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Abstract7

A seminal 2013 paper by Lyubashevsky, Peikert, and Regev proposed basing post-quantum cryptography on8

ideal lattices and supported this proposal by giving a polynomial-time security reduction from the approximate9

Shortest Independent Vectors Problem (SIVP) to the Decision Learning With Errors (DLWE) problem in ideal10

lattices. We give a concrete analysis of this multi-step reduction. We find that the tightness gap in the reduction11

is so great as to vitiate any meaningful security guarantee, and we find reasons to doubt the feasibility in the12

foreseeable future of the quantum part of the reduction. In addition, when we make the reduction concrete it13

appears that the approximation factor in the SIVP problem is far larger than expected, a circumstance that14

causes the corresponding approximate-SIVP problem most likely not to be hard for proposed cryptosystem15

parameters.16
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1 Introduction7

In 2013 Lyubashevsky, Peikert, and Regev [19] published a security reduction in support of proposed post-8

quantum cryptography based on the difficulty of the Decision Learning With Errors (DLWE) problem in a9

lattice coming from the embeddings of an ideal of a number field1. Their elaborate, multi-step reduction showed10

that the worst-case γ-approximate Shortest Independent Vectors Problem (SIVPγ) for ideal lattices could be11

solved with polynomially many calls to an oracle that solves DLWE for ideal lattices. Our purpose in this paper12

is to analyze this reduction in concrete terms.13

The U.S. government’s NIST is currently running a multi-year competition2 to select candidates for standardi-14

sation of post-quantum public key cryptography. Some of the proposals under consideration are based on lattices.15

Two of the lattice-based finalists, namely Kyber [2] and SABER [12], are based on module lattices [18, 25] which16

are generalisations of ideal lattices. Because Peikert and Pepin [25] show that ring-LWE reduces to module-LWE17

for a given size of the module and ring and then argue for the security of module-LWE-based systems by citing18

presumed hardness of ring-LWE, our analysis of [19] is also relevant to understanding the concrete security of19

Kyber and SABER.20

21

1.1 The structure of the approximate ideal-SIVP to decision ring-LWE reduction22

The structure of the reduction in [19] – a nested sequence of intermediate reductions – gives rise to two difficulties23

from a practice-oriented perspective. In the first place, the tightness gaps multiply from one reduction to the24

next. If algorithm A calls on algorithm B m times, and B calls on C n times, then there are mn calls on C.25

We found that the cumulative tightness gap in the reduction is so great as to render the security guarantee26

meaningless for practical parameter values.27

In the second place, seven of the nested reductions take place within a quantum computer. We have reasons28

to doubt the feasibility of the quantum part of the reduction even assuming the advent of quantum computers29

that are scaled to much larger size than what is needed to break RSA and ECC.30

31

1.2 Restricting to a special class of lattices32

From the beginning, the strongest argument advanced for lattice-based cryptography has been worst-to-average33

case reductions. The hardest instances of problems such as the approximate Shortest Vector Problem (SVP)34

and the approximate Shortest Independent Vectors Problem (SIVP) can sometimes be shown to reduce to a35

1Earlier D. Stehlé et al. [34] had published a security reduction for ideal lattices, but their reduction only goes as far as search
ring-LWE, not ring-DLWE.

2https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions, accessed on February 8, 2022.
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random instance of the lattice problem that the proposed cryptosystem is based on. This argument loses validity1

if lattices are chosen from a special class, such as the class of ideal lattices, rather than from the set of all general2

lattices, unless one has evidence that the shortest vector problems and their approximate variants do not lose3

any of their worst-case intractability when restricted to the special class of ideal lattices.4

As far as we are aware, no such evidence exists. After arguing for many years that worst-to-average case5

reductions are important in order to have confidence in security, it seems that some promoters of lattice-based6

systems have undermined that argument by changing course and now preferring to work in a special subclass of7

lattices.8

From a number theory perspective, one reason to wonder about the effect of specializing to ideal lattices is that9

they have much more structure than general lattices, notably the presence of isomorphisms between different10

embeddings of the number field. In the cyclotomic case (and, more generally, in the case of non-cyclotomic11

Galois fields as well) the isomorphisms are all automorphisms (which permute the roots of unity), and those12

automorphisms were in fact used to good effect in the security reductions in [19].13

But the much greater structure and symmetry, especially in the cyclotomic case, also make it likely that the14

supposedly hard shortest vector problems that are the basis for the security of lattice-based protocols are in fact15

much easier in this restricted setting. For example, as pointed out in [19], in cyclotomic ideal lattices SIVPγ is16

trivially equivalent to SVPγ , because a short vector can be multiplied by roots of unity to get an entire basis of17

vectors of the same length. In contrast, in the general case only a much weaker result is known, namely, that18

SIVP√nγ reduces in polynomial time to SVPγ , where n is the dimension of the lattice [20]. This suggests that19

for general lattices SIVP and SIVPγ are strictly harder than SVP and SVPγ – a separation that disappears when20

restricted to cyclotomic ideal lattices. Thus, even if SVP and approximate SVP for cyclotomic ideal lattices were21

to be as hard as for general lattices, SIVP and approximate SIVP for cyclotomic ideal lattices would likely be22

easier.23

In the simplest case of cyclotomic fields generated by m-th roots of unity with m = 3, 4, i.e., with n = ϕ(m) =24

2, SVP/SIVP is trivial for any ideal lattice3, whereas the general SVP/SIVP in two dimensions is not completely25

trivial. It is not yet clear whether this gap in difficulty increases in higher dimensions, but there is no reason to26

assume that it does not. Moreover, for the full lattice R, where R is the ring of integers of a cyclotomic field,27

Lemma 2.9 of [19] tells us that the `2-norm of a shortest vector is ≥
√
n. Since ‖1‖ =

√
n, that means that 1 is a28

shortest vector. If the ideal I is principal (which is true for all ideals for n = 2, 4, 8, 16), then for each imbedding29

σ the image of I is just a scaled (and rotated) version of the image of R. That does not immediately lead to a30

simple result for the shortest vector in I, but it certainly suggests a close relationship between the geometry of31

I and the geometry of the unit ideal lattice R, for which SVP and SIVP are trivial.32

1.3 The role of the approximation factor33

Another reason why the reduction of SIVPγ to SVPγ for cyclotomic ideal lattices is troubling is that for γ > n,34

Goldreich and Goldwasser [14] showed that SVPγ is unlikely to be NP-hard. In [19] the problem assumed to be35

hard is SIVPγ where γ = Õ(
√
n/α) in which α < (lnn/n)1/2 is much less than 1. The Goldreich-Goldwasser36

result shows that this approximate SIVP problem for cyclotomic ideal lattices is almost certainly not NP-hard.37

Further, the GapSVP problem on ideal lattices is easy [30], while it is conjectured to be hard for general lattices.38

The last sentence in the statement of the “main theorem” (Theorem 3.6) of [19] says that the target problem39

for the reduction from Õ(
√
n/α)-approximate SIVP can be taken to be decision ring-LWEq,Dr0 with40

r0 = α(n`/ log(n`))1/4, (1)

where ` is the number of queries made by the DLWE-distinguisher. Based on the estimate for α in the previous41

3The case m = 3 corresponds to tiling of the plane using equilateral triangles, whereas the case m = 4 corresponds to tiling the
plane with squares.

3



paragraph, this suggests a Õ(n) approximation factor for the short independent vectors problems that are the1

basis for the security of DLWE-based protocols. This appears to be incorrect.2

First of all, cryptosystems based on the decision-LWE problem generally have a fixed and publicly known3

Gaussian distribution width r0, which is assumed to be roughly of order n−1/2. In that case, ignoring the4

contribution of `, from (1) we find a larger approximation factor Õ(n5/4).5

In the second place, when filling in the details of the reduction, we found that in place of (1) we needed6

r0 = α(N2n`/ log(N2n`))
1/4, (2)

where N2 is a parameter for the reduction algorithm that is of order at least n2δ−2
2 . This causes the approximation7

factor in the supposedly intractable SIVP to be greater than n7/4δ
−1/2
2 . There is little reason to have confidence8

in the intractability of SIVP
n7/4δ

−1/2
2

for cyclotomic ideal lattices.9

1.4 Efficiency versus security10

Increased efficiency of implementation is the main reason for specializing lattice-based cryptography to the11

lattices coming from ideals of number rings and, in particular, to cyclotomic ideal lattices. As explained in [19],12

general lattices “are rather inefficient due to an inherent quadratic overhead in the use of LWE,” whereas ideal13

lattices provide a major speed-up in running time and a reduction in the size of public keys by a factor of n, the14

dimension of the lattice.15

The abstract of [19] also uses the same term efficient in a very different sense of the word in describing the16

security reductions in their paper. When they speak of an “efficient security reduction” they mean a polynomial-17

time quantum reduction. The question of practical feasibility is not addressed in the paper.18

This is an unfortunate omission. Ever since Bellare, Rogaway, and others argued for “practice-oriented19

provable security” in the 1990s [4], it has been widely recognized that a close examination of security reductions to20

determine the real-world guarantees that they give is essential. Moreover, it is a cardinal principle of cryptography21

that efficiency of usage should not be prioritized over meaningful evidence of security.22

In nearly a decade since the appearance of [19] several attacks on ideal lattice problems have confirmed the23

intuition that such lattices are more vulnerable to attacks, both classical and quantum, than general lattices [11,24

6]. These works suggest that from a security standpoint cryptography based on ring-LWE and similar ideal25

lattice problems might not stand the test of time.26

1.5 Related reductions27

In [29] Regev introduced the LWE problem and gave a reduction from approximate SIVP over general lattices28

to Decision LWE. This work is generally considered a breakthrough in lattice-based cryptography and spurred29

a great deal of subsequent research. The concrete aspect of the reduction in [29] was analysed in [10] and the30

analysis was refined in [33]. Commenting on the concrete analysis of [29] in [10], Bernstein [5] remarked that “the31

loss of tightness is gigantic.” A different concrete analysis of the reduction in [29] was carried out in [13] and this32

work also considered increasing the value of n to compensate for the tightness gap. We revisit the tightness gap33

of the reduction in [29] and obtain a more accurate estimate. We point out several aspects that were overlooked34

or were overestimated in [10, 33, 13]. The resulting gap turns out to be greater than the previous estimates. Our35

present work shows that the tightness gap in the reduction in [19] is even greater. Further, we argue that trying36

to increase the value of n to compensate for the tightness gap in [29, 19] is not a meaningful exercise because of37

the very large values of n that would be needed.38

The reduction in [29] is quantum. Later work pursued the goal of obtaining a classical reduction. The first39

result in this direction was obtained by Peikert [23], who gave a classical reduction from GapSVP over general40

lattices to the LWE problem. The drawback of this result was that it required an exponential size modulus.41

A subsequent work by Brakerski et al. [8] gave a reduction where the modulus is of polynomial size. This42
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reduction was also unsatisfactory since it reduced GapSVP on a lattice of dimension
√
n to the n-dimensional1

LWE problem. Since GapSVP is not hard over ideal lattices, the approach adopted in [23, 8] is not meaningful2

for such lattices. A concrete analysis of the reductions in [23, 8] was carried out in [32].3

1.6 Outline of the paper4

The background and preliminaries required for the paper are given in §2. The reduction in [19] can be divided into5

two parts. The first part is a reduction from approximate ideal-SIVP to the search ring-LWE problem, while the6

second part is a reduction from the search ring-LWE problem to the decision ring-LWE problem. The concrete7

analysis of the first part is described in §3 and that for the second part is described in §4. The two parts are8

combined and the end-to-end reduction from approximate ideal-SIVP to decision ring-LWE is summarised in §5.9

A detailed discussion of several problematic issues with the quantum aspect of the reduction is given in §6. The10

reduction in [19] holds for cyclotomic number fields. A follow-up work [26] gave a reduction from approximate11

ideal-SIVP to decision ring-LWE for any number field. In §7 we perform a concrete analysis of the reduction12

in [26] and show that the tightness gap is much larger than the tightness gaps of either [29] or [19]. Section 813

has concluding remarks. Some important mathematical details of the reduction are presented in Appendices A14

and B.15

2 Preliminaries16

A brief summary of the relevant concepts is provided below. For further details the reader may refer to [19]. We17

note though that at certain places we have simplified the description that is in [19].18

By Z, Q, R and C we will denote the sets of integers, rationals, reals and complex numbers respectively.19

Let n be a positive integer. For a vector a = (a1, . . . , an) in Rn or Cn, the `2-norm of a is defined to be20

‖a‖ = (|a1|2 + · · ·+ |an|2)1/2 and the `∞-norm of a is defined to be ‖a‖∞ = maxi∈[n] |ai|. We will mostly consider21

the `2-norm. At a few places, the `∞-norm is used and we will explicitly identify these cases.22

Let s1 and s2 be non-negative integers such that s1 + 2s2 = n. The space H ⊂ Rs1 × C2s2 is defined as23

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j , j = 1, . . . , s2}. (3)

Using the inner product on H induced on it by Cn, it can be shown that H is isomorphic to Rn as an inner product24

space. For j ∈ [n], let ej ∈ Cn be the vector which has 1 in its j-th component and 0 elsewhere. An orthonormal25

basis for H is given by {hi}i∈[n], where for j ∈ [s1], hj = ej and for s1 < j ≤ s1 + s2, hj = (ej + ej+s2)/
√

2,26

hj+s2 =
√
−1(ej − ej+s2)/

√
2. When x ∈ H is written in terms of the orthonormal basis as x =

∑n
i=1 aihi with27

(a1, ..., an) ∈ Rn, the norm of x is simply ‖(a1, . . . , an)‖.28

A lattice is a discrete additive subgroup of H. Let B = {b1, . . . ,bn} ⊂ H be a set of linearly independent29

vectors. The full rank lattice generated by B is defined to be L(B) = {
∑n

i=1 zibi : (z1, . . . , zn) ∈ Zn}. Given30

a lattice basis B, the fundamental parallelepiped P(B) is defined to be the set {Bx : x ∈ Rn, 0 ≤ xi < 1}.31

For an n-dimensional lattice Λ, let λi(Λ) with i ∈ {1, . . . , n}, be the least real number r such that Λ has32

i linearly independent vectors with the longest having length r with respect to the `2-norm. In particular,33

λ1(Λ) = minx∈Λ\{0}‖x‖ is called the minimum distance of the lattice. The dual of a lattice Λ is defined to be34

Λ∗ = {x ∈ H : 〈y,x〉 ∈ Z, for all y ∈ Λ}, where 〈y,x〉 =
∑
yixi is the inner product. Theorem 2.1 of [3] shows35

that for any n-dimensional lattice Λ, 1 ≤ λ1(Λ) · λn(Λ∗) ≤ n.36

For r > 0, the Gaussian function ρr : H → (0, 1] is defined to be ρr(x) = exp(−π‖x‖2/r2). The continuous37

Gaussian probability distribution Dr over H is given by the density function r−nρr(x). Note that Dr is the38

n-dimensional normal distribution with mean vector (0, . . . , 0) and variance/co-variance matrix diag(σ2, . . . , σ2)39

where σ = r/
√

2π. Consequently, if X1 and X2 are independent random variables following Dr1 and Dr2 , then40

X1 +X2 follows D√
r21+r22

(see Theorem 4.2.14 of [9]).41
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For a lattice Λ, a point u ∈ H and a positive real r, the discrete Gaussian probability distribution over Λ + u1

with parameter r is defined to be DΛ+u,r(x) = ρr(x)/ρr(Λ + u), where ρr(Λ + u) denotes
∑

y∈Λ+u ρr(y) and2

more generally ρr(S) =
∑

y∈S ρr(y) for a countable subset S ⊂ H.3

For a lattice Λ and a positive real ε, the smoothing parameter ηε(Λ) is defined to be the smallest r such that4

ρ1/r(Λ
∗ \ {0}) ≤ ε. Given a lattice Λ = L(B), it can be shown that for any r ≥ ηε(Λ), the statistical distance5

between the uniform distribution on the fundamental parallelepiped P(B) and the distribution obtained by6

sampling from Dr and reducing the result modulo the lattice to an element of P(B) is at most ε/2 (see Lemma 57

of [28]). Thus, if one chooses a very small value for ε, then the Gaussian distribution Dr considered over P(B)8

with r ≥ ηε(Λ) behaves essentially like the uniform distribution. As shown in Claim 2.13 of [29], a lower bound9

for ηε(Λ) in terms of λ1(Λ∗) can be obtained by setting ε equal to the term in the sum
∑

x∈Λ∗\{0} exp(−π(η‖x‖)2)10

corresponding to a shortest vector x in Λ∗. That is, ηε(Λ) ≥
√

(− ln ε)/π/λ1(Λ∗).11

Remark 1. Along with spherically symmetric distributions Dr, distributions were considered in [19] in which12

‖x‖2/r2 is replaced by
∑n

i=1 a
2
i /r

2
i , where x = aihi. In this paper we only use spherically symmetric distributions,13

which suffice for our purposes.14

A number field K = Q(ζ) is obtained by adjoining ζ to Q, where ζ is a root of a monic irreducible polynomial15

f(x) ∈ Q[x]. The degree of f(x) is the degree of the number field K. Let n denote the degree. Then K is an16

n-dimensional vector space over Q. Over C, f(x) has n roots. Recall that the complex roots come in pairs and17

let s1 be the number of real roots and 2s2 be the number of complex roots so that s1 +2s2 = n. Suppose that the18

roots are ordered as ζ1, . . . , ζn, where ζ1, . . . , ζs1 are real and ζs1+s2+j = ζs1+j for j = 1, . . . , s2. Let σi : K → C be19

the embedding of K in C obtained by extending the map ζ 7→ ζi. The canonical embedding σ : K → Rs1 ×C2s220

is given by σ(x) = (σ1(x), . . . , σn(x)). Note that for any x ∈ K, and i = 1, . . . , s2, σs1+s2+i(x) = σs1+i(x),21

so that σ(K) ⊂ H. For x ∈ K, the trace and norm of x are respectively defined as Tr(x) =
∑n

i=1 σi(x) and22

N(x) =
∏n
i=1 σi(x). A geometric norm on an element x ∈ K is defined via the embedding σ to be ‖x‖ = ‖σ(x)‖23

(and ‖x‖∞ = ‖σ(x)‖∞).24

An algebraic integer is a root of a monic polynomial with integer coefficients. Let OK denote the set of all25

algebraic integers in the number field K. Under usual addition and multiplication in K, OK forms a ring called26

the ring of integers of K. Any ideal (also called integral ideal) of OK is also a free Z-module of rank n, i.e., it27

is generated as the set of all Z-linear combinations of some basis {u1, . . . , un} ⊂ OK . The norm of an ideal I28

is defined to be N(I) = #(OK/I). A fractional ideal I ⊂ K is a set such that dI is an integral ideal of OK29

for some d ∈ OK . The norm of a fractional ideal I is defined to be N(I) = N(dI)/|N(d)|. The set of fractional30

ideals form a group under multiplication.31

A fractional ideal I has a Z-basis {u1, . . . , un}. Under the canonical embedding σ(I) is a lattice, called an32

ideal lattice having basis {σ(u1), . . . , σ(un)}. The fractional ideal I is identified with its embedding σ(I) and33

one talks of the minimum distance λ1(I) of I and similarly for other lattice quantities. Likewise, given r > 0,34

DI,r denotes the distribution Dσ(I),r over σ(I). The (absolute) discriminant ∆K of K is defined to be the square35

of the fundamental volume of the ideal lattice σ(OK). The fundamental volume of any ideal lattice σ(I) is36

N(I) ·
√

∆K .37

A lattice in K is the Z-span of a Q-basis of K. Let Λ be a lattice in K. The conjugate dual of Λ is defined38

to be Λ∨ = {x ∈ K : Tr(xΛ) ⊆ Z}. It follows that σ(Λ∨) = σ(Λ)∗. Let R = OK which is a lattice in K. The39

fractional ideal R∨ is called the codifferent. For any ideal I, I∨ = I−1 ·R∨.40

41

Ideal SVP and SIVP: An instance of the γ-approximate shortest vector problem for K, denoted K-SVPγ , is42

a fractional ideal I in K and it is required to find a nonzero x ∈ I such that ‖x‖ ≤ γ ·λ1(I). The γ-approximate43

shortest independent vector problem in K, denoted K-SIVPγ , requires finding n linearly independent elements44

in I all of whose norms are at most γ · λn(I).45

46
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Ring-LWE distribution: Recall that the intuitive meaning of an LWE sample is an approximate linear equation1

of the form
∑
aisi = b where b includes an error, the si are unknown, and the ai and b are given to the solver. In2

ring-LWE
∑
aisi is realised more efficiently because a and s are elements of a number field, and the left hand side3

is simply a ·s. More precisely, let K be a number field and R = OK . For a fractional ideal J in K and an integer4

q ≥ 2, let Jq denote the set of residue classes of J modulo qJ . Let T = H/σ(R∨) denote H modulo σ(R∨).5

Suppose s ∈ R∨q and a ∈ Rq. There are elements x ∈ R∨ and y ∈ R such that s = x + qR∨ and a = y + qR.6

Define the result of the operation a · s to be xy + qR∨ which is in R∨q . One can show that the operation is well7

defined. Similarly, the result of the operation (a · s)/q is defined to be xy/q + R∨ which is in (1/q)R∨ modulo8

R∨. By σ((a · s)/q) we will denote the element σ(xy/q) + σ(R∨) of T. For s ∈ R∨q and a positive real number r,9

a sample from the ring-LWE distribution As,r over Rq × T is (a, σ((a · s)/q) + e mod σ(R∨)), where a is chosen10

uniformly at random from Rq and e is chosen from H following the distribution Dr.11

Remark 2. 1. We have defined the ring-LWE distribution by transferring (a · s)/q to H and performing the12

addition with the error e in H modulo σ(R∨). This is helpful for the theoretical analysis of the reduction. In13

practice, on the other hand, it is computationally more efficient to transfer e to an approximate element in14

K and perform the addition in K. We briefly describe how e ∈ H can be transferred to K. Let (ν1, . . . , νn)15

be a basis of K over Q. The requirement is to find x1, . . . , xn ∈ Q, such that σ(
∑n

i=1 xiνi) =
∑n

i=1 xiσ(νi)16

is close to e. This is done as follows. Let M be the inverse of the matrix whose (i, j)-th entry is σj(νi),17

compute (y1, . . . , yn) = eM ∈ Rn and then choose xi to be a rational approximation of yi.18

2. In [19], the second component of the ring-LWE distribution is an element of the field tensor product K⊗QR.19

Since K ⊗Q R and H are isomorphic as n-dimensional vector spaces over R, we have chosen to work with20

the equivalent and simpler formulation where the second component of the ring-LWE is an element of H.21

Search ring-LWE: Let α > 0 be a real number and q ≥ 2 be an integer. The search version of the ring-LWE22

problem, denoted ring-LWEq,≤α, is the following. For any s ∈ R∨q and a fixed positive real number r ≤ α, given23

access to arbitrarily many independent samples from As,r, find s. Formally, a probabilistic algorithm A to solve24

ring-LWEq,≤α has access to an oracle Ws,r, where r ≤ α is unknown, which when queried returns an independent25

sample from As,r. A is allowed to adaptively query Ws,r a number of times and at the end outputs an element26

s′ ∈ R∨q . The success probability of A is the probability that s′ = s. The important parameters for A are its27

success probability, its runtime and the number of times it queries its oracle.28

A necessary condition for solvability of ring-LWEq,≤α is α < ηε(R
∨) for all negligible ε, as otherwise the added29

error makes the samples essentially uniform.30

31

Ring DLWE (fixed width): Let r > 0 be a real number and q ≥ 2 be an integer. The decision version of32

the ring-LWE problem, denoted ring-DLWEq,r, is the following. Let s be chosen uniformly at random from R∨q .33

The task is to distinguish with non-negligible advantage between arbitrarily many independent samples from34

As,r and the same number of samples generated independently and uniformly from Rq ×T. Formally, let D be a35

distinguisher which takes as input a list T consisting of elements from Rq×T. For a fixed value of s ∈ R∨q , let ps,036

be the probability that D outputs 1 when T consists of independent samples from As,r, where the probability is37

over all components of the input other than s as well as the internal coin tosses of D. Let p1 be the probability38

that D outputs 1 when T consists of independent samples chosen uniformly from Rq × T, where the probability39

is over the input and the internal coin tosses of D. For a given value of s, the advantage of the distinguisher is40

|ps,0 − p1|. For ε1, ε2 ∈ (0, 1], we say that D is an (ε1, ε2)-distinguisher if D has advantage at least ε2 for at least41

a proportion ε1 of the set of possible s ∈ R∨q ,42

Remark 3. A more general definition of ring DLWE was given in [19]. In this definition, the error distribution43

itself is chosen from a distribution over a family of error distributions. Theorem 5.1 of [19] was proved for44

such a definition, while Theorem 5.2 of [19] was proved for the case where the error distribution is fixed. Since45

applications use a fixed error distribution, we have defined ring DLWE with fixed error distribution.46
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Notation We summarise and fix some notation for future convenience.1

log(x) : logarithm of x to the base 2
ln(x) : natural logarithm of x
Λ : a lattice in H
λ1(Λ) : minimum distance of the lattice Λ
λn(Λ) : the least real number such that Λ has n linearly independent vectors

with the length of the longest being equal to this number
ηε(Λ) : smoothing parameter for a lattice Λ
K : underlying number field
n : degree of the number field
OK , R : ring of integers of K
I, J : fractional ideals of a number field
σ : canonical embedding of a number field into H (as defined in (3))
T : the set of residue classes of H modulo σ(R∨)
I∗ : the dual of the lattice σ(I)
I∨ : the conjugate dual of the lattice σ(I)
Dr : Gaussian distribution on H of width r
DI,r : discrete Gaussian distribution of width r on the lattice σ(I)
r, r′, ri, ξ, ξ

′, ξi : widths of Gaussian distributions
q : an integer ≥ 2
Iq : the set of residue classes of I modulo qI
ω(
√

lnn) : a fixed function which grows asymptotically faster than
√

lnn
α : an upper bound on the width of Gaussian distributions

that satisfies α <
√

lnn/n and αq ≥ 2ω(
√

lnn).

3 Reducing K-SIVPγ to search ring-LWEq,≤α2

Fix three parameters: a positive integer n which will denote the degree of the number field K; an integer q ≥ 23

which is used to define the ring-LWE problem; and a positive real number α such that αq ≥ 2 · ω(
√

lnn). We4

assume α <
√

lnn/n which, as remarked in [19], holds for proposed applications. In the asymptotic setting, q5

and α are considered to be functions of n.6

The reduction of K-SIVPγ to ring-LWEq,≤α is obtained by composing reductions involving several intermediate7

computational problems. Let K be a number field.8

• Let Γ be a function from fractional ideals in K to R. The discrete Gaussian sampling problem in K,9

denoted K-DGSΓ, is the following. Given a fractional ideal I in K and r ≥ Γ(I), produce a sample from10

DI,r. This means producing an element of I such that the probability of producing x ∈ I is given by11

DI,r(x) = ρr(σ(x))/
∑

y∈I ρr(σ(y)).12

• Given a fractional ideal I in K and ξ < λ1(I)/(2
√

2n), an instance of the bounded distance decoding13

problem K-BDDI,ξ is an element y ∈ K such that y = x + e, where x ∈ I and e = σ−1(e) is chosen14

according to Dξ; the requirement is to find x′ such that x′ = x except with negligible probability where the15

probability is over e as well as internal coin tosses. An algorithm to solve K-BDDI,ξ will take as input the16

pair (I, y). The upper bound on ξ ensures that the solution x is unique except with negligible probability.17

Note that ξ is unknown to the solver.18

• For a fractional ideal I in K and an integer q ≥ 2, the q-BDDI,ξ problem is the following. Given an instance19

y of K-BDDI,ξ with solution x ∈ I, find x mod qI.20

8



The K-SIVPγ to ring-LWEq,≤α reduction is obtained from the following sequence of algorithms, in which Ai calls1

Ai+1 as an oracle, for 0 ≤ i ≤ 4.2

3

Algorithm A0: Solves K-SIVPγ for an appropriate value of γ (see §3.2 below). The input is a fractional ideal4

I and the output is a set of n linearly independent elements of I the longest of which is at most γλn(I).5

6

Algorithm A1: Solves K-DGSΓ, for an appropriate Γ (see §3.2 below). The input is a pair (I, r), where I is a7

fractional ideal of K and r ≥ Γ(I). The output is a sample from the distribution DI,r.8

9

Algorithm A2: This is a quantum algorithm which, given as input a fractional ideal I and a set of samples10

chosen independently from DI,r, returns a sample from DI,r′ , where r′ ≤ r/2. The conditions on r and r′ are11

given in (25) of Appendix A.12

13

Algorithm A3: Solves K-BDDI∨,ξ. The input is a pair (I∨, y), where I is a fractional ideal of K, y = x + e,14

x ∈ I∨, and e = σ−1(e) is chosen according to the distribution Dξ. Additionally, A3 has access to a set of15

samples chosen independently from DI,r. The output is an x′ ∈ I∨ such that x′ = x except with negligible16

probability. The relation between r and ξ is given in (25) of Appendix A.17

18

Algorithm A4: Solves q-BDDI∨,ξ. The input to A4 is the same as that to A3 and the output is x′ mod q such19

that x′ ≡ x mod q except with negligible probability.20

21

Algorithm A5: Solves ring-LWEq,≤α. Algorithm A5 has access to an oracle which generates samples from the22

ring-LWE distribution As,r defined in §2, where r ≤ α and both s and r are unknown to A5. The algorithm23

interacts with the oracle and finally outputs s.24

3.1 Reducing K-SIVPγ to K-DGSΓ25

For a fractional ideal I in K, let26

Γ(I) =
γ · λn(I)

2
√
n

. (4)

Suppose ε ≤ 1/10 and γ ≥ 2
√

2nηε(I)/λn(I), which implies that Γ(I) ≥
√

2ηε(I). Given an algorithm A1 to27

solve K-DGSΓ where Γ is given by (4), it is possible to construct an algorithm A0 to solve K-SIVPγ . This is28

shown in Lemma 3.17 of [29].29

We briefly review the proof. The objective is to obtain a set of n linearly independent vectors whose longest30

vector has length at most 2
√
nΓ(I), which using (4) is equal to γλn(I). Algorithm A0 uses the LLL algorithm31

to obtain a set B0 of n linearly independent vectors such that the length d0 of the longest vector in B0 satisfies32

d0 ≤ 2(n−1)/2λn(I) (see Theorem 3 of [21]). From d0 ≤ 2(n−1)/2λn(I) < 2n/2λn(I) and (4), we have d0 < 2nΓ(I)33

for γ ≥
√
n/2n/2−1, where the condition on γ holds4 for all n ≥ 8.34

For i = 1, . . . , n, let ui = d0/2
i−1. For each i in {1, . . . , n}, A0 does the following. It invokes A1 a total of35

n2 times on the input (I, ui) to obtain a set Ti of n2 elements of I chosen independently from the distribution5
36

DI,ui . A0 looks for a set Bi of n linearly independent elements in Ti. If Bi is found, then let di be the length of37

4From (4), the assumptions Γ(I) ≥
√

2ηε(I) and ε ≤ 1/10 and the lower bound on ηε(I) given in Claim 2.13 of [29], it follows
that γ ≥

√
8 ln 10/(nπ) ≥

√
n/2n/2−1 for n ≥ 8.

5 If d0 < Γ(I), let j = 0, otherwise, let j ∈ {1, . . . , n} be such that 2j−1Γ(I) ≤ d0 < 2jΓ(I). Then for j + 1 ≤ i ≤ n, we have
ui < Γ(I) implying that the pair (I, ui) is an invalid input to A1. Since the expression for Γ(I) given by (4) involves λn(I), the
value of Γ(I) cannot be efficiently computed and so it is not possible to check the condition ui < Γ(I). We redefine A1 so that if
ui < Γ(I), it returns some element of I, but with nothing assumed about whether the selection adheres to any Gaussian distribution.
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the longest vector in Bi. Finally A0 returns a set Bk such that dk is the minimum of all the di such that Bi is1

defined.2

The claim is that with high probability A0 returns a set of n linearly independent vectors whose longest3

vector is at most 2
√
nΓ(I). Since d0 < 2nΓ(I), it follows that either d0 < Γ(I), or there is some k0 ∈ {1, . . . , n}4

such that Γ(I) ≤ uk0 < 2Γ(I). If d0 < Γ(I), then dk ≤ d0 < Γ(I) and the claim holds. Otherwise, consider the5

k0 such that Γ(I) ≤ uk0 < 2Γ(I). The conditions ε ≤ 1/10 and uk0 ≥ Γ(I) ≥
√

2ηε(I) ensure that with high6

probability the set Tk0 of n2 vectors contains a set Bk0 of n linearly independent vectors (Corollary 3.16 of [29]).7

Further, with high probability the vectors in Bk0 are of length at most uk0
√
n (Lemma 2.5 of [29]) which is less8

than 2
√
nΓ(I), i.e., dk0 < 2

√
nΓ(I). Since dk ≤ dk0 , the claim also holds in this case. We record the following.9

Proposition 1. A0 invokes A1 a total of n3 times.10

3.2 Reducing K-DGSΓ to ring-LWEq,≤α11

For a fractional ideal I in K, let12

γ = 2
√

2 ·
√
n

α
· ω(
√

lnn) · ηε(I)

λn(I)
(5)

Since α <
√

lnn/n and ω(
√

lnn) grows faster than
√

lnn, the value of γ given by (5) satisfies the lower bound13

on γ assumed in Section 3.1. Substituting the value of γ given by (5) in (4), we obtain14

Γ(I) =

√
2 · ω(

√
lnn) · ηε(I)

α
. (6)

With Γ given by (6), there is a reduction from K-DGSΓ to ring-LWEq,≤α, where αq ≥ 2ω(
√

lnn). The reduction15

will be described in this section.16

For γ given by (5), using Lemma 2.26 of [19] we have17

γ ≤ 2
√

2 ·
√
n

α
· ω(
√

lnn)
√

ln(n/ε). (7)

The relation (7) has been summarised in [19] as γ = Õ(
√
n/α).18

Remark 4. As ε decreases, the expression in (7) increases. If ε = e−n, the order of magnitude of γ is Õ(n/α)19

and not Õ(
√
n/α). The expression γ = Õ(

√
n/α) in [19] implies that ε is assumed not to be too small, although20

it has to be a negligible function of n. More precisely, suppose there is some constant d such that21

ε ≥ n1−(logn)d . (8)

Then γ = Õ(
√
n/α) is justified.22

We now consider the reduction of K-DGSΓ to ring-LWEq,≤α in further detail. While going through the23

description below, it will be helpful to keep in mind the inputs and outputs of the various algorithms which are24

shown in Figure 1.25

The input to A1 is a pair (I, r), where I is an ideal and r ≥ Γ(I). Let i0 = 2n+d(log n)/2e. For i = 0, . . . , i0,26

define ri = r · (αq/ω(
√

lnn))i. Note that ri ≥ 2ir because, by the above assumption, αq ≥ 2ω(
√

lnn). Also,27

ri0 ≥ 22n√nr. The lower bound on ri0 ensures that A1 can sample from DI,ri0 without requiring the help of the28

LWE oracle (see Lemma 3.2 of [29]). For i = 1, . . . , i0, define ξi = (αq)/(2ri · ω(
√

lnn)).29

6Lemma 2.2 of [19] shows that ηε(I) ≤
√

ln(n/ε)λn(I).
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A1 solves K-DGSΓ

• input (I, r), r ≥ Γ(I)
• output a “sample” from DI,r

A2

• input S from DI,r
• output a “sample” from DI,r′

• r′ = r · ω(
√

lnn)/(αq) < r/2.
A3 solves K-BDDI∨,ξ
• input y such that y = x + e,
x ∈ I∨, e = σ−1(e), e from Dξ

• has access to S from DI,r
• output x′ ∈ I∨ where x′ = x
almost always
• ξ = αq/(2rω(

√
lnn))

A4 solves q-BDDI∨,ξ
• input same as A3

• outputs x′ mod q
A5 solves ring-LWEq,≤α
• has access to As,r-oracle
• r ≤ α and s are unknown to A5

• output s

Figure 1: Inputs and outputs of algorithms A1 to A5.

First, A1 prepares a list of N samples Si0 from DI,ri0 . Then for each i starting from i0 down to 1, A1 invokes1

A2 a total of N times, providing it with Si, where each call to A2 returns a sample from DI,ri−1 . To obtain a2

sample from DI,ri−1 , A2 creates a quantum circuit and a quantum state that will produce the desired sample3

provided it can “uncompute” a nearest vector that is in the first register.4

To accomplish the erasure of the first entangled register, we need a circuit of gates that reverse the gates in5

the circuit for A3. All of the algorithms after A2 will have to be incorporated into a quantum circuit that must6

then be reversed so that the resulting quantum circuit can be included in the quantum part of A2. This raises7

feasibility issues that we will discuss in §6.8

In A3 the offset for the BDD instance is sampled from the distribution Dξi . A3 solves the BDD instance (via9

A4) by invoking A5. For this, A4 needs to be able to simulate the responses to the LWE queries made by A5.10

The `∞ distance of a sample from Dξi has length at most ξ′i = αq/(
√

2ri) except with negligible probability11

and this is required in Lemma 4.7 of [19] to show that the simulation of responses to the LWE queries by A4 is12

correct. Below we provide further details of algorithms A3 and A4.13

Algorithm A3 takes as input an ideal I∨ and an element y ∈ K such that y = x + e, where x ∈ I∨ and14

e = σ−1(e) is chosen according to Dξ. Additionally, it has access to a set of independent samples from DI,r.15

Algorithm A3 returns x. We provide a brief overview of the construction of A3 using A4 as an oracle. Let B be16

a matrix whose columns form a basis for the lattice σ(I∨). Recall that the only difference between A3 and A417

is that the latter only finds the nearest lattice vector modulo q.18

We first apply A4(I∨,S, y) to find an integer vector b1 such that b1 ≡ a1 mod q, where a1 (which we do not19

know yet) is the integer vector such that the lattice element Ba1 is the closest vector in σ(I∨) to σy. Set y1 = y.20

Now repeat the procedure with y2 = (y1 − Bb1)/q, obtaining b2 ≡ a2 mod q such that Ba2 is the closest vector21

in σ(I∨) to σ(y2). Since B(a1 − b1) is the closest vector to y1 −Bb1 = qy2, it follows that a2 = (a1 − b1)/q, and22

that the distance between Ba2 and y2 is less than the distance between a1 and b1 by a factor of q. Applying A423

n− 1 times – generating the sequences yi and bi, i = 1, . . . , n− 1 – we finally get yn close enough to the lattice24

that we can use Babai’s nearest plane algorithm to find the nearest lattice vector to yn, which is an. Once we25

know an, as well as the b1, . . . , bn, we can successively compute ai = bi + qai+1, i = n − 1, . . . , 1. Then Ba1 is26

the desired output of A3.27

The input to algorithm A4 is the same as that to algorithm A3. A4 returns x mod qI. The general task of28

A4 in solving an instance of q-BDDI∨,ξ is similar to that of A5 in solving ring-LWEq,≤α. But there are two major29

differences. First, A4 works with the lattice I∨ modulo q, whereas A5 works with the lattice R∨ modulo q. The30

reduction handles this by using an element t ∈ I that gives an isomorphism from R mod q to I mod q and also31

in the other direction between the dual lattices I∨ mod q and R∨ mod q. The second difference is that A4 gets32

just one input vector y = x + e, whereas A5 has access to an oracle that provides N samples from As,r. Since33

11



A4 calls A5, the oracle queries made by A5 has to be simulated by A4. This is done by randomising the error in1

y, that is, by adding errors e′ chosen according to Dα/
√

2. For details, see §4.2 of [19].2

Based on the overview and the above descriptions of algorithms A1,A3 and A4, we record the following.3

Proposition 2. 1. A1 invokes A2 a total of (2n + d(log n)/2e)N times, where N is the number of LWE4

samples required by A5.5

2. A2 invokes the reverse circuit of A3 once.6

3. A3 invokes A4 a total of n times.7

4. A4 invokes A5 once.8

The reduction of K-DGSΓ to ring-LWEq,≤α in [19] is based on the reduction of the DGS problem to the search9

LWE problem in [29]. There are, however, some important differences. A number of these differences pertain to10

the algebraic techniques needed to handle ideal lattices in [19] that do not apply to the general lattices considered11

in [29].12

One such difference is in the distribution of the error in an LWE sample. In [29] the error follows a fixed width13

Gaussian distribution, while in [19] the error follows a distribution drawn from a family of elliptical Gaussian14

distributions. Elliptical, rather than spherical, distributions are needed in [19] to argue for the correctness of the15

distribution of the error in the simulated LWE samples arising in the q-BDDI∨,ξ to ring-LWEq,≤α reduction. It16

appears that the use of elliptical distributions is a mathematical artifact introduced for the sake of the reduction17

rather than being of any practical importance.18

3.3 The tightness gap in the K-SIVPγ to ring-LWEq,≤α reduction19

The following theorem is a concrete version of the reduction of K-SIVPγ to ring-LWEq,≤α that is described20

in Theorem 4.1 of [19] and in the discussion following that theorem. The tightness gap in (9) follows from21

Propositions 1 and 2 above.22

Theorem 3. Let K be an arbitrary number field of degree n, q ≥ 2 be a positive integer and α be a positive real23

number such that αq ≥ 2ω(
√

lnn) and α <
√

lnn/n. There is a quantum reduction using approximately 3n2
24

logical qubits from K-DGSΓ, where Γ is given by (6) with ε ≤ e−π, to ring-LWEq,≤α. Additionally, suppose there25

is a positive constant d, such that ε ≥ n1−(logn)d. Then there is a quantum reduction from K-SIVPÕ(
√
n/α) to26

ring-LWEq,≤α.27

An algorithm A0 to solve K-SIVPÕ(
√
n/α) can be constructed using an algorithm A5 to solve ring-LWEq,≤α28

and the number of times A0 calls A5 is approximately29

(2n+ (log n)/2)n4 ·N, (9)

where N is the number of ring-LWE samples required by A5.30

Remark 5. In arriving at the expression in (9), we have assumed that the time taken by a reverse circuit for31

A3 is the same as the time taken by a circuit for A3.32

The term N in (9) is the number of samples that is required in ring-LWE. In practice, N would depend on33

α. If α is very small, then the error in the ring-LWE distribution is also very small leading to a relatively easy34

instance of ring-LWE. For an easy instance, obtaining about n samples might be sufficient to solve the ring-LWE35

problem. With a larger α, the error in the ring-LWE distribution would also be larger, which suggests that the36

number of samples required to solve the ring-LWE problem would be larger. Consequently, the number of oracle37

queries (and hence the tightness gap) grows with the difficulty of the ring-LWE problem. More concretely, if we38
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assume N = nc, then c increases as α increases. If α is small enough so that ring-LWE is easy and the tightness1

gap is less, then K-SIVPγ has a larger approximation factor γ, and so becomes easier. On the other hand, as α2

increases, causing ring-LWEq,≤α intuitively to become harder (the case that is relevant for cryptography), then3

the K-SIVPγ problem that reduces to it becomes harder (since γ decreases), but its connection to ring-LWEq,≤α4

becomes weaker because of the larger tightness gap as c increases. Because of this loosening of the connection5

between the two problems, it would be consistent with the reduction for the ring-LWEq,≤α search problem to6

become harder as α increases but at a slower rate than the K-SIVPÕ(
√
n/α) problem. This once again shows that7

what the reduction gives us is somewhat less than it might seem at first glance.8

4 Reducing search ring-LWE to ring-DLWE9

The reduction makes use of several algebraic properties of number fields that are satisfied, in particular, by10

cyclotomic number fields. Before getting into the reduction, we briefly mention the relevant algebraic properties11

of cyclotomic number fields.12

Let K be a number field and τ be an automorphism of K. One may consider τ to act on σ(K) as follows:13

for a ∈ K, τ(σ(a)) = σ(τ(a)). It is possible to extend the action of τ to the whole of H in the following manner.14

Since τ is the identity map on Q, it follows that τ is a linear transformation of K (considered as a vector space15

over Q) to itself. If we fix a Q-basis {ν1, . . . , νn} of K, then the action of τ is given by an n × n non-singular16

matrix T whose entries are from Q. More specifically, for a ∈ K, suppose a = a1ν1 + · · · + anνn, with ai ∈ Q17

for i = 1, . . . , n. Then τ(a) = b1ν1 + · · · + bnνn, where (b1, . . . , bn)> = T (a1, . . . , an)>. Extension of τ to H is18

done using the matrix T . Note that {σ(ν1), . . . , σ(νn)} is an R-basis of H so that any x ∈ H can be written as19

x = x1σ(ν1)+· · ·+xnσ(νn), where xi ∈ R for i = 1, . . . , n. Then τ(x) is defined to be y = y1σ(ν1)+· · ·+ynσ(νn),20

where (y1, . . . , yn)> = T (x1, . . . , xn)>. Extending an automorphism τ of K to H allows us to apply τ to samples21

drawn from an error distribution defined over H.22

23

Cyclotomic number fields. For m ≥ 1, let Φm(x) be the m-th cyclotomic polynomial having degree n = ϕ(m).24

The m-th cyclotomic number field K is Q(ζ), where ζ is a root of Φm(x). Let R = OK . Henceforth, only25

cyclotomic number fields will be considered.26

The power basis {1, ζ, ζ2, . . . , ζn−1} for K over Q is also a Z-basis for OK = Z[x]/Φ(x). Let I be a fractional27

ideal in OK and v be a shortest nonzero element in I. Multiplying v by 1, ζ, . . . , ζn−1 gives a set of n linearly28

independent vectors of the same length, and hence λn(I) = λ1(I). Consequently, a solution to K-SIVPγ provides29

a solution to K-SVPγ and vice versa. This may be contrasted with the case for general lattices, where it has30

been shown in [20] that SIVP√nγ reduces in polynomial time to SVPγ , but not that SIVPγ reduces to SVPγ .31

Let q be a prime number such that q = 1 mod m so that q = km+ 1 for some non-negative integer k. Noting32

that Z∗q = 〈g〉 for a generator g, it follows that the element ω = gk has order m in Z∗q . The m-th cyclotomic33

polynomial factors over Zq as Φm(x) =
∏
i∈Z∗m(x− ωi). Consequently, 〈q〉 =

∏
i∈Z∗m qi, where qi = 〈q, x− ωi〉 is34

a prime ideal of OK having norm q. (Note that the ideals qi have been indexed by elements of Z∗m rather than35

by the integers {1, . . . , n}.)36

The field K has n automorphisms τk(ζ) = ζk, for k ∈ Z∗m. It follows7 that for k ∈ Z∗m, τk(qi) = qik−1 mod m37

and τ−1
k = τk−1 mod m. Also, for k ∈ Z∗m, R and R∨ are fixed by τk and so τk(Rq) = Rq. Hence, if a is distributed38

uniformly in Rq, then τk(a) is also distributed uniformly in Rq.39

For i ∈ Z∗m, it can be shown that the quotient group R∨/(qiR
∨) has cardinality q and the representatives40

of the q distinct cosets can be taken to be the elements of the set {0, . . . , q − 1}. The cardinality of the set41

R∨q is qn. Using the Chinese Remainder Theorem (CRT), it can be shown that there is an isomorphism I42

from R∨q to ⊕i∈Z∗m(R∨/(qiR
∨)). Further, I can be efficiently computed in both the forward and the backward43

7The following fact is used to obtain τk(qi) = qik−1 mod m: for j such that i ≡ jk mod m, τk(ζ − ωi) = τk(ζ − ωjk) = ζk − ωjk =
(ζ − ωj)x, where x = ζk−1 + ωjζk−2 + · · ·+ ωj(k−1) is in R.
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directions. For i ∈ Z∗m, let wi ∈ {0, . . . , q − 1} represent a coset of R∨/(qiR
∨). Given (wi)i∈Z∗m , it is possible to1

efficiently construct w ∈ R∨q such that the i-th component of I(w) is represented by wi. For the sake of notational2

convenience, we let w denote I−1((wi)i∈Z∗m).3

4.1 Intermediate problems4

The “search to decision” reduction is obtained by composing several individual reductions between intermediate5

problems. The search ring-LWE problem requires finding s in R∨q . The first step of the reduction is to show6

that it is sufficient to find any one of the components in the image of s under the isomorphism I. The relevant7

intermediate problem is the following.8

9

Ring-LWE over qi. For i ∈ Z∗m, the qi-LWEq,≤α problem is the following. For s ∈ R∨q and a positive real number10

r ≤ α, given access to samples from As,r, the requirement is to find the i-th component of I(s).11

12

Let the representatives of Z∗m be chosen from the set {1, . . . ,m− 1} with the usual ordering. For i ∈ Z∗m, let13

i− denote the largest element in Z∗m which is less than i with the convention that 1− is taken to be 0.14

15

The distribution Ais,r. For i ∈ Z∗m ∪ {0}, s ∈ R∨q and a positive real number r, the distribution Ais,r over16

Rq × T is defined in the following manner. A sample from As,r consists of a pair (a,b), where a ∈ Rq and17

b = σ((a · s)/q) + e mod σ(R∨). A sample from Ais,r is a sample from As,r whose k-th component for k ≤ i18

has been randomised by adding a uniform random hk ∈ {0, 1, . . . , q − 1} to the k-th component of a · s, thereby19

hiding the information8.20

21

A sample from Ais,r hides information about s with respect to the factors qk of 〈q〉 for k ∈ Z∗m and k ≤ i. For22

i ∈ Z∗m or i = 0, as i increases from 0 to m− 1, information about s is hidden in one more qi-component than in23

the previous step. At the beginning, i.e. i = 0, all the components in the output of I carry information about s,24

while at the end, i.e., i = m− 1, the element a · s+ h is a uniform random element of R∨q which is independent25

of both s and a. So for a sample (a,b) drawn from Am−1
s,r , a is uniform over Rq and b is independent of a;26

further, b is the sum modulo σ(R∨) of a uniform random element of σ(R∨q )/q and an element drawn from the27

distribution Dr. Consequently, a sample drawn from Am−1
s,r is almost uniform over Rq×T (see Lemma 5.13 of [19]).28

29

Variable width ring-DLWE relative to qi. For i ∈ Z∗m and a positive real number α, the ring-VWDLWEiq,≤α30

problem is the following. Given access to Ajs,r for s ∈ R∨q , positive real number r ≤ α and j ∈ {i, i−}, the31

requirement is to find j. In other words, the solver must determine whether or not the i-th component of the32

distribution has been randomised.33

Remark 6. The letters VWD before LWE denote ‘variable width decision’. In Definition 5.8 of [19] this problem34

was denoted WDLWE, meaning worst-case decision LWE. In our view, the use of “worst-case” is inappropriate,35

whereas “variable width” indicates an important feature of the problem.36

The next step is to consider a fixed width version of the DLWE problem with respect to the ideal qi.37

38

Ring DLWE (fixed width) relative to qi. Let i ∈ Z∗m and r0 > 0 be a real number. The ring-DLWEiq,r039

problem is the following. Choose s uniformly at random from R∨q . The requirement is to distinguish between40

inputs from Ai−s,r0 and Ais,r0 . Formally, let D1 be an algorithm which takes as input a list T of samples from Ajs,r41

8 For i ∈ Z∗m, let χ(i) be the following distribution over R∨q . For k ∈ Z∗m, choose hk ∈ {0, . . . , q − 1} as follows: hk = 0 for k > i;
and for k ≤ i, the hk’s are chosen independently and uniformly; return h = I−1((hk)k∈Z∗

m
).

A sample from Ais,r is obtained as follows. For i ∈ Z∗m, let h be sampled from χ(i). Choose (a,b) ← As,r and output (a,b +
σ(h)/q mod σ(R∨)) as a sample from Ais,r; for i = 0, the distribution A0

s,r is defined to be As,r.
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A5 solves ring-LWEq,≤α
• has access to As,r-oracle
• r ≤ α and s are unknown to A5

• output s

A6 solves qi-LWEq,≤α, i ∈ Z∗m
• has access to As,r-oracle
• r ≤ α and s are unknown to A5

• output the i-th component of I(s)
A7 solves ring-VWDLWEiq,≤α, i ∈ Z∗m
• has access to Ajs,r, s ∈ R∨q , r ≤ α, j ∈ {i, i−}
• output j

D1 solves ring-DLWEiq,r
• distinguishes between Ais,r and Ai−s,r
• s ∈ R∨q , r ≤ α

D2 solves ring-DLWEq,r
• distinguishes betweenAs,r and U(Rq×T)
• s ∈ R∨q , r ≤ α

Figure 2: Inputs and outputs of algorithms A5 to A7 and distinguishers D1 and D2.

with j ∈ {i−, i} and outputs a bit. For a fixed s ∈ R∨q , let ps,0 (resp. ps,1) be the probability that D1 outputs 11

when T consists of samples from Ai−s,r0 (resp. Ais,r0), where the probability is taken over all components of the2

input other than s as well as the internal coin tosses of D1. The advantage of the distinguisher is |ps,0−ps,1|. For3

ε1, ε2 ∈ (0, 1], we say that D1 is an (ε1, ε2)-distinguisher if D1 has advantage at least ε2 for at least a proportion4

ε1 of the set of possible s ∈ R∨q ,5

Remark 7. The above definition is based on Definition 5.10 of [19]. The formulation is different from that of6

Definition 5.10 and is in the form that is actually used in Lemma 5.16 and Theorem 3.6 of [19].7

The search ring-LWE to ring-DLWE reduction involves the following algorithms.8

A6 : an algorithm to solve qi-LWEq,≤α
A7 : an algorithm to solve ring-VWDLWEiq,≤α
D1 : a distinguisher for ring-DLWEiq,r
D2 : a distinguisher for ring-DLWEq,r

While going through the description below, it will be helpful to keep in mind the inputs and outputs of the9

various algorithms which are shown in Figure 2.10

A6 has access to an oracle which returns samples from As,r for some unknown s and unknown r ≤ α; A7 has11

access to an oracle Ajs,r for some unknown s, unknown r ≤ α and j equal to either i or i−.12

The overall reduction proceeds in several steps to construct an algorithm A5 to solve ring-LWE by using a13

distinguisher D2 for ring-DLWEq,r0 as an oracle. In the context of cryptography, ring-DLWEq,r0 is the problem14

whose solution breaks the cryptosystem, and A5, in turn, is used by A0 via A1, A2, A3, and A4 to solve SIVPγ .15

In the first step, A5 is constructed by using an algorithm A6 as an oracle to solve qi-LWEq,≤α for some i.16

The idea is to individually compute the components of I(s) using A6. Since A6 works for a particular i, the17

automorphisms of the number field are used to ensure that the j-th component of I(s) is transferred to the18

i-th component so that A6 can be applied. In the next step, A6 is constructed by using an algorithm A7 as an19

oracle to solve ring-VWDLWEiq,≤α. There are q possible x values of the i-th component. For each x, A6 modifies20

the LWE samples in a manner such that if x is the correct value of s mod qiR
∨, then the samples are from the21

distribution Ai−s,r, while if x is not equal to s mod qiR
∨, then the samples are from the distribution Ais,r. The22

oracle A7 can be used to determine which of these two cases occurs.23

The biggest step in the reduction is the construction of A7 using a distinguisher D1 for ring-DLWEiq,r0 as an24

oracle. D1 is an oracle that, given two `-tuples of samples that are randomised in the first i (resp. i−) components25

of H and come from LWE-sampling with known Gaussian error distribution in the remaining components, can26

distinguish between them. The construction of A7 shows that using D1, one can answer the same question when27

15



the LWE-sampling is with a Gaussian error distribution of width that is unknown (but less than a known bound).1

The last step is the construction of D1 by using a distinguisher D2 for ring-DLWEq,r0 as an oracle.2

Further details of the various steps are provided below with a focus on concrete aspects.3

4.2 Reducing ring-LWEq,≤α to qi-LWEq,≤α4

Suppose A6 is an algorithm to solve qi-LWEq,≤α for some particular i ∈ Z∗m. We provide a brief description of5

the construction of Algorithm A5 using A6 as an oracle (see Lemma 5.5 of [19] for details). The goal of A56

is to compute s. This can be done if each component of I(s) can be computed. Algorithm A6 can compute7

the i-th component of I(s). A5 uses automorphisms to map the j-th component to the i-th component in the8

following manner. For each j ∈ Z∗m, let k = j · i−1 mod m. A5 then invokes A6, and whenever A6 makes a9

query for an LWE sample, A5 queries its own LWE oracle to obtain a sample (a,b). It responds to the query by10

sending (τk(a), τk(b)) to A6. Let the output of A6 on the j-th invocation be denoted as sj . Finally, A5 returns11

I−1((sj)j∈Z∗m).12

Proposition 4. A5 invokes A6 a total of n times. The numbers of LWE queries made by A5 and A6 are equal.13

It is interesting to note that the reduction of ring-LWEq,≤α to qi-LWEq,≤α is made possible because ideal14

lattices for cyclotomic number fields possess some nice algebraic properties. On the other hand, the reduction15

itself can be considered to be a step in a possible attack on the search ring-LWE problem. This is because thanks16

to the automorphisms, if an algorithm evaluates the i-th component for any fixed i, then it is possible to use it17

to evaluate all the components; and for a fixed i the search space is not too big for exhaustive search.18

The construction of A5 from A6 is based on two points, the existence of n automorphisms and the split of 〈q〉19

into linear factors. There are two directions in which one could generalise from cyclotomic fields with primes q20

that split completely. First, in a cyclotomic field one can take any prime q that does not divide m, in which case21

〈q〉 splits into n/f distinct prime ideals where f is the residue field degree. In other words, R/(qiR) is no longer22

the field of q elements, but rather is a degree-f extension. In that case there would still be a contribution of n23

to the tightness gap, because while there are only n/f prime ideals, for each prime ideal it would be required24

to find f coordinates, so the Chinese Remainder Theorem presumably takes as much work as before (or more).25

This approach has been briefly mentioned in footnote 8 on Page 26 of [19]. Second, one can generalize to non-26

cyclotomic Galois fields. There it is still possible to find primes q that split completely, and if q does not split27

completely, there will again be n/f prime ideals with residue field of degree f (provided q does not divide the28

discriminant of the field).29

4.3 Reducing qi-LWEq,≤α to ring-VWDLWEiq,≤α30

Suppose A7 is an algorithm to solve ring-VWDLWEiq,≤α. This algorithm is used as an oracle to construct an31

algorithm A6 to solve qi-LWEq,≤α. We provide a brief description of the construction and for details we refer to32

Lemma 5.9 of [19]. The requirement for A6 is to determine the i-th component of I(s). As mentioned earlier, each33

component of I(s) can be represented by an element from the set {0, . . . , q− 1}. For each x ∈ {0, . . . , q− 1}, A634

does the following. It first computes an element g ∈ R∨q such that I(g) is equal to x in the i-th component and is35

equal to zero in all other components. Then A6 invokes A7. For each LWE query made by A7, A6 queries its own36

oracle to obtain a pair (a,b). It then computes an element v ∈ Rq such that under the isomorphism from Rq to37

⊕j∈Z∗mR/(qiR), the i-th component is chosen uniformly at random from {0, . . . , q− 1} and all other components38

are equal to zero. Next, A6 adds (v, σ((v · g)/q) mod σ(R∨)) to the sample (a,b) and then randomises the first39

i− components by adding a random element to the second part of each of those components of the sample. A640

sends the resulting modified sample to A7 as its response to the query9. At the end of its oracle queries, if A741

returns i−, then A6 returns x. The crucial point for correctness is that if the value of x is equal to the i-th42

9In other words, A6 generates h from the distribution χ(i−) and returns the pair (a+ v,b + (σ(h+ v · g))/q mod σ(R∨)) to A7.
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component of I(s), then the samples returned to A7 are from the distribution Ai−s,r, and if not, then the samples1

returned to A7 are from the distribution Ais,r.2

Proposition 5. A6 invokes A7 at most q times. The numbers of LWE queries made by A6 and A7 are equal.3

4.4 Reducing ring-VWDLWEiq,≤α to ring-DLWEiq,r4

For a fixed i ∈ Z∗m, Lemma 5.16 of [19] states10 that ring-VWDLWEiq,≤α reduces to ring-DLWEiq,r in randomised5

polynomial time, where6

r = α ·
(

n`

ln(n`)

)1/4

(10)

and ` is the number of LWE samples required by the distinguisher for ring-DLWEiq,r. Note that (10) shows that7

r > α. Since our goal is to estimate feasibility, we perform a concrete analysis which turns out to be considerably8

more complicated than the sketch of a proof in the asymptotic setting that was provided in [19]. In particular, in9

order to get a rigorous proof for this part of the reduction we needed to include the factor N2, defined below.This10

has a substantial effect on the ratio r/α, which now becomes11

r

α
=

(
nN2`

ln(nN2`)

)1/4

, (11)

and that, in turn, brings a new term N
1/4
2 >

√
n (see below) into the SIVP approximation factor.12

The essential difference between the problems ring-VWDLWEiq,≤α and ring-DLWEiq,r is in the distribution of13

the error of the LWE samples. For the former problem the errors follow Dr, where r ≤ α, while in the latter14

problem the errors follow Dr with r > α as mentioned above. The reduction of ring-VWDLWEiq,≤α to ring-DLWEiq,r15

is a trade-off between narrower width with no knowledge of the width except for an upper bound versus wider16

width (which generally means less useful samples) with knowledge of the width.17

Let T = ((ak,bk))1≤k≤` be a list of ` samples from Ajs,r, where r ≤ α and j is equal to either i− or i. Suppose18

t ∈ R∨q and let f1, . . . , f` be chosen independently from Dr. Define a list T ′ = ((a′k,b
′
k))1≤k≤`, where a′k = ak and19

b′k = bk + σ(ak · t)/q + fk (mod σ(R∨)). Since (ak,bk) is a sample from Ajs,r, the error vector ek in bk follows20

Dr. The error in b′k, which is ek + fk, follows Dr′ , where r′ =
√
r2 + r2. Hence, the samples in T ′ are from the21

distribution Ajs+t,r′ .22

From T ′, a list T ′′ is obtained as follows. For each pair (a′k,b
′
k) in T ′, a′k is unchanged and b′k is modified23

so as to partially randomise bk; namely all components of of ak · (s + t) up through the i-th are randomised11.24

Note that irrespective of the value of j, the samples in T ′′ are from the distribution Ais+t,r′ . Note that the LWE25

secret in both T ′ and T ′′ is s + t and the distribution of the LWE errors is D`
r′ . This ensures two things. The26

first is a random self-reduction where the LWE secret s is mapped to s+ t and the second is the addition of the27

f -errors so as to get the error width r′ to within a small multiplicative factor of r.28

Let D1 be an (ε1, ε2)-distinguisher for ring-DLWEiq,r. Using D1, an algorithm A7 for ring-VWDLWEiq,≤α is29

constructed as follows. A7 has access to an oracle for Ajs,r, where r ≤ α and j is either i or i−. The requirement30

is to determine j. The construction of A7 has two nested loops: an outer loop of N1 iterations and for each of31

these iterations an inner loop of N2 iterations. In each iteration of the outer loop, A7 chooses t uniformly at32

random from R∨q . Then the inner loop of N2 iterations starts. In each of the N2 iterations of the inner loop,33

10The actual statement of Lemma 5.16 in [19] is for the case where the error distribution for the ring-VWDLE problem is from a
family of elliptical Gaussian distributions. Here we consider the simpler situation where the error distribution is from a family of
spherical Gaussian distributions. This simplification does not have any effect on the concrete security analysis.

11In other words, (a′k,b
′
k) is modified to (a′k,b

′
k + σ(hk)/q (mod σ(R∨))), where hk is chosen from χ(i).
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A7 obtains a list T of samples from Ajs,r; chooses f1, . . . , f` independently from D`
r ; and uses T , t and f1, . . . , f`1

to prepare the lists T ′ and T ′′ as described above. Then A7 runs D1 on T ′ and T ′′ obtaining in return the2

corresponding 1-bit outputs. At the end of the inner loop of N2 iterations, A7 obtains estimates p̂0 and p̂1 of3

the probabilities p0 and p1 that D1 accepts inputs from the distributions Ajs+t,r′ and Ais+t,r′ respectively. If4

|p̂0 − p̂1| ≥ ε2/4, then A7 returns i− and stops. If in none of the N1 iterations the condition |p̂0 − p̂1| ≥ ε2/4 is5

satisfied, then A7 returns i. Figure 2 in Appendix B provides a pseudo-code description of A7.6

Note that D1 is supposed to work for errors following the distribution D`
r . It is, however, invoked on the lists7

T ′ and T ′′, where the errors in the samples in these lists follow D`
r′ . Due to the change in the width of the error8

distribution, D1 may not behave as an (ε1, ε2)-distinguisher. This is taken care of in the following analysis.9

Algorithm A7 fails if it returns an incorrect answer. This can happen in two ways, namely that j = i and A710

returns i−, and j = i− and A7 returns i. We call the former to be Type-1 failure and the latter to be Type-211

failure.12

13

Case j = i. In this case, the samples in both T ′ and T ′′ follow Ais+t,r′ and so p0 = p1. Consider any one of the14

N1 iterations of the outer loop. From the additive form of the Chernoff-Hoeffding bound [16], we have15

Pr[p0 − ε2/8 ≤ p̂0 ≤ p0 + ε2/8] ≥ 1− 2 exp(−N2ε
2
2/32),

Pr[p1 − ε2/8 ≤ p̂1 ≤ p1 + ε2/8] ≥ 1− 2 exp(−N2ε
2
2/32).

Since p0 = p1, it follows that Pr[|p̂0 − p̂1| ≤ ε2/4] ≥ 1 − 4 exp(−N2ε
2
2/32). So in any of the N1 iterations of the16

outer loop the probability of Type-1 failure is at most 4 exp(−N2ε
2
2/32). The probability of Type-1 failure in any17

of the N1 iterations is then at most 4N1 exp(−N2ε
2
2/32).18

19

Case j = i−. In this case, the samples in T ′ follow Ai−s+t,r′ while the samples in T ′′ follow Ais+t,r′ . In any of20

the N2 iterations of the inner loop, let z1 = e1 + f1, . . . , z` = e` + f` be the errors in the LWE samples in the21

lists T ′ and T ′′. Let z be a vector consisting of all the N2` errors in the N2 iterations of the loop. The vector z22

follows D`N2
r′ . Suppose instead that it follows D`N2

r . Later we will compute a correction factor to account for the23

width being r′ rather than r. We denote the corresponding probabilities and their estimates by p0, p1, p̂0 and24

p̂1. Let ps+t,0 and ps+t,1 respectively denote the probabilities p0 and p1 corresponding to a particular value of t.25

Similarly, let p̂s+t,0 and p̂s+t,1 respectively denote the estimates p̂0 and p̂1 corresponding to a particular value of26

t. Further, let p̂s+t,z,0 and p̂s+t,z,1 denote these estimates for a particular value of t and z.27

We say that a value s+ t is good if |ps+t,0 − ps+t,1| ≥ ε2. From the definition of an (ε1, ε2)-distinguisher, the28

probability of a good s + t is at least ε1. For a good s + t, using the additive form of the Chernoff-Hoeffding29

bound [16], we have30

Pr[ps+t,0 − ε2/4 ≤ p̂s+t,0 ≤ ps+t,0 + ε2/4] ≥ 1− 2 exp(−N2ε
2
2/8),

Pr[ps+t,1 − ε2/4 ≤ p̂s+t,1 ≤ ps+t,1 + ε2/4] ≥ 1− 2 exp(−N2ε
2
2/8).

Since the events ps+t,0 − ε2/4 ≤ p̂s+t,0 ≤ ps+t,0 + ε2/4 and ps+t,1 − ε2/4 ≤ p̂s+t,1 ≤ ps+t,1 + ε2/4 along with the31

condition |ps+t,0 − ps+t,1| ≥ ε2 together imply |p̂s+t,0 − p̂s+t,1| ≥ ε2/2, we obtain32

Pr[|p̂s+t,0 − p̂s+t,1| ≥ ε2/2] ≥ 1− 4 exp(−N2ε
2
2/8). (12)

For N2 about ε−2
2 times a constant, the difference |p̂s+t,0− p̂s+t,1| will be at least ε2/2 with probability almost 1.33

Keeping this in mind, henceforth we will assume34

N2 = ε−2
2 . (13)

For simplicity, we assume that for a good s+ t, |p̂0 − p̂1| ≥ ε2/2 holds with probability 1.35
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Given a good s + t, we say that z is good if |p̂s+t,z,0 − p̂s+t,z,1| ≥ ε2/4 holds. Using Proposition 10 in1

Appendix B, the probability of a good z (for a good s + t) is at least ε2/4. Changing the error distribution2

from D`N2
r to D`N2

r′ , the probability of a good z under D`N2
r′ (i.e., one for which |p̂s+t,z,0 − p̂s+t,z,1| ≥ ε2/4 holds)3

is at least ε22/(256nN2`)
1/2 (see Proposition 14 in Appendix B). So the probability of a good pair (s + t, z)4

where z follows DN2`
r′ is at least ε1ε

2
2/(256nN2`)

1/2. Consequently, if N1 is around (256nN2`)
1/2/(ε1ε

2
2), then with5

probability exponentially close to 1 a good tuple will be encountered in one of the iterations of the outer loop.6

Type-2 failure can occur in two ways. The first way is that in none of the N1 iterations, a good tuple is7

obtained. The second way is that for a good tuple, the condition |p̂s+t,z,0 − p̂s+t,z,1| ≥ ε2/4 does not hold. The8

above analysis shows that the probability of either of these errors is exponentially small.9

The number of times A7 calls D1 is N1N2 which is about (256n`)1/2N
3/2
2 /(ε1ε

2
2) and the number of samples10

of Ajs,r required by A7 is N1N2`. As mentioned above N2 is about ε−2
2 .11

Remark 8. Ignoring Type-2 failures, the probability that A7 fails is given by the probability of Type-1 fail-12

ure. As shown above, this probability is at most 4N1 exp(−N2ε
2
2/32). In the complete reduction of K-SIVPγ to13

ring-VWDLWEiq,≤α, let N3 be the number of times A7 is called. Then the probability that any of these calls fails is14

at most 4N1N3 exp(−N2ε
2
2/32). This shows that the value of N2 should be about 32Lε−2

2 where, L = lnN1 +lnN3.15

Since N2
2 appears in the number of oracle calls, the factor 32L contributes 210L2 to the tightness gap. For practical16

values of the parameters, this can be significant.17

In view of the above, we have the following result.18

Proposition 6. The number of times A7 calls D1 is about (ε1ε
5
2)−1 · (256n`)1/2. The number of times A7 calls19

its LWE oracle is about (ε1ε
5
2)−1 · (256n)1/2`3/2.20

Remark 9. We tried various ways to fill in the details of this reduction while maintaining (10) rather than21

resorting to the much larger r/α ratio in (11). The factor (11) came from the need to bound the effect on the22

probability measure of replacing the distribution DN2`
r by the actual distribution DN2`

r′ that governs the error-23

vectors z that go into a set of N2 pairs of lists (T ′, T ′′) that are input to D2.24

One promising possibility seemed to be that we could avoid the N2 term if we were able to consider each inner25

loop to have an N2-tuple of lists coming from a fixed set of ` samples from Ajs+t,r with fixed t and fixed added26

error-vectors f , so that the only quantities that vary within an inner loop would be the randomisation h’s and the27

internal coin tosses of the distinguisher.28

However, in the case j = i we would need to know that, for any fixed s+ t and for any fixed `-tuple of a and z29

coming from the ` samples from Ajs+t,r, the probabilities of output 1 for T ′ and for T ′′ are equal. This is true if30

the distributions of h’s are the same for the two lists. However, they aren’t: for T ′ the distribution is χ(i−) and31

for T ′′ it’s χ(i). Speaking less formally, the difference is that the i-th component of T ′ is randomised but fixed32

for all of the N2 lists, while the i-th component of T ′′ gets a new randomisation in each new list. One can adopt33

the heuristic assumption that the distinguisher sees them as indistinguishable, but in that case we don’t have a34

rigorous argument.35

Remark 10. It is possible to use (10), but in that case we obtain a super-exponential time algorithm. See36

Remark 22 in Appendix B.37

4.5 Reducing ring-DLWEiq,r to ring-DLWEq,r38

The final requirement is a reduction to the decision problem ring-DLWE (see the proof of Lemma 5.14 of [19]).39

Suppose D2 is a (δ1, δ2)-distinguisher for ring-DLWEq,r, i.e., it has advantage at least δ2 on a fraction δ1 of the set40

of possible values of s. We show that there is an i ∈ Z∗m, such that D2 will function as a (δ1/n, δ2/n)-distinguisher41

D1 for ring-DLWEiq,r.42
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We say that s is “useful” if D2 has advantage at least δ2 in distinguishing As,r from the uniform distribution1

over Rq × T. From the assumption on D2, the proportion of useful s ∈ R∨q is at least δ1. For s ∈ R∨q and2

i ∈ Z∗m ∪ {0}, let ps,i be the probability that D2 outputs 1 on being provided ` samples from Ais,r. Recall3

that As,r = A0
s,r and that samples from Am−1

s,r are almost uniformly distributed over Rq × T. So for a useful s,4

|ps,0 − ps,m−1| ≥ δ2. It then follows that there is at least one i ∈ Z∗m such that |ps,i− − ps,i| ≥ δ2/n. We say5

that a pair (s, i) ∈ R∨q ×Z∗m is “useful” if the condition |ps,i−− ps,i| ≥ δ2/n holds. Since the proportion of useful6

s ∈ R∨q is at least δ1, and for each useful s there is at least one i such that (s, i) is useful, it follows that for7

some i there is a proportion at least δ1/n of s values such that (s, i) is useful. We then fix such an i, denoted8

i0. We define s to be “good” if (s, i0) is useful. We attempt to use D2 as our D1 for the n possible values of9

i, and when we get to i = i0 we will find that our (δ1, δ2)-distinguisher D2 for ring-DLWEq,r also functions as a10

(δ1/n, δ2/n)-distinguisher for ring-DLWEiq,r.11

Proposition 7. Suppose D2 is a (δ1, δ2)-distinguisher for ring-DLWEq,r. Then there is some i ∈ Z∗m such that12

there is an (ε1, ε2)-distinguisher D1 for ring-DLWEiq,r, where ε1 = δ1/n and ε2 = δ2/n.13

Since ε2 = δ2/n, the value of N2 given by (13) becomes14

N2 = n2δ−2
2 . (14)

Remark 11. Proposition 7 does not show how to choose an i for which D1 exists. The argument showing15

existence of i does not help determine the value of i. We can repeat the full reduction of K-SIVPγ to ring-16

DLWEq,r for each possible i, and among the responses we select the basis that has the smallest maximum length.17

Since there are n possibilities, this introduces a factor of n into the tightness gap.18

4.6 The tightness gap in the search ring-LWE to ring-DLWE reduction19

The analysis in this section showed how to construct an algorithm A5 to solve ring-LWEq,≤α using a (δ1, δ2)-20

distinguisher D2 for ring-DLWEq,r. This required going through algorithms A6 and A7 and the distinguisher21

D1.22

First we consider the number of times A5 calls D2. By Proposition 4, A5 calls A6 a total of n times and23

by Proposition 5, A6 calls A7 a total of q times. By Proposition 6, A7 calls D1 about (ε1ε
5
2)−1 · (256n`)1/2

24

times. From the discussion in Section 4.5, D1 is identical to D2. Thus, the number of times A5 calls D2 is about25

qn(ε1ε
5
2)−1 · (256n`)1/2.26

Next we consider the number of LWE queries made by A5. By Propositions 4 and 5, the number of LWE27

queries made by A5, A6 and A7 are equal. By Proposition 6, the number of LWE queries made by A7 is about28

(ε1ε
5
2)−1 · ((256n)1/2`3/2). Hence, the number of LWE queries made by A5 is also (ε1ε

5
2)−1 · ((256n)1/2`3/2).29

By Proposition 7, we have ε1 = δ1/n and ε2 = δ2/n. Using these values of ε1 and ε2 in the above expressions,30

we obtain the following result.31

Theorem 8. The number of times A5 calls D2 is about qn(δ1δ
5
2)−1n6 · (256n`)1/2 ≈ qn15/2`1/2(δ1δ

5
2)−1 and the32

number of LWE queries made by A5 is about (δ1δ
5
2)−1n6 · ((256n)1/2`3/2) ≈ n13/2`3/2(δ1δ

5
2)−1.33

4.7 The parameters γ and q34

In order to have confidence in the security of a ring-DLWE-based cryptosystem, we want to be sure that unless35

(δ1, δ2) is negligible, there is no efficient (δ1, δ2)-distinguisher for ring-DLWEq,r, where q (the modulus) and r (the36

distribution width) are parameters of our cryptosystem. In particular, we don’t want there to be an efficient37

distinguisher with advantage 2−β2 unless β2 is fairly large. We want the K-SIVPγ problem that reduces to ring-38

DLWEq,r with this choice of δ1, δ2 to be hard. Below we investigate this question using the value n = 210, which39

has been given as a parameter for some proposed cryptosystems [1, 7].40
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δ2 2−128 2−50 2−25

γ = 2k 281.5 242.5 230

2n/k 212 224 234

q 276 237 234

Table 1: For n = 210 the lower bounds on γ and upper bounds on 2n/k along with lower bounds on q.

According to Theorem 3, the approximation factor γ in the SIVP is Õ of the following expression:1

√
n

α
=

√
n

r

(
nN2`

ln(nN2`)

)1/4

(15)

by (11). Note that the parameter δ1 does not have any effect on γ. As explained in the last paragraph of2

§3.1 of [19], in the case of a cyclotomic ideal lattice with n a power of 2 we need r to be bounded above by3

O(
√

log n/n), or else the distribution will be statistically indistinguishable from uniform and no distinguisher4

will be possible.5

Using (14) and the bound O(
√

log n/n) on r and ignoring log factors and constants, from (15) we have6

γ > n(nN2`)
1/4 > n(n`n2δ−2

2 )1/4 = n7/4`1/4δ
−1/2
2 > n7/4δ

−1/2
2 . (16)

For example, choosing n = 210 and δ2 = 2−β2 , we find that γ > 2(35+β2)/2.7

Now for γ = 2k the fastest classical algorithm known that solves SVPγ (and hence also solves K-SVPγ and8

its equivalent K-SIVPγ) has running time 2θ̃(n/k) where θ̃ suppresses a log factor [24]. We clearly want 2n/k to9

be large. From γ = 2k > 2(35+β2)/2, we have k > (35 + β2)/2. Suppose we are considering 128-bit security. If10

we are extra cautious, then we will choose β2 = 128; if we are less cautious, then we may choose β2 = 50; and if11

we are not particularly risk-averse we might choose β2 = 25. The corresponding lower bounds on γ and upper12

bounds on 2n/k are shown in Table 1. None of these values inspire confidence in the hardness of K-SIVPγ . In13

particular, the approximation factors γ are very large, and the running times 2n/k are too small.14

In addition, a practicality issue arises when we consider the modulus q. A condition for the reductions is that15

qα > 2ω(
√

lnn). Using (11), we obtain16

q >
2ω(
√

lnn)

α
=

2ω(
√

lnn)

r

(
nN2`

ln(nN2`)

)1/4

. (17)

Again ignoring constants and log-terms and using r < O(
√

log n/n), we have17

q > n5/4`1/4δ
−1/2
2 > n5/4δ

−1/2
2 . (18)

With our values n = 210, δ2 = 2−β2 we find that q > 2(25+β2)/2. The lower bounds for q corresponding to18

β2 = 128, 50 and 25 are shown in Table 1. The cryptosystem would be quite inefficient with these values of the19

modulus.20

Remark 12. The values12 of q for SABER and Kyber are 213 and 3329 respectively. These values are much21

lower than the values of q in Table 1.22

12Downloaded from https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions on February 28,
2022.

21

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


5 The tightness gap in the K-SIVPγ to ring-DLWEq,r reduction1

The tightness gap for the entire reduction is the number of times A0 calls D2. This is given by the product of2

the number of times A0 calls A5 and the number of times A5 calls D2. The former is given by Theorem 3 to be3

(2n + (log n)/2)n4 · N , where N is the number of LWE queries made by A5, and from Theorem 8 the latter is4

about qn15/2`1/2(δ1δ
5
2)−1. Also from Theorem 8, N is about n13/2`3/2(δ1δ

5
2)−1. Remark 11 shows that we have5

an additional factor of n in the number of times A0 calls D2.6

Based on the above analysis, the concrete version of the complete reduction of K-SIVPγ to ring-DLWEq,r is7

given by the following theorem, which corresponds to Theorem 3.6 of [19].8

Theorem 9. Let K be the m-th cyclotomic number field having degree n = ϕ(m) and R = OK be its ring of9

integers. Let r be a positive real number bounded from above by O(
√

log n/n). Let δ1, δ2 ∈ (0, 1]. Let q be a10

prime greater than 2 such that q ≡ 1 mod m and q > (2ω(
√

lnn)/r) · (nN2`/ ln(nN2`))
1/4, where N2 is defined11

in the course of the proof and has magnitude Õ(n2/δ2
2), and ` is a positive integer. Suppose there is a (δ1, δ2)-12

distinguisher D2 which solves ring-DLWEq,r given ` samples. Then there is a quantum algorithm A0 requiring13

approximately 3n2 logical qubits to solve K-SIVPγ, where γ = Õ(n5/4`1/4/(rδ
1/2
2 )). The number of times A0 calls14

D2 is about15

(2n+ (log n)/2)n4 · n13/2`3/2(δ1δ
5
2)−1 · qn15/2`1/2(δ1δ

5
2)−1 · n ≈ qn20`2 · (δ1δ

5
2)−2. (19)

From the point of view of practical cryptography, it is of interest to consider the tightness gap G for practical16

values of n. Let us consider n = 210 as in §4.7. Suppose δ1 = 2−β1 , δ2 = 2−β2 . Then q is at least 2(25+β2)/2
17

and for simplicity we take q = 2(25+β2)/2. Further, following the suggestion in the second paragraph on page 718

of [19], we take ` = O(1). Then the tightness gap G = 2(425+4β1+21β2)/2. Suppose we take β1 = 0 and as in19

§4.7 we consider three values of β2, namely 128, 50 and 25. The corresponding values of the gap G are 21556.5,20

2737.5 and 2475 respectively. One may repeat the calculation using other values of β1 and β2; for example, taking21

β1 = β2 = 128, the value of G is 21812.5.22

To interpret Theorem 9 let’s recall how one determines whether a security reduction from a problem Q23

(a problem that’s believed to be hard) to a problem P (the problem that our cryptosystem is based on) with24

tightness gap G provides an assurance of security for given parameters. For us Q=K-SIVPγ and P=ring-DLWEq,r.25

Suppose that the fastest known algorithm to solve Q with our parameters has running time T2. Suppose P can26

be attacked by an algorithm taking time T1. Using the security reduction, we have a second algorithm for Q that27

takes time GT1. We now make the reasonable assumption that this second algorithm will not set a new record28

for speed in solving Q, and hence GT1 ≥ T2, and so T1 ≥ T2/G. If T2 is exponential in the parameters and G is29

fairly small, we can feasibly choose the parameters so that T2/G ≥ 2128. In this way practice-oriented provable30

security can provide convincing evidence of security against mathematical attacks, i.e., attacks that solve P.31

If we carry this out for Theorem 9 with the practical value n = 210, we find that the security reduction32

is worthless as an assurance of security. Since K-SIVPγ has not yet been extensively studied, let’s take the33

value of T2 from a harder problem that has been investigated at length, namely SVP. Of course, K-SVPγ ,34

which is equivalent to K-SIVPγ , is presumably easier than exact-SVP for general lattices, and so we’re likely to35

overestimate T2. According to [17], the fastest classical algorithms have heuristic running time 20.337n+o(n) and36

the fastest quantum algorithms have heuristic running time 20.286n+o(n). Taking n = 1024 as before and assuming37

that the o(n) term doesn’t add more than 50 to the exponent, we’ll take T2 = 2395 for classical SVP-algorithms38

and T2 = 2343 for quantum SVP-algorithms. We won’t worry about the fact that the T2 for K-SVPγ is probably39

much less, and we’ll use the smallest value obtained above for the gap G. With the classical and quantum values40

we’re using for T2, we get the following lower bounds for the time T1 needed to break ring-DLWEq,r:41

T1 > 2−80 (classical); T1 > 2−132 (quantum). (20)

So the theorem gives us no assurance at all.42
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Remark 13. The negative exponents in the lower bounds (20) would be even more extreme if we chose a more
realistic estimate for T2, such as 2n/k (see Table 1) and a more cautious value for β2, say β2 = 128. On the other
hand, we could get a reasonable lower bound for T1 for ring-DLWEq,r by increasing n, just as F. Gates [13] did
for Regev’s reductions for general lattices. Because the tightness gap is so large, n would need to be significantly
larger than it was for Gates. For example, if n ≈ 217.5, then we have

q > 285, γ = 2k > 294, n/k < 1970, G ≈ 21715,

leading to a lower bound for T1 of approximately 2255.1

However, there are two difficulties with choosing n so large. In the first place, the efficiency advantage of ideal2

lattices would be lost if one has to use lattices of dimension > 185, 000. In the second place, the quantum part of3

the reduction, which requires at least 3n2 logical qubits, becomes even farther removed from what can reasonably4

be expected to be feasible. The quantum part would need 1011 logical qubits, roughly 20 million times as many as5

Shor’s algorithm needs to factor a 2048-bit RSA modulus. Using a rough comparison with Shor’s algorithm (as6

in (23) below), we estimate that the number of physical gates required would be about 2116. There’s a steep price7

to be paid for significantly increasing n.8

5.1 Comparison to the tightness gap in the reduction from SIVP to DLWE for general9

lattices10

The tightness gap of the reduction from SIVP to DLWE for general lattices in [29] was analysed in [10, 33, 13].11

All of these prior works overlooked certain aspects of the tightness gap. Taking these into consideration increases12

the previous estimates. On the other hand, it is possible to reduce the gap by adjusting certain parameter choices13

in the reduction in [29], which was not done in [10, 33, 13]. We first obtain a more accurate estimate of the14

tightness gap in [29] and then compare this estimate to the tightness gap in [19]. In the description below, n is15

the dimension of the underlying lattice and q is the modulus of the LWE problem.16

17

Tightness gap in the reduction of SIVP to search-LWE. An algorithm B0 to solve SIVP can be constructed18

using an algorithm B1 to solve DGS with a tightness gap of n3 as in §3.1. An algorithm B1 to solve DGS can19

be constructed using an algorithm B5 to solve search-LWE using algorithms B2, B3 and B4 as intermediate20

algorithms. The description of B1 is similar to the description of A1 given in §3.2. B1 first prepares a list of I21

DGS samples of width large enough so that it can do so without invoking the LWE oracle. Then it goes through22

a loop over i0 = 2n + d(log n)/2e iterations. In each iteration, it updates the list of I samples with a list of23

another I samples of width at most half of the previous width. This is done by calling a quantum algorithm B224

which in turn requires the reverse of a BDD solver B3. The BDD solver B3 is constructed using a restricted kind25

of BDD solver B4. This special BDD solver B4 uses the LWE solver B5.26

B1 calls B2 a total of i0I ≈ nI times; B2 calls the reverse of B3 once; B3 calls B4 a total of n times; and the27

number of times B4 calls B5 is a constant multiple of I2. Here I is the number of LWE samples required by B5.28

So the total tightness gap in the reduction of SIVP to search-LWE is n5I3.29

30

Tightness gap in the reduction of search-LWE to average-case DLWE. Algorithm B5 to solve search-31

LWE can be constructed using an algorithm B6 to solve worst-case DLWE with a tightness gap of qn. Both B532

and B6 require the same number of LWE samples. Algorithm B6 can be constructed using a (δ1, δ2)-distinguisher33

D to solve average-case DLWE. The tightness gap of this reduction is I1I2 and the number of LWE samples34

required by B6 is I1I2`, where I1 and I2 are constant multiples of δ−1
1 and δ−2

2 respectively, and ` is the number35

of LWE samples required by D. So the number I of LWE samples required by B5 is I1I2`.36

37

Overall tightness gap. Combining the above two tightness gaps, the overall tightness gap comes out to be38

qn6`3 · (δ1δ
2
2)−4. (21)
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Following the discussion in Section 5 of [29], q is a prime between n2 and 2n2 and ` = Õ(n). Taking q to be1

about n2 and ` to be about n, the expression given by (21) reduces to2

n11 · (δ1δ
2
2)−4. (22)

Remark 14. The above estimate of the tightness gap improves upon the analysis in [29] in the following two3

ways.4

1. In [29], the number of times B4 calls B5 was taken to be nI2 so that the failure probability is at most 2−n.5

For a concrete analysis, it is sufficient to consider the number of times B4 calls B5 to be a constant multiple6

of I2. Certainly with n = 1024 insisting on a 2−1024 failure rate would be overkill.7

2. In [29], I1 and I2 were taken to be n/δ1 and n/δ2
2 respectively. This ensures that the failure probabilities of8

the worst-case to average-case reduction are asymptotically zero. The choices, however, are also an overkill.9

For purposes of concrete analysis it is sufficient to take I1 and I2 to be constant multiples of δ−1
1 and δ−2

210

respectively with constants that, for practical values of n such as 1024, are much less than n.11

Remark 15. The two previous works [10, 13] estimated that B4 calls B5 n times and overlooked the factor I2,12

while this factor was considered in [33]. The fact that for a concrete analysis it is sufficient to consider I2 and not13

nI2 was overlooked in [33]. All the three works [10, 33, 13] considered I to be a polynomial in n and overlooked14

the fact that I = I1I2`. Further, following [29] all these three works considered I1 and I2 to be n/δ1 and n/δ2
215

respectively.16

The tightness gap in the reduction from SIVP to search-LWE for the reductions in [29] and [19] are n5I3
17

and n5N respectively, where N is the number of samples required by the ring-LWE solver. Treating I and N as18

having similar values, the tightness gap of the reduction for general lattices is greater by a factor of about I2.19

This is due to the fact that the definition of the LWE problem in [29] requires the error to follow a fixed width20

Gaussian distribution. Since the width of the DGS samples is not known, B4 has to incrementally add errors so21

that for some increment the error distribution is negligibly far from the error distribution expected by the LWE22

solver. This step results in the factor I2 arising in the tightness gap.23

We compare the tightness gap of the reduction from approximate SIVP to DLWE for ideal lattices with24

that for general lattices. Taking δ1 = 2−β1 and δ2 = 2−β4 , for n = 1024, the expression in (22) is 2110+4β1+8β2 .25

For β1 = 0 and β2 = 128, 50 and 25, the values of the tightness gap are 21134, 2510 and 2310 respectively. For26

β1 = β2 = 128, the tightness gap13 is 21646. The tightness gap we obtain for ideal lattices is much more than the27

tightness gap for general lattices.28

Remark 16. That the tightness gap for ideal lattices is even larger than for general lattices is particularly29

troubling because the gap is between the problem of cryptographic interest and a problem that is probably easier30

for ideal lattices than for general lattices.31

Remark 17. Increasing the value of n to compensate for the tightness gap in [29] was considered in [13]. The32

above analysis shows that the estimate of the tightness gap in [13] was off the mark and so the suggested values33

of n to compensate for the gap are also off the mark. Further, as explained above, increasing the value of n to34

compensate for the tightness gap is futile, since the number of logical qubits grows quadratically in n, making an35

already infeasible quantum circuit even worse.36

6 Problems with the quantum part of the reduction37

The quantum part of the reduction in [19] is largely taken from [29]. In [29] Regev writes that “This article is38

almost entirely classical. In fact, quantum is needed only in one step in the proof of the main theorem.” This39

13This was the case considered in [10, 33], where the tightness gap was estimated to be 2524.
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is true from the perspective of readers who are trying to understand the description of the reduction. From a1

pedagogical standpoint, readers who have difficulty following the construction of a quantum state — in this case2

by applying unitary operators in a 2N -dimensional Hilbert space with N > 3 × 106 — can console themselves3

with having understood the vast majority of the steps in the security reduction.4

However, Regev’s statement could also be interpreted as suggesting that the quantum aspect has only a minor5

effect on the feasibility of the reduction, provided that one assumes that quantum computers scaled to break RSA6

and ECC will be possible (which is, after all, a motivation for the development of lattice-based cryptography).7

That could not be further from the truth. In reality, the vast majority of the reduction steps must occur within8

a quantum computer, and this raises a multitude of questions about feasibility.9

The reduction is divided into a sequence of ten algorithms

A0,A1,A2, . . . ,A7,D1,D2.

The quantum part starts with A2. At a key point (the first paragraph of the proof of Lemma 3.14 in [29]) the10

quantum algorithm has a state that is a linear combination of roughly 23n2
terms, each involving two entangled11

registers. The algorithm needs to “erase” the first of these entangled registers, which means “uncomputing” a12

closest vector in each summand. This is done by converting an algorithm for the closest vector problem (denoted13

CVP in [29] and BDD in [19]) into a quantum circuit and then reversing the circuit. Thus, the entire circuit14

for the rest of the reduction from A2 to D2 has to be incorporated (after being reversed) into the quantum15

computation. As a result, as we’ll see, the burden on the quantum computer is many orders of magnitude16

greater than it would be for Shor’s algorithm to break RSA2048. Most obviously, all of the operations in the17

sequence of eight algorithms from A2 to A7, D1, D2 are quantum operations, and according to [35, pp. 96-97] a18

quantum operation can be expected to cost at least 210 times as much (and possibly up to 250 times as much)19

as a classical operation.20

6.1 The number of logical qubits21

The quantum algorithm A2 is based on Lemma 3.14 of [29], which shows that n logR logical qubits are required22

for an ideal I, where R is an integer which is at least 23nλn(I). Since λn(I) is generally polynomial in n, it23

follows that the number of logical qubits required is about 3n2. For n = 210 about 3 million logical qubits will24

be required. In comparison, factoring a 2048-bit RSA modulus requires roughly 4000 to 5000 logical qubits.25

6.2 Circuit size26

The size of the logical circuit — that is, neglecting error correction — depends on the length and complexity of27

the algorithm and on the number of logical qubits of input. The algorithms from [19] surveyed in this paper form28

a complicated interlocking sequence of computations. In addition, the number of qubits for a 1024-dimensional29

lattice is about 750 times the number of qubits in Shor’s algorithm to break RSA2048. The number of gates in30

the quantum part will be many times greater than in Shor’s algorithm, and the circuit depth will also be much31

greater.32

6.3 The number of physical gates33

A basic issue in estimating the resources needed for a quantum computation is the need for error correction in34

order to cope with quantum decoherence. This means that the number of physical gates must be many times35

the number of logical gates. According to the definitive reference on quantum computing by M. Nielsen and36

I. Chuang [22], much progress in quantum error correction has been made over the years, and there are reasons for37

optimism. The main reason cited by Nielsen and Chuang for confidence that the need for error correction is not38

an insurmountable obstacle is the “threshold theorem.” That theorem states that as long as the error probability39
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at a gate is below a certain threshold level, an arbitrarily complicated quantum circuit can be transformed into1

a physical circuit with negligible error, where the ratio of the number gp of physical gates to the number g` of2

logical gates is polynomial in log(g`).3

We mentioned that the number of logical gates depends on the complexity of the algorithm and, for a given4

algorithm, on the number of qubits of input. Shor’s algorithm is simple. It consists of two computations: a5

modular exponentiation (or a point multiple in the case of ECC) and a quantum Fourier transform. Never-6

theless, the quantum resources needed to apply it to find elliptic curve discrete logarithms or factor integers of7

cryptographic interest are considerable. Two papers by researchers at Microsoft [31, 15] give concrete estimates8

for the number of qubits and the physical circuit size (number of Toffoli gates) needed to break RSA and ECC9

using Shor’s algorithm. Solving the Elliptic Curve Discrete Log Problem on an elliptic curve over an n-bit prime10

field can be done with 9n+ 2dlog ne+ 10 qubits and 448n3 log n+ 4090n3 Toffoli gates; for n = 256 this means11

2330 qubits and roughly 237 Toffoli gates. Factoring an n-bit RSA modulus can be done with 2n+ 2 qubits and12

64n3 log n+O(n3) Toffoli gates; for n = 2048 this means 4098 qubits and roughly 1.5× 242 Toffoli gates. In both13

cases the number of Toffoli gates is roughly proportional to n3 log(n), and since n is essentially proportional to14

the number of qubits, the circuit size also grows proportionally to a log term times the cube of the number of15

qubits.16

Let’s try to very roughly extrapolate from integer factorization to the quantum security reductions in [29]17

and [19] for a 1024-dimensional lattice. Ignoring the log(n) term and also the fact that the security reductions are18

far more complicated than Shor’s algorithm, we can derive a very rough lower bound for the number of physical19

gates needed to carry out the security reduction by multiplying the number of Toffoli gates for 2048-bit integer20

factorization by the cube of the ratio of the number of qubits for the security reduction to the number for Shor’s21

algorithm:22

(3 · 10242/4098)3 × 1.5× 242 ≈ 271 gates. (23)

Alternatively, suppose we ignore the growth of the poly(log(g`)) factor in the threshold theorem and make23

the rough assumption that the number of physical gates is simply proportional to the size of the logical circuit24

and that the latter is proportional to length of the algorithm times the square of the number of qubits. Further25

suppose that the quantum part of the security reduction is at least 25 times more complicated than Shor’s lemma.26

In that case we arrive at a lower bound of about (3 · 10242/4098)2 × 25× 1.5× 242 ≈ 266 gates.27

6.4 Internal memory28

Besides the exorbitant cost in Toffoli gates, there’s an obstacle that’s intrinsic to the structure of the security29

reductions in [29] and [19]. The book by Nielsen and Chuang, after discussing the threshold theorem and30

describing some methods of error correction, concludes with several qualifying remarks, one of which points31

to the important role of interaction with a classical computer. They comment that their earlier discussion32

“completely neglected the cost of the classical computations and communication that are done during state33

preparation, syndrome measurement, and recovery. The cost of these could potentially be quite high” (p. 494).34

We next describe some concerns about whether it’s possible in principle for a classical computer to interact with35

the quantum computer during the “uncomputation” of a nearest vector in the quantum reduction.36

Storing intermediate output while waiting for an algorithm to be ready to use it is problematic in quantum37

computing. Because of quantum decoherence, “No Loitering” signs are ubiquitous in the quantum computing38

world. Suppose that an algorithm A recursively produces a sequence of vectors v1,v2, . . . ,vn that in a second39

part of the algorithm get processed in the reverse order to produce the final output. IfA is a standalone algorithm,40

it can be divided into two quantum algorithms A′ and A′′ that interact multiple times with a classical computer.41

The first of these runs n times. Each run outputs the next vi, which is read and stored by a classical computer42

that then rewires the quantum circuit using vi to prepare the circuit for computing vi+1. The algorithm A′′43

also runs n times, where each intermediate output is again read by the classical computer, which prepares the44
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circuit for the next run. Note that “outputting” a value to a classical computer amounts to an observation of a1

quantum state, and that observation destroys the state.2

This necessity of breaking up an algorithm into a sequence of sub-algorithms whose execution is terminated3

in order to allow rewiring is very different from anything one has to worry about in classical computation, where4

short-term storage is a basic available resource. Even Shor’s quantum algorithm, which in essence is very simple,5

requires a rewiring for each number we want to factor.6

Although this rewiring is key to making quantum computation work, there seems to be a fundamental obstacle7

to such interaction with a classical computer during the course of the quantum part of the security reduction8

in [19], because the entire quantum computation (actually, quantum “uncomputation”) is being applied to each9

summand in the quantum state constructed by A2. This means that it’s unclear how the recursive steps could10

be carried out in practice.11

The first place where this concern arises is in the reduction from A3 to A4. Starting with the input y to A3,12

that reduction recursively generates a sequence of bi that give a sequence of vectors that are closer and closer to13

the lattice. When the nearest lattice vector can finally be determined by Babai’s algorithm, the second part of14

the algorithm uses that lattice vector along with the bi’s in reverse order to compute the closest lattice vector to15

y. Thus, the reduction has the same structure as the algorithm A at the beginning of this subsection, with the16

crucial difference that the algorithm cannot be carried out after the first interaction with a classical computer17

collapses the state that the algorithm is being applied to.18

The internal storage issue again arises when we consider the reduction from A4 to A5. In that reduction A419

runs its subroutine (oracle) that produces vectors from the distribution DI,r. Then each such vector is used,20

along with the q-BDDI,ξ-input vector y, to create a sample from As,r that will be used by A5 to find s, and21

hence y. The algorithm A5 presumably needs to have a lot of samples — that is, a lot of approximate equations22

— before it can get to work finding s. Where are the first samples from As,r kept while the later ones are being23

generated?24

The same problem arises in the reduction of A5 to A7 (via A6), which entails finding each of the n components25

of s modulo qi, which are then combined by the Chinese Remainder Theorem to find s modulo q. Each component26

is determined by running the ring-VWDLWEiq,≤α solver for up to q different possible values of the residue. The27

Chinese Remainder Theorem has to wait for all the components to be computed. How are the first components28

that are computed going to be preserved while the later ones are being determined?29

Finally, in the reduction of A7 to D1, the former calls ` times upon its oracle for Ajs,r and its oracle for Dr30

in order to produce two lists of samples T ′ and T ′′, which D1 then has to distinguish between (in the case when31

j = i−). It’s reasonable to assume that D1 needs to have the first samples that were created still available after32

receiving the rest of each list. Again we do not see a way to store that data until it is needed.33

6.5 Contrast between classical and quantum reductions34

In a classical reduction from a problem Q to a problem P, the main issue of feasibility is the tightness gap, in35

other words, the running time of the reduction algorithm that solves Q given an oracle for P that runs in unit36

time. Once the tightness gap is computed and one has a reasonable running time estimate for the best available37

algorithm for the supposedly hard problem Q, one can give key length recommendations based on the guarantees38

that the reduction gives. In this way one realizes “practice-oriented provable security” [4].39

In quantum reductions, on the other hand, it is not always possible to obtain a meaningful security guarantee40

simply by increasing key length. One must also consider potential obstacles to feasibility that do not arise in41

the classical case. As we’ve seen, one such obstacle is the size of the reduction algorithm’s physical circuit,42

which depends on the number of qubits, the complexity of the algorithm, the nature of the tasks performed, and43

the way error correction is implemented. In addition, the problem of internal storage requires interventions to44

prepare the circuit for the next stage of the computations. In some cases it is unclear that this is theoretically45

possible, let alone achievable in practice.46
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The quantum reduction for lattice-based cryptography, first described in [29], was a remarkable achievement,1

opening up a new direction in provable security research. At the same time it also opened up new challenges in2

determining whether or not a security reduction gives a meaningful guarantee.3

6.6 Some caveats4

Our discussion of the quantum part of the SIVPγ-to-DLWE reduction is of necessity informal, imprecise, and5

speculative. None of us are experts in quantum computation. In particular, we’re making the assumption that6

our analysis of a quantum BDD algorithm with a DLWE-oracle also applies to the reversed circuit — that is,7

we’re assuming that if the BDD algorithm is infeasible because of quantum decoherence, then so is the reverse8

circuit.9

Moreover, even the experts cannot accurately predict how successful physicists and engineers will be in the10

coming decades in overcoming the formidable obstacles to the development of a large-scale quantum computer.11

But in any case, after considering the issues of qubit and circuit size, error correction, and internal memory, it12

should be clear that, even if it is possible in principle to carry out the reduction, the level of quantum scaling13

required to do so is far, far greater than the amount needed to break RSA and ECC.14

6.7 Summary15

There are two reasons to doubt the feasibility of the quantum part of the security reduction in [19]. Even for16

n = 1024 the circuit size is many thousands times the circuit size for Shor’s algorithm to factor a 2048-bit RSA17

modulus. Since the number of qubits grows quadratically with n, the circuit size becomes much greater if one18

chooses n large enough to compensate for the tightness gap in the reduction. In addition, the quantum algorithm19

requires almost continual interaction with a classical computer, and we see no way to do this without destroying20

the quantum state that the algorithm is being applied to.21

Remark 18. Most of the discussion in this section also applies to the quantum part of [29], upon which the22

quantum part of [19] is based. For example, both quantum algorithms require at least 3n2 logical qubits. The23

concrete analyses of Regev’s reduction in [10, 33, 13] did not look at feasibility of the quantum part.24

7 Subsequent work25

A follow-up work [27] (whose latest version is [26]) improved upon the reduction in [19]. The reduction of26

K-SIVPγ to ring-DLWEq,r in [19] holds only for cyclotomic number fields. In [27, 26] this reduction was extended27

to any number field. Unlike [19], the reduction in [27, 26] does not go through the search ring-LWE problem.28

Below we discuss the tightness gap in the reduction in [27, 26]. Specifically, we refer to the version in [26].29

As in [19], the reduction of K-SIVPγ to ring-DLWEq,r in [26] also goes through several steps. The first step30

is to reduce K-SIVPγ to K-DGSΓ and is exactly the algorithm A0 described earlier that has a tightness gap31

of n3. The reduction of K-DGSΓ to ring-DLWEq,r is given by a sequence of algorithms. The first of these is32

the algorithm A1 described earlier. Briefly, A1 prepares an initial list of N DGS samples and goes through33

i0 = (2n+ (log n)/2) iterations, where in each iteration A1 invokes the quantum circuit A2 N times, and in each34

invocation A1 provides A2 with a list of DGS samples and receives in return DGS samples with width reduced35

by a factor of at least 2. Finally, A1 returns a sample from the last list that it prepares. The number N of DGS36

samples is equal to the number of LWE samples required by a distinguisher for the ring-DLWEq,r problem, and37

this number in [26] is very different from that of [19]. As before, A1 calls A2 a total of (2n+ (log n)/2)N times.38

From this point onwards, the reductions in [19] and [26] begin to differ. In [26], A2 applies the reverse of an39
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algorithm B3 that solves the Gaussian decoding problem14. The construction of B3 is based on a distinguisher1

E1 for the ring-DLWEq,≤α problem15. The construction of E1 is based on a (δ1, δ2)-distinguisher D2 for the ring-2

DLWEq,r problem where the relation between r and α is given by (11). The construction of E1 from D2 is very3

similar to the construction of A7 from D1 described in §4.4, and the concreteness aspects are exactly the same.4

In particular, E1 calls D2 about (δ1δ
5
2)−1(n`)1/2 times and the number M1 of LWE samples required by E1 is5

about (δ1δ
5
2)−1 · (n1/2`3/2), where ` is the number of LWE samples required by D2.6

The main technical contribution of [26] is the construction of B3 from E1. We will not get into the details of7

this very complicated construction, and instead we simply identify the tightness gap of this reduction. Let M28

be the number of times B3 calls E1. From the description in [26], we obtain an estimate of M2. Note that each9

call to E1 requires M1 samples so that the total number of samples required in all the M2 calls is equal to M1M2.10

This is the value of N , since M1M2 DGS samples need to be provided to B3 so that it can generate the required11

number of LWE samples.12

Let16 κ = poly(n) ≥ 100n2M1 and µ = poly(κ). Recall that n = s1 + 2s2, where s1 and 2s2 are the numbers13

of real and complex roots respectively of the defining polynomial of the number field. Using E1, B3 creates s1 +s214

oracles, where each of these oracles calls E1 once (Lemma 6.6 in [26]). Corresponding to these s1 + s2 oracles,15

s1 + s2 algorithms are created, where (ignoring logarithmic factors) each algorithm calls its corresponding oracle16

about 5 × 1015 · κ6µ3 times, where κ and µ are at least 100n2M1 (first part of the proof of Proposition 4.4 and17

the proof of Lemma 6.6 of [26]). Each of these s1 + s2 algorithms is itself called about 2000κ3 times (second part18

of the proof of Proposition 4.4 of [26]) For simplicity, we take µ = κ = 100n2M1 and take 2(s1 + s2) to be n to19

obtain the value of M2 to be about 1043 · n25M12
1 .20

The overall tightness gap is given by the number of times A0 calls D2. This number is about21

n3 · (2n+ (log n)/2)N ·M2 · (δ1δ
5
2)−1(n`)1/2 ≈ n4 ·M1M

2
2 · (δ1δ

5
2)−1(n`)1/2

≈ 1086 · n54 ·M25
1 · (δ1δ

5
2)−1(n`)1/2

≈ 1086 · n54 · ((δ1δ
5
2)−1 · (n1/2`3/2))25 · (δ1δ

5
2)−1(n`)1/2

= 1086 · n67 · `38 · (δ1δ
5
2)−26. (24)

Remark 19. The discussion in §6 regarding the quantum circuit required for the reduction in [19] applies equally22

to the reduction in [26]23

The estimate of the tightness gap given by (24) shows that from a practical point of view the reduction24

is completely meaningless. This estimate may also be compared with the estimate of the tightness gap of the25

reduction in [19] given by (19) and the tightness gap of the reduction in [29] given in [10, 33] (see the discussion26

following Theorem 9). While the tightness gap of the reduction in [29] is itself huge, it is lower than the tightness27

gap of the reduction in [19], and the tightness gap of the reduction in [26] is much much larger than the tightness28

gaps of the reductions in both [29] and [19].29

Remark 20. It was remarked in [26] (sentence before Definition 4.1) that the authors did not try to optimise30

the parameters. So it is possible that the estimate given by (24) can be lowered with optimised parameters.31

8 Conclusion32

Our main result is that the security reduction in [19] gives no meaningful guarantee of real-world security for three33

reasons – a huge tightness gap, obstacles to realisation of the quantum part, and an approximation factor for34

14For a lattice Λ ⊂ H and a parameter ξ, an instance of the problem is a coset e + Λ, where e is drawn from Dξ, and the task is
to find e. Note that this is essentially our definition of the BDD problem in Section 3.

15Formally, it is necessary to consider elliptical Gaussian distribution, but this does not matter for the tightness analysis.
16The constant 100 is from [26].
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the K-SIVPγ problem that makes it unlikely that the problem is hard, particularly since the lattice problem has1

been restricted to a subset of lattices with special geometric and algebraic properties. In addition, the reduction2

requires a value for the modulus q that is much larger than in proposed implementations.3

But we need to qualify this by clarifying what we are not claiming. First, we do not have an actual attack4

on LWE security, and are not saying that one necessarily exists. Nor are we saying that the tightness gap in the5

reduction in [19] is intrinsic to the SIVPγ and DLWE problems; it is certainly possible that a reduction could6

be constructed with a lower tightness gap. Similarly, we invite the reader to look for a reduction of ring-LWE to7

ring-DLWE with r/α equal to (n`/ ln(n`))1/4 as claimed in [19] rather than (nN2`/ ln(nN2`))
1/4, which was the8

best we could rigorously justify.9

In theory, it would be possible to compensate for the tightness gap by increasing n. However, this is not so10

simple as for classical reductions because, as remarked in Section 5, it entails a sharp increase in the number of11

logical qubits and physical gates in the quantum part of the reduction. Although the number of logical qubits is12

“only” quadratic in n, in the quantum context that rate of growth gives rise to grave doubts about feasibility.13

We have no intention of questioning the quality of the work in [19]. The construction of the security reduction14

involving ten nested sub-algorithms was a true tour de force. From a theoretical standpoint, it was a major15

accomplishment to construct a polynomial time reduction from ideal-SIVPγ to the decision problem that proposed16

cryptosystems are based on. Unfortunately, the reduction loses its value when viewed from the vantage point of17

practice-oriented provable security.18

The four major problems in the reduction in [19] (the large tightness gap, the large value of the approximation19

factor, the unrealistic quantum part, and the likelihood that approximate ideal-SIVP is substantially easier than20

approximate SIVP for general lattices) mean that one cannot have any confidence that the reduction rules out21

practical mathematical attacks on ring-DLWE based cryptosystems.22
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being chosen according to the distribution Dξ. Additionally, A3 also has access to a set of samples from DI,r.1

The parameters17 r, r′ and ξ have to satisfy the following relations.2

r ≥
√

2q · ηε(I),

r′ = r · ω(
√

lnn)/(αq) >
√

2n/λ1(I∨),

ξ = (αq)/(2r · ω(
√

lnn)) < λ1(I∨)/(2
√

2n).

 (25)

Let ξ′ = ξ ·
√

2 · ω(
√

lnn) = (αq)/(
√

2r). For e chosen according to Dξ, ‖e‖∞ ≤ ξ′ except with negligible3

probability.4

The input to Algorithm A1 is a pair (I, r) where r ≥ Γ(I) and Γ(I) is given by (6). Recall that i0 =5

2n+ d(log n)/2e and ri = r · (αq/ω(
√

lnn))i ≥ 2ir for i = 0, . . . , i0 and ξi = (αq)/(2ri ·ω(
√

lnn)) for i = 1, . . . , i0.6

Also, we have ξ′i = αq/(
√

2ri). Note that ri−1 = ri · ω(
√

lnn)/(αq) ≤ ri/2 for i = 1, . . . , i0, and Si is a list of7

independent samples from DI,ri , for i = 0, . . . , i0.8

Algorithm A1 first prepares Si0 . Then for each i going down from i0 to 1, A1 gives A2 the input I and the9

set Si and receives in return a sample from DI,ri−1 . This is done N times to prepare the list Si−1. Since the10

samples Si0 , . . . ,S1 are provided as input to A2, the values ri0 , . . . , r1 have to satisfy the condition on r given11

in (25). Further, since A2 provides samples from DI,ri0−1 , . . . , DI,0 as output, the values ri0−1, . . . , r0 have to12

satisfy the condition on r′ given in (25). Algorithm A3 is invoked on instances (I∨, yi0), . . . , (I∨, y1), where the13

offsets ei0 , . . . , e1 in the yi0 , . . . , y1 are sampled respectively from Dξi0
, . . . , Dξ1 so that the values ξi0 , . . . , ξ1 have14

to satisfy the conditions on ξ given in (25). The conditions on ri and ξi are shown below. Before that we show15

ri0 ≥ 22nλn(I), so that A1 can prepare Si0 directly (i.e., without invoking A2).16

Claim 2.13 of [29] shows that the inequality ηε(I) > 1/λ1(I∨) holds for ε ≤ e−π. Under the assumptions17

ε ≤ e−π and α <
√

lnn/n, it follows that18

Γ(I) >
√

2n/λ1(I∨). (26)

The following computation shows that ri0 ≥ 22nλn(I).19

ri0 ≥ 2i0 · r

≥ 22n+ 1
2

logn ·
√

2 · ω(
√

lnn) · ηε(I)

α
(using (6))

≥
√
n22n ·

√
2 · ω(

√
lnn)

α
·
√

ln 1/ε

π
· λn(I)

n
(using Claim 2.13 of [29]18)

> 22nλn(I) (using ω(
√

lnn) >
√

lnn, α <
√

lnn/n and ε < e−π).

For i = 1, . . . , i0, we have the following.20

• Since r ≥ Γ(I), using the definition of Γ(I) in (6), we have ri ≥ r · (αq)/ω(
√

lnn) ≥
√

2q · ηε(I).21

• Since ri−1 ≥ r, and r ≥ Γ(I), using (26), we have ri−1 >
√

2n/λ1(I∨).22

• Noting that ξi = 1/(2ri−1), using the previous point, we have ξi < λ1(I∨)/(2
√

2n).23

B Details of the analysis in Section 4.424

We first show the lower bound on the probability of a good z for a good s+ t.25

17In terms of the notation used in Lemma 4.3, 4.4 and 4.7 of [19], d′ = ξ ·
√

2n and d = ξ′.
18Claim 2.13 of [29] shows that ηε(I) ≥

√
ln(1/ε)/π · λn(I)/n.
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Proposition 10. For a good s + t, under the error distribution D`N2
r the probability that z is good is at least1

ε2/2.2

Proof. Since s+ t is good we have |ps+t,0−ps+t,1| ≥ ε2. Without loss of generality, we assume ps+t,0 ≥ ps+t,1 +ε2.3

Let Z denote the set of all N2`-tuples z, and let Y denote the subset of Z consisting of z such that ps+t,z,0 ≥4

ps+t,z,1 + ε2/2. We claim that Y has measure at least ε2/2. Assume the contrary. We then have5

ps+t,0 =

∫
Y
ps+t,z,0D

`N2
r (z) +

∫
Z\Y

ps+t,z,0D
`N2
r (z)

<

∫
Y

1 ·D`N2
r (z) +

∫
Z

(ps+t,z,1 + ε2/2)D`N2
r (z)

≤ ε2/2 + ps+t,1 + ε2/2,

a contradiction. This shows that the probability of z being good is at least ε2/2.6

1: function A7

2: for N1 iterations do
3: Choose t uniformly from R∨q
4: cnt0 ← 0; cnt1 ← 0;
5: for N2 iterations do
6: Obtain a list T of ` samples from Ais,r
7: Choose f1, . . . , f` independently from D`

r

8: Compute T ′ and T ′′ from T , t and f1, . . . , f`
9: cnt0 ← cnt0 +D1(T ′); cnt1 ← cnt1 +D1(T ′′)

10: end for
11: p̂0 ← cnt0/N2; p̂1 ← cnt1/N2

12: if |p̂0 − p̂1| ≥ ε2/4 then return i−
13: end for
14: return i
15: end function.

Table 2: Pseudo-code of algorithm A7 from distinguisher D1 described in Section 4.4.

Next we consider the effect of changing the error distribution from D`N2
r to D`N2

r′ . To do this, we introduce7

a quantity whose logarithm is the Rényi divergence of order 2. Let k be a positive integer. For two probability8

density functions19 P,Q : Hk → R≥0, let9

R(P ||Q) =

∫
Hk

P (x)2

Q(x)
dx. (27)

By an abuse of notation, we will also write R(D||D′) to denote R(P ||Q), where D and D′ are the distributions10

19In Claim 5.11 of [19], the density functions are considered to be over Rn. Here we consider density functions over Hk.
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corresponding to P and Q respectively. For a measureable subset B of Hk, we have,1

(PrD[B])2 =

(∫
B
P (x)dx

)2

(28)

≤
(∫

B

P (x)2

Q(x)
dx

)(∫
B
Q(x)dx

)
(29)

≤
(∫

Hk

P (x)2

Q(x)
dx

)
PrD′ [B]

= R(D||D′)PrD′ [B]. (30)

The derivation of (29) from (28) is made using the Cauchy-Scharwz inequality20.2

Proposition 11. The minimum value of c such that x2/
√

2x2 − 1 is less than 1 + c(x− 1)2 for x > 1 is c = 2.3

Proof. We first show that for x > 1, x2/
√

2x2 − 1 < 1 + 2(x − 1)2. Let p(x) = (2x2 − 1)(1 + 2(x − 1)2)2 − x4.4

Then x2/
√

2x2 − 1 < 1 + 2(x− 1)2 if and only if p(x) > 0. The polynomial p(x) factors as p(x) = (8x3 − 8x2 +5

3x+ 9)(x−1)3 = (8x2(x−1) + 3x+ 9)(x−1)3 which is a sum and product of positive numbers for x > 1. Hence,6

it follows that p(x) > 0 for x > 1.7

We next show that if the 2 in 1+2(x−1)2 is replaced by c < 2, then the inequality x2/
√

2x2 − 1 < 1+c(x−1)2
8

cannot hold when x is close to 1. We set ε = x − 1 and t = 4ε + 2ε2 and use the Taylor series (1 + t)−1/2 =9

1− t/2 + 3t2/8±O(t3). We have10

x2

√
2x2 − 1

= (1 + ε)2(1 + 4ε+ 2ε2)−1/2

= (1 + 2ε+ ε2)(1− 2ε− ε2 + 3(4ε+ 2ε2)2/8±O(ε3))

= 1 + 2ε2 ±O(ε3).

For c < 2 and small ε, this is greater than 1 + cε2.11

Proposition 12. Let k ≥ 1 be a positive integer and r1, r2 ∈ R+ be such that 1 < r2/r1 < 1 +
√

ln(nk)/(nk)/2.12

Let Dr1 and Dr2 be the continuous Gaussian distributions on H having widths r1 and r2 respectively. Then13

R(Dk
r1 ||D

k
r2) ≤

(
1 +

1

2
· ln(nk)

nk

)nk
. (31)

Proof. Direct calculation from the definition of the continuous Gaussian distribution Dr on H shows that for14

r > 0 and x > 1/
√

2, R(Dr||Dxr) = (x2/
√

2x2 − 1)n. For x > 1, from Proposition 11, we have (x2/
√

2x2 − 1)n15

is smaller than (1 + 2(x− 1)2)n. So R(Dk
r1 ||D

k
r2) = (R(Dr1 ||Dr2))k ≤ (1 + ln(nk)/(2nk))nk.16

Setting x = α2/r2 in the inequality 1 + x < (1 + x/2)2 for x 6= 0 and using (11), we have17

1 ≤ r′

r
=

√
r2 + r2

r
≤
√

1 +
α2

r2
< 1 +

1

2
· α

2

r2
= 1 +

1

2

(
ln(nN2`)

nN2`

)1/2

. (32)

Applying Proposition 12 with k = N2`, r1 = r and r2 = r′, we obtain18

R(D`N2
r ||D`N2

r′ ) ≤ (1 + ln(nN2`)/(2nN2`))
nN2`. (33)

20In the Cauchy-Scharwz inequality of the form
(∫
B
f(x)g(x)dx

)2 ≤ (∫
B
f(x)2dx

) (∫
B
g(x)2dx

)
, take f(x) = P (x)/

√
Q(x) and

g(x) =
√
Q(x).
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Proposition 13. The right hand side of (33) is about (nN2`)
1/2.1

Proof. The approximation can be seen by setting x = (2nN2`)/(ln(nN2`)) andm = (ln(nN2`))/2 in (1+1/x)mx ≈2

em.3

Remark 21. If we follow the analysis in [19], then we obtain (nN2`)
3 instead of (nN2`)

1/2. The net effect of4

this reduction of the exponent on the overall tightness gap is that it is about the square root of the overall tightness5

gap that would be obtained by following the analysis in [19].6

Proposition 14. For a good s+ t, the measure of the set of good z under D`N2
r′ is at least about ε22/(256nN2`)

1/2.7

Proof. From Section 4.4, we have that for a good s + t the measure of the set of good z under D`N2
r is at least8

ε2/4. In (30), considering B to be the set of good z and replacing k by N2`, we have9

Pr
D
`N2
r′

[B] ≥

(
Pr

D
`N2
r

[B]
)2

R(D`N2
r ||D`N2

r′ )
≥ ε22

16R(D`N2
r ||D`N2

r′ )
'

ε22
(256nN2`)1/2

.

10

Remark 22. In [19], the ratio r/α is defined to be ((n`)/ ln(n`))1/4. If we use this definition of r/α, and take11

k = ` in Proposition 12, then instead of (33) we would obtain12

R(D`N2
r ||D`N2

r′ ) ≤ (R(D`
r ||D`

r′))
N2 ≈ (n`)N2/2. (34)

Since N2 > n2, this would lead to super-exponential running time > nn
2
.13
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