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Abstract. Homomorphic encryption (HE) is being widely used for privacy-
preserving computation. Since HE schemes only support polynomial op-
erations, it is prevalent to use polynomial approximations of non-polynomial
functions. We cannot monitor the intermediate values during the eval-
uation; as a consequence, we should utilize polynomial approximations
with sufficiently large approximation intervals to prevent the failure of
the evaluation. However, the large approximation interval potentially ac-
companies computational overhead, and it is a serious bottleneck of HE
application on real data.

In this work, we introduce domain extension polynomials (DEPs) that
extend the domain interval of functions by a factor of k while preserving
the feature of the original function on its original domain interval. By
repeatedly iterating the domain-extension process with DEPs, we can
extend with O(log K) multiplications the domain of given function by a
factor of K while the feature of the original function is preserved on its
original domain interval.

By using DEPs, we can efficiently evaluate in encrypted state a function
that converges at infinities. To uniformly approximate the function on
[ R, R], our method exploits O(log R) multiplications and O(1) mem-
ory. This is more efficient than the current best approach, the minimax
approximation and Paterson-Stockmeyer algorithm, which uses O(\/E)
multiplications and O(\/ﬁ) memory for the evaluation. As another appli-
cation of DEPs, we also suggest a method to manage the risky outliers
from a wide interval [—R, R] by using O(log R) additional multiplica-
tions.

As a real-world application, we exploit our uniform approximation of the
logistic function on wide intervals to logistic regression. We trained the
model on large public datasets in encrypted state using the polynomial
approximation of the logistic function on [—7683, 7683].

1 Introduction

There have been many attempts for privacy-preserving delegation of computa-
tion these days. One of the most popular solutions for the privacy-preserving
computation is homomorphic encryption (HE) that supports several operations



between ciphertexts without any decryption process. The privacy-preserving del-
egation of machine learning (ML) algorithms based on HE, in particular, has gar-
nered much attention since many ML algorithms are being utilized for personal
data, and privacy-related issues are constantly being raised.

However, HE serves only a limited types of operations: addition and multipli-
cation. It has been a challenging problem to compute a general circuit containing
sophisticated non-polynomial functions based on HE. The most prevalent solu-
tion for this is to replace non-polynomial functions by polynomials. An evaluator
of HE first selects the domain of each real-valued function, and replaces it by its
polynomial approximation on the selected domain interval. This enables us to
approximately compute any given circuit in encrypted states, and now we focus
on a specific problem that is to find an appropriate polynomial approximation
for HE.

Meanwhile, a computation over encrypted data has several different points
compared to that n unencrypted state. First, the evaluator of HE cannot observe
the input values, and moreover, the intermediate values during the evaluation
should not be revealed. As a consequence, there are only a few clues about the
domain interval of each inner function. Also, all intermediate values during the
evaluation should not blow up. HE restricts us from monitoring the intermediate
values. Once a single intermediate value gets out of the plaintext space of HE, it
has a potential to ruin the ciphertext and damage all evaluation results. For these
reasons, we should find polynomial approximations on large domain intervals for
the successful evaluation based on HE.

1.1 Fundamental Problem

The polynomial approximation accompanies some errors compared to the orig-
inal function, and the error determines the quality of computation. To use a
polynomial approximation for the privacy-preserving computation based on HE,
we should consider both (a) the error induced by the polynomial approximation
and (b) the computational cost for the evaluation of the polynomial approxima-
tion function. Ultimately, the approximate computation with a small error and
a small computational cost is most desirable. For the ease of discussion, in this
paper, we aim to minimize the computational cost to (approximately) evaluate
a real-valued function in encrypted state under a fixed maximum error.

For the computational cost, we take the number of multiplications into ac-
count as a top priority. This is because in HE computation, the multiplication
between two ciphertexts is much heavier than the other homomorphic operations
such as addition, subtraction, and constant multiplication. We stress out that
the evaluation of a polynomial with a higher degree does not necessarily require
more number of multiplications.® Our goal here is to minimize the computational
costs during the approximate computation; rather than to minimize the degree
of a polynomial approximation.

3 For instance, we can compute a polynomial z® = ((2?)?)? with 3 multiplications
while we should use at least 4 multiplications to compute z”.



To put it all together, the substantial question is how to evaluate a non-
polynomial real-valued function over homomorphically encrypted data with a
less number of multiplications. However, as we point out, HE evaluation requires
a sufficiently large domain interval to guarantee the success of the evaluation.
While there have been some general solutions for this question, they accompany
too much computational overhead as we select the domain intervals large enough.
In this paper, we focus on the following question:

On a large domain interval, how to approximately evaluate a non-polynomial
real-valued function over homomorphically encrypted data with a less number of
multiplications?

We provide a partial solution to the above question for the large domain
interval. We start with the logistic function that is widely being used for ML
algorithms. While the input domain should be sufficiently large for many appli-
cations of the logistic function, the HE evaluation of the logistic function on a
wide approximation interval with a small maximum error entails a considerable
computational cost. With the current best approach, such as the combination
of minimax approximation and Paterson-Stockmeyer algorithm, we should use
2(v/R) multiplications for the approximate evaluation with fixed maximum error
on the domain interval [— R, R]. We propose a better solution, domain-extension
methodology, which enables to use O(log R) multiplications to approximately
evaluate the logistic function on domain interval [—R, R] with a fixed maximum
error in encrypted states.

More generally, our domain-extension methodology serves an efficient privacy-
preserving evaluation of functions that converge at infinities (i.e. the limit of
o(x) exists as © — +00). By using our methodology, we can approximately
evaluate with a fixed maximum error those functions on [~ R, R] with O(v/R)
multiplications in encrypted states. In the best of our knowledge, this is compu-
tationally better than the combination of minimax approximation and Paterson-
Stockmeyer algorithm, the current best approach, which use .Q(\/E) multiplica-
tions.

In addition, our methodology can be utilized for the management of outliers
from the outside of the approximation interval during the privacy-preserving
computation. Even a few outlying data can destroy the overall result because
the evaluation value of polynomials can easily escape the plaintext space of HE at
outside a fixed domain interval. However, selecting a huge approximation interval
to contain all possible outliers accompanies too much computational overheads
and makes the computation impractical. By exploiting our methodology, we can
accommodate the rare outliers from a sufficiently big interval [—R, R] by using
O(log R) additional multiplications.

1.2 Owur Contributions

Our contributions can be formalized as follows.



e Domain-extension methodology We propose domain-extension method-
ology, which efficiently extend the valid domain interval of a polynomial for
HE. We first suggest the concept of domain extension functions (DEFs) and
domain extension polynomials (DEPs), which extend the valid domain in-
terval by a factor of L, the extension ratio (i.e., extend the domain interval
from [—R, R] to [-LR, LR]). In contrast to a simple scaling, DEFs and DEPs
preserve the feature of the original function on its original domain interval.
Domain-extension methodology is to use DEFs and DEPs repeatedly. After
n iterations of domain-extension process using DEFs and DEPs, we can ex-
tend the domain interval by a factor of L™ while preserving the feature of the
original function on its original domain interval.As a consequence, once we
are given a function on a small interval [—r, 7], we can utilize it on a wider
domain interval [—R, R] by using O(log R) additional operations; while the
extended function behaves similarly on the original domain interval [—r, r].

e Uniform approximation on wide intervals. By using domain-extension

methodology, we suggest an efficient way to evaluate in encrypted state
a function f(-) that converges at infinities. Our method provides a uni-
form polynomial approzimation of f(-) on [—R, R] that can be evaluated by
O(log R) multiplications and O(1) memory in encrypted state.
In terms of computational complexity, this is much better than the current
best approach, minimax approximation and Paterson-Stockmeyer algorithm.
We observe that the degree of minimax approximation on [—R, R] is 2(R)
in cases of functions that converges at infinities. As a result, during the com-
putation in encrypted states, it accompanies a heavy computational over-
head, £2(v/R) multiplications and £2(v/R) space cost, and it is impractical to
use it for sufficiently big R. In contrast, our method can be evaluated with
O(log R) operations, and is more practical. We also implement and compare
both methods in Section 5.1.

e Accommodation of outliers from wide intervals. While using HE for
numerous data, a single unexpected datum has a potential to damage the
overall result. This is due to the fact that an evaluation of a polynomial at the
out of a fixed interval can easily gets out of the plaintext space of HE. This
immediately contaminate the ciphertext, and ruin the overall evaluation re-
sults. However, it seems to be impractical to use polynomial approximations
on huge approximation intervals that are capable to contain all outliers.
On the other hand, by using domain-extension method, we can efficiently
accommodate the rare outliers from wide intervals. Our method accommo-
dates the outliers from a wide interval [—R, R] by using O(log R) additional
operations, and prevent the rare outliers from ruining the entire process.

e Logistic regression over large datasets in encrypted state. We ap-
ply our methodology to the logistic function, and yield an efficient way to
evaluate the logistic function on wide domain intervals in encrypted state.
By using it, we implement the privacy-preserving logistic regression for real
heavy datasets based on HE. There have been several similar works to this,



but in the best of our knowledge, they are unlikely to be applied to heavy
datasets. All previous works heuristically selected the domain interval of the
logistic function, and we observed that those short intervals are not suffi-
cient for many of heavy public datasets. Moreover, previous works select the
domain intervals by monitoring the process in unencrypted state; however,
this monitoring is undesirable in HE applications since it may leak some
pieces of information about the data. In this work, on the other hand, we
approximate the logistic function on sufficiently large domain intervals by
using DEPs. This enables us to successfully perform the logistic regression
on heavy datasets with various hyper-parameters in encrypted states.

1.3 Related Work

Machine Learning over Encrypted Data For the privacy-preserving delega-
tion of computation, many works have applied homomorphic encryption to ma-
chine learning algorithms. The key of HE-based solutions for privacy-preserving
ML algorithms are appropriate replacement of real-valued functions by their
polynomial approximations. Since logistic regression has a simple structure, there
have been several works that leverage HE for the privacy-preserving logistic re-
gression [1-4]. Kim et al. proposed a HE based logistic regression [2]. In order
to evaluate the logistic functions based on HE, they replace the logistic func-
tion by the least square fitting polynomial approximation on [—8, 8]. Chen et al.
implement HE based logistic regression by using the minimax polynomial ap-
proximation on [—5, 5] [3]. To make input values of the logistic function belong to
[—5, 5], they perform preprocessing (average pooling) to the data. Han et al. use
the least square fitting polynomial approximation on [—8,8], and also perform
preprocessing (average pooling) for the experiment on MNIST dataset [4]. In the
best of our knowledge, all previous works heuristically select the input range of
the logistic function. In some cases, preprocessing is needed to force the inputs of
the logistic function to belong to the selected interval. This selection of narrow
approximation interval makes it difficult to perform the logistic regression on
large public datasets such as Swarm Behavior dataset. In this work, we suggest
a practical solution to approximate the logistic function on substantially wide
intervals, and by using it, we implement the logistic regression in encrypted state
for large datasets.

There also have been many works that utilized HE to ML algorithms other
than the logistic regression. CryptoNet modified CNN models to be HE friendly
by replacing ReLLU function and max pooling by square function and sum func-
tion respectively [5]. Hesamifard et al. suggested a better polynomial replacement
of ReLU function and analysed its efficiency [6].

Computation with less multiplications When we use HE, multiplication
is much heavier than the other operations such as addition and scalar multipli-
cation. Thus, the evaluation of a polynomial by using a less number of multi-
plications is important to mitigate the computational overhead accompanied by
HE.



Paterson-Stockmeyer algorithm is an algorithm to evaluate a polynomial
of degree d by using O(v/d)multiplications [7]. Chen et al. adopted Paterson-
Stockmeyer algorithm for the HE computations, and they performed Paterson-
Stockmeyer algorithm based on the Chebyshev basis to make the coefficients
more consistent [8]. Chen et al.’s algorithm is being widely used for evaluation
of high degree polynomials based on HE [9, 10].

On the other hand, while Paterson-Stockmeyer algorithm provides good per-
formances on general polynomials, there exists some polynomials that can be
evaluated with less number of multiplications compared to Paterson-Stockmeyer
algorithm. For example, 22" can be evaluated with only n multiplications by iter-
ative squaring, but Paterson-Stockmeyer algorithm uses about 2"/2+1 multipli-
cations to evaluate it. Finding an approximate polynomial that can be evaluated
with less number of multiplications can reduce the computational cost. Cheon
et al. [11] propose an iterative method to approximately evaluate the sign func-
tion on [—1, 1], and they argue that their method requires relatively less number
of multiplications. In the same manner, we suggest an iterative method for the
polynomial approximation on a wide domain interval, which can be evaluated
with less number of multiplications.

2 Preliminaries

2.1 Notations

In this paper, Cliy, is the class of continuous functions that converges at infinities
(i.e., Cum = {f(*)] f(*) is continuous, and limits of f(x) exists as © — +oo}.
When we say multiplication, it means a non-scalar multiplication unless we in-
dicate. A maximum error between two function f(-) and g(-) on an interval I is
lf = glloo,s :=sup{|f(z) — g(x)| : x € I}. We omit I unless it is necessary.

For the homomorphic encryption, we use the ring R = Z[X]/(X" +1) where
N is a power-of-two integer, and R, denotes R/¢R.

2.2 Homomorphic Encryption and CKKS scheme

Homomorphic Encryptoin (HE) is a cryptographic scheme that allows opera-
tions in encrypted states without any decryption process. HE is widely used
for fully privacy-preserving delegation of computation including machine learn-
ing circuits such as logistic regression. Among various HE schemes, we adopted
CKKS scheme presented by Cheon at el [12,13], which support arithmetic op-
eration of approximate numbers . CKKS scheme has a strong advantage on
application to machine learning algorithms since its plaintexts are real numbers.
As a matter of fact, CKKS scheme has been adopted to many implementations
of privacy-preserving machine learning algorithms based on HE [4, 14, 15].

Let N be a power-of-two integer. There exists a field isomorphism 7 : R[X] /(XN +

1) — CN/2 which CKKS scheme uses for encoding and decoding of messages.



CKKS scheme encrypts a (encoded) plaintext m € CM/? into a ciphertext
ct € Rg. For the decryption process, a secret key sk is needed; formally, the
decryption process is

Decek(ct) = m + e,

where e is a small error vector. We refer [12] for the detail of CKKS scheme. The
main operations of CKKS scheme and their properties are followings.

e Add(cty, ctp): For ciphertexts ct; and ctp of m; and mj, output a ciphertext
ct of my + mo.

e Mult(cty, ctp, evk): For ciphertexts ct; and cty of my and my, output a cipher-
text ct of my ® my, where ® indicates the component-wise multiplication
between messages in CV/2.

e Bootstrap(ct, evk): For ciphertexts ct of m, output a ciphertext ct’ of m with
a fresh noise level.

Each multiplication between ciphertexts increases the noise in ciphertexts,
so it is necessary to refresh the noise level by using Bootstrap after each com-
putation of a fixed number of multiplicative depth. Also, the bootstrapping and
the multiplication between ciphertexts are significantly slower than other op-
erations. Thereby, the number of multiplications and the multiplicative depth
mostly determines the computational costs of circuits over CKKS ciphertexts.

To use CKKS scheme, we should set the parameters N and ¢y, where N is
the dimension of the ring R4, and gy, is the initial modulus size.

2.3 Minimax Polynomial Approximation and Paterson-Stockmeyer
Algorithm

For a given continuous function f(z), an interval [a,b] and a positive integer d,
a minimaz polynomial approxzimation p(x) is a polynomial of degree at most d
such that minimize the mazimum error, ||f — pllso,[a,5)- Many algorithms such
as Remez algorithm and Barycentric-Remez algorithm have been suggested for
finding the minimax polynomial approximation [16, 17].

Minimax approximation guarantees a good quality of approximation at each
point of the approximation interval. Hence, it is plausible to be adopted to the
polynomial approximation for HE since the inputs of each function are hidden
to the HE evaluator.

The evaluation of a high degree polynomial requires lots of multiplication and
addition operations. There are several evaluation algorithms such as Hornor’s
method [18] and Paterson-Stockmeyer algorithm [19] to decrease the computa-
tional costs of the evaluation. Hornor’s method requires O(d) multiplications,
and Paterson-Stockmeyer algorithm requires O(v/d) multiplications. Paterson-
Stockmeyer algorithm is often being adopted when multiplication is substantially
more expensive than addition operation; such as circuits over matrix and circuits
over homomorphically encrypted data.

Chen et al. [8] suggest Paterson-Stockmeyer algorithm with Chebyshev ba-
sis. They pointed out that in the case of many known polynomial approximation



techniques, the coefficient with respect to the Chebyshev basis is more consis-
tent compared to that with respect to the power basis. The modified Paterson-
Stockmeyer algorithm is currently widely being used for the evaluation of high
degree polynomials based on HE.

2.4 Logistic Regression

Logistic regression algorithm is a well-known ML algorithm that solves binary
classification problems. Logistic regression model consists of a weight w and
a bias b. As in [2,20], for the ease of discussion, we use each datum with an
additional feature with the value of 1 for the bias term. To be more detailed,
we represent each datum z in the form of z = (x,1), and the logistic regression
model in the form of W = (w”,b)”. Note that w”z +b = W72 holds.

For the inference of logistic regression, a model W classifies each datum x
into a class of either one of 1 or —1 by addressing the value of the following.

Pr(the label of x is 1) =o(W'2)

where o(t) = 1/(1 + e~?) is the logistic function.
For the training of logistic regression, we consider a cost function

JW) = % Z log(1 + exp(—y - W'2))

(2,9)

where each z is a datum with the class of y, and n is the number of data.
By using gradient descent method to this cost function, the training process
seeks the appropriate weights and bias that minimize the cost function for given
training dataset. More precisely, for a given learning rate a, we update the weight
and bias as follows.

W W —aVJ(W)=W + % 3 o(—y-WTz) - (y2)
(z9)

3 Domain-extension Methodology

HE supports only polynomial operations: addition and multiplication. Conse-
quently, when we compute a circuit over encrypted data based on HE, we need
to replace the non-polynomials by their polynomial approximations on each of
its estimated domain interval, the approximation interval. Once the intermediate
value during the computation gets out of the plaintext space of HE, the out-
lier immediately ruins the ciphertext and contaminates the entire computation.
To avoid this, we need to select the approximation interval of each polynomial
approximation large enough. Unfortunately, a larger approximation interval re-
quires a bigger degree of approximate polynomial, and result in a considerable
computational overhead.



Fig.1: An example of domain-extension process by using a DEF.

We can efficiently evaluate low-degree polynomials, but in general, a low-
degree polynomial is useful only on relatively small domain intervals and behaves
unexpectedly on the out of the small interval. In this work, we aim to utilize a
low-degree polynomial to large intervals by additionally attaching a few number
of operations. We call this process by domain-extension process. By the domain-
extension process, we desire to use a low-degree polynomial similarly on its
original (small) domain interval; meanwhile, on a larger interval, we maintain
the size of function values, and prevent it from behaving unexpectedly.

For the ease of discussion, during domain-extension process, we distinguish
two domain intervals of given polynomial, the interval type I and II. We denote
the interval type I as the interval that the function after the domain-extension
process behaves similar to the original polynomial. On the other hand, we aim
to extend the interval type Il during the domain-extension process; that is, the
maximum norm (i.e., l-norm) of the function after the process on the extended
interval type II is bounded by that of the original function on the original interval
type II. In short, we regard interval type I as where the most of inputs come
from, and interval type II, on the other hand, is the interval where we want to
prevent the function value from behaving unexpectedly.

3.1 Motivation

Domain Extension Function.
We first introduce domain extension functions (DEFs). For a given L > 1,

we define a function D : [-L,L] — [-1,1] by D(z) = 3 (|Jz + 1| — |z — 1]). We
will call this function a DEF with extension ratio L.

Now assume that we are given a function P(-) with the domain [—1, 1]. Then,
on [—L, L], the composition P o D(-) behaves as followings.

P(-1), if —L<z<-1
PoD(z)=4qP(x), if —1<ax<l1
), ifl<a<L



This means that interval type II of P o D is extended to [—L, L] while the
function values does not change on the interval type I, [—1,1].

Figure 1 illustrates the feature of DEF with extension factor 5, and how it
extends the small interval type II [—1,1] of a polynomial 42 — 3z to a wide
interval [—5, 5]. In particular, it extends interval type II by simply stretching the
endpoints, and it exactly preserve the features on interval type I.

Domain-extension Methodology. We can extend the size of the interval type
IT exponentially by using the argument above repeatedly. To be more precise,
let D(-) be a DEF with the extension factor L that extends interval type II
[-1,1] to [-L, L]. We may consider the scaled function D, (x) := L™D(xz/L")
as another DEF with extension ratio L, which extends the interval type II from
[-L™, L"] to [-L™*, L"), Applying D;(-) n times sequentially, we can extend
interval type II of f(-) from [—1,1] to [—L™, L™]. In other words, we extend the
size of interval type II by factor of R with O(log R) iterations. We also point out
that the function value on the original domain, [—1, 1], does not change.

We name this iterative strategy that extends the interval type II while pre-
serving the features of the target function on interval type I as domain-extension
methodology. Unfortunately, DEFs may not be directly used for privacy-preserving
computations based on HE since they cannot be evaluated by using only HE op-
erations. Thus, we define domain extension polynomials (DEPs) in Section 3.2,
and we explain the domain-extension methodology with DEPs in Section 3.3.

3.2 Domain Extension Polynomial

In order to utilize domain-extension methodology for the HE-based computa-
tions, we need polynomials that can take role of DEFs. The crux is to exploit
the approximate polynomials of DEFs. For the ease of discussion, we define a
narrow definition of DEPs as follows.

Definition 1 (Domain Extension Polynomials). For given constants Ry >
Ry > r > 0 and small error § > 0 , we define (6,7, Ry, Rs) as a class of
polynomials d(-) satisfying:

(a) |z —d(x)| < 6|z|® Vo € [—r,7]

(b) 0 <d( 1Vx € [—rr]

<
(c) d(r) < d(z) < Ry Vz € [r, Ro]

Fig.2: An example of DEP.
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Fig.3: An example of domain-extension process by using a DEP.

(d) —Ry < d(x) < d(—r) Vz € [-Ra, —7].
We call Ry/R; as the extension ratio of d(-). We also denote d(-) is a DEP
extending [—R1, R1] to [— Rz, Ra] preserving [—r,r] if d(-) € Z(6,r, R1, Ra).

Figure 2 visualizes a graph of an example of DEPs. Note that it approximates
a DEF. As a consequence, it may behave similar to a DEF. Figure 3 visualizes
how a DEP (approximately) extend the interval type II of a given polynomial.
We can observe that a DEP can extend the interval type II of a polynomial while
preserving (with minor changes) the function values on a narrow interval type
I. More precisely, we argue that a DEP d(-) € 2(0,r, R1, R2) can extend the
interval type II of a polynomial from [—Rj, Ry] to [—Ra, R2] while preserving
the polynomial on a narrow subinterval of type I, [—r, r]. We formally state this
in Theorem 1.

Theorem 1. Assume that we are given a DEP d(-) € 2(0,r, R1, Rs), and a
polynomial p(-) such that sup{|p’(x)|: —r <z <r} < M. Then,

10 dll -y ey < IPlloo [ ra )

HpodipHoo,[—r,r] S MTS(S’

and
sup{|(pod)'(z)| : —r < x <r} < M.

Proof. For each x € [—r,r|, there exist x, between d(x) and x such that
pod(@) —p(x)] = Ip(z)l|z — d(z)| < MdJa|* < Mr®s.

Also,
[(pod)(z)| = |p'(d(z))d (z)] < M.

Note that 0 < d’ <1 on [—r,7] insists that —r < —|z| < d(x) < |z| < r. O
To put it all together, a DEP behaves similar to a DEF. A DEP extends the

interval type II from [— Ry, R1] to [—Ra, Ra], while preserving the features of the
original function on a small subinterval of type I, [—r,7].



3.3 Domain-extension Methodology with DEPs

We now describe an iterative domain-extension by using a DEP.
We begin with the observation that if d(-) is a DEP that extends [—R1, R1] to
[— R, R2], then its scaled polynomial kd(-/k) is a DEP that extends [—kR1, kR1]
o [—k‘RQ, kRQ}

Theorem 2. Ifd(:) € 2(d,r, R1, R2) and L > 1, then
x 1)
D(z) == Ld(z) c .@(ﬁ,r, LRl,LRg).
Proof. For each x € [—r,r], let z = x/L € [—r,r]. Then,
e~ D(a)| = Lz — Ld(z)| < Lo = 25 af?
holds. Also,

D'(zx) = di (Ld( )) =d'(z) € [0,1].

For each @ € [r, LRy],let z =z /L € [-r/L,Ry). If z <7, d (§) < d(z) < (r) <
Ry holds since 0 < d’ < 1 on z € [0,r]. Meanwhile, if z > r, d (§) < d(r) <
d(z) < R; holds. Thus, in both cases,

D(r) = Ld (%) < Ld(z) = D(z) < LR,
holds, and similar result holds for x € [-LRg, —r].
Therefore, D(z) € @(%,r, LRl,LRg). O

By using Theorem 2, we can generate a sequence of DEPs, B, (x) = L"B(x/L"),
from a base DEP B(z) that extends [~ R, R] to [-LR, LR]. Each DEP B, () ex-
tends [-L"R, L"R] to [-L""1 R, L"*!R], so we can utilize them sequentially. To
apply DEPs B;(+) sequentially to a given polynomial that has interval type II
[ R, R], the interval type II would be extended to [—L"R, L™R] after n itera-
tions. Hence, we can extend the interval type II by a factor of L’ with O(log L')
iterations. Figure 4 visualizes how the sequence of DEPs extends interval type II
for each iteration. We shall call this methodology as domain-extension method-
ology. We argue that domain-extension methodology with DEPs (1) extends the
interval type II efficiently, and (2) preserves the feature of the original function
on interval type L.

Theorem 3 (Domain-extension methodology). Assume that B(-) € 2(d,r, R, LR)
and a polynomial p(-) on [—R, R] is given. For each non-negative integer n, let

By(z) = L”B(%).



Fig.4: The functions with extended valid intervals after 1,2 3 iterations of
domain-extension method to the red curve. Note that the feature of the original
function is preserved on [—0.5,0.5]

Then, after n sequential composition of B;(+) to p(-),

|poBoo-o B < Wpllo. -
oco,[-L"R,L"™ R)

and
p — p o [¢] o 7 76
B() e B’I’L—] H < M
H 007[—7"77‘] l 2 _

holds where M = sup{|p'(z)|: —r < a <r}.

Proof. By Theorem 2, B,(-) € @(%,r, L™R, L”HR). By using Theorem 1,
we conclude that

oo

n—1
<llp=poBoll+ > llpoBo---oBii —poBy---o By
i=1
=1 =1 L?
3 3 — A3
< Mr 5;L2i < Mr 5§L2i = Mr L2—15
Here, we denoted || - [|oc,(—r, as || - ||- O

Theorem 3 implies that if we use a DEP with small §, the output polyno-
mial of domain-extension methodology has only a small difference to the input
polynomial on [—r,r], and at the same time, the output polynomial is bounded
on wide interval, [-L"R, L"R].



To briefly sum up, we suggest DEPs and domain-extension methodology with
it that extends the interval type II of a polynomial efficiently while preserve the
feature on interval type I. Note that in order to extend a polynomial’s interval
type II by a factor of L, domain-extension methodology uses O(log L) operations.

Remark 1. Note that the domain-extension methodology is done by invoking
a simple base DEP repeatedly. Once we are given an appropriate base DEP
B(-) that can be stably evaluated based on HE (e.g., it does not considerably
magnify the errors accompanied by HE), its scaled function B,,(x) would be also
HE friendly. This makes domain-extension methodology stable and HE friendly.

27
1.5v/3 and 0 < r < 1.5 such that d(r) < d(L). Note that Theorem 2 implies that
we can decrease d as much as possible by scaling.

Ezample 1. d(x) = —%x:g + z is a DEP in 9( 4 r,l,L) for each 1.5 < L <

4 Privacy-preserving Computation Over Wide Input
Range

In this section, we explain how domain-extension methodology can be used for
privacy-preserving computations based on HE. We remark that in order to ex-
ploit HE, non-polynomial functions should be replaced by their polynomial ap-
proximations, and the approximation interval should be large enough to comprise
all input values. Since polynomial approximation on wide interval in general
accompanies high degree and considerable computational overheads, domain-
extension methodology may provide a more efficient solution to manage a wide
interval.

We suggest two applications of domain-extension methodology. First, we
show that for several functions (e.g., the logistic, arctan, tanh, capped ReLU,
and Gaussian function), domain-extension methodology extends not only inter-
val type II, but also interval type I. As a consequence, by using domain-extension
methodology, we can evaluate those functions based on HE on wide domain in-
tervals. We stress out that this is substantially more efficient than other known
polynomial approximation techniques.

Second, we explain that domain-extension methodology can effectively man-
age rare outlying data. Suppose there are some rare outliers while the most of
data are from a narrow domain interval. The known polynomial approximations
soar rapidly on the out of fixed approximation interval, so even a few outliers
have a potential to ruin the ciphertext. More precisely, once the evaluation value
does not belong to the plaintext space of HE, the ciphertext will be polluted,
and the entire results will be contaminated. Hence, it is inevitable to use the
polynomial approximation on significantly large interval, which is too costly to
evaluate in encrypted state. We suggest an efficient solution to address this issue
by using domain-extension methodology in Section 4.2.



4.1 Uniform Approximation using DEPs

We introduce an efficient polynomial approximation technique for functions that
converges at infinities (i.e., functions in Cjiy, ). We first remark that there are a
number of ML algorithms utilizes functions that converges at infinities; e.g., the
logistic function, tanh function, arctan, capped ReLU function [21], and Gaussian
function. To perform those ML algorithms in encrypted state, it is essential to
uniformly approximate by polynomials the functions in Cy,,. However, with
known approaches, the HE evaluation of such functions on sufficiently large
intervals accompanies a considerable overhead.

By utilizing our domain-extension method in Section 3, we suggest an efficient
polynomial approximation technique for functions in Cli,. The idea is simple:
find an approximation on a smaller interval and extend its approximation interval
by using domain-extension method. More precisely, we approximately compute
f() € Ciim on [—R, R] with O(log R) multiplications. Algorithm 1 describes how
to utilize domain-extension methodology for this scenario.

Input: f(-) € Ciim,x € [-L"r, L"r].
Output: Approximate value of f(z).
: P(+) := the minimax polynomial on [—r, 7]
: Take B(:) + 2(6,r, R, LR)
y=7
for i + nto 0 do
y=L'B (i)
end for
y = P(ry)
: return y

[ AN e

Algorithm 1: Approximate evaluation of Cy;,, functions on wide interval

As in Figure 4, our domain-extension methodology stretches the graph of
given polynomial by pulling on both ends while fixing the central part (interval
type I) of the original function. Thus, in the case of approximate polynomials
of f() € Clim, domain-extension method immediately extends not only interval
type II but also interval type I, so we yield an efficient polynomial approxima-
tion f(-) on the extended wide interval. More precisely, Theorem 4 states that
Algorithm 1 is correct unless r is too small.

Theorem 4. Assume that a function f(-) € Cim and a DEPd(-) € 2(d,r, R, LR)
such that

[f(@) = fy)l <e if z,y < —d(r)

[f(@) = fy)l <e if z,y = d(r).



for some €1 > 0. Suppose that p(-) on [—R, R] is a polynomial approxzimation of
f() that satisfies

|f(z) = p(z)| < e if v €[-R,R]

for some €3 > 0.

Then, pod(-) is a polynomial approximation of f(-) on [—~LR, LR] with maz-
imum error is bounded by max(Mr35, €1) + €.

Moreover, after the Algorithm 1, we get the polynomial approzimation on
[-L"™R, L™ R] with maximum error less than

Mr®L>
maz(“r5—-0,€1) + €2.

Proof. From Theorem 1, for each x € [—r, 7],

lpod(z) — f(z)| < [pod(z) —p(z)| + |p(z) — f(2)]
< Mr3d+ e < max(Mr35, €1) + €.

Meanwhile, for each z € [r, LR],

lpod(x) — f(x)] < |pod(x) = fod(x)|+|fodlx) - f(x)]

<1+ e <max(Mr35,e;) + eo.
And the same argument holds for z € [-LR. — r]. Thus,
Ipod(z) — f(z)| < max(Mr3s,e) + e

for all z € [-LR, LR)].
Finally, the similar argument with Theorem 3 proves that Algorithm 1 serves
the uniform approximation on [—L"R,L"R] with maximum error less than

Mr3L?
max (550, €1) + €. O

As as a consequence, we can approximately evaluate a function f(-) € Cjip, on

arbitrarily large interval [— R, R] within the error less than e = max( ”523}12 d,€1)+
€2 by using Algorithm 1 with O(log R) iterations of domain-extension processes.

Now we measure the costs of our algorithm for HE computation. We measure
the computational cost in terms of the number of multiplications during the
computation, because multiplication is much heavier than other operations in
HE. To approximately evaluate a function in f(-) € Ciy, on sufficiently large
interval [— R, R], we perform domain-extension process for O(log R) times; hence,
our method uses O(log R) multiplications in encrypted state. Also, we point out
that our method exploits O(1) memory since the domain-extension processes are
sequentially executed.

For the computation based on HE, the multiplicative depth is also an im-
portant factor since it determines the number of required bootstrapping during
the computation. In the term of multiplicative depth, our method consumes
O(log R) multiplicative depth since we invoke DEP for O(log R) times.



Remark 2. Our algorithm can be easily extended to a function whose difference
from a low degree polynomial converges to constants at infinities. Note that such
function can be represented as f(x)+p(z), where f(-) € Chin, and p(+) is a lower
degree polynomial.

Comparison to the previous approaches For the privacy-preserving evalu-
ation of non-polynomial functions on wide domain intervals, in the best of our
knowledge, there was no known polynomial approximation technique optimized
for HE; instead, all previous works used general polynomial approximation tech-
niques. For given maximum error, minimax approximation technique serves the
polynomial approximation with the smallest degree, so it has been prevalent
to use minimax approximation for HE. To evaluate the minimax approxima-
tion, Paterson-Stockmeyer algorithm is being widely exploited since it uses a
less number of multiplications. In the best of our knowledge, minimax approx-
imation with Paterson-Stockmeyer algorithm is currently most efficient way to
evaluate a function on wide interval based on HE.

However, as we illustrate in Figure 5 and prove in Theorem 5, to approxi-
mately compute f(-) € Ciim on [— R, R] in encrypted state with minimax approx-
imation, we should compute polynomial of degree £2(R). As a consequence, even
with Paterson-Stockmeyer algorithm, £2(v/R) multiplications, and it consumes
2(v/R) memory space.

Theorem 5. Assume that we are given a function f(-) € Cim wherelim, o f(x) #
lim,—, o f(z). For a sufficiently small € > 0, the minimaz polynomial approz-
imation on [—R, R] with mazimum error € has degree 2(R) as R — co. Em-
pirically, the degree is O(R) as R — oo even if f(x) # lim,—, oo f(z) unless

f=o.

Proof. Without loss of generality, assume that lim,_, o f(2) = 0 and lim,_,» f(z) =
1. There exists » > 0 such that |f(z) — 1| < ¢/2 if z > r, and |f(x)] < ¢/2 if

x < —r For sufficiently large R > r, let Pgr(:) be the minimax polynomial ap-
proximation of f(-) on R by maximum error less than €/2. Let d be the degree

of Pr. Then,

€ > sup{|Pg(z) — sgn(x)| : € [-R,—r] U [r, R]}

= sup{|Pg(rz) — sgn(x)| : z € [—E, -1 U1, g]}

where A = R/r. This comes from the arguments in [22].

This implies that \/d—l‘:; < E for some constant E(e). As a consequent, d > CR

for some constant C'(e), and d = £2(R). The graphs in Figure 5 shows that the
empirical result. O



Compared to the minimax approximation, our approach is more efficient in
terms of both computational and memory costs. To approximately evaluate on
[—R, R] based on HE, our method uses O(log R) multiplications while minimax
approximation uses Q(\/ﬁ) multiplications. In the term of multiplicative depth,
both our method and the minimax approximation consumes O(log R) multi-
plicative depth for the evaluation. Thus, our method is computationally more
efficient than minimax approximation to be evaluated based on HE. See Figure 6
for the experimental results.

Also, we point out that our method uses O(1) memory during the computa-
tion while the minimax approximation uses £2(v/R) memory for the Paterson-
Stockmeyer algorithm. Table 1 summarizes the costs to approximate a function
on [—R, R] for a fixed uniform error by using each of minimax approximation
and our algorithm.

One another point is that our method provides a stable evaluation even for
large domain intervals. This is due to the fact that during the domain-extension,
all we compute is DEPs of low degrees. On the other hand, when we exploit the
minimax approximation with Paterson-Stockmeyer algorithm, we should pre-
cisely evaluate the Chebyshev polynomial of degree v/d where d = 2(R). Conse-
queuntly, as R grows, the error accompanied by HE would make it challenging
to use Paterson-Stockmeyer algorithm.

Also, our algorithm is much simpler to implement. In contrast to our al-
gorithm, finding the minimax polynomial on significantly wide interval is non-
trivial in general.

# of mult|mult. depth|memory
Minimax| 2(VR) | 2(logR) |2(VR)
Ours |O(logR)| O(logR) | O(1)
Table 1: Cost of our algorithm and minimax approximation to approximate on
[-R, R] for a fixed uniform error.

Remark 3. Once regard Algorithm 1 as a polynomial, the degree of the polyno-
mial is O(R°) for some constant ¢. The computational efficiency of our algorithm
comes from the fact that our algorithm can be computed with a less number of
multiplications while there is no known method to efficiently compute the min-
imax polynomial of degree 2(R).

Further Optimizations We can further reduce the error accompanied by
the domain-extension methodology. Suppose we want to approximate a func-
tion f(-) € Cim on a large domain interval [—R, R]; by using DEP d(-) and a
polynomial approximation on the small interval [—r, r].



Instead of using the minimax approximation P(-) of f(-) on [—r,7], we can
reduce the error by using the minimax approximation Q(+) of fod=!(-) on [—7,7]
with the same degree of P(-); i.e., Q(x) ~ fod~!(z) where d~ ' od(z) ~ x. Note
that

If = Podllse—rm) > |fod™t —Podod e —p
~|[fod ™ = Pllo,j—rs
> fod™" = Qllos,(=r
~ ||f = Qodlls,r,R)-

To sum up, we can expect to yield a better uniform error than that in Theorem 5
by considering the minimax approximation of f o d=1().

4.2 Accommodation of Outliers

In this section, we utilize DEPs to accommodate rare outliers distributed on a
wide interval. A polynomial approximation has weakness to the outliers from
the outside of the approximation interval, because its value soars rapidly on the
inputs from the out of the approximation interval. This can be a serious issue
since it has a potential to damage the ciphertext and ruin the entire computation.
To take the training phase of neural networks in encrypted state as an example,
a single strange training datum can generate an input of an activation function
from out of the approximation interval, and its polynomial evaluation might be
out of the plaintext space of HE. As a result, a single outlying datum is able
to destroy the ciphertext, and ruin the entire training phase. Moreover, all the
process are being done in encrypted state, so we even cannot detect which datum
caused the failure.

To address this issue, there should be an clever way to manage such outly-
ing inputs from wide intervals. However, it is impractical to use a polynomial
approximation on huge approximation intervals to manage all such outliers. We
suggest, instead, to consider a polynomial approximation that is accurate on a
relatively small interval (interval type I) and bounded on a huge interval (interval
type II) at the same time. The rare outliers from the huge interval may not pro-
duce meaningful results; albeit, they do not damage neither the ciphertext nor
other parts of the algorithm. For example, in the case of neural network training
on encrypted data, we now can prevent abnormal data from contaminating the
entire process.

For the formal description, we consider %, a class of approximate functions
of f(-), as followings. In high level, this is a class of approximate polynomials
that is accurate on small interval [—r,r] by error €, and bounded by p on the
large interval [—R, R].

Definition 2. For a given function f(-) on [-R,R] and given R > p > r >0
with small ¢ > 0 , we define Z(f;€,7,p,R) to be a class of function of p(x)
satisfying:

(a) |p(z) — f(z)| < eVx€[-rr]



(b) Ip(z)| < p Vz € [-R, R].

F(f;e,r,p, R) is a class of functions that is accurately approximates f(-) on
[—r, r] and is bounded by p on [ R, R]. Thus, the HE evaluation on [—r, r] would
be valuable, and that on [—R, R] would be stable (i.e., each function value on
[—R, R] belongs to the plaintext space of HE).

In this case, our domain-extension methodology can be applied; as we regard
[—r,r] as the interval type I and [—R, R] as the interval type II. Theorem 3
explains how domain-extension methodology enables us to efficiently increase
the stable interval. Note that Theorem 6 is an immediate outcome of Theorem 3.

Theorem 6. Assume that we are given a function f(-) and its approximation
p(:) € F(f;e,r,p,R); also, suppose we are given a DEF d(-) € 2(d,r, R, LR)
where LR > R > p >1r >0 and d,e > 0 are small. Then,

pod(:) € f(f;e—i—Mr‘O’&r,p,LR)

where M = sup{|p’(z)| : —r < = < r}. Moreover, if we let

By(z) := L"d(%)

for each non-negative integer n, then
L2
FoByo---0B,_1() € 33<f;e+Mr3ﬁ5,r,p,L”R>.

To put it all together, when we use a polynomial approximation in %, we can
manage the outliers from a wide interval [—R, R] by using additional O(log R)
number of operations.

5 Privacy-preserving Logistic Regression

In this section, we implement our domain-extension methodology, and apply it
for the privacy-preserving logistic regression based on HE. Note that training
and inference of a logistic regression model can be done by the combination of
linear operations and the logistic function.

The logistic function is in Cyy, so domain-extension methodology provides
an efficient uniform approximation of the logistic function on wide intervals (see
Section 4.1). We implement our domain-extension methodology for the logistic
function, and by using it, we perform the logistic regression based on HE. We
adopt CKKS scheme [12,13] among many HE schemes, since it supports floating
point operation on real number.

We introduce three experiments: (1) the comparison of our method to the
minimax approximation for the evaluation of the logistic function based on HE,
(2) the privacy-preserving logistic regression on MNIST with our method, and
(3) the privacy-preserving logistic regression on Swarm Behavior dataset with
our method.



In the first experiment, we implement and compare our domain-extension
methodology on the logistic function to the current best approach: minimax
approximation and Paterson-Stockmeyer algorithm. In the second and third ex-
periments, by using our method, we perform logistic regression training on two
public datasets: MNIST and Swarm Behavior dataset.

In the case of MNIST dataset, all data belong to a bounded interval, [0, 255]28%28
or [0,1]%8%28 5o we select the sufficiently wide input domain of the logistic func-
tion so that is capable to contain all the possible outliers. It is true that the
most of inputs of logistic functions come from narrower domain intervals, but
the calculated wide approximation interval theoretically guarantees the success
of the HE computation.

On the other hand, the values of Swarm Behavior data are not explicitly
bounded, so we cannot calculate the domain interval of the logistic function
that can contain all the possible outliers. Instead, we train the model by using
the approximation of the logistic function on sufficiently large input interval.
Moreover, we monitored the input values of logistic functions during the train-
ing in unecnrypted state, and we observed that the size of input values grows
bigger than 1333. This shows that it is necessary to approximate the logistic
function on wide intervals to train logistic regression model on many of public
datasets including Swarm Behavior dataset. In this work, we utilize a polyno-
mial approximation on sufficiently large approximation interval, [—7683, 7683],
for Swarm Behavior dataset.

In this paper, we use relative error to measure the difference between two
logistic regression models. More precisely, for to models w, and w,. (e.g., each of
model trained on plaintext and ciphertext), we measure the difference between

them by W in L?-norm.

5.1 Approximation of the Logistic Function

In this experiment, we demonstrate that our method is substantially more ef-
ficient compared to the minimax approach to evaluate the logisic function on
large domain interval.

For the comparison, we evaluate the logistic function based on HE on wide
interval by using two different methods: (1) our method and (2) minimax approx-
imation with Paterson-Stockmeyer algorithm. Under fixed parameters including
the maximum norm error, we measure the runtime of both methods for the
evaluation on various sizes of domain intervals.

Parameter Selection In this experiment, for both methods, we measure the
runtime for the HE evaluation of polynomial approximations with maximum
norm error less than 0.045.

— For the minimax approximation, we use the minimax polynomial with the
smallest degree among the minimax polynomials with maximum norm error



less than 0.045, and we evaluate the minimax polynomial with Paterson-
Stockmeyer algorithm with Chebyshev basis [8]. To find the minimax poly-

nomials, we used chebfun library. [17]

— For our domain-extension method, we used a DEP B(z) = = — %x3 with
extension factor 2.45. We extend the domain interval of P(z), the degree 9
minimax polynomial of the logistic function on [—14.5,14.5]. Note that the
maximum errors of extended polynomial approximations are all less than
0.045.

— We measured the evaluation time of each method under various sizes of the
domain intervals, from [—14.5,14.5] to [—3136,3136], increasing 2.45 times

each.

— For CKKS parameters, we took N = 26 with initial ciphertext modulus
qr, = 2'%8!'. Hamming weight of the secret polynomial is set to 128. Note
that these parameters achieve 128-bits security [23-25].

Environment All experiments were performed on Intel Xeon CPU E5-2620 v4
at 2.10GHz processor. We used a single thread for the experiments.

Result The experimental result is represented in Figure 6. It shows the runtime
in seconds of each method to evaluate the logistic function on interval [—z, z].
Note that The x-axis is logarithmic scaled.

We first highlight that our method is more efficient than the minimax ap-
proach. To uniformly approximate the logistic function on [—87, 87], our method
is more than 2.34x faster than the minimax approach (ours consumed 6.34
seconds while the minimax approach used 14.89 seconds). In the case of approx-
imation on [—1279, 1279], ours consumed 9.14 seconds, and it is 8.7x faster than
the minimax approach which consumed 79.56 seconds.

Moreover, our method tends to asymptotically faster than the minimax ap-
proach. As in Figure 6, we can observe that the runtime for the minimax ap-
proach increases subexponentially with respect to log R, where R is the size of
the domain interval. On the other hand, the runtime for our method increases
linearly with respect to log R. This matches to our expectation in Section 4.1.

Meanwhile, our method use a bit larger multiplicative depth than the min-
imax approach; for example, in the case of experiment on [—3136,3136], the
multiplicative depth of our method is 14 while that for minimax approach is 10.
However, the multiplicative depth for both methods are asymptotically same
(see Section 4.1).

Our method provides an easy implementation with reasonable precision bits.
In contrast, the minimax approximation uses the coefficients with high precision,
and in our implementation, it fails to work for the domain interval larger than
[—1279,1279]. In Figure 6, we extrapolate the runtime larger than [—1279, 1279]
assuming the cost is O(v/R) (see Section 4.1).



5.2 Logistic Regresssion on MNIST Dataset

Dataset description MNIST is a dataset of handwritten digits, which con-
tains 60000 training samples and 10000 test samples [26]. In this experiment, we
selected the samples with two labels, 3 and 8, to perform the binary classifica-
tion using logistic regression. For the training set, the first 9600 training samples
with label of either 3 or 8 were selected. For the test set, all test samples with
label of either 3 or 8 were selected.

Selection of Approximation Interval All samples of MNIST belong to
[0,1]28%28. Consequently, we can calculate the upper bound of the size of the
norm of the trained weight by logistic regression for each iteration. The polyno-
mial approximations on such domain intervals guarantee the success of privacy-
preserving logistic regression training without exceeding the domain of the poly-
nomial approximation.

Let w; € RP be trained weight vector(including bias component) by logistic
regression, after t iterations. Also a be the learning rate, n be the mini-batch
size, D = d+ 1, d be the number of attributes of the sample, and € RP be an
arbitrary single sample which satisfies that every component belongs to [0, 1].
Note that the last component of x has always value 1, since we assume that bias
is in the last component of the weight vector. y € {—1,1} is the corresponding
label of x.

We will find M such that |w; - x| < M for arbitrary x. By logistic regression
training, weight vector is updated as follows [2,20]:

n
o
Wiyl = We + o ;ya(*yi(wt 1))
i—

Thus, the following holds.
2

||wt+1||2 =

n
o
wyi + o Z yio(—y(wy - x3))x;
i=1
n

= el + 223 oy 20)) (iowe - 72)

=1

0[2
+ 55 D wao(—uiwn - w))o(—y(we - w) i - 2,)

< Jlwe||* + 0.6a + oD (.- zo(—x) < 0.3 Yz € R)
Note that every norm below are Euclidean norm. Finally, mathematical induc-
tion shows that
lw||* < t(a®D + 0.6a),

and
lwy - z|* < [Jwe]]?|z]|? < t(a?D + 0.6a)D < t(aD + 0.3)?



# of|accuracy | maxinput|accuracy |maxinput

iter | (0.1) (0.1) (1.0) (1.0)
3 191.12% | 1.22 [50.90% | 38.3
6 |89.16% | 2.06 |85.13%| 25.2
9 192.13% | 2.37 |93.85%| 16.3
12 192.13% | 3.00 |94.35% | 17.0
15 192.33% | 3.35 |94.55%| 16.1
18 193.29% | 3.60 |94.70% | 16.3
21 [93.80% | 3.39 |96.06% | 12.1
24 194.15% | 4.02 ]96.11% | 14.8
27 194.15% | 3.69 |95.61% | 12.5
30 |194.65% | 4.17 |96.11% | 13.4

Table 2: The result of MNIST dataset training with learning rate 0.1 and 1.0.

hold for each t. Now we get |w; - 2| < v/t(aD + 0.3). Therefore, the input of the
logistic function in ¢ th iteration must belong to

[—Vt(aD + 0.3),Vt(aD + 0.3)]. (1)

Parameter selection We used the parameters for CKKS scheme, logistic re-
gression, and our domain-extension method as follows.

— For CKKS parameters, we took N = 27 with initial ciphertext modulus
qr = 2?10, Hamming weight of the secret polynomial is set to 128. Note
that these parameters achieve 128-bits security [23-25].

— We used the mini-batch stochastic gradient descent with mini-batch size 320.
We iterated 30 times, which is 1 epoch. We used two learning rates, 0.1 and
1.0, and compared two results.

— For the polynomial approximation of the logistic function, we used our
domain-extension method. We use the DEP B(z) = z — 5+ 2% with extension
factor 2.45. We extend the domain interval of P(z), the degree 15 minimax
polynomial of the logistic function on [—14.5,14.5].

— We approximate the logistic function on sufficiently large domain by using
Equation 5.2. For example, in the case of learning rate 1.0, we approximated
the logistic function maximally on [—7683,7683], which can be done by 7
domain-extension processes.

Environment All experiments were performed on Intel Xeon CPU E5-2620 v4
at 2.10GHz processor. Also, 8 threads were used for the experiments.



Results Table 2 shows the experimental results. Each row describes the state of
logistic regression model after given number of iteration. The second and forth
columns, (accuracy(0.1), accuracy(1.0)), indicate the accuracy of the (encrypted)
logistic regression model with learning rate 0.1 and 1.0 respectively. The third
and fifth columns, (maxinput (0.1), maxinput (1.0)), show the maximum abso-
lute value of inputs of the logistic function during the iteration of training. The
result shows us two points as follows.

— Appropriate large learning rate makes training faster. However, large learn-
ing rate also increases the input values of the logistic functions during train-
ing, so too narrow approximation interval (e.g., [—8,8] as in the previous
works or less) would restrict us to select the optimal hyper-parameter.

— We cannot ensure that the input value for the logistic function varies gen-
tly. As seen in our experiment with learning rate 1.0, maxinput value varies
largely at the early stage of the training, even though maxinput value became
about 10 —15 finally. This shows us that just moderately extending the inter-
val of approximation (such as [—8,8] to [—16, 16]) cannot be a fundamental
solution.

5.3 Swarm Behavior Dataset

Dataset description Swarm Behavior Dataset is a dataset of determining 3 be-
haviors of each swarm sample. The dataset contains 24016 swarm samples, which
has 3 binary behavior labels that indicate whether the swarm is (1) aligned, (2)
flocking, and (3) grouped. Each swarm comprises 200 individuals, and each in-
dividual is characterized by 12 features such as position and velocity; in other
words, each sample swarm has 2400 real-valued features.

In this experiment, we solve the binary classification of ’aligned’ label by
using logistic regression. For the training set, we randomly pick 3840 samples
among 24016 samples, and the other samples are used for the test set.

Parameter selection The parameters for CKKS scheme, logistic regression,
and approximation of the logistic function are given here. The number of exten-
sion is also given, since the value of data are not bounded and we should select
the number of extension.

— For CKKS parameters, we took N = 2!7 with initial ciphertext modulus
qr = 2?10, Hamming weight of the secret polynomial is set to 128. Note
that these parameters achieve 128-bits security [23-25].

— We used the mini-batch stochastic gradient descent with mini-batch size 240.
We iterated 16 times, which is 1 epoch. We set 10~° for learning rate.

— For the polynomial approximation of the logistic function, we used our
domain-extension method. We use the DEP B(z) = z — 52° with ex-
tension factor 2.45. We extend the domain interval of P(z), the degree 15
minimax polynomial of the logistic function on [—14.5,14.5]. We utilize 7
times of domain-extension processes, so the approximation interval is about

[—7683, 7683)].



# of |accuracy|accuracy|relative| max
iterations| (enc) | (plain) | error |input
1 78.60% | 78.60% | 0.05% | 0.0
82.90% | 83.05% | 1.32% | 10.0
85.88% | 85.88% | 1.83% | 72.0
88.52% | 88.53% | 1.81% | 6.3
89.60% | 89.72% | 4.47% | 86.2
90.38% | 90.39% | 3.50% | 40.6
92.62% | 92.65% | 5.65% |1358.5
93.11% | 93.15% | 4.69% | 154.3
9 93.27% | 93.27% | 6.54% | 353.2
10 94.01% | 94.02% | 6.37% | 33.4
11 94.67% | 94.61% | 6.25% | 129.6
12 94.52% | 94.51% | 6.13% | 284.6
13 94.69% | 94.71% | 5.67% | 176.8
14 95.15% | 95.14% | 8.32% |1221.2
15 95.55% | 95.51% | 7.89% |1843.3
16 95.78% | 95.72% | 7.52% | 26.6

Table 3: The result of Swarm Behavior dataset training.
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Environment All experiments were performed on Intel Xeon CPU E5-2620 v4
at 2.10GHz processor. Also, 8 threads were used for all experiments here.

Results Table 3 shows the experimental results of logistic regression training
on Swarm Behavior dataset. Each row describes the trained model after given
number of iteration. The second and third columns show the accuracy of the
model trained in encrypted and unencrypted state respectively. The forth col-
umn, relative error, indicates the difference between two models that are trained
in encrypted and unencrypted states. Finally, the last column, max input, is the
maximum size of inputs of the logistic function during the training iterations in
encrypted state. We point out two points as follows.

— Our approximation of the logistic function on wide interval behaves similar
to the exact logistic function. In particular, the accuracy of HE-based trained
model is almost same to the plaintext-based trained model. In particular, we
can observe that the relative error between the models is small.

— The polynomial approximation on substantially wide approximation interval
is necessary. There are several large inputs of the logistic function during the
training, so the polynomial approximation of the logistic function on a wide
interval (e.g., [—7000, 7000]) has a key role.



6 Conclusion

In this work, we propose a new efficient method for HE evaluation on large
intervals. For the stable computation based on HE, an efficient method for HE
evaluation on large interval is crucial. For instance, to train logistic regression
model based on HE, it is necessary to approximate the logistic function on a
large interval; e.g, larger than [—1843,1843] for the Swarm Behavior dataset.

Our method evaluates on a large domain interval [—R, R] a function that
converges at infinities, with O(log R) multiplications and O(1) space. This is
both asymptotically and practically more efficient than the previous best ap-
proach, the minimax approximation and Paterson-Stockmeyer algorithm, which
uses O(v/R) multiplications and O(v/R) space. Also, our algorithm can be easily
extended to functions whose differences from a low degree polynomial converges
to constants at infinities. We leave an efficient method for the HE evaluation of
arbitrary functions on large interval as an open problem.
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(a) The minimal degrees for the minimax approximation to approximate the logistic
function by fixed maximum norm errors on various domain sizes. The degree of the
minimax polynomial increases linearly with respect to the size of domain.
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(b) The minimal degrees for the minimax approximation to approximate the several

functions by maximum errors of 0.05 on various domains. The degree of minimax
polynomial increases linearly with respect to the size of approximation domain.

Fig.5: The degree of minimax polynomial of functions in Cji, on various sizes
of domains.
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Fig. 6: Runtime(s) for the evaluation of the logistic function on various range of
domain intervals using two different methods: minimax approximation and ours.
The x-axis is logarithmic scaled.



