
Compact Storage for Homomorphic Encryption

Adi Akavia1⋆, Neta Oren1, Boaz Sapir2, and Margarita Vald2

1 University of Haifa, Israel adi.akavia,neta5128@gmail.com
2 Intuit Israel Inc., Israel Boaz Sapir@intuit.com,margarita.vald@cs.tau.ac.il

Abstract. Homomorphic encryption (HE) is a promising technology for
protecting data in use, with considerable recent years progress towards
attaining practical runtime performance. However the high storage over-
head associated with HE remains an obstacle preventing its large scale
adoption. In this work we propose a new storage solution in the two-
server model resolving the high storage overhead associated with HE,
while preserving data confidentiality. Our solution attains the following
desired properties:
1. Compact storage with zero overhead over storing AES ciphertexts,

and 10× to 104× better than storing CKKS ciphertexts.
2. Fast runtime performance for storage and retrieval, only twice the

time of directly storing and retrieving HE ciphertexts.
3. Dynamic control during retrieval of the HE parameters and the data

items to be packed in each HE ciphertext.
4. Plug-and-play compatibility with any homomorphic computation.
We implemented our solution into a proof-of-concept system running on
AWS EC2 instances with AWS S3 storage, empirically demonstrating its
appealing performance. As a central tool we introduce the first perfect
secret sharing scheme with fast homomorphic reconstruction over the
reals; this may be of independent interest.

Keywords: homomorphic encryption, storage, secret sharing

1 Introduction

The privacy and safety of individuals and organizations are threatened
by the ubiquity of data collected by products and services as part of the
so-called AI revolution. Data collecting companies are driven to address
this threat to avoid reputational damage in case of a data breach and
to comply with privacy regulations such as GDPR [2] and CCPA [16]. A
promising approach for enhancing data protection is to use secure com-
putation (MPC) [63, 37] and homomorphic encrypting (HE) [58, 33] that
support data protection at all times, not only at rest and at transit, but

⋆ The work was supported in part by the Israel Science Foundation grant 3380/19, and
the Israel National Cyber Directorate via Haifa, BIU and Tel-Aviv Cyber Centers.

also for data in use. The HE approach is particularly appealing due to
its compatibility with existing dataflow, supporting computations over
encrypted data by stand-alone servers (computing server) requiring no
interaction, and the complexity of all other parties, if any exists, is in-
dependent of the complexity of the evaluated function (unlike in MPC).
Indeed there has been much progress towards attaining practical run-
time for HE-based solutions, e.g., for privacy preserving machine learning
(PPML) as in [36, 51, 59, 41, 43, 47, 23, 46, 35, 13, 12, 5, 4, 57]. These solu-
tions often operate over massive datasets (e.g. in training machine learn-
ing models) that must be stored in HE-encrypted form. More generally, as
HE-based solutions are becoming faster and faster (due to improvements
in schemes, algorithms and hardware), more data is to be HE-encrypted
and stored.

The high storage overhead associated with HE encryption however is
a significant obstacle preventing large-scale adoption. Concretely, storing
HE ciphertexts of state-of-the-art HE schemes and implementations (e.g.
CKKS scheme [22] in Micorosft SEAL library [60]) incurs 10× to 104×
blowup in storage size compared to storing the data in cleartext or en-
crypted by standard schemes such as AES. The blowup rate depends on
the number of data items packed in each ciphertext, with 10× blowup at
maximal packing capacity which is not always applicable; for example, if
data must be encrypted in a streaming fashion, or arrives from distinct
sources with few data items each, or the computation is not suitable for
entry-wise vector operations as supported on packed data, then packing
cannot be fully utilized. Furthermore, although it is a well-known fact
that storage costs are rapidly declining, for some of the use cases being
proposed for HE, such as secure computation within the enterprise, the
relevant storage is entire enterprise-level datalakes, at petabyte scale or
more. Even the low-end of 10× blowup in storage cost, at such scale, is
clearly unacceptable from both a financial and operational perspective.

The question initiating this research is:

Can the high storage overhead of HE be eliminated?

1.1 Our Contribution

In this work affirmatively resolve the above question by proposing: (1) a
new storage solution in the two-server model eliminating the high storage
overhead associated with HE; (2) a proof-of-concept system demonstrat-
ing the appealing storage-size and runtime performance attained by our

2

solution. (3) As a central tool we introduce the first perfect secret sharing
scheme supporting fast homomorphic reconstruction over the reals.

Contribution 1: Compact storage with oblivious HE-retrieval.
We present a new storage and retrieval solution that supports retrieving
data in HE-encrypted form without revealing any information on the un-
derlying data (oblivious HE-retrieval), while maintaining storage size as
small as when storing data encrypted by standard encryption schemes
such as AES (compact storage) and fast storage and retrieval runtime,
only twice the time of directly storing and retrieving HE ciphertexts. Our
solution is generic and can be instantiated with any public key HE scheme
supporting additive homomorphism, where the plaintext addition may be
over a finite ring as in Paillier [56] and BGV [15] or over the reals as in
CKKS [22].

Our solution consists of two protocols, store and retrieve. Store is a
non-interactive protocol allowing multiple data producers to upload data
to a common storage (e.g. a datalake on AWS S3), where data can be
uploaded in blocks or one-by-one, possibly over time and interleaved with
retrieval queries. Retrieve is a single-round interactive protocol between
the computing server that obtains as output the HE encrypted data and
an auxiliary service that has no output. Security holds in the two-server
model, i.e., when the computing server and auxiliary service are non-
colluding. In this model we guarantee correctness against semi-honest
adversaries and privacy against malicious ones.

Integration with executing any homomorphic computation on the
obliviously retrieved data is supported by our solution, simply by plugging
in the retrieved HE ciphertexts as input to the homomorphic computation
(“retrieve-then-evaluate”).

To support integration with a wide range of computations, our solu-
tion supports dynamic control at the time of data retrieval for: (i) Data:
fine-grained dynamic choice of the data items to be retrieved is supported,
allowing retrieval of any subset of the data items. (ii) HE scheme and
parameters: dynamic choice of the HE scheme with which the data is
encrypted, its public key and context parameters such as the degree of
the cyclotomic polynomial, is likewise supported. (iii) Batching: flexi-
bly choosing which data items are packed together in each ciphertext is
supported. The flexible dynamic control allows tailoring each oblivious
retrieval to best optimize the computation at hand; for example, dynami-
cally choosing a high degree cyclotomic polynomial in CKKS to maintain
correctness if integrating with a deep homomorphic computation, and low

3

degree otherwise to speedup performance. Moreover, the support for on-
the-fly key generation enables using ephemeral keys for enhanced safety.

This offers a viable industry compatible solution for computing on
HE-encrypted data with zero data exposure during the pipeline while
eliminating the high storage overhead associated with storing HE cipher-
texts.

Discussion on the credibility and usability of the two-server
model. In the integrated protocol, the two non-colluding servers are
required only during the oblivious retrieval phase, whereas the homo-
morphic evaluation phase is executed by a single server solely carrying
the entire burden of the computation. This is in contrast to prior work
in the two-server model, including those utilizing HE [54, 35, 5, 7, 42], that
required two non-colluding servers throughout the entire computation.
Namely, in our work, the non-collusion assumption is limited only to the
brief oblivious retrieval phase and not present throughout the bulk of the
computation. Moreover, the auxiliary service in our oblivious retrieval has
a predefined lightweight logic. This is in sync with existing enterprise best
practices, where services with a simple predefined logic (e.g., a key man-
agement or our auxiliary service) can be effectively safeguarded, making
the non-collusion assumption credible.

Contribution 2: Proof-of-concept system implemented on AWS.
We present a proof-of-concept system implementing our compact storage
with oblivious HE-retrieval while using CKKS [22] as the HE scheme and
our secret sharing scheme as a central tool.

The system is implemented in AWS cloud computing environment
with a separate EC2 instance (M5.2xlarge) for each participating entity
(data producer, computing server and auxiliary service), HTTP commu-
nication between the latter two, and S3 bucket for storage. We enforced
access control to S3 by applying AES encryption on uploaded data, with
secret-key accessible to authorized parties. See an illustration of our sys-
tem in Figure 1.

Compatibility with industry’s most commonly used architecture, tools
and best-practices for storing and processing sensitive big data is attained
by our system. For example we support the use of standardized encryp-
tion schemes for data protection in long-term storage (e.g. AES), native
datatypes in datalake storage (e.g. double), and commonly used tools
for computing servers and datalake (e.g. AWS EC2 instances with S3
storage). More broadly, incorporating our system into exiting pipelines
requires minimal local expansion of current systems, supporting trans-

4

parent integration with existing applications and data processing flows
e.g. by dynamically choosing whether data is retrieved in cleartext or in
HE form. Importantly, our system does not only comply with existing
architecture but simultaneously improves over it: to compute on data,
current flows read it from datalake in exposed form, whereas our system
supports oblivious data transformation from AES ciphertexts to CKKS
(or other schemes of the user’s choice) to be fed into the homomorphic
computation with zero data exposure throughout the entire pipeline.

We ran extensive experiments with empirical results demonstrating
that our solution achieves:

1. Compact storage: attaining zero overhead over using AES encryp-
tion to protect sensitive data; and attaining 10× to 104× improvement
in storage size over directly storing CKKS encrypted data.

2. Fast runtime: attaining end-to-end storage plus oblivious retrieval
runtime that is only twice the time of directly storing and retrieving
CKKS encrypted data.

Furthermore, we demonstrate our system’s support for flexible choice of
the CKKS parameters by dynamically setting the degree of the cyclo-
tomic polynomial, testing all values supported in [60], with essentially no
degradation in our storage and runtime performance. Likewise, the data
to be obliviously retrieved and how it is packed (batched) into CKKS
ciphertexts can be flexibly set at the time of retrieval.

Concretely, on two-million data items, the storage size in our solu-
tion is 16 MB (cf. 168 MB in the baseline experiment of directly storing
and retrieving batched CKKS ciphertexts with Z-standard library for
compression), the storage runtime is 2s (cf. 8s), the oblivious retrieval
runtime is 18s (cf. 2.5s), and communication size and time is 331 MB and
0.2s. The amortized performance per data item is therefore: 8 bytes of
storage, 1µs and 9µs for storage and retrieval runtime respectively, and
165 bytes and 0.1µs communication.

We stress that the oblivious retrieval runtime is minor in comparison
to the homomorphic computation to be applied on the encrypted data,
e.g., when integrated with privacy preserving machine learning solutions.
As a concrete example, integrating our oblivious retrieval with homomor-
phic evaluation of a 64-tree random forest on the retrieved cipheretexts
using the non-interactive solution of [4] yields 10ms amortized time per
data sample. See Table 3.

These results empirically demonstrate the practical usability of our
system. We note that our implementation was single threaded and sequen-
tial, which does not utilize the fact that our solution is embarrassingly

5

parallelizable; extending our implementation to incorporate paralleliza-
tion and streaming should gain a major further speedup.

Contribution 3: Secret sharing with fast homomorphic recon-
struction over the reals. We present the first perfect secret sharing
scheme supporting fast homomorphic reconstruction over the reals. The
scheme offers 2-out-of-2 secret sharing for secrets in [0, 1]. The homo-
morphic reconstruction requires only additive homomorphism over the
reals (as supported for example by CKKS), when given one encrypted
share and the other in cleartext (more generally, reconstruction is a de-
gree 2 polynomial over the reals, when both shares are the unknowns).
In particular, the reconstruction algorithm does not require high degree
computations such as reducing numbers modulo 1. In contrast, in all
prior secret sharing schemes, the reconstruction algorithm is either com-
puted over a finite field or ring (e.g., [61, 11, 14, 19, 20, 8, 49, 31, 26, 18]);
or involves operations such as reducing numbers modulo one [10, 25] that
are impractical for homomorphic computations even with state-of-the-art
techniques [44]; or does not achieve perfect security [30, 62].

Theorem 1 (secret sharing (informal)). There exists a 2-out-of-2
perfect secret sharing scheme for [0, 1] whose reconstruction algorithm is
a degree 1 polynomial over the reals when one of the two shares is the un-
known. Consequently, reconstruction can be homomorphically evaluated
(over one encrypted share) by any scheme supporting additive homomor-
phism over the reals.

Fig. 1: Architecture and data flow

6

1.2 Overview of our Construction

We overview the main ideas and tools in our construction. See an illus-
tration in Figure 1.

Store secret shares, homomorphically reconstruct to retrieve
HE-ciphertexts. Our starting point is the following idea. To store data,
first secret share it using a 2-out-of-2 secret sharing scheme (SSS), and
store the 1st (resp. 2nd) share with access authorized to the computing
(resp. auxiliary) server. To retrieve the data in HE-encrypted form, the
auxiliary server encrypts its share by the HE and sends the ciphertext
to the computing server; the computing server homomorphically recon-
structs the data, using his cleartext share together with the received en-
crypted share, to obtain the data in HE-encrypted form.

To instantiate the above idea we require a “HE-friendly SSS” whose
reconstruction algorithm can be efficiently computed over encrypted in-
put. For HE schemes over finite rings such as Paillier [56] and BGV [15],
additive secret sharing is friendly, as its reconstruction requires only ad-
ditive homomorphism over the finite ring. In contrast, for HE over the
reals, no friendly SSS was known prior to our work.

Friendly secret sharing for arithmetic over the reals. In our SSS,
the key idea for achieving fast homomorphic reconstruction over the reals
is to avoid the mod 1 step of [10, 25]. In [10, 25], sharing a number x ∈
[0, 1) is by sampling a random t ∈ [0, 1) and outputting shares s1 = t
and s2 = x + t mod 1; reconstructing is by outputting s1 + s2 mod 1. In
our SSS for reals we replace the mod 1 step of [10, 25] with a masking
of both the fractional and integral parts of x + t as follows. To share a
secret x ∈ [0, 1] we sample independent uniformly random t ∈ [0, 1) and
b ∈ {0, 1}, outputting shares s1 = b + t and s2 = sint + sfrac for sint =
⌊x+ t⌋+ b mod 2 and sfrac = x+ t mod 1; whereas our reconstruction
outputs sfrac − t + (−1)bsint + b (all operations are computed over the
reals).

The key property of our scheme is that, when given cleartext b + t
and encrypted sint, sfrac as in our oblivious retrieval protocol, the recon-
struction algorithm is a degree 1 polynomial in sint, sfrac, and therefore
it can be efficiently evaluated using any additive homomorphic encryp-
tion over the reals e.g. CKKS. Analogously, given cleartext sint + sfrac
and encrypted b, (−1)b and t, the reconstruction algorithm is a degree 1
polynomial in the latter. The security of our SSS essentially follows by
noticing that sfrac is a masking of x by adding to it a random t ∈ [0, 1)
and reducing modulo 1, and sint is a masking of the integral part of x+ t

7

by XOR-ing it with a random bit b. The key point however is that we
never have to compute this reduction modulo 1 during reconstruction.

Storage optimized to zero overhead. To attain zero overhead over
storing the data in cleartext, instead of storing both shares we store only
the 2nd share (i.e., s2 = sint + sfrac), while generating the 1st share
on-the-fly, pseudo-randomly, using a pseudorandom function fk with key
k accessible to the data producer and computing server, but not the
auxiliary server. We require only a single persistent key k to be used in
all store and retrieve sessions. This works because the 1st share in our
SSS for reals is chosen uniformly at random and independently of the
secret (likewise, in additive secret sharing over a finite ring). Since the
share size in our SSS for reals (likewise, in additive secret sharing over
a finite ring) has the same size as the cleartext data, the storage size is
identical to storing the data in cleartext.

1.3 Other Related Work

Storage systems utilizing secret sharing. Secret sharing is used in
the context of storage systems to ensure data availability and confiden-
tiality, see a survey in [50] Section 4.6.9. In contrast, it has not been used
for oblivious HE-retrieval prior to our work.

The shares size is a major consideration in the context of storage sys-
tems due to the high cost of storage. Secret sharing based storage solutions
typically employ Krawczyk’s computational secret sharing scheme [48]
that has nearly optimal share size: the total size of the shares

∑n
i=1 |si| =

|x| + n|K| for |x| the data size, |K| the size of a symmetric encryption
key freshly generated for each data item, and n the number of shares. All
solutions use secret sharing over a finite field or ring (see a survey in [9]).

In contrast, in our work we propose a new secret sharing scheme for
storage that is over real numbers. The total size of the shares in our
scheme is |x|+ |K|, consisting of the data x and a key K (cf. |x|+ 2|K|
in [48]); moreover, the key is never revealed to the other party in our
compact storage solution, and therefore we can use a single persistent
key for all data (rather than requiring a fresh key to be generated and
stored for each data item in [48]).

MPC utilizing secret sharing. Computing on secret shared data using
an interactive protocol involving multiple rounds dates back to the circuit
based methodology introduced in [37, 38, 21] and supported by a multi-
tude of MPC frameworks such as ABY [29], SPDZ [27], Sharemind [14]

8

and more (see a survey in [40]). In all these protocols, the computation is
over finite fields or rings, and the number of rounds is the mutiplicative
depth of the circuit specifying the computation.

In contrast, in our solution secure computation requires only a sin-
gle round of interaction for converting secret shares to data encrypted
by homomorphic encryption, whereas the rest of the computation can
be non-interactive via homomorphic evaluation on the encrypted data.
Moreover, our scheme supports computation also over the reals (rather
than only over a finite field or ring).

Mixed protocols. Mixed or hybrid protocols switch between several se-
cure computation techniques and data representations in order to improve
efficiency. In the ABY framework [29] the conversion is between Arith-
metic (A) and Boolean (B) secret sharing and Yao’s (Y) garbled circuits.
In other works additive homomorphic encryption is employed to securely
generate secret shares of Beaver multiplication triples (e.g. [28]) or of the
data (e.g. [64]) by homomorphically evaluating the sharing algorithm of
the secret sharing scheme. All these works use secret sharing over finite
fields or rings.

In contrast, in our work we homomorphically evaluate the reconstruc-
tion algorithm of the secret sharing scheme (rather than its sharing al-
gorithm); and the secret sharing scheme is over the reals (rather than a
finite field or ring).

Homomorphic decryption for symmetric ciphers. Naehrig et al.
[55] suggested transforming AES ciphertexts into HE ciphertexts via ho-
momorphic evaluation of AES decryption when given as input a HE en-
cryption of the AES decryption key. This was followed by a line of work
for AES ciphers [34, 32] and other symmetric ciphers such as LowMC [6],
Kreyvium [17], FLIP and FiLIP [53, 52], RASTA and MASTA [53, 39],
and HERA [24] (see a survey [3]). However, this approach currently of-
fers a running time that is not practical for handling massive amounts of
data. Moreover, using the non standardized ciphers does not comply with
industry practices of using AES.

In contrast, our solution is at least 104× faster than the above works,
albeit in the two-server model.

Paper Organization

The rest of this paper is organized as follows. Preliminary terminology
and definitions appear in Section 2. The problem statement, including
the system’s description and defining the compact storage with oblivious

9

HE-retrieval primitive, in Section 3. Our constructions and theorems in
Section 4. The implemented system and empirical evaluation in Section 5.
Conclusions in Section 6.

2 Preliminaries

We use standard definitions for functions being negligible with respect to
a system parameter λ called the security parameter, denoted neg(λ); sim-
ilarly for polynomial, where ppt stands for probabilistic polynomial time
in λ. We follow standard definitions for probability ensembles and com-
putationally indistinguishability, denoted ≈c; when two distributions are
identical we denote this by ≡. See the formal definitions in [45].

Definition 1 (secret sharing). A 2-out-of-2 secret sharing scheme for
A is a pair of ppt algorithms (Shr,Rec) such that:

– Shr is a randomized algorithm that given x ∈ A outputs a pair of
shares (s1, s2).

– Rec is a deterministic algorithm that given a pair of shares (s1, s2)
outputs an element in A.

The correctness requirement is that for all x ∈ A, Rec(Shr(x)) = x.
The (perfect) security requirement is that for every x, x′ ∈ A and i ∈
{1, 2}, the following two distributions are identical: {si}(s1,s2)←Shr(x) ≡
{s′i}(s′1,s′2)←Shr(x′).

Definition 2 (homomorphic encryption (HE)). A homomorphic public-
key encryption (HE) scheme E = (Gen,Enc,Dec,Eval) with message space
M is a quadruple of ppt algorithms as follows:

– Gen (key generation) takes as input the security parameter 1λ, and
outputs a pair (pk, sk) consisting of a public key pk and a secret key
sk; denoted: (pk, sk)← Gen(1λ).

– Enc (encryption) takes as input a public key pk and a message m ∈M,
and outputs a ciphertext c; denoted: c← Encpk(m).

– Dec (decryption) is a deterministic algorithm that takes as input a
secret key sk and a ciphertext c, and outputs a decrypted message m′;
denoted: m′ ← Decsk(c).

– Eval (homomorphic evaluation) takes as input the public key pk, a cir-
cuit C :Mℓ →M, and ciphertexts c1, . . . , cℓ, and outputs a ciphertext
ĉ; denoted: ĉ← Evalpk(C; c1, . . . , cℓ).

10

The correctness requirement is that for every (pk, sk) in the range of
Gen(1λ) and every message m ∈M,

Pr[Decsk(Encpk(m)) = m] ≥ 1− neg(λ);

the scheme is C-homomorphic for a circuit family C if for all C ∈ C
and for all inputs x1, . . . , xℓ to C, letting (pk, sk) ← Gen(1λ) and ci ←
Encpk(xi) it holds that:

Pr[Decsk(Evalpk(C; c1, . . . , cℓ)) ̸= C(x1, . . . , xℓ)] ≤ neg(λ)

(where the probability is over all randomness in the experiment).

A HE scheme E = (Gen,Enc,Dec,Eval) is CPA-secure if no ppt adversary
A can distinguish between the encryption of two equal length messages
x0, x1 of his choice; See the formal definition in [45].

Psedudorandom functions (PRF) We call an efficiently computable
family of keyed functions F = {fk : {0, 1}∗ → B}k∈{0,1}λ,λ∈N pseudoran-
dom if for all λ, a uniformly random function fk from F s.t. |k| = λ
is computationally indistinguishable from a uniformly random function
from the set of all functions having the same domain and range. See a
formal definition in [45], Definition 3.25.

3 Problem Statement

Our goal is to attain compact storage with oblivious HE-retrieval that
is compatible to existing system architecture in enterprises. To formally
specify what this entails we first describe the relevant system components
(Section 3.1) and then formally define the primitive of storage with HE-
retrieval and its desired properties of oblivious retrieval and compact
storage (Section 3.2). See illustrations in Figures 1 and 6.

3.1 System Description

The system entities most relevant to us are data producers, computing
server and auxiliary service, denoted dataProd, compSrv and auxService,
respectively. All entities have access to a storage repository and key man-
agement resources modeled as ideal functionalities, denoted Fstorage and

F ids,E
keys respectively. These resources may be accessed by all system entities,

including ones beyond those considered here, using the same persistent
resources in all sessions and protocols running in the ecosystem.

11

Data producers store data in the storage repository. There may be
multiple data produces, and they may place data in storage over a period
of time, possibly interleaved with retrieval requests from the comput-
ing server. The computing server retrieves from storage HE-ciphertexts
for selected data items, where retrieval may involve an interactive pro-
tocol with the auxiliary service; the computing server may subsequently
execute homomorphic computations such as privacy preserving machine
learning over the retrieved encrypted data. The auxiliary service assists
the computing server when called by it. The threat model assumes that
the computing server and auxiliary service are non-colluding as formalized
in Definition 3.

The storage functionality Fstorage (Figure 2) supports data Upload
and Download requests from parties.3 Stored records are of the form
(index, value, id set) where index is a unique record identifier, value is
the stored data, and id set is the set of parties authorized to download
the record. Access control can be enforced by storing encrypted data with
symmetric key available to authorized parties.

The (asymmetric) key management functionality F ids,E
keys (Figure 3)

supports key generation and key retrieval. The functionality is parame-
terized by a public-key encryption scheme E and a set of identities ids
specifying which entities are authorized to access the secret key. Upon
receiving a key retrieval request (Retrieve) from some party P , the func-
tionality replies with the stored public key, and if P is an authorized party,
i.e. P ∈ ids, then the reply includes also the secret key. The symmetric
key management functionality is analogously defined.

Various company applications may be authorized to request compu-
tations on stored data and be permitted to access the result, albeit they
might not have permission to access the raw data or may lack the comput-
ing resources required for the computation. The computing server may be
called by such applications, specifying the data items to be retrieved and
the computation to be homomorphically evaluated on them, and receiv-
ing from the computing server the encrypted result of the computation,
where encryption is under the public key associated with the application
identity in the key management functionality F ids,E

keys . If the application is
authorized to access the secret key then it may decrypt to obtain the clear-
text result. In the following we focus on the storage and retrieval tasks
while disregarding the integration with subsequent homomorphic compu-
tations, because the latter is straightforward by feeding the retrieved HE
ciphertexts as input to the homomorphic computation. Furthermore, to

3 We remark that records update is not included in the model.

12

simplify the presentation we hide details on the application requesting
the computation by hard-wiring a single application’s identity into the
key management functionality; this can be extended in a straightforward
manner to manage multiple keys for multiple identities.

Shared Functionality Fstorage

Shared functionality Fstorage proceeds as follows:

Upload. Upon receiving from a party P a message:

(Upload, index, value, id set)

record the tuple (index, value, id set) (ignore if a record (index, ·, id set) was
previously recorded).

Download. Upon receiving from a party Pj a message:

(Download, index)

output (index,B) to Pj , where B is the set of all value such that
(index, value, id set) was previously recorded by Fstorage and id set either contains
Pj or is ⊥.

Fig. 2: The storage functionality

Shared Functionality F ids,E
keys

Parameterized by identities ids and a HE scheme E = (Gen,Enc,Dec), shared
functionality F ids,E

keys proceeds as follows:

Retrieve key. Upon receiving a (Retrieve) message from a party Pj compute
(pk, sk)← Gen(1λ) and record it, if no record (pk, sk) exists. If Pj ∈ ids return
(pk, sk), otherwise return pk.

Fig. 3: The asymmetric keys functionality

3.2 Compact Storage with Oblivious Retrieval Primitive

The goal of compact storage with oblivious HE-retrieval is to eliminate the
high storage overhead associated with storing data encrypted with HE.
For this purpose we first define a primitive of storage with HE-retrieval
supporting store and retrieve operations where retrieve must output the

13

data in HE-encrypted form. We then define the desired properties of obliv-
iousness and compactness:

– Obliviousness: data secrecy must be preserved at all time, revealing
no information on data content.

– Compactness: stored data may be maintained in any form, not neces-
sarily encrypted by HE, with the goal of attaining lightweight storage.
We call the storage compact if storage size is the same, up to a con-
stant factor, as the data size.

When we want to explicitly specify the HE scheme E under which the re-
trieved data is encrypted, we use the name compact storage with oblivious
E-retrieval.

Definition 3 (compact storage with oblivious E-retrieval). Let
E = (Gen,Enc,Dec,Eval) be a HE scheme and A the data domain. A stor-
age with E-retrieval for A consists of two protocols π = (store, retrieve)
executed on data x ∈ A to be stored and obliviously retrieved, a record
identifier index ∈ {0, 1}∗, and a security parameter λ, as follows.

– store is executed by dataProd on input (x, index). During the ex-
ecution, dataProd may perform some computations and may send
(Upload, index, ·, ·) to Fstorage for some values and some identities
(dataProd has no output).

– retrieve is executed by compSrv on input index, and by auxService that
has no input. During the execution compSrv and auxService may in-
teract, and both may send
(Download, index) to Fstorage to download records, and may send (Retrieve)

to F ids,E
keys to obtain the public key pk. The output of compSrv is a ci-

phertext c with respect to pk (whereas auxService have no output).

We denote the output and view of compSrv in an execution of π by
outπcompSrv(x; index, λ) and viewπ

compSrv(x; index, λ) respectively (similarly
for auxService), where the view consists of the party’s input, randomness
and received messages during the execution. We denote the values stored
by Fstorage in the execution by storageπ(x; index, λ).

Correctness. The correctness requirement is that dataProd, compSrv and
auxService are ppt, and for any x ∈ A, any index s.t. at the time store was
executed on (x, index) a record (index, ·, id set) with id set containing
idauxService or idcompSrv has not been previously recorded in Fstorage,

4 and

4 The restriction on index is required by our modeling of Fstorage with no updating
of stored data; extensions are possible.

14

keys (pk, sk) generated by F ids,E
keys it holds that:

Pr
[
Decsk

(
outπcompSrv (x; index, λ)

)
̸= x

]
≤ neg(λ)

where the probability is taken over the random coins of π.

Obliviousness. We say that π is oblivious if for every ppt compSrv∗

and auxService∗, and every ppt distinguisher D that chooses x0, x1 ∈ A
s.t. |x0| = |x1| and index, there exists a negligible function neg(·) such
that for every λ ∈ N, both the following holds:

–
∣∣Pr[D(viewπ

compSrv∗(x0; index, λ)) = 1]−
Pr[D(viewπ

compSrv∗(x1; index, λ)) = 1]
∣∣ ≤ neg(λ)

–
∣∣Pr[D(viewπ

auxService∗(x0; index, λ)) = 1]−
Pr[D(viewπ

auxService∗(x1; index, λ)) = 1]
∣∣ ≤ neg(λ)

where the probability is over the random coins of all parties.

Compactness. We say that π is compact (or, t-compact) if there exists
a constant t > 0 s.t. for all x ∈ A, index and λ

|storageπ(x; index, λ)| ≤ t · |x|

where |z| denotes the binary representation length of z.

4 Our Compact Storage with HE-Retrieval

We present our compact storage with oblivious E-retrieval. First we present
our generic construction of a compact storage with oblivious E-retrieval
from any secret sharing scheme satisfying required properties that we
define (Section 4.1). Next we present our secret sharing scheme for reals
and prove it satisfies these properties (Section 4.2). We conclude by show-
ing that instantiating our generic construction using our secret sharing
scheme for reals yields a 1-compact storage with oblivious E-retrieval over
the reals (Corollary 2, Section 4.2).

4.1 Generic Construction from Secret Sharing

We present a generic construction of a t-compact storage with oblivious E-
retrieval from any secret sharing scheme satisfying the required properties
specified below. See Figure 4 and Theorem 2 for the formal details of our
generic construction, and its overview in Section 1.2.

15

Properties of secret sharing schemes: friendliness, random 1st
share and compact 2nd share We first define the properties of 2-out-
of-2 secret sharing schemes used in our generic construction: friendliness,
random 1st share and compact 2nd share. We say that a secret sharing
scheme S is E-friendly with respect to a C-homomorphic scheme E , if
homomorphic evaluation of its reconstruction algorithm with hardwired
first share is in C. We say that S has a random 1st share if its first share
can be sampled uniformly at random independently of the secret. We say
that S has a t-compact 2nd share if for every secret x, the 2nd share size
is at most t times the size of x.

Our generic construction In Figure 4 we present our generic con-
struction for storage with E-retrieval, denoted π = (store, retrieve). In

Common parameters: A HE scheme E = (Gen,Enc,Dec,Eval), a E-friendly 2-out-
of-2 secret sharing scheme for a domain A with random 1st share, denoted S =
(Shr1, Shr2,Rec), and a security parameter λ.

Parties and resources: The parties are dataProd, compSrv and auxService, all with
access to the the (asymmetric) key management functionality F ids,E

keys and the stor-
age functionality Fstorage. In addition, dataProd and compSrv (but not auxService)
have access to a function fk from a pseudorandom family F = {fk : {0, 1}∗ →
S1}k∈{0,1}λ,λ∈N.

Inputs and outputs: The input of dataProd is (x, index) for x ∈ A; the input of
compSrv is index (other parties have no input). The output of compSrv is a ciphertext
c (other parties have no output).

Storage protocol: store is executed by dataProd on input (x, index), as follows:

1. Compute s1 ← fk(index) and s2 ← Shr2(x, s1)
2. Send (Upload, index, s2, {idauxService}) to Fstorage

Retrieval protocol: retrieve is executed by compSrv on input index, as follows:

1. compSrv computes s1 ← fk(index) and sends index to auxService.
2. auxService sends (download, index) to Fstorage to get s2.
3. compSrv and auxService each send (Retrieve) to F ids,E

keys to get the public key pk.
4. auxService computes c2 ← Encpk(s2) and sends the ciphertext c2 to compSrv.
5. Upon receiving c2, compSrv computes c← Evalpk(Recs1 ; c2) and outputs c.

Fig. 4: Our storage with oblivious HE-retrieval π = (store, retrieve) for A.

Theorem 2 we prove that our construction yields a t-compact storage with
oblivious E-retrieval for A.

16

Theorem 2 (compact storage w. oblivious retrieval). π = (store, retrieve)
in Figure 4 is a t-compact storage with oblivious E-retrieval for A, when-
ever instantiated with λ, E, S and fk satisfying all the following:

– E is a CPA-secure HE scheme.
– S is a E-friendly perfect secret sharing scheme for A with random 1st

share and t-compact 2nd share.
– fk is sampled uniformly at random from a pseudorandom function

family F = {fk : {0, 1}∗ → S1}k∈{0,1}λ,λ∈N s.t. |k| = λ.

Proof. See Appendix A.

Compact storage with oblivious retrieval for finite rings We
demonstrate how to instantiate our generic construction for finite rings
Zn. Observe that additive 2-out-of-2 secret sharing over Zn satisfies all
the required properties (friendliness, random 1st share and compact 2nd
share) as detailed next. Recall that in additive secret sharing, Shr(x) out-
puts uniformly random s1 ∈ Zn and s2 = x + s1 mod n and Rec(s1, s2)
outputs s1 + s2 mod n. Clearly, this has a random 1st share, 1-compact
2nd share, and is friendly with respect to any additive-homomorphic en-
cryption over Zn. Together with Theorem 2 this implies the following
corollary.

Corollary 1. Figure 4 is a 1-compact storage with oblivious E-retrieval
for Zn, whenever instantiated with:

– E is a CPA-secure HE scheme supporting additive homomorphism over
Zn, e.g., Paillier and BGV;

– S is the additive secret sharing scheme for Zn;
– fk is sampled uniformly at random from a pseudorandom function

family F = {fk : {0, 1}∗ → Zn}k∈{0,1}λ,λ∈N s.t. |k| = λ (the security
parameter).

Support for batched storage and retrieval. For simplicity of the pre-
sentation in Figure 4 we described storage and retrieval of a single data
item. Nonetheless, our solution extends to support batched storage and
retrieval of several data items at a time; moreover, the batched retrieval
supports dynamic flexible choice of what data items to pack together in
each ciphertext of the HE. Namely, store can be executed on input con-
sisting of n pairs (xi, indexi); likewise, retrieve can retrieve multiple data
items specified by their indices together with (optionally) a specification
of which data items to pack together in each retrieved HE ciphertext

17

(batching pattern). We note that the batching pattern should of course
comply with the upper bound on how many data items can be packed in
each ciphertext.

The key for achieving the above is that auxService encrypts its shares
while packing in each HE ciphertext the shares corresponding to the re-
quested data items; likewise, the computing server encodes its plaintext
shares while adhering to the requested batching pattern, and upon receiv-
ing the packed encrypted shares from auxService homomorphically eval-
uates the reconstruction algorithm in a single-instruction-multiple-data
(SIMD) fashion.

4.2 Secret Sharing for Reals

We present our 2-out-of-2 secret sharing scheme for real numbers5 in Fig-
ure 5 (see also the overview in Section 1.2), and prove it satisfies all prop-
erties required for our generic construction (as specified in Theorem 2).

Theorem 3 (secret sharing over the reals). The scheme S = (Shr,Rec)
in Figure 5 is a secret sharing scheme for real numbers in [0, 1] (i.e. it is
correct and secure). Furthermore, it has a random 1st share, 1-compact
2nd share, and it is E-friendly for every HE scheme E with additive-
homomorphism over the reals.

Proof (Proof of Theorem 3, correctness). To prove correctness holds we
show that for all x ∈ A, Rec(Shr(x)) = x. Fix x ∈ [0, 1] and let (s1, s2)←
Shr(x). By definition of Shr there exists b ∈ {0, 1} and t ∈ [0, 1) such that
s1 = b+ t and s2 = (−1)b (⌊x+ t⌋ − b) + x+ t− ⌊x+ t⌋. We inspect the
steps of Algorithm Rec on input (s1, s2). In Step 1, Rec extracts from s1
its integral and fractional parts, which by the definition of s1 in Shr(x)
are equal to the said values b and t respectively. In Step 2, Rec extracts
from s2 its integral and fractional parts, which by the definition of s2 in
Shr(x) are equal to sint = (−1)b (⌊x+ t⌋ − b) and sfrac = x+ t− ⌊x+ t⌋.
In Step 3, Rec outputs x′ = sfrac − t+ (−1)bsint + b. Assigning the value
sint = (−1)b (⌊x+ t⌋ − b) we have that:

x′ = sfrac − t+ (−1)b((−1)b (⌊x+ t⌋ − b)) + b

= sfrac − t+ (⌊x+ t⌋ − b) + b

5 The scheme takes secrets from the unit interval [0, 1]; nonetheless, as noted in [25],
composing a secret sharing scheme over [0, 1] with the bijection from all reals to this
interval yields a secret sharing for arbitrary real numbers.

18

Assigning the value sfrac = x+ t− ⌊x+ t⌋ we have that:

x′ = x+ t− ⌊x+ t⌋ − t+ (⌊x+ t⌋ − b) + b

which is in turn equal to x, and hence correctness holds.

Proof (Proof of Theorem 3, security). To prove that (perfect) security
holds we show that for every x ∈ A and i ∈ {1, 2}, the distribution
{si}(s1,s2)←Shr(x) is uniformly random in [0, 2). The first share s1 is the
sum of independent and uniformly random b ∈ {0, 1} and t ∈ [0, 1), and
so s1 is uniformly random in [0, 2). The second share s2 is the sum of its
integral and fractional parts sint and sfrac respectively. We show below
that the pair (sint, sfrac) is uniformly random in {0, 1} × [0, 1), and so
their sum s2 = sint + sfrac is uniformly random in [0, 2).

We show that the (sint, sfrac) is uniformly random in {0, 1} × [0, 1).
The integral part sint = (−1)b (⌊x+ t⌋ − b) is the XOR of ⌊x+ t⌋ with
a uniformly random bit b, and therefore sint is a uniformly random bit.
The fractional part sfrac = x + t − ⌊x+ t⌋ is equal to (x + t) mod 1 for
a uniformly random t ∈ [0, 1), and therefore sfrac is uniformly random
in [0, 1). Moreover, since the randomness in sint and sfrac emanates from
the independent random variables b and t respectively, then sint and sfrac
are likewise independent, and so the pair (sint, sfrac) is uniformly random
in {0, 1} × [0, 1).

We conclude that s1 and s2 are uniformly random in [0, 2), which in
turn implies that for every x, x′ ∈ A and i ∈ {1, 2}, the two distributions
{si}(s1,s2)←Shr(x) and {s′i}(s′1,s′2)←Shr(x′) are identical, and therefore perfect
security holds.

Proof (Proof of Theorem 3, random and compact shares). Our
scheme has a random first share (specifically, the first share is b + t for
independent uniformly random b ∈ {0, 1} and t ∈ [0, 1)). Furthermore, the
second share s2 is 1-compact for every input x, i.e. |s2| = |x|, because x ∈
[0, 1] and s2 ∈ [0, 2) are real numbers specified with the same precision.

Proof (Proof of Theorem 3, friendliness). By inspection, the reconstruc-
tion algorithm Recb,t(·, ·) adds or subtracts the input values sint and sfrac,
the hardwired parameters b and t, and their product, but never multi-
plies together unknown input values. That is, Recb,t(·, ·) computes a linear
polynomial in its input (sint, sfrac), and therefore Recb,t can be homomor-
phically evaluated by any additively homomorphic encryption scheme.

19

Shr(x). Given x ∈ [0, 1], sample independent and uniformly a random b ∈ {0, 1} and
t ∈ [0, 1) and output a pair (s1, s2) defined by:

s1 = b+ t

s2 = (−1)b (⌊x+ t⌋ − b) + x+ t− ⌊x+ t⌋

where all operations are computed over the reals.
In the following we denote the integral and fractional parts of s2 by sint =
(−1)b (⌊x+ t⌋ − b) and sfrac = x+ t− ⌊x+ t⌋, respectively.

Rec(s1, s2). Given shares s1, s2 ∈ [0, 2), do as follows:

1. Set b← ⌊s1⌋ and t← s1 − b
2. Set sint ← ⌊s2⌋ and sfrac ← s2 − sint

3. Output sfrac − t+ (−1)bsint + b

Remark. The pair (sint, sfrac) (similarly, (b, t)) is an encoding of s2 (similarly, s1)
by its integral and fractional parts. Denote by Recb,t(·, ·) the reconstruction algorithm
when b, t are parameters and (sint, sfrac) is the input. Homomorphic evaluation of
Recb,t(·, ·) is supported by any encryption scheme that is additive-homomorphic over
the reals.

Fig. 5: Secret sharing for real numbers (all arithmetic is over the reals)

Remark 1 (Finite precision) When implementing this scheme, the se-
cret x is specified by finite precision (publicly known), and s1 is sampled
at the same precision. The analysis straightforwardly extend to this finite
precision case. In particular, security holds as the shares are uniformly
distributed in [0, 2) with the said precision; and correctness holds for all
reals x ∈ [0, 1] and s1 ∈ [0, 2), in particular for those captured by the finite
precision.

As a corollary of Theorem 2 and Theorem 3 we conclude that Figure 4,
when instantiated with a HE scheme E over the reals (e.g. CKKS) together
with our secret sharing scheme for reals, is a 1-compact storage with
oblivious E-retrieval for real numbers.

Corollary 2. Figure 4 is a 1-compact storage with oblivious E-retrieval
for reals, whenever instantiated with:

– E is a CPA-secure HE scheme supporting additive homomorphism over
the reals, e.g., CKKS.

– S is our secret sharing scheme for reals (Figure 5).
– fk is sampled uniformly at random from a pseudorandom function

family F = {fk : {0, 1}∗ → [0, 2)}k∈{0,1}λ,λ∈N s.t. |k| = λ (the security
parameter).

20

5 Empirical Evaluation

We implemented a system running on AWS EC2 instances with AWS S3
storage realizing our compact storage with oblivious HE-retrieval over the
reals, and ran extensive experiments demonstrating that our system has
compact storage with zero overhead over storing AES encrypted data, and
nearly optimal runtime complexity. Details on our system, experiments
and results appears in Sections 5.1-5.3, respectively, further optimizations
appear in Section 5.4.

5.1 The Implemented System

We implemented our compact storage with oblivious HE-retrieval (Fig-
ure 4), instantiated with: (1) CKKS [22] HE scheme using Microsoft SEAL
version 3.6.2 [60]; (2) our secret sharing scheme for reals (Figure 5); and
(3) a PRF based on HMAC with SHA-256 using OpenSSL version 1.1.1.
The implementation is in C++, compiled with g++ version 9.3.0 and
C++ standard 17. Everything is running on a Docker container, based
on an Ubuntu 20.04.2 image.

We ran our implementation on AWS EC2 instances with AWS S3
storage. We use a separate AWS EC2 instance for each entity (dataProd,
compSrv and auxService), all residing in the same AWS subnet. Our imple-
mentation is single threaded and runs on standard EC2 instances of type
M5.2xlarge (32 GB RAM and up to 10 Gbps network bandwidth). The
storage is in an AWS S3 bucket residing in the same AWS region as the
EC2 instances. Access control is implemented by using the AES-GCM-
256 symmetric key encryption to encrypt stored shares for the data under
a secret-key accessible to dataProd and auxService, but not to compSrv.
Communication between compSrv and auxService is via HTTP using Mi-
crosoft cpprestsdk library. See Figures 1 and 6.

5.2 Experiments

We measured storage size, runtime and communication in our system
and compared performance to the baseline solution of storing and down-
loading the data directly in HE-encrypted form using Zstandard library
compression.

We use the same parameters when executing both our system and
the baseline solution, as follows. Both are implemented with CKKS in
Microsoft SEAL as the HE scheme, using the same AWS S3 bucket for

21

Fig. 6: System architecture

storage, and with security parameter 128 bits. The degree of the cyclo-
tomic polynomial ranged over all values supported in SEAL: 8192, 16384
and 32768, with 30 bits of precision for the plaintext moduli at each level
of homomorphic computation. The number slots of data items that can
be packed in each ciphertext is half the degree of the cyclotomic polyno-
mial. Performance is evaluated both in batched mode (packing slots data
items in each ciphertext) and in un-batched mode (a single data item in
each ciphertext). Data items are synthetically generated from [0, 1] with
finite precision, and represented as double-precision numbers according
to the IEEE 754 standard [1]. The randomness in the secret sharing is
taken with the same precision. The number of data items n ranges over
the following values: 2, 4096, 16384, 98304, 507904 and 2031616.

Keys are kept in cache memory of the relevant party, and are reused
across executions of the protocol. Each experiment is repeated 20 times,
taking the average and standard-deviation.

We ran both end-to-end and microbenchmarks experiments. The end-
to-end experiments compare the performance of our system vs. the base-
line solution in:

– Storage size
– End-to-end runtime during store
– End-to-end runtime during retrieve

The microbenchmarks measure runtime in each computation step and the
communication.

22

Table 1: Microbenchmarks to Figure 4 steps correspondence
Entity Data Producer Computing Server Auxiliary Server

Benchmark
Share

AES
Upload

Process HMAC

Reconstruct Download
AES HE

Prepare

operation encrypt HTTP share decrypt encrypt HTTP

response derivation response

Fig. 4 step #
store,1

access
store,2

read stream
retrieve,1 retrieve,5 retrieve,2

access
retrieve,4

serialize &

or other details control & de-serialize control write to stream

5.3 Results

The empirical evaluation demonstrates our systems attains:

– Compact storage size: 10× better than the baseline in batched mode,
and 104× better if un-batched

– Fast end-to-end runtime: only twice the optimal time

See Table 2 and Figures 7a-7b for our results in experiments with a de-
gree 8192 cyclotomic polynomial. The experiments with degrees 16384
and 32768 cyclotomic polynomial show essentially no change in perfor-
mance, provided full batching capacity is utilized (because the increase
in complexity per ciphertext is fully compensated by the decrease in the
number of ciphertexts due to slots being half that degree). Table 4 shows
the breakdown of end-to-end storage and retrieval runtime measurements
into specific operations and http communication complexity; See Table 1
for the correspondence to Figure 4.

Furthermore, we report the runtime for oblivious retrieval followed by
homomorphic random forest evaluation, where the evaluation executes
the non-interactive algorithm of [4] on encrypted data and cleartext for-
est consisting of 64 full binary trees of depth three. The number of data
samples m in the homomorphic evaluation is: 128, 256, 1536, 8192 and
32768. The evaluation employs SIMD. Our results exhibit fast perfor-
mance: 10ms amortized runtime per data sample for oblivious retrieval
followed by the homomorphic random forest evaluation on the retrieved
ciphertexts; See Table 3.

We point out that, unlike the baseline solution where one is forced to
retrieve full batches, we support cherry picking of exactly the data items
that are needed. Moreover, we support batching the retrieved data items
according to the batching pattern specified at the time of retrieval, that
can be tailored to best optimize the homomorphic computation, e.g., the
random forest evaluation.

23

(a) Storage size (MB) in our solution vs. baseline, on data items encrypted one-by-one
(top) or in batched form (bottom)

(b) End-to-end time (seconds) in our solution vs. baseline for storage (top) and retrieval
(bottom)

Fig. 7: Size and time of our solution vs. baseline

24

Table 2: Storage size (MB) and runtime (seconds) in end-to-end experi-
ments

Number Storage Size (MB) Runtime (s)

of data Batched Un-batched Store Retrieve

items
Ours

Base-
Ours

Base-
Ours

Base-
Ours

Base-

line line line line

2 0.00003 0.3 0.00006 0.8 0.02 0.1 0.05 0.03

4,096 0.03 0.3 0.1 1,389 0.06 0.1 0.06 0.04

16,384 0.1 1.4 0.5 5,554 0.07 0.1 0.16 0.05

98,304 0.8 8 3 33,325 0.2 0.5 0.9 0.1

507,904 4 42 16 172,179 0.7 1.9 4.5 0.6

2,031,616 16 168 65 688,718 2.0 7.8 17.8 2.5

Table 3: Retrieve-then-evaluate runtime (seconds)

Samples Retrieve-then-Eval (s)

128 1.2

256 2.5

1,536 14.7

8,192 78.1

32,768 312.2

Table 4: Microbenchmarks
Number Runtime (seconds) HTTP

of Data Producer Computing Server Auxiliary Server Communication

data

Share
AES

Upload

Process HMAC

Reconstruct Download
AES HE

Prepare Size Runtime

items encrypt HTTP share decrypt encrypt HTTP (MB) (seconds)

response derivation response

2 0.00001 0.00001 0.02 0.01 0.00001 0.004 0.01 0.000003 0.01 0.01 0.7 0.001

4,096 0.003 0.00005 0.06 0.01 0.003 0.004 0.02 0.00001 0.01 0.009 0.7 0.001

16,384 0.01 0.0002 0.06 0.03 0.01 0.02 0.02 0.00004 0.06 0.04 2.7 0.001

98,304 0.08 0.001 0.1 0.2 0.07 0.09 0.03 0.0002 0.3 0.2 16 0.01

507,904 0.4 0.005 0.3 1.0 0.5 0.5 0.08 0.001 1.7 1.2 83 0.06

2,031,616 1.5 0.02 0.4 3.9 1.5 1.9 0.3 0.01 6.7 4.8 331 0.2

25

5.4 Optimizations: Parallel Computing and Streaming

The retrieval runtime in our solution can be significantly and easily opti-
mized by parallelization. In our current implementation, all operations are
performed sequentially. They can be fully parallelized so that each thread
handles a single HE batch (for encryption) or HE ciphertext (for serializa-
tion, deserialization, reconstruction), that make up together about 78%
of the retrieval runtime. Using AWS EC2 instances with to 96 vCPUs,
we can reduce 78% of the current runtime by a factor of to 96.

Further optimization can be achieved by handling the data sent from
Auxiliary Server to Computing Server as a stream. In the current im-
plementation, Computing Server waits for the http response to be re-
turned from Auxiliary Server before it starts to process it. In contrast,
with streaming implementation, the Computing Server will process the
HE ciphertexts as it gets them, while, in parallel, Auxiliary Server still
generates the remaining ones. This will yield an overall running time that
is the maximum of the Computing and Auxiliary servers runtime rather
then their sum, which amounts to roughly 40% reduction in the total
runtime.

6 Conclusions

We presented a compact storage with oblivious HE-retrieval solution that
eliminates the high storage overhead associated with storing HE-ciphertexts.
Our solution attains: compact storage, equal to storing AES ciphertexts;
fast runtime, nearly as fast as directly storing and retrieving HE cipher-
texts; dynamic control, at the time of retrieval, of the data items to be
retrieved and the HE parameters and batching profile; compatibility to
common industry’s architecture tools and best-practices; and rigorous se-
curity analysis. As a central tool we introduce the first perfect secret
sharing scheme with efficient homomorphic reconstruction over the reals.
We implemented our solution into a system running on AWS EC2 in-
stances and S3 storage. Further major performance speedup is available
via parallelization and streaming. This gives a viable solution for use-
cases requiring homomorphic computation on sensitive data in long-term
storage.

References

1. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70,
2008.

26

2. Reform of EU data protection rules, May 2018.
3. A. Acar, H. Aksu, A. S. Uluagac, and M. Conti. A survey on homomorphic en-

cryption schemes: Theory and implementation. ACM Computing Surveys (CSUR),
51(4):1–35, 2018.

4. A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and M. Vald. Privacy-
preserving decision trees training and prediction. In ECML/PKDD (1), pages
145–161, 2020.

5. A. Akavia, H. Shaul, M. Weiss, and Z. Yakhini. Linear-regression on packed en-
crypted data in the two-server model. In M. Brenner, T. Lepoint, and K. Rohloff,
editors, Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, WAHC@CCS 2019, London, UK, November 11-15,
2019, pages 21–32. ACM, 2019.

6. M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. In E. Oswald and M. Fischlin, editors, Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages
430–454. Springer, 2015.

7. A. B. Alexandru, M. Morari, and G. J. Pappas. Cloud-based MPC with encrypted
data. In 57th IEEE Conference on Decision and Control, CDC 2018, Miami, FL,
USA, December 17-19, 2018, pages 5014–5019. IEEE, 2018.

8. M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation on floating
point numbers. In NDSS, 2013.

9. V. Attasena and N. Harbi. Secret sharing for cloud data security: a survey. The
VLDB Journal, 26:657–681, 2017.

10. G. Blakley and L. Swanson. Security proofs for information protection systems.
In 1981 IEEE Symposium on Security and Privacy, pages 75–75. IEEE, 1981.

11. G. R. Blakley. Safeguarding cryptographic keys. InManaging Requirements Knowl-
edge, International Workshop on, pages 313–313. IEEE Computer Society, 1979.

12. F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski. ngraph-he2: A high-
throughput framework for neural network inference on encrypted data. In Proceed-
ings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, pages 45–56, 2019.

13. F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski. ngraph-he: a graph com-
piler for deep learning on homomorphically encrypted data. In Proceedings of the
16th ACM International Conference on Computing Frontiers, pages 3–13, 2019.

14. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations, esorics. Google Scholar Google Scholar Digital Library
Digital Library, 2008.

15. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012, pages 309–325, 2012.

16. P. Bukaty. The California Consumer Privacy Act (CCPA): An Implementation
Guide. IT Governance Publishing, 2019.

17. A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier,
and R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In T. Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Re-
vised Selected Papers, volume 9783 of Lecture Notes in Computer Science, pages
313–333. Springer, 2016.

27

18. O. Catrina. Efficient secure floating-point arithmetic using shamir secret sharing.
In ICETE (2), pages 49–60, 2019.

19. O. Catrina and S. De Hoogh. Improved primitives for secure multiparty inte-
ger computation. In International Conference on Security and Cryptography for
Networks, pages 182–199. Springer, 2010.

20. O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In
International Conference on Financial Cryptography and Data Security, pages 35–
50. Springer, 2010.

21. D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure pro-
tocols. In Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 11–19, 1988.

22. J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for
arithmetic of approximate numbers. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, pages 409–437, 2017.

23. J. H. Cheon, D. Kim, Y. Kim, and Y. Song. Ensemble method for privacy-
preserving logistic regression based on homomorphic encryption. IEEE Access,
6:46938–46948, 2018.

24. J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon. Transci-
phering framework for approximate homomorphic encryption. In M. Tibouchi and
H. Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6-10, 2021, Proceedings, Part III, volume 13092 of
Lecture Notes in Computer Science, pages 640–669. Springer, 2021.

25. B. Chor and E. Kushilevitz. Secret sharing over infinite domains. Journal of
Cryptology, 6(2):87–95, 1993.

26. R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPDZ2k : Efficient
mpc mod 2k for dishonest majority. In Annual International Cryptology Confer-
ence, pages 769–798. Springer, 2018.

27. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Prac-
tical covertly secure mpc for dishonest majority–or: breaking the spdz limits. In
European Symposium on Research in Computer Security, pages 1–18. Springer,
2013.

28. I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Annual Cryptology Conference, pages 643–
662. Springer, 2012.

29. D. Demmler, T. Schneider, and M. Zohner. Aby-a framework for efficient mixed-
protocol secure two-party computation. In NDSS, 2015.

30. A. Dibert and L. Csirmaz. Infinite secret sharing–examples. Journal of Mathe-
matical Cryptology, 8(2):141–168, 2014.

31. V. Dimitrov, L. Kerik, T. Krips, J. Randmets, and J. Willemson. Alternative
implementations of secure real numbers. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 553–564, 2016.

32. Y. Doröz, Y. Hu, and B. Sunar. Homomorphic aes evaluation using ntru. IACR
Cryptol. ePrint Arch., 2014:39, 2014.

33. C. Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

34. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit.
In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology - CRYPTO

28

2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
850–867. Springer, 2012.

35. I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon. Privacy-preserving ridge
regression with only linearly-homomorphic encryption. In B. Preneel and F. Ver-
cauteren, editors, Applied Cryptography and Network Security - 16th International
Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume
10892 of Lecture Notes in Computer Science, pages 243–261. Springer, 2018.

36. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In International conference on machine learning, pages 201–210.
PMLR, 2016.

37. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or
a completeness theorem for protocols with honest majority. In Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pages 307–328. 2019.

38. S. Goldwasser, M. Ben-Or, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In Proc. of the 20th STOC,
pages 1–10, 1988.

39. J. Ha, S. Kim, W. Choi, J. Lee, D. Moon, H. Yoon, and J. Cho. Masta: An he-
friendly cipher using modular arithmetic. IEEE Access, 8:194741–194751, 2020.

40. M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. Sok: General purpose
compilers for secure multi-party computation. In 2019 IEEE symposium on secu-
rity and privacy (SP), pages 1220–1237. IEEE, 2019.

41. E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright. Privacy-preserving
machine learning as a service. Proc. Priv. Enhancing Technol., 2018(3):123–142,
2018.

42. B. Jiang. Multi-key FHE without ciphertext-expansion in two-server model. Fron-
tiers Comput. Sci., 16(3):161809, 2022.

43. X. Jiang, M. Kim, K. Lauter, and Y. Song. Secure outsourced matrix computation
and application to neural networks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 1209–1222, 2018.

44. C. S. Jutla and N. Manohar. Sine series approximation of the mod function for
bootstrapping of approximate he. Cryptology ePrint Archive, Report 2021/572,
2021. https://ia.cr/2021/572.

45. J. Katz and Y. Lindell. Introduction to modern cryptography. CRC press, 2020.

46. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model
training based on the approximate homomorphic encryption. BMC medical ge-
nomics, 11(4):23–31, 2018.

47. M. Kim, Y. Song, S. Wang, Y. Xia, X. Jiang, et al. Secure logistic regression based
on homomorphic encryption: Design and evaluation. JMIR medical informatics,
6(2):e8805, 2018.

48. H. Krawczyk. Secret sharing made short. In Annual international cryptology
conference, pages 136–146. Springer, 1993.

49. T. Krips and J. Willemson. Hybrid model of fixed and floating point numbers
in secure multiparty computations. In International Conference on Information
Security, pages 179–197. Springer, 2014.

50. R. Kumar and R. Goyal. On cloud security requirements, threats, vulnerabilities
and countermeasures: A survey. Computer Science Review, 33:1–48, 2019.

29

51. J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 619–631, 2017.

52. P. Méaux, C. Carlet, A. Journault, and F. Standaert. Improved filter permutators
for efficient FHE: better instances and implementations. In F. Hao, S. Ruj, and
S. S. Gupta, editors, Progress in Cryptology - INDOCRYPT 2019 - 20th Inter-
national Conference on Cryptology in India, Hyderabad, India, December 15-18,
2019, Proceedings, volume 11898 of Lecture Notes in Computer Science, pages 68–
91. Springer, 2019.

53. P. Méaux, A. Journault, F. Standaert, and C. Carlet. Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In M. Fischlin and J. Coron, edi-
tors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in
Computer Science, pages 311–343. Springer, 2016.

54. P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 19–38. IEEE Computer Society, 2017.

55. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW ’11, page 113–124, New York, NY, USA, 2011. Association for
Computing Machinery.

56. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International conference on the theory and applications of cryptographic tech-
niques, pages 223–238. Springer, 1999.

57. M. S. Riazi, K. Laine, B. Pelton, and W. Dai. Heax: An architecture for computing
on encrypted data. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
1295–1309, 2020.

58. R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

59. A. Sanyal, M. Kusner, A. Gascon, and V. Kanade. Tapas: Tricks to accelerate (en-
crypted) prediction as a service. In International Conference on Machine Learning,
pages 4490–4499. PMLR, 2018.

60. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, Nov. 2020.
Microsoft Research, Redmond, WA.

61. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

62. K. Tjell and R. Wisniewski. Privacy in distributed computations based on real
number secret sharing. arXiv preprint arXiv:2107.00911, 2021.

63. A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

64. W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica. Helen: Maliciously secure
coopetitive learning for linear models. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 724–738. IEEE, 2019.

A Proof of Theorem 2

In this section we prove Theorem 2.

30

Proof (Proof for Theorem 2). Let E = (Gen,Enc,Dec,Eval) be a C-homomorphic
CPA-secure public key encryption scheme, let S = (Shr1,Shr2,Rec) be E-
friendly secret sharing scheme with random 1st share for domain A, and
let λ ∈ N be a security parameter and fk be a function sampled uniformly
at random from a pseudorandom function family F = {fk : {0, 1}∗ →
S1}k∈{0,1}λ, λ∈N with |k| = λ.

The ppt complexity of dataProd, compSrv, and auxService follows from
all components ((Shr1, Shr2,Rec), fk, Enc, and Eval) being ppt algorithms.

The correctness of π stems from the correctness and E-friendliness
of the secret sharing, and the C-homomorphism of E . More formally, fix
some x ∈ A, index ∈ {0, 1}∗ and λ ∈ N, and let s1 ← fk(index) and
s2 ← Shr2(s1, x). The E-friendliness together with C-homomorphism of E
guarantees that for every (pk, sk) in the range of Gen(1λ) it holds that

Pr [Decsk (Evalpk (Recs1 ,Encpk(s2))) ̸= Recs1(s2)] ≤ neg(λ) (1)

In addition, the correctness of S = (Shr1, Shr2,Rec) and the range of
fk : {0, 1}∗ → S1 guarantees correctness of the reconstructed value when
Shr1 is replaced with fk, and therefore it follows that

Recs1(s2) = Rec(s1, s2) = x (2)

Combining together Equations 1-2 we obtain

Pr [Decsk (Evalpk (Recs1 ,Encpk(s2))) ̸= x] ≤ neg(λ) (3)

Moreover, the construction of π defines the output of compSrv to be

outπcompSrv (x; index, λ) = Evalpk (Recs1 ,Encpk(s2))

and hence implies together with Equation 3 the correctness of π, i.e.,

Pr
[
Decsk

(
outπcompSrv (x; index, λ)

)
̸= x

]
≤ neg(λ)

The t-compactness of π follows directly from the 2nd share t-compactness
together with the construction in Figure 4, as for any input x only the
second share s2 is being stored and |s2| ≤ t · |x|.

The obliviousness proof for any compSrv∗ relies on its view being
independent of x and only depending on index (and presumably on the
size of x), and hence on any equal size x, x′ ∈ [0, 1] and every index
its view is indistinguishable. More formally, consider a construction π̄
similar to π, where instead of Step 4 of retrieve in π the auxiliary service
auxService encrypts a random r ∈ S2 s.t |r| = |s2|. From the CPA-security

31

of E we obtain that for any x ∈ A, index ∈ {0, 1}∗ and λ ∈ N the following
holds:

viewπ
compSrv∗(x; index, λ) ≈c view

π̄
compSrv∗(x; index, λ) (4)

In addition, the first share as derived in an execution of π̄ depends
only on index, i.e., s1 ← fk(index). Since exactly the same s1 is derived
for any x′ ̸= x the view of any compSrv∗ is completely independent of x.
Therefore, we obtain that for any λ ∈ N, every ppt distinguisher D that
chooses x, x′ ∈ A s.t |x| = |x′| and any index the following holds:∣∣∣Pr[D(viewπ̄

compSrv∗(x; index, λ)) = 1]−

Pr[D(viewπ̄
compSrv∗(x

′; index, λ)) = 1]
∣∣∣ ≤ neg(λ)

Combining this with Equation 4 we obtain the desired.
For the obliviousness proof against any auxService∗, first note that if

π is executed on a previously used index then the view of auxService∗ is
completely independent of the current execution input data x, as nothing
related to it was stored in Fstorage. Therefore we consider executions with
a unique index.

Consider a version of π, denoted by π̄, where fk is replaced with
Shr1. That is, Step 1 of store in Figure 4 is replaced with s1 ← Shr1
and (Upload, index, s1, {idcompSrv}) to Fstorage and Step 1 in retrieve is
replaced with sending (download, index) to Fstorage to get s1. Since π̄ is
executed on a unique index it holds that for any x and index the dis-
tribution of shares (s1, s2) produced by (Shr1,Shr2) is identical to the
distribution produced by replacing Shr1 with a uniformly, randomly sam-
pled function R from the set of all functions {R : {0, 1}∗ → S1} and
having s1 ← R(index). Moreover, the pseudorandomness property guar-
antees that for every x, the shares (s1, s2) produced by fk are distributed
computationally close to shares produced by R. Therefore, for any λ ∈ N,
x ∈ A and any index the following views are indistinguishable,

viewπ
auxService∗(x; index, λ) ≈c view

π̄
auxService∗(x; index, λ) (5)

Next fix some value y ∈ A and consider a version of π̄, denoted by
π̄y, with a modified storage functionality Fy

storage that behaves as Fstorage

besides that on any download request from auxService∗ with respect to
any index that is stored it computes s1 ← Shr1 and s2 ← Shr2(s1, y)
and returns s2. By the perfect security of (Shr1,Shr2,Rec) and a hybrid
argument it is guaranteed that for any λ ∈ N, x ∈ A and every index

viewπ̄
auxService∗(x; index, λ) ≡ viewπ̄y

auxService∗(x; index, λ) (6)

32

Note that the view of any auxService∗ in π̄y is completely independent
of the input x since in Fy

storage the reply of s2 is derived from a fixed
and independent value y. Therefore, we obtain that for any λ ∈ N, every
x, x′ ∈ A s.t |x| = |x′| and any index the following holds:

viewπ̄y

auxService∗(x; index, λ) ≡ viewπ̄y

auxService∗(x
′; index, λ)

Combining this with Equations 5 and 6 we obtain the desired, i.e., for
any λ ∈ N, every ppt distinguisher D that chooses x, x′ ∈ A s.t |x| = |x′|
and any index,∣∣∣Pr[D(viewπ

auxService∗(x; index, λ)) = 1]−

Pr[D(viewπ
auxService∗(x

′; index, λ)) = 1]
∣∣∣ ≤ neg(λ)

as desired.

33

