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ABSTRACT. It is along standing open problem to find search to decision reductions for structured
versions of the decoding problem of linear codes. Such results in the lattice-based setting
have been carried out using number fields: Polynomial-LWE, Ring-LWE, Module-LWE and so
on. We propose a function field version of the LWE problem. This new framework leads to
another point of view on structured codes, e.g. quasi-cyclic codes, strengthening the connection
between lattice-based and code-based cryptography. In particular, we obtain the first search to
decision reduction for structured codes. Following the historical constructions in lattice—based
cryptography, we instantiate our construction with function fields analogues of cyclotomic fields,
namely Carlitz extensions, leading to search to decision reductions on various versions of Ring-
LPN, which have applications to secure multi party computation and to an authentication
protocol.
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1. INTRODUCTION

Code-based cryptography. Error correcting codes are well known to provide quantum resistant
cryptographic primitives such as authentication protocols [Ste93, HKL12|, signatures [CFSOT]
[DSTT9] or encryption schemes such as McEliece [McETS|. These code-based cryptosystems were
built to rely on the following hard problem: finding a close (or far away) codeword to a given
word, a task called decoding. In the case of random linear codes of length n, which is the standard
case, this problem can be expressed as follows. First, we are given a vector space € (i.e. the code)
of Fy generated by the rows of some random matrix G € F’;X", namely:

¢ L (mG | m e F}. (1)
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The decoding problem corresponds, given G (in other words €) and some noisy codeword mG + e
where the number of non-zero coordinates of e is equal to ¢ (its Hamming weight is |e| = t), to
find the error e or what amounts to the same, the original codeword mG.

Usually this decoding problem is considered in the regime where the code rate R def % is fixed,
but there are also other interesting parameters for cryptographic applications. For instance, the
Learning Parity with Noise problem (LPN) corresponds to the decoding problem where n is the
number of samples, k the length of the secret while the error is sampled according to a Bernoulli
distribution of fixed rate t/n. As the number of samples in LPN is unlimited, this problem actually
corresponds to decoding a random code of rate arbitrarily close to 0.

While the security of many code-based cryptosystems relies on the hardness of the decoding
problem, it can also be based on finding a “short” codeword for the Hamming metric (as in
[MTSB12] or in |JAHIT17, BLVWI9, [YZW™19| to build collision resistant hash functions). It
turns out that decoding and finding short codewords are closely related. It has been shown in
[DRT21] (following the original quantum reduction of Regev in the lattice/LWE case [Reg05]) that
decoding some code € is quantumly-harder than finding a short codeword in its dual G+ (for
the standard inner product in Fy). A reduction from decoding to the problem of finding short
codewords is also known but in an LPN context [AHIT17, BLVW19, [YZW™19].

Despite the promising approach of McEliece, there are two drawbacks if one follows it to design
a cryptosystem. First, the public data in McEliece is a representation of a code which has to look
like random. Assuming this pseudo-randomness property, the security relies on the hardness of
the decoding problem. In that case one needs to publish (n?) bits but at the same time, best
generic decoding algorithms have a complexity exponential in the number ¢ of errors to correct.
Therefore, to reach a security level of 2%, the public data are of order ©(\2) if t = ©(n) or even
worse of the order ©(\*) if ¢ = © (y/n). On the other hand, in McEliece-like cryptosystems, the
owner of the secret key has to know an efficient decoding algorithm for the public code. It turns
out that codes for which we know an efficient decoding algorithm are obtained via polynomial
evaluations (e.g. Goppa codes) or short vectors (e.g. MDPC codes). Thus, the owner of the
secret key has to hide the peculiar description of the code he publishes. It leads to the fact that
in McEliece-like cryptosystems, the security also relies on the difficulty to distinguish the code
that is made public from a random one. This is a second assumption to make in addition to the
hardness of the decoding problem.

Alekhnovich cryptosystem. In 2003, Alekhnovich [Ale03] introduced a new approach to design
an encryption scheme based on error correcting codes. Unlike McEliece cryptosystem, Alekhnovich
truly relies on the hardness of decoding random codes. It starts from a random code € and proceeds
as follows:

o Key Generation. Let e € Fy of small Hamming weight. The public key is (C, ¢ + es)
where ¢ € C and the secret key is eg.

e Encryption. To encrypt one bit 8 € {0,1} set:
— Enc(1) 4" 1 where u € F% is a uniformly random vector.

— Enc(0) 4+ 4+ e where e is of small Hamming weight and c* lies in the dual of the
code Cpyp spanned by € and c + eg.

e Decryption. The decryption of Enc(8) is (Enc(f), es), where (-, ) is the usual inner product
on F3.
The correction of this procedure relies on the fact that
(Enc(0), es) = (" + e, ex) = (e, ex),

where we used that e € €y, while c* lies in its dual. Now, this inner product is equal to 0
with overwhelming probability as e and e are of small Hamming weight. On the other hand,
(Enc(1), es) is a uniformly random bit.



Therefore, contrary to McEliece cryptosystem, the security of Alekhnovich scheme does not
depend on hiding the description of a code:

o Key security. Recovering the private key from public data amounts to decoding the random
code C, or finding a short vector in the code spanned by € and c + e.

o Message security. Recovering the plaintext from the ciphertext is tantamount to distin-
guishing a noisy codeword from a uniformly random vector.

The message security relies on the decision version of the decoding problem. Search and decision
versions of the decoding problem are known to be computationally equivalent using Goldreich-
Levin theorem [FS96]. However, Alekhnovich cryptosystem suffers from major drawbacks:

(1) Encrypting one bit amounts to sending n bits;
(2) The public key size is quadratic in the length of ciphertexts.

While the first issue can easily be addressed, the second flaw needs more work, and as is,
Alekhnovich cryptosystem is not practical. However, the approach itself was a major break-
through in code-based cryptography. It was inspired by the work of Ajtai and Dwork [AD97]
whose cryptosystem is based on solving hard lattice problems. The latter reference from Ajtai
and Dwork is also the inspiration of Regev famous Learning With Errors (LWE) problem [Reg05],
which is at the origin of an impressive line of work. As Alekhnovich cryptosystem, the original
LWE cryptosystem was not practical either and, to address this issue, structured versions were
proposed, for instance Polynomial-LWE [SSTX09], Ring-LWE [LPRI10], Module-LWE [LS15].

Structured decoding problem. In the same fashion, for code-based public key encryptions, it
has been proposed to restrict to codes that can be represented more compactly to reduce the key
sizes. In McEliece setting, the story begins in 2005 with the results of [Gab05] that suggest to use
{—quasi-cyclic codes, i.e. codes that are generated by a matrix G formed out of £ blocks:

G = (rot (a®) .- rot(a®)), (2)

each block being a circulant matrix, 7.e. of the form

ao aq ap—1
ag—1 Qo ap—2
def .
rot(a) = with a € IF’;.
aq a9 e Qp—1 (o))

The key point is that such codes have a large automorphism group G, and instead of publishing
a whole basis, one can only publish a generating set for the F,[G]-module structure of the code.
That is to say, a family of vectors whose orbit under the action of G spans the code. For instance,
in the case of quasi-cyclic codes 7 one can publish only the first row of the ¢-circulant generator
matrix. It can be argued that the quasi—cyclicity could be used to improve the speed-up of generic
decoding, but the best known approach in the generic case uses DOOM [Senll] which allows to
divide the complexity of decoding by at most /#G, the latter complexity remaining exponential
with the same exponent. Hence, one can keep the same security parameter, while the size of the
public key can be divided by a factor O(#G).

This idea leads to very efficient encryption schemes such as BIKE [AAB"21a, in the McEliece
fashion, or HQC JAAB™21b] which is closer to Ring-LWE. Both proposals use 2-quasi-cyclic codes
and have been selected to the third round of NIST competition as alternate candidates. Other
structured variants of the decoding problem (referred to as Ring—LPN) were also proposed with
applications to authentication [HKLT12] or secure MPC [BCGT20]. Note that the idea to use codes
equipped with a non trivial ring action has also been used in rank metric [ABDT19, IAAB™19].

In other words, the security of those cryptosystems now rely on some structured variant of the
decoding problem.



A Polynomial representation. It turns out that a convenient way of seeing ¢-quasi-cyclic codes,
is to represent blocks of their generator matrix as elements of the quotient ring Fy[X]/(X"™ — 1),
via the [F,~isomorphism:

Fr — F[X]jxn 1)

q
n—1

a = (ao,...,an_l) — a(X) d:efzaiXi.
=0

A simple computation shows that the product of two elements of F,[X]/(X™ — 1) can be repre-
sented with the operator rot(-):

w(X)v(X) mod (X" —1)=u-rot(v) =v-rot(u) = v(X)u(X) mod (X" —1).

From now on, u can denote either a vector of Fy or a polynomial in F,[X]/(X"™ — 1), and the
product of two elements uv is defined as above.

Consider an (-quasi-cyclic code with a generator matrix G in (-circulant form. Let s € Fj be
a secret word of the ambient space and let e € Ff;” be an error vector. Under the above map, the
noisy codeword sG + e is represented by ¢ samples of the form sal’) +el) € F,[X]/(X" — 1) and
the decoding problem of /-circulant codes corresponds to recovering the secret s given £ samples.
This can be seen as a code analogue of the Ring—LWE problem, with access to a fixed number of
samples £. The rate of the code is %, so increasing the number of samples corresponds to decode
a code whose rate goes to 0.

A natural generalization would be to consider multiple rows of circulant blocks. In this situation,
the generator matrix G is of the form

rot(a>V) ... rot(a?)
G = :

rot(a™b) ... rot(al™?)

and a noisy codeword sG + e is now represented by ¢ samples of the form

Zsia(i’j) +ej€ Fq[X]/(X” -1)
i=1

where s can be considered as a collection of m secrets sq, . ..,S,,. This would be the code analogue
of Module-LWE, with a rank m module and ¢ samples, introduced in [LS15].

Contrary to structured lattice cryptosystems, up to now, no reduction from the search to the
decision version of the structured decoding problem was known. This was pointed out by NIST
[AASAT20], and was a reason for those code-based cryptosystems to be only considered as alter-
nate candidates for the third round. Actually even before NIST standardization process, this lack
of search to decision reduction was already pointed out by the authors of the Ring—LPN based
authentication scheme LAPIN [HKL™12].

Our contribution. To handle this lack of search to decision reduction in the code setting, we
propose in this article a new generic problem called FF-DP, for Function Field Decoding Problem,
in the Ring—LWE fashion. One of the key ideas consists in using function fields instead of number
fields, the latter being used in the lattice case. This framework enables us to adapt directly the
search to decision reduction of [LPR10] in the case of codes. Frequently in the literature on
Ring-LWE, the search to decision reduction is instantiated with cyclotomic number fields. In the
same spirit we present an instantiation with function fields analogues of cyclotomic fields, namely
the so-called Carlitz extensions. As we show, this framework is for instance enough to provide a
search to decision reduction useful in the context of LAPIN [HKL™12| or for a g—ary analogue of
Ring—LPN used for secure multiparty computation [BCG'20]. If our reduction does not work for
every schemes based on structured codes such as HQC, we believe that our work paves the way
towards a full reduction.



Remark 1.1. Note that the use of function fields in coding theory is far from being new. Since the
early 80’s and the seminal work of Goppa [Gop81], it is well-known that codes called Algebraic
Geometry (AG) codes can be constructed from algebraic curves or equivalently from function fields
and that some of these codes have better asymptotic parameters than random ones [TVZ82)].
However, the way they are used in the present work is completely different. Indeed, AG codes are
a natural generalization of Reed—Solomon and, in particular, are codes benefiting from efficient
decoding algorithms (see for instance surveys [HP95, BHOS|, [CR21]). In the present article, the
approach is somehow orthogonal to the AG codes setting since we use function fields in order to
introduce generic problems related to structured codes for which the decoding problem is supposed
to be hard.

A function field approach. Lattice-based cryptography has a long standing history of using
number fields and their rings of integers to add some structure and reduce the key sizes. Recall
that number fields are algebraic extensions of Q of the form

K < QX r(x)),

where f is an irreducible polynomial, and the ring of integers Ok is the integral closure of Z in
K, i.e. it is the subring of K composed of elements which are roots of monic polynomials with
coefficients in Z. For instance, cyclotomic extensions are of the form K = Q(¢,,) = Q[X]/(®,,, (X))
where (,, is a primitive m-th root of unity and ®,, is the m-th cyclotomic polynomial. The ring
of cyclotomic integers has a very specific form, namely 0k = Z[(;,]. One of the most used case
is when m is a power of 2. In this case, setting m = 2n, we have ®,, = ®5, = X" + 1 and
Ok = Z[X]/(X™+1). Such rings have been widely used since they benefit from a very fast
arithmetic thanks to the fast Fourier transform. In the Ring—LWE setting, one reduces all the
samples modulo a large prime element ¢ € Z called the modulus and hence considers the ring
(Z/qZ)[X]/(X™ 4+ 1). Due to inherent considerations of the Euclidean metric, errors are drawn
according to a continuous distribution (e.g a Gaussian distribution) y over the Euclidean space
K ®pR = R[X]/(X™+ 1) and one has to introduce a technical tool called smoothing parameter
to handle the discrete error distributions used in practice. It should be noted that an equivalent
of the smoothing parameter will not be necessary in our case because our error model will remain
discrete.

When moving from structured lattices to structured codes, it would be tantalizing to consider
the ring Fy[X]/(X™ — 1) as the analogue of Z[X]/(X™ + 1). However, if the two rings have a
similar expression they have a fundamental difference. Note for instance that the former is finite
while the latter is infinite. From a more algebraic point of view, F,[X]/(X™ — 1) is said to have
Krull dimension 0 while Z[X]/(X™ 4 1) has Krull dimension 1. In particular, the former has only
a finite number of ideals while the latter has infinitely many prime ideals. The main idea of the
present article is to lift the decoding problem and to see Fy[X]/(X™ — 1) as a quotient R/I of
some ring R of Krull dimension 1. The ideal I will be the analogue of the modulus. This setting
can be achieved using so-called function fields. It could be argued that the results of this article
could have been obtained without introducing function fields. However, we claim that function
fields are crucial for at least three reasons:

(1) Introducing function fields permits to establish a strong connection between cryptography
based on structured lattices involving number fields on the one hand and cryptography
based on structured codes on the other hand.

(2) Number theory has a rich history with almost one hundred years of development of the
theory of function fields. We expect that, as number fields did for structured lattices,
function fields will yield a remarkable toolbox to study structured codes and cryptographic
questions related to them.

(3) A third and more technical evidence is that a crucial part of the search to decision reduction
involves some Galois action. We claim that, even if for a specific instantiation, this group
action could have been described in a pedestrian way on the finite ring F,[X]/(X"™ — 1),
without knowing the context of function fields, such a group action would really look like
“a rabbit pulled out of a hat”. In short, this group action, which is crucial to conclude the
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search to decision reduction, cannot appear to be something natural without considering
function fields.

It is well-known for a long time that there is a noticeable analogy between the theory of number
fields and that of function fields. Starting from the ground, the rings Z and F,[T"] share a lot of
common features. For instance, they both have an Euclidean division. Now if one considers their
respective fraction fields Q and Fy(T), finite extensions of Q yield the number fields while finite
separable extensions of F,(T") are called function fields because they are also the fields of rational
functions on curves over finite fields. Now, a similar arithmetic theory can be developed for both
with rings of integers, orders, places and so on. Both rings of integers are Dedekind domains. In
particular, every ideal factorizes uniquely into a product of prime ideals, and the quotient by any
non-zero ideal is always finite. A dictionary summarizing this analogy between number fields and
function fields is represented in Table [I Note that actually, many properties that are known for
function fields are only conjectures for number fields. The best example is probably the Riemann
hypothesis which has been proved by Weil in the early 1940s in the function field case.

Number fields Function fields
Q Fq(T)
Z F, (7]
Prime numbers ¢ € Z | Irreducible polynomials Q € Fy[T]
K = QX (x)) K =Fo(DX (1, X))
ﬁK ﬁK
= Integral closure of Z = Integral closure of [T
Dedekind domain Dedekind domain
characteristic 0 characteristic > 0

TABLE 1. A Number-Function fields analogy

With this analogy in hand, the idea is to find a nice function field K with ring of integers &'k and
an irreducible polynomial @ € F,[T], called the modulus, such that Ok /Q0k = F4[X]/(X™ —1).
Following the path of [LPR10], we are able to provide a search to decision reduction for our generic
problem FF-DP when three conditions hold:

(1) The function field K is Galois.

(2) The modulus @ does not ramify in Ok, meaning that the ideal Qk factorizes in product
of distinct prime ideals.

(3) The distribution of errors is invariant under the action of the Galois group.

This framework is enough to provide a search to decision reduction useful in the context of
LAPIN [HKL'12| or for a g—ary analogue of Ring—LPN used for secure MPC [BCG™20]. It should
be emphasized that, in the case of LAPIN, the search to decision reduction requires to adapt the
definition of the noise which will remain built by applying independent Bernouilli variables but
with a peculiar choice of Fa—basis of the underlying ring Fo[X]/(f(X)). The chosen basis is a
normal basis, i.e. is globally invariant with respect to the Galois action. This change of basis is
very similar to the one performed in lattice based-cryptography when, instead of considering the
monomial basis 1, X,..., X"~ ! in an order Z[X]/(f(X)), one considers the canonical basis after
applying the Minkowski embedding. Indeed, the latter is Galois invariant. We emphasize that,
here again, the function field point of view brings in a Galois action which cannot appear when
only considering a ring such as F3[X]/(f(X)). This is another evidence of the need for introducing
function fields.

Outline of the article. The present article is organised as follows. Section [2]recalls the necessary
background about function fields (definitions and important properties). In Section [3| we present
6



the FF-DP problem (search and decision versions) as well as our main theorem (Theorem
which states the search to decision reduction in the function field setting. A proof of this theorem
is given in Section @l A reader only interested about the framework of functions fields and our
instantiations can safely skip this section. In Section [5| we give a self contain presentation of
Carlitz extensions. They will be used to instantiate our search to decision reduction in Section [G]
which provides our applications.

2. PREREQUISITES ON FUNCTION FIELDS

In this section, we list the minimal basic notions on the arithmetic of function fields that are
needed in the sequel. A dictionary drawing the analogies has been given in Table [1} For further
references on the arithmetic of function fields, we refer the reader to [Sti09] [Ros02].

Starting from a finite field Fy, a function field is a finite extension K of Fy(T) of degree n > 0
of the form

K = F,(DXp(T, X))

where P(T, X) € F,(T)[X] is irreducible of degree n. The field K NF, is referred to as the field
of constants or constant field of K, where Fq is the algebraic closure of F,. In the sequel, we will
assume that I, is the full field of constants of K, which is equivalent for P(7, X) to be irreducible
even regarded as a an element of F,(T)[X] ([Sti09, Cor. 3.6.8]).

Similarly to the number field case, one can define the ring of integers Ok as the the ring of
elements of K which are the roots of a monic polynomial in F,[T][X]. This ring is a Dedekind
domain. In particular, any ideal 98 has a unique decomposition PB7* - -- P where the P;’s are
prime ideals.

In the sequel, we frequently focus on the following setting represented in the diagram below:
starting from a prime ideal p of Fy[T'] (which is nothing but the ideal generated by an irreducible

polynomial Q(T) of Fy[T]), we consider the ideal def POk and its decomposition:

P=Pg B
PCOx — K
p CFy[T] ———Fy(T)

The prime ideals 3;’s are said to lie above p. The exponents e;’s are referred to as the ramification
indezes, and the extension is said to be unramified at 3 when all the e;’s are equal to 1. Another
important constant related to a 3, is its inertia degree, which is defined as the extension degree

fi e [0k /B; : Fy[T]/p] (one can prove that O /PB; and F,[T]/p are both finite fields). The Chi-
nese Remainder Theorem (CRT) induces a ring isomorphism between Ok /B and [],_, Ok /B7".
In particular, when the extension is unramified at 3, the quotient O /P is a product of finite
fields. Finally, a well-known result asserts that

T

n=[K:Fy(T)] =) ef (3)
i=1
Finite Galois extensions. Recall that a finite algebraic field extension L/K is said to be a
Galois extension when the automorphism group

Aut(L/K) Lef {o: L = L| o is an isomorphism with o(a) = a for all « € K}

has cardinality [L : K|. In that case, we refer to Aut(L/K) as the Galois group of L/K and

write Gal(L/K) & Aut(L/K). Galois extensions whose Galois group is abelian are called abelian

extensions. Galois extensions have many properties that do not hold in general field extensions.
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When L/K is a Galois extension, and if H is a subgroup of G oo Gal(L/K), then the set
LH(j:ef{a€L|U(a):afor allo € H}

is a field called the fized field of H. By definition LY = K. Furthermore, the extension L/L¥
is Galois with Galois group H. On the other hand, the extension L¥ /K may not be Galois in
general, but it is the case when H is a normal subgroup of G, and Gal(L¥ /L) = G/H. This is
particularly true when L is an abelian extension. Consider K/F,(T) a Galois function field (i.e.

a function field K which is a Galois extension of Fy(7")), with Galois group G Lof Gal(K/F,(T)).
Then, G keeps Ok globally invariant. Furthermore, given p a prime ideal of Fy[T], the group G
acts transitively on the set {%1,...,B,} of prime ideals of Ok lying above p: for any i # j there

exists 0 € Gal(K/F,(T)) such that o(;) = B,. In particular, all the ramification indexes e;

(resp. the inertia degrees f;) are equal and denoted by e (resp. f): B def POk = (P1... B, )¢

and becomes n = efr. Another consequence which will be crucial for the applications, is
that the action of G on Ok is well-defined on Ok /P and simply permutes factors Ok /PBS. The
decomposition group of P; over p is

Dy.p “ {0 € G| o (Pi) = Fil.
It has cardinality e x f. In particular, when K is unramified at °B, the field O /B, is F s and
the action of Dy, /, on it is the Frobenius automorphism: the reduction modulo *B; yields an
isomorphism
Dy, jp ~ Gal(F s /Ty). (4)
Finally, all the decomposition groups of primes above p are conjugate: for any 7 £ j there exists
o € G such that Dy, /, = 0Dy, /0"

3. A FUNCTION FIELD APPROACH FOR SEARCH TO DECISION REDUCTION

Search and decision problems. In this section, we introduce a new generic problem that we
call FF-DP, which is the analogue of Ring-LWE in the context of function fields. Then, we give
our main theorem which states the search-to-decision reduction of FF-DP. Since function fields
and number fields share many properties, the present search to decision reduction, that is proven
in Section |4} will work similarly as in [LPR10].

Consider a function field K/F,(T) with constant field F, and ring of integers Ok and let

Q(T) € Fy[T]. Let B def QO0k be the ideal of O generated by Q. Recall that Ok /B is a finite

set. FF-DP is parameterized by an element s € Ok /B called the secret and ¢ be a probability
distribution over O /P called the error distribution.

Definition 3.1 (FF-DP Distribution). A sample (a,b) € Ok /B x Ok /B is distributed according
to the FF-DP distribution modulo 3 with secret s and error distribution v if

e a is uniformly distributed over Ok /B,
e b=as+ec Ok/P where e is distributed according to 1.

A sample drawn according to this distribution will be denoted by (a,b) < Fs 4.

The aim of the search version of the FF-DP problem is to recover the secret s given samples
drawn from % . This is formalized in the following problem.

Problem 3.2 (FF-DP, Search version). Let s € Ok /%, and let ¢ be a probability distribution
over Ok /B. An instance of FF-DP problem consists in an oracle giving access to independent
samples (a,b) <= Fg . The goal is to recover s.

Remark 3.3. This problem should be related to structured versions of the decoding problem.
Indeed, recall from the discussion in the introduction that, using the polynomial representation,
the decoding problem of random quasi-cyclic codes corresponds to recovering a secret polynomial
s(X) € F,[X]/(X™ — 1) given access to samples of the form as + e € F,[X]/(X™ — 1) where a is

uniformly distributed in F,[X]/(X™ — 1). This can be rephrased within the FF-DP framework as

follows. Consider the polynomial f (7', X) L xnir_1¢ F,(T)[X]. When n is not divisible by the
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characteristic of IF, f is a separable polynomial. Moreover, by Eisenstein criterion f is irreducible.

Define the function field K generated by f, namely the extension K f F (T)[X]/(f(T,X)). One

can prove that O is exactly F,[T][X]/(f(T,X)). Now, let p be the ideal of F,[T] defined by the

irreducible polynomial 7', and let 3 def pOx = T Ok be the corresponding ideal of &k . Then the

following isomorphisms hold
ﬁK/m ~ F,[T, X]/(T, X"+ T—1)~ FQ[X]/(Xn —1).

With this particular instantiation, Ok /B is exactly the ambient space from which the samples
are defined in the structured versions of the decoding problem. As a consequence, FF-DP is a
generalization of structured versions of the decoding problem, when considering arbitrary function
fields and ideals.

For cryptographic applications, we are also interested in the decision version of this problem.
The goal is now to distinguish between the FF-DP distribution and the uniform distribution over

ﬁK/gp X ﬁK/‘B

Problem 3.4 (FF-DP, Decision version). Let s be drawn uniformly at random in O [P and
let ¢ be a probability distribution over O /B. Define Dy to be the uniform distribution over
Ok /B X Ok /B, and Dy to be the FF-DP distribution with secret s and error distribution .
Furthermore, let b be a uniform element of {0,1}. Given access to an oracle Oy, providing samples
from distribution Dy, the goal of the decision FF-DP is to recover b.

Remark 3.5. For some applications, for instance to MPC, it is more convenient to have the secret
s drawn from the error distribution ¢ instead of the uniform distribution over Ok /9. In the
lattice-based setting, this version is sometimes called LWE with short secret or LWE in Hermite
normal form. However, both decision problems are easily proved to be computationally equivalent,
see [Lyull] Lemma 3]. The proof applies directly to FF-DP.

A distinguisher between two distributions Dy and D1 is a probabilistic polynomial time (PPT)
algorithm A that takes as input an oracle O, corresponding to a distribution D, with b € {0,1}
and outputs an element A(Q;) € {0,1}. Consider the following approach for solving a decision
problem between two distributions Do and Dy, pick b «+ {0,1} and answer b regardless of the
input. This algorithm solves this problem with probability 1/2 which is not interesting. The
efficiency of an algorithm A solving a decision problem is measured by the difference between its
probability of success and 1/2. The relevant quantity to consider is the advantage defined as:

Adva(Do, D1) & 2 (P(A(0) = 1| b=1) ~ PAO,) = 1] b =0))
where the probabilities are computed over the internal randomness of A, a uniform b € {0,1} and
inputs according to a distribution D;,. The advantage of a distinguisher A measures how good it
is to solve a distinguishing problem. Indeed, it is classical fact that:

P(A(O)) = b) = 5 + Adva(Do, D)

Remark 3.6. Even if it means answering 1 — A(Q}) instead of A(Oy), the advantage can always
be assumed to be a positive quantity.

A module version. Instead of considering one secret s € Ok /P, we could use multiple secrets
(s1,...,84) € (Ok /2]3)d. This generalization has been considered in lattice-based cryptography
under the terminology Module-LWE [LS15], where the secret can be thought as an element of €'¢-
which is a free Ox-module of rank d, before a reduction modulo P on each component. This
would yield the following definition.

Definition 3.7 (MFF-DP Distribution). Let d > 1 be an integer. A sample (a,b) € (O /B)* x

Ok /B is distributed according to the MFF-DP distribution modulo B with secret s = (s1,...,84) €
(O /B)* and error distribution ¥ over Ok B if

e a is uniformly distributed over (O /B)%,
9



e b= Zle a;s; + e € Ok /P where e is distributed according to 1.

The search and decision problems associated to MFF-DP can be defined as a natural general-
ization of Problems [3.2] and [3.41

Problem 3.8 (MFF-DP, Search version). Lets € (Ox /%)% be a collection of elements of O /R
called the secrets, and let v be a probability distribution over Ok [B. An instance of the MFF-
DP problem consists in an oracle giving access to independent samples (a,b) from the MFF-DP
distribution with secrets s and error distribution . The goal is to recover s.

Problem 3.9 (MFF-DP, Decision version). Let s be drawn uniformly at random in (Ox /9B)?
and let 1 be a probability distribution over Ok /3. Define Dg to be the uniform distribution over
(Ok /B) x O B, and Dy to be the MFF-DP distribution with secrets s and error distribution 1.
Furthermore, let b be a uniform element of {0,1}. Given access to an oracle Oy providing samples
from distribution Dy, the goal of the decision MFF-DP is to recover b.

Search to decision reduction. There is an obvious reduction from the decision to the search
version of FF-DP. Indeed, if there exists an algorithm A that given access to the % 4 distribution
is able to recover the secret s, then it yields to a distinguisher between .%s, and the uniform
distribution. The converse reduction needs more work. However, due to the strong analogy
between function and number fields, our proof is in fact essentially the same as in [LPRI0, Lyuld].
More precisely, we have the following theorem.

Theorem 3.10 (Search to decision reduction for FF-DP). Let K/F,(T) be a Galois function field
of degree n with field of constants F,, and denote by O its ring of integers. Let Q(T') € Fy[T] be

an irreducible polynomial. Consider the ideal 3 dzefQﬁK. Assume that B does not ramify in Ok,
and denote by f its inertia degree. Let v be a probability distribution over Ok /B, closed under
the action of Gal(K/Fq(T)), meaning that if e < 1, then for any o € Gal(K/Fq(T)), we have
o(e) < . Let s € Ok /P.

Suppose that we have an access to Fsy and there exists a distinguisher between the uniform
distribution over Ok /B and the FF-DP distribution with uniform secret and error distribution
1, running in time t and having an advantage €. Then there exists an algorithm that recovers
s € Ok /B (with an overwhelming probability in n) in time

4
n 1 .
O(fﬁxgxqfdeg@) xt).
Remark 3.11. We have assumed implicitly in the statement of the theorem that we have an efficient
access to the Galois group of K/F,(T) and its action can be computed in polynomial time.

Remark 3.12. There are many degrees of freedom in the previous statement: choice of the function
field K (and on the degree n), choice of the polynomial @ (and on f and deg(Q)). For our
instantiations, we will often choose the “modulus” @ to be a linear polynomial (deg(Q) = 1) and
K will be a (subfield of) a cyclotomic function field.

Remark 3.13. Due to the continuity of error distributions used in lattice-based cryptography, a
technical tool called the smoothing parameter was introduced by Micciancio and Regev in [MR04].
It characterizes how a Gaussian distribution is close to uniform, both modulo the lattice, and is
ubiquitously used in reductions. However, in the function field setting, we do not need to introduce
such a tool because the error distribution is discrete and already defined on the quotient &k /3.

Remark 3.14. In [LS15], Langlois and Stehlé proved a search to decision reduction for the module
version of LWE. The idea is to use the distinguisher in order to retrieve the secrets one by one.
Their proof applies mutatis mutandis to MFF-DP, resulting in a time overhead of d, where d
denotes the rank of the underlying module, i.e. the number of secrets. The main change is in
the guess and search step (Step 3 in the proof presented in Section [4) where the randomization is
applied on only one component of a to recover one secret, and repeating the process d times (one
for each secret). More precisely, for MFF-DP, the running time claimed in Theorem should
10



be replaced with

nt 1
O( xﬁx qfdeg(Q)xt>.

4. SEARCH TO DECISION REDUCTIONS: PROOF OF THEOREM [3.10

In this section, we give a proof of Theorem [3.10] It is very similar to the one for Ring-LWE and
lattices. It uses four steps that we describe. Combining them provides the aforementioned result.
The main line of proof is as follows. We use an hybrid argument to reduce the search domain, and
then proceed to an exhaustive search using the distinguisher to recover s modulo all the factors
of B. Finally, using the Chinese Remainder Theorem (CRT) one can recover s completely. The
key point here is the action of the Galois group on the primes and that the error distribution is
Galois invariant.

Let B =B, ...L, be the decomposition of B, we have

r=n/f

where we used the assumptions over P and K/F,(T") made in Theorem [3.10] namely that K/F,(T)
is a Galois extension of degree n and unramified at 8 with inertia degree f.

Step 1: Worst to Average Case. Recall that in the definition of Problem the secret s is
supposed to be uniformly distributed over @ /93, while in the search version the secret is fized. In
other words, the decision problem is somehow an average case problem, while the search version
should work in any case. Fortunately, this can easily be addressed by randomizing the secret.
Indeed, for any sample (a, b) < %5, with fixed secret s, if s’ <— Ok /B, then (a,b + as’) is now
a sample from Zg ¢, with secret s + s’ uniformly distributed over Ok /B.

Step 2: Hybrid argument. Let A be the distinguisher between the uniform distribution over
Ok /B and the FF-DP distribution with uniform secret and error distribution ¢, running in time ¢
and having an advantage €. We use a simple hybrid argument to prove that A can also distinguish
in time ¢ between two consecutive hybrid distributions with advantage at least /7.

The factorization of B is P;...P,. A sample (a, b) is said to be distributed according to the
hybrid distribution 3; if it is of the form (a’,b’ + h) where (a’,b’) +- Z5, and h € Ok /P is
uniformly distributed modulo B; for j < ¢ and 0 modulo the other factors. Such an h can easily
be constructed using the Chinese Remainder Theorem. In particular, for ¢ = 0, h is 0 modulo all
the factors of *B, therefore h = 0 and Hy = Fs . On the other hand, when ¢ = 7, the element h
is uniformly distributed over Ok /3, therefore H, is exactly the uniform distribution over O /3.

Lemma 4.1 (Hybrid argument). There exists ig such that Adva(H;,, Higy1) =

209

Proof. By definition, Adv 4 (Ho, H,) = . Furthermore, the following equality holds:

r—1
Adva(Ho, 3,) =D Adva(Hi, Hipa).
=0
Therefore, it exists ig € [0,7 — 1] such that Adv.4(H;,, Hig+1) = M = £, O

This hybrid argument has shown the existence of an iy such that A has an advantage e/r
for distinguishing distributions J(,;, and 3(;,+i. In what follows, everything is analysed as if we
knew this index 4. In practice we can run A concurrently with all the r instances (H;, H;y1)’s
Computations on the right index ig will output the secret s (which can be verified) as it will be
explained afterward. Therefore, our reduction will output s with a “resource overhead” given by
at most a factor 7.

Step 3: Guess and search. Given i such as in Lemma[£.1] The idea is to perform an exhaustive
search in Ok /PB;,+1 and to use A to recover s mod P, +1.
11



Lemma 4.2. Let A be a distinguisher with advantage § between hybrid distributions H;, and
Hiy+1, with secret s, running in time t. Then there exists an algorithm B that recovers s
mod P, +1 with overwhelming probability in n in time O (qfdcg(Q) X 57 X t).

Proof. Our algorithm will proceed with a guess and search technique using the distinguisher A in
hand. The idea is to guess the value of s mod 3;,+1 and transform any sample (a,b) + F
into a sample of J;, if the guess is correct, and into a sample of I, 1 if the guess is incorrect.

Transformation: Let g;,11 € Ok /Pi,+1. It will be our guess for 8 4 5 mod PBio+1- Let us
consider now the following operations
e Take g € Ok /B such that g = g;,+1 mod P;, 41 and g =0 mod P, for j # ip + 1.
o Sample h; < Ok /P, for 1 < j < iy and take h € Ok /P such that h = h; mod B, for
1<j<igand h=0 mod*B; for j > ig+ 1.
e Sample v; 11 Ok /Pi,+1 and take v € Ok /B such that v = v; 11 mod PB,;,+1 and
v =0 mod P; for j #ig+ 1.

All those operations can be done via the CRT. Now, for each sample (a, b 2 s +e) < Fsy,
define (a’,b’) with

a atv and b'd:Cfb—l—h—i—vg.
Note that for each sample (a,b), the corresponding a’ is still uniformly distributed over Ok /B
and b’ = a’s + e+ h' with b © h + (g — s)v. Furthermore, h verifies:
h'=h; mod P, for j < ig
h' = (giy41 —8)Vig+1 mod Bj,+1
h'=0 mod B, for j > ig + 1.

In particular, h’ is uniformly distributed modulo ®B; for j < ip and 0 modulo *B; for j > i + 1.

Now, if the guess is correct, meaning g;,+1 = S, then h’ = 0 mod B,,+1, hence (a’,b’) is
distributed according to H;,. On the other hand, if the guess is incorrect, (g;,+1 —8) # 0
in Ok /Pi,+1. But Ok is a Dedekind domain and B;,+1 is a prime ideal, therefore it is also
maximal and Ok /PB;,+1 is in fact a field. Since v;,y1 is uniformly distributed in Ok /PB;,11, S0 is
(8iy+1 — 8)Viy+1. In particular, h' is also uniformly distributed modulo B;,+1. Hence, (a’,b’) is
distributed according to J;, 1.

The algorithm B proceeds as follows: for each (a,b) < % 4, it applies the previous transfor-
mation to get a sample (a’,b’), and then uses the distinguisher A. Repeating the procedure m
times (for each guess g;,+1), for m large enough, and doing a majority voting allows to recover S
with overwhelming probability. More precisely, it relies on the use of the Chernoff bound.

Proposition 4.3 (Chernoff bound). Let (X;)1<j<m be m independent Bernouilli random variables

with parameter 1/2+ 6. Let X = >oity Xj. Then

P (X < %) < e 2md?

Consider m trials of the guess and search procedure, and let X; denote the indicator random
variable that the j-th run returns the correct value. Since A has distinguishing advantage §, X;
is a Bernouilli with parameter % + 9.

After m trials, the procedure fails if and only if more than m/2 runs are wrong. By Chernoff
bound, the probability that it happens is less than e—2md” Therefore, by choosing m > ln(%)ﬁ,
the above procedure returns the correct guess with probability at least 1 — . Therefore if one sets
p=2"9") (to get an overwhelming probability of success), it is enough to choose m as © (5%)
It enables to check if our guess 8 =s mod ;.41 is correct or not with overwhelming probability.
To recover s mod PB;,+1 it remains to try all the possible guesses § € O /Pi,+1. But the size of

Ok |Bi,+1 is given by ¢/ deg(@) | which yields the claimed time complexity. O

Step 4: Action of the Galois group. Until Step 3, we are able to recover the secret s modulo

one of the factors. In order to recover the full secret, we use the Galois group G & Gal(K/F,(T)).
12



This last part is crucial for the reduction to work. Recall that G acts transitively on the set of
prime ideals above p, i.e. for every ¢ # j, there exists o € G such that o (B;) = B;.

Lemma 4.4. Fizs € O /B. Let 1 < i < r and let A be an algorithm running in time t, and
recovering s mod PB; by making queries to an oracle for Fs . Then there exists an algorithm B
running in time O (t x r) that recovers the full secret s.

Proof. We build B as follows: for every factor 9B; of B, it chooses o € Gal(K/F,(T)) such that
o(PB;) = PB;. Then, for each sample (a,b) < F5 y, it runs A on the input (o(a), o (b)) to recover
an element s; and stores o~ (s;).

Note that Gal(K/F(T')) keeps the uniform distribution over Ok /9. In particular, for every
sample (a,b) < . y, the corresponding o(a) is also uniformly distributed over O /9. Further-
more, b = as + e with e < 1. Therefore, o(b) = o(a)o(s) + o(e). But ¢ is Galois invariant
by assumption, and hence o(e) is also distributed according to . In particular, (o(a), o (b)) is a
valid sample of F; ) y-

Now, our algorithm A is able to recover s; Lof o(s) mod PB; in time ¢, and
o s;) =01 (o(s) modP;)=s mod o (P;)=s modP;.

Therefore, we are able to recover s mod *B; for any 1 < j < r. To compute the full secret s it
remains to use the Chinese Remainder Theorem. The running time of this full procedure is given
by a O(t x r) which concludes the proof. O

5. CYCLOTOMIC FUNCTION FIELDS AND THE CARLITZ MODULE

In Section |3] we introduced the generic problem FF-DP and noticed that our search to decision
reduction given in Section |4 needed Galois function fields. In [LPRI10], it was proposed to use
cyclotomic number fields to instantiate the Ring—LWE problem. Here, we propose to instantiate
FF-DP with the function field analogue, namely Carlitz extensions. We give a self contained
presentation of the theory of Carlitz extensions. The interested reader can refer to [Ros02, ch.
12], [Nie01] and the excellent survey [Con| for further reference.

Carlitz extensions are function fields analogues of the cyclotomic extensions of Q. A dictionary
summarizing the similarities is given in Table 2] These extensions were discovered by Carlitz in
the late 1930s but the analogy was not well known until the work of his student Hayes who studied
them in [Hay74] to give an explicit construction of the abelian extensions of the rational function
field F,(T") and prove an analogue of the usual Kronecker-Webber theorem which states that any
abelian extension of Q are subfields of cyclotomic number fields. This result was generalized in the
following years with the work of Drinfeld and Goss to yield a complete solution to Hilbert twelfth
problem in the function field setting. In the number field setting, such an explicit construction
is only known for abelian extensions of Q (cyclotomic extensions), imaginary quadratic number
fields (via the theory of elliptic curves with complex multiplication).

The first idea that comes to mind when one wants to build cyclotomic function fields is to
adjoin roots of unity to the field F,(T"). However, roots of unity are already algebraic over Fy. In
other words, adding them only yields so—called extensions of constants.

Example 5.1. Let ¢, be an n-th root of unity in Fy(T). Note that it belongs to some finite
extension of Fy. Let Fgm be the extension of Fy of minimal degree such that ¢, € Fgm (it can be
F, itself). Then

Fq (T) [Cn] =Fgm (T)7
and the field of constants of Fy(T')[(n] s Fym.

However, in our reduction setting, such extensions will only increase the size of the search space
in Step 3. More precisely, if K is an algebraic extension of Fy(T"), the constant field of K is
always a subfield of O /B for any prime ideal P of Ok. But recall that in our search to decision
reduction, we need to do an exhaustive search in this quotient Ok /B, so we need it to be as small
as possible. Henceforth, we cannot afford constant field extensions. For Carlitz extensions, this
will be ensured by Theorem [5.16]
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Example 5.2. As a matter of example, consider the polynomial T? + T + 1 over Fy. It is

irreducible. Let (3 € Ty be one of its roots. It is a cube root of 1. Now, consider the field

eatension K % Fo(T)((3) = Fa(T) and let Ok be the integral closure of Fo[T] in K. The

prime ideal p = (T? + T + 1) of Fo[T] splits into two prime ideals By and Po in O. But
Ok /P11 = Okx/Pa = Fy = FolT]/p and we do not win anything by considering the extension
K/Fyo(T).

5.1. Roots of unity and torsion. As mentioned in the beginning of this section, it is not
sufficient to add roots of unity. One has to go deeper into the algebraic structure that is adjoined
to Q. Indeed, the set of all m—th roots of unity, denoted by u,, C C, turns out to be an abelian
group under multiplication. Moreover, pu,, is in fact cyclic, generated by any primitive root of
unity.

In commutative algebra, abelian groups are Z-modules. Here the action of Z is given by expo-

nentiation: n € Z acts on ( € p,, by n- ¢ def ¢™. This action of Z can in fact be extended to all

@X. When working with modules over a ring, it is very natural to consider the torsion elements,
i.e. elements of the module that are annihilated by an element of the ring. The torsion elements in

the Z—module @X are the ( € @X such that (™ =1 for some m > 0; these are precisely the roots
of unity. In other words, the cyclotomic number fields are obtained by adjoining to Q torsions

elements of the Z-module @X.

Under the analogy summed up in Table replacing Z by Fy[T] and Q by F4(T'), we would like to
consider some F,[T]-module and adjoin to F,(7") the torsion elements. Note that F,[T]-modules
are in particular F,—vector spaces. The natural candidate could be Fy(T) with F,[T] acting by
multiplication. However, the torsion elements are not very interesting. Indeed if there is some
f €F,(T) and some a € F,[T]\ {0} such that af = 0 then, f = 0. Therefore, for the usual action
by multiplication, only 0 is a torsion element. Thus, we need to define another F,[T]-module
structure, in the same way that we did not consider the natural action of Z by multiplication.
This new module structure can be defined using so called Carlitz polynomials: for each polynomial
M € Fy[T], we define its Carlitz polynomial [M](X) as a polynomial in X with coefficients in
F,[T], and M € F,[T] will act on o € F(T) by M - « f [M](c). In the literature, the notation
a™ can also be found to emphasize the analogy with the action of Z by exponentiation, but it
can be confusing. In the same way that the action of Z was multiplicative: (af)" = a"", the
action of F,[T] will be additive: [M](a + 8) = [M](a) + [M](8). In other words, [M](X) should
be an additive polynomial. In positive characteristic this can easily be achieved by considering
g—polynomials, i.e. polynomials whose monomials are only ¢g—th powers of X, namely of the form

P(X)=poX +p1 X9+ +p X7

Remark 5.3. g-polynomials with coefficients in some finite field F,m are also used in coding theory
to build so called rank metric codes. However, here we consider g—polynomials with coefficients in
F,[T].

5.2. Carlitz polynomials. The definition of Carlitz polynomial will proceed by induction and

linearity. Define [1](X) X and [T](X) X941 TX. Forn> 2, define

[T7)(X) € T[T (X)) = [T (X)) + T[T (X).

Then, for a polynomial M = Y7, a;T* € Fy[T], define [M](X) by forcing F,linearity:

[M)(X) =Y a,[T7)(X).
=0
Example 5.4. We have,
o [T2)(X) = [T)(X9+TX) = X" + (T9+T)X+T2X
o [T24+ T +1)(X) = [T2(X) + [T)(X) + [1)(X) = X + (T9+ T+ 1)X9 + (T2 + T+ 1)X
14



By construction, Carlitz polynomials are additive polynomials, and F,-linear. Furthermore, for
two polynomials M, N € F [T], [MN](X) = [M]([N](X)) = [N]([M](X)). In particular, Carlitz
polynomials commute with each other under composition law, which is not the case in general for
g—polynomials.

5.3. Carlitz module. Endowed with this Fy[T]-module structure, F,(T) is called the Carlitz
module.

Definition 5.5. For M € F,[T], M # 0, let Ay = {ANeFy(T) | [M](A\) =0}. This is the module
of M —torsion of the Carlitz module.

Example 5.6. Ar = {AN€F,(T) | N +TA=0} ={0}U{\| X"t =-T}.

In the same way that p,, is an abelian group (i.e. a Z-module), note that Ay is also a
submodule of the Carlitz module: for A € Ay; and A € F, [T, [A](A) € Apr. In particular, Apy is
an F,—vector space.

Example 5.7. The module Ar defined in Example is an Fg—vector space of dimension 1. In
particular, for X € Ap, and A € F,[T], [A](N) must be a multiple of X. In fact the Carlitz action
of A on X is through the constant term of A: writing A =TB + A(0) we have

[AJ(A) = [TB + A(0)](A) = [BI([T](A)) + A(0)[1](A) = A(0)A.
=0
More generally, even if in general Ajys is not of dimension 1 over Fy, it is always a cyclic Fy[T]-

module: as an F,[T]-module it can be generated by only one element. This is specified in the
following theorem.

Theorem 5.8 ([NieOll Lemma 3.2.2]). There exists Ao € Apr such that Ay = {[A](Mo) | A €
F,[T)/ (M)} and the generators of Ay are the [A](Ao) for all A prime to M. The choice of a
generator yields a non canonical isomorphism Ay ~F [T/ (M) as Fy[T]-modules.

Remark 5.9. The previous theorem needs to be related to the cyclotomic case: given the choice of
a primitive m—th root of unity, there is a group isomorphism between p,, and Z/mZ. Moreover
all the m—th roots of unity are of the form ¢* for k € [0,m — 1] and the generators of y,, are the
¢ for k prime to m.

5.4. Carlitz extensions. Recall that the cyclotomic number fields are obtained as extensions of
Q generated by the elements of p,. In the similar fashion, for a polynomial M € F,[T7, let

K € Fy(T)(Anr) = Fo(T)(Anr),

where Ay is a generator of Ay;. One of the most important fact about the cyclotomic number
field Q(&y,) is that it is a finite Galois extension of Q, with Galois group isomorphic to (Z/mZ)*.
There is an analogue statement for the Carlitz extensions.

Theorem 5.10 ([NieO1, Th. 3.2.6]). Let M € F,[T|, M # 0. Then K is a finite Galois extension
of F (T), with Galois group isomorphic to (F4[T]/(M))*. The isomorphism is given by

{(]Fq[T]/(M))X —  Gal(Kn /Fy(T))
A — g4,

where o 4 is completely determined by oa(Anr) = [A](Anr).
Remark 5.11. In particular, Carlitz extensions are abelian.

Another important fact about cyclotomic extensions is the simple description of their ring of
integers. Namely, for K = Q((,), we have Ok = Z[(n] = Z[X]/ (P, (X)) where @, denotes the
m~—th cyclotomic polynomial. This property also holds for Carlitz extensions.

Theorem 5.12 ([Ros02, Th. 2.9]). Let Oy be the integral closure of Fy[T] in Kpr. Then
Om = FyT)[Aum]. In particular, let P(T,X) € Fy[T]|[X] be the minimal polynomial of Aps.
Then,
Ky = FE(DXpr, x)) and  0r = FJTIX]P(T, X)).
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Example 5.13. Reconsider Example and the module Ax = {0} U {\ | X3! = —T}. The
polynomial X1~1 + T is Eisenstein in (T) and therefore is irreducible. Hence,

Kr = Fo(D)[X)xa-1 4 1)

Moreover it is Galois, with Galois group (Fy[T]/(T))* ~TFx. A non-zero element a € F; will act
on f(T,X) € Kr by

a- (T.X) ¥ (T, a](X)) = £(T,aX).
The integral closure of Fo[T] in K is

or & FTX]) xa-1 4 7)
and
Or/(T +1)07) = FalTIXY(7 + 1, xa-1 4+ 1) = Fo[X]xa-1 — 1). (5)

Finally, the following theorem characterizes the splitting behaviour of primes in Carlitz exten-
sions. A very similar result holds for cyclotomic extensions.

Theorem 5.14 ([Ros02, Th. 12.10]). Let M € F,[T], M # 0, and let Q € F,[T] be a monic,
irreducible polynomial. Consider the Carlitz extension Ky; and let Oy denote its ring of integers.
Then,

e If Q divides M, then QO is totally ramified.

e Otherwise, let f be the smallest integer f such that Qf = 1 mod M. Then QO is
unramified and has inertia degree f. In particular, Q splits completely if and only if
Q=1 mod M.

Note that in Ring-LWE, the prime modulus ¢ is often chosen such that ¢ =1 mod m so that
it splits completely in the cyclotomic extension Q((,).

Example 5.15. In the previous example, T+1 =1 mod T and therefore (T +1) splits completely
i Or. Indeed,

/(T + 1)or) = FalXljxa1 1) = [] FalXljx - @)

oce]Ff;
is a product of ¢ — 1 copies of Fy.

It is crucial for the applications that the constant field of K be not too big because, in the search—
to—decision reduction, it determines the search space in Step 3 of the proof of Theorem [3:10] The
following non-trivial theorem gives the field of constants of Carlitz extensions.

Theorem 5.16 ([Ros02, Cor. of Th. 12.14]). Let M € Fy[T|, M # 0. ThenF, is the full constant
field of K.

The similarities between Carlitz function fields and cyclotomic number fields are summarized
in Table 2

6. APPLICATIONS

In the current section, we present two applications of our proof techniques. It provides search
to decision reductions to generic problems whose hardness assumption has been used to assess the
security of some cryptographic designs. The first application concerns Oblivious Linear Evaluation
(OLE) which is a crucial primitive for secure multi-party computation. The second one is an
authentication protocol called LAPIN. Both designs rely on the hardness of variants of the so-
called Learning Parity with Noise (LPN) problem.

16



Q Fq(T)
Z Fq[T]
Prime numbers ¢q € Z Irreducible polynomials @ € Fy [T

tm = {C) =~ Z/mZ (groups) Ay = (N) > F, [T]/(M) (modules)

S

| m < pg C o (subgroups) | D | M < Ap C Ay (submodules)

a=b modm= (*=" A=B mod M = [A](\) = [B]()\)

K = Q] K =TF,(T)A
Ok = Z[(] Ok =Fy[T][\
Gal(K/Q) ~ (Z/mZ)* Gal(K/Fq(T)) ~ (Fq[T]/(M))*
Cyclotomic Carlitz

TABLE 2. Analogies between cyclotomic and Carlitz

6.1. LPN and its structured variants. Let us start this subsection by the definitions of the
distribution that is involved in the LPN problem.

Definition 6.1 (Learning Parity with Noise (LPN) distribution). Let k be a positive integer,
s € IFZ be a uniformly distributed vector and p € [0, %) A sample (a,b) € IF’; x Fq is distributed
according to the LPN distribution with secret s if

e a is uniformly distributed over IF’;;

d Lo )
b (a,s) + e where (-,-) denotes the canonical inner product over IE"; and e is a g—ary
P

Bernouwilli random variable with parameter p, namely P(e = 0) = 1—p and P(e = a) = =
foraeFy.
A sample drawn according to this distribution will be denoted (a, (a,s) + e) < ‘D'S-E,N.

Remark 6.2. This definition is a generalization of the usual LPN distribution defined over Fs. In
this situation, the error distribution is a usual Bernouilli: P(e = 0) =1 —p and P(e = 1) = p.

Remark 6.3. Sometimes in the literature, the distribution is directly defined for n samples, leading
to (G,s - G + e) where G is drawn uniformly at random over the space F’;X" of k X m matrices

whose coefficients lie in F, and e df (e1,...,en) where the e;’s are independent Bernouilli random
variables with parameter p.

The security of many cryptosystems in the literature rests on the LPN assumption which
informally asserts that it is hard to distinguish a sample (a, (a,s) + e) < @'S'S,N from a sample
(a,t) where both a and ¢ are drawn uniformly at random.

Remark 6.4. Note that, according to Remark when considering a fixed number n of sam-
ples, the LPN assumption is nothing but the decision version of the decoding problem, namely
distinguishing noisy codewords of a random code from uniformly random vectors.

Similarly to the LWE problem, structured versions of LPN have been defined ([HKL™12, [DP12]
BCG™20]).

Definition 6.5 (Ring—LPN distribution). Fiz a positive integerr, a public polynomial f(X) € F,[X]
of degree r and s € F [X]/(f(X)) be a uniformly distributed polynomial. A sample (a,b) is dis-
tributed according to the RLPN distribution with secret s if

e a is drawn uniformly at random over Fy[X]/(f(X));
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eb ™ aste wheree® eot+ e X+ +e 1 X e F,[X]/(f(X)) has coefficients e;’s
which are independent q—ary Bernouilli random variables with parameter p.

A sample drawn according to this distribution will be denoted (a,as + €) + DSR’E,PN.
Note that the map

{Fq[X]/(f(X)) — Fal X r(x))
m(X) —  a(X)m(X) mod f(X)

can be represented in the canonical basis by an r x r matrix A. Using this point of view, one
sample of RLPN can be regarded as r specific samples of LPN.

Definition 6.6 (Module-LPN distribution). Fiz positive integers r and d, a public polynomial
f(X) € F[X] of degree v and s be uniformly distributed over (F,[X]/(f(X)))?. A sample (a,b)
is distributed according to the MLPN distribution with secrets s if

e a is drawn uniformly at random over (F,[X]/(f(X)))%;

d d
eb % (a,s) +e= 2;1:1 a;s; + e, where e :efeo +e X+ +e 1 X eFX]/(F(X))
has coefficients e;’s which are independent Bernouilli random variables with parameter p.

A sample drawn according to this distribution will be denoted (a,b) + 932”,15"'\'

In the above definitions, the noise distribution is chosen independently on each coefficient of
e(X) € F,[X]/(f(X)). One can also consider the situation where the coefficients of e(X) are
chosen to form a vector of Fy of fixed Hamming weight ¢. This point of view is closer to the usual
decoding problem, and is the one adopted in [BCG™20].

To conclude, note that the choice of the noise in the Ring— and Module-LPN distribution is
made relatively to the canonical basis (X i)0<i<7-—1 since it seems to be the most natural one.
However, one could have made another choice. This will be discussed in the sequel.

6.2. Relation with decoding problems. According to Remark distinguishing n samples
of an LPN distribution ZD'S-;N from the uniform distribution is equivalent to distinguishing noisy
codewords of a known random code from uniformly random words. It can be regarded as the
decision version of the decoding problem for a code of fixed dimension (here the length of the
secret s) and whose length n goes to infinity and hence whose rate goes to zero. Similarly,
distinguishing samples from a distribution DRPN and a uniform one is equivalent to the decision

s,p
version of the decoding problem of structured codes whose basis is block-wise defined as

(A1 Am)

where, for any ¢ € [1,n], A; is the matrix representation in the canonical basis of F,[X]/(f(X))
of the multiplication by some random element a; € Fy[X]/(f(X)). In particular, considering the
case f(X) = X’ — 1, we recover, the decoding problem for /-quasi—cyclic codes.

Search to decision. Here we present search to decision reductions in two different settings cor-
responding to two choices of the modulus f(X) in the Ring-LPN problem. Both have been used
in the literature for specific applications that are quickly recalled.

A g—ary version of Ring—LPN with a totally split modulus f. In [BCG™20], the authors
introduce Ring—LPN over the finite field F, and with a modulus f which is totally split, i.e. has
distinct roots, all living in the ground field F,.

Motivation: Oblivious Linear Evaluations for secure Multi Party Computation (MPC).
A crucial objective in modern secure MPC is to be able to generate efficiently many random pairs
(u,7), (v, s) such that u,v,r are uniformly distributed over F,, with the correlation uv = r + s.

In [BCG™20], the authors propose a construction of such pairs (u,r), (v,s) of elements in a
ring #, where Z = F,[X]/(f(X)) such that f is split with simple roots in F,. Using the Chinese
remainder Theorem, one deduces deg f pairs (u;,7;), (vi, 8;) with w;, v, 75,8, € Fq. The pseudo-
randomness of u, v rests on the hardness of the Ring—LPN assumption.
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Search to decision reduction in the [BCGT20|-case. Consider the case of Ring-LPN over
X =TF4X]/(f(X)), where
O] X-a)=x"-1.
a€Fy
Let us re-introduce the Carlitz function field of Examples [5.6] and namely

Kr = F(D)X)/xa-1 4 7).
According to Equation in Example we have
O[T +1)0r ~ FalXlj(x0-1 1),

which is precisely the ring we consider for the Ring LPN version of [BCG™20|. Therefore, instan-

tiating our FF-DP problem with this function field, modulus 7"+ 1, ideal 3 def (T'+1)0k and

applying Theorem [3.10] we directly obtain the following search to decision reduction.

Theorem 6.7 (Search to decision reduction for totally-split Ring-LPN). Let Kt be the Car-
litz extension of T-torsion over F,, and denote by O its ring of integers. Consider the ideal

B def (T+1)0k,. Then B splits completely in g — 1 factors P1 ... Pqy—1 and

qg—1
Ok /P~ ] Ox/Bi=Fyx - xF,.
i=1
Let 4 denote the uniform distribution over polynomials in F [X]/(X971 — 1) of fized Hamming
weight, or the g—ary Bernouilli distribution. Lets € F[X]/(X971—1). Suppose that we have access
to Fs. and that there exists a distinguisher between the uniform distribution over Fo[X]/(X971—1)

and Fs y with uniform secret and error distribution ©, running in time t and having advantage €.
Then there exists an algorithm that recovers s with overwhelming probability (in q) in time

O(q5><12><t>.
B

Proof. The only thing that remains to be proved is that the error distribution is Galois invariant.
According to Theorem and Example the Galois group of Kr/Fq(T) is isomorphic to
(F[T7/(T))* ~Fx. Furthermore, we proved that an element b € F;* acts on f(7, X) € Kt by

For this example it can actually be understood directly using Kummer theory (see [Sti09, Propo-
sition 3.7.3]). Indeed, FF,, and hence F,(T'), contains the (¢ — 1)—th roots of unity. Moreover, Kr
is nothing but the extension of F,(T") spanned by a primitive (¢ — 1)—th root of —T. Therefore,
it is a Kummer extension and the action of the Galois group is characterized by X + ¢ - X for
every (¢ — 1)-th root of unity (. But here, the set of (¢ — 1)-th roots of unity is precisely F. The
Galois action on K7 and &1 induces an action of IF; on

Or)(T +1)0p ~ FalXlj(xa-1 _ 1)

by b - m(X) et m(bX). Note that, this operation has no incidence on the Hamming weight of m:

it actually does not change its Hamming support. Therefore, we easily see here that Galois action
keeps the noise distribution invariant. O

Remark 6.8. Note that our search to decision reduction could have been performed here without
introducing the function field and only considering the ring F,[X]/(X97! — 1). Recall that the
first ingredient of the reduction is to decompose this ring by the Chinese Remainder Theorem.
Here it would give the product ], erx Fq [X]/(X —a). The final step of the reduction requires the
introduction of a group action which induces a permutation of the factors in [| acrx F [X]/(X —a).
It is precisely what the group action b - m(X) = m(bX) does: it sends the factor F,[X]/(X — a)
onto F,[X]/(X — b~'a). However, introducing this action on the level of F,[X]/(X9" ! — 1) does
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not look very natural. It turns out that the introduction of function fields permits to interpret
this action in terms of a Galois one.

Case H is a strict subgroup of F;. Now assume the polynomial f has the form

70 = [[x -a)

acH

with H being a strict subgroup of F;. To instantiate our search to decision reduction we need to
find a group action that keeps the noise distribution invariant.

Lemma 6.9. There exists a Galois function field K with its ring of integers O such that
H = Gal(K/Fy(T)) and Or /(T + 1)0k = Fy[X]/(f(X)). Moreover, the action of H keeps
the Hamming support invariant.

Proof. Consider again the Carlitz extension K. It has a cyclic Galois group G >~ F of cardinality

qg—1. Let h def #H. Tt divides ¢ — 1. Since G is cyclic, it has a unique subgroup N of cardinality

def

q;hl. Let L = KX be the fixed field of N. Since (T + 1) splits completely in @7, it also splits

completely in any intermediate field. In particular, it splits completely in &7, def ﬁ{f the ring of
integers of L, we have

OL/(T +1)0p ~Fo[X]/(f(X)).

Now, since G is abelian, N is normal in G. In particular, L/F,(T) is a Galois extension, with
Galois group G/N ~ H. By the same argument as in the previous paragraph, the action of H
on Fy[X]/(f(X)) only permutes the factors, but keeps the supports invariant. In particular, the
noise distribution is not moved under the action of H. O

This lemma immediately implies a search to decision reduction analogue to theorem (6.7]).

Remark 6.10. When the roots of f(X) do not form a subgroup of G, but a coset bH instead,
i.e. f(X) = [lacou(X — ), then it suffices to perform a translation by b prior: X — bX also
keeps all the distributions invariant (including the uniform), and F,[X]/(f(X)) is mapped onto
F,[X]/(9(X)) where g(X) 2ef [locm (X — ), which yields the result by seeing the action of H as
arising from a Galois action.

Ring—LPN with a modulus f splitting in irreducible polynomials of the same degree.
Another cryptographic design whose security rests on the Ring—LPN assumption is an authenti-
cation protocol named LAPIN [HKL'12|. In the conclusion of their article, the authors mention
that
“it would be particularly interesting to find out whether there exists an equivalence be-
tween the decision and the search versions of the problem similar to the reductions that
exist for LPN and Ring-LWE”.
For this protocol, the problem is instantiated with the binary field Fo and with a modulus poly-
nomial f which splits as a product of m distinct irreducible polynomials

f(X) = fl(X)"'fm(X)'

In this setting and using our techniques, we can provide a search to decision reduction when the
fi’s have all the same degree d. Furthermore, for the reduction to run in polynomial time, we need
to have d = O(log(deg f)). In this setting, the Chinese Reminder Theorem entails that

m

RalXrx) = T B8 x),

and the right—hand side is a product of m copies of Fya. Such a product can be realised as follows.
Consider a function field K which is a Galois extension of Fy(7") with Galois group G and denote
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by Ok the integral closure of Fo[T] in K. Suppose that the ideal (T') of Fo[T] is unramified in Ok
with inertia degree d. Then T Ok splits into a product of prime ideals:

TOx =%P1-PBm  and  OxTox ~ ] Oxfp,,
=1

where, here again, the right—hand side is a product of m copies of Fya.

Next, the idea is now to apply Theorem [3.10|in this setting. However, there is here a difficulty
since for our search to decision reduction to hold, the noise should arise from a Galois invariant
distribution. Thus, if we want the noise distribution to be Galois invariant we need to have a
Galois invariant Fo-basis of the algebra Ok /T k. The first question should be whether such a
basis exists. The existence of such a basis can be deduced from deep results of number theory
due to Noether [Noe32, [Chad6] and asserting the existence of local normal integral bases at non
ramified places. Here we give a pedestrian proof resting only on basic facts of number theory. Since
this result also holds for larger finite fields, from now on, the underlying field is not supposed to
be Fy anymore.

Proposition 6.11. Let K/F,(T) be a finite Galois extension of Galois group G and Ok be the
integral closure of Fy[T] in K. Let Q € F,[T] be an irreducible polynomial such that the correspond-
ing prime ideal is unramified and has inertia degree d. Denote by B, - - - P, the decomposition
of the ideal QOk. Then, G acts on the finite dimensional algebra Ok /QC¥k and there exists
X € Ok /QU0k such that (0(x))scq is an Fq-basis of Ok /QOk .

Proof. Consider the decomposition group Dy, /- As explained Section [2] and in particular in
Equation , since QO is unramified, this decomposition group is isomorphic to Gal(Ok /Q0k ,F,) =
Gal(FF a,IF;). This entails in particular that #Dp = d.

According to the Chinese Remainder Theorem,

Ok/QOy ~ OKkfp, x - x Okfp,,.

Next, from the Normal basis Theorem (see for instance [LN97, Thm. 2.35]), there exists a € Ok /P
such that (0(a))seny, o is an Fy-basis of Ok /PB1. Now, let

m
b = (a,0,...,0) € HﬁK/mi ~ Ok /Q0k.

i=1
We claim that (o(b))sec is an Fy-basis of Ox/Q0k. Indeed, denote by V the F,—span of
{o(b) | ¢ € G} and suppose that V is a proper subspace of Ok /QCk. Then, there exists
i € [1,m] such that

VN Ok, & OKpy,,
where we denote by O /9B; the subspace {0} x --- x {0} x Ok /B; x {0} x --- x {0} of [[, Ok /Bs.
Since G acts transitively on the 9;’s, there exists o9 € G such that o¢(P1) = PB;. Then,

oo(b) € VN Ok /*P; and so does oog(b) for any o € Dy, /p. Since V N Ok /P; & Ok /Pi, then

dimp, V' < d while # Dgy;, /p = d. Hence, there exist nonzero elements ()‘U)UeDmi/p € IF‘Z such that

> Aooo(b) =0. (6)
o€Dy,/p
Applying oy Lto @, we get
Z A\o0y taag(b) = 0.
o€Dy, /P

As mentioned in Section [2| we have Ualei/QJO = Dy, /g and we deduce that the above sum is
in Ok /%P1 and, since a is a generator of a normal basis of F,, we deduce that the A,’s are all zero.
A contradiction. O

The previous proposition asserts the existence of a normal F,—basis of the space Ok /Q0k, i.e.
a Galois invariant basis. For any such basis, (b, ), one can define a Galois noise distribution by
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sampling linear combinations of elements of this basis whose coefficients are independent Bernouilli
random variables. Our Ring—LPN distribution is hence defined as pairs (a,b) € Ok /QOk X
Ok /Q0Ok such that a is drawn uniformly at random and b = as + e where e is a noise term
drawn from the previously described distribution.

Definition 6.12 (Galois modulus). Let r and d be positive integers. A polynomial f(X) € Fq[X]
of degree r is called a Galois modulus of inertia d if there exists a Galois function field K/Fq(T)
and a polynomial Q(T) € F [T of degree one such that Fy[X]/(f(X)) ~ Ok /QCk and the ideal
QOk has inertia degree d and does not ramify.

This definition entails that for a polynomial f(X) € F,[X] to be a Galois modulus, it needs to
factorize in F,[X] as a product of distinct irreducible polynomials of same degree d.

Carlitz extensions permit to easily exhibit many Galois moduli of given inertia d. Indeed, let
M(T) € F,[T)] be any divisor of T¢ — 1 which vanishes at least at one primitive d—th root of unity.
Set

X
we #(F¥V01(x)))
r = :
d
Then, any polynomial f(X) € F,[X] which is a product of r distinct irreducible polynomials of

degree d is a Galois modulus. Indeed, F,[X]/(f(X)) is isomorphic to a product of r copies of Faa
and, since the multiplicative order of 7' modulo M (T') is d, from Theorem so does On /T O .

Example 6.13. The polynomial f(X) W x63 4 X741 ¢ Fo[X] is a Galois modulus of inertia 9.

Indeed, let M(T) 4 1o + T3 + 1 and consider Ky the Carlitz extension of M—torsion. Denote
by Oar the integral closure of Fo[T) in Onr. Then T° =1 mod M and 9 is the smallest integer
that has this property. By Theorem [5.1], the ideal T Oy splits into T ideals P, ..., BPr and has
inertia 9. Hence, On /(T ONM) ~ Fo[X]/(f(X)).

Remark 6.14. The polynomial f(X) of Example is also lightness-preserving in the sense of
[DP12| Def 2.22] which can be used to instantiate Ring-LPN.

We are now ready to define a new noise distribution which is Galois invariant for Ring—LPN.
We propose to consider it in LAPIN as it enables to apply our search to decision reduction. In
the following definition, B denotes a normal basis whose existence is ensured by Proposition [6.11]
Note that B need not be exactly the normal basis constructed in the proof of Proposition [6.11]
This is discussed further, after the statement of Theorem [6.16)

Definition 6.15 (Normal Ring-LPN distribution). Let r,d be positive integers, p € [0, %) and let

f(X) € Fy[X] be a Galois modulus of degree r with inertia d. Denote by B = (0(c)(X))oeq, the
normal basis of Fy[X]/(f(X)) where Gy is the Galois group of the related function field.

A sample (a,b) is distributed according to the Normal RLPN distribution relatively to basis B,
with secret s if

e a is drawn uniformly at random over F,[X]/(f(X));

eb®ast e, where e(X) aef Yovea, €o0(c)(X) € Fq[X]/(f(X)) has coefficients e;’s which

are independent g—ary Bernowilli random variables with parameter p.

Theorem 6.16. The decision Ring—LPN is equivalent to its search version for the normal Ring—
LPN destribution.

Let us discuss further the choice of the noise distribution and hence that of a Galois-invariant
basis. In [HKL™12|, the authors discuss the case of Ring-LPN when the modulus f splits and
mention that in this situation, the Ring-LPN problem reduces to a smaller one by projecting the
samples onto a factor F,[X]/(f;(X)) of the algebra F,[X]/(f(X)). The projection onto such a
factor, reduces the size of the inputs but increases the rate of the noise.

It should be emphasized that the Galois invariant basis constructed in the proof of Proposi-
tion yields a noise which is partially cancelled when applying the projection Ok /QCK —
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Ok /B, hence, this choice of normal basis might be inaccurate. On the other hand, Proposi-
tion is only an existence result and it turns out actually that a random element of Ok /QOk
generates a normal basis with a high probability. Indeed, the existence of such a normal basis can
be reformulated as Ok /Q0k is a free F,[G]-module of rank 1 and a generator a € Ok /Q0k is
an F,[G]-basis of Ok /QCk. Now, any other element of F,[G]*a is also a generator of a normal
basis. Consequently, the probability that a uniformly random element of Ok /QOk is a generator
of a normal basis is
4F,[G)*

#Fq[G]
If for instance, G is cyclic of order N prime to q. Then X~ — 1 splits into a product of distinct
irreducible factors u; - --u, and Fy[G] ~ Fy[X]/(XY — 1) ~ [[,F4[X]/(ui(X)). In this context,
the probability that a uniformly random element of Ok /QOK generates a normal basis is

[y (ghs™ — 1)
qN

CONCLUSION

We introduced a new formalism to study generic problems useful in cryptography based on
structured codes. This formalism rests on the introduction of function fields as counterparts of
the number fields appearing in cryptography based on structured lattices. Thanks to this new
point of view, we succeeded in producing the first search to decision reduction in the spirit of
Lyubashevsky, Peikert and Regev’s one for Ring-LWE. We emphasize that such reductions were
completely absent in cryptography based on structured codes and we expect them to be a first
step towards further search to decision reductions.

If one puts into perspective our current assessment with lattice-based cryptography, [LPRI0]
focuses on cyclotomic number fields, and defined the error distribution to be a Gaussian over R"
through the Minkowski embedding. Furthermore, the modulus ¢ was chosen to split completely.
Then, following this result, [LS15] uses a “switching modulus” technique in order to relax the
arithmetic assumption on the prime modulus, so that it can be arbitrarily chosen. Finally, the
search to decision reduction has been proved in [RSW18] to hold even when the extension is not
Galois, using the Oracle with Hidden Center Problem (OHCP) technique from [PRSDI17]. Note
that this powerful technique has been used recently to provide a search to decision reduction in
the context of NTRU [PMS2I]. Even though our work does not reflect these recent progresses, we
believe, as it was shown by our instantiations, that the introduction of the function field framework
paves the way for using these techniques in the code setting in order to get a full reduction applying
to cryptosystems such as HQC or BIKE.
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