
in ←$ {0, 1}n

πv,N ←$ Perm({0, 1}n); π∗
v,N ←$ Perm({0, 1}n)

Enc(i, N,A,M)

IV←$ {0, 1}n; Tbl[i, N,A,M ]← IV

C ← CTR[π∗
i,N , add].Enc(M ; IV)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
M ← CTR[π∗

i,N , add].Dec(C)

IV←$ {0, 1}n
If Tbl[i, N,A,M ] 6= ⊥ then

IV← Tbl[i, N,A,M ]

Tbl[i, N,A,M ]← IV

If IV = C[1 : n] then return ⊥
Return M

Game G7(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
IV←$ {0, 1}n
C ← CTR[π∗

i,N , add].Enc(M ; IV)

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
Return false

Game G8(A)
b′←$ANew,Enc,Vf; return (b′ = 1)

New()

v ← v + 1

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
C←$ {0, 1}|M|+n

Return C

Vf(i, N,A,C)

If i 6∈ {1, . . . , v} return ⊥
Return false

Figure 26: Games G5–G8 in the proof of Theorem 6.6.

fi,N , gi,N ←$ Func({0, 1}n, {0, 1}n). Thanks to the domain separation,

Pr[G4(A)] = Pr[G3(A)] .

In game G5, instead of using random functions fi,N , gi,N ←$ Func({0, 1}n, {0, 1}n), we use random
permutations πi,N , π∗i,N ←$ Perm({0, 1}n). We make at most σ+q calls to these permutations, with
at most 2B calls per user. From the Multi-user PRP/PRF Switching Lemma,

Pr[G4(A)]− Pr[G5(A)] ≤
2B(σ + q)

2n
.

In game G6, instead of running GMAC2 to generate IVs, we use truly random functions that are
lazily implemented via keeping a table Tbl of defined points. To bound the gap between G5 and
G6, we will generate an adversary B2 attacking the PRF security GMAC2[Perm({0, 1}n),H]. It

59



runs A and simulates game G5, and keeps an array Users that translates a pair (i,N) of A to its
user v like B1. Moreover, each call to GMAC2(Ki,N

in , N,A,M) is replaced by a corresponding call
to Eval(v, (N,A,M)). Then

Advprf
GMAC2[Perm({0,1}n),H](B2) = Pr[G5(A)]− Pr[G6(A)] .

Adversary B2 makes at most q queries with at most B blocks per user. Then from Proposition 6.4,

Advprf
GMAC2[Perm({0,1}n),H](B2) ≤

(2c+ 1)qB

2n
.

In game G7, each verification query will return false. To bound the gap between G6 and G7,
consider a verification query Vf(i,N,A,C) in game G6. Let IV∗ be the initialization vector in C,
and let M be the tentative decrypted message by running CTR on C. This query can return true

if and only if IV∗ is the same as the targeting IV.

• If there is no prior query Enc(i,N,A,M) then the chance that IV∗ = IV is at most 1/2n.

• If there is a prior query C ′ ← Enc(i,N,A,M) then IV is the initialization vector of C ′. Moreover,
due to the restriction on A, we must have C 6= C ′. Since C ′ 6= C and decrypting them under
CTR yields the same message, their initialization vectors IV and IV∗ must be different.

Hence in all cases, the chance that this verification query can return true is at most 1/2n. Summing
this over at most q verification queries,

Pr[G6(A)]− Pr[G7(A)] ≤
q

2n
.

In gameG8, for each queryEnc(i,N,A,M), we simply return a fresh random answer C←$ {0, 1}|M |+n.
To bound the gap between G7 and G8, we will generate an adversary B3 attacking the chosen-
plaintext security of CTR[Perm({0, 1}n), add]. Adversary B3 runs A and simulates game G7, and
keeps an array Users that translates a pair (i,N) of A to its user v like B1. In addition, each call
to CTR[π∗i,N , add].Enc is replaced by a corresponding call to Enc(v, ·). Then

Advind
CTR[Perm({0,1}n),add](B3) = Pr[G7(A)]− Pr[G8(A)] .

Adversary B3’s queries consists of at most σ blocks with at most B blocks per user. Thus from
Proposition 6.3,

Advind
CTR[Perm({0,1}n),add](B3) ≤

3σB

2n
.

Summing up,

Advmrae
CAU-SIV-C1[E,H,add](A) ≤ 2 ·Advprp

E (B) + 6
√
nDq

23n/4
+

7σB + (2c + 5)qB + q

2n
.

If we remove the restriction that the adversary is orderly,

Advmrae
CAU-SIV-C1[E,H,add](A) ≤ 2 ·Advprp

E (B) + 6
√
nDq

23n/4
+

7σB + (2c+ 5)qB + 2q

2n

≤ 2 ·Advprp
E (B) + 6

√
nDq

23n/4
+

7σB + (2c+ 7)qB

2n
.

S Proof of Theorem 7.2

a) We construct the adversary B0 as follows. It runs
(

(N1,K1,M1, A1), . . . , (Ns,Ks,Ms, As)
)

←$A0 .

Adversary B0 then outputs (K1, . . . ,Ks). Let Pi‖Ci be the ciphertext by encrypting (Ni, Ai,Mi)
under UtC[F,SE] with key Ki, where (Pi, Li)← F(Ki, Ni). If A0 wins then we must have P1 = · · · =

60



Game G0(A1)

v ← 0; b′←$ANew,Enc,Vf
1

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
(P,L)← F(Ki, N)

C ← SE.Enc(L,N,A,M)

Return P‖C
Vf(i, N,A, P ∗‖C)

If i 6∈ {1, . . . , v} return ⊥
(P,L)← F(Ki, N)

If P ∗ 6= P then return false

V ← SE.Dec(L,N,A,C)

Return (V 6= ⊥)

Game G1(A1)

v ← 0; b′←$ANew,Enc,Vf
1

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
P ←$ {0, 1}ℓ; L←$ {0, 1}k
If Keys[i, N ] 6= ⊥ then (P,L)← Keys[i, N ]

Keys[i, N ]← (P,L); C ← SE.Enc(L,N,A,M)

Return P‖C
Vf(i, N,A, P ∗‖C)

If i 6∈ {1, . . . , v} return ⊥
P ←$ {0, 1}ℓ; L←$ {0, 1}k
If Keys[i, N ] 6= ⊥ then (P,L)← Keys[i, N ]

Else Keys[i, N ]← (P,L)

If P ∗ 6= P then return false

V ← SE.Dec(L,N,A,C); Return (V 6= ⊥)

Game G2(A1)

v ← 0; b′←$ANew,Enc,Vf
1

Return (b′ = 1)

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
C←$ {0, 1}SE.len(|M|)

P ←$ {0, 1}ℓ; Return P‖C

New()

v ← v + 1

Vf(i, N,A, P ∗‖C)

If i 6∈ {1, . . . , v} return ⊥
Return false

Figure 27: Games G0–G2 in the proof of Theorem 7.2.

Ps, meaning that B0 also breaks the binding security of F. HenceAdvcmt-1
UtC[F,SE],s(A0) ≤ Advbind

F,s (B0)
as claimed.

b) Consider games G0–G2 in Fig. 27. Game G0 corresponds to Greal
UtC[F,SE](A1), and game G2 to

game Grand
UtC[F,SE](A1). Thus

Advunae
UtC[F,SE](A1) = Pr[G0(A1)]− Pr[G2(A1)] .

Below, we will describe the transition in the game chain.

In game G1, each call to F(Ki, ·) is replaced by a call to a corresponding truly random function
fi←$ Func({0, 1}r , {0, 1}ℓ × {0, 1}k); the latter is lazily implemented by keeping an array Keys of
defined points. To bound the gap between G0 and G1, we construct an adversary B1 attacking
the PRF security of F as follows. It runs A1 and simulates game G0, but each call to F(Ki, ·) will
be replaced by a call to B1’s oracle Eval(i, ·). When A1 outputs its guess, B1 outputs the same
guess. Then B1’s real world corresponds to game G0, and its ideal world corresponds to game G1.
In other words,

Advprf
F (B1) = Pr[G0(A1)]− Pr[G1(A1)] .

61



To bound the gap between G1 and G2, we construct the following adversary B2. It runs A1 and
simulates game G1, and keeps an array Users that translates a pair (i,N) of A1 to its user index.
In particular, in each encryption/verification query of A1 to user i with nonce N , if Users[i,N ] is
not defined then B2 creates a new user v via the New oracle and stores Users[i,N ]← v, otherwise
B2 retrieves v ← Users[i,N ]. Moreover, for each encryption query (i,N,A,M) of A2, the call to
SE.Enc in game G1 will be replaced by a query (v,N,A,M) to the Enc oracle of B2. Likewise, for
each verification query (i,N,A,C) of A2, instead of calling SE.Dec and checking if the decrypted
message is ⊥ as in game G1, adversary B2 queries (v,N,A,C) to its Vf oracle.

We note that B2 does not query C ← Enc(v,N,A,M) first and then query Vf(v,N,A,C). Assume
to the contrary that B2 violates this restriction. This can only happen if A1 first queries P‖C ←
Enc(i,N,A,M) and then queries Vf(i,N,A, P ∗‖C) with P ∗ 6= P . However, in that case B2’s
implementation of the verification oracle of A1 will first retrieve the same prior P , and then return
false (due to the failure of the checking P ∗ 6= P ) without calling SE.Dec, leading to a contradiction.

Thus gameGreal
SE (B2) corresponds to game G1, and gameGrand

SE (B2) corresponds to gameG2. Hence

Advunae
SE (B2) = Pr[G1(A1)]− Pr[G2(A1)] .

Summing up,

Advunae
UtC[F,SE](A1) = Pr[G0(A1)]− Pr[G2(A1)]

=
1

∑

i=0

Pr[Gi(A1)]− Pr[Gi+1(A1)] = Advprf
F (B) +Advunae

SE (B2)

as claimed.

T Proof of Theorem 7.3

a) Let G : {0, 1}k ×N → {0, 1}ℓ be the hash function that G(K,N) = P , where (P,L)← F(K,N).
Let h be the cascade of G and H as in Fig. 7. Below, we will construct an adversary A′ attacking
the multi-collision resistance of h.

Suppose that A0 outputs
(

(N1,K1,M1, A1), . . . , (Ns,Ks,Ms, As)
)

. Let Ti‖Ci be the ciphertext
when one encrypts (Ni, Ai,Mi) under RtC[F,SE,H] with key Ki. Let (Pi, Li) ← F(Ki, Ni). Then
Ti = h(Ki, Ni, Ci[1 : n]). Note that if A0 wins then T1 = · · · = Ts, leading to an s-way multi-
collision on h.

AdversaryA′ first runs
(

(N1,K1,M1, A1), . . . , (Ns,Ks,Ms, As)
)

←$A0. It then encrypts (N1,M1, A1)
via RtC[F,SE,H] under key K1, obtaining the ciphertext T1‖C1. It then outputs

(

(K1, N1, C1[1 : n]), . . . , (Ks, Ns, C1[1 : n])
)

.

Note that the same C1 is used in all s triples. This output is legitimate because K1, . . . ,Ks are
distinct. If A0 wins then C1 = · · · = Cs, and thus h(Ki, Ni, C1[1 : n]) = h(Ki, Ni, Ci[1 : n]) = Ti,
and A′ successfully creates an s-way multi-collision on h. Hence

Advcmt-1
RtC[F,SE,H],s(A0) ≤ Advcoll

h,s (A′) .

From Proposition 4.5, one can construct adversaries B0 and B1 such that

Advcoll
h,s (A′) ≤ max

{

Advcoll
G,t(B0, t),Advcoll

H,t(B1)
}

.

Note that attacking the multi-collision resistance of G is the same as attacking the binding security
of F, and thus

Advcoll
h,s (A′) ≤ max

{

Advbind
F,t (B0),Advcoll

H,t(B1)
}

.

62



Game G0(A1)

v ← 0; b′←$ANew,Enc,Vf
1

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
(P,L)← F(Ki, N)

C ← SE.Enc(L,N,A,M)

T ← H(P,C[1 : n])

Return T ‖C
Vf(i, N,A, T ‖C)

If i 6∈ {1, . . . , v} return ⊥
(P,L)← F(Ki, N)

T ∗ ← H(P,C[1 : n])

If T 6= T ∗ then return false

V ← SE.Dec(L,N,A,C)

Return (V 6= ⊥)

Game G1(A1)

v ← 0; b′←$ANew,Enc,Vf
1

Return (b′ = 1)

New()

v ← v + 1

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
P ←$ {0, 1}ℓ; L←$ {0, 1}λ
If Keys[i, N ] 6= ⊥ then (P,L)← Keys[i, N ]

Keys[i, N ]← (P,L); C ← SE.Enc(L,N,A,M)

T ← H(P,C[1 : n]); Return T ‖C
Vf(i, N,A, T ‖C)

If i 6∈ {1, . . . , v} return ⊥
P ←$ {0, 1}ℓ; L←$ {0, 1}λ
If Keys[i, N ] 6= ⊥ then (P,L)← Keys[i, N ]

Keys[i, N ]← (P,L); T ∗ ← H(P,C[1 : n])

If T 6= T ∗ then return false

V ← SE.Dec(L,N,A,C); Return (V 6= ⊥)

Figure 28: Games G0 and G1 in the proof of Theorem 7.3.

Summing up,

Advcmt-1
RtC[F,SE],s(A0) ≤ max

{

Advbind
F,t (B0),Advcoll

H,t(B1)
}

Each of B0 and B1 runs A′ and then runs G on s inputs. Thus effectively, each of them runs A and
then uses RtC[F,SE,H] to encrypt one of the s messages of A0, and then runs F on s inputs.

b) Consider games G0–G4 in Fig. 28 and Fig. 29. Game G0 corresponds to game Greal
RtC[F,SE,H](A1),

and game G4 to game Grand
RtC[F,SE,H](A1). Thus

Advmrae
RtC[F,SE,H](A1) = Pr[G0(A1)]− Pr[G4(A1)] .

Below, we will describe the transition in the game chain.

In game G1, each call to F with a master key Ki is replaced by a call to a corresponding truly
random function fi←$ Func(N , {0, 1}ℓ × {0, 1}λ); the latter is lazily implemented by keeping an
array Keys of defined points. To bound the gap between G0 and G1, we construct an adversary
B2 attacking the PRF security of F as follows. It runs A1 and simulates game G0, but each call to
F(Ki, ·) will be replaced by a call to the oracle Eval(i, ·). When A1 outputs its guess, B2 outputs
the same guess. Then B2’s real world corresponds to game G0, and its ideal world corresponds to
game G1. In other words,

Advprf
F (B2) = Pr[G0(A1)]− Pr[G1(A1)] .

In game G2, instead of running SE.Enc to generate a genuine ciphertext C, we will sample a truly
random string of the same length. In addition, instead of running SE.Dec and comparing the
decrypted message to ⊥, we will instead return false. As a result, the oracle Vf will always return
false, and the code can be simplified accordingly.

To bound the gap between G1 and G2, we construct the following adversary B3 attacking the

63



Game G2(A1)

v ← 0; b′←$ANew,Enc,Vf
1

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
P ←$ {0, 1}ℓ
If Keys[i, N ] 6= ⊥ then P ← Keys[i, N ]

Keys[i, N ]← P ; C←$ {0, 1}SE.len(|M|)

T ← H(P,C[1 : n])

Return T ‖C
Vf(i, N,A, T ‖C)

If i 6∈ {1, . . . , v} return ⊥
Return false

Games G3(A1) , G4(A1)

v ← 0; b′←$ANew,Enc,Vf
1

Return (b′ = 1)

New()

v ← v + 1; Kv←$ {0, 1}k

Enc(i, N,A,M)

If i 6∈ {1, . . . , v} return ⊥
C←$ {0, 1}SE.len(|M|)

R← C[1 : n]; T ←$ {0, 1}n
If Tbl[i, N,R] 6= ⊥ then

bad← true; T ← Tbl[i, N,R]

Tbl[i, N,R]← T ; return T ‖C
Vf(i, N,A, T ‖C)

If i 6∈ {1, . . . , v} return ⊥
Return false

Figure 29: Games G2–G4 in the proof of Theorem 7.3. Game G3 contains the highlighted code,
but game G4 does not.

misuse-resistance security of SE. It runs A1 and simulates game G1, and keeps an array Users

that translates a pair (i,N) of A1 to its user index. In particular, in each encryption/verification
query of A1 to user i with nonce N , if Users[i,N ] is not defined then B3 creates a new user v via
the New oracle and stores Users[i,N ] ← v, otherwise B3 retrieves v ← Users[i,N ]. Moreover, for
each encryption query (i,N,A,M) of A1, the call to SE.Enc in game G1 will be replaced by a
query (v,N,A,M) to the Enc oracle of B3. Likewise, for each verification query (i,N,A,C) of A1,
instead of calling SE.Dec and checking if the decrypted message is ⊥ as in game G1, adversary B3
queries (v,N,A,C) to its Vf oracle.

We note that B3 does not query C ← Enc(v,N,A,M) first and then query Vf(v,N,A,C). Assume
to the contrary that B3 violates this restriction. This can only happen if A1 first queries T‖C ←
Enc(i,N,A,M) and then queries Vf(i,N,A, T ′‖C) with T ′ 6= T . However, in that case B3’s
implementation of the verification oracle of A1 will first recompute T and then return false (due to
the failure of the checking T ′ 6= T ) without calling SE.Dec, leading to a contradiction.

Thus gameGreal
SE (B2) corresponds to game G1, and gameGrand

SE (B2) corresponds to gameG2. Hence

Advmrae
SE (B2) = Pr[G1(A1)]− Pr[G2(A1)] .

In game G3, each call to H under an Enc query for user i and nonce N is replaced by a call to a
truly random function fi,N ←$ Func({0, 1}n, {0, 1}n); the latter is lazily implemented by keeping an
array Tbl of defined points. To bound the gap between game G2 and game G3, we will construct
another adversary B4 attacking the PRF security of H. It runs A1 and simulates game G2,
and also keeps an array Users that translates a pair (i,N) of A1 to its user v like adversary B3.
In the implementation of Enc(i,N,A,M), instead of calling H, adversary B4 will retrieve the
corresponding user v ← Users[i,N ], and then runs Eval(v, ·). Then B4’s real world corresponds to
game G2, and its ideal world to game G3. In other words,

Advprf
H (B4) = Pr[G2(A1)]− Pr[G3(A1)] .

64



Recall that in game G3, for two Enc queries of the same user and nonce, if their ciphertexts T0‖C0

and T1‖C1 satisfy C0[1 : n] = C1[1 : n] then we must have T0 = T1. In contrast, in G4, each string
T is sampled independent of prior ones. Games G3 and G4 are identical until the flag bad is set,
and thus from the Fundamental Lemma of Game Playing [11],

Pr[G3(A1)]− Pr[G4(A1)] ≤ Pr[G4(A1) sets bad] .

We now bound the chance that game G4 sets bad. For each Enc query, because (i) there are at
most B prior Enc queries of the same user and nonce, and (ii) the ciphertexts of the queries are
uniformly and independently sampled, the chance that this query triggers bad is at most B/2n.
Summing up over at most q encryption queries, by the union bound,

Pr[G4(A1) sets bad] ≤
Bq

2n
.

Summing up,

Advmrae
RtC[F,SE](A1) = Pr[G0(A1)]− Pr[G4(A1)]

=

3
∑

i=0

Pr[Gi(A1)]− Pr[Gi+1(A1)]

≤ Advprf
F (B2) +Advmrae

SE (B3) +Advprf
H (B4) +

Bq

2n

as claimed.

65


	Introduction
	Preliminaries
	Committing AE Framework
	Some Building Blocks
	A Committing Variant of GCM
	A Committing Variant of AES-GCM-SIV
	Adding Key-Committing Security To Legacy AE 
	References
	Relations Among Committing Notions
	GHASH As a Weakly Regular Hash
	A Lower Bound on Multi-collision Resistance
	Proof of Lemma 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Proposition 4.4
	An Attack on the ITP Construction
	Proof of Proposition 4.5
	Proof of Theorem 5.1
	Proof of Theorem 5.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Proposition 6.1
	Proof of Proposition 6.3
	Proof of Proposition 6.4
	Proof of Theorem 6.5
	Proof of Theorem 6.6
	Proof of Theorem 7.2
	Proof of Theorem 7.3

