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Abstract. We present a much-improved practical protocol, based on the hardness of Module-SIS and
Module-LWE problems, for proving knowledge of a short vector s⃗ satisfying As⃗ “ t⃗ mod q. The cur-
rently most-efficient technique for constructing such a proof works by showing that the ℓ8 norm of s⃗
is small. It creates a commitment to a polynomial vector m whose CRT coefficients are the coefficients
of s⃗ and then shows that (1) A ¨CRTpmq “ t⃗ mod q and (2) in the case that we want to prove that the
ℓ8 norm is at most 1, the polynomial product pm ´ 1q ¨ m ¨ pm ` 1q equals to 0. While these schemes
are already quite good for practical applications, the requirement of using the CRT embedding and
only being naturally adapted to proving the ℓ8-norm, somewhat hinders the efficiency of this approach.

In this work, we show that there is a more direct and more efficient way to prove that the coefficients of
s⃗ have a small ℓ2 norm which does not require an equivocation with the ℓ8 norm, nor any conversion to
the CRT representation. We observe that the inner product between two vectors r⃗ and s⃗ can be made
to appear as a coefficient of a product (or sum of products) between polynomials which are functions
of r⃗ and s⃗. Thus, by using a polynomial product proof system and hiding all but one coefficient, we are
able to prove knowledge of the inner product of two vectors (or of a vector with itself) modulo q. Using
a cheap, approximate range proof, one can then lift the proof to be over Z instead of Zq. Our protocols
for proving short norms work over all (interesting) polynomial rings, but are particularly efficient for
rings like ZrXs{pXn

` 1q in which the function relating the inner product of vectors and polynomial
products happens to be a “nice” automorphism.

The new proof system can be plugged into constructions of various lattice-based privacy primitives in
a black-box manner. As examples, we instantiate a verifiable encryption scheme and a group signature
scheme which are more than twice as compact as the previously best solutions.

1 Introduction

The fundamental hardness assumption upon which lattice-based cryptography rests is that it is computa-
tionally difficult to find a low-norm vector s satisfying

As “ t mod q. (1)

It is then natural that for creating privacy-preserving protocols based on the hardness of lattice problems,
one is usually required to prove the knowledge of an s satisfying the above, or a related, equality. Unlike in
the analogous case of discrete logarithms, where proving knowledge of a secret s satisfying gs “ t turns out
to have a very simple and efficient solution [40], the added requirement of showing that }s} is small turns
out to be a major complication for practical lattice cryptography.

Over polynomial rings (i.e. rings of the form ZrXs{pfpXqq, where fpXq is a monic, irreducible polynomial),
one can give a fairly-efficient zero-knowledge proof of knowledge of a vector s̄ and a polynomial c with small
coefficients satisfying

As̄ “ ct mod q, (2)

where }s̄} is some factor (depending on the dimension of s) larger than }s} [28, 29]. While such proofs are
good enough for constructing fairly efficient basic protocols (e.g. signature schemes [28, 29, ?, 18]), the fact
that the norm of the extracted s̄ is noticeably larger than that of s, along with the presence of the extra
multiplicand c, makes these proofs awkward to use in many other situations. This very often results in the



protocols employing these proofs being less efficient than necessary, or in not giving the resulting scheme the
desired functionality.

As simple examples of inefficiencies that may creep up when only being able to prove (2), consider Regev-
style lattice-based encryption schemes (e.g. [39, 36]) where s is the randomness (including the message) and
t is the ciphertext. In order to decrypt, it is necessary for t to have a short pre-image, and so being able
to only prove knowledge of (2) is not enough to guarantee that the ciphertext t can be decrypted because
it is ct that has a short pre-image, not t (and c is not known to the decryptor). A consequence of this is
that the currently most-efficient lattice-based verifiable encryption scheme [31] has the undesirable property
that the expected decryption time is equal to the adversary’s running time because the decryptor needs
to essentially guess c. Employing this scheme in the real world would thus require setting up a scenario
where the adversary cannot use too much time to construct the proof. Other lattice-based constructions
(e.g. group signature schemes [32]) were required to select much larger parameters than needed in order to
accommodate the presence of the multiplicand c and the “slack” between the length of the known solution
s and the solution s̄ that one can prove.

1.1 Prior Art for Proofs of (1)

Early protocols for exactly proving (1) used the combinatorial algorithm of Stern [41] to prove that the ℓ8

norm of s is bounded by revealing a random permutation of s. The main problem with these protocols was
that their soundness error was 2{3, and so they had to be repeated around 200 times to achieve an acceptably
small (i.e. 2´128) soundness error. This resulted in proofs for even basic statements3 being more than 1MB
in size [27], while more interesting constructions required outputs on the order of dozens of Megabytes (e.g.
[26]). A noticeable improvement was achieved in [10] by generically combining Stern’s protocol with a “cut-
and-choose” technique to noticeably decrease the soundness error of each protocol run (at the expense of
higher running times). This allowed proofs for basic statements to be around 200KB in size.

A very different, more algebraic, approach for proving (1) utilized lattice-based commitments and zero-
knowledge proofs about committed values to prove relations between the coefficients of s and also prove
a bound on its ℓ8 norm. The first such protocols [42, 12, 20] had proof sizes that were on the order of
several hundred kilobytes. These schemes were greatly improved in [4, 19], where it was shown how to
very efficiently prove products of polynomial products over a ring and then linear relations over the CRT
coefficients of committed values. Optimizations of these techniques [35] decreased the proof size for the basic
example to around 33KB.

The high level idea for these proofs, when s has coefficients in the set t´1, 0, 1u, is to create a BDLOP
commitment [6] to a polynomial m whose CRT coefficients are the coefficients of s, prove this (linear)
relationship as well as the one in (1) [19], and then prove that pm´ 1q ¨m ¨ pm` 1q “ 0 [4].

There are a few intrinsic elements of this approach which hinder its efficiency, especially in certain situ-
ations. The first is that the CRT of m consists of large coefficients, and so committing to it requires using
a more expensive commitment scheme, which is especially costly when s is long4 (we discuss this in more
detail when talking about various commitments in Section 1.3). Another downside is that for vectors s with
somewhat-large coefficients, such as ones that are obtained from trapdoor sampling (e.g. [1, 38]), proving
the smallness of the ℓ8-norm becomes significantly costlier because the degree of the polynomial product
increases. There is also an incompatibility between the requirement that the underlying ring has a lot of
CRT slots and negligible soundness error of the protocol – thus a part of the protocol needs to be repeated
for soundness amplification. And finally, proving the ℓ2 norm, rather than the ℓ8 one, is very often what
one would like to do when constructing proofs for lattice-based primitives. This is because efficient trapdoor-
sampling used in many lattice primitives produces vectors of (tightly) bounded ℓ2 norm, and noise also
generation generally results in tight ℓ2-norm bounds.

3 A standard example that has been used for comparison-purposes in several works is 1024ˆ 2048 integer matrix A,
a 32-bit modulus q, and s having coefficients in t´1, 0, 1u (or }s} ď

?
2048).

4 The aforementioned framework was most appropriate for committing to small-dimensional messages (e.g. in pro-
tocols related to anonymous transactions (e.g. [22, 35, 21]) and proving various relationships between them.
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1.2 Our Results

We propose a simpler, more efficient, and more direct approach for proving a tight bound on the ℓ2 norm of s
satisfying (1). Unlike in the previous approach, we do not need to recommit to s in CRT form, and therefore
don’t have a ring algebra requirement which had a negative effect on the protocol soundness. Furthermore,
not needing to create a BDLOP commitment to s noticeably shrinks the proof size. In particular, we define
a commitment scheme which combines the Ajtai [2] and BDLOP [6] commitments into one, and then put
the long commitment to s into the “Ajtai” part of the commitment scheme, which does not increase the
commitment size.5

We then observe that the inner product of two vectors over Z can be made to appear as the constant
coefficient of a polynomial product, or as a coefficient in a sum of polynomial products. Our protocol for
proving the ℓ2-norm of s is then a specific application of a more general protocol that can prove knowledge
of constant coefficients of quadratic relations over polynomial rings for messages that are committed in the
“Ajtai” and “BDLOP” parts of our new commitment. Our protocols are built up in a black-box manner from
basic building blocks, and can then also be used in a black box manner for implementing the zero-knowledge
proof parts of various lattice-based primitives. As examples, the ZK proof of the basic relation from (1) is
« 2.5X shorter than in previous works, a verifiable encryption scheme can be as short as the one from [31]
without the constraint that the decryption time is proportional to the adversary’s attack time, and we give
a group signature scheme whose signatures are more than 2X smaller than the currently most compact one.

Our proof system for the basic equality from (1) is around 14KB, and approximately 8KB of that consists
of just the “minimum” commitment (i.e. a commitment to just one element in Rq that doesn’t include s)
and its opening proof. This shows that our construction is quite close to being optimal for any approach
that requires creating a commitment to s using known lattice-based commitment schemes. Since all zero-
knowledge proofs that we’re aware of for showing that a secret s satisfies fpsq work by first committing to
s, it appears that any significant improvement to this proof system (e.g. another factor of 2) would require
noticeable improvements in fundamental lattice primitives, basing security on stronger assumptions, or a
noticeable departure from the current approach.

We now give a detailed overview of the techniques and results in this work, and then sketch how our
framework can be used to construct lattice-based privacy protocols.

1.3 Techniques Overview

Throughout most of the introduction and paper, we will concentrate on the ring Rq “ ZqrXs{pX
d`1q, as our

constructions are most efficient here because they can utilize a specific automorphism in this ring. Towards
the end of this section and in Section 7, we describe how to adapt our construction, and most applications,
to other rings that do not have this algebraic structure. All our constructions will be based on the hardness
of the Module-SIS and Module-LWE problems and one should think of the degree of the underlying ring d
to be something small like 64 or 128 (we use 128 for all our instantiations).

Commitment Schemes. In the original Ajtai commitment scheme, implicit in [2], one commits to a
message s1 using randomness s2, where }si} are small, as

A1s1 `A2s2 “ t mod q. (3)

It’s easy to see that creating a second valid opening ps1
1, s

1
2q for the same commitment value t is equivalent

to solving the SIS problem over Rq, and the hiding aspect of the commitment scheme is based on the
indistinguishability of pA2,A2s2q from uniform. A useful feature of the above commitment scheme is that
the dimension of the message s1 does not increase the commitment size. And since the hardness of SIS does
not really depend on the dimension of the solution, increasing the dimension of s1 does not negatively impact
the security either. On the other hand, one does need the coefficients of s1 to be small.

5 The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will need to
be committed to later in the protocol.
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A different commitment scheme, called the BDLOP scheme [6], commits to a messagem using randomness
s as

„

A
B

ȷ

¨ s`

„

0
m

ȷ

“

„

tA
tB

ȷ

mod q, (4)

where only the randomness s needs to have a small norm. An opening of this commitment is just s since it
uniquely determines m, and so it is again easy to see that two different openings lead to a solution to SIS
for the matrix A. The hiding property of this commitment is based on the indistinguishability from uniform

of

ˆ„

A
B

ȷ

,

„

A
B

ȷ

¨ s

˙

.

This scheme has two advantages and one disadvantage over the one in (3). The disadvantage is that both
the commitment size and the opening size grow linearly with the dimension of the message vector m. An
advantage is that the coefficients of m can be arbitrarily large modulo q. The other advantage is that if one
plans ahead and sets the dimension of s large enough, one can very cheaply append commitments of new
elements in Rq. For example, if we have already created a commitment to m as in (4) and would like to
commit to another polynomial vector m1, we can compute B1s `m1 “ t1

B mod q, where B1 is some public

randomness. If

¨

˝

»

–

A
B
B1

fi

fl ,

»

–

A
B
B1

fi

fl ¨ s

˛

‚ is indistinguishable from uniform, then ptA, tB , t
1
Bq is a commitment to

m,m1. Note that committing to k extra Rq elements requires growing the commitment size by only k Rq

elements, something that cannot be done using the scheme from (3).
For optimality, our construction will require features from both of these schemes, and it actually turns

out to be possible to combine the two of them into one. So to commit to a message s1 with a small norm,
and a message m with unrestricted coefficients (modulo q), one can create a commitment

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

“

„

tA
tB

ȷ

mod q, (5)

where the randomness is s2. We will call this combination of the Ajtai and BDLOP commitment scheme,
the ABDLOP commitment. The savings over creating two separate commitments is that instead of needing
the t term from (3) and the tA term from (4), we only have the tA term. So we get an Ajtai commitment
to s1 for free! And similarly, the opening does not require both s2 from (3) and s from (4).

One can show that (5) is indeed a commitment scheme and has an efficient zero-knowledge opening
proof.6 Furthermore, there is also an efficient zero-knowledge proof (much like in [6]) which allows one to
efficiently show that the committed values s1,m satisfy a relation over Rq

R1s1 `Rmm “ u mod q, (6)

where the matrices R1,R2, and the vector u are public. This proof system is given in Figure 4, and we just
mention that the proof size is not affected by the sizes of the Ri. In other words, the proof size for proving
linear relations over Rq is the same as the proof size of just proving knowledge of the committed values. The
only way in which this proof puts a restriction on the underlying ring is that the modulus q must be large
enough so that the extracted SIS solution is hard, and that the challenge set C is such that the difference of
challenges is (with high probability) invertible. This can be done by choosing the modulus q in a way that
Xd`1 splits into very few irreducible factors of the form Xk´ri modulo q (or the prime factors of q), which
in turn implies that all elements of Rq with small coefficients are invertible [37].

The way this commitment scheme will be used in our protocols is that we will put high-dimensional
messages with small coefficients into s1, while putting small-dimensional values with large coefficients –
generally auxiliary “garbage terms” that we will need to commit to during the protocol which aid in proving
relations among the elements in s1– into m.

6 As for the Ajtai and BDLOP commitments, the opening needs to be carefully defined because the ZK proof only
proves approximate relations as in (2). The details are in Section 3.1.
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Inner Products over Zq. Suppose that instead of just wanting to prove linear relations over Rq, as above,
we wanted to prove linear relations over Zq. That is, if we let R1, Rm be integer matrices, and we write s⃗1
and m⃗ to be integer vectors whose coefficients are the integer coefficients of the polynomial vectors s1 and
m, then we would like to prove that R1s⃗1 `Rmm⃗ “ u⃗ mod q.

An important observation is the following: if r⃗ “ pr0, r1, . . . , rd´1q, s⃗ “ ps0, s1, . . . , sd´1q P Zd
q are vectors

and rpXq “
ř

i riX
i, spXq “

ř

i siX
i P Rq are the corresponding polynomials, then xr⃗, s⃗y mod q is equal

to the constant coefficient of the polynomial product rpX´1q ¨ spXq over Rq.
7 Similarly, for r⃗, s⃗ P Zkd

q , one

can define the corresponding polynomial vectors r “ pr1, . . . , rkq, s “ ps1, . . . , skq P Rk
q to have the same

coefficients as r⃗, s⃗ in the straightforward manner, then xr⃗, s⃗y mod q is equal to the constant coefficient of
ř

i ripX
´1q ¨ sipXq, where the multiplication is performed over Rq.

For a polynomial h “ h0 ` h1X ` . . .` hd´1X
d´1 P Rq, we will write rh to mean the constant coefficient

h0. The procedure to prove that xr⃗, s⃗y mod q “ α is then to create polynomial vectors r, s such that Ćxr, sy
(where the inner product is over Rq) is equal to xr⃗, s⃗y. One can hope to use the protocol from Figure 4 to
prove the linear relation over Rq, which would imply the linear relation over Zq. The problem is that naively
proving the relation over Rq would necessarily require the prover to reveal all the coefficients of xr, sy instead
of just the constant one, which implies giving out extra information about the committed vector s⃗, and so
is clearly not zero-knowledge.

We now outline the solution to this problem for general linear functions. For a linear function f : Rk
q Ñ

Rq, we would like to prove that the committed values s1,m in the ABDLOP commitment satisfy rfps1,mq “ 0

(for aesthetics, we will write rfpxq to mean Ćfpxq). In order to mask all but the constant coefficient, we use a
masking technique from [19], where the prover first creates a commitment to a polynomial g P Rq such that
rg “ 0 and all of its other coefficients are chosen uniformly at random. In our proof system, he commits to
this polynomial in the “BDLOP part” of (5) by outputting tg “ xb, s2y ` g, where b is some random public
polynomial vector. The verifier then sends a random challenge γ P Zq, and the prover computes

h “ γ ¨ fps1,mq ` g. (7)

The prover then creates a proof, as in Figure 4, that the committed values s1,m, and g satisfy this linear
relation, and sends h along with this proof to the verifier. The verifier simply checks the validity of the linear
proof, and also that rh “ 0 mod q.

The proof leaks no information about all but the constant coefficient of fps1,mq because they are masked

by the completely random coefficients of g. To see that this proof is sound, note that for all g, if rfps1,mq ‰ 0,

then Prγrγ ¨ rfps1,mq ` rg “ 0s ď 1{q1, where q1 is the smallest prime factor of q. In order to reduce the
soundness error down to ϵ, the prover would need to create a commitment to λ different gi, where p1{q1q

λ “ ϵ
and then reply to λ different challenges γi by creating λ different hi as in (7). Since the gi are just one
polynomial in Rq, the hi are also just one polynomial each, and so amplifying the proof requires sending
just 2λ extra elements in Rq.

The above shows that proving one relation rfps1,mq “ 0 requires a small number λ of extra polynomials
g and h. Usually, we will want to prove many such linear equations, and so it would be quite inefficient if our
proof size grew linearly in their number. But, just like in the basic protocol in Figure 4, we can show that
the number of equations that we need to prove does not affect the size of the proof. If we would like to prove
k equations rfips1,mq “ 0, the prover still sends the term g in the first round (let’s ignore the amplification
for now), but this time instead of sending just one random challenge γ P Zq, the verifier sends k random
challenges γi. The prover then creates the equation

h “
ÿ

i

γi ¨ fips1,mq ` g, (8)

7 For a polynomial rpXq “
d´1
ř

i“0

riX
i

P Rq, rpX´1
q “ r0 ´

d´1
ř

i“1

riX
d´i.
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and sends h along with a proof that the s1,m, and g satisfy the above. The verifier checks the proof and
that rh “ 0 mod q. The fact that this proof leaks no information and that the soundness error is again 1{q1
is virtually identical as for (7), and we give a full description of this protocol in Figure 5.

Quadratic Relations and Norms. In the above, we saw an overview of how one can prove knowledge
of inner products over Rq and Zq when one of the values is committed to and the other is public. We now
show how to do the same thing when both values are in the commitment – in other words, how to prove
quadratic relations over committed values.

The most efficient protocol for proving quadratic relations between committed polynomials in Rq is given
in [4]. That protocol assumes that the elements were committed using the BDLOP commitment scheme, and
one can show that a similar approach works for the ABDLOP scheme as well. And so one can prove arbitrary
quadratic relations over Rq between the committed polynomials in the polynomial vector s1 and m in (5).
We will now explain how to use this proof system, together with the ideas presented above, to construct a
proof that the s satisfying (1) has small ℓ2-norm. For simplicity of this description, let’s just suppose that we
would like to prove that }s} “ β instead of }s} ď β.8 The idea is to first commit to s as part of the s1 part of
(5) (i.e. in the “Ajtai part” of the ABDLOP scheme). Then we use the observation from the previous section
that notes that if s1 “ ps1, . . . , skq P Rk

q , then }s}
2 is the constant coefficient of

ř

i sipX
´1q¨sipXq. We cannot

directly use the proof system for linear proofs because that one assumed that one of the multiplicands was
public. We thus need to extend the protocol from [4] to prove knowledge of

ř

i sipX
´1q ¨ sipXq when having

a commitment to s.

Let us first recall the idea from [4] and how they can be applied to the ABDLOP commitment. Suppose,
for example, that we wanted to prove that s1s2´ s3 “ 0, and we had commitments to si in the Ajtai part of
the ABDLOP commitment (i.e. the si are part of the s1 in (5)). If one looks at the protocol in Figure 4 for
proving knowledge of committed values in the ABDLOP protocol, then we note that the prover sends the
vector z1 “ cs1 ` y1. This z1 consists of terms zi “ sic` yi, where c is a polynomial challenge (with small
coefficients) and yi is a masking polynomial whose job is to hide si.

The high level idea in which the protocol from [4] (and some that preceded it [12, 20, 42]) proves quadratic
relations is by having the verifier create a quadratic equation (in c) out of the linear equations zi “ csi ` yi.
That is, the verifier computes

z1z2 ´ cz3 “ ps1s2 ´ s3qc
2 ` g1c` g0, (9)

where g1 and g0 are some terms which depend on yi and si and are committed to by the prover prior to
receiving the challenge c.9 The above is a quadratic equation in the variable c (since all the other terms
are already committed to), and so if the prover shows that z1z2 ´ cz3 “ g1c ` g0 (i.e. it’s actually a linear
equation) it will imply that with high probability the quadratic coefficient, s1s2 ´ s3 is equal to 0.

To prove that the constant coefficient of spX´1q ¨ spXq is some value β, one can try to do something
similar. Here, it becomes important that the function mapping s to spX´1q is an automorphism (call it σ)
for Rq. Given the term z “ sc` y, the verifier is able to compute

σpzq ¨ z ´ σpcq ¨ c ¨ β2 “ pσpsq ¨ s´ β2q ¨ σpcq ¨ c` σpsq ¨ y ¨ σpcq ` s ¨ σpyq ¨ c` σpyq ¨ y, (10)

and, if the above is equal to g2 ¨σpcq`g1 ¨c`g0, would like to conclude that the coefficients in front of σpcq ¨c
is 0. Unfortunately, we can’t conclude this because the c and σpcq are not independent. What we instead do
is choose the challenges c from a set that is fixed under this automorphism. Then (10) becomes

σpzq ¨ z ´ c2β2 “ pσpsq ¨ s´ β2q ¨ c2 ` pσpsq ¨ y ` s ¨ σpyqq ¨ c` σpyq ¨ y, (11)

8 To prove the latter, one would commit to a vector b⃗ which is the binary representation of the integer β2
´ }s}

2 and

then prove that it is indeed binary and that x⃗b, p1, 2, 22, ...0, . . . , 0qy is β2
´ }s}

2; which implies that the latter is

positive. Note that it is still a quadratic relation in the committed values s and b⃗.
9 [4] showed that the yi were already implicitly committed to by the first part of the protocol.
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and we again have a quadratic equation in c. Luckily, this does not restrict the challenge set too much. In

particular, if we choose c P Rq to be of the form c “ c0`
d{2´1

ř

i“1

ci ¨pX
i´Xd´iq, where ci P Zq, then c “ σpcq.10

So we are free to set d{2 coefficients of the challenge polynomial instead of the usual d. So obtaining the
same soundness requires the coefficients to be a little larger, but this has a rather small effect on the proof
size.

The protocol in Figure 6 is a very general protocol for proving that a quadratic function in the coefficients
of s1 and m, and the automorphisms of s1 and m, is satisfied as long as the challenge set is fixed under the
particular automorphism. If we only want to prove the ℓ2 norm, then we do not want to prove a quadratic
function over Rq, but rather we just want to prove something about the constant coefficient of a quadratic
relation over Rq. To do this, we employ the same masking technique as in (7) that we used for our linear
proofs over Zq. Furthermore, just like in the linear proofs setting, if we need to prove multiple quadratic
relations, we can first combine them into one equation, and then the proof size does not increase. Also note
that we can clearly combine linear and quadratic equations together into one quadratic equation. The full
protocol is presented in Figure 8.

We are almost done, except for the fact that all of our proofs are modulo q. That is, the protocol only
proves that }s}2 “ β2 mod q, which is not the same as proving }s}2 “ β2. In order to prove that there is no
“wraparound” modulo q, we employ a version of the “approximate range proof” technique to show that the
coefficients of s are all small-enough. We do not need a sharp bound on these coefficients, but just need to
show that they are small-enough that no wraparound occurs. For this, we use the technique [7, 8, 33, 23] of
committing to a masking vector y⃗ (in the BDLOP part of (5)), receiving a ´1{0{1 challenge matrix R, and
outputting z⃗ “ Rs⃗` y⃗ (and doing a rejection sampling to hide s⃗). It can be shown that if }z⃗} is small, then
}s⃗} is also small. The dimension of y⃗ and z⃗ is small (between 128 and 256), and so the extra commitment
to y⃗ and the revealing of z⃗ is inexpensive. The protocol for the approximate range proof is given in Figure
9, and the general protocol proving these approximate range proofs in combination with other quadratic
functions is given in Figure 10.

Putting Everything Together. The structure for proving (1) involves creating an ABDLOP commitment
as in (5) with s1 “ s and making the randomness s2 long enough to accommodate future commitments to a
few intermediate terms necessary in the proof. One then uses the aforementioned proofs to show that }s1}
is small, and that the linear equation in (1) is satisfied. Notice that we don’t really need any ring structure
on the equation in (1); if it is over Zq, we can simply prove it using the linear proofs over Zq. This is
computationally more expensive that if the equation were over Rq, because for every inner product over Zq,
we have to compute one inner product over Rq, but the proof size will be the same.

We also note that the modulus in (1) does not have to be the same as in the commitment scheme. In fact,
it will often be necessary to use a larger modulus in the commitment scheme because it has to be larger than
}s}2. For example, we can set the commitment scheme modulus to p ¨ q and then simply lift the equation in
(1) to this modulus by multiplying both sides of it by p. As long as the challenge differences are invertible
in the ring Rq and Rp, all the protocols go through unchanged.

Another possibility is, instead of proving As “ t mod q, one proves that

As´ t “ r ¨ q (12)

over the integers. If each row of A consists of m integer coefficients, then each coefficient of r has magnitude
at most mq. One can then do the proof system using a larger modulus p, and also prove that each coefficient
of q´1pAs´ tq mod p is small using the approximate range proof. The advantage of this method over using
pq as the modulus for the commitment scheme, as above, is that it allows the commitment scheme modulus
p to be a prime, and so one needs fewer terms for coefficient masking (see the discussion after (7)), which
could save a few kilobytes in the complete proof. A disadvantage is that there is now the extra r term that
needs to be dealt with.
10 This is easy to see because σpXi

´Xd´i
q “ X´i

´Xi´d, and multiplying by ´Xd
“ 1, we obtain σpXi

´Xd´i
q “

´Xd´i
` Xi.
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Extensions. While we concentrated on proving the smallness of the ℓ2-norm of a vector s⃗ (or more gen-
erally the knowledge of the inner product between two vectors), it is also possible to use our techniques
to prove many other inter-vector relations. In particular, a useful relation (e.g. if dealing with general
functions/circuits) is proving the knowledge of the component-wise product r⃗ ˝ s⃗. This can be generally
accomplished by proving a polynomial product over a ring Rp of two vectors r and s whose CRT coefficients
are r⃗ and s⃗. The important thing is to choose a prime p such that the polynomial Xd ` 1 factors into linear
factors modulo p. As mentioned above, by simply subtracting off the remainder as in (12), one can use dif-
ferent moduli for the commitment scheme for the relations that we would like to prove. Thus one can choose
a “CRT-friendly” modulus for the underlying relation, while using a modulus that allows the polynomial
differences to be invertible (so not a CRT-friendly one) for the commitment scheme.

We also point out that proving inner products can be directly used to prove another very natural function
– showing that all the coefficients of a vector are from the set t0, 1u. For this, one uses the observation that
s⃗ has coefficients in t0, 1u if and only if xs⃗, 1⃗´ s⃗y “ 0. And since given a commitment for s⃗, one can maul it
into a commitment to 1⃗´ s⃗, one can generically apply the aforementioned protocol in Figure 8.

Using Other Rings. In proving that the norm of a polynomial s was small, we exploited the fact that in

the ring R, ČspX´1q ¨ s “ }s}2 and that spX´1q was an automorphism. In Section 7, we show that the same
high level ideas can also be made to work for rings that don’t have this algebraic structure. Specifically,
for all rings R “ ZrXs{pXd ` fd´1X

d´1 ` . . . ` f1X ˘ 1q, there exists a linear function g : R Ñ R such

that Čgprq ¨ s is equal to xr⃗, s⃗y. If g is not an automorphism, then proving knowledge of }s}2 “ Čgpsq ¨ s would
require the prover to commit to both s and gpsq, and then also prove the linear relationship between the
commitments of s and gpsq. Opening two commitments instead of one will increase the proof size, but this
is slightly mitigated by the fact that the challenges no longer need to be restricted to be fixed under any
automorphism.

Sample Constructions. In Section 6, we present various instantiations of lattice-based primitives that
can be constructed using our zero-knowledge proof system. We now give a very high-level description of
a group signature scheme. In a group signature scheme, the Setup Authority uses a master secret keys to
distribute member secret keys to the members of the group. The members can then use their secret keys to
sign messages on behalf of the group. An entity known as the Opener (or group manager) also has a special
secret key that allows him to obtain the identity of the signer of any message. The privacy criterion states
that it should be impossible, for everyone but the Opener, to trace back a signature to the particular user, nor
link that two signatures were signed by the same user. Conversely, the traceability requirement states that
every message signed by a user with identity µ will get traced back to him by the Opener. Group signatures
are an interesting primitive in their own right, but are particularly useful in determining the practicality
of zero-knowledge proofs as they contain some ingredients which are prevalent throughout privacy-based
cryptography.

We show how we can use our improved ZK proof to construct a lattice-based group signature following
the framework of [16, 32]. The master public key is rA | Bs,u, and the secret key of a group member with

identity µ is a short vector

„

s1
s2

ȷ

such that

rA | B` µGs ¨

„

s1
s2

ȷ

“ u mod q. (13)

The setup authority with a trapdoor for the lattice L “ tx : rA | Bs ¨ x “ 0 mod qu can create such short
vectors which are distributed according to a discrete Gaussian distribution [1, 38].

The group member’s signature of a message consists of a Module-LWE encryption of his identity µ as

„

A1

b

ȷ

¨ r`

„

0
rp{2uµ

ȷ

“ t mod p, (14)
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where A1,b is the public key (of the Opener) and r is the randomness, together with a a ZKPoK that he

knows µ, r, and

„

s1
s2

ȷ

satisfying (13) and (14). The message that the user is signing is, as usual, put into the

input of the hash function used in the Fiat-Shamir transform of the ZKPoK.
To create this signature, the user commits to s1, s2, r, µ in the “Ajtai” part of the ABDLOP commitment

(5). He then proves that the norms of s1, s2, r are small, that µ has 0{1 coefficients, and that (14) and
(13) hold. Notice that (14) is just a linear equation and proving (13) is proving the quadratic relation
As1`Bs2`Gµs2 “ u mod q. All of these proofs fit into the appropriate functions in the protocol in Figure
10 and the full description of the group signature is given in Section 6.4.

The security of the scheme rests on the fact that creating a valid proof on a µ that is not the user’s
identity implies having a solution to (13) on a new identity, which is directly equivalent to breaking the ABB
signature scheme [1, 38], which in turn implies breaking the Module-SIS problem. Prior to this work, proving
tight bounds on the ℓ2 norm of polynomial vectors with somewhat large coefficients was not very efficient,
and so constructions of group signature schemes using this approach [16, 32] did not prove (13), but rather
proved an approximate version of it as in (2) – i.e. they proved knowledge of s̄1, s̄2, c satisfying

rA | B` µGs ¨

„

s̄1
s̄2

ȷ

“ cu mod q, (15)

where }s̄i} " }si}.
A consequence of being only able to prove the above is a vicious cycle of the larger norms and the

presence of c, implying a larger extracted solution to the Module-SIS problem, which in turn requires a
larger modulus, which also requires a larger lattice dimension. Furthermore, because these schemes relied on
the verifiable encryption scheme of [31], they also did not prove (14), but rather an approximate version of
it as in (2). The implication is that in order to decrypt, the Opener needed to guess the unknown c, which
in expectation requires the same number of guesses as the adversary’s number of calls to the random oracle
during the proof. Thus special care would be needed to instantiate the scheme in an environment that would
not allow the adversary to be able to have too much time to try and forge a signature. We believe that
efficiently eliminating this requirement in all lattice-based schemes requiring a verifiable encryption scheme
is a notable improvement on the state of affairs.

Public Key Size Signature Size
Opening Time Independent
of Adversary’s Forgery Time

[32] 96KB 203KB ˆ

This Work 48KB 90KB ✓

Table 1: Our group signature and that of [32].

We compare the instantiation of the group signature from this paper to the previously most efficient one
from [32] in Table 1. We mention that there are also tree-based group signatures (e.g. [21, 11]) which have
shorter outputs for small group sizes, but have the disadvantage that the signing time, verification time, and
public key size are linear in the group size. The signature length of these schemes also grows slightly with
the group size, and for groups having more than « 221 members, our scheme has a comparable signature
size (in addition to a much smaller public key and signing/verification times).

Part of the group signature includes a verifiable encryption scheme, in which the encryptor proves that
the encryption is valid. When looked at separately, this scheme has a similar size to the one from [31], but
with the noticeable advantage of not having a dependency between the decryption time and the adversary’s
forgery time. We also give a comparison of the proof size for the basic system in (1) between our proof

11 This paper presents a verifiable decryption scheme, but the proof size for a verifiable encryption scheme constructed
in the same manner would be similar. At the very least, it needs to be as large as the proof of the basic equation
in (1).
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Proof Size

[34] 33KB

This Work 14KB

Ciphertext Size Proof Size
Decryption Time
Independent of
Forgery Time

[31] 9KB 9KB ˆ

[34]11 4KB 33 - 44KB ✓
This Work 1KB 19KB ✓

Table 2: The table on the left compares the difference in proof size of proving knowledge of short s⃗, e⃗ satisfying
As⃗ ` e⃗ “ t⃗ mod q, where A P Z1024ˆ1024

q and q « 232, and }ps⃗, e⃗q} ď
?
2048. The protocol from [34] needs to make

the additional restriction that all the coefficients in s⃗, e⃗ are from t´1, 0, 1u. The table on the right compares our
instantiation of a verifiable encryption scheme from this paper with [31] and [34].

system and the prior best one from [34] that followed the framework of [4] and [19]. The comparisons for
the verifiable encryption scheme and the basic proof system are in table 2 and detailed descriptions of the
proofs can be found in Appendices 6.2 and 6.3.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q “ q1, . . . , qn be a product of n odd primes where
q1 ă q2 ă . . . ă qn. Usually, we pick n “ 1 or n “ 2. We write v⃗ P Zm

q to denote vectors over a ring Zq.
Matrices over Zq will be written as regular capital letters R. By default, all vectors are column vectors. We
write v⃗||w⃗ for a usual concatenation of v⃗ and w⃗ (which is still a column vector). For v⃗, w⃗ P Zk

q , v⃗ ˝ w⃗ is the
usual component-wise multiplication. For simplicity, we denote u⃗2 “ u⃗ ˝ u⃗. We write x Ð S when x P S is
sampled uniformly at random from the finite set S and similarly xÐ D when x is sampled according to the
distribution D. Let rns :“ t1, . . . , nu.

For a power of two d and a positive integer p, denote R and Rp respectively to be the rings ZrXs{pXd`1q
and ZprXs{pX

d ` 1q. Lower-case letters denote elements in R or Rp and bold lower-case (resp. upper-case)
letters represent column vectors (resp. matrices) with coefficients in R or Rp. For a polynomial f P Rp,

denote f⃗ P Zd
q to be the coefficient vector of f . By default, we write its i-th coefficient as its corresponding

regular font letter subscript i, e.g. fd{2 P Zp is the coefficient corresponding to Xd{2 of f P Rp. For the

constant coefficient, however, we will denote f̃ :“ f0 P Zp. The ring R has a group of automorphisms AutpRq
that is isomorphic to Zˆ

2d. Let σi P AutpRqq be defined by σipXq “ Xi. For readability, we denote for an
arbitrary vector m P Rk:

σipmq :“ pσipm1q, . . . , σipmkqq

and similarly σipRq for any matrix R. When we write xu,vy P Z for u,v P Rk, we mean the inner product
of their corresponding coefficient vectors.

For an element w P Zq, we write }w}8 to mean |w mod˘ q|. Define the ℓ8 and ℓp norms for w “

w0 ` w1X ` . . .` wd´1X
d´1 P R as follows:

}w}8 “ max
j
}wj}8, }w}p “

p

b

}w0}
p
8 ` . . .` }wd´1}

p
8.

If w “ pw1, . . . , wmq P Rk, then

}w}8 “ max
j
}wj}8, }w}p “

p
a

}w1}
p ` . . .` }wk}

p.

By default, }w} :“ }w}2. Similarly, we define the norms for vectors over Zq. Denote Sγ “ tx P Rq : }x}8 ď

γu.
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2.2 Probabilisty Distributions

We first define the discrete Gaussian distribution used for the rejection sampling.

Definition 2.1. The discrete Gaussian distribution on Rℓ centered around v P Rℓ with standard deviation
s ą 0 is given by

Dℓ
v,spzq “

e´}z´v}
2

{2s2

ř

z1PRℓ e´}z1}2{2s2
.

When it is centered around 0 P Rℓ we write Dℓ
s “ Dℓ

0,s.

We will use the following tail bound, which follows from [5, Lemma 1.5(i)].

Lemma 2.2. Let zÐ Dm
s . Then Pr

”

}z} ą t ¨ s
?
md

ı

ă

´

te
1´t2

2

¯md

.

Next, we recall the binomial distribution.

Definition 2.3. The binomial distribution with a positive integer parameter κ, written as Binκ is the dis-
tribution

řκ
i“1pai ´ biq, where ai, bi Ð t0, 1u. The variance of this distribution is κ{2 and it holds that

Binκ1 ˘ Binκ2 “ Binκ1`κ2 .

2.3 Cyclotomic Rings

Suppose each pqiq splits into l prime ideals of degree d{l in R. This means Xd ` 1 ” φ0 . . . φl´1 pmod qiq
with irreducible polynomials φj of degree d{l modulo qi. We assume that Zq contains a primitive 2l-th root
of unity ζi P Zq but no elements whose order is a higher power of two, i.e. qi ´ 1 ” 2l pmod 4lq. Therefore,
we have

Xd ` 1 ”
l´1
ź

j“0

´

X
d
l ´ ζ2j`1

i

¯

pmod qiq (16)

where ζ2j`1
i pj P Zlq ranges over all the l primitive 2l-th roots of unity.

We recall the main result by Lyubashevsky and Seiler [37] which says that small polynomials over Rqi

are invertible.

Lemma 2.4 ([37]). Let p ” 2l ` 1 pmod 4lq be a prime. Then, any f P Rp which satisfies either 0 ă
}f}8 ă 1?

l
p1{l or 0 ă }f} ă p1{l has an inverse in Rp.

Denote Rˆ
q to be the set of invertible polynomials in Rq. Recall that a polynomial f is invertible in Rq if

and only if for each i P rns, f mod qi is invertible in Rqi . Hence, Lemma 2.4 says that if f P Rq satisfies

0 ă }f}8 ă 1?
l
q
1{l
1 or 0 ă }f} ă q

1{l
1 then f P Rˆ

q .

The ring R has a group of automorphisms AutpRq that is isomorphic to Zˆ
2d,

i ÞÑ σi : Zˆ
2d Ñ AutpRq,

where σi is defined by σipXq “ Xi. Consider σ´1 P AutpRqq. We define the following map T : ZkdˆZkd Ñ R
which given vectors a⃗ “ pa0, . . . , akd´1q and b⃗ “ pb0, . . . , bkd´1q, it outputs:

Tp⃗a, b⃗q :“
k´1
ÿ

i“0

σ´1

˜

d´1
ÿ

j“0

aid`jX
j

¸

¨

˜

d´1
ÿ

j“0

bid`jX
j

¸

P R. (17)

As briefly described in the introduction and in more detail in Section 5, we will make use of the following
simple property of T.

Lemma 2.5. Let a⃗, b⃗ P Zkd for k ě 1. Then, the constant coefficient of T
´

a⃗, b⃗
¯

is equal to x⃗a, b⃗y.

In Section 7 we show how to construct functions T with the same property for different underlying rings
than ZrXs{pXd ` 1q.
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2.4 Approximate Range Proofs

In some cases, we will not need to prove a tight bound on the norm of a vector, but it will be enough for us
to prove that its coefficients are small. The application of this proof is in showing that the inner product of
a vector is small enough that it is the same modulo q and over the integers. The intuition for obtaining such
proofs is the observation that the inner product (modulo q) of a random vector r⃗ Ð Binm1 with an arbitrary
vector w⃗ P Zm

q is less than 1
2}w⃗} with probability at most 1

2 [7]. The slightly more general lemma from [34]
that we will be using is

Lemma 2.6. Let w⃗ P Zm
q and y⃗ P Zk

q . Then

Pr
RÐBinkˆm

1

„

}Rw⃗ ` y⃗}8 ă
1

2
}w⃗}8

ȷ

ď 2´k.

For a largem, the gap between the upper bound (m¨}w⃗}8) and the lower bound ( 12 ¨}w⃗}8) is a factor ofm.
One can probabilistically lower it to Op

?
mq, but there is a way to get a constant-size gap by considering the

ℓ2-norm. A well-known result of Johnson and Lindenstrauss says that any set of k points in m-dimensional
Euclidean space can be embedded into a much smaller ℓ-dimensional Euclidean space, where ℓ “ Oplogmq
and independent of k, so that all pairwise distances are preserved within an arbitrarily small factor. In
practical scenarios, such embeddings are simply random projections.

Recently, Gentry et al. [23] applied this result in the context of proving shortness of a committed vector
w⃗ P Zm. Concretely, the idea is to choose a random rectangular matrix R Ð Bin256ˆm

2 and prove that the
projection v⃗ “ Rw⃗ with respect to R has small norm. When m not too small, substituting the continuous
normal distribution by a binomial one (with the same variance) should heuristically result in very similar
tail bounds. In [23], arguments regarding the moments of Bin1 and experimental results were used to support
this heuristic. Using the fact that the distribution }R ¨ 1d}, where entries of R are chosen from the normal
distribution with mean 0 and variance κ{2, is the scaled χ2 distribution with 256 degrees of freedom, i.e.
κ
2m ¨χ

2r256s, we obtain the following (heuristic) generalization of [23][Corollary 3.2] (we only use this lemma
for the case of κ “ 1, 2).

Lemma 2.7. Under the heuristic substitution of Binκ with the normal distribution of variance κ{2, for any
w⃗ P Zm,

1. Pr
RÐBin256ˆm

κ

“

}Rw⃗}2 ă }w⃗}2 ¨ 13 ¨ κ
‰

« Pr
yÐχ2r256s

ry ă 26s ď 2´256

2. Pr
RÐBin256ˆm

κ

“

}Rw⃗}2 ą }w⃗}2 ¨ 337 ¨ κ
‰

« Pr
yÐχ2r256s

ry ą 674s ď 2´128.

Gentry et al. construct a proof for the shortness of a long vector w⃗ P Zm
q as follows. They first commit

to the random projection v⃗ :“ Rw⃗ P Z256
q , where RÐ Bin256ˆm

1 , and prove that the norm of v⃗ is small and

that v⃗ is a projection of w⃗. Then, [23][Corollary 3.3] says that if }v⃗} ă b
?
30, where b ď q{p45mq, then we

must have }w⃗} ď b (with an overwhelming probability). In our protocols, we will need a modified version
of this result which says that for every vector y⃗ P Z256

q , if }Rw⃗ ` y⃗} is small then we must have that }w⃗}
is small. Even though we believe this generalisation is true for the constants described in [23][Corollary 3.3]
(and a generalization for the analogous result in the ℓ8 norm is true [35]), we don’t know how to extend the
proof to this setting. We thus provide a modified proof which results in slightly worse bounds.

Lemma 2.8. Fix m,P P N and a bound b ď P {41m, and let w⃗ P r˘P {2sm with }w⃗} ě b, and let y⃗ be an
arbitrary vector in r˘P {2sm. Then

Pr
RÐBin256ˆm

1

„

}Rw⃗ ` y⃗ mod P } ă
1

2
b
?
26

ȷ

ă 2´128.

Proof. We first prove an analogous result to [23][Corollary 3.3] with error 2´256 rather than 2´128.
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Lemma 2.9. Fix m,P P N and a bound b ď P {41m, and let w⃗ P r˘P {2sm with }w⃗} ě b. Then

Pr
RÐBin256ˆm

2

r}Rw⃗ mod P } ă b
?
26s ă 2´256.

Proof. We have two cases:

– The first case is when }w⃗}8 ě P {4m. Let i be an index of an entry in w⃗ with magnitude at least P {4m,
and consider any row of R (denoted r⃗): After choosing all but the i’th entry in r⃗, at most one of the
three values t0,˘1u yields |xw⃗, r⃗y mod P | ă P {8m. Since the total probability of any two of those is at
least 1{2 (i.e. Prr0s “ 3{8 and Prr˘1s “ 1{4), we have that the probability that all the rows of R yield
entries smaller than P {8m is at most p1{2q256. Since b ď P {41m then P {8m ą b

?
26 and therefore

Pr
RÐBin256ˆm

2

r}Rw⃗ mod P } ă b
?
26s ď Pr

R
r}Rw⃗ mod P } ă P {8ms ď 2´256.

– The second case is when }w⃗}8 ă P {4m. Here with probability one we have Rw⃗ P r˘P {2s256, so mod-P
reduction has no effect and the assertion follows directly from Lemma 2.7.

[\

We now use the above Lemma to prove Lemma 2.8. Suppose for contradiction that for some w⃗, y⃗,

Pr
RÐBin256ˆm

1

„

}Rw⃗ ` y⃗ mod P } ă
1

2
b
?
26

ȷ

ě 2´128.

This implies that

Pr
R1,R2ÐBin256ˆm

1

„

}R1w⃗ ` y⃗ mod P } ă
1

2
b
?
26 ^ }R2w⃗ ` y⃗ mod P } ă

1

2
b
?
26

ȷ

ě 2´256.

By the triangle inequality (which holds even modulo P ), we have

Pr
R1,R2ÐBin256ˆm

1

”

}pR1 ´R2qw⃗ mod P } ă b
?
26

ı

ě 2´256.

Since the distribution of R1 ´R2 is exactly Bin256ˆm
2 , the above implies that

Pr
RÐBin256ˆm

2

”

}Rw⃗ mod P } ă b
?
26

ı

ě 2´256,

which is a contradiction with the statement of Lemma 2.9. [\

2.5 Module-SIS and Module-LWE Problems

Security of the [6] commitment scheme used in our protocols relies on the well-known computational lattice
problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) [25]. Both problems are defined over Rq.

Definition 2.10 (MSISκ,m,B). Given A Ð Rκˆm
q , the Module-SIS problem with parameters κ,m ą 0 and

0 ă B ă q asks to find z P Rm
q such that Az “ 0 over Rq and 0 ă }z} ď B. An algorithm A is said to have

advantage ϵ in solving MSISκ,m,B if

Pr
“

0 ă }z} ď B ^ Az “ 0
ˇ

ˇAÐ Rκˆm
q ; zÐ ApAq

‰

ě ϵ.

Definition 2.11 (MLWEm,λ,χ). The Module-LWE problem with parameters m,λ ą 0 and an error distri-
bution χ over R asks the adversary A to distinguish between the following two cases: 1) pA,As ` eq for
A Ð Rmˆλ

q , a secret vector s Ð χλ and error vector e Ð χm, and 2) pA, bq Ð Rmˆλ
q ˆRm

q . Then, A is
said to have advantage ϵ in solving MLWEm,λ,χ if

ˇ

ˇPr
“

b “ 1
ˇ

ˇAÐ Rmˆλ
q ; sÐ χλ; eÐ χm; bÐ ApA,As` eq

‰

(18)

´ Pr
“

b “ 1
ˇ

ˇAÐ Rmˆλ
q ; bÐ Rm

q ; bÐ ApA, bq
‰
ˇ

ˇ ě ϵ.
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We also recall the (simplified) Extended Module-LWE problem [34].

Definition 2.12 (Extended-MLWEm,λ,χ,C,s). The Extended Module-LWE problem with parametersm,λ ą
0, probability distribution χ over Rq, challenge space C Ď Rq and the standard deviation s asks the adversary
A to distinguish between the following two cases:

1. pB,Br, c, z, sign pxz, cryqq for BÐ Rmˆpm`λq
q , a secret vector rÐ χm`λ and zÐ D

pm`λqd
s , cÐ C

2. pB,u, c, z, sign pxz, cryqq for BÐ Rmˆpm`λq
q ,uÐ Rm

q , zÐ D
pm`λqd
s , cÐ C,

where signpaq “ 1 if a ě 0 and 0 otherwise. Then, A is said to have advantage ϵ in solving Extended-
MLWEm,λ,χ,C,s if

ˇ

ˇ

ˇ
Pr

”

b “ 1
ˇ

ˇ

ˇ
BÐ Rmˆpm`λq

q ; rÐ χm`λ; zÐ D
pm`λqd
s ; cÐ C; bÐ ApB,Br, z, c, sq

ı

´ Pr
”

b “ 1
ˇ

ˇ

ˇ
BÐ Rmˆλ

q ; uÐ Rm
q ; zÐ D

pm`λqd
s ; cÐ C ; bÐ ApB,u, z, c, sq

ı
ˇ

ˇ

ˇ
ě ϵ.

where s “ sign pxz, cryq.

2.6 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z whose distribution should
be independent of a secret message/randomness vector r, so that z cannot be used to gain any information
on the prover’s secret. During the protocol, the prover computes z “ y` cr where r is either a secret vector
or randomness used to commit to the prover’s secret, cÐ C is a challenge polynomial, and y is a “masking”
vector. In order to remove the dependency of z on r, one applies rejection sampling [29].

Lemma 2.13 (Rejection Sampling [29, 17, 34]). Let V Ď Rℓ be a set of polynomials with norm at most
T and ρ : V Ñ r0, 1s be a probability distribution. Fix the standard deviation s “ γT . Then, the following
statements hold.

1. Let M “ expp12{γ`1{p2γ2qq. Now, sample vÐ ρ and yÐ Dℓ
s, set z “ y`v, and run bÐ Rej1pz,v, sq

as defined in Fig. 1. Then, the probability that b “ 0 is at least p1 ´ 2´100q{M and the distribution of
pv, zq, conditioned on b “ 0, is within statistical distance of 2´100 of the product distribution ρˆDℓ

s.
2. Let M “ expp1{p2γ2qq. Now, sample v Ð ρ and y Ð Dℓ

s, set z “ y ` v, and run b Ð Rej2pz,v, sq
as defined in Fig. 1. Then, the probability that b “ 0 is at least 1{p2Mq and the distribution of pv, zq,
conditioned on b “ 0, is identical to the distribution F where F is defined as follows: sample v Ð ρ,
zÐ Dld

s conditioned on xv, zy ě 0 and output pv, zq.
3. Let M “ expp1{p2γ2qq. Now, sample v Ð ρ, β Ð t0, 1u and y Ð Dℓ

s, set z “ y ` p´1qβv, and run
bÐ Rej0pz,v, sq as defined in Fig. 2. Then, the probability that b “ 0 is at least 1{M and the distribution
of pv, zq, conditioned on b “ 0, is identical to the product distribution ρˆDℓ

s.

Rej1pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1
M

¨ exp
´

´2xz⃗,v⃗y`}v⃗}2

2s2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Rej2pz⃗, v⃗, sq

01 If xz⃗, v⃗y ă 0
02 return 1 (i.e. reject)
03 u Ð r0, 1q

04 If u ą 1
M

¨ exp
´

´2xz⃗,v⃗y`}v⃗}2

2s2

¯

05 return 1 (i.e. reject)
06 Else
07 return 0 (i.e. accept)

Fig. 1: Two rejection sampling algorithms: the one used generally in previous works [29] (left) and the one proposed
recently in [34] (right).
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We recall how parameters s and M in the first statement Lemma 2.13 are selected. Concretely, the
repetition rate M is chosen to be an upper-bound on:

Dℓ
spzq

Dℓ
v,spzq

“ exp

ˆ

´2xz,vy ` }v}2

2s2

˙

ď exp

ˆ

24s}v} ` }v}2

2s2

˙

“M. (19)

For the inequality we used the which says that with probability at least 1 ´ 2100 we have |xz,vy| ă 12s}v}
for zÐ Dℓ

s [5, 29]. Hence, by setting s “ 11}v} we obtain M « 3.

Recently, Lyubashevsky et al. [34] proposed a modified rejection sampling algorithm (see Rej2pz,v, sq in
Fig. 1) where it forces z to satisfy xz,vy ě 0, otherwise it aborts. With this additional assumption, we can
set M in the following way:

exp

ˆ

´2xz,vy ` }v}2

2s2

˙

ď exp

ˆ

}v}2

2s2

˙

“M. (20)

Hence, for M « 3 one would select s “ 0.675 ¨ }v}. Note that the probability for z Ð Dℓ
s that xz,vy ě 0

is at least 1{2. Hence, the expected number of rejections would be at most 2M “ 6. On the other hand, if
one aims for M “ 6 repetitions using (19), then s “ 6.74 ¨ }v}. Thus, [34] manages to reduce the standard
deviation by around a factor of 10. Further, we remark that this method is still not as efficient as using
bimodal Gaussians [17], since even though the value M is calculated exactly as in (20), the expected number
of rejections is at most M and not 2M . We summarise the results from [17, 34] in the latter two statements
of Lemma 2.13.

Rej0pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1

M exp

ˆ

´
}v⃗}2

2s2

˙

cosh
´

xz⃗,v⃗y

σ2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Fig. 2: Bimodal rejection sampling [17].

Finally, we highlight that the procedure in the second statement of Lemma 2.13 reveals the sign of xz,vy.
This is still fine when working with “one-time commitments” [34] since we only leak one bit of information
if v is a randomness vector which is generated every execution. However, secure signature schemes cannot
be produced using this method because each generation of a signature reveals some information about the
secret key.

By using this technique, zero-knowledge property (or rather commit-and-prove simulatability as described
in later sections) of our protocols relies on the (simplified) Extended-MLWE problem [34] where the adversary
is given the additional one bit of information about the secret. We describe this problem in Section 2.5.

2.7 Challenge Space

In our applications, the set V Ď Rℓ will consist of vectors of the form cr where c P Rq is sampled from a
challenge space C and r P Rℓ

q comes from a set of secret (either randomness or message) vectors. In order
to set the standard deviation for rejection sampling, we need to bound the norm of such vectors. Here, we
present a way to bound }cv} which stems from the analysis in [34][Appendix C].

Lemma 2.14. Let r P Rℓ
q and c P Rq. Then }cr} ď

a

}σ´1pcqc}}r}.
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Proof. Denote r “ pr1, . . . , rℓq P Rℓ
q and C :“ rotpcqT rotpcq. Then,

}cr}2 “
ℓ

ÿ

i“1

}cri}
2 “

ℓ
ÿ

i“1

}rotpcqr⃗i}
2 “

ℓ
ÿ

i“1

r⃗Ti rotpcq
T rotpcqr⃗i

“

ℓ
ÿ

i“1

r⃗Ti Cr⃗i

“

ℓ
ÿ

i“1

ÿ

ι,jPrds

Cι,jri,ιri,j .

Now, we observe that C “ rotpσ´1pcqcq is skew-circulant and thus for each j P rds we have:

|C1,j | “ |C2,j`1| “ . . . “ |Cd´j`1,d| “ |Cd´j`2,1| “ . . . “ |Cd,j´1|.

Thus, by the rearrangement inequality we get

ℓ
ÿ

i“1

ÿ

ι,jPrds

Cι,jri,ιri,j ď
ℓ

ÿ

i“1

ÿ

jPrds

|C1,j | p|ri,1ri,j | ` |ri,2ri,j`1| ` . . .` |ri,dri,j´1|q

ď

ℓ
ÿ

i“1

ÿ

jPrds

|C1,j |
`

r2i,1 ` . . .` r
2
i,d

˘

ď

ℓ
ÿ

i“1

}σ´1pcqc}1 ¨ }r⃗i}
2 “ }σ´1pcqc}1 ¨ }r}

2.

[\

In order to apply this lemma, we set the challenge space C as:

C :“ tc P Sσ
κ :

a

}σ´1pcqc}1 ď ηu (21)

where
Sσ
κ :“ tc P Sκ : σpcq “ cu . (22)

and the σ P AutpRqq will be specified in our protocols. Also, we denote C̄ :“ tc ´ c1 : c, c1 P C and c ‰ c1u

to be the set of differences of any two distinct elements in C. In practice, σ P tσ1, σ´1u. We will choose the
constants η such that (experimentally) the probability for c Ð Sσ

κ to satisfy
a

}σ´1pcqc}1 ď η is at least
99%. In our experiments, we observe that the bounds in Lemma 2.14 are about 4´6X larger than the actual
norms }cr}.

For security of our protocols, we need κ ă 1
2

?
l
q
1{l
1 to ensure the invertibility property of the challenge

space C, i.e. the difference of any two distinct elements of C is invertible over Rq where l is the number of
factors that Xd`1 splits into modulo q. Indeed, this property follows from the main result by Lyubashevsky
and Seiler [37]. Secondly, to achieve negligible soundness error under the MSIS assumption, we will need |C|
to be exponentially large. In Table 3 we propose example parameters to instantiate the challenge space C
for different automorphisms σ. Finally, for implementation purposes, in order to sample from C, we simply
generate cÐ Sσ

κ and check whether
a

}σ´1pcqc}1 ď η.

Remark 2.15. One could further reduce the value for η by letting the challenge be picked from Sσ
κ according

to a different distribution than uniform as long as its min-entropy is at least 128. For example, if σ “ σ´1 and
we sample the first d{2 polynomial coefficient from distribution D such that Dp0q “ Dp1q “ Dp´1q “ 1{4
and Dp2q “ Dp´2q “ 1{8 12, then η “ 60. Hence, the improvement is not significant compared to the uniform
case.
12 The other ones are uniquely determined by the condition σpcq “ c.
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σ d l κ η |Sσ
κ | |C|

σ1 128 8 1 37 2202 2201

σ´1 128 4 2 72 2148 2147

Fig. 3: Example parameters to instantiate the challenge space C :“ tc P Sκ : σpcq “ c ^
a

}σ´1pcqc}1 ď ηu for a
modulus q such that its smallest prime divisor q1 is greater than 220.

Setting the Standard Deviation. By definition of the challenge space C and Lemma 2.14, if we know
that }r} ď α, then we can set the standard deviation s :“ γηα where γ ą 0 defines the repetition rate M .
On the other hand, if }r}8 ď ν, e.g. because rÐ Sℓ

ν , then we can set s :“ γνη
?
ℓn.

3 The ABDLOP Commitment Scheme and Proofs of Linear Relations

In this section we formally present the ABDLOP commitment scheme together with ZKPoK of the committed
messages. In the same protocol, we also include a proof of knowledge that the committed messages satisfy
some arbitrary linear relations over Rq (Figure 4). We then show how one can use this commitment scheme
and proof of knowledge to prove knowledge of linear relations over Zq (Figure 5). This latter proof is best
modeled as a commit-and-prove protocol because it will be creating some intermediate commitments under
the same randomness, which cannot be simulated. In particular, what we prove is that the view, for all
possible committed messages, is computationally indistinguishable from commitments to 0.

3.1 The ABDLOP Commitment Scheme

Figure 4 presents the ABDLOP commitment scheme, which commits to messages s1 andm, using randomness
s2, and then proves knowledge of these messages and that they satisfy the relation R1s1 `Rmsm “ u. The
challenge space C is as in (21). The standard deviations s1 and s2 are set as in Section 2.6 so as to provide
a balance between the running time of the algorithm (the lower the values, the higher the probability that
the protocol will need to be repeated) and the security of the commitment scheme based on the hardness of
the MSIS problem (the higher the values, the easier the problem becomes). Because the most common way
in which our commitment scheme will be used involves committing to some values, proving that they satisfy
some relations, and then never using the commitment again, we use a more efficient rejection sampling (Rej2
in Figure 1) from [34], which ends up leaking one bit of the secret, on the randomness part of the commitment
(i.e. s2). If one will not be throwing out this commitment, then one should use Rej1 for everything.

The hiding property of the commitment scheme follows from the MLWE problem when s2 is chosen

from some distribution such that

ˆ„

A2

B

ȷ

,

„

A2

B

ȷ

¨ s2

˙

is indistinguishable from uniform. The zero-knowledge

property of the protocol follows from the standard argument from [29, 34] showing that z1, z2 are distributed
according to Dm1

s1 and Dm2
s2 (possibly with 1 bit of leakage for the latter) independent of s1 and s2. The

correctness of the protocol then follows due to the fact that mid-dimensional integer vectors sampled from a
discrete Gaussian with standard deviation si has norm at most si

?
2mid with overwhelming probability [5].

The commitment opening needs to be defined to be whatever one can extract from the protocol. Since the
protocol is an approximate proof of knowledge, it does not prove knowledge of s1, s2 satisfying A1s1`A2s2 “
tA, but instead an approximate proof as in (2). Lemma 3.1 states that under the assumption that the Module-
SIS problem is hard, the extracted values ps̄1, s̄2q are unique and they satisfy the desired linear equation
R1s̄1 ` RmptB ´ Bs̄2q “ u, where m is implicitly defined as tB ´ Bs̄2. The last statement proved in
the Lemma shows, as in [4], that not only are the extracted commitments si, unique but also zi ´ cs̄i is
uniquely determined by the first two moves of the protocol. This is crucial to efficiently proving knowledge
of polynomial products later in the paper.

As far as the communication complexity of the protocol, it is important to note that in the real protocol,
one would not actually send w and v, but instead send their hash. Then one would verify the hash of the
equalities. Therefore proving linear relations over Rq is not any more costly, communication-wise, than just
proving knowledge of the committed values. We don’t write the hashes in our protocols because when they
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eventually get converted to non-interactive ones using the Fiat-Shamir transform, the hashes will naturally
enter the picture.

We will refer to the protocol in Figure 4 as Π
p1q
many pps2, s1,mq, pf1, f2, . . . , fN qq, where the fi are linear

functions mapping ps1,mq to Rq such that fips1,mq “ 0, represented by the rows of R1,Rm, and u.

Lemma 3.1. The protocol in Figure 4 is a proof of knowledge of ps̄1, s̄2, c̄q P Rm1
q ˆRm2

q ˆ C̄ satisfying

1. A1s̄1 `A2s̄2 “ tA
2. }s̄ic̄} ď 2si

?
2mid for i “ 1, 2

3. R1s̄1 `RmptB ´Bs̄2q “ u

Furthermore, under the assumption that MSISn,m1`m2,B is hard for B “ 8η
a

s212m1d` s222m2d,

4. This ps̄1, s̄2q is unique
5. For any two valid transcripts pw,v, c, z1, z2q and pw,v, c

1, z1
1, z

1
2q, it holds that zi ´ cs̄i “ z1

i ´ c
1s̄i.

Private information: ps1,m, s2q P Rm1`m2`ℓ
q so that }s1} ď α and }s2}8 ď ν

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q , R1 P RNˆm1

q , Rm P RNˆℓ
q ,

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,u “ R1s1 ` Rmm

Prover Verifier

y1 Ð Dm1
s1

y2 Ð Dm2
s2

w :“ A1y1 ` A2y2

v :“ R1y1 ´ RmBy2
w,v -

c Ð C
c�

z1 :“ cs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :
if 1 Ð Rejipzi, csi, siq
then z1, z2 :“ K

z1, z2 -
Accept iff:

1. z1 ď s1
?
2m1d, z2 ď s2

?
2m2d

2. A1z1 ` A2z2 ´ ctA “ w
3. R1z1 ` RmpctB ´ Bz2q ´ cu “ v

Fig. 4: Proof of knowledge Π
p1q
many pps2, s1,mq, pf1, f2, . . . , fN qq of ps1, s2, c̄q P Rm1

q ˆ Rm2
q ˆ C̄ satisfying (i) A1s1 `

A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 and (iii) fips1,mq “ 0 for i P rN s where each

f1, . . . , fN : Rm1`ℓ
q Ñ Rq is a linear function. The linear functions fi are represented by the corresponding rows of

matrices u,R1,Rm and prove u “ R1s1 ` Rmm where RNˆm1
1 ,RNˆℓ

m ,u P RN
q are public.

Proof. Let pw,v, c, z1, z2q and pw,v, c
1, z1

1, z
1
2q be two accepting transcripts which are obtained via rewinding

the prover who sends w,v in the first step. Because the transcripts are accepting, they satisfy the second
verification equation, and by subtracting the two equalities, we obtain

A1z̄1 `A2z̄2 ´ c̄tA “ 0, (23)

where z̄i “ zi ´ z1
i and c̄ “ c ´ c1. Dividing the above equation by c̄, we obtain Lemma statement 1 where

s̄i “ z̄i{c̄. Because the first verification checks that zi ď si
?
2mid, we know that z̄i ď si

?
2mid, and so
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Lemma statement 2 is satisfied. By subtracting the two equalities satisfying the third verification equation,
we obtain

R1z̄1 `Rmpc̄tB ´Bz̄2q ´ c̄u “ 0. (24)

Dividing by c̄ and plugging in s̄i “ z̄i{c̄, we get Lemma statement 3.
Now suppose that the extractor extracts another triplet ps̄1

1, s̄
1
2, c̄

1q with ps̄1, s̄2q ‰ ps̄
1
1, s̄

1
2q, which, as we

already proved, must satisfy the first two statements of the lemma. Then we have

A1s̄1 `A2s̄2 “ A1s̄
1
1 `A2s̄

1
2, (25)

and multiplying the above by c̄c̄1 yields

A1ps̄1 ´ s̄1
1qc̄c̄

1 `A2ps̄2 ´ s̄1
2qc̄c̄

1 “ 0. (26)

‘By Lemma condition 2, we know that s̄ic̄, s̄
1
ic̄

1 ď 2si
?
2mid, and so the above can be rewritten as

A1pz̄1c̄
1 ´ z̄1

1c̄q `A2pz̄2c̄
1 ´ z̄1

2c̄q “ 0, (27)

where z̄i, z̄
1
i ď 2si

?
2mid. By Lemma 2.14, multiplication by c P C increases the ℓ2 norm by a factor of

η, where η is defined in Figure 3. Thus multiplication by c̄ P C̄ increases the norm by a factor of 2η, and
thus z̄ic̄

1 ´ z̄1
ic̄ ď 8ηsi

?
2mid. If MSISn,m1`m2,B is hard for B “ 8η

a

s212m1d` s222m2d, it implies that
z̄ic̄

1 ´ z̄1
ic̄ “ 0, which means that s̄i “ z̄i{c̄ “ z̄1

i{c̄
1 “ s̄1

i, and this proves Lemma statement 4.
To prove Lemma statement 5, suppose that zi´ cs̄i “ z1

i´ c
1s̄i` r for some r. Then, we can rewrite this

as z̄i{c̄ “ s̄i ` r{c̄. Since we already proved that z̄i{c̄ “ s̄i, and the s̄i are unique, it means that r “ 0. [\

3.2 Linear Proofs over Zq

In this section we show how to transform the protocol from Figure 4 which proves that committed values
satisfy a linear relation over Rq into one that proves knowledge of the constant coefficient of a linear relation
overRq (Figure 5). As shown in the introduction and Section 7, the inner product between two integer vectors
appears in the constant coefficient of the polynomial product of two polynomials derived from these vectors.
Thus proving knowledge that the constant coefficient of some linear function over Rq is 0 is equivalent to
proving knowledge that the output of a linear function over Zq is 0.

While it may see like proving knowledge of just the constant coefficient of a linear function over Rq should
not be much different than proving knowledge of the entire linear function as in Figure 4, the protocols do
have some important differences. The main difference is that due to the need to mask all but the constant
coefficient, we will need to create additional commitments during the proof. The most efficient way to
do this is to append these commitments to the BDLOP part of the commitment scheme using the public
randomness Bg in Figure 5. The implication of needing to append committed values is that one can no longer
reuse the commitment tA, tB since every run of the protocol essentially reveals more information about the
randomness s2. Thus, instead of proving that the protocol is zero-knowledge, we show that the protocol is
of a “commit-and-prove” type, where the security requirement is that the view of the commitment and the
protocol output is computationally indistinguishable for all committed messages. All the other protocols in
this paper also have this characteristic. This does not pose any problems for applications because the way
we use a commitment scheme is in an auxiliary way to aid in proving that the value we care about satisfies
some relations. Thus the commitment never needs to be reused.

The protocol begins by picking masking values gi P Rq, which are uniformly random everywhere except
in the constant coefficient, in which they are 0. These values are then appended to the commitment of m as
tg “ Bgs2 ` g and then sent to the verifier. The verifier picks λ random challenges for each of the M linear

functions and the prover computes hj “ gj `
M
ř

u“1
γj,uFu ps1,mq for each of the λ different j. Notice that the

preceding are now linear functions

fjps1,m||gq :“ gj `
M
ÿ

u“1

γj,uFu ps1,mq ´ hj (28)
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,Bg P Rλˆm2

q ,
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

, linear functions F1, . . . , FM : Rm1`ℓ
q Ñ Rq

Prover Verifier

g :“ pg1, . . . , gλq Ð tx P Rq : x0 “ 0u
λ

tg :“ Bgs2 ` g
tg -

pγj,uq Ð ZλˆM
q

pγj,uqjPrλs,uPrMs�
for j P rλs :

hj :“ gj `
M
ř

u“1

γj,uFu ps1,mq

define function fj as in (28)
h1, . . . , hλ-

run Π :“ Π
p1q
many pps2, s1,m||gq, pf1, . . . , fλqq Accept iff :

Π verifies and

@j P rλs, h̃j “ 0

Fig. 5: Commit-and-prove protocol Π
p1q

eval pps2, s1,mq, pF1, F2, . . . , FM qq for messages ps1,mq P Rm1`ℓ
q , randomness

s2 P Rm2
q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 (si are

from Figure 4) and (iii) linear functions F1, . . . , FM : Rm1`ℓ
q Ñ Rq for which all the evaluations rFu ps1,mq “ 0.

Here, we assume that the commitment ptA, tBq was generated honestly and already sent by the prover. In particular,
s2 Ð χm2 .

over committed inputs s1,m||g. The prover completes the proof by sending the hj , which completes the
description of the functions, and begins the protocol in Figure 4 for proving that fjps1,m||gq “ 0. The
verifier accepts if the constant coefficient of hj is 0 and the proof from Figure 4 is valid.

We now sketch the security and soundness properties of the protocol. This protocol is a warm-up for
the full one in Figure 8 which proves knowledge of the constant coefficient of quadratic (rather than linear)
functions over Rq, and so we do not give a complete proof for it. To see that the view of the protocol is com-
putationally indistinguishable for all messages s1,m, we first observe that the full commitment that includes

g is indistinguishable from uniform based on (Extended)-Module-LWE as long as

¨

˝

»

–

A2

B
Bg

fi

fl ,

»

–

A2

B
Bg

fi

fl ¨ s2

˛

‚ is

indistinguishable from uniform when s2 Ð χm2 . To simulate the protocol, the simulator can simply pick
tg uniformly at random and also choose h1, . . . , hλ at random (but having the first coefficient being 0). He
can then simulate the protocol from figure 4 on the commitment ptA, tB , tgq and functions fj . Thus the
distribution is computationally indistinguishable from the correct one and is independent of the messages
s1,m.

To show that this protocol indeed proves that ĂFups1,mq “ 0, notice that the probability over the

challenges γj , u that the equation hj “ gj `
M
ř

u“1
γj,uFu ps1,mq is satisfied when rhj “ 0 and yet some

ĂFu ps1,mq ‰ 0 is at most 1{q1, where q1 is the smallest prime factor of q. The above holds because the values
s1,m, and g were committed to prior to the verifier sending the challenges. The latter, as well as the fact
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that the linear equations fj are satisfied, is proved by the protocol Π
p1q
many pps2, s1,m||gq, pf1, . . . , fλqq. The

soundness error of the protocol is therefore q´λ
1 .

4 Proofs of Quadratic Relations

In this section we show how to prove various quadratic equations between committed messages using the
ABDLOP commitment. More concretely, suppose we have message vectors s1 P Rm1

q and m P Rℓ
q such that

}s1} ď α. Let σ P AutpRqq be a public automorphism over R of degree k and for presentation purposes
define:

pσipxqqiPrks :“ px, σpxq, . . . , σ
k´1pxqq P Rka

q

for arbitrary vector x P Ra
q . Then, we consider the following statements:

– Single quadratic equation with automorphisms. For a public kpm1 ` ℓq-variate quadratic function f over
Rq,

f
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0.

– Many quadratic equations with automorphisms. For N public kpm1 ` ℓq-variate quadratic functions
f1, . . . , fN over Rq,

fj
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 for j P rN s.

– Many quadratic equations with automorphisms and a proof that polynomial evaluations have no constant
coefficients. For N `M public kpm1` ℓq-variate quadratic functions f1, . . . , fN and F1, . . . , FM over Rq,
the following hold:
‚ fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 for j P rN s,

‚ let xj :“ Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

P Rq for j P rM s. Then x̃1 “ . . . “ x̃M “ 0.

Remark 4.1. Similarly as for [4], our techniques can be easily generalized to prove higher degree relations.
Concretely, if we want to prove degree k equations, we end up committing to k´1 additional garbage terms.
Throughout this paper (apart from Section 6.5), however, we will only consider quadratic relations.

4.1 Single Quadratic Equation with Automorphisms

Let ptA, tBq be the commitment to the message pair ps1,mq under randomness s2, i.e.

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

.

Suppose the prover wants to prove knowledge of the message

s “

„

pσips1qqiPrks

pσipmqqiPrks

ȷ

P Rkpm1`ℓq
q

such that fpsq “ 0 where f is a kpm1` ℓq-variate quadratic function over Rq. Note that each function f can
be written explicitly as:

fpsq “ sTR2s` rT1 s` r0

where r0 P Rq, r1 P Rkpm1`ℓq
q and R2 P Rkpm1`ℓqˆkpm1`ℓq

q .
In order to prove this relation, let us consider the protocol for proving linear equations over Rq in Fig.

4. In the last round, the honest prover sends the masked openings zi “ csi ` yi of si for i “ 1, 2 where the
challenge space C is defined as in (21) with the σ automorphism. Even though this is not the case for m, we
can define the masked opening of m as

zm :“ ctB ´Bz2 “ cm´By2.
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By construction, zm can be computed by the verifier.
Define the following vectors y and z:

y :“

„

pσipy1qqiPrks

´pσipBy2qqiPrks

ȷ

P Rkpm1`ℓq
q (29)

and

z :“

„

pσipz1qqiPrks

pσipzmqqiPrks

ȷ

“ c

„

pσips1qqiPrks

pσipmqqiPrks

ȷ

`

„

pσipy1qqiPrks

´pσipBy2qqiPrks

ȷ

“ cs` y. (30)

Here we used the fact that for c P C, σpcq “ c. Then, we have

zTR2z` cr
T
1 z` c

2r0 “ c2
`

sTR2s` rT1 s` r0
˘

` cg1 ` g0 (31)

where polynomials g1 and g0 are defined as:

g1 “ sTR2y ` yTR2s` rT1 y, g0 “ yTR2y.

Hence, we want to prove that the quadratic term in the expression zTR2z ` crT1 z ` c2r0 vanishes. This is
done by first sending a commitment t to the polynomial g1, i.e. t “ bT s2`g1 as well as v :“ g0`bTy2 in the
clear. Then, given t and the masked opening z2 of s2, the verifier can compute f “ ct´bT z2 “ cg1´bTy2.
Finally, it checks whether

zTR2z` cr
T
1 z` c

2r0 ´ f
?
“ v

which is a simple transformation of (31) when sTR2s` rT1 s` r0 “ 0.
We present the full protocol in Fig. 6 which follows the commit-and-prove paradigm [14, 34]. Namely, we

assume the prover has already sent the commitments tAtB to the verifier using fresh randomness s2 Ð χm2 .
Prover starts by sampling masking vectors y1 Ð Dm1

s1 ,y2 Ð Dm2
s and computing w “ A1y1 `A2y2. Then,

it calculates g1 “ sTR2y` yTR2s` rT1 y, where y is defined in (29), and the commitment t “ bT s2 ` g1 to
g1. Finally, the prover sets v “ yTR2y ` bTy2 and sends w, t, v to the verifier.

Next, given a challenge c Ð C, the prover computes zi “ csi ` yi for i “ 1, 2 and applies rejection
sampling. If it does not abort, the prover outputs z1, z2.

Eventually, the verifier checks whether z1 and z2 have small norms, A1z1 ` A2z2 “ w ` ctA and
zTR2z` cr

T
1 z` c

2r0 ´ f “ v where z is defined in (30) and f is defined as f “ ct´ bT z2.

Security Analysis. We summarise security properties of the protocol in Fig. 6 below.

Theorem 4.2. Consider the protocol in Fig. 6 and let χ “ Sν . Suppose s1 “ γ1αη and s2 “ γ2νη
?
m2d for

some γ1, γ2 ą 0 where η is chosen as in Section 2.7.
For completeness, if m1,m2 ě 512{d then the honest prover P convinces the honest verifier V with

probability

« 2 exp

ˆ

12

γ1
`

1

2γ21
`

1

2γ22

˙

.

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment ptA, tBq along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing the
simulated commitment and transcript from the real commitment and transcript, whenever the prover does not
abort, there is an algorithm A1 with the same running time that has advantage ε{2´ 2´100 in distinguishing
the Extended-MLWEn`ℓ`1,m2´n´ℓ´1,χ,C,s2 .

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a probabilistic prover P˚, which convinces V with probability ε ě 2{|C|, E either outputs ps̄2, s̄1, m̄q P
Rm1`m2`ℓ

q and c̄ P Rˆ
q such that

–

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,b P Rm2

q
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

r0 P Rq, r1 P Rkpm1`ℓq
q ,R2 P Rkpm1`ℓqˆkpm1`ℓq

q , σ P AutpRqq

sTR2s ` rT1 s ` r0 “ 0

Prover Verifier

s :“

„

pσi
ps1qqiPrks

pσi
pmqqiPrks

ȷ

y1 Ð Dm1
s1

y2 Ð Dm2
s2

w :“ A1y1 ` A2y2

y :“

„

pσi
py1qqiPrks

´pσi
pBy2qqiPrks

ȷ

g1 :“ sTR2y ` yTR2s ` rT1 y
t :“ bT s2 ` g1
v :“ yTR2y ` bTy2

w, t, v -
c Ð C

c�
z1 :“ cs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :
if 1 Ð Rejipzi, csi, siq
then z1, z2 :“ K

z1, z2 -

z :“

„

pσi
pz1qqiPrks

pσi
pctB ´ Bz2qqiPrks

ȷ

f :“ ct ´ bT z2
Accept iff

}z1} ď s1
?
2m1d and

}z2} ď s2
?
2m2d and

A1z1 ` A2z2 “ w ` ctA and
zTR2z ` crT1 z ` c2r0 ´ f “ v

Fig. 6: Commit-and-prove protocol Πp2q
pps2, s1,mq, σ, fq for messages ps1,mq P Rm1`ℓ

q , randomness s2 P Rm2
q

and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 and (iii)

f
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 where function f : Rkpm1`ℓq
q Ñ Rq is defined as fpxq :“ xTR2x ` rT1 x ` r0.

Here, we assume that the commitment ptA, tBq was generated honestly and already sent by the prover. In particular,
s2 Ð χm2 .
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– f
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0
– }c̄}8 ď 2κ
– }c̄s̄1} ď 2s1

?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

or a MSISn,m1`m2,B solution for
“

A1 A2

‰

in expected time at most 3T {pε ´ 2{|C|q where running P˚ once

is assumed to take at most T time and B :“ 8η
a

s212m1d` s222m2d.

Proof. We first focus on completeness. To begin with, we bound the norm of cs1 and cs2. Note that by
Lemma 2.14 and the definition of C in (21):

}cs1} ď

b

}σ´1pcqc}
?
d}s1} ď αη

}cs2} ď
a

}σ´1pcqc}1 ¨m2d}s1}8 ď νη
a

m2d.

Then, by Lemma 2.13, the probability that Rej1 and Rej2 do not abort is at least

exp

ˆ

12

γ1
`

1

2γ21

˙

¨ 2 exp

ˆ

1

2γ22

˙

.

Furthermore, by Lemma 2.2 for t “
?
2 and our assumption that m1,m2 ě 512{d, the probability that

}z1} ď s1
?
2m1d and }z2} ď s2

?
2m2d is overwhelming. The other verification equations hold based on the

discussion above.

Commit-and-prove simulatability. We can simulate the commitment and a non-aborting transcript between
the honest prover and the honest verifier in the following way.

First, we define a hybrid simulator S0 which still knows secret information s1,m. Given a challenge cÐ C,
it honestly generates the commitment ptA, tB , tq under randomness s2 Ð χm2 . Further, it samples fresh
masked opening z1 Ð Dm1d

s1 and z2 Ð Dd
s2 conditioned on xs2, z2y ě 0. Finally, it setsw :“ A1z1`A2z2´ctA

and v :“ zTR2z` cr
T
1 z` c

2r0 ´ ct` bT z2. Then, by Lemma 2.13, the distribution of the commitment and
a transcript output by S0 is statistically close to the one in the actual non-aborting protocol.

Next, we define the simulator S1, which still knows secret information s1,m, as follows. It runs identically
as S0 but instead of generating the commitment ptA, tB , tq honestly, it samples uÐ Rn`ℓ`1

q and sets

»

–

tA
tB
t

fi

fl “ u`

»

–

A1s1
m
g1

fi

fl . (32)

We claim that if there is a PPT adversaryA distinguishes between the outputs of S0 and S1 with probability ε,
then there exists a PPT adversary B which solves the Extended-MLWEn`ℓ`1,m2´n´ℓ´1,χ,C,s2 with probability
at least ε{2. Indeed, we can define B as follows. Given an Extended-MLWE tuple pC,u, z2, bq, where

C :“

»

–

A2

B
bT

fi

fl ,

B sets ptA, tB , tq as in (32) and simulates the rest of the transcripts identically as S0 and S1. Then, it outputs
the commitment and the transcript to A. Let us assume that b “ 1. Note that if u “ Cs2 then the output of
B comes from the distribution of S0. Similarly, if u was uniformly random, then the output of B comes from
the distribution of S1. Hence, conditioned on b “ 1, B solves the Extended-MLWE problem with probability
at least ε. Since the probability of b “ 1 is at least 1{2, the statement follows.

Finally, we can simply set S (which does not use any secret information) to proceed identically as S1

but instead of defining ptA, tB , tq as in (32), it directly samples ptA, tB , tq Ð Rn`ℓ`1
q . Then, the output

distributions of S and S1 are identical. Hence, the statement holds by the hybrid argument.
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Soundness. We apply the strategy by Attema et al. [3]. Namely, let H P t0, 1uRˆN be a binary matrix where
the R rows correspond to the prover’s randomness and N columns correspond to verifier’s randomness,
i.e. different choices for the challenge c. For simplicity, we denote Hpr, cq to be the entry corresponding to
randomness r and challenge c P C. Clearly, an extractor can check values of each entry in H in time at most
T .

We define the following extractor E :

1. E first samples fresh randomness r and challenge cp0q Ð C. Then, it checks if Hpr, cp0qq “ 1. If not, E
aborts.

2. Otherwise, E samples along row r without replacement until it finds two cp1q, cp2q such that Hpr, cp0qq “

Hpr, cp1qq “ Hpr, cp2qq “ 113.

By [3, Remark 2], the expected time of E is at most 3T and E extracts three valid transcripts

trpiq “ pw, t, v, cpiq, z
piq
1 , z

piq
2 q for i “ 0, 1, 2

with probability at least ε´ 2{|C|.
First we focus on trp0q and trp1q. Define

c̄ :“ cp1q ´ cp0q and s̄i “
z

p1q

i ´ z0i
cp1q ´ cp0q

for i “ 1, 2.

By construction, we }c̄}8 ď 2κ, }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d. Moreover, we haveA1s̄1`A2s̄2 “

tA. Further, we define the extracted message vector m̄ :“ tB ´Bs̄2 and ḡ1 :“ t´ bT s̄2. Then, we have
»

–

tA
tB
t

fi

fl “

»

–

A1

0
0

fi

fl ¨ s̄1 `

»

–

A2

B
bT

fi

fl ¨ s̄2 `

»

–

0
m̄
ḡ1

fi

fl .

Next, let ȳi :“ z
p1q

i ´ cp1qs̄i “ z
p0q

i ´ cp0qs̄i for i “ 1, 2. Moreover, consider the third transcript trp2q and

define y
p2q

i :“ z
p2q

i ´ cp2qs̄i for i “ 1, 2. Using the identical argument as in the proof of Lemma 3.1, either

pȳ1, ȳ2q “ py
p2q

1 ,y
p2q

2 q or E has found a MSISn,m1`m2,B solution for the matrix
“

A1 A2

‰

. From now on, we
assume the former case.

Finally, let us define the following vectors:

s̄ :“

„

pσips̄1qqiPrks

pσipm̄qqiPrks

ȷ

and ȳ :“

„

pσipȳ1qqiPrks

´pσipBȳ2qqiPrks

ȷ

.

Then, from the verification equations we have

zpiqTR2z
piq ` cpiqrT1 z

piq ` cpiq2r0 ´
´

cpiqt´ bT z
piq
2

¯

“ v for i “ 0, 1, 2 (33)

where

zpiq :“

«

pσipz
piq
1 qqiPrks

pσipcpiqtB ´Bz
piq
2 qqiPrks

ff

“ cpiqs̄` ȳ.

By expanding Equation 33, we obtain

cpiq2
`

s̄TR2s` rT1 s̄` r0
˘

` cpiqg1
1 ` g

1
0 “ 0 for i “ 0, 1, 2

where

g1
1 “ s̄TR2ȳ ` ȳTR2s̄` rT1 ȳ ´ ḡ1

g1
0 “ ȳTR2ȳ ` bT ȳ2 ´ v.

13 By construction, cp0q, cp1q, cp2q are pairwise distinct.
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,b P Rm2

q
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

f1, . . . , fN : Rkpm1`ℓq
q Ñ Rq, σ P AutpRqq

Prover Verifier

µ1, . . . , µN Ð Rq
µ1, . . . , µN�

f :“
řN

j“1 µjfj
Run Πp2q

pps2, s1,mq, σ, fq

Fig. 7: Commit-and-prove protocol Π
p2q
many pps2, s1,mq, σ, pf1, f2, . . . , fN qq for messages ps1,mq P Rm1`ℓ

q , randomness
s2 P Rm2

q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 (where si are

used in Fig. 6) and (iii) fj
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 for j P rN s. Vector b is used in the sub-protocol Πp2q.

Alternatively, we can write these three equations as follows:

»

—

–

1 cp0q cp0q2

1 cp1q cp1q2

1 cp2q cp2q2

fi

ffi

fl

»

–

g1
0

g1
1

s̄TR2s̄` rT1 s̄` r0

fi

fl “

»

–

0
0
0

fi

fl .

Since the difference of each two challenges in tcp0q, cp1q, cp2qu is invertible over Rq, we must have that s̄TR2s`
rT1 s̄` r0 “ 0. Hence, the statement holds. [\

4.2 Many Quadratic Equations with Automorphisms

We consider a scenario when the prover wants to simultaneously prove N quadratic relations. Clearly, if
one were to prove them separately using the approach from Section 4.1, one would end up committing to
N garbage polynomials g. Here, we circumvent this issue by linear-combining the N equations into one
quadratic equation and prove it using the protocol in Fig. 6. This results in committing to only one garbage
polynomials at the cost of reducing the soundness error by a negligible additive factor.

More precisely, suppose that we want to prove for N public kpm1 ` ℓq-variate quadratic functions
f1, . . . , fN over Rq that

fj
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 for i P rN s. (34)

We let the verifier begin by sending challenges µ1, . . . , µN Ð Rq. Then, we define a single quadratic function

f :“
N
ÿ

i“j

µjfj

and prove that

f
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

“ 0 (35)

using the protocol from Fig. 6. Now, we observe that if one of the conditions in (34) does not hold, then

Equation 35 is satisfied with probability at most q
´d{l
1 where l is the number of factors that Xd ` 1 splits

into modulo q.

The protocol is provided in Fig. 7. We skip the security analysis since it will be implicitly included in the
more general case in Theorem 4.3.
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4.3 Polynomial Evaluations with Vanishing Constant Coefficients

Suppose we want to prove simultaneously N quadratic relations (i.e. (34)) and additionally prove that
for quadratic kpm1 ` ℓq-variate polynomials F1, . . . , FM , evaluations Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

have the
constant coefficient equal to zero. Concretely, if we denote

xj :“ Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

P Rq

then rx “ 0 for j P rM s.
For simplicity we first present an approach with soundness error 1{q1. We apply the strategy from [19]

and first commit to a random masking polynomial g Ð tx P Rq : rx “ 0u. Then, given random challenges
γ1, . . . , γM Ð Zq, we send

h :“ g `
M
ÿ

j“1

γjFj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

(36)

to the verifier. Then, it simply checks whether the constant coefficient of h is indeed equal to zero. What
is left to prove is that h is well-formed, i.e. (36) holds. This is done by defining the quadratic function

fN`1 : Rkpm1`ℓ`1q
q Ñ Rq as follows.

Let x1 P Rkm1
q , x2 “ px2,1, . . . ,x2,kq P Rkpℓ`1q

q and denote

x2,j :“ x
pmq

2,j ∥ xpgq

2,j P R
ℓ`1
q for j P rks, x

pmq

2 :“
´

x
pmq

2,1 , . . . ,x
pmq

2,k

¯

.

Then,

fN`1 px1,x2q :“ x
pgq

2,1 `

M
ÿ

j“1

γjFj

´

x1,x
pmq

2

¯

´ h.

By construction, if px1,x2q “ pσ
ips1qqiPrks, pσ

ipm ∥ gqqiPrks then

x1 “ σips1qqiPrks, x
pmq

2 “ pσipmqqiPrks and x
pgq

2,1 “ g.

Moreover,(36) holds if and only if

fN`1

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0.

Recall that we also want to prove (34). We can define analogous polynomials f1, . . . , fN : Rkpm1`ℓ`1q
q Ñ Rq

as:

fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

.

Hence, we simply want to prove that for every j “ 1, 2, . . . , N ` 1:

fj
`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0.

Finally, this can then be directly done using the protocol

Πp2q
many pps2, s1,m, gq, σ, pf1, f2, . . . , fN`1qq

in Fig. 7.
We provide intuition for the soundness argument. Assume that the verifier is convinced that h is of

the correct form (36) and rh “ 0. Also, note that a cheating prover committed to g before seeing the
challenges γ1, . . . , γM . Hence, if for some j P rM s, the constant coefficient of Fj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

is non-zero, then the cheating prover has probability at most 1{q1 of guessing the constant coefficient of
řM

j“1 γjFj

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

.
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Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,Bg P Rλˆm2

q ,b P Rm2
q

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,

f1, . . . , fN , F1, . . . , FM : Rkpm1`ℓq
q Ñ Rq, σ P AutpRqq

Prover Verifier

s :“

„

pσi
ps1qqiPrks

pσi
pmqqiPrks

ȷ

g :“ pg1, . . . , gλq Ð tx : Rq : x̃ “ 0u
λ

tg :“ Bgs2 ` g
tg -

pγj,uq Ð ZλˆM
q

pγj,uqjPrλs,uPrMs�
for j P rλs :

hj :“ gj `
řM

u“1 γj,uFu psq

h1, . . . , hλ-
define f1, . . . , fN`λ as in (39) and (38)

run Π
p2q
many

`

ps2, s1,m ∥ gq, σ, pfiqiPrN`λs

˘

Accept iff

Π
p2q
many verifies and

h̃1 “ . . . “ h̃λ “ 0

Fig. 8: Commit-and-prove protocol Π
p2q

eval pps2, s1,mq, σ, pf1, . . . , fN q, pF1, . . . , FM qq for messages ps1,mq P Rm1`ℓ
q ,

randomness s2 P Rm2
q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for

i “ 1, 2, (iii) fj
`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

“ 0 for j P rN s (where si are used in Fig. 6) and (iv) all the evaluations
Fu

`

pσi
ps1qqiPrks, pσi

pmqqiPrks

˘

, where u P rM s, have constant coefficients equal to zero. Vector b is used in the

sub-protocol Π
p2q
many.

Boosting Soundness. We exponentially decrease the soundness error by parallel repetition. Namely, in
order to obtain q´λ

1 soundness error, we commit to λ random masking polynomials g “ pg1, . . . , gλq Ð tx :
Rq : rx “ 0uλ as follows:

tg :“ Bgs2 ` g.

Then, we send tg to the verifier which in return outputs the challenge matrix pγi,jqiPrλs,jPrMs Ð ZλˆM
q . Then,

we compute the vector h “ ph1, . . . , hλq as follows:

»

—

—

—

–

h1
h2
...
hλ

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

g1
g2
...
gλ

fi

ffi

ffi

ffi

fl

`

»

—

–

γ1,1 γ1,2 ¨ ¨ ¨ γ1,M
...

... ¨ ¨ ¨
...

γλ,1 γλ,2 ¨ ¨ ¨ γλ,M

fi

ffi

fl

»

—

—

—

–

F1

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

F2

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

...
FM

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

fi

ffi

ffi

ffi

fl

(37)

and send it to the verifier. It directly checks if all polynomials h1, . . . , hλ P Rq have constant coefficients
equal to zero.

As before, we still need to prove that vector h was constructed correctly. We reduce this problem to

proving quadratic relations. Namely, we define polynomials fN`1, . . . , fN`M : Rkpm1`ℓ`λq
q Ñ Rq as follows.

Let x1 P Rkm1
q , x2 “ px2,1, . . . ,x2,kq P Rkpℓ`λq

q and denote

x2,j :“
´

x
pmq

2,j ,x
pgq

2,j

¯

P Rℓ`λ
q for j P rks,

x
pmq

2 :“
´

x
pmq

2,1 , . . . ,x
pmq

2,k

¯

, x
pgq

2,1 :“
´

x
pgq

2,1,1, . . . , x
pgq

2,1,λ

¯

.

28



Then,

fN`j px1,x2q :“ x
pgq

2,1,j `

M
ÿ

u“1

γj,uFu

´

x1,x
pmq

2

¯

´ hj for j P rλs. (38)

By construction, if px1,x2q “ pσ
ips1qqiPrks, pσ

ipm ∥ gqqiPrks then

x1 “ σips1qqiPrks, x
pmq

2 “ pσipmqqiPrks and x
pgq

2,1,j “ gj .

Furthermore, Equation (37) is true if and only if for all j P rλs we have:

fN`j

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0.

Since we also need to prove (34), for convenience we define polynomials f1, . . . , fN : Rkpm1`ℓ`λq
q Ñ Rq as:

fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

. (39)

Finally, we simply run Πquad´many

`

ps2, s1,m,gq, σ, pfjqjPrN`λs

˘

from Fig. 7. We summarise the protocol in
Fig. 8 and provide commitment and proof size analysis in Section 6.1.

Note that with this approach we need to commit to additional λ garbage polynomials.

Security Analysis. We present the security properties of the protocol in Fig. 8 below.

Theorem 4.3. Consider the protocol in Fig. 8 and let χ “ Sν . Suppose s1 “ γ1αη and s2 “ γ2νη
?
m2d for

some γ1, γ2 ą 0 where η is chosen as in Section 2.7.
For completeness, let m1,m2 ě 512{d. Then, the honest prover P convinces the honest verifier V with

probability

« 2 exp

ˆ

12

γ1
`

1

2γ21
`

1

2γ22

˙

.

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment ptA, tBq along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
does not abort, there is an algorithm A1 with the same running time that has advantage ε{2 ´ 2´100 in
distinguishing Extended-MLWEn`ℓ`λ`1,m2´n´ℓ´λ´1,χ,C,s2 .

For soundness, denote AdvMSISptq to be the maximal probability of a probabilistic algorithm which solves
MSISn,m1`m2,B and runs in expected time 14 at most t where B :“ 8η

a

s212m1d` s222m2d. Then, there is an
extractor E with the following properties. When given rewindable black-box access to a probabilistic prover
P˚, which convinces V with probability

ε ą q´λ
1 ` q

´d{l
1 ` 2AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

` 2{|C|, (40)

E outputs ps̄2, s̄1, m̄q P Rm1`m2`ℓ
q and c̄ P Rˆ

q such that

–

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s̄1 `

„

A2

B

ȷ

¨ s̄2 `

„

0
m̄

ȷ

– fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0 for j P rN s

– each Fu

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

P Rq, where u P rM s, has constant coefficient equal to zero
– }c̄}8 ď 2κ

14 If we assume that the given MSIS problem is computationally hard and t is polynomial in the security parameter,
then AdvtMSIS must be negligible by the Markov’s inequality.
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– }c̄s̄1} ď 2s1
?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

in expected time at most 6T {pε´ 2{|C|q where running P˚ once is assumed to take at most T time.

Remark 4.4. Let us assume we pick parameters for the proof system such that q´λ
1 `q

´d{l
1 `2{|C| is negligible

and MSISn,m1`m2,B is computationally hard. Suppose there is a prover P˚ which runs in polynomial time
T and convinces the verifier with noticeable probability ε. Then, by our assumption we must have that

AdvMSIS

´

9T
ε´2{|C|

¯

is negligible. Hence, ε satisfies the inequality in Theorem 4.3. Therefore, the extractor E
will extract the commitment opening and messages in expected polynomial time 6T {pε´ 2{|C|q.

Proof (of Theorem 4.3). Completeness follows directly from the proof of Theorem 4.2 and the discussion
in Section 4.3. As for commit-and-prove simulatability, we simulate the commitment and the transcript
identically as in the proof of Theorem 4.2 with two additional steps: (i) we simulate the commitment tg to g by
setting tg Ð Rλ

q to be a uniformly random vector and (ii) we simulate the polynomials h1, . . . , hλ by choosing
them uniformly at random from X :“ tx P Rq : rx “ 0u. Note that we perfectly simulate each hi since in the

real execution, i.e. (37), gi’s are also sampled uniformly fromX and
řM

u“1 γi,uFu

`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

P

X.

Knowledge Soundness. For the remainder of the proof, we focus on the knowledge soundness argument.
Informally, we will extract so-called trees of transcripts.

Definition 4.5 (Tree of transcripts [3]). Let Π be a p2µ ` 1q-round public coin protocol, where in the
2i-th round, for i P rµs, a challenge is chosen from a challenge space Ci. A pk1, . . . , kµq-tree of transcripts
is a set of K “

śµ
i“1 ki transcripts arranged in the following tree structure. The nodes (resp. edges) in this

tree correspond to the prover’s messages (resp. verifier’s challenges). Every node at depth i has precisely ki
children corresponding to ki pairwise distinct challenges. Every transcript corresponds to exactly one path
from the root node to a leaf node.

In our case, the protocol in Fig. 8 is public coin and consists of 7 rounds. We define an extractor E as follows.
It applies the tree extraction algorithm from [3][Lemma 5] to retrieve a p1, 1, 3q-tree of transcripts. Then,
the expected runtime of E is at most 3T and the success probability of E is at least ε´ 2{|C|.

Using an identical reasoning as in the proof of Theorem 4.2, E extracts ps̄2, s̄1, m̄, ḡq P Rm1`m2`ℓ`λ
q and

c̄ P Rˆ
q such that

–

»

–

tA
tB
tg

fi

fl “

»

–

A1

0
0

fi

fl ¨ s̄1 `

»

–

A2

B
Bg

fi

fl ¨ s̄2 `

»

–

0
m̄
ḡ

fi

fl

–
řN`λ

j“1 µjfj
`

pσips̄1qqiPrks, pσ
ipm̄ ∥ ḡqqiPrks

˘

“ 0
– }c̄}8 ď 2κ
– }c̄s̄1} ď 2s1

?
2m1d and }c̄s̄2} ď 2s2

?
2m2d

or a MSISn,m1`m2,B solution. Hence, the probability of getting the former is lower-bounded by

ε´ 2{|C| ´ AdvMSISp3T q ě ε{2´ 1{|C|.

Therefore, by running E 1{pε{2 ´ 1{|C|q times, we expect to obtain such a tuple ps̄2, s̄1, m̄, ḡq. The total
expected running time is at most

3T ¨
1

ε{2´ 1{|C|
“

6T

ε´ 2{|C|
.

Now, we turn to proving certain properties of the extracted messages ps̄1, m̄q.

Lemma 4.6. Let ps̄2, s̄1, m̄q be extracted messages and randomness by E. Then, for all j “ 1, 2, . . . , N :

fj
`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

“ 0.
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Proof. Suppose that for some j˚ P rN s we have:

fj˚

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

‰ 0.

Define E 1 to be a copy of the extractor E . Let success be the event that E 1 extracts a p1, 1, 3q-tree of transcripts,
where the first message from the prover is denote by t1

g and challenges in the second and fourth round are
pγ1

j,uq and pµ
1
iq, and it also manages to extract ps1

2, s
1
1,m

1,g1, c̄1q such that

–

»

–

tA
tB
t1
g

fi

fl “

»

–

A1

0
0

fi

fl ¨ s1
1 `

»

–

A2

B
B1

g

fi

fl ¨ s1
2 `

»

–

0
m1

g1

fi

fl

–
řN`λ

j“1 µ1
jfj

`

pσips1
1qqiPrks, pσ

ipm1 ∥ g1qqiPrks

˘

“ 0
– }c̄1}8 ď 2κ
– }c̄1s1

1} ď 2s1
?
2m1d and }c̄1s1

2} ď 2s2
?
2m2d

Then, as argued above
ε´ 2{|C| ´ AdvMSISp3T q ď Prrsuccesss.

Now, we focus on upper-bounding the probability of success. First, define E to be the event that15

N`λ
ÿ

i“1

µ1
jfj

`

pσips̄1qqiPrks, pσ
ipm̄ ∥ ĝqqiPrks

˘

‰ 0

where ĝ :“ t1
g ´ B1

g s̄2. Then, we have Prr␣Es ď q
´d{l
1 since all functions fj and variables s̄1, m̄ and ĝ are

independent of the challenges pµ1
jq

16 and also

fj˚

`

pσips̄1qqiPrks, pσ
ipm̄ ∥ ĝqqiPrks

˘

‰ 0.

Next, denote consistent to be the event that

ps1
2, s

1
1,m

1,g1q “ ps̄2, s̄1, m̄, ĝq.

We concentrate on the term Prrsuccess ^ ␣consistents. Note that if E 1 succeeds and ␣consistent holds,
then we have found two different ABDLOP openings to ptA, tB , t

1
gq, and thus a MSISn,m1`m2,B solution in

expected time at most
6T {pε´ 2{|C|q ` 3T ď 9T {pε´ 2{|C|q.

Therefore

Prrsuccess^␣consistents ď AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

.

All in all, we get

Prrsuccesss ď Prrsuccess^␣consistents ` Prrsuccess^ consistents

ď Prrsuccess^ consistent|Es ` Prr␣Es ` Prrsuccess^␣consistents

ď Prrsuccess^ consistent|Es ` q
´d{l
1 ` AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

.

Next, we focus on Prrsuccess^ consistent|Es. Note that if E 1 succeeds then we have

N`λ
ÿ

j“1

µjfj
`

pσips1
1qqiPrks, pσ

ipm1 ∥ g1qqiPrks

˘

“ 0.

15 Note that here fN`1, . . . , fN`λ depend on pγ1
j,uq.

16 Indeed, note that ĝ is independent of pµ1
jq since t1

g was sent before receiving pµ1
jq and s̄2 was defined before even

running E 1.
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If additionally we have consistency property, i.e. ps1
2, s

1
1,m

1,g1q “ ps̄2, s̄1, m̄, ĝq, then we obtain a contradic-
tion assuming that E is true. Hence,

Prrsuccess^␣consistent|Es “ 0.

Therefore,

ε´ 2{|C| ´ AdvMSIS p3T q ď Prrsuccesss ď q
´d{l
1 ` AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

which leads to contradiction since by assumption

ε ą 2AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

` q
´d{l
1 ` 2{|C|.

[\

Finally, we need to prove that for every u “ 1, 2, . . . ,M , the constant coefficient of Fu

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

is equal to zero.

Lemma 4.7. Let ps̄2, s̄1, m̄q be extracted messages and randomness by E. Then, for every u “ 1, 2, . . . ,M ,
the constant coefficient of

Fu

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

is equal to zero.

Proof. Suppose that for some u˚, the constant coefficient of

Fu˚

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

is not equal to zero. Similarly as in the proof of the previous lemma, define E 1 to be a copy of the extractor
E . Let success be the event that E 1 extracts a p1, 1, 3q-tree of transcripts, where the first message by the
prover is denoted by t1

g and challenges in the second and fourth round are pγ1
j,uq and pµ

1
iq, and it extracts

ps1
2, s

1
1,m

1,g1, c̄1q such that

–

»

–

tA
tB
tg

fi

fl “

»

–

A1

0
0

fi

fl ¨ s1
1 `

»

–

A2

B
Bg

fi

fl ¨ s1
2 `

»

–

0
m1

g1

fi

fl

–
řN`λ

j“1 µ1
jfj

`

pσips1
1qqiPrks, pσ

ipm1 ∥ g1qqiPrks

˘

“ 0
– }c̄1}8 ď 2κ
– }c̄1s1

1} ď 2s1
?
2m1d and }c̄1s1

2} ď 2s2
a

2pm2qd

As before, we have
ε´ 2{|C| ´ AdvMSIS p3T q ď Prrsuccesss.

Define consistent to be the event that

ps1
2, s

1
1,m

1,g1q “ ps̄2, s̄1, m̄, ĝq

where ĝ :“ t1
g ´Bg s̄2. Arguing similarly as for the previous lemma, we have

Prrsuccess^␣consistents ď AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

.

Next, define E1 to be the event that one of the polynomials h˚
1 , . . . , h

˚
λ P Rq defined as follows:

»

—

—

—

–

h˚
1

h˚
2
...
h˚
λ

fi

ffi

ffi

ffi

fl

:“

»

—

—

—

–

ĝ1
ĝ2
...
ĝλ

fi

ffi

ffi

ffi

fl

`

»

—

–

γ1,1 γ1,2 ¨ ¨ ¨ γ1,M
...

... ¨ ¨ ¨
...

γλ,1 γλ,2 ¨ ¨ ¨ γλ,M

fi

ffi

fl

»

—

—

—

–

F1

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

F2

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

...
FM

`

pσips̄1qqiPrks, pσ
ipm̄qqiPrks

˘

fi

ffi

ffi

ffi

fl
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has a non-zero constant coefficient. Then, we have Prr␣E1s ď q´λ
1 and also

Prrsuccesss ď Prrsuccess^ consistent|E1s ` Prr␣E1s ` Prrsuccess^␣consistents

ď Prrsuccess^ consistent|E1s ` q
´λ
1 ` AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

.

Next, let E2 be the event that h1
1, . . . , h

1
λ P Rq output by P˚ all have constant coefficient equal to zero

(which is one of the verification checks). Clearly, we have

Prrsuccess^ consistent|E1s “ Prrsuccess^ consistent^ E2|E1s

ď Prrsuccess^ consistent|E1 ^ E2s.

Further, define E3 to be the event that

N`λ
ÿ

i“1

µ1
jfj

`

pσips̄1qqiPrks, pσ
ipm̄ ∥ ĝqqiPrks

˘

‰ 0.

Suppose that events E1 and E2 hold. Then, by construction of the quadratic functions fN`1, . . . , fN`λ in
(38), there must be some u P rM s such that

fN`u

`

pσips̄1qqiPrks, pσ
ipm̄ ∥ ĝqqiPrks

˘

‰ 0.

Hence, Prr␣E3|E1 ^ E2s ď q
´d{l
1 and thus

Prrsuccess^ consistent|E1s ď Prrsuccess^ consistent|E3 ^ E1 ^ E2s ` Prr␣E3|E1 ^ E2s

ď Prrsuccess^ consistent|E3 ^ E1 ^ E2s ` q
´d{l
1 .

Finally, we claim that Prrsuccess ^ consistent|E3 ^ E1 ^ E2s “ 0. Indeed, if E 1 succeeds and we have the
consistency property then we know that

#

řN`λ
i“1 µ1

jfj
`

pσips1
1qqiPrks, pσ

ipm1 ∥ g1qqiPrks

˘

“ 0

ps1
2, s

1
1,m

1,g1q “ ps̄2, s̄1, m̄, ĝq

which contradicts the assumption on E3. Hence,

Prrsuccesss ď q
´d{l
1 ` q´λ

1 ` AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

.

But we know that the success probability of Prrsuccesss is at least ε ´ 2{|C| ´ AdvMSIS p3T q. Therefore, we
conclude that

ε ď q
´d{l
1 ` q´λ

1 ` AdvMSISp3T q ` AdvMSIS

ˆ

9T

ε´ 2{|C|

˙

` 2{|C|

which leads to contradiction. [\

Eventually, the soundness statement of Theorem 4.3 holds by combining the two previous lemmas. [\

4.4 Reducing the Number of Garbage Commitments

The approach in Section 4.3 requires us to commit to λ additional polynomials gi. Here, we consider a special
case when σ :“ σ´1

17 and show how to reduce this number by a factor of two for free. In particular, will use
the following property of σ´1.

17 Thus its degree k is equal to 2.
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Lemma 4.8. Define the σ´1-trace map Tr : Rq ÞÑ Rq as

Trpxq “ 2´1 px` σ´1pxqq .

Then for any a, b P Rq, the polynomial y “ Tr paq `Xd{2Tr pbq satisfies:

y0 “ a0 and yd{2 “ b0.

Proof. We first observe that for any c P Rq such that σ´1pcq “ c we have cd{2 “ 0. Indeed, if we compare
the d{2-th coefficient of c and σ´1pcq, we get cd{2 “ ´cd{2 and thus cd{2 “ 0.

Let a1 “ Trpaq and b1 “ Trpbq. Clearly, a1, b1 are stable under the σ´1 automorphism and hence we have
a1
d{2 “ b1

d{2 “ 0. Also, by construction a1
0 “ a0 and b1

0 “ b0. Therefore, y0 “ a1
0 ´ b1

d{2 “ a1
0 “ a0. Similarly,

yd{2 “ a1
d{2 ` b

1
0 “ b0. [\

For simplicity, suppose that λ is even. The strategy here is to consider each pair papjq, bpjqqjPrλ{2s defined as

apjq :“
M
ÿ

u“1

γ2j´1,uf̃u
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

bpjq :“
M
ÿ

u“1

γ2j,uf̃u
`

pσips1qqiPrks, pσ
ipmqqiPrks

˘

and apply Lemma 4.8 to simultaneously prove that the constant coefficient of both elements in Rq is equal
to zero. Concretely, we prove that the constant and middle coefficient of each

Tr
´

apjq
¯

`Xd{2Tr
´

bpjq
¯

P Rq

is equal to zero.
Similarly as before, we first generate λ{2 random masking polynomials g “ pg1, . . . , gλ{2q Ð tx P Rq :

x0 “ xd{2 “ 0uλ{2. Then, given a challenge matrix Γ “ pγi,jq Ð ZλˆM
q , we construct apjq and bpjq as above

and send h1, . . . , hλ{2 defined as follows:

hj “ gj ` Tr
´

apjq
¯

`Xd{2Tr
´

bpjq
¯

for j P rλ{2s. (41)

The verifier then checks whether the constant and middle coefficient of each hj is equal to zero.
Finally, we need to prove that all h1, . . . , hλ{2 are well-formed. As before, our goal will be to define λ{2

kpm1 ` ℓ ` λ{2q-variate quadratic functions fN`1, . . . , fn`λ{2 : Rkpm1`ℓ`λ{2q
q Ñ Rq such that (41) holds if

and only if
fN`j

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0 for j P rλ{2s.

First, we observe that:

σpsq “ σ

¨

˚

˚

˝

»

—

—

–

s1
σps1q
m

σpmq

fi

ffi

ffi

fl

˛

‹

‹

‚

“

»

—

—

–

σps1q
s1

σpmq
m

fi

ffi

ffi

fl

“

»

—

—

–

0 Ikm1 0 0
Ikm1

0 0 0
0 0 0 Ikℓ
0 0 Ikℓ 0

fi

ffi

ffi

fl

»

—

—

–

s1
σps1q
m

σpmq

fi

ffi

ffi

fl

“ Us

where U P Rkpm1`ℓqˆkpm1`ℓq
q is the matrix defined above. Hence, we have the following lemma.

Lemma 4.9. Let s1 P Rm1
q ,m P Rℓ

q and set s :“ ps1, σps1q,m, σpmqq. For any 2pm1 ` ℓq-variate quadratic

function f : R2pm1`ℓq
q Ñ Rq of the form fpxq “ xTR2x` rT1 x` r0, define Trpfq to be the quadratic function

Trpfqpxq :“ xT

ˆ

R2 `UTσpR2qU

2

˙

x`

ˆ

rT1 ` σpr
T
1 qU

2

˙

x`

ˆ

r0 ` σpr0q

2

˙

.

Then, we have Trpfqpsq “ Tr pfpsqq.
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Proof. We compute Tr pfpsqq from the definition of trace in Lemma 4.8:

Tr pfpsqq “
fpsq ` σpfpsqq

2

“
sTR2s` rT1 s` r0

2
`
σpsT qσpR2qσpsq ` σpr

T
1 qσpsq ` σpr0q

2

“
sTR2s` rT1 s` r0

2
`

sTUσpR2qUs` σprT1 qUs` σpr0q

2
“ Trpfqpsq.

Here, we used the observation that σpsq “ Us. [\

Let x1 P Rkm1
q , x2 “ px2,1,x2,2q P R2pℓ`λq

q . Denote

x2,1 “

´

x
pmq

2,1 , x
pgq

1,1, . . . , x
pgq

1,λ{2

¯

and x2,2 “

´

x
pmq

2,2 , x
pgq

2,1, . . . , x
pgq

2,λ{2

¯

and set x
pmq

2 :“
´

x
pmq

2,1 ,x
pmq

2,2

¯

. Then, define

fN`jpx1,x2q :“ x
pgq

1,j ` Tr

˜

M
ÿ

u“1

γ2j´1,uf̃u

¸

´

x1,x
pmq

2

¯

`Xd{2Tr

˜

M
ÿ

u“1

γ2j f̃u

¸

´

x1,x
pmq

2

¯

´ hj .

(42)

Then, by Lemma 4.9 we have

fN`j

`

pσips1qqiPrks, pσ
ipm ∥ gqqiPrks

˘

“ 0 for j P rλ{2s

if and only if Equation 41 holds.

As before, in order to prove (34), we define quadratic functions f1, . . . , fN : R2pm1`ℓ`λ{2q
q Ñ Rq as:

fjpx1,x2q :“ fj

´

x1,x
pmq

2

¯

.

Finally, we run Π
p2q
many

`

ps2, s1,m,gq, σ, pfjqjPrN`λ{2s

˘

from Fig. 7.

5 Applications to Proving Norm Bounds

In this section we provide examples of compound zero-knowledge proofs for various statements based on the
protocol in Figure 8. This protocol defined in the previous section proves simultaneously quadratic relations
and that the constant coefficient of evaluations of some quadratic functions are 0. We only commit (via
ABDLOP) to the messages, but notice that the proven relations may also take as input some automorphisms
of these messages. We focus on one specific automorphism to instantiate the general framework of Section 4.
Using the notation from Lemma 2.4, this automorphism is σ :“ σ´1. With this choice of automorphism,
Lemma 2.5 claims that T allows us to prove inner products modulo q via Figure 8.

5.1 Approximate Range Proof

We describe a high-level protocol to prove that a vector s is such that }s}2 ď B for some bound B. The
bound we can prove with this method is looser than the actual bound on the norm of s, but the counterpart
is that the proof is fairly cheap. We will use this protocol to show that when s satisfies some relation over

35



Zq, if }s}2 ď B and B is small enough, then this relation holds over Z. The technique is inspired by [23],
itself reusing a technique from the ℓ8 approximate range proof of [34] adapted to the Euclidean norm.

Description of the strategy. The foundation for this protocol is Lemma 2.8. In a nutshell, this Lemma
says that for some distribution on the matrix R, the random projection Rs⃗ of s has approximately the same
norm as s. This way, we have the opportunity to shrink a potentially very long vector s to a much shorter
one (e.g length 256) with approximately the same norm. This projection is a Zq-linear map with respect to
s, which the prover can mask (which entails a slack in the bound we can prove with this method), then send
and prove well-formedness of the mask to the verifier.

The matrix R is a challenge sent by the verifier, and the prover shall prove that Rs⃗ has small norm so
the verifier concludes that so does s⃗. A problem for this method is that the prover cannot reveal the full
vector Rs⃗, which is why the prover commits to a Gaussian mask y of standard deviation s3 for the projection
before receiving R. He applies rejection sampling on z⃗ :“ y⃗ ` Rs⃗, and computes a zero-knowledge proof of
the well-formedness of z⃗. The statement to be proven is captured by Figure 7, and thanks to the rejection
sampling step, the z⃗ can be revealed to the verifier without leaking information on s⃗. If the well-formedness
proof of z⃗ checks and }z⃗} is small, then it is a matter of parameters for Lemma 2.8 to convince the verifier
that s⃗ has small norm.

Bimodal rejection optimization This mask z⃗ of Rs⃗ is suited to the use of the bimodal trick to reduce
the standard deviation s3 of y⃗ (therefore also reduce the standard deviation of z⃗, hence the length of the
proof). Explicitly, the prover choses a random sign b P t´1, 1u, computes z⃗ :“ bRs⃗` y⃗, and runs the rejection
sampling algorithm Rej0pz⃗, bRs⃗, s3q. The new distribution of z⃗ reaches the same number of repetitions as the
usual rejection sampling for a lower standard deviation s3, which shrinks the bit length of z⃗. The extra cost
is 1) a commitment to the polynomial b and 2) a proof that b P t´1, 1u. The commitment 1) is added to the
BDLOP part, and is fairly cheap since b is a single polynomial. The zero-knowledge proof that b is a sign 2)
comes almost for free as it is a Zq-linear proof amortized with the well-formedness proof of z⃗.

Proving that a polynomial is a sign. To perform the bimodal rejection sampling, we need to give a
zero-knowledge proof that b P t´1, 1u. We do this in two steps :

1. We prove that b is an integer

2. We prove that pb´ 1qpb` 1q “ 0.

As Zq is a field, it follows directly from pb´ 1qpb` 1q “ 0 that b indeed is a sign.

We prove that b is an integer by proving that for each polynomial δi :“ Xi P Rq, the inner product
xδi, by “ 0. This inner product maps b to its i-th coefficient, and shall therefore be 0 for all positions i except

for the constant coefficient. Second, pb´1qpb`1q “ 0 is a quadratic function, which we can prove using Π
p2q

eval

as well. The instantation of Π
p2q

eval is detailed in the next paragraph.

Instantiation of Π
p2q

eval After 2 rounds, the proof reduces to one amortized zero-knowledge proof for quadratic
functions and evaluations. First, the well formedness of the mask z of the projection Rs⃗, then the proof that
b is a sign. For each of the 256 rows of z, we define a function Fi, and for each of the d ´ 1 vectors δj , we
define a function Gj .

@1 ď i ď 256, Fips,y, bq “ zi ´ Tpbr⃗i, s⃗q ´ yi

@1 ď j ď d´ 1, Gjpbq “ Tpδ⃗j , b⃗q,

where r⃗i P Zdpm1`ℓq
q is the i-th row of R. Finally, to prove that b P t´1, 1u, we use the functions Gj ’s defined

above and the quadratic function fpbq “ pb´ 1qpb` 1q. For clarity, we define

Ψ “ pF1, . . . , F256, G1, . . . , Gd´1q. (43)
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Private information: s “ ps1,mq P Rm1`ℓ
q such that }s} ď α, randomness s2 P Rm2

q .
Public information: ABDLOP public parameters and commitment t P Rn`ℓ

q ,

b1 P Rm2
q , B2 P Rp256{dqˆm2

q , standard deviation s3 :“ γ
?
337α, acceptance coefficient t.

Prover Verifier

Sample b Ð t´1, 1u Ă Rq

Sample y Ð D
256{d
s3

tb “ bT
1 s2 ` b

ty “ B2s2 ` y
tb, ty -

R Ð Bin256ˆpm1`ℓq

1

R�
z⃗ :“ bRs⃗ ` y⃗
Rej0pz⃗, bRs⃗, s3q

z⃗ -
Run Π :“ Π

p2q

evalpps2, s1, pm, bqq, σ, f, Ψq

Accept iff
Π verifies and

}z⃗}2 ď t
?
256s3

Fig. 9: Commit-and-prove protocol for the messages s “ ps1,mq P Rm1`ℓ
q , randomness s2 P Rm2

q and c̄ P C̄ which
satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 (where si are used in Fig. 6) and (iii)

}s} ď 2
b

256
26

tγ
?
337α.

Proposition 5.1. The protocol described on Figure 9 is a zero-knowledge proof that the message s “ ps1,mq

with }s} ď α in the ABDLOP commitment t is such that }s} ď 2
b

256
26 tγ

?
337α ď 189γα for t “ 1.64. More

precisely, let Peval be the success probability of a honest prover in Π, Teval be the run time of the extractor

from Theorem 4.3 running on Π. Assume that q ě 41pm1 ` ℓq2
b

256
26 tγ

?
337α.

For correctness, if the prover and the verifier follow the protocol honestly and t “ 1.64, then the verifier

shall accept with probability Peval ¨ p1´ pte
1´t2

2 q256q ě Peval ¨ p1´ 2´128q.

For soundness, let P be a probabilistic prover with success probability ϵ such that ϵ ´ 2´128 verifies
Equation (40). There exists an extractor that with rewindable black-box access to P recovers a valid opening

p ss2, ss1, sy, sm,sb,scq to the commitment pt, tb, tyq and }pss1, smq}2 ď 2
b

256
26 tγ

?
337α, in expected time Teval.

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment pt, ty, tbq along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
does not abort, there is an algorithm A1 with the same running time that has advantage ε{2 ´ 2´100 in
distinguishing Extended-MLWEn`ℓ`256{d`2,m2´n´ℓ´256{d,χ,C,s2 .

Proof. We only detail correctness and soundness, commit-and-prove simulatability follows directly from the
same property from Figure 8, the rejection sampling and the hiding property of ABDLOP.
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Correctness. Let i P r256s. If the prover and verifier follow the protocol honestly, we have :

Fips,y, bq “ zi ´ Tpbr⃗i, s⃗q ´ yi (44)

rFips,y, bq “ zi ´ bxr⃗i, s⃗y ´ y⃗i (45)

“ bxr⃗i, s⃗y ´ bxr⃗i, s⃗y “ 0. (46)

From Equation (44) to Equation (45) comes from Lemma 2.5. Equation (45) to Equation (46) is true because
the prover formed z⃗ “ Rs⃗ ` y⃗ correctly. Obviously, since b P t´1, 1u, fpbq “ 0. Again using Lemma 2.5 on
the Gj ’s, each functions maps to a non-constant coefficient, which is 0 since in particular b P Zq. We proved
that the inputs of Π are correct, hence with probability Peval, the verifier accepts Π. Finally, using the tail

bounds from Lemma 2.2 on z⃗, we have that Pp}z} ě t
?
256s3q ď pte

1´t2

2 q256, so the verifier also checks

}z} ď t
?
256s3 with probability at least 1´ pte

1´t2

2 q256, and the correctness follows.

Soundness. The extraction is actually the extraction from the instantiation of Π
p2q

eval, and we shall prove that

the extracted ss “ pss1, smq satisfies }ss} ď 2
b

256
26 tγ

?
337α. We run the extractor from Theorem 4.3. Since we

assume that the success probability of the prover verifies Equation (40), the extractor runs in expected time

Teval and returns pss2,ss1, sy, sm, b̄q P Rm1`m2`256{d`ℓ`1
q and c̄ P Rˆ

q such that pss1, sy, sm, b̄q are valid ABDLOP
messages for the randomness ss2 and

– fpb̄q “ 0

– For 1 ď i ď 256, rFipss, sy, b̄q “ 0

– For 1 ď j ď d, rGjpb̄q “ 0.

We define ss “ pss1, smq. Plugging together the fact that all the rFipss, sy, b̄q are 0 and Equation (45), we have

that z⃗ is of the correct form, that is z⃗ “ Rss⃗`sy⃗. Under Lemma 2.5, rGjpsbq “ 0 yields that every non-constant
coefficient of sb is 0, hence b P Zq. Since Zq is an integral domain we have that fpsbq “ psb ´ 1qpsb ` 1q “ 0
ensures that sb is a sign.

From the norm verification, we have that

}z} ď t
?
256s3 (47)

}Rs⃗s` s⃗y mod q} ď t
?
256s3 (48)

}Rs⃗s` s⃗y mod q} ď t
?
256γ

?
337α (49)

}Rs⃗s` s⃗y mod q} ď
1

2

?
26

˜

2

c

256

26
tγ
?
337α

¸

, (50)

where Equation (47) to Equation (48) follows from the proven well-formedness of z, Equation (48) to Equa-
tion (49) follows from the definition of s3 and Equation (49) to Equation (50) is simply reformulating the

upper bound so it fits Lemma 2.8. We now apply Lemma 2.8. Under the condition that 2
b

256
26 tγ

?
337α ď

q
41dpm1`ℓq

, we have that if }ss} ě 2
b

256
26 tγ

?
337α, then the probability over the randomness of the challenge

R that Equation (47) is less than 2´128. By contraposition, with overwhelming probability 1 ´ 2´128, we

have }ss} ď
b

256
26 tγ

?
337α, which completes the soundness proof.

5.2 ℓ2-Norm Proof

In this subsection, we describe a general protocol to prove various quadratic relations. We highlight that
among the relations this protocol proves is an exact norm proof }s} ď β, where β is tight. In a nutshell, we
prove simultaneously quadratic relations over Rq, quadratic relations over Zq, approximate bound on the
norm and finally exact bound on the norm. Explicitly, we define public parameters :
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‚ Quadratic functions for i P rρs fi : R2pm1`ℓq
q ÝÑ Rq

‚ Evaluation functions for i P rρevals Fi : R2pm1`ℓq
q ÝÑ Rq

‚ For i P rυds, Di P Rkiˆ2pm1`ℓq
q , ui P Rki

q

‚ For i P rυes, Ei P Rpiˆ2pm1`ℓq
q , vi P Rpi

q

‚ Bounds pβ
pdq

i qiPrυds, pβ
peq

i qiPrυes.

The general statement proven in Figure 10 is the knowledge of a vector s “ ps1, σpsq,m, σpmqq P R2m1
q ˆR2ℓ

q

such that

@1 ď i ď ρ, fipsq “ 0 (51)

@1 ď i ď ρeval, rFips, σpsqq “ 0 (52)

@1 ď i ď υd, }Dis´ vi}8 ď β
pdq

i . (53)

@1 ď i ď υe, }Eis´ vi}2 ď β
peq

i . (54)

The functions fi are quadratic relations, and the functions Fi’s are also quadratic relations but for which we
only prove the constant coefficient. The matrices Di and vectors ui are such that Dis´ ui is short, and we
prove the latter with a looser bound than the actual bound. Finally, the matrices Ei and vectors vi are also
such that Eis´ vi is short, but those we prove in an exact manner.

General strategy. Suppose we have an ABDLOP commitment to a vector s “ ps1,mq and we want to prove
Equations (51) to (54). To prove the quadratic relations and evaluations Equations (51) and (52), we simply
pass on the functions to the input of the instantiation of Figure 8 that we will need later anyway. To prove
Equation (53), we use the technique from Figure 9. We now focus on Equation (52). Remind that one can

use Π
p2q

eval to give a zero-knowledge proof that the inner product of two commitments mod q is some public
constant. Therefore we can prove that xEis´vi,Eis´viy mod q is some constant. We use the approximate
range proof from Figure 9 to prove that the computation of xEis´ vi,Eis´ viy does induce a wraparound
modulo q, and therefore also holds over Z.

Remember that we do not want to give away the exact norm of Eis ´ vi, but rather prove that it is
lower than some bound. To circumvent this, we prove that the difference between the bound and the norm

is a positive integer. Explicitly, we prove that pβ
peq

i q2 ´ xEis ´ vi,Eis ´ viy can be written with a binary

representation x⃗i of length 2 logpβ
peq

i q ď d 18. Overall, proving exact norm such as in Equation (54) is the
combination of a proof of the relations between s and pxiqiPrυes, and a proof that each xi is binary. Notice
that both proofs are over Z rather than Zq, so we need a third proof to lift the relations we can only prove
directly over Zq to Z.

Proving that a vector is binary. We detail a strategy to prove that a vector has binary coefficients which
improves upon the previous construction from [19]. The strategy relies on the following fact.

Lemma 5.2. Let x⃗ P Zυed
q . If xx⃗, x⃗´ 1⃗υedy “ 0, then x⃗ P t0, 1uυed.

Proof. Every term in the sum is of the form apa´1q. One can check that a ÞÝÑ apa´1q is a positive function
over the integers, therefore, the sum cancels if and only if every term is 0, i.e x⃗ is binary.

In other words, it is enough to prove xx⃗, x⃗´ 1⃗υedy “ 0 to infer that x⃗ is a binary vector. We prove the latter
in two steps :

1. We prove that xx⃗, x⃗´ 1⃗υedy “ 0 mod q, which is a direct application of Figure 7.
2. We prove that }x⃗} ď B for some bound B using Figure 9.

18 Note that with the parameters we chose, pβ
peq

i q
2

´ xEis ´ vi,Eis ´ viy is in the range r0, . . . , 2d ´ 1s and therefore
x⃗ fits in a length d vector
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Provided that B is such that B2`
?
υedB ă q (which is actually very easily met for reasonable parameters),

xx⃗, x⃗´ 1⃗υedy “ 0 mod q holds over the integers, and Lemma 5.2 yields that x⃗ is binary.

Specifications and instantiation. To begin with, the prover appends a commitment to the binary rep-
resentation vector x “ px1|| . . . ||xυe

q in the Ajtai part of the commitment to ps1,mq
19. This vector is the

concatenation of the binary decompositions x⃗i of pβ
peq

i q2 ´ }Eis ´ vi}
2
2. As explained above, this binary

decomposition is possible. The verifier samples two approximate range proof challenge matrices Rpdq, Rpeq.
The first one Rpdq is used for the approximate norm proofs Equation (53) and the second one is used for
the exact norm proofs Equation (54). He sends both matrices to the prover. Finally, the prover computes a
zero-knowledge proof for the following statements :

@1 ď i ď ρ, fipsq “ 0 (55)

@1 ď i ď ρeval, rFipsq “ 0 (56)

@1 ď i ď υd, }Dis´ vi}8 ď β
pdq

i (57)

xx,x´ 1υedy “ 0 mod q (58)

xEis´ vi,Eis´ viy `

´

1 2 . . . 22 logpβ
peq

i q 0 . . . 0
¯

x “ pβ
peq

i q2 mod q (59)

p}Eis´ vi}8qiPrυes, }x} are small enough so Equations (58)and (59) hold over Z. (60)

We proceed to describe the functions in the input of Π
p2q

eval. Let us first introduce some notations to make the

exposition more compact : we write p⃗i “ p1 2 . . . 22 logpβ
peq

i q 0 . . . 0q, rji the j-th row of Ri, y
j
i (respectively

zji ) the j-th coordinate of y⃗i (respectively z⃗i). Remember that @j P rds, δj “ Xj is the unitary monomial of
degree j in Rq. We write xi the i-th polynomial of x. Finally, we define

epdq “

»

—

–

D1s´ u1

...
Dυd

s´ uυd

fi

ffi

fl

, epeq “

»

—

—

—

–

E1s´ v1

...
Eυe

s´ vυe

x

fi

ffi

ffi

ffi

fl

.

We define the following functions to instantiate Π
p2q

eval :

@i P td, eu, gpiqpbpiqq “ pbpiq ´ 1qpbpiq ` 1q (61)

@i P rυes, Gipx⃗iq “ Tpx⃗i, x⃗i ´ 1q (62)

@j P r256s, H
pdq

j px, s,ypdq, bpdqq “ z
pdq

j ´ Tpbpdqr
pdq

j , epdqq ´ y
pdq

j (63)

@j P r256s, H
peq

j px, s,ypeq, bpeqq “ z
peq

j ´ Tpbpeqr
peq

j , epeqq ´ y
peq

j (64)

@i P rυes, Iips,xq “ T pEis´ vi,Eis´ viq ` Tpp⃗, x⃗iq ´ pβ
peq

i q2 (65)

@i P td, eu, 1 ď j ď d´ 1, J
piq
j pb

piqq “ Tpδj , b
piqq (66)

We now pack the functions that are the input of Π
p2q

eval for more clarity. We let

ϕ “ pf1, . . . , fρ, g
pdq, gpeqq (67)

Ψ “
´

pFiqiPρeval
, pGiqiPυe

, pH
pdq

j qjPr256s, pH
peq

j qjPr256s, pIiqiPυe
, pJ

piq
j qiPtd,eu,jPrds

¯

. (68)

19 Note that appending a commitment in the Ajtai part can only be done at the same time as the commitment to
s1. If for some reason it is not possible to commit ahead of time to x⃗, one has to commit to x⃗ in the BDLOP part
instead.
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Public information:
Commitment t P Rn`ℓ

q ,A1 P Rnˆpm1`υeq
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q such that

t “

„

A1

0

ȷ „

s1
x

ȷ

`

„

A2

B

ȷ

s2 `

„

0
m

ȷ

. Bpdq
P Rp256{dqˆm2

q ,Bpeq
P Rp256{dqˆm2

q , bpdq
P Rm2

q , bpeq
P Rm2

q .

For i P rρs, quadratic functions fi : R2pm1`ℓq
q ÝÑ Rq

For i P rρevals, quadratic functions Fi : R2pm1`ℓq
q ÝÑ Rq

For i P rυes, matrix pDiq P Rkiˆ2pm1`ℓq
q , vector ui P Rki

q , bound β
pdq

i

For i P rυes, matrix pEiq P Rpiˆ2pm1`ℓq
q , vector vi P Rpi

q , bound β
peq

i

Vectors spdq
“ pD1s ´ u1||...||Dυds ´ uυdq, speq

“ pE1s ´ v1||...||Eυes ´ vυe ||xq.
Bounds αpdq

“ }spdq
}, αpeq

“ }speq
}

Standard deviations spdq
“ γpdq

?
337αpdq, speq

“ γpeq
?
337pαpeq

`
?
dq, acceptance coefficient t P R

Challenge dimensions cpdq
“ d

řυe
i“1 ki, cpeq

“ d
řυe

i“1ppi ` 1q

Input functions of Π
p2q

eval ϕ, Ψ defined in Equations (67) and (68).

Private information:
Randomness s2 Ð χm2 , message s “ ps1,mq P Rm1`ℓ

q

such that Equations (51) to (54) hold. Binary decomposition xi P Rq of pβ
peq

i q
2

´ }Eis ´ vi}
2.

Prover Verifier

bpdq, bpeq
Ð t´1, 1u Ă Rq

ypdq
Ð D

256{d

spdq , ypeq
Ð D

256{d

speq

tpdq :“ Bpdqs2 ` ypdq

tpeq :“ Bpeqs2 ` ypeq

tpdq :“ pbpdq
q
T s2 ` bpdq

tpeq :“ pbpeq
q
T s2 ` bpeq

tpdq, tpdq, tpeq, tpeq

-

Rpdq
Ð Bin256ˆcpdq

1

Rpeq
Ð Bin256ˆcpeq

1

Rpdq, Rpeq

�
z⃗pdq :“ bpdqRpdqs⃗pdq

` y⃗pdq

z⃗peq :“ bpeqRpeqs⃗peq
` y⃗peq

If Rej0pz⃗pdq, bpdqRpdqs⃗, spdq
q

and Rej0pz⃗peq, bpeqRpeqs⃗peq, speq
q

Then continue, Else abort

s˚ :“ ps2, ps1,xq, pm,ypdq,ypeq, bpdq, bpeq
qq

z⃗pdq, z⃗peq

-
Run Π “ Π

p2q

evalps
˚, σ, ϕ, Ψq

Accept iff :
‚ Π verifies

‚ }z⃗pdq
}8 ď 12spdq

‚ }z⃗peq
}2 ď t

?
256speq

Fig. 10: Commit-and-prove protocol for messages ps1,mq P Rm1`ℓ
q , randomness s2 P Rm2

q and c̄ P C̄ which satisfy:
A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 (where si are used in Fig. 6) and s :“

ps1, σpsq,m, σpmqq verifies Equations (51) to (54).
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Theorem 5.3. The protocol defined on Figure 10 is a commit-and-prove protocol for proving Equations (51)
to (54). Concretely, let

Bpdq :“ 24
?
337γpdqαpdq, Bpeq :“ 2

c

256

26
tγpeq

?
337pαpeq `

a

υedq,

Teval be the run time of the extractor from Theorem 4.3 and Peval the probability that a honest prover convinces
a honest verifier with the protocol in Figure 8. Assume the following conditions are satisfied :

Bpeq ă
q

41cpeq

pBpeqq2 `
a

υedB
peq ă q, 3pmax

iPrυes
β

peq

i q2 ` pBpeqq2 ´ 1 ă q

For correctness, if the prover and the verifier follow the protocol in Figure 10 honestly and t “ 1.64, then
the verifier shall accept with overwhelming probability

p1´ pte
1´t2

2 q256qPeval ě p1´ 2´128qPeval.

For soundness, let P be a probabilistic prover with success probability ϵ such that ϵ´ 2128 verifies Equa-
tion (40). There exists an extractor that with rewindable black-box access to P, recovers a valid opening

pss2, pss1, sxq, p sm, sypdq, sypeq,sbpdq,sbpeqq,scq P Rm1`m2`ℓ`υd¨256{d`υe¨256{d`2
q ˆRˆ

q

for the commitment pt, tpdq, tpeq, tpdq, tpeqq in expected time Teval, satisfying Equations (51) to (54).

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment pt, tpdq, tpdq, tpeq, tpeqq along with a non-aborting transcript of the
protocol between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
does not abort, there is an algorithm A1 with the same running time that has advantage ε{2 ´ 2´100 in
distinguishing Extended-MLWEn`ℓ`2p256{d`1q,m2´n´ℓ´2p256{d`1q,χ,C,s2 .

Proof. We focus on soundness. Correctness follows from the equations detailed in the soundness proof, and
commit-and-prove simulatability follows from the commit-and-prove simulatability of Figure 8, the rejection
sampling and the hiding property of ABDLOP.

We run the extractor from Theorem 4.3 on Π. Since ϵ verifies Equation (40), the extractor of Theorem 4.3
runs in expected time Teval and finds

pss2, pss1, sxq, p sm, sypdq, sypeq,sbpdq,sbpeqq,scq P Rm1`m2`ℓ`υe¨256{d`υd¨256{d`2
q ˆRˆ

q

such that the following holds

– @i P rρs, fpsbq “ 0
– @i P td, eu, gpiqpsbpiqq “ 0

– For i P rρevals, rFipssq “ 0
– For i P rυes, Gips⃗xq “ 0

– For j P r256s, rH
pdq

j psx,ss, syd, bdq “ 0

– For j P r256s, rH
piq
j psx,ss, sye, beq “ 0

– For i P rυes, rIipss, sxq “ 0

– For i P td, eu, j P t1, . . . , d´ 1u, rJipbiq “ 0.
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We write sepdq,sepeq the variables epdq, epeq where s,x are replaced with their extracted counterparts pss1, smq, sx.

First, rJipsbiq “ 0 yields that all non-constant coefficients of sbpdq and sbpeq are 0, i.e both sbpdq,sbpeq are constants.
Both constants verify gpiqpsbpiqq “ 0, which under Lemma 2.5 yield that xsbpdq,sbpdq ´ 1y mod q “ 0, and the
same for sbpeq. We use Lemma 5.2 to conclude that sbpdq and sbpeq are signs.

By following the steps from the proof of Proposition 5.1, we jump to the conclusion that, under the
condition

2

c

256

26
tγ
?
337αpeq ď

q

41cpeq
,

we have with probability p1´ 2´128q that

}epeq} ď Bpeq :“ 2

c

256

26
tγpdq

?
337pαpeq `

a

υedq. (69)

Moreover, from the norm verification we have that }zpdq} “ }Ěypdq`sbpdqRpdqĚspdq} ď 12spdq. Notice that sbpdqRpdq

is distributed according Bin2561 , therefore under Lemma 2.6, we conclude that with probability 1 ´ 2256 we
have

}sepdq} ď Bpdq :“ 24spdq. (70)

We again use Lemma 2.5 to conclude that rGipss, sxq “ 0 yields that xsx, sx ´ 1y mod q “ 0. Furthermore,
we have |xsx, sx ´ 1y| ď }sx}22 ` }sx}1 ď pB

peqq2 `
?
υedB

peq. Since we have }sx}2 ď Bpeq and we assume that
pBpeqq2 `

?
υedB

peq ă q, then we obtain |xsx, sx ´ 1y| ă q over the integers, hence xsx, sx ´ 1y “ 0 over the
integers. Lemma 5.2 allows us to infer that sx is indeed binary.

We now proceed to prove the main statements Equations (51) to (54). Since the functions pfiq and pFiq

are passed on directly to Π in Figure 10, Equations (51) and (52) follow directly from the soundness of
Figure 8. For Equation (53), we just proved that

}epdq} ď 24spdq,

hence for each i P rυds, }Dis´ ui} ď 24
?
337γpdqαpdq. Finally, for i P rυes, we have :

Iipss,xq “ T pEis´ vi,Eis´ viq ` Tpp⃗i, xiq ´ pβ
peq

i q2

ČIipss, sxq“ xEiss´ vT
i ,Eiss´ vT

i y ` xp⃗i, sxiy ´ pβ
peq

i q2 mod q

“ }Eiss´ vi}
2
2 ` xp1 2 . . . 2d´1q, sxiy ´ pβ

peq

i q2

“ 0,

where we first use Lemma 2.5, then we use the facts that 1) we shown @i P rυes, }Eiss ´ vi} ď Bpeq and

2) we assume 3pβ
peq

i q2 ` pBpeqq2 ´ 1 ă, therefore the whole equation holds over the integers, and finally we

use the extracted equation rIipss, sxq “ 0. Rearranging the terms and using the fact that xp⃗i, sxiy ě 0, we get

}Eis´ vi}
2
2 ď pβ

peq

i q2, which completes the proof.

6 Concrete Instantiations

In this section we show how to make use of our techniques for proving norms in the real-world applications,
such as proving knowledge of a Module-LWE secret, verifiable encryption and group signatures. In order to
show significance of our results, we compare our efficiency with relevant prior work.
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6.1 General Strategy

We first provide a general strategy on instantiating the protocol in Fig. 8. Firstly, we pick the challenge

space C as described in Section 2.7. Further, we choose λ and l such that terms q´λ
1 and q

´d{l
1 are negligible.

There are two rejection sampling algorithms: one to mask cs1 and another one to mask cs2. Denote
si “ γiTi where T1, T2 are the upper-bounds on }cs1}, }cs2} respectively. The non-aborting probability of the
prover is

« 2 exp

ˆ

12

γ1
`

1

2γ21
`

1

2γ22

˙

.

Then, as in Section 2.7, we define T1 “ αη and T2 “ νη
?
m2d.

Now we set n and m2 such that Extended-MLWE and MSIS from Theorem 4.3 are hard against known
attacks. We measure the hardness with the root Hermite factor δ and aim for δ « 1.0044 similarly as
in [12, 4, 19, 34]. We assume that Extended-MLWE is almost as hard as plain MLWE (see [34] for more
discussion).

Further, we look at the size of the non-interactive proof outputs via the Fiat-Shamir transform of the
protocol in Fig. 8.. First, note that for the non-interactive proof the messages w and v need not be included
in the output as they are uniquely determined by the remaining components. Further, the challenges can be
generated from a small seed of 256 bits, which itself is generated as the hash of some components. Hence,
the contribution of the challenges to the total proof length is very small and thus we neglect it.

As “full-sized” elements of Rq, we have tA, tB , tg, t and hi. Therefore, we have in total n` ℓ`λ` 1 full-
sized elements of Rq, which altogether costs at most pn` ℓ` λ` 1q drlog qs bits. Now, the only remaining
part are the vectors z1, z2. Each zi has length mi and its coefficients can be bounded by 12si. Hence, in
total, the size of each zi is at most mid rlog 24sis bits.

In conclusion, the overall commitment and proof length is at most

pn` ℓ` λ` 1q drlog qs`m1d rlog 24s1s`m2d rlog 24s2s bits. (71)

For fair comparison with prior works, we further reduce the commitment and proof size by applying Dilithium
[18] compression techniques 20, as done previously in [34][Appendix B] and [21].

Last but not least, we can reduce the number of garbage terms gj from λ to λ{2 using the optimisation
based on the σ´1 automorphism described in Section 4.4.

6.2 Proving Knowledge of a Module-LWE Secret

As a primary benchmark for comparison with prior work [19, 34], we prove knowledge of a Module-LWE
secret. Namely, we want to prove knowledge of ps1, eq P RM`N

q such that }ps, eq} ď B and

As` e “ u pmod qq (72)

where A P RNˆM
q and u P RN

q are public.

We propose the following solution using the framework developed in Section 5. Simply, we commit to s1
and prove that

›

›

›

›

„

s
As´ u

ȷ
›

›

›

›

“

›

›

›

›

„

IM
A

ȷ

s´

„

0
u

ȷ
›

›

›

›

ď B.

In Fig. 11 we show to properly instantiate the protocol in Fig. 10 to prove knowledge of a Module-LWE
secret.

20 Namely, we do not send the low-order bits of tA. Moreover, if we write A2 :“ rA1
2 Ins and s2 :“

„

s2,1
s2,2

ȷ

then we do

not send the masked opening of s2,2. We refer to [34][Appendix B] for more details.
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variable description instantiation

ρ # of equations to prove 0
ρeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 1
υd # non-exact norm proofs 0

s1 committed message in the Ajtai part s
m committed message in the BDLOP part H (no message)

E1 public matrix for proving }E1s ´ v1} ď β1

„

IM
A

ȷ

v1 public vector for proving }E1s ´ v1} ď β1

„

0
u

ȷ

β1 upper-bound on }E1s ´ v1} ď β1 B

Fig. 11: Instantiation of the protocol in Fig. 10 for proving As ` e “ u pmod qq and }ps, eq} ď B. The variables in
the first two columns refer to the ones defined in Section 5 and the ones in the last column refer to the parameters
in this subsection.

Remark 6.1. We note that [19, 34] could not avoid committing to e without having additional commitments.
Indeed, previous work efficiently prove smallness of a vector s, e.g. }s}8 ď 1, by committing to its coefficient
vector s⃗1 using NTT slots and then proving that s⃗ ˝ ps⃗´ 1⃗q ˝ ps⃗` 1⃗q “ 0⃗ [4]. If one were not to commit to e,
then one would need to prove an equation of the form

pAs⃗´ u⃗q ˝
´

As⃗´ u⃗´ 1⃗
¯

˝ pAs⃗´ u⃗` 1⃗q “ 0⃗.

However, this relation, which is a mix of linear and product relations, cannot be proven using current methods
included in [19, 34] without making intermediate commitments.

Parameters. We instantiate our protocol for the case when q « 232 and N “ M “ 1024{d similarly as in
[12, 19, 34] using the methodology in Section 6.1. We provide a summary of our parameter selection in Table
12.

Let us pick prime q :“ 232 ´ 2735 ( i.e. q “ q1) and set d “ 128, l “ 8 and B “
?
204821. Then we define

the randomness distribution χ as a uniform one over S1. For the challenge space, we set κ “ 2, η “ 72 as in
Fig. 3. Also, for q « 232, we choose l “ 4 and λ “ 4. Then, q´d{l ă q´λ ă 2´128 and κ “ 2 ă 2.82 « 1

2
?
l
q1{l.

There are three rejection sampling algorithms: one to mask cs1, another one to mask cs2 and the last one
to mask }Rs⃗1}. Denote si “ γiTi where T1, T2, T3 are the upper-bounds on }cs1}, }cs2} and }Rs⃗1} respectively.
The repetition rate in our case is at least

2 exp

˜

12

γ1
`

1

2γ21
`

1

2γ22
`

1

2γpeq2

¸

.

The rate in [34] is around 7 hence we set γ1 “ 11, γ2 “ 1.85 and γpeq “ 5.
We define T1 “ αη and T2 “ η

?
m2d as explained in Section 6.1 where α “

?
B2 ` d. For T3 we use

Lemma 2.7 and set T3 “
?
337α.

The total communication size has been already analysed in Section 6.1 with the only addition being the
vector z sent in the third round in Fig. 9. Its size is at most 256 logp24s3q bits which is significantly small
compared to the other proof components. Hence, the total commitment and proof size is around 14.4KB.

6.3 Verifiable Encryption

For presentation, we will consider a standard Regev public-key encryption scheme [39] but similar analysis can
be applied for more complex construction, such as Kyber [13], Saber [15] and NTRU [24] (see [32][Section 4]

21 It is the case when s1, e only consist of ternary coefficients as assumed in the prior work.
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parameters description value

q prime modulus 232 ´ 2735
d ring dimension for of R 128

l # factors Xd
` 1 splits into mod q 4

N height of the A matrix 8
M width of the A matrix 8
γ1 rejection sampling constant for cs1 11
γ2 rejection sampling constant for cs2 1.85

γpeq rejection sampling constant for the ARP 5
κ maximum coefficient of a challenge in C 2
n height of matrices A1,A2 in ABDLOP 10
m1 length of the message s1 in the “Ajtai” part 8
ℓ length of the message m in the “BDLOP” part 0
λ number of garbage gj P Rq for boosting soundness 4
m2 length of the randomness s2 in ABDLOP 26
ν randomness s2 is sampled from Sm2

ν 1

repetition rate 7
commitment + proof size 14.4KB

Fig. 12: Parameter selection for proving As ` e “ u pmod qq and }ps, eq} ď
?
2048 using the protocol in Fig. 10

for more details). Namely, let p be a prime modulus of the encryption scheme. In order to encrypt a binary
message m P t0, 1ud with ω number of 1s 22, a user samples a randomness vector r Ð ξk, where ξ is a
distribution over R, and compute

„

t0
t1

ȷ

:“

„

A
bT

ȷ

r`

„

0
t
p
2 sm

ȷ

(73)

over Rp :“ ZprXs{pX
d` 1q where pA,bq P RNˆK

p ˆRN
p is the public key 23. Let B be an upper-bound on r

such that the probability that }r} ą B for rÐ ξK is negligible. Then, in the verifiable encryption scenario,
we want to prove knowledge of r P RK and m P R such that (i) Equation 73 is satisfied over Rp, (ii) }r} ď B
and (iii) m P t0, 1ud and }m}2 “

?
ω.

The high-level idea is to commit to pr,mq using the ABDLOP commitment modulo q and prove these
three statements. Note that the latter two have already been covered in Section 5. Hence, from now on we
focus on proving the first statement.

We first observe that if q is divisible by p then (73) can be transformed into a linear equation modulo q
and can be proven as described in Section 4. However, in practical instantiations p will be significantly small
relative to q (e.g. p “ 3329 in Kyber). Consequently, if q has a small prime divisor p then by Theorem 4.3,
we would need to commit to more garbage polynomials gi in order to keep the soundness error negligible.
Moreover, for implementation purposes one might want p to be a prime such that Xd ` 1 splits into many
factors modulo p (e.g. p “ 3329). In this case, if p divides q, then the challenge space C does not have
the invertibility property which is necessary for the soundness proof. In Fig. 14 we propose an example
instantiation for the case when q is divisible by p (see parameter set II).

Now, suppose that p is co-prime to q. Then, (73) is true if and only if there exists a vector v P RN`1

such that
„

t0
t1

ȷ

:“

„

A
bT

ȷ

r`

„

0
t
p
2 sm

ȷ

` pv (74)

22 Hence, the message space is
`

d
ω

˘

.
23 Recall that all coefficients of the terms involved in (73) are between ´p{2 and p{2.
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over R. From a simple calculation, }v}8 ď B
?
kd{2 ` 1. We can avoid committing to v, similarly as in

Section 6.5, by proving directly that vector

v :“ p´1 ¨

ˆ„

A 0
bT t

p
2 s

ȷ „

r
m

ȷ

´

„

t0
t1

ȷ˙

P Rn
q (75)

has norm at most Bv :“ pB
?
Kd{2`1q

a

pN ` 1qd. Since this expression is linear in the committed messages
r and m, we can apply the protocol in Fig. 10 to prove its norm. As we will show below, it is enough to
prove an approximate bound, i.e. }v}8 ď Bv ¨ ψ, where ψ :“ 2 ¨ 12 ¨ γpdq ¨

?
337, as described in Section 5.

Indeed, in the soundness argument we would extract a pair pr˚,m˚q which satisfies

$

’

’

’

’

&

’

’

’

’

%

m˚ P t0, 1ud,

}r˚} ď B,
›

›

›

›

›

p´1 ¨

˜«

A 0

bT t
p
2 s

ff «

r˚

m˚

ff

´

«

t0

t1

ff¸
›

›

›

›

›

8

ď Bvψ.

Denote the third expression as v˚ P RN`1. Then, we have

„

t0
t1

ȷ

”

„

A
bT

ȷ

r˚ `

„

0
t
p
2 sm˚

ȷ

` pv˚ pmod qq. (76)

Thus,
›

›

›

›

„

A
bT

ȷ

r˚ `

„

0
t
p
2 sm˚

ȷ

` pv˚ ´

„

t0
t1

ȷ
›

›

›

›

8

ď p
´

B
?
Kd{2` 1`Bvψ

¯

.

Hence, if q is bigger than the right-hand side of this inequality, then we conclude that Equation (76) holds
over integers. In particular pt0, t1q is a valid encryption of m under randomness r over Rp.

In Fig. 13 we instantiate the protocol from Fig. 10 for verifiable encryption as described above.

Remark 6.2. Note that the current state-of-the-art lattice based verifiable encryption [31], which is used in
e.g. [16, 32], only provide relaxed verifiable encryption. Namely, the soundness argument only guarantees
knowledge of a message and randomness corresponding to the ciphertext pc̄t0, c̄t1q, where c̄ P Rp is called a
relaxation factor. More importantly, c̄ is not known to the decryptor and thus it guesses a c̄ and attempts
to recover the ciphertext pc̄t0, c̄t1q. Consequently, the prior works had to equate the decryption time with
the adversary’s running time. Here, since we commit to r and m using a separate ABDLOP commitment,
we circumvent the relaxation factor by proving exact norms on r and m P t0, 1ud.

Parameters. We provide our parameters choices24 in Fig. 14. For the ciphertext modulus and dimensions,
we follow the Kyber instantiation. In particular, N “ 4,K “ 9 and b “ AT s ` e where the secret key s
and error e come from Bin4d2 and BinKd

2 respectively. For the randomness distribution ξ :“ Bind2. Hence, we
can set the upper-bound B on the norm of rÐ ξK as B “ 2

?
Kd and thus Bv “ pKd` 1q

a

pN ` 1qd. We
checked that the decryption failure probability for these parameters is at most 2´300.

The rest of the parameters are chosen similarly as in Sections 6.1 and 6.2. Finally, we need to check that

q « 236 ą p ¨
´

B
?
Kd{2` 1` pB

?
Kd{2` 1q

a

pN ` 1qdψ
¯

.

The term on the right-hand side is less than 236 thus the inequality holds.

24 One can also instantiate the encryption scheme over a larger ring, e.g. R1 :“ ZrXs{pX256
` 1q. Then, in order to

apply our proof system over a smaller ring R, one would first map the equations to work over R rather than R1

as described in [32][Section 2.8].
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variable description instantiation

ρ # of equations to prove 0
ρeval # of evaluations with const. coeff. zero 2
υe # of exact norm proofs 1
υd # non-exact norm proofs 1

s1 committed message in the Ajtai part pr,mq

m committed message in the BDLOP part H (no message)

F1 evaluation to prove const coeff. zero σ´1pmq

´

m ´
řd´1

i“0 Xi
¯

F2 evaluation to prove const coeff. zero σ´1pmq ¨ m ´ ω

E1 public matrix for proving }E1s ´ v1} ď β
peq

1 IK`1

v1 public vector for proving }E1s ´ v1} ď β
peq

1 0

β
peq

1 upper-bound on }E1s ´ v1} ď β
peq

1

?
B2 ` ω

D1 public matrix for proving }D1s ´ u1} ď β
pdq

1 p´1
¨

„

A 0
bT

t
p
2

s

ȷ

u1 public vector for proving }D1s ´ u1} ď β
pdq

1 p´1
¨

„

t0
t1

ȷ

β
pdq

1 upper-bound on }D1s ´ u1} ď β
pdq

1 pB
?
Kd{2 ` 1q

a

pN ` 1qd

Fig. 13: Instantiation of the protocol in Fig. 10 for verifiable encryption. The variables in the first two columns refer
to the ones defined in Section 5 and the ones in the last column refer to the parameters in this subsection. Functions
F1, F2 are used to prove that m has binary coefficients and }m} “

?
ω. Then, a triple pE1,v1, β

peq

1 q corresponds
to proving exactly that }pr,mq} ď

?
B2 ` ω. Since we know }m} “

?
ω, this implies that }r} ď B. The last triple

pD1,u1, β
pdq

1 q corresponds to proving approximately that }v} ď pB
?
Kd{2` 1q

a

pN ` 1qd where v is defined in (75).

6.4 Group Signature

We apply our proof system to the recent group signature construction by Lyubashevsky et al. [32]. Our
construction inherits a big advantage from [16, 32], namely signature generation and verification time do
not depend on the size of the group. We first sketch the scheme and refer to [32] for more details. In this
subsection, we work over the larger ring Rkd :“ ZrXs{pXkd`1q where k ě 1 is a power-of-two. Then, define
Rkd,p :“ Rkd{ppq for an integer p. The benefit of having a larger ring than R is small public key size of our
group signature. Operations in the construction will be over Rkd,p where p is prime.

Overview. Let G Ď Rkd,p be the identity space. The group manager first samples AÐ RNˆpN`Mq

kd,p ,B1 Ð

RNˆτN
kd,p , randomness matrix RÐ S

pN`MqˆτN
kd,1 , where

Skd,1 :“ tx P Rkd : }x}8 ď 1u

and sets B :“ AR. Further, it samples uÐ RN
kd,p. Then, the public key is a tuple

gpk :“ pA,B,B1,uq.

Now, for each user with identity i P G, the group manager samples the secret key

ski :“ ps
piq
1 , s

piq
2 , s

piq
3 q Ð D

pp2τ`1qN`Mqkd
s

such that

“

A|B` iG|B1
‰

»

—

–

s
piq
1

s
piq
2

s
piq
3

fi

ffi

fl

“ u
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parameter set description I II

p encryption modulus 3329 3373
N height of A 4 4
K width of A 9 9

ξ ξK is the randomness distribution of r Bind2 Bind2
q proof system modulus « 236 « 232

d dimension of R 128 128

l # factors Xd
` 1 splits into mod q 8 2

γ1 rej. samp. constant for cs1 11 11
γ2 rej. samp. constant for cs2 1.6 0.9

γpeq rej. samp. constant for exact ARP 12 2.5

γpdq rej. samp. constant for non-exact ARP 1 –
κ maximum coefficient of a challenge in C 2 2
n height of A1,A2 in ABDLOP 10 10
m1 length of the “Ajtai” message s1 10 6
ℓ length of the “BDLOP” message m 0 0
λ # of garbage gj for soundness 4 12
m2 length of randomness s2 31 30
ν randomness s2 is sampled from Sm2

ν 1 1

repetition rate 12 12
ciphertext size 1KB 1KB

commitment + proof size 19.5KB 18.3KB

Fig. 14: Parameter selection, ciphertext and proof sizes for verifiable encryption. For the second parameter set we
choose q :“ 1273301 ¨ 3373. Since p divides q, we do not need to do an approximate range proof of v as for I.
Consequently, we can pick smaller modulus q and apply a similar strategy as in Section 6.2.

using the [38] trapdoor sampling with standard deviation s where G :“ IN b r1 g ¨ ¨ ¨ g
τ´1s is a gadget

matrix and g :“ rp1{τ s.
The high level idea for signing is for the user with identity i P G to prove knowledge of i and their secret

key ski :“ ps1, s2, s3q P Rp2τ`1qN`M
kd,p which satisfy:

“

A|B` iG|B1
‰

»

–

s1
s2
s3

fi

fl “ u,

›

›

›

›

›

›

»

–

s1
s2
s3

fi

fl

›

›

›

›

›

›

ď B :“ s
a

2pp2τ ` 1qN `Mqkd, i P G. (77)

For the bound B we used Lemma 2.2 for t “
?
2.

In order to be able to open the group signature scheme, we will add a verifiable encryption to the signature.
Namely, we want the signer to encrypt their identity i, using a public key associated to a decryption key that
the group manager possesses, and prove that this encryption is indeed of their identity. We do this exactly
as described in Section 6.3 with a prime penc :“ 3329. Similarly, all the dimensions and bounds included in
that Section will be written with subscript enc.

Efficient Proof of (77). To begin with, note that relations over Rkd,p such as the first one in Equation
(77) can be written equivalently over our usual subring Rp. Indeed, Lyubashevsky et al. showed that there
is an efficiently computable ring isomorphism between Rkd and Rk, for an appropriately defined vector
multiplication in R, which preserves norms (see [32][Section 2.8] for more details). Hence, arbitrary relations
we need to prove over Rkd,p can be proven by showing that some corresponding relations over Rp hold true.

Secondly, we observe that if we choose a proof system modulus q to be divisible by p and commit to
pi, s1, s2, s3q in the “Ajtai” part of the ABDLOP commitment then the first statement in (77) is simply a
system of quadratic equations in the committed messages as in Section 4. Indeed, we pick q “ q1p where
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q1 ă p and then prove an equivalent quadratic relation over Rq, namely:

q1
“

A|B` iG|B1
‰

»

–

s1
s2
s3

fi

fl “ q1
“

A|B|G|B1
‰

»

—

—

–

s1
s2
is2
s3

fi

ffi

ffi

fl

“ q1u. (78)

Further, the second statement is about norms which is covered in Section 5.
Moreover, we define the identity space G. It should be designed so that we can efficiently prove that

i P G (third statement). Let B be the set of non-zero binary polynomials in Rp. Then, we define the identity
space25 as

G :“ tipXkq P R1
kd,p : i P B and }i} “

?
ωu.

We choose ω so that the set G has size « 223 for comparison with related work [11, 22]. Note that for
appropriate p, a difference of two distinct elements from G is still invertible over Rkd,p which is crucial for
trapdoor sampling.

Note that the space G is constructed in such a way that when we map equations over Rkd,p to Rk
p, then

we only need to commit to one polynomial i P Rp using our ABDLOP commitment instead of k polynomials,
i.e. ipXkq P Rkd,p. Similarly, we only need to send an encryption of i over Rp instead of ipXkq. Hence, for
such a set G, proving ipXkq P G is equivalent to proving that i has binary coefficients and }i} “

?
ω which

is covered in Section 5.
Last but not least, we observe that including a verifiable encryption from Section 6.3 does not have a

significant impact on the signature size. Indeed, identity i is already committed using the ABDLOP scheme
and additionally committing to the randomness r (in the “Ajtai part”) does not increase the commitment
size. Hence, the only extra cost consists of: (i) a ciphertext, (ii) masked opening of the randomness r, (iii)
commitments and masked openings to polynomials involved in the approximate range proof for v in (75).
As described in Fig. 16, for our instantiation the verifiable encryption costs 11.8KB compared to 19.5KB
shown in Fig. 14.

In summary, we show in Fig. 15 how to instantiate the protocol in Fig. 10 to construct a group signature.

Parameters. We present our parameter selection in Fig. 16 for a group signature instantiation which
achieves security level 111. We start by setting p “ 238 ´ 1767 and q “ p226 ´ 87q ¨ p « 264. Then, we
choose d “ 128, k “ 4 and l “ 4, thus Rkd,p “ ZrXs{pX512 ` 1q. Next, let N “ 2,M “ 3 and τ “ 5, hence
g “ rp1{5s. Further, we pick large enough standard deviation s used for trapdoor sampling. We know from
[38] that s ě 2ps1pRq ` 1q

a

g2 ` 1 where s1 is the operator norm. Note that if R did not have a polynomial
structure, i.e R Ð t´1, 0, 1upN`MqkdˆτNkd, we could use upper-bounds for norms of random subgaussian
matrices, e.g. [38][Lemma 2.9]. Namely, we would obtain the following bound

s1pRq ď
a

pN `Mqkd`
?
τNkd` 6 « 128

with probability at least 1´2163. We found experimentally that for our structured matrix R a similar bound
holds with at least 99% probability

s1pRq ď ψ :“ 113

and thus we set

s :“ 2pψ ` 1q

b

p2{τ ` 1.

Further, we describe how we choose N and M , i.e. the height and the width of the matrix A. Con-
cretely, in the traceability proof, the challenger sets B :“ AR ´ i˚G and B1 “ AR1 where R,R1 Ð

S
pN`MqˆτN
kd,1 and i˚ Ð G. Additionally, it samples skgm :“ psgm1 , sgm2 , sgm3 q Ð D

pp2τ`1qN`Mqkd
s and computes

25 Previous works [16, 32] define the identity space G to be a set of integers Zp since it was easier to prove set
membership i P G with their proof system. Here, we make a small modification and set the identity space to be a
subset of binary polynomials with fixed norm.
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variable description instantiation

ρ # of equations to prove N
ρeval # of evaluations with const. coeff. zero 2
υe # of exact norm proofs 2
υd # non-exact norm proofs 1

s1 committed message in the Ajtai part ps
piq

1 , s
piq

2 , s
piq

3 , renc, iq
m committed message in the BDLOP part H (no message)

f1, . . . , fN equations to prove Equation 78

F1 evaluation to prove const coeff. zero σ´1piq
´

i ´
řd´1

j“0 X
j
¯

F2 evaluation to prove const coeff. zero σ´1piq ¨ i ´ ω

E1 public matrix for proving }E1s ´ v1} ď β
peq

1

“

IkpN`M`2τNq 0
‰

v1 public vector for proving }E1s ´ v1} ď β
peq

1 0

β
peq

1 upper-bound on }E1s ´ v1} ď β
peq

1 s
a

2pp2τ ` 1qN ` Mqkd

E2 public matrix for proving }E2s ´ v2} ď β
peq

2

“

0 0 0 IKenc`1

‰

v2 public vector for proving }E2s ´ v2} ď β
peq

2 0

β
peq

2 upper-bound on }E2s ´ v2} ď β
peq

2

?
B2

enc ` ω

D1 public matrix for proving }D1s ´ u1} ď β
pdq

1 p´1
enc ¨

„

0 0 0 Aenc 0
0 0 0 bT

enc t
penc
2

s

ȷ

u1 public vector for proving }D1s ´ u1} ď β
pdq

1 p´1
enc ¨

„

t0
t1

ȷ

β
pdq

1 upper-bound on }D1s ´ u1} ď β
pdq

1 Bv,enc

Fig. 15: Instantiation of the protocol in Fig. 10 for the group signature. The variables in the first two columns refer
to the ones defined in Section 5 and the ones in the last column refer to the parameters in this subsection. Variables
with subscript enc are defined for the verifiable encryption in Section 6.3. Functions F1, F2 are used to prove that
identity i has binary coefficients and }i} “

?
ω. Triples pE1,v1, β

peq

1 q and pE2,v2, β
peq

2 q correspond to proving exactly

}ps
piq

1 , s
piq

2 , s
piq

3 q} ď B and }prenc, iq} ď
?
B2

enc ` ω respectively. The last triple pD1,u1, β
pdq

1 q corresponds to proving
approximately that }venc} ď Bv,enc :“ pBenc

?
Kencd{2 ` 1q

a

pNenc ` 1qd where venc is defined in (75).

u :“ rA|AR|AR1s skgm. It will hope that an adversary forges a signature for the identity i˚26 In that case,
we can extract from the forged signature the secret vector ski˚ “ ps̄1, s̄2, s̄3q such that

“

A|AR|AR1
‰

»

–

s̄1
s̄2
s̄3

fi

fl “ u “
“

A|AR|AR1
‰

»

–

sgm1
sgm2
sgm3

fi

fl

and thus

s :“ s̄1 ´ sgm1 `Rps̄2 ´ sgm2 q `R1ps̄3 ´ sgm3 q

is a MSIS solution for the matrix A 27. Also, with high probability we have s ‰ 0 since skgm was chosen
independently by the challenger. Now, we need to bound the norm of s. In order to do so, we will use the
property that for any x P RτN

p , }Rx} ď s1pRq}x} ď ψ}x}. Thus, we can bound the norm of s defined above
using the Cauchy-Schwarz inequality as follows:

}s} ď }s̄1 ´ sgm1 } ` ψ}s̄2 ´ sgm2 } ` ψ}s̄3 ´ sgm3 }

ď
a

1` ψ2 ` ψ2 ¨

b

}s̄1 ´ sgm1 }
2 ` }s̄2 ´ sgm2 }

2 ` }s̄3 ´ sgm3 }
2.

26 Hence, there is a 1{|G| security loss.
27 Since we prove the norm of ski˚ exactly, there is no relaxation factor c in front of the vector u as in previous works.

51



parameters description value

p modulus for the group signature 238 ´ 1767
d ring dimension for of R 128
k kd is the ring dimension of Rkd 4
N height of the A matrix 2
M N ` M is the width of the A matrix 4
τ τN is the width of the gadget matrix G 5
ω #1’s in the identity i P G 3

|G| size of the identity space « 223

penc encryption modulus 3329
Nenc height of Aenc 4
Kenc width of Aenc 9

ξenc ξKenc is the randomness distribution of renc Bind2
q modulus for the proof system « 264

l # factors Xd
` 1 splits into mod q 4

γ1 rejection sampling constant for cs1 5
γ2 rejection sampling constant for cs2 3

γpeq rejection sampling constant exact ARP 2

γpdq rejection sampling constant for non-exact ARP 12
κ maximum coefficient of a challenge in C 2
n height of matrices A1,A2 in ABDLOP 11
m1 length of the message s1 in the “Ajtai” part 110
ℓ length of the message m in the “BDLOP” part 0
λ number of garbage gj P Rq for boosting soundness 6
m2 length of the randomness s2 in ABDLOP 41
ν randomness s2 is sampled from Sm2

ν 1

repetition rate 27
extra cost of adding verifiable encryption 11.8KB

signature size 90KB
public key size 47.5KB
secret key size 6.3KB

Fig. 16: Parameter selection and concrete sizes for the group signature scheme.

Finally, we observe that we can bound the second term as:

›

›

›

›

›

›

»

–

s̄1 ´ sgm1
s̄2 ´ sgm2
s̄3 ´ sgm3

fi

fl

›

›

›

›

›

›

2

ď 2 ¨

¨

˚

˝

›

›

›

›

›

›

»

–

s̄1
s̄2
s̄3

fi

fl

›

›

›

›

›

›

2

`

›

›

›

›

›

›

»

–

sgm1
sgm2
sgm3

fi

fl

›

›

›

›

›

›

2
˛

‹

‚

ď 4B2 “ p2Bq2.

Hence

}s} ď BMSIS :“ 2s ¨
a

1` 2ψ2 ¨
a

2pp2τ ` 1qN `Mqkd.

Thus we have to choose N such that MSISN,N`M,BMSIS
is hard over Rkd,p and take into account the 1{|G|

security loss. Not to mention the fact that we want AR to be computationally indistinguishable from a
random matrix B, i.e. the MLWEN,M,Skd,1

problem over Rkd,p to be hard.

Parameters for the ABDLOP commitment are chosen similarly as in the previous examples. In particular,
the proof system modulus q has to be large enough to prove exactly that the norm of a user secret key is at
most B “ s

a

2pp2τ ` 1qN `Mqkd. Also, we aim for repetition rate 27 similarly as in [32].
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6.5 Product Proofs over Rp for a co-prime p

Another application of our techniques is a product proof over Rp where p ă q is co-prime to our proof system
modulus q. Namely, suppose we want to prove n equations of the form:

aibi “ ci for i “ 1, 2, . . . , n (79)

where all ai, bi, ci P Rp.
Note that if p was a divisor of q, i.e. q “ kp for some integer k, then we would simply apply the

methodology from Section 4.2 to prove kaibi “ kci over Rq. This immediately implies (79).
There are two fundamental reasons why we would consider proving such statements. Firstly, this allows

us to efficiently prove quadratic relations when p is small. Indeed, suppose that we choose p which is divisible
by q. Recall that the soundness error of the protocols in Section 4 mainly depends on the smallest prime
divisor of q, i.e. q1 ď p. Hence, if we wish to have small p, we would need to decrease the number of subfields
l that Rq splits into (so that p´d{l is negligible). Moreover, if we additionally want to execute the protocol
in Fig. 8, e.g. in order to prove binary or L2 norms, we would need to increase the number of garbage terms
g1, . . . , gλ so that p´λ is negligible. This, unfortunately, has a negative impact on the overall communication
size.

The second reason is that, for suitable primes p, we could prove point-wise product relations a⃗ ˝ b⃗ “ c⃗
over Zp which is a fundamental component in proving general circuit satisfiability and R1CS statements
[9]. Indeed, if we choose p such that Xd ` 1 splits into linear factors modulo p, then using Number Theory
Transform identically as done in [4, 19], we reduce the problem to proving products over Rp.

We first provide a naive strategy for proving (79). Namely, we commit to ai, bi, ci using the ABDLOP
commitment 28 and prove that the L2 norms of each polynomial is at most p

?
d{2. Then, we commit to each

ki :“
aibi ´ ci

p

and prove that }ki} ď ppd` 2q
?
d{4. Finally, we prove quadratic equations

aibi ´ ci “ pki (80)

over Rq.
The intuition for soundness is that if we proved that ai, bi, ci and ki have small coefficients with respect

to q, and that (80) holds over Rq, then this implies that aibi´ ci “ pki is true over integers since no modulo
wrap-around occurs29. Consequently, we get aibi “ ci over Rp.

Unfortunately, the cost of this method is committing to additional ki for each out of n equations. We
circumvent this issue by not committing to ki but instead proving that p´1paibi ´ ciq P Rq has small
coefficients. As described before, we do that by committing to the masking polynomials py1, . . . , y256{dq P

R256{d
q and computing pz1, . . . , z256{dq P R

256{d
q such that

»

—

–

z⃗1
...

z⃗256{d

fi

ffi

fl

:“ R

»

—

–

p´1p
ÝÝÑ
a1b1 ´ c⃗1q

...

p´1p
ÝÝÑ
anbn ´ c⃗nq

fi

ffi

fl

`

»

—

–

y⃗1
...

y⃗256{d

fi

ffi

fl

where R is a challenge matrix and
ÝÝÑ
aibi is a coefficient vector of aibi P Rq

30. Then, we need to prove that
polynomials zi were well-formed.

28 Hence, each coefficient of ai, bi, ci is between ´p{2 and p{2.
29 This strategy was already used to prove integer multiplication in [33].
30 For simplicity, we omit bimodal rejection sampling which would end up having to prove cubic rather than quadratic

equations.

53



Let us focus on the constant coefficient rz1 P Zq of z1 since proving all the other ones follows identically.
Then, if we denote the first row of R by pr1, . . . , rnq P Rn

q , we have:

rz1 “ p´1
n

ÿ

i“1

r⃗Ti p
ÝÝÑ
aibi ´ c⃗iq `

“

1 0 . . . 0
‰

y⃗1.

Hence, we simply need to prove that the constant coefficient of

p´1
n

ÿ

i“1

σ´1priqpaibi ´ ciq ` y1 ´ z1

is equal to zero. Note that all ai, bi, ci and y1 are committed. Hence, this is a quadratic relation with an
automorphism and thus we can apply the protocol in Fig. 8 to prove this property.

7 Working Over General Rings

Throughout the paper, we have focused on working over the polynomial ring R “ ZrXs{pXd ` 1q, and in
particular used the fact that spX´1q is an automorphism in this ring. In this section, we explain how our
main results can be generalized to virtually any other ring that one could be interested in. In particular, let
us define R “ ZrXs{pXd ` fd´1X

d´1 ` fd´2X
d´2 ` . . .` f1X ˘ 1q, where fi P Z.

The first thing to note is that all our protocols for proving linear a quadratic relations over Rq did not
use any special properties of the ring except that the challenge differences need to be invertible. For purposes
of security, one should also be mindful of the “expansion factor” of the ring, which controls the growth of
polynomial products in the ring – if it is too big, then the reduction from SIS becomes meaningless [30].

For our proofs over the ring Rq to be meaningfully applied to proving knowledge of inner products
over Z, one needs a correspondence between the inner product and the constant coefficient of a polynomial
multiplication. Below, we show how one can achieve such a correspondence for any R. The multiplication
of a ¨ b in the ring R can be written as a matrix-vector product Ab⃗, where b⃗ consists of the coefficients of
b and the ith column of A (if we number them starting from 0) consists of vectors whose elements are the
coefficients of the polynomial a ¨ Xi P R. It’s not hard to see that the first row of A is the vector a⃗T ¨M ,
where

M “

»

—

—

—

—

—

—

–

1 0 0 . . . 0 0
0 0 0 . . . 0 ˘1
0 0 0 . . . ˘1 c2,d´1

. . . . . . . . . . . . . . . . . .
0 0 ˘1 . . . cd´2,d´2 cd´2,d´1

0 ˘1 cd´1,2 . . . cd´1,d´2 cd´1,d´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (81)

for some integers ci,j which are of no particular importance to this section. Therefore the inner product xr⃗, s⃗y
is equal to Ąa ¨ s where a⃗T ¨M “ r⃗T . Since the determinant of M is ˘1, M´1 is also an integer matrix, and
thus a⃗T “ r⃗T ¨M´1 is an integer vector and so a P R.

The protocol for proving a bound on }s}2 over the ring Rq, uses the fact that the matrix M´1 actually
corresponds to an automorphism over Rq, and so the prover does not need to create a commitment to
both s and s⃗T ¨M´1 – the verifier can essentially derive the latter by himself. In rings where s⃗T ¨M´1 is
not an automorphism, the prover would additionally need to commit to the polynomial corresponding to
r⃗ “ s⃗T ¨M´1, and then give a linear proof showing that this relationship is indeed satisfied, along with the
proof on the bound of }s}2 “ Ąr ¨ s. The modification for proving that s contains only 0{1 coefficients would
proceed in the same manner. Proving component-wise products over general rings R can also be done, but
ends up again doubling the committed vector. Recall that the idea when working over the ring Rq was to
pick a prime p ! q such that Xd ` 1 fully splits modulo p and then embed the coefficients into the CRT
slots. If, for a particular ring R, there is no such p, then one would need to use a different ring than the one
used for the commitment scheme which does have such a p, and make sure that multiplication of committed
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values over this ring corresponds to the one used in the commitment scheme. One way to do this is to only
commit to polynomials of less than half the degree of the ring, so that multiplications in both rings is the
same as over ZrXs.
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