
Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence

Problem in the Rank Metric

Krijn Reijnders, Simona Samardjiska and Monika Trimoska

Digital Security, Radboud University, Nijmegen, Netherlands.

Contributing authors: {krijn,simonas,mtrimoska}@cs.ru.nl;

Abstract

In this paper, we analyze the hardness of the Matrix Code Equiva-
lence (MCE) problem for matrix codes endowed with the rank metric,
and provide the first algorithms for solving it. We do this by making a
connection to another well-known equivalence problem from multivari-
ate cryptography - the Isomorphism of Polynomials (IP). Under mild
assumptions, we give tight reductions from MCE to the homogenous ver-
sion of the Quadratic Maps Linear Equivalence (QMLE) problem, and
vice versa. Furthermore, we present reductions to and from similar prob-
lems in the sum-rank metric, showing that MCE is at the core of code
equivalence problems. On the practical side, using birthday techniques
known for IP, we present two algorithms: a probabilistic algorithm for

MCE running in time q
2
3
(n+m) up to a polynomial factor, and a de-

terministic algorithm for MCE with roots, running in time qmin{m,n,k}

up to a polynomial factor. Lastly, to confirm these findings, we solve
randomly-generated instances of MCE using these two algorithms.

1 Introduction

Given two mathematical objects of the same type, an equivalence problem
asks the question whether there exists an equivalence map between these ob-
jects – and how to find it – that preserves some important property of the
objects. These kind of problems come in different flavors depending on the ob-
jects – groups, graphs, curves, codes, quadratic forms, etc. – and quite often
the interesting maps are isomorphisms or isometries. Interestingly, equiva-
lence problems are one of the core hard problems underlying the security of

1

Springer Nature 2021 LATEX template

2 Hardness estimates of the Code Equivalence Problem in the Rank Metric

many public-key cryptosystems, especially post-quantum ones. Many multi-
variate and code-based systems employ an equivalence transformation as a
hiding technique, and thus intrinsically rely on the assumption that a partic-
ular equivalence problem is intractable, for example [1–7] . In addition, quite
remarkably, a hard equivalence problem gives rise to a Sigma protocol and,
through the Fiat-Shamir transform, a provably secure digital signature scheme
[8]. This idea has been revisited many times, being the basis of several signa-
ture schemes [1, 9–13]. Two such schemes actually appeared during the writing
of this manuscript [14, 15] as a result of NIST’s announcement for an addi-
tional fourth round on signatures in the post quantum standardization process
[16]. Understanding the hardness of these equivalence problems is an essential
task in choosing appropriate parameters that attain a certain security level of
these cryptographic schemes.

One of these problems is the Code Equivalence problem, which given two
codes (with the Hamming metric), asks for an isometry (equivalence trans-
formation that preserves the metric) that maps one code to the other. It
was first studied by Leon [17] who proposed an algorithm that takes advan-
tage of the Hamming weight being invariant under monomial permutations. It
was improved very recently by Beullens [18] using collision-based techniques.
Sendrier [19] proposed another type of algorithm, the Support Splitting Algo-
rithm (SSA), that is exponential in the dimension of the hull (the intersection
of a code and its dual). Interestingly, in low characteristic, random codes have
very small hull, rendering the problem easy.

In this work, we focus on the code equivalence problem, but for matrix
codes (an Fq-linear subspace of the space of m× n matrices over Fq) endowed
with the rank metric - Matrix Code Equivalence (MCE). Evaluating the hard-
ness of this problem is only natural – rank-based cryptography has become
serious competition for its Hamming-based counterpart, showing superiority
in key sizes for the same security level [20–23]. MCE, and variations of it, has
been introduced by Berger in [24], but it was only recently that the first con-
crete statements about its hardness were shown in two concurrent independent
works publicly available as preprints [25, 26]1. Couvreur et al. [25] showed
that MCE is at least as hard as the (Monomial) Code Equivalence problem
in the Hamming metric, while for only right equivalence, or when the codes
are Fqm -linear, the problem becomes easy. Grochow and Qiao [26] show the
same reduction from (Monomial) Code Equivalence to MCE but using a com-
pletely different technique of linear algebra coloring gadgets which makes the
reduction looser than the one in [25].

1The two works use different techniques and terminology, and seem to be mutually unaware
of the line of work preceding the other. In [26] the MCE problem is referred to as Matrix Space
Equivalence problem and 3-Tensor Isomorphism problem.

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 3

1.1 Our contributions

In this paper, we investigate the theoretical and practical hardness of the Ma-
trix Code Equivalence (MCE) problem. Our contributions can be summarized
as follows:

First, we link in a straightforward manner the MCE problem to hard prob-
lems on systems of polynomials by showing that MCE is polynomial-time
equivalent to the Bilinear Maps Linear Equivalence (BMLE) problem. We
then extend this result by proving that MCE is polynomial-time equivalent to
the Quadratic Maps Linear Equivalence (QMLE) problem, under a mild as-
sumption of trivial automorphism groups of the codes in question. While our
technique fails to give a proof without this assumption, we consider it to be
reasonable for randomly generated codes and for cryptographic purposes. As
the QMLE problem is considered to be the hardest equivalence problem for
systems of multivariate polynomials, it is essential to understand under which
conditions MCE and QMLE reduce to one another. Note that previous work2

requires much stronger assumptions for related results [26–28], such as alge-
braically closed fields or existence of square or third roots. Our reduction to
QMLE is tight and gives a tight upper bound on the hardness of MCE. Further-
more, it is very simple, thus establishing connection between code equivalence
problems and polynomial equivalence problems that is usable in practice. This
is the basis of our contributions on the practical hardness of MCE.

Second, using similar techniques, and under the same assumptions, we show
that MCE is polynomial-time equivalent to other code equivalence problems,
such as Matrix Sum-Rank Code Equivalence Problem, and at least as hard as
the Vector Sum-Rank Code Equivalence Problem. All these connections and
our results are visualized in Figure 1.

On the practical side, we provide the first two non-trivial algorithms for
solving MCE using the connection to QMLE. The first algorithm is a general-
ization of a known birthday-based algorithm for QMLE [29, 30] for systems of
polynomials with the same number of variables as equations. We show that
this algorithm extends to different invariance properties and code dimensions,
which helps us prove complexity of q

2
3 (n+m) up to a polynomial factor for MCE

for m×n matrix codes. The algorithm is probabilistic with success probability
that can be made arbitrarily close to 1, and can be used for code dimensions
up to 2(m+n). For larger dimensions, the complexity becomes q(n+m) up to a
polynomial factor, but the algorithm is deterministic. The birthday-based al-
gorithm for QMLE [29] assumed existence of a polynomial-time solver for the
inhomogeneous variant of QMLE to achieve these complexities. Interestingly,
due to the specific instances of the inhomogeneous QMLE arising from the col-
lision search, the problem seems to be much harder than for random instances
– a fact previously overlooked in [29]. In contrast, [30] uses a non-polynomial
estimate for this solver. We analyse the most recent results regarding such

2We were made aware of this line of work by one of the authors after our results were first
presented at WCC 2022.

Springer Nature 2021 LATEX template

4 Hardness estimates of the Code Equivalence Problem in the Rank Metric

solvers, and show that for parameter sets of cryptographical interest the above
complexities hold, even if such solvers do not achieve polynomial time.

Our second algorithm uses the bilinear structure of the polynomials arising
from MCE. Because matrix codes show symmetry between the parameters,
as given in Lemma 26, the complexity of solving MCE using this result and
Algorithm 2 becomes qmin{m,n,k} up to a polynomial factor. The algorithm
is deterministic and does not require a polynomial-time solver for the inho-
mogeneous QMLE instance, but the weaker assumption that the solver has a
complexity of O(qmin{m,n,k}) at most. This general result, valid for any m,n,
and k, is summarized in our main result Theorem 41.

Lastly, to verify the results and performance of these algorithms in prac-
tice, we have implemented both and solved randomly generated instances
of MCE for different parameter sets. The results of these experiments show
that our assumptions are reasonable and the above complexities hold. Our
implementations are open source and available at:

https://github.com/mtrimoska/matrix-code-equivalence

Matrix Code

Equivalence

Hamming

Code Equiv.

Permutation

Code Equiv.

Graph

Isomorphism

Hom. Quad.
Maps Linear

Equivalence

Matrix

Sum-Rank
Code Equiv.

Vector

Sum-Rank
Code Equiv.

Matrix Code

Right Equiv.

Vector Rank

Code Equiv.

[31]

If q = nO(1)

[25]

Thm. 24* & 25 Thm. 15* & 16*

Thm
. 23

*

[25
]

Figure 1: Reductions around Matrix Code Equivalence. Dashed arrows are
contributions from this work, dotted arrows are trivial reductions. “A −→ B”
means that “Problem A reduces to Problem B in polynomial time”. Results
with * assume trivial automorphism groups.

https://github.com/mtrimoska/matrix-code-equivalence

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 5

2 Preliminaries

Let Fq be the finite field of q elements. GLn(q) and AGLn(q) denote respec-
tively the general linear group and the general affine group of degree n over
Fq.

We use bold letters to denote vectors a, c,x, . . . , and matrices A,B,
The entries of a vector a are denoted by ai, and we write a = (a1, . . . , an)
for a (row) vector of dimension n over some field and a> = (a1, . . . , an)> for
the respective column vector. Similarly, the entries of a matrix A are denoted
by Aij . A matrix A is called symmetric if A> = A and skew-symmetric if
A> = −A. The space of matrices over Fq of size m× n is denoted Mm,n(q).

The set of k-subsets of Mm,n(q) is denoted by M[k]
m,n(q).

Random sampling from a set S is denoted by a
$←−− S. We use the

notation Õ(f(n)) to denote O(f(n) log(f(n))) whenever we want to omit poly-
nomial factors from the complexity expression. We use the notation f = Θ(g)
whenever f is bounded from below and above by g asymptotically.

For a computational problem P, if we want to emphasize a list of parameters
p defining the size of the inputs and the input set S, we will use the notation
P(p, S). If these are not relevant, clear from context, or the set S is the entire
universe U , we will use only P(p) or P.

Our results in Section 3 use the following standard notion of Turing
reduction.

Definition 1 Given two computational problems P(p, S) and P′(p′, S′), with inputs
coming from sets S and S′ respectively, we say that P(p, S) reduces to P′(p′, S′) if
there exists a probabilistic polynomial-time oracle machine B such that for every
oracle A that solves P′(p′, S′) on all inputs from S′, BA (B given access to A) solves
P(p, S) on all inputs from S.

Note that our reductions are meaningful only as worst-case to worst-case,
and therefore in the definition we include the statement that the oracles solve
the problems on all inputs. On the other hand, we do not always require the
oracle A to be able to solve P′ on the entire universe U ′ of inputs in order
for BA to be able to solve P on the entire universe U of inputs. When this is
the case, it will be emphasized through the definition of the input sets S and
S′. These restrictions, however, can not be used to show a stronger statement
such as worst-case to average-case reduction.

2.1 The Matrix Code Equivalence problem.

This section introduces basic notions on matrix codes and their equivalences.
A more thorough introduction on matrix codes can be found in [32]. The usual
choice for measuring distance between matrices over a finite field is the so
called rank metric, defined as follows.

Springer Nature 2021 LATEX template

6 Hardness estimates of the Code Equivalence Problem in the Rank Metric

Definition 2 Let Rank(M) denote the rank of a matrix M ∈ Mm,n(q). The rank
distance between two m× n matrices A and B over Fq is defined as

d(A,B) = Rank(A−B).

An isometry is a map µ : Mm,n(q) → Mm,n(q) that preserves the rank, i.e.
Rank(µ(M)) = Rank(M) for all M ∈Mm,n(q).

By symmetry, without loss of generality, in the rest of the text we assume
n > m.

Definition 3 A matrix code is a subspace C of m × n matrices over Fq endowed
with the rank metric. Let k denote the dimension of C as a subspace of Fm×nq and

its basis by 〈C1, . . . ,Ck〉, with Ci ∈ Fm×nq linearly independent. Two matrix codes
C,D ⊂Mm,n(q) are said to be equivalent if there exists an isometry µ with µ(C) = D.

An isometry from C to D is always of the form M 7→ AMB, M 7→ M>

or a composition of these two, where A ∈ GLm(q) and B ∈ GLn(q) [33, 34].
We restrict our attention to the isometries of the first form and we will say
that two matrix codes are equivalent if there exists a map C 7→ ACB from
C to D where A ∈ GLm(q) and B ∈ GLn(q). We will denote this map as
a pair (A,B). When n = m, If there exists a map (A,A>) : C 7→ ACA>

from C to D, where A ∈ GLm(q), we will say that the codes C and D are
congruent. This is a direct generalization of the notion of congruent matrices.
An automorphism of a code is a map (A,B) : C → C, i.e. for each C ∈ C, we
get ACB ∈ C. The automorphism group of C contains all the automorphisms
of C. If the automorphism group contains only the maps (λI, νI) for scalars
λ, ν ∈ F∗q , we say the automorphism group is trivial.

The main focus of this article will be the Matrix Code Equivalence(MCE)
problem which is formally defined as follows:

Problem 4 MCE(n,m, k,M[k]
m,n(q)):

Input: Two k-dimensional matrix codes C,D ⊂Mm,n(q)
Question: Find – if any – a map (A,B), where A ∈ GLm(q),B ∈ GLn(q) such that
for all C ∈ C, it holds that ACB ∈ D.

This is the computational version of MCE which, similarly to its counter-
part in the Hamming metric [12, 13, 35], seems to be more interesting for
cryptographic applications than its decisional variant. We will thus be inter-
ested in evaluating the practical hardness only of MCE, and present algorithms
only for MCE and not its decisional variant. It is also interesting to consider
the following variant of MCE:

Problem 5 MCEbase(n,m, k,M[k]
m,n(q)):

Input: The bases (C(1), . . . ,C(k)) and (D(1), . . . ,D(k)) of two k-dimensional matrix

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 7

codes C,D ⊂Mm,n(q)
Question: Find – if any – a map (A,B), where A ∈ GLm(q),B ∈ GLn(q) such that

for all C(i), it holds that AC(i)B = D(i).

Intuitively, MCEbase seems easier than MCE, and as a matter of fact, we
will show later that most random instances are solvable in polynomial time.
Another variant of the MCE problem is the Matrix Codes Right Equivalence
problem (MCRE) (left equivalence could be defined similarly):

Problem 6 MCRE(n,m, k,M[k]
m,n(q)):

Input: Two k-dimensional matrix codes C,D ⊂Mm,n(q)
Question: Find – if any – B ∈ GLn(q) such that for all C ∈ C, it holds that CB ∈ D.

It has been shown in [25] that MCE is at least as hard as code equivalence
in the Hamming metric, Hamming Code Equivalence (HCE), also known as
Linear or Monomial Equivalence. Interestingly, the same paper shows that
MCRE is actually easy and can always be solved in probabilistic-polynomial
time.

For vector rank codes C ⊂ Fnqm , isometries are similar to the case of matrix
codes. We get the Vector Rank Code Equivalence (VRCE) problem.

Problem 7 VRCE(n,m, k,M[k]
m,n(q)):

Input: Two k-dimensional vector rank codes C,D ⊂ Fnqm
Question: Find – if any – a matrix B ∈ GLn(q) such that for all c ∈ C, it holds
that cB ∈ D.

Given a vector rank code C ⊂ Fnqm and a basis Γ for Fqm over Fq, each vec-
tor c ∈ C can be expanded to a matrix Γ(c) ∈Mm,n(q), giving rise to a matrix
code Γ(C). For any two bases Γ and Γ′, an equivalence between two vector
rank codes C and D implies an equivalence between the matrix codes Γ(C)
and Γ′(D) [32], so VRCE is trivially a subproblem of MCE. However, using the
Fqm -linearity of vector rank codes, VRCE reduces non-trivially to MCRE [25].

2.2 Systems of quadratic polynomials.

Let P = (p1, p2, . . . , pk) : FNq → Fkq be a vectorial function of k quadratic
polynomials in N variables x1, . . . , xN , where

ps(x1, . . . , xN) =
∑

16i6j6N

γ
(s)
ij xixj +

N∑
i=1

β
(s)
i xi + α(s),

with γ
(s)
ij , β

(s)
i , α(s) ∈ Fq for 1 6 s 6 k.

Springer Nature 2021 LATEX template

8 Hardness estimates of the Code Equivalence Problem in the Rank Metric

It is common to represent the quadratic homogeneous part of the com-
ponents of P using symmetric matrices, but unfortunately, a natural corre-
spondence only exists for finite fields of odd characteristic. For the case of
even characteristic, we will adopt a technical representation that is a com-
mon workaround in the literature of multivariate cryptography and will still
be good for our purposes.

Let p(x1, . . . , xN) =
∑

16i6j6N
γijxixj be a quadratic form over Fq. Then,

for fields of odd characteristic, we can associate to p a symmetric matrix P =

P + P
>

, where P is an upper triangular matrix with coefficients Pij = γij/2
for i 6 j. Clearly, there is a one-to-one correspondence between quadratic
forms and symmetric matrices, since for x = (x1, . . . , xN) it holds that

p(x1, . . . , xN) = xPx>. (1)

Now, all operations on quadratic forms naturally transform into operations
on matrices since the one-to-one correspondence between quadratic forms and
symmetric matrices is in fact an isomorphism. Note that, in matrix form, a
change of variables (basis) works as:

p(xS) = xSPS>x>. (2)

In what follows, we will interchangeably work with both the quadratic form p
and its matrix representation P.

Over fields Fq of even characteristic, the relation (1) does not hold, since
for a symmetric matrix P we have (Pij + Pji)xixj = 2Pijxixj = 0. The nice
correspondence between quadratic forms and symmetric matrices is broken,
but we would still like to be able to use some sort of matrix representation for
quadratic forms. Thus, in even characteristic we associate to p a symmetric

matrix P = P + P
>

, where P is an upper triangular matrix with coefficients
Pij = γij for i 6 j.

This representation can also be used in odd characteristic when it comes
to linear operations and changes of basis, as the correspondence p 7→ P is a
homomorphism. However, it is not a bijection, since all the quadratic forms in
the set {

∑
16i<j6N

γijxixj +
∑

16i6N
γiix

2
i | γii ∈ Fq} map to the same symmetric

matrix (note that it has zeros on the diagonal). In practical, cryptographic
applications, this typically does not pose a problem, and can be overcome.
The same holds for our purpose of solving equivalence problems for systems
of quadratic polynomials.

2.2.1 Differential of quadratic functions.

Given a non-zero a ∈ FNq , an object directly related to the symmetric matrix
representation of quadratic forms is the differential of P at a (see [36, 37]):

DaP : FNq → Fkq , x 7→ P(x + a)− P(x)− P(a).

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 9

Note that the differential of a quadratic function is closely related to the
bilinear form β(x,y) = q(x+y)−q(x)−q(y) associated to a quadratic form q.
In this work we are especially interested in the kernel of DaP, as DaP(x) = 0
implies P(x+a) = P(x) +P(a), that is, P acts linearly on the kernel of DaP.

2.3 Isomorphism of polynomials.

The Isomorphism of Polynomials (IP) problem (or Polynomial Equivalence
(PE) [38]) was first defined by Patarin in [1] for the purpose of designing a
“graph isomorphism”-like identification scheme and a digital signature scheme
using the Fiat-Shamir transform [8]. It is defined as follows.

Problem 8 IP(N, k,Fq[x1, . . . , xN]k × Fq[x1, . . . , xN]k):
Input: Two k-tuples of multivariate polynomials F = (f1, f2, . . . , fk), P =
(p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN]k.
Question: Find – if any – (S, s) ∈ AGLN (q), (T, t) ∈ AGLk(q) such that

P(x) = F(xS + s)T + t. (3)

The variant of the problem where (T, t) is trivial is known as the Isomor-
phism of Polynomials with one secret (IP1S), whereas if P and F are quadratic
and both s and t are the null vector, the problem is known as Quadratic Maps
Linear Equivalence (QMLE) problem.

The decisional version of IP is not NP-complete [31], but it is known that
even IP1S is at least as difficult as the Graph Isomorphism problem [31]. The
IP problem has been investigated by several authors, initially for the security
of the C∗ scheme [31]. In [39] it was shown that the IP1S is polynomially
solvable for most of the instances with k ≥ N , and Bouillaguet et al. [40] gave
an algorithm with running time of O(N6) for random instances of the IP1S
problem, thus fully breaking Patarin’s identification scheme [1]. The authors
of [31] gave an algorithm for solving the general IP, called To-and-Fro, that
runs in time O(q2N) for q > 2 and O(q3N) for q = 2. It was noted in [29] that
the algorithm is only suited for bijective mappings F and P. Getting rid of the
bijectivity constraint has been explored in [30] with the conclusion that the
proposed workarounds either have a non-negligible probability of failure or it
is unclear how greatly they affect the complexity of the algorithm.

Regarding QMLE, the linear variant of IP, an empirical argument was given
in [38] that random inhomogeneous instances are solvable in O(N9) time,
but a rigorous proof for this case still remains an open problem. Under this
assumption, the same paper provides an algorithm of complexity O(N9qN) for
the homogeneous case which is considered the hardest, that was subsequently
improved to O(N9q2N/3) in [29]. Both works reduce a homogenous instance to
an inhomogenous instance and assume the obtained inhomogeneous instance
behaves as a random instance. This, however, is a wrong assumption which
questions the claimed complexity of the algorithm.

Springer Nature 2021 LATEX template

10 Hardness estimates of the Code Equivalence Problem in the Rank Metric

In this work, we will be interested in the homogeneous variant of QMLE,
that we denote hQMLE, as the hardest and most interesting instance of QMLE.
Formally, the hQMLE problem is defined as follows.

Problem 9 hQMLE(N, k,Fq[x1, . . . , xN]k × Fq[x1, . . . , xN]k):
Input: Two k-tuples of homogeneous multivariate polynomials of degree 2

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN]k.

Question: Find – if any – a map (S,T) where S ∈ GLN (q),T ∈ GLk(q) such that

P(x) = (F(xS))T. (4)

Interestingly, the case of k = 1, which we will call Quadratic Form Equiva-
lence (QFE) has been completely solved for more than 80 years already in the
works of Witt [41] and Arf [42]. It is known that every quadratic form is equiv-
alent to a unique canonical diagonal (for odd characteristic) or block diagonal
(for even characteristic) form which can be obtained in time O(N3). Thus,
QFE can also be solved in time O(N3) by first calculating the transformations
to the canonical forms of the two quadratic forms. If the canonical forms are
the same, by composition, one can find the equivalence. If the canonical forms
are not the same, the two quadratic forms are not equivalent.

In this work, we also consider a variant of QMLE where F and P are bilinear
forms. We call this problem Bilinear Maps Linear Equivalence (BMLE). In this
variant, F and P are k-tuples of homogeneous polynomials of degree 2 in two
sets of variables [x1, . . . , xn] and [y1, . . . , ym], where each monomial is of the
form xiyj . Formally, the BMLE problem is defined as follows.

Problem 10 BMLE(n,m, k,Fq[x1, . . . , xn, y1, . . . , ym]k×Fq[x1, . . . , xn, y1, . . . , ym]k):
Input: Two k-tuples of bilinear forms

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xn, y1, . . . , ym]k

Question: Find – if any – a triplet (S1,S2,T) where S1 ∈ GLn(q),S2 ∈ GLm(q),
T ∈ GLk(q) such that

P(x,y) = (F(xS1,yS2))T. (5)

The inhomogenous versions of QMLE and BMLE will be referred to as
inhQMLE and inhBMLE respectively. We write inh(Q/B)MLE when it does not
matter if we are referring to the quadratic or the bilinear version.

3 How hard is MCE?

In this section we investigate the relation of the MCE problem to other known
problems that we notably split in two groups – equivalence problems for
systems of multivariate quadratic polynomials and equivalence problems for
codes.

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 11

3.1 Relations to equivalence problems for qaudratic
polynomials

We start with establishing a straightforward link between MCE and polyno-
mial equivalence problems by proving that the MCE and BMLE problems are
equivalent.

Theorem 11 The MCE problem is at least as hard as the BMLE problem.

Proof In order to prove our claim, we need to show that an oracle A solving any
instance of the MCE problem can be transformed in polynomial time to an oracle B
solving any instance of the BMLE problem.

Suppose B is given an instance IBMLE(F ,P) of BMLE(n,m, k,Fq[x,y]k ×
Fq[x,y]k), where F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x,y]k are k-tuples
of bilinear forms. Without loss of generality, we assume f1, f2, . . . , fk (respectively
p1, p2, . . . , pk) to be linearly independent. B can efficiently construct an instance of
the MCE problem as follows.
B represents the components fs and ps, s ∈ {1, . . . , k} of the mappings F and

P as m × n matrices F(s) and P(s), where F
(s)
i,j equals the coefficient of xiyj in fs

and P
(s)
i,j equals the coefficient of xiyj in ps. Taking (F(1), . . . ,F(k)) to be a basis

of a matrix code C and (P(1), . . . ,P(k)) a basis of a matrix code D, B obtains an

instance IMCE(C,D) of MCE(n,m, k,M[k]
m,n(q)).

B gives the instance IMCE(C,D) as an input to A. A outputs either a solution
(A,B) to the MCE instance (in the case it was a positive instance) or outputs that
there is no solution (in the case it was a negative instance). In the latter case, B
immediately outputs: no solution. In the former case, B constructs the matrices
R(s) = AF(s)B ∈ D and solves the following system of equations in the variables
ti,j :

k∑
j=1

tj,i ·R(j) = P(i), ∀i ∈ {1, . . . , k} (6)

The system has always a solution, since (R(1), . . . ,R(k)) is a basis of the code D.
B sets T =

(
ti,j
)
, and outputs (A,B>,T) as the solution to IBMLE(F ,P). B

succeeds whenever A succeeds and the reduction runs in time O(k6).
�

Theorem 12 BMLE is at least as hard as MCE.

Proof We proceed similarly as in the other direction – Given an oracle A solving any
instance of BMLE, we can construct in polynomial time an oracle B with access to
A that can solve any instance of MCE.

Springer Nature 2021 LATEX template

12 Hardness estimates of the Code Equivalence Problem in the Rank Metric

Suppose B is given an instance IMCE(C,D) of MCE(n,m, k,M[k]
m,n(q)). B takes

arbitrary bases (C(1), . . . ,C(k)) and (D(1), . . . ,D(k)) of the codes C and D respec-

tively. For each of the matrices C(s), B constructs the bilinear forms cs(x,y) =∑
16i6m,16j6n

C
(s)
ij xiyj and for the matrices D(s) the bilinear forms ds(x,y) =∑

16i6m,16j6n
D

(s)
ij xiyj ,∀s, 1 6 s 6 k. Taking F = (c1, c2, . . . , ck) and P =

(d1, d2, . . . , dk) we obtain an instance IBMLE(F ,P) of BMLE(n,m, k,Fq[x,y]k ×
Fq[x,y]k).
B queries A with the instance IBMLE(F ,P) and A outputs a solution (S1,S2,T)

to the BMLE instance, or no solution if there isn’t any. In the first case, this imme-
diately gives a solution (S1,S

>
2) to the MCE instance. In the second case, there is

no solution to the MCE instance. �

In order to prove the connection of MCE to the more general problem
hQMLE we first need to establish some properties of matrix codes.

Lemma 13 Let C and D be matrix codes generated by the bases = (C1, . . . ,Ck) and
(D1, . . . ,Dk) of (skew-)symmetric matrices, and assume that C and D have trivial
automorphism groups. Then C is equivalent to D if and only if C is congruent to D.

Proof Clearly, by definition if C is congruent to D, then C is equivalent to D.
For the opposite direction, let C be equivalent to D. Then there exist nonsingular

matrices A, B and T such that

k∑
i=1

tj,iDi = ACjB

Since Ci and Di are (skew-)symmetric the last rewrites as

k∑
i=1

tj,iDi = B>CjA
>

Combining the two, and since A and B are non-singular, we obtain

Cj = A−1B>CjA
>B−1

The automorphism group being trivial implies A = λB> for some λ ∈ Fq which in
turn implies that C is congruent to D. �

Remark 14 The result of Lemma 13 has already been known for algebraically closed
fields of non-even characteristic [28, 43]. Since finite fields are not algebraically closed,
this result is not useful in our context. On the other hand, requiring a trivial auto-
morphism group for the codes is not a huge restriction, and we typically expect the
automorphism group to be trivial for randomly chosen matrix codes. Specifically for
cryptographic purposes with regards to MCE, one wants the orbit of C to be maxi-
mal under the action of suitable isometries, which happens when the automorphism
group of C is trivial. Similar requirements for trivial or small automorphism groups
occur in the Hamming metric, where it is known that without this requirement there
might exist weak keys [44, 45].

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 13

Theorem 15 Let T denote the subset of M[k]
m,n(q) of k-dimensional matrix codes

of symmetric matrices with trivial automorphism groups. Further, let T ′ denote
the subset of Fq[x1, . . . , xN]k of k-tuples of polynomials with trivial automorphism
groups.

The MCE(T) problem is at least as hard as the hQMLE(T ′) problem

Proof We perform the reduction in a similar manner as previously.
Suppose B is given an instance IhQMLE(F ,P) of hQMLE(N, k, T ′), where F =

(f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ [x1, . . . , xN] are k-tuples of linearly inde-
pendent quadratic forms from T ′. B can efficiently construct an instance of the
MCE(N,N, k, T) problem as follows.

B forms the N ×N symmetric matrices F(s) and P(s) associated to the compo-
nents fs and ps, s ∈ {1, . . . , k} of the mappings F and P. Taking (P(1), . . . ,P(k))

to be a basis of a matrix code D and (F(1), . . . ,F(k)) a basis of a matrix code C, B
obtains an instance IMCE(C,D) of MCE. Per assumption, the matrix codes C and D
have trivial automorphism groups, hence the instance is from MCE(N,N, k, T).
B queries A with the instance IMCE(C,D). , A answers with a solution (A,B) to

the MCE instance if it is positive, and no solution otherwise. In the former case, from
Lemma 13, since the matrices are symmetric, A = B>. Now, B applies the change
of variables xA to F and obtains R(x) = F(xA). It then solves the system

k∑
j=1

tj,s · rj = ps, ∀s ∈ {1, . . . , k} (7)

The system has a solution if IhQMLE(F ,P) is a positive instance. This is always
the case in odd characteristic, because there is a one-to-one correspondence between
polynomials and their symmetric matrix representation. Over characteristic 2, it may
happen that the IhQMLE(F ,P) is not a positive instance while its symmetric matrix
representation IMCE(C,D) is. In this case, the system (7) does not have a solution
and B outputs no solution.

If the system has a solution, B sets T =
(
ti,j
)
, and outputs (A,T) as the solution

to IhQMLE(F ,P). B succeeds whenever A succeeds and the reduction takes time
O(k6).

�

For the following theorem, we define the symmetric matrix representation

of a matrix code C as the code {
[

0 C>

C 0

]
| C ∈ C}.

Theorem 16 Let Ts denote the subset of M[k]
m,n(q) of k-dimensional matrix codes

whose symmetric matrix representation has a trivial automorphism group. Similarly,
let T ′s denote the subset of Fq[x1, . . . , xN]k of k-tuples of polynomials with trivial
automorphism groups.

The hQMLE(T ′s) problem is at least as hard as the MCE(Ts) problem.

Springer Nature 2021 LATEX template

14 Hardness estimates of the Code Equivalence Problem in the Rank Metric

Proof We show that given any oracle A that solves the hQMLE(T ′s) problem there
exists an oracle B running in polynomial time that solves the MCE(Ts).

Suppose B is given an instance IMCE(C,D) of MCE(n,m, k, Ts). B can efficiently
construct an instance of the hQMLE(n+m, k, T ′s) problem as follows.

B fixes bases (D(1), . . . ,D(k)) of the code D and (C(1), . . . ,C(k)) of the code

C. For each of the matrices C(s), B constructs the quadratic forms cs(x) =∑
16i6m,m+16j6m+n

C
(s)
ij xixj and for the matrices D(s) the quadratic forms ds(x) =∑

16i6m,m+16j6m+n
D

(s)
ij xixj , ∀s, 1 6 s 6 k, where x = (x1, . . . , xm+n). Taking

F = (c1, c2, . . . , ck) and P = (d1, d2, . . . , dk) B obtains an instance IhQMLE(F ,P) of
hQMLE(n+m, k, T ′s).
B queries A with the instance IhQMLE(F ,P) which outputs a solution (S,T) to

the hQMLE instance.
We argue that this solution can be transformed to a solution to the MCE instance,

if it is a positive instance. The symmetric matrix representation of the codes C and
D is given by [

0 (D(i))>

D(i) 0

]
and

[
0 (C(i))>

C(i) 0

]
, i ∈ {1, . . . , k}. (8)

The solution (S,T) means∑
t̃i,j

[
0 (D(j))>

D(j) 0

]
= S

[
0 (C(i))>

C(i) 0

]
S>, i ∈ {1, . . . , k}. (9)

If the given MCE instance is positive, then there exist matrices A,B,L such that
ACiB =

∑
j li,jDj . This implies

∑
li,j

[
0 (D(j))>

D(j) 0

]
=

[
B> 0
0 A

][
0 (C(i))>

C(i) 0

] [
B 0

0 A>

]
, i ∈ {1, . . . , k}. (10)

The last two imply∑
λi,j

[
0 (D(j))>

D(j) 0

]
=

[
B> 0
0 A

]
S−1

[
0 (D(i))>

D(i) 0

]
S−>

[
B 0

0 A>

]
, i ∈ {1, . . . , k}.

(11)

By assumption, the automorphism group of the

[
0 (D(i))>

D(i) 0

]
matrices is trivial,

which means S necessarily equals

[
B> 0
0 A

]
up to scalar multiplication. For such an

S, the MCE solution can immediately be extracted. B then outputs the extracted
solution.

If on the other hand, S is not of such block-diagonal form, B outputs no solution,
as this implies the instance is not positive.

�

Remark 17 Using the above reduction between MCE and hQMLE, we can reduce
the MCEbase problem to and from a special case of IP known as IP1S. Interestingly,
Perret [39] shows IP1S is polynomially solvable for most instances k ≥ N , and later
work [40] gives an algorithm with running time of O(N6) for most random instances,

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 15

although no rigorous proof that bounds the complexity of the problem to polynomial
was given. This nevertheless implies that the MCEbase problem can practically be
solved in polynomial time for most cryptographically interesting parameters.

3.2 Relations to equivalence problems for linear codes

In this section, we show that MCE is at the heart of various code equivalence
problems. Equivalence problems for different metrics, such as the Hamming
metric or the sum-rank metric, reduce to MCE, making the hardness analysis
of MCE the more exciting.

3.2.1 Hamming code equivalence.

Codes C ⊂ Fnq equipped with the Hamming metric have isometries of the form

τ : (c1, . . . , cn) 7→ (α1cπ−1(1), . . . , αncπ−1(n)), αi ∈ F∗q , π ∈ Sn. (12)

From this, we define Hamming code equivalence (HCE) as the problem of
finding an isometry between two Hamming codes C and D.

Problem 18 HCE(k, n):
Input: Two k-dimensional Hamming codes C,D ⊂ Fnq
Question: Find – if any – α ∈ F∗q

n
, π ∈ Sn such that απ(c) ∈ D holds for all c ∈ C.

The subproblem where α is trivial is called the monomial equivalence
problem.

It is easy to turn an HCE instance into a MCE instance [25], given the
description of isometries in Equation (12). First, define Φ : Fnq →Mn(Fq) by

x = (x1, . . . , xn) 7→

x1

. . .

xn

 .

The map Φ is an isometry from the Hamming metric to the rank metric:
codewords with weigh t are mapped to matrices of rank t. From this, we quickly
get the reduction: Writing π as a matrix P ∈ GLn(q), Φ translates a Hamming
isometry τ to a rank-metric isometry by

Φ(τ) : Φ(x) 7→ P−1Φ(x)AP, where A =

α1

. . .

αn

 ∈ GLn(q).

A second reduction from HCE to MCE is given later in [25], which concerns
the search variant of the problem, and is more explicit. Both reductions, how-
ever, do not help with solving HCE in practice: both the permutational (A is

Springer Nature 2021 LATEX template

16 Hardness estimates of the Code Equivalence Problem in the Rank Metric

trivial) and the linear variant of code equivalence in the Hamming metric have
algorithms [13, 46] that perform much better for an HCE instance τ than the
algorithms we propose for solving Φ(τ) as an MCE instance.

3.2.2 Sum-rank code equivalence.

The sum-rank metric [47] is a metric that is gaining in popularity in coding
theory. It is commonly given as a generalization of the vector-rank metric,
but one can also define a variant that generalizes matrix-rank metric. We will
reduce both vector and matrix sum-rank equivalence problems to MCE. The
idea is the same as for HCE, we find the right isometry from sum-rank metric
to rank metric to get the reduction.

Definition 19 Let n be partitioned as n = n1 + . . .+n`. Let v(i) = (v
(i)
1 , . . . , v

(i)
ni) ∈

Fniqm and v = (v(1), . . . ,v(`)) ∈ Fnqm . Let Γ be a basis for Fqm over Fq. Then the
vector sum-rank of v is defined as

SumRank(v) :=
∑̀
i=1

Rank Γ(v(i)).

Let m be partitioned as m = m1 + . . . + m`. Let V(i) ∈ Mmi×ni(Fq) and V =

(V(1), . . . ,V(`)). Then the matrix sum-rank of V is defined as

SumRank(V) =
∑̀
i=1

Rank V(i).

The sum-rank generalizes both the Hamming metric and the rank metric:
taking ` = n gives the Hamming metric, whereas ` = 1 gives the rank metric.
We define isometries again as maps that preserve the sum-rank. Sum-rank
isometries are simple generalisations of rank isometries (see Problem 7).

Proposition 20 ([48, Thm. 3.7]) Isometries with respect to the vector sum-rank

metric are given by vector rank isometries µ(i) : x(i) 7→ α(i)x(i)B(i) per ‘block’ with
α(i) ∈ F∗qm and B(i) ∈ GLni(q), and suitable permutations π of such blocks if ni = nj
for i 6= j, so

µ : (x(1), . . . ,x(`)) 7→ (α(1)xπ
−1(1)B(1), . . . , α(`)xπ

−1(`)B(`))

is a general description of a vector sum-rank isometry.

Generalizing to matrix sum-rank codes is achieved by simply replac-
ing α(i) ∈ F∗qm with A(i) ∈ GLmi(q) [49, Prop. 4.25]. This gives us the
Vector Sum-Rank Code Equivalence (VSRCE) and Matrix Sum-Rank Code
Equivalence (MSRCE) problems.

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 17

Problem 21 VSRCE(n,m, k):
Input: Two k-dimensional vector sum-rank codes C,D ⊂ Fnqm
Question: Find – if any – α(i) ∈ F∗qm ,B(i) ∈ GLni(q) and a permuation π such that
for all c ∈ C, it holds that µ(c) ∈ D.

Problem 22 MSRCE(n,m, k):
Input: Two k-dimensional matrix sum-rank codes C,D ⊂ (Mmi×ni(Fq))i
Question: Find – if any – A(i) ∈ GLmi(q),B

(i) ∈ GLni(q) and a permuation π
such that for all C ∈ C, it holds that µ(C) ∈ D.

In order to give a reduction to MCE, we use the same idea as for HCE.
First, we define a ‘nice’ map Ψ : Fnq →M`·m×n(Fq) by

x = (x(1), . . . ,x(`)) 7→

Mat(x(1))
. . .

Mat(x(`))

 .

It is clear that Ψ is an isometry from the vector sum-rank metric to the
rank metric, as it preserves the weight. We get the following reduction.

Theorem 23 Let T denote the subset of M[k]
m,n(q) of k-dimensional matrix codes

with trivial automorphism groups. Let T ′ denote the subset of k-dimensional vector
sum-rank codes that are in the preimage Ψ−1(T). Then MCE(T) is at least as hard
as VSRCE(T ′).

Proof Suppose B is given an instance IVSRCE(C,D) of VSRCE(n,m, k, T ′), where
C and D are k-dimensional vector sum-rank codes. B can efficiently construct an
instance of the MCE(T) problem as follows. By writing the permutation π of the
‘blocks’ by a matrix representation P, B can translate a vector sum-rank isometry µ
into a matrix code isometry Ψ(µ) by

Ψ(µ) : Ψ(x) 7→ P−1AΨ(x)BP where A =

α(1)

. . .

α(`)

 ,B =

B(1)

. . .

B(`)

with A ∈ GL`(q

m), B ∈ GLn(q). Hence, Ψ(µ) is an instance of MCE(n,m, k, T),
with which B queries A. A outputs a solution (A′,B′) to this MCE(T) instance.
As the automorphism group is trivial, B computes λA′ = P−1A and λB′ = BP for
λ ∈ Fq, and therefore solves the IVSRCE instance. �

From vector sum-rank code equivalence to matrix sum-rank code equiva-
lence is only a small step. Given a partition m = m1+. . .+m`, the map we need

Springer Nature 2021 LATEX template

18 Hardness estimates of the Code Equivalence Problem in the Rank Metric

is only slightly different from Ψ, namely Ψ̃ : (Mmi×ni(Fq))i →Mm×n(Fq) by

X = (X(1), . . . ,X(`)) 7→

X(1)

. . .

X(`)

 .

Theorem 24 Let T denote the subset of M[k]
m,n(q) of k-dimensional matrix codes

with trivial automorphism groups. Let T ′ denote the subset of k-dimensional matrix
sum-rank codes that are in the preimage Ψ̃−1(T). Then MCE(T) is at least as hard
as MSRCE(T ′).

Proof This is a simple generalization of Theorem 23: Replace α(i) by A(i) ∈ GLmi(q)
so that A ∈ GLm(q). Then again, for a matrix sum-rank µ we get Ψ̃(µ) by Ψ(x) 7→
P−1AΨ(x)BP as an MCE(T) instance. �

The link between such MCE instances Ψ(µ) coming from vector sum-rank
and Ψ̃(µ) coming from matrix sum-rank is given by a representation ρ : F∗qm →
GLm(q). We map a vector sum-rank instance to a matrix sum-rank instance
by A(i) = ρ(α(i)), so that A ∈ GL`·m(q).

To show the equivalences between the rank and sum-rank instances, we
need to show that an MCE instance is also an MSRCE instance. But this is
trivial: the sum-rank metric generalizes the rank metric, thus an MCE instance
is an MSRCE instance with ` = 1. Hence, we get the following theorem for free.

Theorem 25 MSRCE is at least as hard as MCE.

4 Solving Matrix Code Equivalence

In this section, we analyze the complexity of solving an instance of
MCE(n,m, k). We start by establishing a useful lemma.

Lemma 26 An MCE(n,m, k) instance can in polynomial time be turned into
an MCE(σ(n), σ(m), σ(k)) instance for any permutation σ on the set {n,m, k}.
Furthermore, they are either both positive, or both negative instances.

Proof Let IMCE(C,D) be a given MCE(n,m, k) instance. Let (C(1), . . . ,C(k)) and

(D(1), . . . ,D(k)) be bases of the codes C and D respectively. Without loss of gener-
ality, we will turn this instance into an MCE(m, k, n) instance (the rest can be done

analogously). We set C̄
(i)
j,t = C

(t)
i,j , D̄

(i)
j,t = D

(t)
i,j and we take (C̄(1), . . . , C̄(n)) and

(D̄(1), . . . , D̄(n)) to be the bases of the codes C̄ and D̄ respectively. Clearly, C̄ and D̄
are equivalent if and only if C and D are equivalent. �

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 19

Without loss of generality, and with Lemma 26 in mind, we assume m =
min{m,n, k}.

As a baseline we have a straightforward algorithm that uses a result from
[25] that MCRE can be solved in polynomial time. By enumerating either A
or B, we obtain an instance of MCRE. This means the dominating complexity
is the enumeration resulting in an overall complexity of Õ(qm

2

) for MCE.
The approach we outline in the section makes use of the reduction of MCE to

hQMLE (see Theorem 16). This means that we use techniques already applied
for solving hQMLE, but generalize and improve them by making use of the
specific structure that MCE instances show when viewed as hQMLE instances.

4.1 Solving MCE as QMLE

At Eurocrypt 2013, Bouillaguet et al. [29] proposed an algorithm for solving
hQMLE using techniques from graph theory. Their main idea was to reduce the
homogeneous case to the inhomogeneous case, which they assume is efficiently
solvable (e.g. using the heuristic algebraic approach of [38]). Starting from an
instance of hQMLE, they build two exponentially-large graphs that correspond
to the given maps F and P such that, finding an isomorphism between the
two graphs is equivalent to finding an isomorphism between the two quadratic
maps. Since the graphs are exponentially large, a technique is provided to walk
through the graphs without constructing them. Walking through the graphs
consists of finding adjacent vertices and computing the degree of a vertex, both
in polynomial time. The algorithm consists in finding pairs of vertices from
the first and the second graph that have the same degree and making queries
to an inhomogenous QMLE solver. If the solver finds an isomorphism by which
two vertices are related, then the isomorphism between the two graphs, and
thus the isomorphism between the two quadratic maps, is found.

4.2 First algorithm for solving MCE

The algorithm for solving hQMLE from [29] considers a graph arising from
the differential of a given polynomial map – a vertex a is connected to all the
vertices that vanish at the differential at a. It is, however, not entirely clear
how the property we choose to construct such graphs impacts the complexity
of the algorithm. We revisit the algorithm, and show how it can be generalized,
i.e. abstracted from the property used in [29], under certain conditions. In
this section we present this generalization – a birthday-based algorithm for
finding an isomorphism between two objects when a specific solver exists. In
this form, it can be applied to a broader type of equivalence problems, using
more general invariants, here implemented as a predicate P.

Let S1 and S2 be subsets of a universe U of equal size N . Algorithm 1
finds an equivalence function φ : S1 → S2. We assume there exists a predicate
P : U → {>,⊥} that can be computed in polynomial time, and we denote
the cost CP. We assume P is invariant under the equivalence φ, i.e. P(x) =
> ↔ P(φ(x)) = >. Let U> = {x ∈ U | P(x) = >}, and d = |U>|/|U |. We

Springer Nature 2021 LATEX template

20 Hardness estimates of the Code Equivalence Problem in the Rank Metric

will call d the density of the predicate P and we assume the density on S1

and S2 is approximately equal to d. We further assume the existence of an
algorithm FindFunction, that given x ∈ S1, y ∈ S2 returns φ if y = φ(x)
and ⊥ otherwise. We denote the cost of a query to FindFunction by CFF.

Algorithm 1 General Birthday-based Equivalence Finder

1: function SampleSet(S,P, `)
2: L← ∅
3: repeat

4: a
$←−− S

5: if P(a) then L← L ∪ {a}
6: end if
7: until L = `
8: return L
9: end function

10: function CollisionFind(S1, S2)
11: L1 ← SampleSet(S1,P, `)
12: L2 ← SampleSet(S2,P, `)
13: for all (a, b) ∈ L1 × L2 do
14: φ←FindFunction(a, b)
15: if φ 6= ⊥ then
16: return solution φ
17: end if
18: end for
19: return ⊥
20: end function

Lemma 27 For a fixed success probability of 1 − 1/e, Algorithm 1 performs on
average O(

√
N/d) operations in SampleSet, queries FindFunction at most d ·N

times.
The optimal value for d, up to a polynomial factor, is d = N−1/3 · C−2/3

FF , for

which the total time complexity of the algorithm is O(N
2
3 · C

1
3

FF) and the memory

complexity is O(N
1
3C
− 1

3

FF). If FindFunction runs in polynomial time, this reduces

to time complexity of Õ(N
2
3) and memory complexity of O(N

1
3).

Proof First note that the expected number of elements in S1 and S2 such that P(x)
holds is equal to dN by the definition of the density d. By the birthday paradox, it
is enough to take lists of size ` =

√
d ·N , to be sure that with probability of 1 − 1

e
FindFunction returns a solution [50]. With this length of the lists, the number of
queries to FindFunction is dN . On the other hand, the number of samples needed
to build the list L1 (resp. L2) of elements a ∈ S1 (resp. b ∈ S2) such that P(a) (resp.
P(b)) holds is `/d, which gives a complexity of O(

√
N/d) to build these lists Li.

The total running time is optimal when these two quantities
√
N/d and d·N ·CFF

are equal, which holds when d = N−1/3 · C−2/3
FF . Such a density gives complexity of

O(N
2
3 · C

1
3

FF) for SampleSet and at most N
2
3 queries to FindFunction. If CFF is

polynomial, this gives a total time complexity of Õ(N
2
3). The memory requirements

of the algorithm correspond to the size of the lists Li. This results in a memory

complexity of O(N
1
3C
− 1

3

FF), or O(N
1
3) if CFF is polynomial. �

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 21

Remark 28 The success probability in Lemma 27 is chosen rather arbitrarily, mostly
for practical verification of the algorithm’s correctness. It can be increased to any
value 1− 1/c for a positive constant c by appropriately building lists that are larger
only by a constant factor compared to the case treated in Lemma 27. The overall
complexity only differs by a constant factor, i.e., does not change asymptotically.

As said earlier, the algorithm presented in [29] is a special case of Algo-
rithm 1. Their algorithm can be seen as an instantiation of Algorithm 1 by
defining GF (resp. GP) to be the linearity graph of F (resp. P), where a ver-
tex a is connected to all vertices x such that DaF(x) = 0 (resp. DaP(x) = 0),
taking the predicate Pκ(a) : dim kerDaF = κ on the universe Mk,N (q),
and taking for FindFunction the assumed polynomial-time solver from [38]
for inhQMLE. Finding a collision (α, β) such that β = αS makes the in-
stance P(x + α) = F(xS + β)T an inhomogeneous instance by defining
P ′(x) = P(x + α) and F ′(x) = F(x + β). Running FindFunction on P ′
and F ′ then returns S and T. In this case, Lemma 27 gives the precise re-
sult from [29, Thm. 1], which we present as a corollary to our Lemma 27, for
completeness.

Corollary 29 Assuming a polynomial-time solver for the inhomogenous case of
QMLE, an hQMLE(N,N) instance IhQMLE(F ,P) over Fq can be solved with com-

plexity and number of queries equal to Õ(q
2
3N) with a success probability of 1− 1/c

for any c > 0 and a memory complexity of O(q
1
3N).

Proof Let GF (i.e. GP) be the linearity graph of F (i.e. P), where a vertex a is
connected to all x such that DaF(x) = 0 (i.e. DxP(a) = 0). We use the predicate
Pκ(a) : dim kerDaF = κ we have that deg(a) = qκ. The density of the predicate dκ
in the universe ofN×N matrices is independent of F and P, and is therefore the same
as the density of linear maps with kernel of dimension κ. Thus, dκ is approximately
a monotonic decreasing function in κ, going from 1 to 0. Hence, by Lemma 27, there
exists some optimal κ for which we get that dκ ≈ |GP |−1/3 = q−N/3, which gives a

total time complexity of q
2
3N and a memory complexity of q

1
3N . �

Remark 30 The assumption on a polynomial-time solver in [29] turns out to be too
strong: such a solver exists for random instances, however, for inhQMLE instances as
obtained in Corollary 29 the running time is probably not polynomial [30]. Neverthe-
less, the algorithm and result are valid, but require a different rebalancing depending
on CFF. Section 5 analyzes CFF in detail for different instances.

To apply this approach to MCE instances, we need to generalize to the
case of N not necessarily equal to k. For an MCE(n,m, k) instance IMCE(C,D),
we get an hQMLE(n + m, k) instance IhQMLE(F ,P) by Theorem 16. We take
again the predicate Pκ(a) : dim kerDaF = κ, but this time on the universe
Mk,n+m(q), where DaF lives. To get a similar result to Corollary 29, we

Springer Nature 2021 LATEX template

22 Hardness estimates of the Code Equivalence Problem in the Rank Metric

need to show two things. a), that this predicate satisfies the assumptions
required for Algorithm 1. b), that there is a κ such that the density dκ of Pκ
is optimal as described in Lemma 27. If both are satisfied, we get a complexity

of O(q
2
3 (n+m)C

1
3

FF), hence Õ(q
2
3 (n+m)) when the solver is polynomial, with a

success probability of 1 − 1/c for any c > 0 for an MCE(n,m, k) instance
IMCE(C,D). We start with a).

Lemma 31 The predicate Pκ(DaF) : dim kerDaF = κ is a suitable predicate for
Algorithm 1, as i) Pκ can be computed in polynomial time, ii) is invariant under
equivalence, iii) and dκ does not depend on F .

Proof

1. The cost CPκ is the cost of computing dim kerDaF , i.e. computing the kernel
of a k × (n+m) matrix over Fq. This can be done in polynomial time.

2. Let P(x) = F(xS)T be the equivalence. If x ∈ kerDaP then xS ∈ kerFaS and
vice versa, as T does not affect the kernel. As S is invertible, we get a one-to-one
correspondence x 7→ xS between the kernels, so Pκ(DaSF) = Pκ(DaP).

3. For F coming from an MCE instance, we always have −a ∈ kerDaF . We want
to show that the distribution of the rank of DaF follows the ranks of linear
maps vanishing at −a. This is given by [36, Thm. 2] for even characteristic and
easily adapted to odd characteristic, which shows dκ is independent of F .

�

We now continue with b): we show that there is a κ such that dκ is optimal.
For now, existence of κ is enough to derive a complexity on MCE. We will
explicitely compute κ later, in Section 5, when we have a detailed view of CFF

for specific parameter sets (k, n,m).
The general density dκ for the predicate Pκ is given by the following lemma,

taking a = k and b = n+m to avoid confusion with regards to n,m and n+m.

Lemma 32 Define the predicate Pκ : dim ker M = κ for M ∈ U = Ma,b(q) with

a > b. Then the density of the predicate Pκ is dκ = 1/Θ(q(κ2+κ·(a−b))).

Proof There are |U | = qab matrices in Ma,b(q), out of which

r−1∏
i=0

(qa − qi)(qb − qi)
qr − qi

= Θ
(
q(a+b−r)r

)
have rank r [51]. We have κ = b − r and so d−1

κ =
|U |
|U>| = Θ(qab

q−(a+b−r)r) =

Θ(qκ
2+κ(a−b)). Specifically when the matrix is square, d−1

κ = Θ(qκ
2

). �

From Lemma 32 we can conclude that for some κ, the density dκ is optimal.
This means we satisfy both a) and b) and we can apply Lemma 27.

In conclusion, we get our first result on the hardness of MCE, which sig-
nificantly improves straightforward enumeration. This requires that such a κ
exists, which happens when k 6 2(n+m), by Lemma 32. Note that, in contrast

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 23

to [29, Thm. 1], we do not assume a polynomial-time solver for the inhomoge-
neous case of QMLE. Instead, we write this cost as CFF and explore the precise
cost in Section 5.

Theorem 33 An MCE(n,m, k) instance IMCE(C,D) over Fq with k 6 2(n+m) can

be solved using Algorithm 1 with time complexity equal to O(q
2
3 (n+m) ·C

1
3

FF ·(CPκ+1)),

memory complexity equal to O(q
1
3 (m+n)C

− 1
3

FF) and with success probability of 1−1/c
for any c > 0 , where CFF denotes the cost of a single query to FindFunction.

We will show in Section 5 that, even though CFF is not polynomial-time,

the complexity of Algorithm 1 is still Õ(q
2
3 (n+m)) for some optimal κ.

When k > 2(n+m), we can no longer assume elements with dim kerDaF >
1 exist, as practically all differentials DaF will have only the trivial kernel
spanned by −a. In such a scenario, we have two alternatives:

• Take a single element a and run FindFunction on (a,b) for all b ∈ Fn+m
q

until we find the isometry. This deterministic process has a time complex-
ity of O(q(n+m) · CFF). The memory requirements of this algorithm are
negligible, since we do not build lists of elements;

• Alternatively, note that in this case n 6 2(k +m). Thus, we can also use
the result of Lemma 26, and instead of an MCE(n,m, k) instance, we can
solve an MCE(k,m, n) instance using Algorithm 1. In this case we end
up with a complexity of Õ(q

2
3 (k+m)). However, for the given regime of

parameters, this is always larger than Õ(q(n+m)), so the first deterministic
approach is better.

4.3 Second algorithm

The algorithm that we presented in the previous section does not take advan-
tage of the bilinear structure of an instance of MCE when viewed as hQMLE.
In such a case, the differential D(a,b)F of a k-dimensional bilinear form admits
a special structure.

Lemma 34 Let F(x,y) be a k-dimensional bilinear form with x ∈ Fmq and y ∈ Fnq .

Let Fa denote the k × n matrix of the linear map F(a,−) : Fnq → Fkq for a fixed a ∈
Fmq . Similarly let Fb denote the k×m matrix of the linear map F(−,b) : Fmq → Fkq
for a fixed b ∈ Fnq . Then

D(a,b)F(x,y) = (Fb Fa)

(
x>

y>

)
.

Proof By bilinearity, D(a,b)F(x,y) := F(x + a,y + b) − F(x,y) − F(a,b) equals

F(a,y) + F(x,b) = Fay> + Fbx>. �

Similarly for P, we use the notation Pa and Pb. The equivalence in such a
case becomes P(x,y) = F(xA,yB>)T, with A,B precisely the matrices from

Springer Nature 2021 LATEX template

24 Hardness estimates of the Code Equivalence Problem in the Rank Metric

the MCE instance. Then, as F and P are bilinear, one can see SampleSet
in Algorithm 1 as sampling both a ∈ Fnq and b ∈ Fmq at the same time as
one (a,b) ∈ Fn+m

q , until D(a,b)F has a kernel of dimension κ. However in
the bilinear case, a influences only the matrix Fa, and b influences only Fb.
Hence, we can sample a ∈ Fmq and b ∈ Fnq separately. This hints that we
can apply ideas from Algorithm 1 to the smaller universes Ua =Mk,n(q) and
Ub = Mk,m(q), where Fa and Fb live. By finding well-chosen predicates in
these smaller universes, we hope to find collisions faster.

We first analyse the properties of Fa and Fb a bit more. Let Fa be the set
of elements a for which dim ker Fa is non-trivial, and Fb similarly, i.e.

Fa = {a ∈ Fmq | dim kerF(a,−) > 0}, Fb = {b ∈ Fnq | dim kerF(−,b) > 0}.

For P, we define Pa and Pb similarly. For isomorphic bilinear forms F and P,
these sets have special properties.

Lemma 35 Let (A,B,T) : F → P be an isomorphism between two k-tuples of bilin-
ear homogenous quadratic polynomials F and P, such that P(x,y) = F(xA,yB>)T.
We have the following properties:

1. Given a ∈ Fa and any b ∈ ker Fa, we get F(a,b) = 0.

2. Fb is completely determined by Fa, as Fb =
⋃

a∈Fa ker Fa.

3. For a ∈ Fnq and y ∈ Fmq , we have Pa(y) = FaA(yB>)T.

4. For a ∈ Fnq , we get ker Pa = kerFaA ·B>.

5. The isomorphism (A,B,T) induces the bijections

Pa → Fa : a 7→ aA, Pb → Fb : b 7→ bB>.

Proof

1. b ∈ ker Fa is equivalent by definition to Fab> = F(a,b) = 0.

2. This follows directly from 1.: b ∈ Fb only if there exists an a ∈ Fa such that
F(a,b) = 0. But then b ∈ ker Fa for this specific a.

3. Per definition Pa(y) = P(a,y) = F(aA,yB>)T = FaA(yB>)T.

4. This follows directly from 3.: as T is invertible, it does not affect the kernels,
so y ∈ ker Pa if and only if yB> ∈ ker FaA

5. This follows directly from 4.: Given a ∈ Pa we get aA ∈ Fa and vice versa as
A ∈ GLm(q). A similar argument gives Fb → Pb.

�

Lemma 35 shows that a ∈ Fa and b ∈ Fb describe all non-trivial roots
(a,b) of a given F . For an instance (A,B,T) : F → P, Item 5 shows that
non-trivial roots are mapped bijectively by (A,B,T). Such non-trivial roots
can be used to find collisions more easily between F and P. However, this
requires that instances F → P have non-trivial roots. We can get an estimate
on the sizes of Fa, Fb, Pa, and Pb for given parameters n, m, and k, in the
following way.

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 25

Lemma 36 When k > n, |Fa| = |Pa| ≈ q2n−k−1 and |Fb| = |Pb| ≈ q2m−k−1.

Proof By Lemma 35, we get |Fa| = |Pa|. Then, using Lemma 32, we see that the
size of these sets is dominated by elements a with κ = dim ker Fa = 1 (a one-
dimensional kernel). From the same lemma, the density of κ = dim ker Fa = 1

elements is d1 = q−(1+1·(k−n)). Hence we expect d1 ·qn = Θ(q2n−k−1) such elements.
A similar argument gives |Fb| = |Pb| as Θ(q2m−k−1). �

Summarizing, this implies

Corollary 37 Assuming n = m as the hardest case, a random MCE(n,m, k) instance
IMCE(F ,P) over Fq has an expected value En,m,k,q of non-trivial roots

• when k < 2n, with En,m,k,q = Θ(q2n−k−1),

• when k = 2n, with En,m,k,q = Θ(1
q),

• when k > 2n, with En,m,k,q = Θ(1
qk−2n+1).

From these results, we can expect non-trivial roots for an MCE(n,m, k)
instance IMCE(F ,P) over Fq with k 6 n + m. These non-trivial roots can be
seen as a suitable predicate on the smaller universes Ua and Ub: we search
for collisions (a,b) × (aA,bB>), where (a,b) is a non-trivial root of P, and
(aA,bB>) of F . Given such a collision, we proceed as in Section 4.2.

The following result shows that we always find such a collision if F and P
have non-zero roots.

Lemma 38 Let m 6 n and k 6 n+m. Let Fa, Fb and Pa, Pb describe the non-trivial
roots of an MCE(n,m, k) instance IMCE(F ,P) over Fq. Let x = (a,b) ∈ Fa × Fb,
then looping over y ∈ Pa ×Pb gives a collision (x,y) with certainty.

Proof This follows quickly from Lemma 35. We have x = (a,b) and two bijections
Fa → Pa and Fb → Pb, so x is mapped to some y ∈ Pa ×Pb. As this set is finite,
we can loop over it in a finite number of steps until we find the collision. �

Therefore, as soon as we have non-trivial roots, we can use a single one of
them to find a collision. This leads to the following pseudo-algorithm:

1. compute Fb by computing ker Fb for all b ∈ Fmq ,
2. if Fb is non-empty, compute Fa using Lemma 35-2. Same for Pa and Pa.
3. sample a single x ∈ Fa × Fb
4. loop over y ∈ Pa×Pb with FindFunction(x,y) until the solver finds µ.

Corollary 39 Let m 6 n and k 6 n + m. The above algorithm terminates suc-
cessfully and has a total complexity of O(qm · CPκ + q2(n+m−k−1) · CFF), where CP
denotes the cost of computing ker Fb and CFF denotes the cost of a single query to
FindFunction.

Springer Nature 2021 LATEX template

26 Hardness estimates of the Code Equivalence Problem in the Rank Metric

Proof Building Fb and Pb has a complexity of O(qm ·CPκ), and these give us Fa and
Pa by Lemma 35. Then for every step in the loop we get a query to FindFunction.
By Lemma 36, the size of Pa ×Pb is at most O(q2(n+m−k−1)). �

We will see later in Section 5 that the dominating complexity is qm · CPκ
as for specific parameters (k, n,m) the number of queries z can be reduced so
that z · CFF < qm. As CPκ is polynomial, we get a complexity of Õ(qm) for
such instances.

For efficiency, one can decrease further the number of queries to FindFunc-
tion by applying other, secondary predicates. For example, the sets Fa × Fb
and Pa×Pb can be split into zeros F0 = {x ∈ Fn+m

q |F(x) = 0} and non-zeros
F = Fa × Fb \ F0, which reduces the collision search to each of these sets. An-
other secondary predicate is to only use elements a with dim ker Fa = κ for
some specific value κ > 0.

We summarize the MCE solver for instances with roots in Algorithm 2.
Practically, since the algorithm is deterministic, we do not need to build and

Algorithm 2 Bilinear MCE-Solver, assuming n > m.

1: function SampleZeros(F)
2: S, Sa, Sb ← ∅
3: for all b ∈ Fmq do
4: if dim ker Fb > 0 then
5: Sb ← Sb ∪ {b}
6: Sa ← Sa ∪ ker Fb \ {0}
7: end if
8: end for
9: S ← Sa × Sb

10: return S
11: end function

12: function CollisionFind(F ,P)
13: F← SampleZeros(F)
14: P← SampleZeros(P)

15: x
$←−− F

16: for all y ∈ P do
17: µ←FindFunction(x,y)
18: if µ 6= ⊥ then
19: return solution µ
20: end if
21: end for
22: return ⊥
23: end function

store the list F. We only need to find one element from it. However, for iterating
through the list P, Sa and Sb need to be stored. The estimated size of these
lists is qn+m−k−1.

The next theorem summarises the conditions and cost of Algorithm 2 for
solving MCE.

Theorem 40 Assuming a solver for the inhomogenous case of QMLE with cost CFF,
an MCE(n,m, k) instance over Fq with m 6 n and k 6 n + m (in which case roots
exist for F and P with overwhelming probability) can be solved using Algorithm 2 with
O (qm · CPκ) operations in SampleZeros and z queries to the solver. This amounts
to a total time complexity of O (qm · CPκ + z · CFF). The memory complexity of the

algorithm is O(qn+m−k−1).

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 27

We will show in Section 5 that, even though CFF is not polynomial-time,
the dominating factor in this complexity is still qm ·CPκ , where CPκ is the cost
to compute the kernel of an m× k matrix.

The regime of operation of Theorem 40 seems to imply that we can use
it only if k 6 n + m. However, note that if k > n + m then n 6 k + m.
Hence, by Lemma 26, we can turn the given MCE(n,m, k) instance into an
MCE(k,m, n) instance and solve this instance using Algorithm 2. This results
in a complexity of Õ(qm). Recall that we assume m = min{m,n, k}, thus,
we obtain the following general theorem which is our main result about the
practical complexity of solving MCE.

Theorem 41 An MCE(n,m, k) instance over Fq can be solved using Algorithm 2 in

time Õ
(
qmin{m,n,k}

)
.

5 Filling the gaps in the complexity analysis

The cost CP is polynomial in all of the cases because it either requires com-
puting the rank of a linear map or sampling a random element from a set. The
FindFunction in Algorithms 1 and 2 checks whether a given pair of vectors
is a collision, and if so, it returns the solution to the MCE instance. This is
done by solving an instance of the inhBMLE that has the same solutions as
the input MCE instance. Thus, to estimate the value of CFF, we analyse the
complexity of inhBMLE on these instances, by relying on algorithms that have
been developed for the inhQMLE case with N = k.

5.1 Algorithms for inhQMLE

The two algorithms described in this section have been used for tackling the
inhQMLE problem within the birthday-based algorithm for hQMLE [29, 30].
Their analysis is thus important to estimate CFF. In Section 5.2 we adapt this
analysis for the inhBMLE case with arbitrary k and N and we see how this
affects Algorithms 1 and 2 for different parameter sets.

5.1.1 The Gröbner bases attack

The algebraic attack on the inhQMLE problem starts by reducing P(x)T−1 =
F(xS), with S and T unknown, to a system of polynomial equations. By
rewriting the problem in matrix form we obtain the following constraints∑

16r6k

T̃rsP
(r) = SF(s)S>, ∀s, 1 6 s 6 k,

P[1]T−1 = SF[1], (13)

P[0]T−1 = F[0],

Springer Nature 2021 LATEX template

28 Hardness estimates of the Code Equivalence Problem in the Rank Metric

where F[1] ∈ FN×kq and P[1] ∈ FN×kq describe the degree-1 homogeneous part

of an inh(Q/B)MLE instance and F[0] ∈ Fkq and P[0] ∈ Fkq describe the degree-
0 part. We will denote the subsystem of equations derived from the degree-d
homogeneous part as Sd. The resulting system can be solved using Gröbner
basis algorithms and this is referred to as the Gröbner attack [38]. The obser-
vation that S and T are common solutions to homogeneous parts of separate
degrees of an inhQMLE instance (also proven in [40, Lemma 1]) and the idea
that moving T to the other side of the equality results in a lower degree system
where we solve for T−1 originate from this work.

The complexity of Gröbner basis algorithms depends foremost on the
degree of regularity, which is usually hard to estimate, but it can sometimes be
observed through experimental work. Such experiments applied to inhQMLE
instances imply that the system is solved at degree three. A degree-three lin-
earized system in n variables is represented by a matrix of size roughly n3

and thus, Gaussian Elimination on such a system is performed in O(n3ω) op-
erations, where ω is the linear algebra constant. This reasoning leads to the
assumption that there exists a polynomial-time solver for the inhomogeneous
case of QMLE. Another empirical observation made in [38] is that the time to
construct the system exceeds the time of the Gröbner basis computation. Since
the generation of the system is known to be polynomial, this suggests that the
Gröbner basis computation is performed in polynomial time as well. However,
these experiments are performed on random inhomogeneous instances of the
QMLE problem.

In the birthday-based approach for solving QMLE, F[1], P[1], F[0] and P[0]

are obtained from a collision [29]. Specifically, if we have a collision on x ∈ FNq
and y ∈ FNq such that y = xS, they are obtained as

F[1] = DyF , P[1] = DxP,
F[0] = F(y), P[0] = P(x).

Instances of inhQMLE derived from a collision are, on average, harder to solve
than random inhQMLE instances. Recall that in Algorithm 1 the instances of
inhQMLE are chosen such that dim kerDyF = dim kerDxP = κ. Hence, the
number of linearly independent equations in S1 is exactly k(N −κ), instead of
the expected kN on average. The size of S0 can also depend on the predicate
that we choose for the birthday-based algorithm. For instance, when we use
the predicate of searching for a collision between the non-trivial roots of P
and F , we obtain no equations in S0. Additionally, since F[1] (i.e. P[1]) and
F[0] (i.e. P[0]) are obtained respectively from computing the differential of
and evaluating F (i.e P) at a given point, S1 and S0 are not as independent
from S2 as they would be in the random case. It is difficult to estimate the
complexity of solving these instances compared to solving random instances
with the same structure. Figure 2 shows experiments confirming our intuition
that the complexity of collision-derived instances is worse than that of random
ones. This implies that we can not rely on the experimental observations in [38]

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 29

6 8 10 12
0

2,000

4,000

6,000

8,000

N = k

R
u

n
ti

m
e

(s
)

Random QMLE

Collision QMLE

8 10 12 14
0

50

100

(m+ n) = k

R
u

n
ti

m
e

(s
)

Random BMLE

Collision BMLE

Figure 2: Comparison of runtime for solving random and collision-derived
inh(Q/B)MLE instances using the Gröbner attack. Results are averaged over
50 runs.

to estimate the complexity of these specific instances. We conclude that, in
contrast with the literature, we can not assume that CFF is polynomial when
the Gröbner attack is used.

5.1.2 The matrix-pencil attack

The matrix-pencil attack was proposed in Bouillaguet’s thesis [30] and used
for the implementation of the birthday-based attack [29]. This algorithm has
a complexity of O(N6) with non-negligible probability for random inhQMLE
instances where N = k. Its complexity for inhQMLE instances derived from
a collision attack depends strongly on the parameter κ. We give a general
description of the approach. For details on how it relates to the matrix pencil
equivalence problem, we refer to [30, Ch. 14].

The first step is to retrieve a basis of the solution space V of the subsystem
of linear equations S1. Let ` = dimV and let (S[1],T[1]), . . . , (S[`],T[`]) be
a basis of V . Once the solution space of S1 is known, in order to find the
solution space of the overall system one rewrites S2 as a system in ` variables.
Concretely, this is done by replacing S and T by

∑`
i=1 xiS

[i] and
∑`

i=1 xiT
[i]

in Equation (13) and then looking for solutions in variables x1, . . . , x`. This
standard approach is also described in [40]. A key idea in the matrix-pencil
attack is to use the knowledge of F[1]/P[1] and F[0]/P[0] to find a (second)
collision and double the number of linear equations in S1. Supposing that
there exists x′ such that x′P[1] = P[0], we infer that there also exists y′ such
that y′F[1] = F[0] and that y′ = x′S. We can thus append the equations
obtained from (Dx’P)T−1 = S(Dy’F) to S1. After applying this technique, the
resulting system is usually highly overdetermined and can be solved through
direct linearization. The most favorable case is when x′ and y′ are uniquely
identified. However, if dim ker F[1] = κ > 1, then x′ is chosen arbitrarily and
we loop through the qκ possible values for y′. The complexity of the algorithm
is O(qκ`2N4), under the condition that `(` + 1)/2 ≤ |S2|. Another condition

Springer Nature 2021 LATEX template

30 Hardness estimates of the Code Equivalence Problem in the Rank Metric

for the success of this approach is that P(x) 6= 0 and there is an x such that
xDxP = P(x), because this assumption is used to find the second collision. As
per the analysis in [30], the probability that the condition for success is met is
1− 1/q + 1/q3 +O(1/q6).

5.2 The complexity of inhBMLE

In the following analysis, we use the matrix-pencil algorithm as the inhBMLE
solver, as it seems to outperform the Gröbner attack and we have a better
understanding of its complexity for these specific instances.

5.2.1 The case k ≤ n + m

Based on the analysis in Section 4.3 for the purpose of usage in Algorithm 2 we
can assume without loss of generality that k ≤ n+m and m = min{m,n, k}.

The complexity of Algorithm 2 is dominated by the SampleZeros func-
tion, as long as the complexity of the inhBMLE solver does not surpass O(qm).
In the matrix-pencil algorithm, we can not use the zero subsets F0 and P0,
as this contradicts its condition for success P(x) 6= 0. The non-zeros subsets
F and P can be used with a small adjustment to the algorithm: after finding
a basis of the solution space of S1, we rewrite and solve through linearization
the system comprised of both S2 and S0. Note that F and P are non-empty
only when the instance has at least two roots. Since in Algorithm 2 we do not
restrict the value of κ, we will approximate to the one that has the highest
probability, which for the case of k ≤ n + m is κ = (m + n) − k. Hence, CFF

is approximated to

O(qm+n−k · (m+ n)6).

When k ≥ m, this is always smaller than O(qm).

5.2.2 The case n + m < k < 2(n + m)

This case is not relevant for Algorithm 2, but it is for Algorithm 1. Since the
complexity of the inhBMLE solver contains a non-negligible factor of qκ, the
choice of κ needs to be adapted, so that the running times of SampleSet and
CollisionFind are equal. Let N = n+m and let r = N − k. The optimal κ
is chosen such that

q
N−(κ2+κr)

2 · qκ
2+κr ≈ qN−(κ2+κr) · qκ.

This gives us κ = k−(n+m+
√
δ)

2 + 1
3 , with δ = (k − (n+m))2 + 4

3 (k + 1
3). The

complexity of the overall algorithm with this optimal choice for κ is then

q
n+m

2 + k−
√
δ

6 + 1
9 .

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 31

We get that
√
δ > |k − (n+m)| and so for all values of k between n+m and

2(n+m), the term k−
√
δ is bounded by n+m, and hence this gives a bound

on the complexity by O(q
2
3 (n+m)+ 1

9). The term 1
9 adds a few bits at most to

this complexity, but is negligible for most cryptographic purposes.

5.2.3 The case k ≥ 2(n + m)

When k ≥ 2(n + m), as per Lemma 32, the probability that there exist ele-
ments with dim kerD(a,b)F > 1 is extremely small, which is why we can not
define a distinguishing predicate for Algorithm 1 and κ = 1 with overwhelming
probability. In this case, the complexity of the matrix-pencil algorithm is

O(q · (m+ n)6),

as with random inhBMLE instances.

6 Experimental results

To confirm our theoretical findings, we solved randomly generated positive
instances of the MCE problem, using the two approaches presented in this
paper. First, we implement the birthday-based Algorithm 1 in three steps. (1)
We randomly generate a positive instance IMCE(C,D) of MCE(n,m, k) and
reduce it to an instance IhQMLE(F ,P) of hQMLE(m+n, k). (2) We build the
two sample sets for a predefined predicate P and we combine them to create
pairs of potential collisions. (3) For each pair we create an inhQMLE instance
and we query an inhQMLE solver until it outputs a solution for the maps S
and T. Our implementation is built on top of the open source birthday-based
hQMLE solver from [30], which is implemented in MAGMA [52].

Table 1 shows running times for solving the MCE problem using Algo-
rithm 1. The goal of this first experiments was to confirm that there is a
parameter choice where the probability of success of the algorithm surpasses
1 − 1/e and that our running times are comparable to the ones given in [29].
These experiments are done with the parameter q = 2 and all results are an
average of 50 runs.

Table 1: Experimental results on solving the MCE problem using Algorithm 1.

m = n k κ Sample set size
Runtime (s) Runtime (s) Success
SampleSet inhQMLE solver probability

10 20 5 2 21 3154 0.70
11 22 5 3 31 2004 0.63
12 24 5 6 76 13873 0.73

The second approach, described in Section 4.3 uses the bilinear structure of
hQMLE instances derived from MCE instances to have an improved algorithm
for building the sample sets and a more precise predicate that results in fewer

Springer Nature 2021 LATEX template

32 Hardness estimates of the Code Equivalence Problem in the Rank Metric

queries to the inhQMLE solver. The consequence of these two improvements to
the runtime can be observed in Table 2 where we show experimental results of
Algorithm 2 using the non-zeros subsets. Recall that, this approach can be used
only when there exist at least two roots of F and P. Otherwise, the sampled
sets contain only the trivial root and the instance is solved using Algorithm 1.
Table 2 shows results of the case when the sets are non-trivial and the prob-
ability of this case for the given parameters is shown in the last column. For
efficiency, we take the minimal subset with a common dimension of the kernel
of Fb, and when looking for collisions, we are careful to skip pairs (ab,a′b′)
where dim ker Fb = dim ker Pb′ but dim kerD(a,b)F 6= dim kerD(a′,b′)P. In
these experiments, q = 3 and all results are an average of 50 runs.

Table 2: Experimental results on solving the MCE problem using the non-
zeros-subsets variant of Algorithm 2.

m = n k Sample set size
Runtime (s) Runtime (s) % instances
SampleZeros inhQMLE solver with two roots

8
15 10.4 0.56 175.34 24
14 35.56 0.60 236.12 68

9
17 12.00 1.74 396.04 22
16 37.97 1.72 1020.25 70

10
19 25.6 5.13 2822.32 14
18 36.72 5.05 1809.09 82

Our experiments confirm that Algorithm 2 outperforms Algorithm 1 for
solving MCE instances with non-trivial roots.

Acknowledgements.

The authors thank Charles Bouillaguet for providing the implementation
resulting from [30].

References

[1] Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Poly-
nomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer,
U.M. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 1070,
pp. 33–48. Springer, Berlin, Heidelberg (1996)

[2] Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signa-
ture Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS.
Lecture Notes in Computer Science, vol. 3531, pp. 164–175 (2005)

[3] McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory.
Jet Propulsion Laboratory, California Institute of Technology, 114–116
(1978). DSN Progress Report 44

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 33

[4] Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding
theory. Probl. Control Inf. Theory 15, 159–166 (1986)

[5] Beullens, W., Preneel, B.: Field Lifting for Smaller UOV Public Keys.
In: Patra, A., Smart, N.P. (eds.) Progress in Cryptology – INDOCRYPT
2017, pp. 227–246. Springer, Cham (2017)

[6] Casanova, A., Faugère, J.-C., Macario-Rat, G., Patarin, J., Perret, L.,
Ryckeghem, J.: GeMSS: A Great Multivariate Short Signature. (2017)

[7] Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: A new family of
trapdoor one-way preimage sampleable functions based on codes. In: Gal-
braith, S.D., Moriai, S. (eds.) Advances in Cryptology – ASIACRYPT
2019, pp. 21–51. Springer, Cham (2019)

[8] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to
identification and signature problems. In: Proceedings on Advances in
cryptology—CRYPTO ’86, pp. 186–194. Springer, London, UK (1987)

[9] Girault, M.: A (Non-Practical) Three-Pass Identification Protocol Us-
ing Coding Theory. In: Proceedings of the International Conference on
Cryptology on Advances in Cryptology. AUSCRYPT ’90, pp. 265–272.
Springer, Berlin, Heidelberg (1990)

[10] De Feo, L., Galbraith, S.D.: SeaSign: Compact Isogeny Signatures from
Class Group Actions. In: Ishai, Y., Rijmen, V. (eds.) Advances in
Cryptology – EUROCRYPT 2019, pp. 759–789. Springer, Cham (2019)

[11] De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign:
Compact Post-quantum Signatures from Quaternions and Isogenies. In:
Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2020,
pp. 64–93. Springer, Cham (2020)

[12] Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is More: Code-
Based Signatures Without Syndromes. In: Nitaj, A., Youssef, A. (eds.)
Progress in Cryptology - AFRICACRYPT 2020, pp. 45–65. Springer,
Cham (2020)

[13] Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: LESS-FM: fine-
tuning signatures from the code equivalence problem. In: Post-Quantum
Cryptography: 12th International Workshop, PQCrypto 2021, Daejeon,
South Korea, July 20–22, 2021, Proceedings 12, pp. 23–43 (2021).
Springer

[14] Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.:
Practical post-quantum signature schemes from isomorphism problems
of trilinear forms. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in

Springer Nature 2021 LATEX template

34 Hardness estimates of the Code Equivalence Problem in the Rank Metric

Cryptology – EUROCRYPT 2022, pp. 582–612. Springer, Cham (2022)

[15] Ducas, L., van Woerden, W.: On the lattice isomorphism problem,
quadratic forms, remarkable lattices, and cryptography. In: Dunkelman,
O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022,
pp. 643–673. Springer, Cham (2022)

[16] National Institute for Standards and Technology: NIST Workshop on Cy-
bersecurity in a Post-Quantum World. http://www.nist.gov/itl/csd/ct/
post-quantum-crypto-workshop-2015.cfm Accessed 01.10.2014

[17] Leon, J.: Computing automorphism groups of error-correcting codes.
IEEE Transactions on Information Theory 28(3), 496–511 (1982)

[18] Beullens, W.: Not enough LESS: An improved algorithm for solving code
equivalence problems over Fq. In: International Conference on Selected
Areas in Cryptography, pp. 387–403 (2020). Springer

[19] Sendrier, N.: Finding the permutation between equivalent linear codes:
The support splitting algorithm. IEEE Trans. Inf. Theory 46, 1193–1203
(2000)

[20] Aragon, N., Blazy, O., Deneuville, J.-C., Gaborit, P., Hauteville,
A., Ruatta, O., Tillich, J.-P., Zemor, G., Melchor, C.A., Bet-
taieb, S., Bidoux, L., Bardet, M., Otmani, A.: ROLLO (Rank-
Ouroboros, LAKE and LOCKER) (2019). https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions

[21] Melchor, C.A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.-C., Gaborit, P., Zemor, G., Couvreur, A., Hauteville, A.: RQC
(2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

[22] Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low
Rank Parity Check Codes: New Decoding Algorithms and Applications to
Cryptography. IEEE Transactions on Information Theory 65, 7697–7717
(2019)

[23] Bellini, E., Caullery, F., Gaborit, P., Manzano, M., Mateu, V.: Improved
Veron Identification and Signature Schemes in the Rank Metric. 2019
IEEE International Symposium on Information Theory (ISIT), 1872–1876
(2019)

[24] Berger, T.P.: Isometries for rank distance and permutation group of
Gabidulin codes. IEEE Trans. Inf. Theory 49, 3016–3019 (2003)

[25] Couvreur, A., Debris-Alazard, T., Gaborit, P.: On the hardness of code

http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://csrc.nist.gov/projects/post-quantum-cryptography/ round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/ round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/ round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/ round-2-submissions

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 35

equivalence problems in rank metric (2021)

[26] Grochow, J.A., Qiao, Y.: Isomorphism problems for tensors, groups, and
cubic forms: completeness and reductions. arXiv (2019). https://doi.org/
10.48550/ARXIV.1907.00309. https://arxiv.org/abs/1907.00309

[27] Futorny, V., Grochow, J.A., Sergeichuk, V.V.: Wildness for tensors. Linear
Algebra and its Applications 566, 212–244 (2019). https://doi.org/10.
1016/j.laa.2018.12.022

[28] Belitskii, G.R., Futorny, V., Muzychuk, M., Sergeichuk, V.V.: Congruence
of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra
and its Applications 609, 317–331 (2021). https://doi.org/10.1016/j.laa.
2020.09.018

[29] Bouillaguet, C., Fouque, P., Véber, A.: Graph-theoretic algorithms for the
”isomorphism of polynomials” problem. In: Johansson, T., Nguyen, P.Q.
(eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Lecture Notes
in Computer Science, vol. 7881, pp. 211–227. Springer, ??? (2013).
https://doi.org/10.1007/978-3-642-38348-9 13. https://doi.org/10.1007/
978-3-642-38348-9 13

[30] Bouillaguet, C.: Algorithms for some hard problems and cryptographic
attacks against specific cryptographic primitives. (études d’hypothèses al-
gorithmiques et attaques de primitives cryptographiques). PhD thesis,
Paris Diderot University, France (2011). https://tel.archives-ouvertes.fr/
tel-03630843

[31] Patarin, J., Goubin, L., Courtois, N.: Improved Algorithms for Isomor-
phisms of Polynomials. In: EUROCRYPT ’98. Lecture Notes in Computer
Science, vol. 1403, pp. 184–200. Springer, Berlin, Heidelberg (1998)

[32] Gorla, E.: Rank-metric codes. CoRR abs/1902.02650 (2019) https://
arxiv.org/abs/1902.02650

[33] Hua, L.-K.: A theorem on matrices over a sfield and its applications. In:
Bulletin of the American Mathematical Society, vol. 55, pp. 1046–1046
(1949)

[34] Wan, Z.-X.: A proof of the automorphisms of linear groups over a sfield
of characteristic 2. Sci. Sinica 11, 1183–1194 (1962)

[35] Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: On the Computa-
tional Hardness of the Code Equivalence Problem in Cryptography. Cryp-
tology ePrint Archive, Paper 2022/967. https://eprint.iacr.org/2022/967

https://doi.org/10.48550/ARXIV.1907.00309
https://doi.org/10.48550/ARXIV.1907.00309
https://arxiv.org/abs/1907.00309
https://doi.org/10.1016/j.laa.2018.12.022
https://doi.org/10.1016/j.laa.2018.12.022
https://doi.org/10.1016/j.laa.2020.09.018
https://doi.org/10.1016/j.laa.2020.09.018
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-642-38348-9_13
https://tel.archives-ouvertes.fr/tel-03630843
https://tel.archives-ouvertes.fr/tel-03630843
{1902.02650}
{1902.02650}
https://eprint.iacr.org/2022/967

Springer Nature 2021 LATEX template

36 Hardness estimates of the Code Equivalence Problem in the Rank Metric

(2022). https://eprint.iacr.org/2022/967

[36] Dubois, V., Granboulan, L., Stern, J.: An efficient provable distinguisher
for HFE. In: International Colloquium on Automata, Languages, and
Programming, pp. 156–167 (2006). Springer

[37] Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for
Multivariate Schemes. In: Cramer, R. (ed.) Advances in Cryptology –
EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp.
341–353. Springer, Berlin, Heidelberg (2005)

[38] Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorith-
mic and Theoretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT ’06.
Lecture Notes in Computer Science, vol. 4004, pp. 30–47. Springer, ???
(2006)

[39] Perret, L.: A Fast Cryptanalysis of the Isomorphism of Polynomials with
One Secret Problem. In: Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceed-
ings. Lecture Notes in Computer Science, vol. 3494, pp. 354–370. Springer,
Berlin, Heidelberg (2005)

[40] Bouillaguet, C., Faugère, J.-C., Fouque, P.A., Perret, L.: Practical Crypt-
analysis of the Identification Scheme Based on the Isomorphism of
Polynomial With One Secret Problem. In: Public Key Cryptography –
PKC 2011. Lecture Notes in Computer Science, vol. 6571, pp. 441–458.
Springer, Berlin, Heidelberg (2011)

[41] Theorie der quadratischen formen in beliebigen korpern. J. Reine Angew.
Math. 176, 31–44 (1937)

[42] Untersuchungen über quadratische formen in korpern der charakteristik
2, i. J. Reine Angew. Math. 183, 148–167 (1941)

[43] Sergĕıchuk, V.V.: CLASSIFICATION PROBLEMS FOR SYS-
TEMS OF FORMS AND LINEAR MAPPINGS. Mathematics of
the USSR-Izvestiya 31(3), 481–501 (1988). https://doi.org/10.1070/
im1988v031n03abeh001086

[44] Faugère, J.-C., Otmani, A., Perret, L., Portzamparc, F., Tillich, J.-
P.: Structural cryptanalysis of mceliece schemes with compact keys.
Des. Codes Cryptography 79(1), 87–112 (2016). https://doi.org/10.1007/
s10623-015-0036-z

[45] Faugère, J., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.: Folding
alternant and goppa codes with non-trivial automorphism groups. IEEE

https://eprint.iacr.org/2022/967
https://doi.org/10.1070/im1988v031n03abeh001086
https://doi.org/10.1070/im1988v031n03abeh001086
https://doi.org/10.1007/s10623-015-0036-z
https://doi.org/10.1007/s10623-015-0036-z

Springer Nature 2021 LATEX template

Hardness estimates of the Code Equivalence Problem in the Rank Metric 37

Trans. Inf. Theory 62(1), 184–198 (2016). https://doi.org/10.1109/TIT.
2015.2493539

[46] Peters, C.: Information-set decoding for linear codes over Fq. In: Inter-
national Workshop on Post-Quantum Cryptography, pp. 81–94 (2010).
Springer

[47] Nóbrega, R.W., Uchôa-Filho, B.F.: Multishot codes for network coding
using rank-metric codes. In: 2010 Third IEEE International Workshop on
Wireless Network Coding, pp. 1–6 (2010). IEEE

[48] Alfarano, G.N., Lobillo, F.J., Neri, A., Wachter-Zeh, A.: Sum-rank prod-
uct codes and bounds on the minimum distance. Finite Fields and Their
Applications 80, 102013 (2022)

[49] Neri, A.: Twisted linearized Reed-Solomon codes: A skew polynomial
framework. arXiv preprint arXiv:2105.10451 (2021)

[50] Vaudenay, S.: A Classical Introduction to Cryptography: Applications for
Communications Security. Springer, ??? (2005)

[51] Landsberg, G.: Ueber eine Anzahlbestimmung und eine damit zusam-
menhängende Reihe. (1893)

[52] Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System.
I. The User Language. J. Symbolic Comput. 24(3-4), 235–265 (1997).
Computational algebra and number theory (London, 1993)

https://doi.org/10.1109/TIT.2015.2493539
https://doi.org/10.1109/TIT.2015.2493539

	Introduction
	Our contributions

	Preliminaries
	The Matrix Code Equivalence problem.
	Systems of quadratic polynomials.
	Differential of quadratic functions.

	Isomorphism of polynomials.

	How hard is MCE?
	Relations to equivalence problems for qaudratic polynomials
	Relations to equivalence problems for linear codes
	Hamming code equivalence.
	Sum-rank code equivalence.

	Solving Matrix Code Equivalence
	Solving MCE as QMLE
	First algorithm for solving MCE
	Second algorithm

	Filling the gaps in the complexity analysis
	Algorithms for inhQMLE
	The Gröbner bases attack
	The matrix-pencil attack

	The complexity of inhBMLE
	The case k n+m
	The case n+m < k < 2(n+m)
	The case k 2(n+m)

	Experimental results
	Acknowledgements.

