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Abstract. We present a much-improved practical protocol, based on the hardness of Module-SIS and
Module-LWE problems, for proving knowledge of a short vector & satisfying A8 = ¢ mod ¢. The cur-
rently most-efficient technique for constructing such a proof works by showing that the £ norm of § is
small. It creates a commitment to a polynomial vector m whose CRT coefficients are the coefficients of
& and then shows that (1) A-CRT(m) = i mod ¢ and (2) in the case that we want to prove that the £o
norm is at most 1, the polynomial product (m — 1) -m- (m + 1) equals to 0. While these schemes are
already quite practical, the requirement of using the CRT embedding and only being naturally adapted
to proving the ¢-norm, somewhat hinders the efficiency of this approach.

In this work, we show that there is a more direct and more efficient way to prove that the coefficients of
5 have a small /2 norm, which does not require an equivocation with the £5, norm nor any conversion to
the CRT representation. We observe that the inner product between two vectors ¥ and s can be made
to appear as a coefficient of a product (or sum of products) between polynomials which are functions
of ¥ and §. Thus, by using a polynomial product proof system and hiding all but one coefficient, we
are able to prove knowledge of the inner product of two vectors (or of a vector with itself) modulo
q. Using a cheap “approximate range proof”, one can then lift the proof to be over Z instead of Z,.
Our protocols for proving short norms work over all (interesting) polynomial rings, but are particularly
efficient for rings like Z[X]/(X™ + 1) in which the function relating the inner product of vectors and
polynomial products happens to be a “nice” automorphism.

The new proof system can be plugged into constructions of various lattice-based privacy primitives in
a black-box manner. As examples, we instantiate a verifiable encryption scheme and a group signature
scheme which are more than twice as compact as the previously best solutions.

1 Introduction

The fundamental hardness assumption upon which lattice-based cryptography rests is that it is computa-
tionally difficult to find a low-norm vector s satisfying

As=tmodg. (1)

It is then natural that for creating privacy-preserving protocols based on the hardness of lattice problems,
one is usually required to prove the knowledge of an s satisfying the above, or a related, equality. Unlike in
the analogous case of discrete logarithms, where proving knowledge of a secret s satisfying ¢° = t turns out
to have a very simple and efficient solution [Sch89], the added requirement of showing that |s| is small turns
out to be a major complication for practical lattice cryptography.

Over polynomial rings (i.e. rings of the form Z[X]/(f (X)), where f(X) is a monic, irreducible polynomial),
one can give a fairly-efficient zero-knowledge proof of knowledge of a vector s and a polynomial ¢ with small
coeflicients satisfying

As = ct mod ¢, (2)

where || is some factor (depending on the dimension of s) larger than |s|| [Lyu09, |[Lyul2]. While such
proofs are good enough for constructing fairly efficient basic protocols (e.g. signature schemes [Lyu09, [Lyul2,

* This is the full version of the paper presented at CRYPTO 2022.



BG14, IDKL™18]), the fact that the norm of the extracted § is noticeably larger than that of s, along with
the presence of the extra multiplicand ¢, makes these proofs awkward to use in many other situations. This
very often results in the protocols employing these proofs being less efficient than necessary, or in not giving
the resulting scheme the desired functionality.

As simple examples of inefficiencies that may creep up when only being able to prove , consider Regev-
style lattice-based encryption schemes (e.g. [Reg09} [LPS10, ILPR10]) where s is the randomness (including
the message) and t is the ciphertext. In order to decrypt, it is necessary for t to have a short pre-image, and so
being able to only prove knowledge of is not enough to guarantee that the ciphertext t can be decrypted
because it is ¢t that has a short pre-image, not t (and c¢ is not known to the decryptor). A consequence of
this is that the currently most-efficient lattice-based verifiable encryption scheme |[LN17] has the undesirable
property that the expected decryption time is equal to the adversary’s running time because the decryptor
needs to essentially guess c. Employing this scheme in the real world would thus require setting up a scenario
where the adversary cannot use too much time to construct the proof. Other lattice-based constructions (e.g.
group signature schemes [LNPS21]) were required to select much larger parameters than needed in order to
accommodate the presence of the multiplicand ¢ and the “slack” between the length of the known solution
s and the solution § that one can prove.

1.1 Prior Art for Proofs of

Early protocols for exactly proving used the combinatorial algorithm of Stern [Ste93] to prove that the
£y norm of s is bounded by revealing a random permutation of s. The main problem with these protocols
was that their soundness error was 2/3, and so they had to be repeated around 200 times to achieve an
acceptably small (i.e. 27128) soundness error. This resulted in proofs for even basic statementsﬂ being more
than 1MB in size [LNSW13|, while more interesting constructions required outputs on the order of dozens
of Megabytes (e.g. [LLNW16|). A noticeable improvement was achieved in [Beu20| by generically combining
Stern’s protocol with a “cut-and-choose” technique to noticeably decrease the soundness error of each protocol
run (at the expense of higher running times). This allowed proofs for basic statements to be around 200KB
in size.

A very different, more algebraic, approach for proving utilized lattice-based commitments and zero-
knowledge proofs about committed values to prove relations between the coefficients of s and also prove a
bound on its £, norm. The first such protocols [YAZ ™19, BLS19) [ESLL19] had proof sizes that were on the
order of several hundred kilobytes. These schemes were greatly improved in |[ALS20, [ENS20], where it was
shown how to very efficiently prove products of polynomial products over a ring and then linear relations
over the CRT coefficients of committed values. Optimizations of these techniques [LNS21b| decreased the
proof size for the basic example to around 33KB.

The high level idea for these proofs, when s has coefficients in the set {—1,0, 1}, is to create a BDLOP
commitment [BDLT18| to a polynomial m whose CRT coefficients are the coefficients of s, prove this (linear)
relationship as well as the one in |[ENS20], and then prove that (m — 1) -m - (m + 1) = 0 [ALS20].

There are a few intrinsic elements of this approach which hinder its efficiency, especially in certain situ-
ations. The first is that m consists of large polynomial coefficients, and so committing to it requires using
a more expensive commitment scheme, which is especially costly when s is 1ongE| (we discuss this in more
detail when talking about various commitments in Section . Another downside is that for vectors s with
somewhat-large coefficients, such as ones that are obtained from trapdoor sampling (e.g. [ABB10, MP12]),
proving the smallness of the /,-norm becomes significantly costlier because the degree of the polynomial
product increases. There is also an incompatibility between the requirement that the underlying ring has
a lot of CRT slots and negligible soundness error of the protocol — thus a part of the protocol needs to be

3 A standard example that has been used for comparison-purposes in several works is 1024 x 2048 integer matrix A,
a 32-bit modulus ¢, and s having coefficients in {—1,0,1} (or |s|| < 1/2048).

* The aforementioned framework was most appropriate for committing to small-dimensional messages (e.g. in proto-
cols related to anonymous transactions (e.g. [EZS™19,|LNS21b, [ESZ21|) and proving various relationships between
them.



repeated for soundness amplification. And finally, proving the ¢5 norm, rather than the ¢, one, is very often
what one would like to do when constructing proofs for lattice-based primitives. This is because efficient
trapdoor-sampling used in many lattice primitives produces vectors of (tightly) bounded ¢5 norm, and noise
also generation generally results in tight fo-norm bounds.

1.2 Our Results

We propose a simpler, more efficient, and more direct approach for proving a tight bound on the ¢ norm of s
satisfying . Unlike in the previous approach, we do not need to recommit to s in CRT form, and therefore
don’t have a ring algebra requirement which had a negative effect on the protocol soundness. Furthermore,
not needing to create a BDLOP commitment to s noticeably shrinks the proof size. In particular, we define
a commitment scheme which combines the Ajtai |[Ajt96] and BDLOP [BDL'18] commitments into one, and
then put the long commitment to s into the “Ajtai” part of the commitment scheme, which does not increase
the commitment size[]

We then observe that the inner product of two vectors over Z can be made to appear as the constant
coefficient of a polynomial product, or as a coefficient in a sum of polynomial products. Our protocol for
proving the ¢o-norm of s is then a specific application of a more general protocol that can prove knowledge
of constant coefficients of quadratic relations over polynomial rings for messages that are committed in the
“Ajtai” and “BDLOP” parts of our new commitment. Our protocols are built up in a black-box manner from
basic building blocks, and can then also be used in a black box manner for implementing the zero-knowledge
proof parts of various lattice-based primitives. As examples, the ZK proof of the basic relation from is
~ 2.5X shorter than in previous works, a verifiable encryption scheme can be as short as the one from |[LN17]
without the constraint that the decryption time is proportional to the adversary’s attack time, and we give
a group signature scheme whose signatures are more than 2X smaller than the currently most compact one.

Our proof system for the basic equality from is around 14KB, and approximately 8KB of that consists
of just the “minimum” commitment (i.e. a commitment to just one element in R, that doesn’t include s)
and its opening proof. This shows that our construction is quite close to being optimal for any approach
that requires creating a commitment to s using known lattice-based commitment schemes. Since all zero-
knowledge proofs that we’re aware of for showing that a secret s satisfies f(s) work by first committing to
s, it appears that any significant improvement to this proof system (e.g. another factor of 2) would require
noticeable improvements in fundamental lattice primitives, basing security on stronger assumptions, or a
noticeable departure from the current approach.

We now give a detailed overview of the techniques and results in this work, and then sketch how our
framework can be used to construct lattice-based privacy protocols.

1.3 Techniques Overview

Throughout most of the introduction and paper, we will concentrate on the ring R, = Z,[X]/(X%+1), as our
constructions are most efficient here because they can utilize a specific automorphism in this ring. Towards
the end of this section and in Section [7} we describe how to adapt our construction, and most applications,
to other rings that do not have this algebraic structure. All our constructions will be based on the hardness
of the Module-SIS and Module-LWE problems and one should think of the degree of the underlying ring d
to be something small like 64 or 128 (we use 128 for all our instantiations).

Commitment Schemes. In the original Ajtai commitment scheme, implicit in [Ajt96], one commits to a
message s; using randomness so, where ||s;| are small, as
Ais; + Agsy = t mod g. (3)

5 The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will need to
be committed to later in the protocol.



It’s easy to see that creating a second valid opening (s}, s5) for the same commitment value t is equivalent
to solving the SIS problem over R,, and the hiding aspect of the commitment scheme is based on the
indistinguishability of (Ag, Agss) from uniform. A useful feature of the above commitment scheme is that
the dimension of the message s; does not increase the commitment size. And since the hardness of SIS does
not really depend on the dimension of the solution, increasing the dimension of s; does not negatively impact
the security either. On the other hand, one does need the coefficients of s; to be small.

A different commitment scheme, called the BDLOP scheme [BDL™ 18|, commits to a message m using

randomness s as
A 0| |ta
[B] -8+ [m] = [tB] mod g, (4)

where only the randomness s needs to have a small norm. An opening of this commitment is just s since it
uniquely determines m, and so it is again easy to see that two different openings lead to a solution to SIS
for the matrix A. The hiding property of this commitment is based on the indistinguishability from uniform

(T
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This scheme has two advantages and one disadvantage over the one in . The disadvantage is that both
the commitment size and the opening size grow linearly with the dimension of the message vector m. An
advantage is that the coefficients of m can be arbitrarily large modulo g. The other advantage is that if one
plans ahead and sets the dimension of s large enough, one can very cheaply append commitments of new

elements in R,. For example, if we have already created a commitment to m as in and would like to
commit to another polynomial vector m’, we can compute B’s + m’ = t/; mod ¢, where B’ is some public

A A
randomness. If B |, | B | -s | is indistinguishable from uniform, then (t4,tpg,ts) is a commitment to
B’ B’

m, m’. Note that committing to k extra R, elements requires growing the commitment size by only k R,
elements, something that cannot be done using the scheme from .

For optimality, our construction will require features from both of these schemes, and it actually turns
out to be possible to combine the two of them into one. So to commit to a message s; with a small norm,
and a message m with unrestricted coefficients (modulo ¢), one can create a commitment

[‘%1] 81 + [%2] -89 + [I(r)l] = [Eg] mod g, (5)
where the randomness is so. We will call this combination of the Ajtai and BDLOP commitment scheme,
the ABDLOP commitment. The savings over creating two separate commitments is that instead of needing
the t term from (3) and the t4 term from (4], we only have the t4 term. So we get an Ajtai commitment
to s; for free! And similarly, the opening does not require both s, from and s from .

One can show that is indeed a commitment scheme and has an efficient zero-knowledge opening

proofﬂ Furthermore, there is also an efficient zero-knowledge proof (much like in [BDL*18]) which allows
one to efficiently show that the committed values s, m satisfy a relation over R,

Ris; + R,,m = umod g, (6)

where the matrices Ry, R,,, and the vector u are public. This proof system is given in Figure ] and we just
mention that the proof size is not affected by the sizes of Ry and R,,. In other words, the proof size for
proving linear relations over R, is the same as the proof size of just proving knowledge of the committed
values. The only way in which this proof puts a restriction on the underlying ring is that the modulus ¢
must be large enough so that the extracted SIS solution is hard, and that the challenge set C is such that
the difference of challenges is (with high probability) invertible. This can be done by choosing the modulus

6 As for the Ajtai and BDLOP commitments, the opening needs to be carefully defined because the ZK proof only
proves approximate relations as in . The details are in Section



q in a way that X< + 1 splits into very few irreducible factors of the form X* — r; modulo ¢ (or the prime
factors of ¢), which in turn implies that all elements of R, with small coefficients are invertible [LS18].

The way this commitment scheme will be used in our protocols is that we will put high-dimensional
messages with small coefficients into s;, while putting small-dimensional values with large coefficients —
generally auxiliary “garbage terms” that we will need to commit to during the protocol which aid in proving
relations among the elements in s; — into m.

Inner Products over Z,. Suppose that instead of just wanting to prove linear relations over R, as above,
we wanted to prove linear relations over Z,. That is, if we let Ry, R,, be integer matrices, and we write 57
and m to be integer vectors whose coefficients are the integer coefficients of the polynomial vectors s; and
m, then we would like to prove that R15; + R,,m = @ mod q.

An important observation is the following: if 7= (rg,71,...,74-1),5 = (80,51, -.-,84—1) € Zg are vectors
and 7(X) = Y. ri X" s(X) = >, 5X" € R, are the corresponding polynomials, then (7, §) mod ¢ is equal
to the constant coefficient of the polynomial product r(X 1) - s(X) over Rqﬂ Similarly, for 7,5 € Z’;d, one
can define the corresponding polynomial vectors r = (ry,...,7%),8 = (81,...,8k) € R’; to have the same
coefficients as 7, § in the straightforward manner, then (7, §) mod ¢ is equal to the constant coefficient of
> ri(X 1) - si(X), where the multiplication is performed over R,.

For a polynomial h = hg + 1 X + ... + hg_1 X% 1e Ry, we will write T to mean the constant coefficient

ho. The procedure to prove that (7, §) mod ¢ = « is then to create polynomial vectors r,s such that </I‘T_/S>
(where the inner product is over R,) is equal to (7, 5). One can hope to use the protocol from Figure [4] to
prove the linear relation over R, which would imply the linear relation over Z,. The problem is that naively
proving the relation over R, would necessarily require the prover to reveal all the coefficients of r, s) instead
of just the constant one, which implies giving out extra information about the committed vector §, and so
is clearly not zero-knowledge.

We now outline the solution to this problem for general linear functions. For a linear function f : RZ —

R4, we would like to prove that the committed values s;, m in the ABDLOP commitment satisfy f(s;,m) =0

~ —_—

(for aesthetics, we will write f(x) to mean f(z)). In order to mask all but the constant coefficient, we use a
masking technique from [ENS20|, where the prover first creates a commitment to a polynomial g € R, such
that g = 0 and all of its other coefficients are chosen uniformly at random. In our proof system, he commits
to this polynomial in the “BDLOP part” of by outputting t, = (b,ss) + g, where b is some random
public polynomial vector. The verifier then sends a random challenge y € Z,, and the prover computes

h=~-f(s1,m)+g. (7)

The prover then creates a proof, as in Figure [4] that the committed values s;,m, and ¢ satisfy this linear
relation, and sends h along with this proof to the verifier. The verifier simply checks the validity of the linear
proof, and also that h = 0 mod q.

The proof leaks no information about all but the constant coefficient of f(s1, m) because they are masked

by the completely random coefficients of g. To see that this proof is sound, note that for all g, if f(s;, m) # 0,
then Pr.[y - f(sl,m) + g = 0] < 1/¢q1, where ¢ is the smallest prime factor of ¢. In order to reduce the
soundness error down to €, the prover would need to create a commitment to A different g;, where (1/¢;)* = €
and then reply to A different challenges «; by creating A different h; as in ‘ Since the g; are just one
polynomial in R, the h; are also just one polynomial each, and so amplifying the proof requires sending

just 2)\ extra elements in R,.

~

The above shows that proving one relation f(s1, m) = 0 requires a small number \ of extra polynomials
g and h. Usually, we will want to prove many such linear equations, and so it would be quite inefficient if our
proof size grew linearly in their number. But, just like in the basic protocol in Figure [l we can show that
the number of equations that we need to prove does not affect the size of the proof. If we would like to prove
d—1 d—1
7 For a polynomial r(X) = Y X' e Ry, r(X 1) =ro— > X470

i=0 i=1



k equations fi(sl, m) = 0, the prover still sends the term g in the first round (let’s ignore the amplification
for now), but this time instead of sending just one random challenge v € Z,, the verifier sends k random
challenges ~;. The prover then creates the equation

h:Z’Vi'fi(slvm)+g» (8)

and sends h along with a proof that the s;,m, and g satisfy the above. The verifier checks the proof and
that h = 0 mod ¢. The fact that this proof leaks no information and that the soundness error is again 1/¢;
is virtually identical as for (7)), and we give a full description of this protocol in Figure

Quadratic Relations and Norms. In the above, we saw an overview of how one can prove knowledge
of inner products over R, and Z, when one of the values is committed to and the other is public. We now
show how to do the same thing when both values are in the commitment — in other words, how to prove
quadratic relations over committed values.

The most efficient protocol for proving quadratic relations between committed polynomials in R, is
given in |[ALS20]. That protocol assumes that the elements were committed using the BDLOP commitment
scheme, and one can show that a similar approach works for the ABDLOP scheme as well. And so one can
prove arbitrary quadratic relations over R, between the committed polynomials in the polynomial vector s;
and m in . We will now explain how to use this proof system, together with the ideas presented above,
to construct a proof that the s satisfying has small #o-norm. For simplicity of this description, let’s just
suppose that we would like to prove that |s| = § instead of [|s| < ﬁﬂ The idea is to first commit to s as
part of the s; part of (i.e. in the “Ajtai part” of the ABDLOP scheme). Then we use the observation
from the previous section that notes that if s; = (s1,...,s;) € R’;, then |s|? is the constant coefficient of
> si(X 1) - 5i(X). We cannot directly use the proof system for linear proofs because that one assumed that
one of the multiplicands was public. We thus need to extend the protocol from |[ALS20] to prove knowledge
of >, 5;(X ™) - s;(X) when having a commitment to s.

Let us recall the main ideas from |ALS20] and then see how they can be applied to the ABDLOP
commitment. Suppose, for example, that we wanted to prove that sys; — s3 = 0, and we had commitments
to s; in the Ajtai part of the ABDLOP commitment (i.e. the s; are part of the s; in ) If one looks at the
protocol in Figure [4 for proving knowledge of committed values in the ABDLOP protocol, then we note that
the prover sends the vector z; = ¢s; + y1. This z; consists of terms z; = s;c + y;, where c¢ is a polynomial
challenge (with small coefficients) and y; is a masking polynomial whose job is to hide s;.

The high level idea in which the protocol from [ALS20| (and some that preceded it [BLS19, |[ESLL19,
YAZ119]) proves quadratic relations is by having the verifier create a quadratic equation (in ¢) out of the
linear equations z; = ¢s; + y;. That is, the verifier computes

2129 — cz3 = (5182 — 83)¢% + gic + go, 9)

where ¢g; and g¢ are some terms which depend on y; and s; and are committed to by the prover prior to
receiving the challenge cﬂ The above is a quadratic equation in the variable ¢ (since all the other terms
are already committed to), and so if the prover shows that z120 — cz3 = g1¢ + go (i-e. it’s actually a linear
equation) it will imply that with high probability the quadratic coefficient, s1s2 — s3 is equal to 0.

To prove that the constant coefficient of s(X 1) . s(X) is some value 3, one can try to do something
similar. Here, it becomes important that the function mapping s to s(X 1) is an automorphism (call it o)
for R,. Given the term z = sc + y, the verifier is able to compute

0(2)-z—0(c) - c- B2 = (0(s) s — %) - 0(c) - c+0(s)-y-0(0) +5-0(y)-c+oly) -y, (10)

® To prove the latter, one would commit to a vector b which is the binary representation of the integer 32 — ||s|? and
then prove that it is indeed binary and that <g, (1,2,22,...0,...,0)) is 8% — ||s||?; which implies that the latter is
positive. Note that it is still a quadratic relation in the committed values s and b.

9 [ALS20] showed that the y; were already implicitly committed to by the first part of the protocol.



and, if the above is equal to g2 - o(c) + g1 - ¢+ go, would like to conclude that the coeflicients in front of o(c)- ¢
is 0. Unfortunately, we can’t conclude this because the ¢ and o(c) are not independent. What we instead do
is choose the challenges ¢ from a set that is fixed under this automorphism — that is, o(¢) = ¢. Then
becomes

0(2) 2= c*p% = (o(s) - s = %) -+ (0(s) -y + 5 0(y)) - c+a(y) -y, (11)
and we again have a quadratic equation in ¢. Luckily, the requirement that o(c) = ¢ does not restrict the
d/2—1

challenge set too much. In particular, if we choose ¢ € R, to be of the form ¢ = co + >, ¢ - (X' — Xd-i),
i=1

where ¢; € Z,, then ¢ = o(c)m So we are free to set d/2 coefficients of the challenge polynomial instead of

the usual d. So obtaining the same soundness requires the coefficients to be a little larger, but this has a

rather small effect on the proof size.

The protocol in Figure[]is a very general protocol for proving that a quadratic function in the coefficients
of s; and m, and the automorphisms of s; and m, is satisfied as long as the challenge set is fixed under the
particular automorphism. If we only want to prove the £ norm, then we do not want to prove a quadratic
function over Ry, but rather we just want to prove something about the constant coefficient of a quadratic
relation over R,. To do this, we employ the same masking technique as in that we used for our linear
proofs over Z,. Furthermore, just like in the linear proofs setting, if we need to prove multiple quadratic
relations, we can first combine them into one equation, and then the proof size does not increase. Also note
that we can clearly combine linear and quadratic equations together into one quadratic equation. The full
protocol is presented in Figure

We are almost done, except for the fact that all of our proofs are modulo g. That is, the protocol only
proves that [s|?> = 32 mod ¢, which is not the same as proving [s|?> = B2. In order to prove that there
is no “wraparound” modulo ¢, we employ a version of the “approximate range proof” technique to show
that the coefficients of s are all small-enough. We do not need a sharp bound on these coefficients, but
just need to show that they are small-enough that no wraparound occurs. For this, we use the technique
[BL17, |BN20, [LNS20, (GHL21] of committing to a masking vector ¢ (in the BDLOP part of )7 receiving
a —1/0/1 challenge matrix R, and outputting 2 = R§ + ¢ (and doing a rejection sampling to hide §). It
can be shown that if ||Z] is small, then || is also small. The dimension of ¢ and Z is small (between 128
and 256), and so the extra commitment to ¥ and the revealing of 7 is inexpensive. The protocol for the
approximate range proof is given in Figure [0] and the general protocol proving these approximate range
proofs in combination with other quadratic functions is given in Figure [I0]

Putting Everything Together. The structure for proving involves creating an ABDLOP commitment
as in with s; = s and making the randomness ss long enough to accommodate future commitments to a
few intermediate terms necessary in the proof. One then uses the aforementioned proofs to show that [|s||
is small, and that the linear equation in is satisfied. Notice that we don’t really need any ring structure
on the equation in ; if it is over Z,, we can simply prove it using the linear proofs over Z,. This is
computationally more expensive than if the equation were over R, because for every multiplication over Z,,
we have to compute one multiplication over R4, but the proof size will be the same.

We also note that the modulus in does not have to be the same as in the commitment scheme. In fact,
it will often be necessary to use a larger modulus in the commitment scheme because it has to be larger than
|s|?. For example, we can set the commitment scheme modulus to p - ¢ and then simply lift the equation in
to this modulus by multiplying both sides of it by p. As long as the challenge differences are invertible
in the ring R, and R, all the protocols go through unchanged.

Another possibility is, instead of proving As =t mod ¢, one proves that

As—t=r-gq (12)

10 This is easy to see because o(X* — X?7) = X~ — X~ and multiplying by —X? = 1, we obtain ¢(X* — X97%) =
— X X



over the integers. If each row of A consists of m integer coefficients, then each coefficient of r has magnitude
at most mgq. One can then do the proof system using a larger modulus p, and also prove that each coefficient
of g71(As — t) mod p is small using the approximate range proof. The advantage of this method over using
pq as the modulus for the commitment scheme, as above, is that it allows the commitment scheme modulus
p to be a prime, and so one needs fewer terms for coefficient masking (see the discussion after ), which
could save a few kilobytes in the complete proof. A disadvantage is that there is now the extra secret r term
that needs to be dealt with.

Useful Extensions. While we concentrated on proving the smallness of the fo-norm of a vector § (or
more generally the knowledge of the inner product between two vectors), it is also possible to use our
techniques to prove many other inter-vector relations. In particular, a useful relation (e.g. if dealing with
general functions/circuits) is proving the knowledge of the component-wise product 7o§. This can be generally
accomplished by proving a polynomial product over a ring R, of two vectors r and s whose CRT coefficients
are 7 and 5. The important thing is to choose a prime p such that the polynomial X% + 1 factors into
linear factors modulo p. As mentioned above, by simply subtracting off the remainder as in (12]), one can
use different moduli for the commitment scheme for the relations that we would like to prove. Thus one
can choose a “CRT-friendly” modulus for the underlying relation, while using a modulus that allows the
polynomial differences to be invertible (so not a CRT-friendly one) for the commitment scheme.

We also point out that proving inner products can be directly used to prove another very natural function
— showing that all the coefficients of a vector are from the set {0, 1}. For this, one uses the observation that
§ has coefficients in {0, 1} if and only if (5,1 — & = 0. And since given a commitment for §, one can maul it
into a commitment to I — &, one can generically apply the aforementioned protocol in Figure

Using Other Rlngs In proving that the norm of a polynomial s was small, we exploited the fact that in
the ring R, s(X~1) - s = |s|2 and that s(X~!) was an automorphism. In Section [7| we show that the same
high level ideas can also be made to work for rings that don’t have this algebraic structure. Specifically,
for all rings R = Z[X]/(X? + fs_1 X% 1 + ...+ f1X £ 1), there exists a linear function g : R — R such
that gWs is equal to (7, 8). If g is not an automorphism, then proving knowledge of ||s|? = g/(_s\)_-/s would
require the prover to commit to both s and g(s), and then also prove the linear relationship between the
commitments of s and ¢(s). Opening two commitments instead of one will increase the proof size, but this
is slightly mitigated by the fact that the challenges no longer need to be restricted to be fixed under any
automorphism.

Sample Constructions. In Section [6], we present various instantiations of lattice-based primitives that
can be constructed using our zero-knowledge proof system. We now give a very high-level description of
a group signature scheme. In a group signature scheme, the Setup Authority uses a master secret keys to
distribute member secret keys to the members of the group. The members can then use their secret keys to
sign messages on behalf of the group. An entity known as the Opener (or group manager) also has a special
secret key that allows him to obtain the identity of the signer of any message. The privacy criterion states
that it should be impossible, for everyone but the Opener, to trace back a signature to the particular user, nor
link that two signatures were signed by the same user. Conversely, the traceability requirement states that
every message signed by a user with identity p will get traced back to him by the Opener. Group signatures
are an interesting primitive in their own right, but are particularly useful in determining the practicality
of zero-knowledge proofs as they contain some ingredients which are prevalent throughout privacy-based
cryptography.

We show how we can use our improved ZK proof to construct a lattice-based group signature following
the framework of [dPLS18, [LNPS21|. The master public key is [A | B],u, and the secret key of a group



member with identity u is a short vector [21] such that
2

[A | B+ uG]l- [2] —umod . (13)

The setup authority with a trapdoor for the lattice £ = {x : [A | B]-x = 0 mod ¢} can create such short
vectors which are distributed according to a discrete Gaussian distribution [ABB10, MP12].
The group member’s signature of a message consists of a Module-LWE encryption of his identity u as

[‘:‘)'] T+ [[p/OQJu] — ¢ mod p, (14)

where A’ b is the public key (of the Opener) and r is the randomness, together with a a ZKPoK that he
knows p, r, and [Zl] satisfying and . The message that the user is signing is, as usual, put into the
2

input of the hash function used in the Fiat-Shamir transform of the ZKPoK.

To create this signature, the user commits to sy, so,r, i in the “Ajtai” part of the ABDLOP commitment
(5). He then proves that the norms of si,se,r are small, that u has 0/1 coeflicients, and that and
(13) hold. Notice that is just a linear equation and proving is proving the quadratic relation
As; + Bss + Guss = umod g. All of these proofs fit into the appropriate functions in the protocol in Figure
[10] and the full description of the group signature is given in Section

The security of the scheme rests on the fact that creating a valid proof on a p that is not the user’s
identity implies having a solution to on a new identity, which is directly equivalent to breaking the
ABB signature scheme [ABB10, MP12|, which in turn implies breaking the Module-SIS problem. Prior to
this work, proving tight bounds on the ¢5 norm of polynomial vectors with somewhat large coefficients was
not very efficient, and so constructions of group signature schemes using this approach [dPLS18, [LNPS21]
did not prove , but rather proved an approximate version of it as in — i.e. they proved knowledge of
81, 82, ¢ satisfying

[A|B+uG]- [z;] = cu mod g, (15)

where |§;] > |s;]-

A consequence of being only able to prove the above is a vicious cycle of the larger norms and the presence
of ¢ resulting in a larger extracted solution to the Module-SIS problem, which in turn requires having a larger
modulus for SIS security, which then also requires a larger lattice dimension for LWE security. Furthermore,
because these schemes relied on the verifiable encryption scheme of [LN17|, they also did not prove , but
rather an approximate version of it as in . The implication is that in order to decrypt, the Opener needed
to guess the unknown ¢, which in expectation requires the same number of guesses as the adversary’s number
of calls to the random oracle during the proof. Thus special care would be needed to instantiate the scheme
in an environment that would not allow the adversary to be able to have too much time to try and forge
a signature. We believe that efficiently eliminating this requirement in all lattice-based schemes requiring a
verifiable encryption scheme is a notable improvement on the state of affairs.

Opening Time Independent

of Adversary’s Forgery Time
[LNPS21) 96KB 203KB X

I This Work 48KB 92KB v

Public Key Size|Signature Size

Table 1: Our group signature and that of [LNPS21].

We compare the instantiation of the group signature from this paper to the previously most efficient
one from |[LNPS21] in Table [1 We mention that there are also tree-based group signatures (e.g. [ESZ21|



BDK™*21]) which have shorter outputs for small group sizes, but have the disadvantage that the signing
time, verification time, and public key size are linear in the group size. The signature length of these schemes
also grows slightly with the group size, and for groups having more than ~ 22! members, our scheme has a
comparable signature size (in addition to a much smaller public key and signing/verification times).

Decryption Time
Ciphertext Size|Proof Size| Independent of
Forgery Time

| Proof Size
ILNS21a] 33KB

| (L] NI KB 9KB x
This Work] 14KB [LNS21afT]  4KB |33 - 44KB v
This Work|  1KB 19KB 7

Table 2: The table on the left compares the difference in proof size of proving knowledge of short §,€ satisfying
A5+ & = tmod g, where A € ZJ0***10% and ¢ ~ 2°2 and ||(5,&)| < +/2048. The protocol from [LNS21a] needs to
make the additional restriction that all the coefficients in §, € are from {—1,0,1}. The table on the right compares
our instantiation of a verifiable encryption scheme from this paper with [LN17] and [LNS21a].

Part of the group signature includes a verifiable encryption scheme, in which the encryptor proves that
the encryption is valid. When looked at separately, this scheme has a similar size to the one from |[LN17], but
with the noticeable advantage of not having a dependency between the decryption time and the adversary’s
forgery time. We also give a comparison of the proof size for the basic system in (1)) between our proof system
and the prior best one from [LNS21a] that followed the framework of [ALS20] and [ENS20|. The comparisons
for the verifiable encryption scheme and the basic proof system are in table [2| and detailed descriptions of
the proofs can be found in Sections [6.2] and

Acknowledgements. We would like to thank Ward Beullens for generalising Lemma for all powers-of-two
k (initially, the lemma only covered k = 1) and also Damien Stehlé and Elena Kirshanova for their very
useful feedback. This work is supported by the EU H2020 ERC Project 101002845 PLAZA.

2 Preliminaries

2.1 Notation

Denote Z,, to be the ring of integers modulo p. Let ¢ = ¢1,...,¢, be a product of n odd primes where
1 < g2 < ... < gn. Usually, we pick n = 1 or n = 2. We write 7 € Z;" to denote vectors over a ring Z,.
Matrices over Z, will be written as regular capital letters R. By default, all vectors are column vectors. We
write ¥||w for a usual concatenation of ¥ and @ (which is still a column vector). For ¥, € Z’;, v o is the
usual component-wise multiplication. For simplicity, we denote @2 = % o @. We write © <« S when z € S is
sampled uniformly at random from the finite set S and similarly x < D when z is sampled according to the
distribution D. Let [n] :={1,...,n}.

For a power of two d and a positive integer p, denote R and R, respectively to be the rings Z[X]/(X1+1)
and Z,[X]/(X? + 1). Lower-case letters denote elements in R or R,, and bold lower-case (resp. upper-case)
letters represent column vectors (resp. matrices) with coefficients in R or R,. For a polynomial f € R,,
denote f € Zg to be the coefficient vector of f. By default, we write its i-th coefficient as its corresponding
regular font letter subscript i, e.g. fq/2 € Z, is the coefficient corresponding to X a2 of f e R,. For the
constant coefficient, however, we will denote f := fo € Z,. The ring R has a group of automorphisms Aut(R)

' This paper presents a verifiable decryption scheme, but the proof size for a verifiable encryption scheme constructed
in the same manner would be similar. At the very least, it needs to be as large as the proof of the basic equation

in .
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that is isomorphic to Z5,. Let o; € Aut(R,) be defined by ¢;(X) = X*. For readability, we denote for an
arbitrary vector m € RF:
o;(m) := (o;(m1),...,0:(mg))

and similarly o;(R) for any matrix R. When we write (u,v) € Z for u,v € R¥, we mean the inner product
of their corresponding coefficient vectors.

For an element w € Z,, we write |w|y to mean |w mod® ¢|. Define the £, and £, norms for w =
wo + w1 X + ...+ wg_1 X4 e R as follows:

[wleo = max [wjleo, ], = {/Hwo\lé’o +ot [waa [

If w=(wi,...,w,)€RF, then

[Wloo = maxwslco, |l = S Mwrl[P + .+ Jwi [P

By default, |w| := |wl|2. Similarly, we define the norms for vectors over Z,. Denote S, = {x € Ry : [z]o <
7}

2.2 Probability Distributions

We first define the discrete Gaussian distribution used for the rejection sampling.

Definition 2.1. The discrete Gaussian distribution on R¢ centered around v € RY with standard deviation
s > 0 is given by

o lzv]?/2s?

Sene ¢ PR

When it is centered around 0 € R we write D¢ = Dg,s.

Dé,s (Z) =

We will use the following tail bound, which follows from |[Ban93, Lemma 1.5(i)].

142 md
Lemma 2.2. Let z — DY*. Then Pr [HZ” >t -5\/md] < (te 7 ) .
Next, we recall the binomial distribution.

Definition 2.3. The binomial distribution with a positive integer parameter k, written as Bin, is the dis-
tribution Y.\, (a; — b;), where a;,b; < {0,1}. The variance of this distribution is k/2 and it holds that
Bin,, £ Bink, = Bink, +«,-
2.3 Cyclotomic Rings
The ring R has a group of automorphisms Aut(R) that is isomorphic to ZJ,,

i 0,1 25, — Aut(R),

where o; is defined by 0;(X) = X*. Consider 0_; € Aut(R,). We define the following map T : Zk¢ x ZF — R

which given vectors @ = (ao, .. .,arq—1) and b= (bo, - - -, bra—1), it outputs:
. k—1 d—1 ‘ d—1 ‘
T(aa ) = Z 01 (Z aid+ij> . (Z bid+ij> eER. (16)
i=0 §=0 §=0

As briefly described in the introduction and in more detail in Section [5] we will make use of the following
simple property of T.

11



Lemma 2.4. Let a, be zk for k = 1. Then, the constant coefficient of T (Ei, Z;) is equal to {a, 5}

In Section [7] we show how to construct functions T with the same property for different underlying rings
than Z[X]/(X? + 1).

Suppose each (g;) splits into 2 prime ideals of degree d/2 in R. This means X% + 1 = o1 (mod ¢;)
with irreducible polynomials ¢; of degree d/2 modulo ¢;. We assume that Z, contains a primitive 4-th root
of unity ¢; € Z, but no elements whose order is a higher power of two, i.e. ¢; —1 =4 (mod 8). Therefore, we
have

X441= (X% - gi) (X% - gf) (mod ¢;). (17)
We recall the main result by Lyubashevsky and Seiler [LS18] which says that small polynomials over R,
are invertible.

Lemma 2.5 (DBLP:conf/eurocrypt/LyubashevskyN17,|[LS18]). Let p = 5 (mod 8) be a prime.
Then, any f € R, which satisfies either 0 < | f|o < \%plﬂ or 0 < |f| < p'? has an inverse in R,,.

In this paper we will be working with polynomials in R, which are stable under the o_; automorphism.
The following result says that for specific primes p, if ¢ € R, satisfies 0_1(c) = ¢ and ¢ is non-zero then c is
invertible over R,,.

Lemma 2.6. Let p =5 (mod 8) be a prime. Take any ¢ € R, such that o_1(c) = c. Then, c is invertible
over Ry, if and only if ¢ # 0.

Proof. Since p is congruent to 5 modulo 8, we can factor the polynomial X + 1 modulo p as
X 41= (XY —r) (XY +7) (mod p)
for some r € Z,, where polynomials X /2 + 1 are irreducible modulo p. Since o_1(c) = ¢, we can write ¢ as
c=co+caX+...+ cd/z,le/zfl — cd/g,le/QH — . — X4
Now, we observe that
dj2—1
cmod (p, X¥2 +7) = ¢o + Z (¢c; & reqp_i) X"
i=1
Suppose ¢ # 0. Then, one of the coefficients co, ..., c4/2-1 € Z, is non-zero, say c;. Note that if i = d/4 then
c;  rcgja—; is not zero since r # +1. Now, consider the case i # d/4. We claim that for any sign b e {—1,1},

either ¢; — bregja_; or ¢ — bre; is not zero. Indeed, assume both of them were equal to zero, concretely
c; = bregja_; and cqja_; = bre; for b e {—1,1}. Then we would obtain

¢ =bregp_; = Vric; =ric; = —¢

which is a contradiction since ¢; # 0. Hence, we deduce that ¢ mod (p, X%? — ) and ¢ mod (p, X%? + 1) are
non-zero. Therefore, by the Chinese Remainder Theorem, we conclude that ¢ has an inverse in R,. ]

Denote R to be the set of invertible polynomials in R,. Recall that a polynomial f is invertible in R,
if and only if for each i € [n], f mod g; is invertible in R,,. Hence, Lemma [2.6] says that if f € R, satisfies
0 <l <1 and o_1(f) = f then f € R}

2.4 Approximate Range Proofs

In some cases, we will not need to prove a tight bound on the norm of a vector, but it will be enough for us
to prove that its coefficients are small. The application of this proof is in showing that the inner product of
a vector is small enough that it is the same modulo ¢ and over the integers. The intuition for obtaining such
proofs is the observation that the inner product (modulo ¢) of a random vector 7« Bin{" with an arbitrary
vector w € Zj" is less than 1|@| with probability at most 3 [BL17]. The slightly more general lemma from
[ILNS21a] that we will be using is

12



Lemma 2.7. Let W e Z] and j € Z’; . Then

L 1, . L
Pr [|Rw+y|oo < 2|w||oo] <ot

ReBink*™

For a large m, the gap between the upper bound (m-|w@] ) and the lower bound (3| ) is a factor of m.
One can probabilistically lower it to O(y/m), but there is a way to get a constant-size gap by considering the
£o-norm. A well-known result of Johnson and Lindenstrauss says that any set of k points in m-dimensional
Euclidean space can be embedded into a much smaller ¢-dimensional Euclidean space, where £ = O(logm)
and independent of k, so that all pairwise distances are preserved within an arbitrarily small factor. In
practical scenarios, such embeddings are simply random projections.

Recently, Gentry et al. [GHL21| applied this result in the context of proving shortness of a committed
vector w € Z™. Concretely, the idea is to choose a random rectangular matrix R «— Bin%56><m and prove that
the projection ¥ = Rw with respect to R has small norm. When m not too small, substituting the continuous
normal distribution by a binomial one (with the same variance) should heuristically result in very similar
tail bounds. In |[GHL21|, arguments regarding the moments of Bin; and experimental results were used to
support this heuristic. Using the fact that the distribution |R - 14|, where entries of R are chosen from the
normal distribution with mean 0 and variance /2, is the scaled x? distribution with 256 degrees of freedom,
ie. §m - x?[256], we obtain the following (heuristic) generalization of [GHL21|[Corollary 3.2] (we only use
this lemma for the case of k = 1, 2).

Lemma 2.8. Under the heuristic substitution of Bin, with the normal distribution of variance k/2, for any
weZm,
1. Pr [|RE|? < ||?- 13- k]~ Pr [y <26] <272
R«Bin256xm y—x?[256]

2. Pr [|RW|? > |@]?-337 k]~ Pr [y>674] <2712,

R«Bin256xm y—x?[256]

Gentry et al. construct a proof for the shortness of a long vector w € Zi" as follows. They first commit
256X m

to the random projection v := Rw € 2356, where R « Binj , and prove that the norm of ¢ is small and
that ¥ is a projection of w. Then, [GHL21|[Corollary 3.3] says that if ||| < b+/30, where b < q/(45m), then
we must have ||| < b (with an overwhelming probability). In our protocols, we will need a modified version
of this result which says that for every vector § € Z2%°, if | R + 7| is small then we must have that @] is
small. Even though we believe this generalisation is true for the constants described in |[GHL21|[Corollary
3.3] (and a generalization for the analogous result in the £y, norm is true [LNS21b]), we don’t know how to
extend the proof to this setting. We thus provide a modified proof which results in slightly worse bounds.

Lemma 2.9. Fiz m,P € N and a bound b < P/41m, and let & € [£P/2]™ with ||| = b, and let § be an
arbitrary vector in [£P/2]™. Then

1
Pr [|Ru7 + g mod P| < 2b\/26] <2712,

ReBin}>0xm
Proof. We first prove an analogous result to [GHL21][Corollary 3.3] with error 27256 rather than 27128,
Lemma 2.10. Fiz m,P € N and a bound b < P/41m, and let & € [£P/2]™ with || = b. Then

Pr  [|R@w mod P| < bv/26] < 272%¢,

. 256
R«Bin3>°*™

Proof. We have two cases:

13



— The first case is when |||, = P/4m. Let i be an index of an entry in & with magnitude at least P/4m,
and consider any row of R (denoted 7): After choosing all but the i’th entry in 7, at most one of the
three values {0, +1} yields |[(@, 7y mod P| < P/8m. Since the total probability of any two of those is at
least 1/2 (i.e. Pr[0] = 3/8 and Pr[+1] = 1/4), we have that the probability that all the rows of R yield
entries smaller than P/8m is at most (1/2)%6. Since b < P/41m then P/8m > b1/26 and therefore

Pr  [|Rw@ mod P| < bv/26] < Pr [|R@ mod P| < P/8m] < 272,

55
R%BID;QGX m

— The second case is when [, < P/4m. Here with probability one we have R € [+P/2]?°%, so mod-P
reduction has no effect and the assertion follows directly from Lemma [2.8

We now use the above Lemma to prove Lemma Suppose for contradiction that for some ), ¥/,

1
[|Rw + iy mod P| < b\/26] > 27128,
R<—Binf56x"" 2
This implies that

1 1
[le + mod P| < 5b\/26 A ||Row + i mod P| < 2b\/26} > 27256,

R1,Ry«Bin?%*™

By the triangle inequality (which holds even modulo P), we have
Pr (IR~ By mod P < bv35] = 27,
R1,Ry«Bin??¢*™

Bin§56xm

Since the distribution of R; — Ry is exactly , the above implies that

Pr [\\Rw mod P| < b\/26] > 97256,

. 25
RHBIH;OGXM

which is a contradiction with the statement of Lemma [2.101 o

2.5 Module-SIS and Module-LWE Problems

Security of the [BDL™ 18] commitment scheme used in our protocols relies on the well-known computational
lattice problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) |[LS15, DKL™18|. Both problems
are defined over R,.

Definition 2.11 (MSIS, ., 5). Given A — Ry*™, the Module-SIS problem with parameters k,m > 0 and
0 < B < q asks to find z € R such that Az = 0 over Ry and 0 < |z| < B. An algorithm A is said to have
advantage € in solving MSIS,, ., B if

Pr{0<|z[e < B A AZ=0’A<—'R§X7";Z<—A(A)]>6.

Definition 2.12 (MLWE,,, ). The Module-LWE problem with parameters m, A > 0 and an error distri-
bution x over R asks the adversary A to distinguish between the following two cases: 1) (A, As + e) for
A R;’L“, a secret vector s < x* and error vector e « x™, and 2) (A,b) « R;"XA x Ry'. Then, A is
said to have advantage € in solving MLWE,, » , if
|Pr[b:1’A<—R;"X)‘; s—xYe—x"b— AA As+e) (18)
—Prb=1|A <R bRl b— AAD)]| >
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We also recall the (simplified) Extended Module-LWE problem [LNS21a].

Definition 2.13 (Extended-MLWE,, » y.c,s). The Extended Module-LWE problem with parameters m, X >
0, probability distribution x over Ry, challenge space C < R, and the standard deviation s asks the adversary
A to distinguish between the following two cases:

1. (B,Br,c,z,sign ((z,cr))) for B « RZM("H)‘), a secret vector r < X and z «— ng-m)’ c—C
2. (B,u,c,z,sign ((z,cr))) for B — RN g Rm 7« DIV e,

q

where sign(a) = 1 if a = 0 and 0 otherwise. Then, A is said to have advantage € in solving Fxtended-
MLWE,, x y.c.s if

‘Pr [b =1 ‘ B~ R;”X(m+)‘); r— "z« D§m+)‘); ¢« C;b— A(B,Br,z,c, s)}

fPr[b: llBeRg‘XA; u— Ry z— D"V ¢ b%A(B,u,z,c,s)” > e

where s = sign ({(z, cr)).

2.6 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z whose distribution should
be independent of a secret message/randomness vector r, so that z cannot be used to gain any information
on the prover’s secret. During the protocol, the prover computes z = y + cr where r is either a secret vector
or randomness used to commit to the prover’s secret, ¢ < C is a challenge polynomial, and y is a “masking”
vector. In order to remove the dependency of z on r, one applies rejection sampling [Lyul2|.

Lemma 2.14 (Rejection Sampling [Lyul2, DDLL13, LNS21a]). Let V < R’ be a set of polynomials
with norm at most T and p: V. — [0,1] be a probability distribution. Fiz the standard deviation s = ~T.
Then, the following statements hold.

1. Let M = exp(14/v +1/(2v?)). Now, sample v < p andy < D, set z =y +v, and run b < Rej,(z,V, s)
as defined in Fig. . Then, the probability that b = 0 is at least (1 — 27128)/M and the distribution of
(v,2z), conditioned on b = 0, is within statistical distance of 27128 of the product distribution p x Dt.

2. Let M = exp(1/(272)). Now, sample v < p andy <« D!, set z =y + v, and run b < Rejy(z,Vv,5)
as defined in Fig. , Then, the probability that b = 0 is at least 1/(2M) and the distribution of (v,z),
conditioned on b = 0, is identical to the distribution F where F is defined as follows: sample v < p,
z «— D! conditioned on {(v,z) = 0 and output (v, z).

3. Let M = exp(1/(24?%)). Now, sample v < p,3 < {0,1} and y < D, set z = y + (—1)%v, and run
b < Rejy(z,v,s) as defined in Fig.[4 Then, the probability that b = 0 is at least 1/M and the distribution
of (v,z), conditioned on b =0, is identical to the product distribution p x Dﬁ.

Rej, (7,7, 5) Rej,(Z, 7, 5)
01 u <« [0,1) 01 If(Z,7)y <0
02 If u > 2 - exp (—2<zi;;>2+uau2> 02  return 1 (i.e. reject)
. ) 03 u <« [0,1)
03  return 1 (i.e. reject) o2
04 Else 04 If u > ﬁ - exp (%)
05  return O (i.e. accept) 05  return 1 (i.e. reject)
06 Else
07  return O (i.e. accept)

Fig.1: Two rejection sampling algorithms: the one used generally in previous works [Lyul2| (left) and the one
proposed recently in [LNS21aj (right).
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We recall how parameters s and M in the first statement Lemma [2.14] are selected. Concretely, the
repetition rate M is chosen to be an upper-bound on:

DUy (2D o (B )

DL (2) 252 252

Here, we used the fact which says that with probability at least 1—228 we have |(z, v)| < 14s|v| for z < D%
[Ban93, Lyul2|. Hence, by setting s = 13|v| we obtain M ~ 3.

Recently, Lyubashevsky et al. [LNS21a] proposed a modified rejection sampling algorithm (see Rej, (2, v, s)
in Fig. [1) where it forces z to satisfy (z,v) > 0, otherwise it aborts. With this additional assumption, we
can set M in the following way:

exp (‘2<V>+V') < exp (V) Y (20)

252 252

Hence, for M ~ 3 one would select 5 = 0.675 - |v||. Note that the probability for z < D! that (z,v) > 0
is at least 1/2. Hence, the expected number of rejections would be at most 2M = 6. On the other hand, if
one aims for M = 6 repetitions using (19), then s = 8- |v|. Thus, [LNS21a] manages to reduce the standard
deviation by more than a factor of 10. Further, we remark that this method is still not as efficient as using
bimodal Gaussians [DDLL13|, since even though the value M is calculated exactly as in 7 the expected
number of rejections is at most M and not 2M. We summarise the results from [DDLL13, LNS21a] in the
latter two statements of Lemma 214

Rejy(Z, 7, 8)

01 u <« [0,1)

02 If u> ! —
M exp(~ L) cosh (Z2)

03 return 1 (i.e. reject)

04 Else

05  return O (i.e. accept)

Fig. 2: Bimodal rejection sampling [DDLL13].

Finally, we highlight that the procedure in the second statement of Lemma reveals the sign of
(z,v). This is still fine when working with “one-time commitments” [LNS21a] since we only leak one bit of
information if v is a randomness vector which is generated every execution. However, secure signature schemes
cannot be produced using this method because each generation of a signature reveals some information about
the secret key.

By using this technique, zero-knowledge property (or rather commit-and-prove simulatability as described
in later sections) of our protocols relies on the (simplified) Extended-MLWE problem |[LNS21a] where the
adversary is given the additional one bit of information about the secret. We describe this problem in Section
2.9

2.7 Challenge Space
In our applications, the set V' < R* will consist of vectors of the form cr where ¢ € R, is sampled from a
challenge space C and r € ’RS comes from a set of secret (either randomness or message) vectors. In order

to set the standard deviation for rejection sampling, we need to bound the norm of such vectors. Here, we
present a new way to bound |cr||.

Lemma 2.15. Letr € R' and c € R. Then, for any power-of-two k, we have |cr| < Z/|o_1 (c¥) c*|y - x|
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Proof. Let C = rot(c) € Z%*9. We simply want to upper-bound the operator norm |C|, of the matrix C.
We will use the following two facts from linear algebra. Namely, we have that |C|2 = +/|CTC|2 and for
every power-of-two k, [CTC|% = ||(CTC)*|z since CTC is symmetric. Also, note that for any u,v € Ry,
|uv|| < |uly - [lv], and thus |rot(u)|2 < |ull;. Therefore, using the observation that CT = rot(o_;(c)), we
deduce

ICI3" = [CTCl5 = [(CTC)¥|l2 = [rot(o-1(c*)c") ]2 < o-1(c")e* .

Hence, |C2 < %X/|o—1 (cF) ¢¥|1 and thus the statement holds.

In order to apply this lemma, we fix a power-of-two k and set the challenge space C as:
Ci={ceS7: Rflo—1(c*)cF1 <n} (21)

S?:={ce S, :0(c)=c}. (22)

where

and the o € Aut(R,) will be specified in our protocols. Also, we denote C := {c — ¢’ : ¢,¢’ € C and ¢ # ¢’}
to be the set of differences of any two distinct elements in C. In practice, o € {o1,0_1}. We will choose the
constants 7 such that (experimentally) the probability for ¢ « S7 to satisfy X/|o—1 (c¥) c¥[1 < 7 is at least
99%. In our experiments, we observe that the bounds in Lemma [2.15|are about 4 — 6X larger than the actual
norms |cr|.

For security of our protocols, we need x < Q—%qi/ % to ensure the invertibility property of the challenge
space C, i.e. the difference of any two distinct elements of C is invertible over R,. Indeed, this property
follows from Lemma However, if we set ¢ := o_; then we can apply Lemma and thus we only
need x < ¢1/2. Secondly, to achieve negligible soundness error under the MSIS assumption, we will need |C|
to be exponentially large. In Table [3] we propose example parameters to instantiate the challenge space C

for different automorphisms o. Finally, for implementation purposes, in order to sample from C, we simply
generate ¢ « SZ and check whether %X/[o_1 (c*) ¢*|1 < n. Hence, we cannot choose k to be too large.

o d K n IS2] €]
o1 128 1 27 2702 2701
o_1 128 2 59 Q148 2147

Fig. 3: Example parameters to instantiate the challenge space C := {c € Sk : o(c) = c A %/|o—1 (cF) c*|1 < n} for a
modulus ¢ such that its smallest prime divisor ¢; is greater than 8. In our examples we picked k = 32.

Setting the Standard Deviation. By definition of the challenge space C and Lemma [2.15] if we know
that |r|| < «, then we can set the standard deviation s := yna where v > 0 defines the repetition rate M.
On the other hand, if ||r|., < v, e.g. because r < S%, then we can set 5 := yvn\/In.

3 The ABDLOP Commitment Scheme and Proofs of Linear Relations

In this section we formally present the ABDLOP commitment scheme together with ZKPoK of the committed
messages. In the same protocol, we also include a proof of knowledge that the committed messages satisfy
some arbitrary linear relations over R, (Figure . We then show how one can use this commitment scheme
and proof of knowledge to prove knowledge of linear relations over Z, (Figure [5)). This latter proof is best
modeled as a commit-and-prove protocol because it will be creating some intermediate commitments under
the same randomness, which cannot be simulated. In particular, what we prove is that the view, for all
possible committed messages, is computationally indistinguishable from commitments to 0.
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3.1 The ABDLOP Commitment Scheme

Figure[d presents the ABDLOP commitment scheme, which commits to messages s; and m, using randomness
s2, and then proves knowledge of these messages and that they satisfy the relation Ris; + R,,m = u. The
challenge space C is as in . The standard deviations s; and s, are set as in Section so as to provide
a balance between the running time of the algorithm (the lower the values, the higher the probability that
the protocol will need to be repeated) and the security of the commitment scheme based on the hardness
of the MSIS problem (the higher the values, the easier the problem becomes). Because the most common
way in which our commitment scheme will be used involves committing to some values, proving that they
satisfy some relations, and then never using the commitment again, we use a more efficient rejection sampling
(Rej, in Figure [1) from [LNS21a], which ends up leaking one bit of the secret, on the randomness part of
the commitment (i.e. sg). If one will not be throwing out this commitment, then one should use Rej; for
everything.

The hiding property of the commitment scheme follows from the MLWE problem when sy is chosen

from some distribution such that ([ABQ] , [%2] . sz> is indistinguishable from uniform. The zero-knowledge

property of the protocol follows from the standard argument from [Lyul2, [LNS21a] showing that z1,zs are
distributed according to D{"* and D}’? (possibly with 1 bit of leakage for the latter) independent of s;
and sg. The correctness of the protocol then follows due to the fact that m;d-dimensional integer vectors
sampled from a discrete Gaussian with standard deviation s; has norm at most s,4/2m;d with overwhelming
probability [Ban93].

The commitment opening needs to be defined to be whatever one can extract from the protocol. Since the
protocol is an approximate proof of knowledge, it does not prove knowledge of s1, s satisfying A1s; + Agse =
t 4, but instead an approximate proof as in . Lemmastates that under the assumption that the Module-
SIS problem is hard, the extracted values (S1,82) are unique and they satisfy the desired linear equation
R:s1 + R, (tg — BS2) = u, where m is implicitly defined as tg — BSs. The last statement proved in the
Lemma shows, as in [ALS20|, that not only are the extracted commitments s;, unique but also z; — ¢§; is
uniquely determined by the first two moves of the protocol. This is crucial to efficiently proving knowledge
of polynomial products later in the paper.

As far as the communication complexity of the protocol, it is important to note that in the real protocol,
one would not actually send w and v, but instead send their hash. Then one would verify the hash of the
equalities. Therefore proving linear relations over R, is not any more costly, communication-wise, than just
proving knowledge of the committed values. We don’t write the hashes in our protocols because when they
eventually get converted to non-interactive ones using the Fiat-Shamir transform, the hashes will naturally
enter the picture.

We will refer to the protocol in Figure |4| as H,E}a)ny ((s2,81,m), (f1, f2,.-., fn)), where the f; are linear
functions mapping (s1, m) to R, such that fj(s1,m) = 0, represented by the rows of Ry, R,,, and u.

Lemma 3.1. The protocol in Figure is a proof of knowledge of (81, 82,¢) € Ry" x Ry' x C satisfying

1. A1851 + A5y =ty
2. ||sie| < 2siv/2mud fori=1,2
3. Rys1 + Rm(tB — B§2) —u

Furthermore, under the assumption that MSIS,, . tm,.5 is hard for B = 8n1/(s14/2m1d)? + (s24/2mzd)?,
4. This (81, 82) is unique

5. For any two valid transcripts (W, v, c,z1,22) and (w,v,d, 2z}, 2h), it holds that z; — ¢8; = 7, — '§;.

Proof. Let (w,v,c,21,22) and (w, v, , z},25) be two accepting transcripts which are obtained via rewinding
the prover who sends w,v in the first step. Because the transcripts are accepting, they satisfy the second
verification equation, and by subtracting the two equalities, we obtain

Az + Axzy — Gty =0, (23)
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Private information: (s1,m,s2) € Ry 2% 5o that ||s1] < o and [s2]e < v
Public information: A; € R;*™, Az € Rp*™2, B € RE*™2, Ry € RY ™, Ry € RN,

ta|  |As A, 0 .
[tB] = [ 0]-sl+ [B] - So + [m],u—le + R, m
Prover Verifier

y1 < D}t

y2 < Dg?

w = A1yl + Asys
v:=Riy:1 — R, By2

W,V
c—C
- ¢
Z1 :=cS1 + Y1
Zo 1= CSg +y2
fori=1,2:
if Rej, (i, ¢s4,8;) = 1
then z1,z92 := L
Z1,Z2
Accept iff:

1. ”Z1” < 51\/m, HZQH < 59 2WL2d
2. A1z1 + Aszy —cta =w
3. Riz1 + Rin(ctg —Bzz) —cu=v

Fig. 4: Proof of knowledge I_[,%la,)ny ((s2,81,m), (f1, fo, ..., fn)) of (s1,82,¢) € Ry x Rz x C satisfying (i) Ais1 +
Ajsy = ta, Bss + m = tp (ii) |s:i¢] < 2s34/2myd for ¢ = 1,2 and (iii) f;j(si,m) = 0 for j € [N] where each
fi,o. o, fn e R;’”H — Rq is a linear function. The linear functions f; are represented by the corresponding rows of
matrices u, R1, R, and prove u = Ris; + R,,m where Rf’xml RN ue Rév are public.

where Z; = z; — 2z} and ¢ = ¢ — ¢/. Dividing the above equation by ¢, we obtain Lemma statement [1f where
§; = z;/¢. Because the first verification checks that |z;| < s;+/2m;d, we know that |Z;| < s;+/2m;d, and so
Lemma statement [ is satisfied. By subtracting the two equalities satisfying the third verification equation,
we obtain
Rz, + Rm(EtB — BZQ) —cu=0. (24)

Dividing by ¢ and plugging in s; = 2;/¢, we get Lemma statement

Now suppose that the extractor extracts another triplet (87, 85, &) with (51, 82) # (8], 85), which, as we
already proved, must satisfy the first two statements of the lemma. Then we have

A5 + Azsy = A5 + Ays), (25)
and multiplying the above by ¢¢’ yields
A, (5, — 8))cd + Ay(5y — 8y)ed = 0. (26)
‘By Lemma condition [2} we know that 8;¢, §;¢’ < 2s;4/2m;d, and so the above can be rewritten as
A (2,7 — z1¢) + As(220 — Z5¢) = 0, (27)

where || 2|, | Z]| < 2s;4/2m;d. By Lemma multiplication by ¢ € C increases the ¢ norm by a factor of 7,
where 7 is defined in Figure [3| Thus multiplication by ¢ € C increases the norm by a factor of 27, and thus
|2:¢ — Zi&| < 8nsiv/2myd. I MSIS,, 4,5 is hard for B = 8nv/(s514/2m1d)? + (s94/2mad)?, it implies that
z;¢ — z!/¢ = 0, which means that §;, = z;/¢ = 2//¢’ = 8., and this proves Lemma statement

To prove Lemma statement |5} suppose that z; — ¢8; = z, — ¢’§; + r for some r. Then, we can rewrite this
as z;/¢ = §; + r/c. Since we already proved that z;/¢ = §;, and the §; are unique, it means that r =0. o
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Private information: (s1,m) € Ry so that [s1] < a, so « x™2
Public information: A; € R;*™, Ay € Rp*™2, B e Ry ™, By € Ry*™2,

ta A4 A, 0 . . m
[tB] = [ 0 ] -81 + [B] - So + [m]’ linear functions Fi,..., Fi : Ry 1+e — Ry

Prover Verifier

g = (gl’__.7g)\)<—{aj'€qu$0 =O}>\
ty:=Bygsa+g
tg
—_—
(Vi) = Z3"M

for j e [A]:
M
hj == g; + Zl Yjubu (81, m)
define function f; as in

hi,... ha
_ T >
run I := H,S}a)ny ((s2,81,ml||g), (f1,---, /) Accept iff :
IT verifies and
Vie[A,hy =0
Fig. 5: Commit-and-prove protocol He(vla)l ((s2,81,m), (F1, Fs,..., Far)) for messages (s1,m) € Ry ™, randomness
sz € Ry"? and ¢ € C which satisfy: Ais; + Agsy = ta, Bsa + m = tp (ii) [|si¢] < 2s:4/2mud for ¢ = 1,2 (s; are
from Figure | and (iii) linear functions Fi,...,Fy : Ry — R, for which all the evaluations F,(s1,m) = 0.

Here, we assume that the commitment (ta,ts) was generated honestly and already sent by the prover. In particular,
So «— 2.

3.2 Linear Proofs over Z,

In this section we show how to transform the protocol from Figure [ which proves that committed values
satisfy a linear relation over R, into one that proves knowledge of the constant coefficient of a linear relation
over R, (Figure‘ As shown in the introduction and Sectionm the inner product between two integer vectors
appears in the constant coefficient of the polynomial product of two polynomials derived from these vectors.
Thus proving knowledge that the constant coefficient of some linear function over R, is 0 is equivalent to
proving knowledge that the output of a linear function over Z, is 0.

While it may see like proving knowledge of just the constant coeflicient of a linear function over R, should
not be much different than proving knowledge of the entire linear function as in Figure |4 the protocols do
have some important differences. The main difference is that due to the need to mask all but the constant
coefficient, we will need to create additional commitments during the proof. The most efficient way to
do this is to append these commitments to the BDLOP part of the commitment scheme using the public
randomness By in Figure[5] The implication of needing to append committed values is that one can no longer
reuse the commitment t 4,tp since every run of the protocol essentially reveals more information about the
randomness so. Thus, instead of proving that the protocol is zero-knowledge, we show that the protocol is
of a “commit-and-prove” type, where the security requirement is that the view of the commitment and the
protocol output is computationally indistinguishable for all committed messages. All the other protocols in
this paper also have this characteristic. This does not pose any problems for applications because the way
we use a commitment scheme is in an auxiliary way to aid in proving that the value we care about satisfies
some relations. Thus the commitment never needs to be reused.
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The protocol begins by picking masking values g; € R, which are uniformly random everywhere except
in the constant coefficient, in which they are 0. These values are then appended to the commitment of m as
ty = Bgse + g and then sent to the verifier. The verifier picks A random challenges for each of the M linear

M
functions and the prover computes hj = g; + >} 7j,uFu (81, m) for each of the A different j. Notice that the
u=1

preceding are now linear functions

M
fi(s1,mllg) = g; + > VjuFu (s1,m) — h; (28)

u=1

over committed inputs sy, m||g. The prover completes the proof by sending the h;, which completes the
description of the functions, and begins the protocol in Figure 4| for proving that f;(si,m||g) = 0. The
verifier accepts if the constant coefficient of h; is 0 and the proof from Figure @ is valid.

We now sketch the security and soundness properties of the protocol. This protocol is a warm-up for
the full one in Figure [8| which proves knowledge of the constant coefficient of quadratic (rather than linear)
functions over R4, and so we do not give a complete proof for it. To see that the view of the protocol is com-
putationally indistinguishable for all messages s1, m, we first observe that the full commitment that includes

Ay As
g is indistinguishable from uniform based on (Extended)-Module-LWE as long as Bf,| B[ -s2]is
B, B,
indistinguishable from uniform when sy <« x™2. To simulate the protocol, the simulator can simply pick
t, uniformly at random and also choose hq, ..., hy at random (but having the first coefficient being 0). He
can then simulate the protocol from figure [4] on the commitment (ta,tp,t,) and functions f;. Thus the
distribution is computationally indistinguishable from the correct one and is independent of the messages
S1,1m. —
To show that this protocol indeed proves that F,(s1,m) = 0, notice that the probability over the chal-

M ~ ~
lenges v, ., that the equation h; = g;+ >, v;..Fu (s1, m) is satisfied when h; = 0 and yet some F,, (s1,m) # 0
u=1

is at most 1/q1, where ¢ is the smallest prime factor of q. The above holds because the values s;,m, and g
were committed to prior to the verifier sending the challenges. The latter, as well as the fact that the linear
equations f; are satisfied, is proved by the protocol H,E,la)ny ((s2,s1,m||g), (f1,---, f1)). The soundness error
of the protocol is therefore g;° A

4 Proofs of Quadratic Relations

In this section we show how to prove various quadratic equations between committed messages using the
ABDLOP commitment. More concretely, suppose we have message vectors s; € Ry" and m € Rf; such that
[s1] < a. Let o0 € Aut(R,) be a public automorphism over R of degree k and for presentation purposes
define:

(0 ())icp 1= (%, 0(x), .., 0"} (x)) € RE@

for arbitrary vector x € Rg. Then, we consider the following statements:

— Single quadratic equation with automorphisms. For a public k(m, + ¢)-variate quadratic function f over
Ry,
£ (0" (81))iegry> (0" (m))iepry) = 0.
— Many quadratic equations with automorphisms. For N public k(m; + f)-variate quadratic functions
fi,..., fn over Ry,
I ((Ui(sl))ie[k]v (Ui(m))ie[k]) =0 for j € [N].
— Many quadratic equations with automorphisms and a proof that polynomial evaluations have no constant

coefficients. For N + M public k(m, + ¢)-variate quadratic functions fi,..., fy and Fi,..., Fys over Ry,
the following hold:
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e f; ((Ui(sl))ie[k]v (Ui(m))ie[k]) =0 for j € [N],

o let z; := F; ((07(s1))iefk), (0°(m))ieqn)) € Rq for j € [M]. Then 1 = ... = 5 = 0.
Remark 4.1. Similarly as for [ALS20], our techniques can be easily generalized to prove higher degree rela-
tions. Concretely, if we want to prove degree k equations, we end up committing to k — 1 additional garbage
terms. Throughout this paper (apart from Section , however, we will only consider quadratic relations.
4.1 Single Quadratic Equation with Automorphisms

Let (ta,tp) be the commitment to the message pair (s;, m) under randomness so, i.e.

i[5 3] -+ [2]

Suppose the prover wants to prove knowledge of the message

(Ui(sl))ie[k]] k(my+£)
. IS R 1
| (0" (m) )se[x) e

such that f(s) = 0 where f is a k(my + £)-variate quadratic function over R,. Note that each function f can
be written explicitly as:
f(s) = sTRos + rlTs + 79

where 79 € Rq,1r1 € Rl;(m1+€) and Ry € R’;(ml”)x’“(ml”).

In order to prove this relation, let us consider the protocol for proving linear equations over R, in Fig.
[ In the last round, the honest prover sends the masked openings z; = cs; +y; of s; for i = 1,2 where the
challenge space C is defined as in with the o automorphism. Even though this is not the case for m, we

can define the masked opening of m as
Zpy = ctp — Bzy = cm — By,

By construction, z,, can be computed by the verifier.
Define the following vectors y and z:

| @ ))iem k(s 40)
v [_(JZ(BYZ))ie[k]] ERg ™M (29)

and

[ ] = e[ (b ] + it | -eer 0

Here we used the fact that for c € C,o(c) = ¢. Then, we have
z'Roz + cr{z + *rg = & (s"Ros + 1] s +79) +cg1 + g0 (31)
where polynomials g; and gy are defined as:
g1 =s"Roy +y Ros+1{y, go=y Ray.

Hence, we want to prove that the quadratic term in the expression z” Roz + cr?z + c?rg vanishes. This is
done by first sending a commitment ¢ to the polynomial g1, i.e. t = bT'sy +¢g; as well as v := go +b”y5 in the
clear. Then, given ¢t and the masked opening zo of so, the verifier can compute f = ¢t —bTzs = cg1 — b yo.
Finally, it checks whether

?
z'Roz +criz+crg— f=v

which is a simple transformation of when sTRas + rl's +rg = 0.
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Private information: (s1,m) € Ry so that [s1] < «, so « x™2
Public information: A; € RI*™, Az € R1*™2, B € RE*™2, b e R

ta]l  [A A, 0

ol L8] 8] )

ro € Rg 11 € REIMITH Ry ¢ REFORMAD 5 c Au(R,)
sTRys+rfs+10=0

Prover Verifier

. [(o’_(sl))ie[k]]
(0" (m))ierr

y1 < D!

y2 <« D2

W= A1y1_ + Azya

y - [ (0" (y1))ier) ]
—(0"(By2))ie[x]

g1 = sTRzy + yTst + rlTy

t .= bT52 + g1

v:=y Roy + b Ty

w,t,v
_ >
c—C
- ¢
Z1 :=cCS1t+Yy1
Z2 := CS2 +y2
fori=1,2:
if Reji(z,-,csi,ﬁi) =1
then z1,z2 := L
Z1,7Z2
., (0" (21))ierm
Z = i
(O’ (CtB — BZQ))ie[k]
fi=ct—DbTz,
Accept iff

|z1] < $14/2m1d and
|22 < $24/2mad and
A1z, + Aszo = w + ¢ty and
zTRoz + crsz + Prg — f=w

Fig. 6: Commit-and-prove protocol I7(® ((s2,81,m), 0, f) for messages (s1,m) € R;"”’l, randomness sy € Ry
and ¢ € C which satisfy: Ajs; + Agsy = ta, Bso + m = tp (ii) [|sic] < 25:4/2mud for i = 1,2 and (iii)
F((0"(s1))ier, (0" (m))icpry) = O where function [ : RE(MAO R, is defined as f(x) := x"Raox + r1x + 70.
Here, we assume that the commitment (ta,tp) was generated honestly and already sent by the prover. In particular,

So «— ™2,
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We present the full protocol in Fig. |§| which follows the commit-and-prove paradigm [CLOS02, [LNS21a].
Namely, we assume the prover has already sent the commitment (t4,tp) to the verifier using fresh ran-
domness sy < x™2. Prover starts by sampling masking vectors y; < D',y < D"? and computing
w = A1y; + Asys. Then, it calculates g1 = sTRaoy + y?Ras + rly, where y is defined in , and the
commitment t = bTsy 4+ g1 to g1. Finally, the prover sets v = y'Roy + bTy, and sends w, ¢, v to the verifier.

Next, given a challenge ¢ <« C, the prover computes z; = cs; + y; for ¢ = 1,2 and applies rejection
sampling. If it does not abort, the prover outputs z1, zs.

Eventually, the verifier checks whether z; and z, have small norms, Aiz; + Aszy = W + ct4 and
z'Roz + crfz + ?rg — f = v where z is defined in and f is defined as f = ct — bT'z,.

Security Analysis. We summarise security properties of the protocol in Fig. [f] below.

Theorem 4.2. Consider the protocol in Fig. @ and let x = S,. Suppose s1 = y1an and s9 = Yovn/mad for
some 1,72 > 0 where 1 is chosen as in Section[2.7}
For completeness, if my,mg = 640/d then the honest prover P convinces the honest verifier V with
probability
1

14 1 1)’
26Xp(q+rﬁ+ﬁ>

~
x

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1, m, outputs a simulation of a commitment (ta,tp) along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage € in distinguishing the
simulated commitment and transcript from the real commitment and transcript, whenever the prover does not
abort, there is an algorithm A’ with the same running time that has advantage /2 — 27128 in distinguishing
the Extended-MLWE,,  ¢41 mo—n—t—1,x,C.50-

For soundness, there is an extractor £ with the following properties. When given rewindable black-box
access to a probabilistic prover P*, which convinces V with probability € = 2/|C|, extractor £ with probability
at least € — 2/|C| either outputs (S2,81,m) € R T2t and ¢ € RY such that

al=[o] e [m] e fa)
Jele < 25

- HE§1” < 2514/2mid and HEéQH < 2594/2mad
F (0% (51))ieqry> (0" (M) )jepry) = 0

or a MSIS,;, i, +m,, B solution for [A1 Ag] in expected time at most 3T where running P* once is assumed
to take at most T time and B = 811/ (514/2m1d)2 + (591/2mad)?.

Proof. We first focus on completeness. To begin with, we bound the norm of c¢s; and ¢ss. Note that by
Lemma and the definition of C in (21)): |es1| < na and |esz| < nry/mad. Then, by Lemma [2.14] the
probability that Rej; and Rej, do not abort is at least

1
2o (5 ) oo (3)

Furthermore, by Lemma for t = 4/2 and our assumption that m;,ms > 640/d, the probability that
|Z1] < s1v/2m1d and |z2| < $24/2m2d is overwhelming. The other verification equations hold based on the
discussion above.
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Commit-and-prove simulatability. We can simulate the commitment and a non-aborting transcript between
the honest prover and the honest verifier in the following way.

First, we define a hybrid simulator Sy which still knows secret information s1, m. Given a challenge ¢ < C,
it honestly generates the commitment (t4,tps,¢) under randomness sy «— x™2. Further, it samples fresh
masked opening z; < D;’fld and zg «— Dg‘; conditioned on {sq,z5) > 0. Finally, it sets w := A1z1+Aszo—cty
and v := zTRaz + crfz + c?rg — ct + bTzy. Then, by Lemma the distribution of the commitment and
a transcript output by Sy is statistically close to the one in the actual non-aborting protocol.

Next, we define the simulator S, which still knows secret information s;, m, as follows. It runs identically
as Sy but instead of generating the commitment (t4,tp,¢) honestly, it samples u « Rg*”l and sets

tA A151
tg| =u+ m . (32)
t g1

We claim that if there is a PPT adversary A distinguishes between the outputs of Sp and S; with probability e,
then there exists a PPT adversary B which solves the Extended-MLWE,,; ¢ 11, m,—n—¢—1,y.,¢,5, With probability
at least /2. Indeed, we can define B as follows. Given an Extended-MLWE tuple (C, u, z2, b), where

A,
CcC:=|(B|,
bT

B sets (ta,tp,t) asin and simulates the rest of the transcripts identically as Sy and S;. Then, it outputs
the commitment and the transcript to A. Let us assume that b = 1. Note that if u = Cs, then the output of
B comes from the distribution of Sy. Similarly, if u was uniformly random, then the output of B comes from
the distribution of S;. Hence, conditioned on b = 1, B solves the Extended-MLWE problem with probability
at least €. Since the probability of b = 1 is at least 1/2, the statement follows.

Finally, we can simply set S (which does not use any secret information) to proceed identically as S;
but instead of defining (ta,tp,t) as in , it directly samples (ta,tp,t) — Rg““. Then, the output
distributions of § and S are identical. Hence, the statement holds by the hybrid argument.

Soundness. We apply the strategy by Attema et al. [ACK21|. Namely, let H € {0,1}**" be a binary matrix
where the R rows correspond to the prover’s randomness and N columns correspond to verifier’s randomness,
i.e. different choices for the challenge c. For simplicity, we denote H(r,c) to be the entry corresponding to
randomness 7 and challenge ¢ € C. Clearly, an extractor can check values of each entry in H in time at most
T.

We define the following extractor &£:

1. & first samples fresh randomness  and challenge ¢(°) < C. Then, it checks if H(r,c¢(®)) = 1. If not, £
aborts.

2. Otherwise, £ samples along row 7 without replacement until it finds two ¢, ¢(?) such that H(r,¢(?)) =
H(r,cM) = H(r,c®) =

By [ACK21], Remark 2], the expected time of £ is at most 3T and &£ extracts three valid transcripts
tr®D = (w,t,0,c¢®, 2", 257) for i = 0,1,2

with probability at least € — 2/|C|.
First we focus on tr(® and tr(}). Define

2 _ 0
t— fori=1,2.

( i
c(1) — ¢(0)

c:=cM — ¢ ands; =

2)

12 By construction, c(o), c(l), ¢ are pairwise distinct.

25



By construction, we [|€]o < 2k, ||€81] < 251v/2mad and |[€82| < 282+4/2mod. Moreover, we have A181+AsSy =
t 4. Further, we define the extracted message vector m := tp — B8y and §; := t — b”85. Then, we have

ta A,y A, 0

tg| =0 ] 51+ B | -8+ |m

t 0 b” g1
Next, let y; := zgl) —cWg; = Zgo) — g, for i = 1,2. Moreover, consider the third transcript tr® and
define ygz) = ZZ(-2) — s, for i = 1,2. Using the identical argument as in the proof of Lemma either

(¥1,¥2) = (y§2)7yé2)) or & has found a MSIS,, 1, 4-m,,5 solution for the matrix [A; Az]. From now on, we

assume the former case.
Finally, let us define the following vectors:

5.— [(Uf(sl))ie[k]] and ¥ :— [_(Ui(yl))ie[k] ] .

(0" (M) ey (0" (BY2))ic[k]

Then, from the verification equations we have
z(i)TRgz(i) + c(i)r{z(i) + c(i)zro — (c(i)t - szg)) =vfori=0,1,2 (33)
where

20 l (Ui(Z(f)))z‘eg_k]

— g1 %
- i =c’s+Yy.
(0'(cWtp — Bzy )))ie[k]]

By expanding Equation we obtain
®? (s"Ros +r1s+10) +cVgl +g)=0fori=0,1,2
where
¢ =5"Rey +y ' Ras +1{y — 7
9o =y Ray +b'y2 —v.
Alternatively, we can write these three equations as follows:

1 C(O) C(O) 2 96

1M 2 q, _
1@ 22 s"TRos +rl's + 1

o O O

Since the difference of each two challenges in {C(O), e, 0(2)} is invertible over R, we must have that sTRos+

rT's + 7o = 0. Hence, the statement holds. m]

4.2 Many Quadratic Equations with Automorphisms

We consider a scenario when the prover wants to simultaneously prove N quadratic relations. Clearly, if
one were to prove them separately using the approach from Section one would end up committing to
N garbage polynomials g. Here, we circumvent this issue by linear-combining the N equations into one
quadratic equation and prove it using the protocol in Fig. [f] This results in committing to only one garbage
polynomials at the cost of reducing the soundness error by a negligible additive factor.

More precisely, suppose that we want to prove for N public k(m; + {¢)-variate quadratic functions
fi,..., fn over R, that

fi ((6"(s1))ieq, (0 (m))iepry) = 0 for i € [N]. (34)
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Private information: (s1,m) € Ry so that [s1] < a, s2 < x™
Public information: A € R"X”“ A eRy*™2,Be RZXT”Q beR™?

ta| A4 Ao 0
e - [¥]0 o [B] =+ [a]
fi,.. ., fn ng(m1+1) HRq,UEAUt(Rq)

Prover Verifier

M17"'7MN<_RQ

fi1, - - BN
Ji= Z;V:1 i fi
Run H(Q) ((527 S1, m)7 g, .f)
Fig. 7: Commit-and-prove protocol Hmany ((s2,81,m), 0, (f1, f2,..., fn)) for messages (517 m) € Ry, randomness

s2 € Ry'? and c e C which satlsfy Aisi + Agsy =ta, Bso + m = tp (ii) |si¢| < 28:4/2m,d for i = 1,2 (where s; are
used in Fig. @) and (i) f; ((o"(s1))sefr], (0" (m))icr]) = 0 for j € [N]. Vector b is used in the sub-protocol IT®.

We let the verifier begin by sending challenges fi1, ..., tn < R4. Then, we define a single quadratic function
N
fi= Z 1451
i=j

and prove that _ '
S (0" (s1))ier)s (0" (m))jepry) = 0 (35)

using the protocol from Fig. @ Now, we observe that if one of the conditions in does not hold, then

4/2 (recall that X¢ + 1 splits into two irreducible factors

Equation |35|is satisfied with probability at most ¢;
modulo each ¢;).
The protocol is provided in Fig. [/} We skip the full security analysis since it will be implicitly included

in the more general case in Theorem but we only consider knowledge soundness.

Lemma 4.3. Consider the protocol in Fig. [ Then, there is an extractor & with the following properties.
When given rewindable black-box access to a probabilistic prover P*, which convinces V with probability

e=2/|C|+ qfd/z, extractor £ with probability at least e —2/|C| — qfd/Q either outputs (82,81, m) € R;’“er”e
and ¢ € R such that

MR GIRR IR
for all j € [N, £ (0" (51))iefr, (0" (M))iex]) = O

= el < 25

H6§1” < 2514/2mqd and HCSQH 2694/2mod

or a MSIS;, pmy +m,, B solution for [A1 Ag] in expected time at most 61 where running P* once is assumed
to take at most T time and B = 877\/(51\/2m1d)2 + (524/2mod)?.

Proof. Let P* be a probabilistic prover which convinces the verifier with probability e > 2|C|~! + ¢, 42 and
runs in time at most 7. We define a deterministic algorithm A(p, u) which given randomness p € R and
a challcngc o e R , it does the following. It simply runs the extractor £*(p) from the proof of Theorem
2| with randomness p which then calls P*(u) in a black-box way. We say that A succeeds if A outputs
(i,81,m, 8o, ¢) such that

[l 3] e[

= el < 25
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- HE§1“ < 2s14/2m1d and HE@QH < 2594/2mod
= S i f ((0°B1))ieqs, (07 (0))seqa) = 0.

Note that A (and later on &) could also extract a valid MSIS solution. For presentation, we will assume this
never occurs. From Theorem we know that the expected runtime of A for any pu and p < R is at most
3T and the probability that A succeeds for random p and p is at least ¢ — 2/|C].

We introduce the following notation. Let H < R x Rfl\’ be the set of pairs (p, u) such that A(p, p) succeeds.

Also, define H(p) to be the set of all p for which (p,u) € H. For fixed (p,u) € H, denote égp’“) to be the §;
part of the output of A(p, ) (and similarly for other variables) and denote

slom) . (Qi(ggp’”)))ie[k] e RE(m1+0)
(o' (M) i) e

Finally, we define
H':={(p,m) € H :3j € [N], f; (s#)) =0}
Then, we have the following claim.

Lemma 4.4. If (p,p) € H then Pryrn[(p,n') € H] > 0. Moreover, if (p,p) € H' then

P | S () 0] <

Proof. First, we observe that if (p, ) € H then

P W)eH]> P "=pu]>0.
W In e = Pr lw = pl

Now, if f, (5(”7")) # 0 for some ¢, then for any fixed a € Ry, the probability over u) < R, that - f, (é(p”‘)) =

42, Hence, the claim follows.

a is at most g;
Now, we can define our extractor £.

1. Sample p < R and p € R(]ZV and run A(p, p). If A(p, ) does not succeed, abort.
2. If A(p, p) succeeds, run A(p', ') with fresh p’ — R and p’ — R} until A succeeds.

We say that € succeeds if it extracts two tuples z = (S1,1m,82,¢) and ¢’ = (8}, m’, s}, &) such that one of
the conditions below holds:

— (81,82) # (81,8%), max(||¢] o, I€]le) < 2k and max(||S;|, |€'S}]]) < 28;4/2m;d for i = 1,2, and

Al _ Aol _ O |ta| [A1] As|l 0
O] [ a8 ][]
— for all j € [N], f; ((67(81))iefr), (07 (1M))icpr)) = 0 and [€]eo < 2k and |81 < 281+/2mid and |ész| <
259+/2mod and
tAiAl .,+A2 5, + 0
tp 10 81 B 82 m|’

In the first case we break the binding property of the commitment scheme and thus find the relevant MSIS
solution. On the other hand, we extract the witness in the second case. Then, we have the following claims
about &.

Claim. The expected number of calls to A is at most 2.
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Proof. Let X be the expected number of calling A and let ¢ be the probability that A(p,u) succeeds for
random p and p. Define E to be the event that A succeeds in the first step. Then,

E[X] =E[X|E] - e +E[X|E]-(1—¢) = (l-l—i) e+1-(1—¢)=2.

We conclude from the claim above that the expected runtime of £ is at most 67'.

Claim. Probability that £ succeeds is at least € — 2/|C| — ¢; 42,

Proof. First, we observe that £ terminates (without aborting) with probability at least ¢ — 2/|C|. Suppose &€
indeed terminates and let us write (u, 81, m, Ss,¢) and (', 8], m’, 85, ) to be the respective outputs of A in
the first and second step of £. We have the three disjoint cases as described below:

Case 1:

(§17m7§2) 7> (§/17 ﬁlv 5/2)
Z;L 145 fi ((0(81))iefr)> (0" (M))iep)) = 0 and Z;'V:l 10515 (0" (81))iewy, (0 (M))iepry) = 0
max(||€] o, |€]leo) < 2k and max(||cs;|, [€'S)]) < 28;4/2m;d for i = 1,2

O R N MR R R RN

Case 2:

b (§1,IT1,§2) = (§'17ﬂ'1/7§/2)
Z;‘V=1 15 fi ((0%(51))ieg> (07 (1M))ier)) = 0 and Z;y=1 s f ((0%(51))iegr), (0 (m))iery) =0
HEH:x; < 2k and H5§1H < 2814/2m1d and ”éggH < 2594/2mad

A1 _ Ag _ 0 tA

o| ST B2 |m|~ |ty

for all j € [N], f; ((0°(81))ieqr]> (07 (M))iepr]) = 0.

Case 3:
L4 (glaﬁlng) = (gllvmlﬂgé)

o Z;Vﬂ 13 fi ((0°(81))ieqry, (0% (m))er)) = 0 and Z;Vﬂ s f ((0%(51)) i[> (0" (mM))sepr)) = 0
o ||E]loo < 2k and |ES1]| < 2514/2m1d and ||ESa|| < 2824/2mad

A _ Ay _ 0] [ta
SO RN IR Nt
o there exists j € [V] so that f; ((Ui(§1))i€[k], (ai(rh))ie[k]) # 0.
Define E; to be the event that £ terminates and Case i occurs. Then, we have

€ — 2/|C| < Pr[€ terminates] = Pr[E; v Ey v Ej]

and
Pr[€ succeeds] = Pr[E; v Es].
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Hence, we only need to upper-bound the probability Pr[E5]. We apply Lemma as follows:

Pr(E] < Pr l(AW) succeeds) A (L1, 4 f5 (0" (51))ieqps, (0" (0)iepr) = 0) ]
(37 € [N]: f; ((0"(51))ieqn)» (0 (m))sepr) # O)

< T o 3 Prlzﬂf((p“)) ]

(p,w)eH’

1 —d/2
S g 2,
(p,w)eH’

1 —d/2
S
(p)ERXRY

< qid/2.

The statement thus follows by combining the two previous claims. m]

4.3 Polynomial Evaluations with Vanishing Constant Coefficients

Suppose we want to prove simultaneously N quadratic relations (i.e. (34)) and additionally prove that
for quadratic k(my + ¢)-variate polynomials Fi, ..., F, evaluations Fj ((Ui(sl))l—e[k], (Ui(m))ie[k]) have the
constant coefficient equal to zero. Concretely, if we denote

zj = Fj ((0"(51))iepr, (0" (m))iepuy) € Ry

then Z; = 0 for j € [M].

For simplicity we first present an approach with soundness error 1/q;. We apply the strategy from [ENS20]
and first commit to a random masking polynomial g «— {z € R, : Z = 0}. Then, given random challenges
Y15y YM — Zg, We send

h:=g+ Z v Fj ((Ui<sl>)ie[k]> (Ui(m))ie[k]) (36)

to the verifier. Then, it simply checks whether the constant coefficient of h is indeed equal to zero. What
is left to prove is that h is well-formed, i.e. holds. This is done by defining the quadratic function

fnar: Rk(mﬁeﬂ) — R, as follows.
Let X1 € Rgml, Xo = (X271, . ,Xg,k) € RI;(ZJFU and denote
Xg; 1= ij | =5 g) € 7'\’,“1 for j € [K], xgm) = (ng{), e ,xgr,;)) .
Then,
M
S (%1, x2) : Z j <X17X2 )) —h.
=1
By construction, if (x1,x2) = (6"(s1))iex], (0" (m || 9))sepx) then

x1 = 0" (s1))ie[r] xy™ = (o'(m m))er]  and z) = g.

)

Moreover, holds if and only if

N+ ((Ui(sl))ie[k]a (o (m || 9))1@[1«]) =0.
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Recall that we also want to prove . We can define analogous polynomials fi,..., fy : Rl; (matttl) | Rq
as:

fj(xl7x2) = f] (Xlaxgm)> .
Hence, we simply want to prove that for every j =1,2,..., N + 1:
b ((Ui(sl))ie[k]a (o (m || g))ie[k]) = 0.
Finally, this can then be directly done using the protocol
Hr(n2a)ny ((S27slam7g)7aa (f17f27 .- '7fN+1))
in Fig. [1

Private information: (s1,m) € Ry so that [s1] < a, sz « x™2

Public information: A1 € Rp*™, Az € Rp*™2, B e RE*™2, By € Ry*™2, b e R
ta| A4 Ao 0

o = (o] o [ la)

fio s fN Py Fap  REMTD LR 6 e Aut(Ry)

Prover Verifier

_ [ (s1))iern)
> [(Ul(m))ie[k]]
g:=(g1,.--,9)) <—{x:qua~c=O})‘
ty :=Bysa+ g

for i e [A]:
hi i=gi + 350, i Fy (s)
hi,...,hx
define f1,..., fn4x asin and
run H,g?a)ny ((sz,s1,m Il g),0, (f,-)ie[I\HA]) Accept iff
{Yﬁ)ny Veriﬁ§s and
hi=...=hx=0

Fig. 8: Commit-and-prove protocol I_[Sa)I ((s2,81,m), 0, (f1,--., fn), (F1,...,Fum)) for messages (s1,m) € RZ’”H,
randomness sz € Ry and ¢ € C which satisfy: Ais; + Agsy = ta, Bso + m = tp (ii) ||ss¢l| < 28:4/2m;d for
i=1,2, (iii) f; (("(s1))iefr]> (°(mM))icx)) = O for j € [N] (where s; are used in Fig. @ and (iv) all the evaluations
Fj ((o°(s1))iefr, (0" (m))iefx] ), where j € [M], have constant coefficients equal to zero. Vector b is used in the sub-

2
protocol I1, ,<na)ny.

We provide intuition for the soundness argument. Assume that the verifier is convinced that h is of
the correct form and h = 0. Also, note that a cheating prover committed to g before seeing the
challenges 71, ..,vam. Hence, if for some j € [M], the constant coefficient of Fj ((Ui(sl))ie[k], (Ui(m))ie[k])
is non-zero, then the cheating prover has probability at most 1/¢; of guessing the constant coefficient of

S E ((07(51))iea (07 (m))iegr)-

Boosting Soundness. We exponentially decrease the soundness error by parallel repetition. Namely, in
order to obtain ¢; A soundness error, we commit to A random masking polynomials g = (g1,---,9x) < {z:
Ry : T = 0} as follows:

ty :=Byso +g.
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Then, we send t4 to the verifier which in return outputs the challenge matrix (7;;)ie[r],je[nr] < Zg ™. Then,
we compute the vector h = (hy,..., hy) as follows:

h1 9 Fi ((0%(s1))ierrys (0" (m) )iefr)

]
ho | fge| TR TR B ((07(s1))ierngs (07 (m))icpa)
=10+ s : (37)
h 23 T2 M Fy ((Ui(sl))ie[k]v (Ui(m))ie[k])
and send it to the verifier. It directly checks if all polynomials hq,...,hy € R, have constant coefficients

equal to zero.
As before, we still need to prove that vector h was constructed correctly. We reduce this problem to
proving quadratic relations. Namely, we define polynomials fyi1,..., fy4a: R];(mﬁ”)‘) — R, as follows.
Let x; € R’;ml, Xg = (X21,...,X2)) € Rg(”)‘) and denote

Xg; 1= <Xg?),xé‘?}) € Rg”‘ for j € [k,

™= () k= (a8 el ).
Then,
M
In4i (X1,%X2) = xggil + Z vi,; Fj (xl,xém)> — h; for i € [A]. (38)
j=1

By construction, if (x1,%2) = (0%(s1))iex], (0 (m || 8))ie[x] then

x1 = (01(5))iery X" = (0°(m))sepyy  and 2, = gi.

Furthermore, Equation is true if and only if for all j € [A] we have:
I ((Ji(sl))ie[k]v (o (m || g))ie[k]) = 0.

Since we also need to prove , for convenience we define polynomials f,..., fy : Rs(mﬁ“’\) — Ry as:
fi(x1,%x2) = f; (xl,xém)) . (39)

Finally, we simply run IIquad—many ((52, s1,m, g),0, (fj)je[N+)\]) from Fig. [7l We summarise the protocol in
Fig. [l and provide commitment and proof size analysis in Section [6.1]
Note that with this approach we need to commit to additional A garbage polynomials.

Security Analysis. We present the security properties of the protocol in Fig. |8 below.

Theorem 4.5. Consider the protocol in Fig. @ and let x = S,,. Suppose §1 = yran and 59 = yavn\/med for
some 1,72 > 0 where 1 is chosen as in Section[2.7}
For completeness, let my,mg = 640/d. Then, the honest prover P convinces the honest verifier V with

probability
1

14 1 1)
26Xp(,71+27ﬁ+ﬁ>

a1

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment (ta,tp) along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage € in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
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does not abort, there is an algorithm A’ with the same running time that has advantage £/2 — 27128 in
distinguishing Extended-MLWE,, {147\ 11,mo—n—f—A—1,x,C,52-

For soundness, there is an extractor £ with the following properties. When given rewindable black-box
access to a probabilistic prover P*, which convinces V with probability € > 2/|C| + ql_d/2 + q1_>‘, extractor €

with probability at least € — 2/|C| — ql_d/2 — ql_’\ either outputs (Sg,81,m) € RZ’“*’”ZH and ¢ € Ry such that

ta] [A] . [As] . . Jo
o] - 5] = 8] sl
[ ((01(51))&[@, (Uz(ﬁl))?e[k]) =0 for j € [N]
— each F; ((67(81))iefr]> (07(m))e(k)) € Ry, where j € [M], has constant coefficient equal to zero

o < 2w
HE§1“ < 2514/2mad and Héng < 2594/2mad

or a MSIS,, 1, +m,,B solution for [A1 Ag] in expected time at most 12T where running P* once is assumed

to take at most T time and B = 81/ (s1+/2m1d)? + (52v/2mad)2.

Proof. Completeness follows directly from the proof of Theorem and the discussion in Section [£.3] As for
commit-and-prove simulatability, we simulate the commitment and the transcript identically as in the proof
of Theorem with two additional steps: (i) we simulate the commitment t, to g by setting t, < R;‘ to
be a uniformly random vector and (ii) we simulate the polynomials hq, ..., hy by choosing them uniformly
at random from X := {z € R, : T = 0}. Note that we perfectly simulate each h; since in the real execution,

ie. , gi’s are also sampled uniformly from X and Zﬁl Y, Fj ((Ui(Sl))ie[k], (ai(m))ie[k]) eX.

Knowledge Soundness. Let P* be a probabilistic prover which runs in time at most 7" and convinces the
verifier with probability € > 2|C|™! +¢; 42y q; . Define a deterministic algorithm A(pp, pg, I') which given
randomness p = (pp, pp) € Rp x Rp and challenge I' € Z;*M does the following. It first runs P*(pp)
on randomness pp with challenge I and stops after the third round. Let t, and h be the output of P* in
the first and third round respectively. Then, it runs the extractor £*(pg) defined in the proof of Lemma
4.3 with randomness pg (which runs P*(pp,I') in a black-box way). We say that A succeeds if A outputs

(tg, I, h,51,m,g,89,¢) such that

ta A, A, 0
— |t | = 0|51+ B| -5+ |m

t, 0 B, g
—hi=...=hy=0

fi ((0%(51))ier), (07 (m))sery) = 0 for j € [N]
for all i € [A], hi = gi + ZjM=1 Vi, F ((Ui(gl))ie[k]v (Ui(m))ie[k])
[l < 2

- HE§1“ < 2s14/2m1d and HE@QH < 2594/2mod
As before, we assume that £* does not solve MSIS since if it did, then so does A (and later on &). Clearly,
by Theorem H the probability that A succeeds for random p and I is at least e — 2/|C| — ¢, 42, Moreover,
the expected runtime A(pp, pg, I') for any fixed pp, I' and pg <— RE is at most 67"

We introduce the following notation. Let H € Rp x Rg x Z;\XM be the set of triples (p, I') such that
A(p,I") succeeds. Also, define H(pp) to be the set of all (pg,I") for which (pp,pg,I’) € H. For fixed
(p,I") € H, denote §§p’r) to be the §; part of the output of A(p, I") (and similarly for other variables) and
denote

irgps I
glp: ) .= (J (Sgp )))ie[k] e RE(mi+6)
(o' (@) i a

Finally, we define
H':={(p.I") € H : 3j € [M], const. coeff. of F}; (§/»"1)) is non-zero } .

Then, we have the following claim, almost identical to Lemma [£.4]
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Lemma 4.6. If (pp,pr, ") € H then Pr,. F,)(_mEXzéxM[(pgpr’) € H] > 0. Moreover, if (pp,pr, ") €
H' then

Pr lVie[A]gfi—-O

F,(_Z;xlw

;=g +Z% (“’ﬂ<ﬁ”

Now, we define our extractor £.

1. Sample p = (pp,pr) — Rp x R and I' € Z;XM and run A(p, I'). If A(p, I') does not succeed, abort.
2. If A(p,I") succeeds, run A(pp, pg, ") for the same prover randomness pp but fresh pfp — Rg and
I'" — Z3M until A succeeds.

We say that € succeeds if it extracts two tuples = (S1,1m,82,¢) and ¢’ = (8}, m’, s}, &) such that one of
the conditions below holds:

— (81,82) # (8,85), max(|¢]w, |¢]lw) < 2+ and max(|cs;|, |¢'S}]) < 28;4/2m;d for i = 1,2, and

Al = A2 = 0 _ tA _ Al —/ A2 —/ 0
A o [ o [0 [ [ [ [
— for all j € [N],f; ((6"(81))iefr]> (0" (1m));err)) = 0 and for all j € [M], the constant coefficient of
F; ((6%(81))iefr]» (0 (m))seq)) equals zero, and |[€]o < 2r and |81 < 251+/2myd and |68z < 252+/2mad

and
ta|  [Ag| _ Aol 0
] (5] [B] = 2]
In the first case we break the binding property of the commitment scheme and thus find a relevant MSIS

solution. On the other hand, we extract the witness in the second case. Then, we have the following claims
about £.

Claim. The expected number of calls to A is at most 2.

The proof follows identically as in the proof of Lemma We conclude that the expected runtime of £ is
at most 127"

Claim. Probability that £ succeeds is at least € — 2/|C| — qfd/z — g

Proof. First, we observe that £ terminates (without aborting) with probability at least ¢ — 2/ |C | — 7d/ g
Suppose & indeed terminates and let us write (ty, I h,8;,m,g,8s,¢) and (ty, IV, h',8),m’, g’ 85,&) to be
the respective outputs of A in the first and second step of £. We have the following three disjoint cases.

Case 1:
L4 (Slam7g752) # (Ngllvmlaglvéé)
e forie[A],hi=h;=0
o foric [N, hi = g; +2JMI%,J (o Z( 1))iefr) (0 () )iepi))
.forie[ALh/i:g;_'— j= 171] ( )ZE ( ( ))Ek)
o for j € [N], f; ((o7(81))iex); (0" (M) e k]) =0 and f; (( ( ( ietk) (0" (00))ser]) = 0
e max(|¢]uw, |&]w) < 2+ and max(||csz|| [€s]) < 2s;4/2m for i=1,2
Al A2 0 tA A1 A2 0
e | O S1+| B | -so+|[m|=|tg|=]0|-8+|B | -8+ |m
0 B, g ty 0 B, g

34



L4 (Slam7g7§2_) = ($a7m/ gl 82)
e forie[A],h;=h;=0
o forie [>‘]7 hi = gi + ZX/I 1 %,jF ((Ul(gl))ie[kh (Ul(m»zE[k )
o forie Al b =gi+2;_17i;F) (0" (51))iex), (0 (M))ieqn])
o for j e [N], f; (0" (51))ieqa]> (0 (M))ief)) = 0
o ||€]o < 2k and ||gs1|| < 2814/2m1d and |CSs|| < 2594/2mod
Al A2 0 tA
° 0| -s1+| B -so+|m|=]tpg
0 B, g t

L (v

o for j € [M], the constant coefficient of F; ((0%(8]))ie(x], (07 (m));eqx)) is zero.

Case 3:

(§17rh7g7§2) = (S
forie[A], hy =h
hi = gi

e fori e [A], P = + Z& 1 ’Yz,]F ((02(51))i€[k]? (Oj(ﬁl))le[k])
e forie [>\]7 h; =gi + Zy 1 ’Yz,JFJ ((Ui(gl))ie[k]’ (O—l(m))ﬁ[k])
o for j e [N], f; (( ‘(s 1))iefx]- (0" (M )ie[k]) =0
o |¢|o < 2 and &8, < 251y/2m1d and || < 2s9v/2mad
A1 A2 0 tA
e |0 |5+ |B |52+ |m|=|tp
0 B, g ty

o there exists j € [M], so that the constant coefficient of Fj ((¢*(8]))iefx]: (¢°(m))ie[x]) is non-zero.

Define E; to be the event that £ terminates and Case i occurs. Then, we have

and

e—2/IC| — qfd/2 < Pr[€ terminates] = Pr[E; v Es v E3]

Pr[€ succeeds] = Pr[E; v Es].

Hence, we only need to upper-bound the probability Pr[E3]. Now, by Lemma [4.6| we obtain:
(A(p, I') succeeds) A (3j € [M] : const. coeff. of F ((0°(8]))iefr)s (07 (M) epr)) is non—zero)}

Pr[Es] < Pr [

<

<
= |%Rp|-

|Rp|-

1

1

1

1

Rl

1

1
| RE|

IRp| -

IREe|-

A (Vi € [A], const coeff. of g; + Zﬁl vi i F (07 (81))ierry, (0 (M))ierny) is zero)

M
Pr Vi € [A], const coeff. of g~ ! F (é(”’F) is zero
AM 2 (P I")—H(pp) l A g 2 Mg )

T (o Den j=1
Z Prp g [Vi € [A], const coeff. of g + Z L F (D) s zero]
e Py ez 7 T < Hipr]

Z q;A . q)\JV[ . ‘mE|
o THGr)

—A AM
"¢ |Re|
AM Z |

Y oen H(pp)|
Z Z q;A . q)\M . ‘mE|
[Rp[-[Rp|- M S |H(pp)|
PPERP (pE, F)EH(pP)
AM
g - - |Re
S M Z |H(pp)| - W

pPPERP
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Finally, the statement follows by combining the two claims about the extractor £. ]

4.4 Reducing the Number of Garbage Commitments

The approach in Section [f:3]requires us to commit to A additional polynomials g;. Here, we consider a special
case when o := o_ 1|E| and show how to reduce this number by a factor of two for free. In particular, will use
the following property of o_;.

Lemma 4.7. Define the o_i-trace map Tr: Ry — Ry as
Tr(z) =27 (z + 0_1(x)).
Then for any a,be Ry, the polynomial y = Tr (a) + X¥?Tr (b) satisfies:
Yo = ao and yq/2 = bo.
Proof. We first observe that for any ¢ € R, such that o_;(c) = ¢ we have ¢y, = 0. Indeed, if we compare
the d/2-th coefficient of ¢ and o_1(c), we get cg/2 = —cqj2 and thus cgqjp = 0.
Let o’ = Tr(a) and & = Tr(b). Clearly, o/, are stable under the o_; automorphism and hence we have

a:1/2 = b:i/2 = 0. Also, by construction aj = ag and bj, = bg. Therefore, yo = aj — b:1/2 = ag = ap. Similarly,
Ya/2 :a:i/2+bg = bg. |

For simplicity, suppose that A is even. The strategy here is to consider each pair (a(j), b(j))je[,\ /2] defined as
M } . ‘
)= Z V25— 1ufu z(Sl))ie[k], (Ul(m))ie[k])
u=1

M .
Z Yojaufu ((07(51))iega]> (0" (M))sen))

and apply Lemma Fi;?l to simultaneously prove that the constant coefficient of both elements in R, is equal
to zero. Concretely, we prove that the constant and middle coefficient of each

Tr (o) + X2Tr (40)) € R,

is equal to zero.

Similarly as before, we first generate A\/2 random masking polynomials g = (g1,...,9x/2) < {z € Ry
To = Typ = O})‘/2. Then, given a challenge matrix I' = (v; ;) < ZQXM, we construct a¥) and b9 as above
and send hy, ..., hy/ defined as follows:
hj=g;+Tr (a(j)) + X927y (b(j)) for j € [\/2]. (40)

The verifier then checks whether the constant and middle coeflicient of each h; is equal to zero.
Finally, we need to prove that all hy,...,hy/y are well-formed. As before, our goal will be to define \/2

2(my + £ + A/2)-variate quadratic functions fyy1,..., fnia/2 ¢ Rg(m1+e+>\/2) — R4 such that holds if
and only if

fn+g ((Ui(sl))ie[k]a (o' (m || g))ie[ry) = 0 for j € [A/2].

13 Thus its degree k is equal to 2
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First, we observe that:

S1 O'(Sl) 0 Ikm1 00 S1
_ O'(Sl) _ S1 _ Ik:m1 0 00 O'(Sl) _
ofs) =0 m T le(m)| | 0 0 0 I m |~ US
o(m) m 0 0 I,oO o(m)

where U € Ra(mﬁaxz(mﬁa is the matrix defined above. Hence, we have the following lemma.

Lemma 4.8. Let s; € Ry, m e Rf; and set s := (s1,0(s1), m,o(m)). For any 2(my + £)-variate quadratic
function f : Rﬁ(ml”) — Ry, of the form f(x) = xTRax + 17 x +1q, define Tr(f) to be the quadratic function

) i KT (R2 +UT20(R2)U> s <r1T+cr2(r1T)U) . (7"04—20(7"0)) .

Then, we have Tr(f)(s) = Tr(f(s)).

Proof. We compute Tr (f(s)) from the definition of trace in Lemma

s)+o(f(s
e (s - L+ 2UE)
~ sTRos+r{s+rg N o(sT)o(Ra)o(s) + o(x])o(s) + o(ro)
B 2 2
_ sTRos+r{s+rg N sT’Uc(R2)Us + o(rT)Us + o(ro)
B 2 2
= Tr(f)(s)-
Here, we used the observation that o(s) = Us. i

200+
Let x; € Rgmh X = (X2,1,X2,2) € Rq( N Denote

X271 = (}(g’?’lb)7 l‘gi]i’ e 71’%];\/2) and X2,2 = (Xé’ig)’ xg?{, e ,.'L’éi];/Q)

and set Xgm) = (xgﬁ),xg;)). Then, define

M
v (x1,x2) = xgg]) +Tr (Z 72j_17“f“> (Xl’x;m)>

u=1

M
+ X2 (Z 72jfu> <X17X§m)) — h;.

u=1

(41)

Then, by Lemma |4.8 we have

TN+ ((Ui(sl))ie[k]a (Ui(m I g))ie[k]) =0 for j € [\/2]

if and only if Equation [40] holds.
As before, in order to prove , we define quadratic functions f1,..., fy : Ri(mﬁ@”\m — Ry as:

[i(x1,%x2) := f; (thém)) .
Finally, we run H,S?a)ny ((527 s1,m, g), o, (fj)je[N+)\/2]) from Fig.
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5 Applications to Proving Norm Bounds

In this section we provide examples of compound zero-knowledge proofs for various statements based on
the protocol in Figure 8| This protocol defined in the previous section proves simultaneously quadratic
relations and that the constant coeflicient of evaluations of some quadratic functions are 0. We only commit
(via ABDLOP) to the message (si,m), but notice that the proven relations may also take as input some
automorphisms of the message. We focus on one specific automorphism to instantiate the general framework
of Section[4] that is o := 0_; using notations from Lemma[2.5] With this choice of automorphism, Lemma[2.4
claims that T allows us to prove inner products modulo ¢ via Figure

In the first subsection, we describe a protocol that proves approximate shortness of the commitment in
the Euclidean norm. In the next subsection, we describe a protocol that encompasses a variety of useful
statements in lattice-based cryptography that is tailored for applications to cryptography via a single instan-
tiation. In particular, this protocol allows to prove an upper bound on the ¢;-norm of a commitment with
no tightness loss. In the third subsection, we detail an optimization related to the general protocol described
in the second subsection. Finally in the last subsection, we describe the changes in a particular instantiation
of the general protocol.

5.1 Approximate Range Proof

We first describe at a high-level a protocol to prove that a vector s = (s1, m) committed to via ABDLOP is
such that ||s| < B for some bound B. The bound we can prove with this method is looser than the actual
bound on the norm of s, but the counterpart is that the proof is fairly cheap. We will use this protocol to
show that when s satisfies some relation over Z, and ||s| < B for small enough B, then this relation holds
over Z. The technique is inspired by |GHL21|, itself reusing a technique from the ¢, approximate range proof
of |[LNS21a| adapted to the Euclidean norm. For the sake of simplicity, we assume that the prover wants to
give a proof that his commitment s = (s;, m) satisfies |s| < B. The more general statement |[Ds —e| < B
for some matrix D and vector e can also be proven using the same strategy as detailed in the next subsection

in Figure

Description of the strategy. The foundation for this protocol is Lemma In a nutshell, this Lemma
says that for some distribution on the matrix R, the random projection RS of s has approximately the same
norm as s. This way, we have the opportunity to shrink a potentially very long vector s to a much shorter
one (e.g length 256) with approximately the same norm. This projection is a Z,-linear map with respect to
s, which the prover can mask (which entails a slack in the bound we can prove with this method), then send
and prove well-formedness of the mask to the verifier.

The matrix R is a challenge sent by the verifier, and the prover shall prove that RS has small norm so
the verifier concludes that so does §. The problem with this method is that for zero-knowledge, the prover
cannot reveal the full vector RS. Instead of revealing this vector, the prover commits to a Gaussian mask y of
standard deviation s3 for the projection before receiving R. He then applies rejection sampling on the masked
projection Z':= ¢ + RS, and computes a zero-knowledge proof of the well-formedness of Z. The statement to
be proven is captured by Figure [7] and thanks to the rejection sampling step, the Z' can be revealed to the
verifier without leaking information on §. If the well-formedness proof of Z checks and |Z] is small, then it is
a matter of parameters for Lemma [2.9| to convince the verifier that 5 has small norm.

Bimodal rejection optimization. This mask 2z’ of RS is suited to the use of the bimodal trick to reduce
the standard deviation s3 of ¢ (therefore also reduce the standard deviation of Z, hence the length of the
proof). Explicitly, the prover choses a random sign b € {—1, 1}, computes Z := bRS+ ¢/, and runs the rejection
sampling algorithm Rej, (2, bRS,s3). The new distribution of Z reaches the same number of repetitions as the
usual rejection sampling for a lower standard deviation s3, which shrinks the bit length of Z. The extra cost
is 1) a commitment to the polynomial b and 2) a proof that b € {—1,1}. The commitment 1) is added to the
BDLOP part, and is fairly cheap since b is a single polynomial. The zero-knowledge proof that b is a sign 2)
comes almost for free as it is a Z,-linear proof amortized with the well-formedness proof of Z.
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Proving that a polynomial is a sign. To perform the bimodal rejection sampling, we need to give a
zero-knowledge proof that b € {—1,1}. We do this in two steps:

1. We prove that b is an integer
2. We prove that (b—1)(b+ 1) = 0.

As Z, is a field, it follows directly from (b —1)(b+ 1) = 0 that b indeed is a sign.

We prove that b is an integer by proving that for each non-constant mononomial of degree i: §; := X* €
Rq,1 < i < d—1, the inner product {(§;,b) = 0. This inner product maps b to its i-th coefficient, and shall
therefore be 0 for all positions i except for the constant coefficient. Second, (b —1)(b+ 1) = 0 is a quadratic

function, which we can prove using II (2) a5 well. The instantation of I\, is detailed in the next paragraph.

eval eval

Instantiation of He(izl. After 2 rounds, the proof reduces to one amortized zero-knowledge proof for
quadratic functions and evaluations. First, the well formedness of the mask z of the projection RS, then
the proof that b is a sign. For each of the 256 rows of z, we define a function F;, and for each of the d — 1

vectors d;, we define a function Gj.

VI < ’L < 256, Fi(S,y,b) = Z; — T(bﬁ,g&) — Y
V1<j<d-—1, Gj(b) =T(5;,b),
where 7; € ZZ("“*” is the i-th row of R. Finally, to prove that b € {—1, 1}, we use the functions G;’s defined

above and the quadratic function f(b) = (b — 1)(b+ 1). For clarity, we define
V= (F,...,F6,G1,...,Gq-1). (42)

Proposition 5.1. Consider an ABDLOP commitment of messages (s1,m) € R;’“*[ with randomness sy €
Ry satisfying A1s1 + Agso = t4, Bsy + m = tg. Assume that

s3> V3378, t = 1.64, q > 41(my + £)24/256/26tyv/3378.

Then the protocol described on Fz'gurela is a zero-knowledge proof for the statement ||s| < 24/256,/26t7y+/3375(<
189v3). More precisely, let Peya be the success probability of a honest prover in II, Pgi,Ter be respectively
the success probability and the run time of the extractor £ from Theorem @ running on II.

For correctness, if the prover and the verifier follow the protocol honestly, then the verifier shall accept
with probability ~ Peya exp(—#).

—d/2 _ ~\ _ 9-128

For soundness, let P be a probabilistic prover with success probability € > ‘%‘ —q q-

There exists an estractor £ that with rewindable black-box access to P either breaks the binding of the ABD-
LOP commitment, or finds a valid opening (S2,81,y,m,b,¢) to the commitment (t,ty,t,) with (5, m)|| <

2\/%1&7@6, with probability Pe/(1 — 2728) in expected time 2T

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment (t,t,,ty) along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage € in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
does not abort, there is an algorithm A’ with the same running time that has advantage ¢/2 — 27100 in
distinguishing Extended-MLWE,, { r4 \1256/d+2,ms—n—t—x—256/d—2,x,C.s5 -

Proof. We only detail correctness and soundness, commit-and-prove simulatability follows directly from the
same property from Figure[§] the rejection sampling and the hiding property of ABDLOP.
Correctness. Let i € [256]. If the prover and verifier follow the protocol honestly, we have:

Fi(SaY)b) =z —T(bFué‘) — Y (43)

Fi(S’Yab) :Zi—b<7:’i7§>—?ji (44)
b, 3 — b7, 55 = 0. (45)
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Public information:
Commitment t = (ta,t5) € Rg“, A e R;‘X(””*“e), Ay e Ry¥™ Be R(l;xww such that

ta Aq A, 0 256/d
] o e (8 e
Gaussian mask standard deviation s3 := y4/33783, acceptance coefficient ¢ = 1.64.

Private information: s = (s, m) € R7" ¢ such that ||s| < 3, randomness s, € R1"2.

Prover Verifier

Sample b — {—1,1} € R,

Sample y «— DS?G/d
ty =bis2 +b
ty = Bosy + y
ty, ty
R~ Bin?56x(ntl+2)

R
Z:=bRs+ 7y
If Rejy (7, bRS, s3)
Then continue, Else abort

zZ

_ >

Run IT := He(vga)l((527 S1, (m7 b))7 g, f7 W)
Accept iff
IT verifies and

|Z] < tv/2568s3

Fig. 9: Commit-and-prove protocol for the messages s = (s1,m) € ’R;m”, randomness sz € Ry and € € C which
satisfy: Aysy 4+ Agsy = ta, Bso + m = tp (ii) |s:d| < 28;4/2mud for ¢ = 1,2 (where s; are used in Fig. @) and (iii)

Is| < 24/ %2ty+/3378.

From Equation to Equation comes from Lemma Equation to Equation is true because
the prover formed Z = R§+ ¢ correctly. Obviously, since b € {—1, 1}, f(b) = 0. Again using Lemmaon the
Gj’s, each functions maps to a non-constant coefficient, which is 0 since in particular b € Z,. We proved that
the inputs of IT are correct, hence with probability P.y,, the verifier accepts II. The probability that the
prover passes the rejection sampling step is given by exp(—ﬁ) according to Lemma m Finally, using

2
the tail bounds from Lemma on Z, we have that P(|z| > tv/256s3) < (te™2 )25, so the verifier also
1—t

checks |z| < t4/256s3 with probability at least 1 — (te = )256, For t > 1.64, we have (L‘e#)256 < 27128
The success probability of the prover is at least the probability that 1) Rej,(Z, bRS, s3) does not abort, and
2) IT does not abort and the verifier accepts the proof, and 3) the norm verification passes. Therefore the
verifier accepts with probability at least Peyal exp(—#)(l —27128),

Soundness. We let £ be the extractor for this zero-knowledge proof and &£’ be the extractor from IT e(fa)l The
extractor £ proceeds as follows:

1. Run the prover until the third round on a honestly generated challenge R then run £’. If £ does not obtain
a valid opening 8, y, b satisfying the relations given by Equation , then abort otherwise continue.

2. Rewind the prover until the third round, send a honestly and freshly generated challenge R’ and then run
& until £ successfully obtains a valid opening &, ¥, satisfying the relations given by Equation .
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With this extraction strategy, the expected run time of £ is 2 times the expected run time of £’ and £ has
the same success probability as £, see Lemma for justifications.
Notice that since € > % + ¢~ %2 4 ¢, in particular the success probability of the prover at producing a

* and therefore P/ > € — % — g2 A > 97128,

valid IT in the last step is also at least % +q Y g

If € found two valid openings to different messages (s,y) # (8',¥’), then £ breaks the binding property
of the commitment scheme. We now consider the second possible outcome, that is the extractor £ finds
(52,81, y,m,b) € Rm2+ml+256/d+[+l and ¢ € R such that (81,y,m, b) are valid ABDLOP messages for the

randomness sy and

~ b - o
— For 1 <7 <256, F;(5,y,b) =0
— For 1 < j <d, Gj(b) =0, and similarly for the second transcript

We define s = (51, m). Plugging together the fact that all the Fy(8,3,b) are 0 and Equation (4 , we have

that Z is of the correct form, that is Z = R + 7. The latter also holds for # = R'%’ +7, but in this case R’

and (8,y) = (§',¥’) are independent. Under Lemma |2 G = 0 yields that every non-constant coefficient

of bis 0, hence b € Z,. Since Z, is an integral domaln 1 ) (5 —1)(b+ 1) = 0 ensures that b is a sign.
From the norm verlﬁcatlon we have that

|z < tv256s3 (46)
|R'S+ 9 mod q| < tv256 (47)
|R'S+% mod ¢l < V256 7\/33 B (48)

o o 1 256
747 mod q] < 1vES (z\/;w@ﬁ) | (19)

where Equation ) to Equation (47) follows from the proven well- formedness of z, Equation (47)) to Equa-
tion (48) follows from the assumptlon on s3 and Equation (48) to Equation (49) is sunply reformulatlng the
upper bound so it fits Lemma We now apply Lemma. Wthh is possible since (s,y) = (s',y’) and R’ are

independent. Under the condition that 24/223¢v+/33783 < m, we have that if [ > 2,/225tv+/3378,
then the probability over the randomness of the challenge R that Equation (46)) is less than 27128, By con-

traposition, with overwhelming probability 1 — 2728 we have [s| < 4/223tv4/337, which completes the
soundness proof. O

5.2 General Protocol With Exact £3-Norm Proof

In this subsection, we describe a general protocol to prove various quadratic relations on s = (s, m, o(s1), o(m)),
where (s, m) is the message of an ABDLOP commitment. The statements proven in this protocol are such
that the applications to cryptographic primitives detailed in Section [f] result in a single instantiation of this
protocol. We highlight that among the relations this protocol proves is an exact norm proof [s|| < 3, where

B is tight.

In a nutshell, we prove simultaneously quadratic relations over Ry, quadratic relations over Z,, approx-
imate bound on the infinity norm, exact bound on the 5 norm and finally that a vector is binary. All the
later statements are gathered in this single protocol as they rely on proving inner products, which is possible
to prove efficiently using Figure |8} Explicitly, we define public parameters:

Quadratic functions for i € [p] f; : Ri(mﬁ@ — R,
Evaluation functions for i € [peval] F; : Rg(mIH) — Ry
For i € [vg], D; € Ry u; e RE

. i x2(ma +£ :
For i € [v.], E; € RE™™ (mat+8), v € RE:
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e Bounds (Bi(d))ie['ud]v (ﬂl(e))lE[Ue]
e Matrix Ey, € RSbT"XQ(mIH) and vector v € R’;bin.

The general statement proven in Figure [10] includes the knowledge of a vector s = (s1,0(s1), m,o(m)) €
RZm1 x R2 such that

V1<i<p, fis)=0 (50)
Y1 <0 < pevals Fi(s) =0 (51)
V1 <i<va |Dis—vilo < 87 (52)
¥1<i< e [Es—vi|<p. (53)
EbinS — Vpin € {0, 1}%kbin, (54)

The functions f; are quadratic relations, and the functions F; are also quadratic relations but for which we
only prove the constant coefficient. The matrices D; and vectors u; are such that |D;s — u;||4 is small, and

we prove the latter with a looser bound ﬂi(d) than the actual bound on |D;s — u;]s. The matrices E; and
vectors v; are such that |E;s — v;| < Bi(e), which we prove exactly in the sense that the proven bound is

,81-(6). Finally, the matrix Ey;, and vector vy, are such that Ep,s — v, is binary, which we prove.

General strategy. Suppose we have an ABDLOP commitment to a vector (s;, m) and we want to prove
Equations to on s = (s1,0(s1),m,o(m)). To prove the quadratic relations and evaluations Equa-
tions and , we simply pass on the functions to the input of the instantiation of Figure [8|that we will
need later anyway. To prove Equation , we use the technique from Figure |§| with the £y -norm instead.
The proof of Equation is detailed in the paragraph below. We now focus on Equation . Remind

that one can use He(fa)l to give a zero-knowledge proof that the inner product of two commitments mod ¢
is some public constant. Therefore we can prove that (E;s — v;, E;s — v;)> mod ¢ is some constant. We use
the approximate range proof from Figure |§| to prove that the computation of (E;s — v;, E;s — v;) does not
induce a wraparound modulo ¢, and therefore also holds over Z.

Remember that we do not want to give away the exact norm of E;s — v;, but rather prove that it is
lower than some bound. To circumvent this, we prove that the difference between the bound and the norm
is a positive integer. Explicitly, we prove that (Bge))Z — (BE;s — v;, E;s — v;) can be written with a binary
representation &; of length 2 log(,é’i(e)) < d. Overall, proving exact norm reduces to the combination of proofs
for the relations between s and (z;)e[.,], and a proof that each w; is binary. Notice that both proofs are
over Z rather than Z,, so we need a third proof to lift the relations we can only prove directly over Z, to Z.

Proving that a vector is binary. We detail a simple technique to prove that a vector has binary coefficients.
This proof is enabled by the efficiency of proving inner product relations as it relies on the following fact.

Lemma 5.2. LetneN and Z e Z". If (Z,% —1,,) = 0, then & € {0,1}".

Proof. Let & = (x1 ... x,) € Z". Every term in the inner product (Z,# — 1,,) is of the form z;(x; — 1).
Moreover, the map a — a(a — 1) is a positive over the integers, therefore (Z,Z — 1,,) = 0 with equality if
and only if every term is 0, i.e Z is binary. m]

In other words, it is enough to prove (%, T — fn> = 0 to infer that Z is a binary vector. In our protocol, we
prove that the v, vectors Z; and the vector Epi,s — v, are binary, which we do in two steps:

1. We prove that {(Z||EwinS — Vbin), (Z||EbinS — Vbin) — fn> = 0 mod ¢, which is a direct application of

Figure[7]
2. We prove that |[(Z]|Epins — Vbin)| < B for some bound B using Figure [9]
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Provided that B is such that B2 + \/(ve + kpin)dB < ¢ (which is actually very easily met for reasonable pa-
rameters), ((Z||EpinS — Vbin); (Z]|EbinS — Viin) — T(ve+kbin)d> =0 mod ¢ holds over the integers, and Lemma
yields that Z and Ep;,s — vpj, are binary.

Specifications and instantiation. To begin with, the prover appends a commitment to the binary rep-
resentation vector x = (z1]|...||,,) in the Ajtai part of the commitment to (si, m{™¥ This vector is the
concatenation of the binary decompositions Z; of (61.(8))2 —|Eis—v;|?. We write x’ the concatenation of x and
EpinS — Vbin. The verifier samples two approximate range proof challenge matrices R(Y, R(¢). The first one
R is used for the approximate norm proofs Equation |D and the second one is used for the exact norm
proofs Equation . He sends both matrices to the prover. Finally, the prover computes a zero-knowledge
proof for the following statements:

V1<i<p, fi(s)=0 (55)
V1< < peval; Fis) =0 (56)
V1 <i < vg, |Dis— vilo < Y (57)
&X' = 1o, 4hypa) = 0 mod g (58)
V1 <i<wve, (Bis—vi,Eis—v)+ (1 2... 2218(5() . 0) i = (89)* mod g (59)
(|Eis = Villo)ie[v.], || are small enough so Equation and Equation hold over Z. (60)

We proceed to describe the functions in the input of IT Szl Let us first introduce some notations to make

the exposition more compact: we write p; = (1 2 ... 92108(8(”) .. 0), and for ¢ € [d,e] we write r(z)

the j-th row of R, yJ(Z) (respectively zj(z)) the j-th coordinate of 7 (respectlvely Z(). Remember that
Vi€ [d], §; = X' is the unitary monomial of degree i in R,. We remind that x’ is defined as the concatenation
of the binary decompositions &; and Epj,s — vy,;,. Finally, we define

D1S —u Els — V1
old _ . ,el® = : ) (61)
’ E, s — vy,
D,,s —uy, <

We define the following functions to instantiate IT 2

eval”

Vie {d e}, gD0D) =D —1)(b® +1) (62)
G(x') = T(x',x" — L1, 1hy)a) (63)
vj e [256], H<d>( @ @) = 2D — T Drl® e(@) — 4D (64)
vj e [256], H\”(x',5,y(, b)) = 20 — T(prl o)) — ) (65)
vie [vel, < ) T (E; WIM—VU+UMJU—WPV (66)
Vie{de), 1<j<d—1, JP D) =T(5;,0) (67)

We now pack the functions that are the input of II (2)

eval

z(f17"'7fp7 7g )) (68)
U= ((Fi)iepevaHGv (Hj(d))je[zm]a (H;e))je[zm], (Ii)icv. , (J](i))ie{d,e},je[d]) ~ (69)

for more clarity. We let

' Note that appending a commitment in the Ajtai part can only be done at the same time as the commitment to
s1. If for some reason it is not possible to commit ahead of time to &, one has to commit to Z in the BDLOP part
instead.
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Public information:
Commitment t € R7 T, Ay € Rpx¥(mitve) A, e Rp*™2 B e RE*™2 such that

= [A1] [51] n [Az] Sy + [I(r)l] B@ ¢ RE]QSG/d)XmZ’B(e) c R2256/d)><m2’ b@ ¢ Rz, b ¢ Rz

0 X B
For i € [p], quadratic functions f; : Rg(m”l) — Ry
For i € [peval], quadratic functions F; : R2™ 9 — R,

[ve], matrix (D;) € RE2™H0 - vector u, € REi, bound ﬁ,b-(d)

For i € [ve], matrix (E;) € RE 2™+ yector v, € RP*, bound Bl
Matrix (Epi) € Rivim*2(mito)
Bounds o'?, a(®) such that |e?| < a(?, @] < a(®
Standard deviations 5% = ~(94/337a¢(®D | §(¢) = 4(9)/3370(®) | acceptance coefficient t € R
Challenge dimensions ¢! = d Y%, k;, ¢ = d(kyin + >0°, (pi + 1))
Input functions of I7, f) ¢,V defined in Equations and .

val

For i e

Private information:

Randomness s < ™2, message s = (s1,m) € Ry

such that Equations to hold. Binary decomposition z; € R4 of (,Bi(e))2 — | Bis — vi %
Vectors €@ = (Dis — ui]|...|[Du,s — uy,), @ = (Eis — vi|...||Bu.s — Vo, |[x).

Prover Verifier

b b — (1,1} c R,
256/d e 256/d
v = DX v Ds(e)/
t@ .= B@g, 4 y@
£ .= B@g, + y©
t@D = (b ) Tsy 4 p@
) = (b)) sy 4 b
t(d), t(d), t(ff)’ t(e)
B —

. (d)
R@ Bmf%xc

. (e)
R(e) - BIH?SGXC

R(d), R(e)
) p(d) R ld) | )
) 1 p(0) R gle) | o)
If Rejy (29, (@ RO D ()
and Rejy (29, b9 RO &) 5(<)
Then continue, Else abort
s¥ .= (s2, (s1,x), (m,y<d),y(e),b(d),b(e)))
0,79
_—

Run IT = 12 (s*, 0, ¢, ¥)
Accept iff :
e [] verifies
o [#D]o0 < 145

o |29 < t4/2565©)

Fig. 10: Commit-and-prove protocol for messages (s1, m) € Rg””, randomness sz € R{*> and ¢ € C which satisfy:
A4 2 + Assy = ta, Bso + m = tp (ii) |s:¢| < 28:4/2m,d for i = 1,2 (where s; are used in Fig.H) and s =

(s1,0(s1), m,o(m)) verifies Equations to )
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Theorem 5.3. Consider an ABDLOP commitment to a message (517 ) € Rmﬁe with randomness sg €

Ry'? satisfying Ais1+Agsy = ta4, Bso+m = t,. Lel B .= 284/337~(® , Be) .= %w(e)\/ 337a®),
and assume that t = 1.64 and

Bl < g
41c¢(@)

2 4 V/(ve + kpin)dB® < g,
Q(ma)cﬂi(e))2 +(B9)Y?-1<q.
i€[ve]
Then the protocol described on Figure s a commit-and-prove protocol for proving Equations to .
Concretely, let Peya be the success probability of a honest prover in II, Pe/,Tger be respectively the success
probability and the run time of the extractor £ from Theorem @ For correctness, if the prover and the

verifier follow the protocol in Figure honestly and t = 1.64, then the verifier shall accept with probability

N 1 1
~ e g ageR

For soundness, let P be a probabilistic prover with success probability € = |(23| =42 _ =2 27127 There

exists an extractor that with rewindable black-box access to P, either breaks the binding of the commitment
or recovers a valid opening

(52, (51, %), (m, y, y(, b1, 5), &) € Ry Frmart Frvar 200/ 20/ s R
for the commitment (t,t(d),t(e),t(d),t(e)) in expected time 2T.y., satisfying Equations to ,

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1, m, outputs a simulation of a commitment (t, t(@) ¢(d) (o) t(e)) along with a non-aborting transcript of the
protocol between prover P and verifier V such that for every algorithm A that has advantage € in distinguishing
the simulated commitment and transcript from the actual commitment and transcript, whenever the prover
does not abort, there is an algorithm A’ with the same running time that has advantage £/2 — 27100 in
distinguishing Extended-MLWE,, | o1\ 1 (256/d+1)+(256/d+1),ma—n—E—A—(256/d+1)+(256/d-+1),x,C,52

Proof. Correctness. The success probability of a honest prover is at least the probability that 1) Both
rejection sampling steps on 2 and #(¢) do not abort 2) The zero-knowledge proof IT successfully convinces
the verifier and 3) Both norm checks are verified. For the rejection sampling steps, each have an indepen-
dent probability of respectively eXp(_W)’ exp(—W not to abort, which yields a probability of

)
exp(fz(Tl@)Q)exp(fW) for 1). The tail bound Lemma indicates that with our bounds, both norm

42 256
checks in 3) are verified with probability respectively 512 exp(—142/2) and (telT> . With ¢ > 1.64, both

probabilities are 1 — 27128, Remains to show 2), which we do by showing that IT is a valid instantiation of
Figure |§| and therefore convinceb the verifier with probability Pe.,,. Since the prover is honest, we assume
that s Verlﬁes Equations (50)) to and look at each input function one by one: For all 1 <1 < p, Equa-
tion (50) implies f;(s) = 0, and since both 5@ and b(®) are signs, we also have g(@)(b(9)) = g(e)(b(e)) = 0.

From Equation , we have 1?’1 s) = 0. The vector X’ is binary by construction and by assumption from
Equation . Under Lemma G(x') = x/,1 —x') mod ¢, and under Lemma we have G(x) = 0.
Again under Lemma , if both (9 and z(¢) are honestly constructed, the functions H J(d) and H J(e) also
have constant coefficients 0. For each i € [ve], the vector Z; is constructed as the binary decomposition of

(Bi(e))2 — |E;s — v;|?, and this vector #; therefore has support at most 2log ﬁi(e) < d. With p; defined as the
vector whose coefficients are the list of powers-of-two until 2 log ﬂi(e) (and then zeros), we have

(P, ( )2 —(E;s — v, E;is — v;).
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From Lemma the latter equation implies that E(s7 x) = 0, except the inner products are taken modulo
q rather than over the integers. Since we assumed 2(m[axﬁ-(e))2 + (B®)? — 1 < ¢, these computations also

hold over the integers and therefore we do have I;(s,x) = 0. Finally, Vi € {d,e}, 1 <j <d—1, J' z)(b( )=0

is immediate since the function maps b(®) to its j-th coefficient and b(*) is a eonstant7 which completes the
correctness proof.

Commit-and-prove simulatability follows from the commit-and-prove simulatability of Figure [§] the re-
jection sampling and the hiding property of ABDLOP.

Soundness. We let € be the extractor for this zero-knowledge proof and £’ be the extractor from IT e( gl The
extractor £ proceeds as follows:

1. Run the prover until the third round on honestly generated challenges R(Y), R(¢) then run £'. If £ does
not obtain a valid opening (82, (51,%), (m, y(9, y(©) 54 b)) ¢) e Rmﬁmﬁuvd 266/dtve-256/d 11 xRy
satisfying the relations given by Equatlons (50) to . then abort otherwise continue.

2. Rewind the prover until the third round, send honestly and freshly generated challenges R@' RE)" and
run £ until € successfully obtains a valid opening (85, (s},X’), (m’ ,y(@ g(@) p@ pe) ), ') satistying
the relations given by Equations (50) to (54).

With this extraction strategy, the expected run time of £ is 2 times the expected run time of £ and & has
the same success probability as £, see Lemma for justifications. Notice that since € > ‘ + a4+ g,
in particular the success probability of the prover at producing a valid IT in the last step is also at least
% + ¢~ %2 + ¢~ and therefore Ps > € — |7 — g2 g > 27128,

Similarly as in the soundness proof of Proposition either £ breaks the binding property of the
commitment scheme, or the messages in both transcripts are the same, which in turn implies that the
challenge matrices R(¥ and R(®) are independent of those messages. We focus on the latter case.

We have the following:

L. Vie[p], fi(s,0(8))

2. For i € [peval], Fi(S, (5))

3. Vie{d,e}, g?(bW) =

4. GE) =0

5. For j € [256], ](d)( . ¥a,ba) =0

6. For j € [256], H\"(X',5,Fe,be) = 0

7. Forie [v.], L;(s,X) =0

8. Forie{de}, je{l,...,d—1}, Jy(b;) = 0.

We use repeatedly Lemma to infer inner product relations from the list of equations satisfied above,
see the correctness paragraph for full explanation. First, 1) and 2) imply respectively that Equations ([50)
and are satisfied.

Next, 3) implies that b(@ and b(¢) are roots of (X —1)(X +1), and 8) implies that all coefficients of b(@ and
b(¢) are 0 except for the constant one. Since Z, is an integral domain, we have that b(@ and b(®) are signs.

5) implies the well-formedness of Zd) = pd R &) 4 7d) where ¥ is defined as in Equation (61) with
the extracted messages. From the norm verification on 2%, we have that |Z1D]|, = [l RDED 1+ 7|, <
2565 . Notice that since b@ is a sign, the distribution of b(? is B|n256xc(d). As we assumed that the
extractor does not break the binding of the commitment, € ”(d) is ﬁxed and the hypotheses of Lemma
are satisfied. Using the latter Lemma, we have that the probability (over the randomness of the challenge
R@) that |V, < 2[eD] is less than 27256 Rearranging the terms, we have that with probability that
€D ], < 2454 is at least 1 — 27256 hence Equation (52) is satisfied.

6) implies the well-formedness of (¢ = = bR &) 4 47€) where ) is defined as in Equatlon with the

256 x ()

extracted messages. Similarly as above, b(®) is a sign hence b(®) R(¢) follows Biny and is 1ndependent
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of &°). As we assumed B(®) < Tikey» we can use Lemma which yields that if |&(®)| = B(®), then the

probability that |2(€)|| < 1/2B(¢)\/26 is less than 27128, Rearranging the terms, we obtain that the probability
that |&l®)| < B(®) is at least 1 — 27128,

4) implies that X’ (again defined accordingly with the extracted messages) (x’,x’—1) = 0 mod ¢. Moreover,
as we assumed (B(®)2 + 1/(ve + kpin)dB®) < ¢, the latter inner product does not entail a wraparound
modulo ¢ and therefore holds over the integers. Under Lemma this implies that x’ is binary. In particular,
Equation is satisfied.

Finally 7) implies that (5, %) = (ﬁi(e))2 — €2 mod g. Moreover, as we assumed 2(1 axﬂi(e))2 +(B©)2 —
elv

T e
1 < ¢, then the computation above holds over the integers. In particular, the latter equation implies that
(89)2 — |&@)|2 is a positive integer and therefore Equation is satisfied.
To conclude, either £ breaks the binding of the commitment or £ finds a valid opening to messages
satisfying Equations to with probability Pg/(1 —27256)(1 — 27128) in time 27%. ]

5.3 Packing Signs

Recall that we commit to each sign b(®) and b(® separately. We can reduce the proof size by committing to
both of them in the following way. Namely, we compute

b:=b 4 XD e R,
and commit to b:
ty := bl's +b.
In order to prove certain properties of 5 and b(®), we observe that:
b =271 (b+ o(b)) and b'D = 271 (XV2b + o(X¥?D)).
Then, for example, to prove that b() is a sign, we show that
B2 —1= (2 (b+00) —1=4"1 B> +20B)b+ (b)) —1=0

and the constant coefficient of

X0 =X 27 (b4 0(D))
is equal to zero for i = 1,2,...,d — 1. Hence, these quadratic relations (with automorphisms) can be handled

directly by HéQ)

val*

5.4 Version of the £3-Norm Proof Without Approximate ¢,, Proof

In this subsection, we deal with the particular instantiation of Figure [I0] for vg = 0. Simply setting this
parameter to 0, for example still requires the prover to send the commitments t(® (9 although these are
not useful. We detail the savings and changes in the protocol for this particular instance.

We assume vy = 0. In this case, the prover does not sample 5% nor 7% and hence does not send the
two commitments t(@ ¢(® in the first round.

The challenge matrix R(® is 256 x ¢(9), where ¢(¥ is 0 hence the verifier does not send this challenge either.
The prover only computes 2¢), which means he only runs the rejection sampling Rej,(2(*), b(¢) R(€)&te) s(¢)
and only sends this Z(¢) in the third round. The vector s* is defined as (sz, (s1,%), (m,y(, b)), and the
functions @, ¥ are defined as

Qb = (fla"'afpag(e))
¥ = ((F)iepuanr G () jetzses (Ti)iev (1),
1) 1€ Peval s T g /je[256], \Li)ieves \Jj ~Jje[d] ) -
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6 Concrete Instantiations

In this section we show how to make use of our techniques for proving norms in the real-world applications,
such as proving knowledge of a Module-LWE secret, verifiable encryption and group signatures. In order to
show significance of our results, we compare our efficiency with relevant prior work.

6.1 General Strategy

We first provide a general strategy on instantiating the protocol in Fig. [I0] with an improvement presented
in Section [4.4] Firstly, we pick the challenge space C as described in Section Further, we choose A and

g1 such that terms ¢, A and g U2 are negligible.
There are four rejection sampling algorithms: the first two to mask cs; for ¢ = 1,2 and then the latter
two to mask R(©e&l®) and RW&D . Let 41, 42,7, ~(&) > 0. Then, we define

s1 =V a? + v, - d, 59 = yanu/mad, s =43v337a9), 5@ = 4,4/337a(?.

Thus, the non-aborting probability of the prover is
1

9exp (14 1 1 1 1
exp 71-!-27%-!—2%5-{-27%-!-273

o]

Now we set n and me such that Extended-MLWE and MSIS from Theorem are hard against known
attacks. We measure the hardness with the root Hermite factor § and aim for § < 1.0045 similarly as
in [BLS19, |ALS20, ENS20| [LNS21a]. For Module-SIS, we applied the standard methodology from |[MRO09,
GNO§|. Also, we assume that Extended-MLWE is almost as hard as plain MLWE (see |[LNS21la] for more
discussion) and applied the LWE-Estimator by Albrecht et al. [APS15].

Further, we look at the size of the non-interactive proof outputs via the Fiat-Shamir transform of the
protocol in Fig. First, note that for the non-interactive proof the messages w and v need not be included
in the output as they are uniquely determined by the remaining components. Moreover, all the challenges
apart from ¢ can be computed as a hash of the previous components of the proof. On the other hand, sending
¢ requires at most [log(2k + 1)] - d bits.

As “full-sized” elements of R,, we have t4,tp, t(d) ¢(d) gle) (o) ty,t and h;. Therefore, we have in total
n+{+2-(256/d+ 1) + 2\ + 1 full-sized elements of R, which altogether costs at most

(n+ £+ 512/d + 2X + 3) d[log q| bits.

Integer Representation Bits
0 00 2
1 01 2
-1 10 2
k=2 110%41 2%k —1
k<=2 110231 2k

Table 3: Prefix-free encoding [DLL"17.
Now, the only remaining part are the vectors z1, z9, 2%, 2(¢). We can encode them using the Huffman
coding. Concretely, suppose that z < D,. Then, we can write
Z:i=2- 20+1 4 20
where zp = z mod £29%1. Since the expected absolute value of z is 5 and assuming that 2° ~ s, the value of

2p is close to being uniformly random between —2° and 2°. Due to the discrete Gaussian tails, the tails of
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the distribution of z; decrease very fast. Hence, the idea is to send zp in the clear (which has § + 1 bits) and
then encode z; using the Huffman coding. If we assume that s = 2° and the tails of z; are the same as in
the normal distribution centred at zero E then the above compression requires on average approximately
1.57 bits to represent z;. Thus, the total representation of z requires on average ~ 2.57 + ¢ bits. Applying
this strategy to z1, zs, 29, 2(¢) | the overall commitment and proof length is around

(n+ £+ 512/d + 2\ + 3) d[log q] + [log(2k + 1)] - d + (mq + ve)d - (2.57 + [log s1]) + mad - (2.57 + [log s2])
+ 256 - (2.57 + [log s‘)]) + 256 - (2.57 + [log s¥]) bits.

Further, we can reduce the number of garbage terms g; from A to A/2 using the optimisation based on
the o_; automorphism described in Section [£.:4] Moreover, as described in Section [5.3} we can commit to
b(@ and b(®) as one polynomial. Hence, the total proof size becomes:

(n+0+512/d+ X+ 2) d[log q] + [log(2k + 1)] - d + (m1 + ve)d - (2.57 + [logs1]) + mad - (2.57 + [logsz])
+ 256 - (2.57 + [logs(®)]) + 256 - (2.57 + [log s(¥)]) bits.

Dilithium compression. For fair comparison with prior works, we further reduce the commitment and
proof size by applying Dilithium-G [DLL'17] compression techniques, as in [LNS21a] and [ESZ21]. We
describe the optimisation in Appendix [A] The only change from the previous case is the introduction of the
variables D (for cutting low-order bits of the commitment t4) and 7 (for cutting low-order bits of w which
allows us not to send some part of the masked opening z; of the commitment randomness s5). Then, by
Theorem we choose n,my and D,~ so that the MSIS,, ., 4m, B is hard for B := 47 - \/B? + B3 where
Bi = 2s14/2m1d and By = 2821/2mad + 2Pnv/nd + vv/nd.

As a rule of thumb, we first set D = v = 0 and pick the largest n such that MSIS,, ., 4m,, B is hard. Next,
we find the largest v (note that D is still zero) for which the Module-SIS problem is still hard. Finally, after
fixing n and v, we choose the largest D such that MSIS,, ., 4m,.5 is still hard and also 2°~1kd < +. Note
that having larger D decreases the commitment size at the cost of having larger hints and therefore, there
is no advantage in picking larger D than log(v/(kd)) + 1.

Now, we provide an asymptotic analysis of bounding the size of the hint vector h. First, note that the
coefficient vector h with high probability satisfies [h| < ||HighBits,(ct2—222)[« (here we assume the low-
order bits wo of w do not cause the increase in the high-order bits). Then, |lcta 2 + 222/l < 2P~ kd + 1652
with an overwhelming probability by Lemma Hence, we conclude that (with high probability) the
coefficients of h are between —x and x where

D—1
- [2 Hd+1652}. (70)
Y

For our parameters, the standard deviation so will be much smaller than v and thus = will be close to
2P=1kd/~. Finally, by picking D such that 2°~1kd < v, we conclude that the coefficients of h are between
—1 and 1 with high probability. Assuming heuristically that they follow a binomial distribution, we encode
h using a prefix-free encoding |E| [IDLL*17] as shown in Table [3l As computed in [DLL*17|, encoding a
coefficient of h requires on average ~ 2.25 bits.

The final proof size including compression becomes:

nd([log q] — D) +2.25 - nd + (£ + 512/d + X + 2) d[log q| + [log(2k + 1)] - d + (m1 + ve)d - (2.57 + [logs1])
+mad - (2.57 + [log sa]) + 256 - (2.57 + [logs(®)]) + 256 - (2.57 + [log s(¥)]) bits.
5 This assumption is needed so that we can compute the frequencies for the Huffman coding.

16 One could apply the Huffman coding as before, however this requires computing the frequencies of the hint coeffi-
cients.
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Skipping the non-exact norm proof. In certain applications, we will not perform any non-exact £
norm proofs, as described in Section In this scenario we do not send the commitments t(¥, ¢4 and the
masked opening Z(?. Also, the packing technique from Section becomes pointless. In conclusion, the
proof size for this case becomes:

nd([logq] — D) + (£ +256/d + A + 2) d[log q] + [log(2k + 1)] - d + (m1 + ve)d - (2.57 + [log s1])
+ mad - (2.57 + [logss]) + 2.25 - nd + 256 - (2.57 + [log s(®)]) bits.
We additionally provide SAGE |[The22] scripts which compute parameters for the examples described in
this section:
https://github.com/khalvador/LBZKP,
6.2 Proving Knowledge of a Module-LWE Secret

As a primary benchmark for comparison with prior work [ENS20,|[LNS21a], we prove knowledge of a Module-
LWE secret. Namely, we want to prove knowledge of (s,e) € Ry such that |(s,e)| < B and

As+e=u (mod q) (71)

where A € Ré\’ *M and u e Ré\’ are public.
We propose the following solution using the framework developed in Section [5] Simply, we commit to

sy := s and prove that
S . IM . 0 <B
As—ul|l —|lA | |ul| 7

In Fig. we show to properly instantiate the protocol in Fig. to prove knowledge of a Module-LWE
secret.

variable description instantiation
p # of equations to prove 0
Peval ## of evaluations with const. coeff. zero 0
Ve # of exact norm proofs 1
[y # non-exact norm proofs 0
Ebin length of the binary vector to prove 0
S1 committed message in the Ajtai part s
m committed message in the BDLOP part & (no message)
. . . I
E; public matrix for proving |Eis — vi|| < 51 [XI]
. . 0
Vi public vector for proving |Eis — vi| < f1 [u]
51 upper-bound on |Eqs — vi|| < 61 B

Fig. 11: Instantiation of the protocol in Fig. [10| for proving As 4+ e = u (mod ¢) and |(s, e)| < B. The variables in
the first two columns refer to the ones defined in Section [B] and the ones in the last column refer to the parameters
in this subsection.

Remark 6.1. We note that [ENS20, [LNS21a] could not avoid committing to e without having additional
commitments. Indeed, previous work efficiently prove smallness of a vector s, e.g. [s]|c < 1, by committing
to its coefficient vector 5; using NTT slots and then proving that §o (5§ — 1) o (§+ 1) = 0 [ALS20]. If one
were not to commit to e, then one would need to prove an equation of the form

(A5 — 7)o <A§—U— T) o(A5— i +1)=0.
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parameters description value
q prime modulus 252 _99
d ring dimension for of R 128
l # factors X? + 1 splits into mod ¢ 2
N height of the A matrix 8
M width of the A matrix 8
Y1 rejection sampling constant for cs; 19
Y2 rejection sampling constant for csa 1
A©) rejection sampling constant for the ARP 6
K maximum coefficient of a challenge in C 2
n height of matrices Ai, A2 in ABDLOP 9
mi length of the message s1 in the “Ajtai” part 8
l length of the message m in the “BDLOP” part 0
A 2 - (# of garbages g; € R4 for boosting soundness) 4
ma length of the randomness s2 in ABDLOP 25
v randomness sz is sampled from S;*? 1
¥ parameter to cut low-order bits of w 131052
D number of low-order bits cut from t4 9
repetition rate 7
commitment + proof size 14.4KB

Fig. 12: Parameter selection for proving As + e = u (mod ¢) and ||(s, )| < 4/2048 using the protocol in Fig.

However, this relation, which is a mix of linear and product relations, cannot be proven using current methods
included in [ENS20| [LNS21a] without making intermediate commitments.

Parameters. We instantiate our protocol for the case when ¢ ~ 232 and N = M = 1024/d similarly as in
IBLS19, [ENS20, [LNS21a] using the methodology in Section We provide a summary of our parameter
selection in Table

Let us pick prime ¢ := 232 —99 (i.e. ¢ = q1) and set d = 128,1 = 2 and («, B) = (1/1024, \/2048 Then
we define the randomness distribution as uniform over S;. For the challenge space, we set k = 2, n = 59 as
in Fig. 3 Also, for ¢ ~ 232, we choose A = 4. Then, ¢~%? < ¢7* ~ 2712 and x < ¢1/2.

There are three rejection sampling algorithms: one to mask cs;, another one to mask css and the last
one to mask |Ré®)|. Denote s; = v;T; where Ty, Ty, T3 are the upper-bounds on |cs; |, |eso| and |[Re(®)|
respectively. The repetition rate in our case is at least

5 14 N 1 N 1 N 1
exp|l —+—+-—+—=|.
Mmoo 2% 25 242
The rate in |[LNS21a] is around 7 hence we set 41 = 19,2 = 1 and 7€) = 6. All in all, with our parameters
we obtain proofs of size 14.4KB.

6.3 Verifiable Encryption

For presentation, we will consider a standard Regev public-key encryption scheme [Reg09] but similar analysis
can be applied for more complex construction, such as Kyber [BDK 18], Saber [DKRV18] and NTRU [HPS9S]
(see [LNS21a][Section 4] for more details). Namely, let p be a prime modulus of the encryption scheme. In
order to encrypt a binary message m € {0,1}%, a user samples a randomness vector r « &¥, where ¢ is a

distribution over R, and compute
to A 0
L= [ i) @

17 It is the case when s;, e only consist of ternary coefficients as assumed in the prior work.
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over Ry, 1= Z,[X]/(X?+1) where (A,b) € RI*X x RY is the public keylﬂ Let B be an upper-bound on r
such that the probability that |r| > B for r < ¢¥ is negligible. Then, in the verifiable encryption scenario,
we want to prove knowledge of r € R and m € R such that (i) Equation is satisfied over R, (ii) |r| < B
and (iii) m € {0, 1}4.

The high-level idea is to commit to s := (r,m) using the ABDLOP commitment modulo ¢ and prove
these three statements. Note that the latter two have already been covered in Section [} Hence, from now
on we focus on proving the first statement.

We first observe that if ¢ is divisible by p then can be transformed into a linear equation modulo ¢
and can be proven as described in Section[d] However, in practical instantiations p will be significantly small
relative to ¢ (e.g. p = 3329 in Kyber). Consequently, if ¢ has a small prime divisor p then by Theorem [4.5
we would need to commit to more garbage polynomials g; in order to keep the soundness error negligible.
Moreover, for implementation purposes one might want p to be a prime such that X¢ + 1 splits into many
factors modulo p (e.g. p = 3329). In this case, if p divides ¢, then the challenge space C does not have
the invertibility property which is necessary for the soundness proof. In Fig. we propose an example
instantiation for the case when ¢ is divisible by p (see parameter set IT).

Now, suppose that p is co-prime to ¢. Then, is true if and only if there exists a vector v e RN +!

such that
m - [3] i [t?m] v (73)

over R. From a simple calculation, |v|, < BVKd/2 + 1. We can avoid committing to v, similarly as in
Section by proving directly that vector

ot (8 8l

has norm at most B, := (Bv/Kd/2+1)y/(N + 1)d. Since this expression is linear in the committed messages
r and m, we can apply the protocol in Fig. to prove its norm. As we will show below, it is enough to
prove an approximate bound, i.e. |v|e < B, - ¢, where ¢ := 2 - 14 - 4( . \/337, as described in Section
Indeed, in the soundness argument we would extract a pair (r*,m*) which satisfies

m* e {0,1},
Ir*| < B,
A O r* to
-1

pt — < Byib.

' ([bT l’;]] lm*] le »
Denote the third expression as v¥ € RN*1. Then, we have

tO — A * 0 *

[tl] = [bT] r* + [lé’]m*] +pv*  (mod q). (75)
Thus,

A * 0 * tO
H [bT] r* 4 [[é’]m*] +pv [tl] <v (BW?d/Q +1+4 va) .

Hence, if ¢ is bigger than the right-hand side of this inequality, then we conclude that Equation holds
over integers. In particular (to, 1) is a valid encryption of m under randomness r over R,.
In Fig. [I3] we instantiate the protocol from Fig. [I0] for verifiable encryption as described above.

Remark 6.2. Note that the current state-of-the-art lattice based verifiable encryption [LN17], which is used
in e.g. [dPLS18, [LNPS21|, only provide relazed verifiable encryption. Namely, the soundness argument only

18 Recall that all coefficients of the terms involved in are between —p/2 and p/2.
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variable description instantiation
1) # of equations to prove 0
Peval # of evaluations with const. coeff. zero 0
Ve # of exact norm proofs 1
V4 # non-exact norm proofs 1
Kbin length of the binary vector to prove 1
S1 committed message in the Ajtai part (r,m)
m committed message in the BDLOP part & (no message)
E; public matrix for proving |[Eis — vi|| < ﬂie) [IK O]
Vi public vector for proving |[Eis — vi| < ﬂ;e) 0
(e) upper-bound on |Eis — vi| < 8¢ B
D . . . (d) 1 |A O
1 public matrix for proving |[Dis — wi|| < 34 p - [bT lp]]
2
u; public vector for proving |[Dis — ui| < §d) pt- [:(1)]
(&) upper-bound on |Dis — u | < g% (BVKd/2 +1)y/(N + 1)d
Euin matrix for proving binary [O 1]
Vbin matrix for proving binary 0

Fig. 13: Instantiation of the protocol in Fig. |10| for verifiable encryption. The variables in the first two columns refer
to the ones defined in Section [5| and the ones in the last column refer to the parameters in this subsection. Triple
(E1,V1,ﬂ£e)) corresponds to proving exactly that |r| < B. The next triple (Dl,ul,,ﬁf%d)) corresponds to proving
approximately that |v| < (BvVKd/2+1)4/(N + 1)d where v is defined in (74)). Finally, (Epin, Vsin) is defined to prove
that m has binary coefficients.

guarantees knowledge of a message and randomness corresponding to the ciphertext (¢to, ¢t1), where ¢ e R,
is called a relaxation factor. More importantly, ¢ is not known to the decryptor and thus it guesses a ¢ and
attempts to recover the ciphertext (¢tg,ct;). Consequently, the prior works had to equate the decryption
time with the adversary’s running time. Here, since we commit to r and m using a separate ABDLOP
commitment, we circumvent the relaxation factor by proving exact norms on r and m € {0, 1}<.

Parameters. We provide our parameters choiceﬂ in Fig. For the ciphertext modulus and dimensions,
we follow the Kyber instantiation. In particular, N = 4, K = 9 and b = A”'s + e where the secret key s and
error e come from Binév 4 and Binﬁ( d respectively. For the randomness distribution & := Bing. Hence, we can
set the upper-bound B on the norm of r « ¢X as B = 2¢/Kd and thus B, = (Kd + 1),/(N + 1)d.

To compute the decryption error probability, we want to calculate the probability that for r,e «
BinXe |(r,e)|. < q/4. First, we compute that for any 7,& < BinkX?, the probability that [(7,&)|. > 800
is less than 27360, Then, by the union-bound, the probability that [(r,e)|, > 800 is still at most 273,
Hence, in our parameter selection, we will pick a prime p larger than 3200.

The rest of the parameters are chosen similarly as in Sections and Finally, we need to check that

g~2%>p. (B\/ﬂm 1+ (BVKd/2 + VN + 1)dw) .

The term on the right-hand side is much less than 236 thus the inequality holds.

19 One can also instantiate the encryption scheme over a larger ring, e.g. R’ := Z[X]/(X?® + 1). Then, in order to
apply our proof system over a smaller ring R, one would first map the equations to work over R rather than R’
as described in [LNPS21|[Section 2.8].

53



parameter set description 1 11
P encryption modulus 3329 3253
N height of A 4 4
K width of A 9 9
13 ¢¥ is the randomness distribution of r Bing Bing
q proof system modulus 256 _ 579 251 _ 305215
d dimension of R 128 128
l # factors X + 1 splits into mod ¢ 2 2
ol rej. samp. constant for cs; 41 16
Y2 rej. samp. constant for css 1.1 1.5

) rej. samp. constant for exact ARP 16 1.8
’y(d) rej. samp. constant for non-exact ARP 1 -
K maximum coefficient of a challenge in C 2 2
n height of A1, Az in ABDLOP 9 9
mi length of the “Ajtai” message s; 10 6
J4 length of the “BDLOP” message m 0 0
2 - (# of garbage g; for soundness) 4 12
ma length of randomness s2 29 29
v randomness s2 is sampled from S}'? 1 1
¥ parameter to cut low-order bits cut from w 503742 54096
D number of low-order bits cut from t 4 11 8
repetition rate 7 7
ciphertext size 1KB 1KB
commitment + proof size 19.0KB 18.6KB

Fig. 14: Parameter selection, ciphertext and proof sizes for verifiable encryption. For the second parameter set we
choose ¢ := 660061 - 3253. Since p divides ¢, we do not need to do an approximate range proof of v as for I.
Consequently, we can pick smaller modulus ¢ and apply a similar strategy as in Section In particular, we do not
commit to the whole vector r = (r1,rg) € Rf‘N X Ré\’, but only a part of it, i.e. r;.

6.4 Group Signature

We apply our proof system to the recent group signature construction by Lyubashevsky et al. [LNPS21]. Our
construction inherits a big advantage from |dPLS18| [LNPS21], namely signature generation and verification
time do not depend on the size of the group. We first sketch the scheme and refer to [LNPS21| for more
details. In this subsection, we work over the larger ring Ryq := Z[X]/(X*?+1) where k > 1 is a power-of-two.
Then, define Ryaq,p := Riq/(p) for an integer p. The benefit of having a larger ring than R is small public
key size of our group signature. Operations in the construction will be over Ryq, where p is prime.

Overview. Let G € Ryq,p be the identity space. The group manager first samples A « RgX(NHw), B

d,p
. N+M)xTN
R,]LXPTN , randomness matrix R « S,(C a1 )xr , where

Ska = {x € Ria : |x]eo < 1}
and sets B := AR. Further, it samples u « Rﬁl,p. Then, the public key is a tuple
gpk = (A,B,B’,u).
Now, for each user with identity i € GG, the group manager samples the secret key

(@) (@)

sk; = (30,85, () « p{ETHUN+MDkA
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such that

[AIB +iGB] |s{) | =u

=1 is a gadget

using the [MP12] trapdoor sampling with standard deviation s where G :=Iy®([lg --- ¢
matrix and g := [p'/7].

The high level idea for signing is for the user with identity ¢ € G' to prove knowledge of ¢ and their secret
(27+1)N+M

key sk; := (s1,S2,83) € Ridp which satisfy:
S1 S1
[AB +iG[B] |s2 | =u, so || < B:=54/2((2r +1)N + M)kd, ieG. (76)
S3 S3

For the bound B we used Lemma for t = /2.

In order to be able to open the group signature scheme, we will add a verifiable encryption to the signature.
Namely, we want the signer to encrypt their identity ¢, using a public key associated to a decryption key that
the group manager possesses, and prove that this encryption is indeed of their identity. We do this exactly
as described in Section with a prime penc := 3329. Similarly, all the dimensions and bounds included in
that Section will be written with subscript enc.

Efficient Proof of (76). To begin with, note that relations over Rpyq, such as the first one in Equation
(76]) can be written equivalently over our usual subring R,. Indeed, Lyubashevsky et al. showed that there
is an efficiently computable ring isomorphism between Rjq and R¥, for an appropriately defined vector
multiplication in R, which preserves norms (see [LNPS21|[Section 2.8] for more details). Hence, arbitrary
relations we need to prove over Ryq, can be proven by showing that some corresponding relations over R,
hold true.

Secondly, we observe that if we choose a proof system modulus ¢ to be divisible by p and commit to
(i,81,82,83) in the “Ajtai” part of the ABDLOP commitment then the first statement in is simply a
system of quadratic equations in the committed messages as in Section [d] Indeed, we pick ¢ = ¢;p where
¢1 < p and then prove an equivalent quadratic relation over R, namely:

S1
51
¢ [AB +iG|B] | s2 | = ¢1 [A|B|G|B'] ;22 = qu (77)
S3
S3

Further, the second statement is about norms which is covered in Section
Moreover, we define the identity space G. It should be designed so that we can efficiently prove that
i € G (third statement). Let B be the set of non-zero binary polynomials in R,,. Then, we define the identity
spacd’] as
G = {i(X*) e Rpap:ieBand |i]; = w}.

We choose w so that the set G has size ~ 2% for comparison with related work [BDK* 21, [EZS*19|. Note
that for an appropriate p, a difference of two distinct elements from G is still invertible over R4, which is
crucial for trapdoor sampling.

Note that the space G is constructed in such a way that when we map equations over Ryq,p to Rz, then
we only need to commit to one polynomial ¢ € R, using our ABDLOP commitment instead of k polynomials,
i.e. i(X*) € Ria,p. Similarly, we only need to send an encryption of i over R,, instead of i(X*). Hence, for

20 Previous works [dPLS18, [LNPS21| define the identity space G to be a set of integers Z,, since it was easier to prove
set membership 7 € G with their proof system. Here, we make a small modification and set the identity space to
be a subset of binary polynomials with fixed norm.
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variable description instantiation
o # of equations to prove N
Peval ## of evaluations with const. coeff. zero 1
Ve # of exact norm proofs 2
V4 # non-exact norm proofs 1
Kbin length of the binary vector to prove 1
s1 committed message in the Ajtai part (s, 857 880 renc, i)
m committed message in the BDLOP part @ (no message)
fi,o o fN equations to prove Equation |7
Fy evaluation to prove const coefl. zero o_ 1(Zd ' X) i —w
E; public matrix for proving |Eis — vi| < ﬁle) [Ik(N+A/[+27—]\]) O]
\21 public vector for proving |[Eis — vi|| < ﬂie) 0
(e) upper-bound on |Eis — vi| < 8¢ 54/2((27 + 1)N + M)kd
E, public matrix for proving [Ess — va| < ée) [0 00 IKenCO]
v public vector for proving |Ezs — va| < 8% 0
() upper-bound on |Ezs — va| < 8% v/Benc
. . . @] —1 [000Aecp: O
D, public matrix for proving |[Dis — ui| < 5;” | penc - [0 00 bT, lp;nc]]
. . (d) ~1 |to
u; public vector for proving [Dis — ui| < 3 Denc * |:t1:|
id) upper-bound on |Dis — w|| < gd) By,enc
Epin matrix for proving binary [O 000 1]
Vbin matrix for proving binary 0

Fig. 15: Instantiation of the protocol in Fig. [10|for the group signature. The variables in the first two columns refer
to the ones defined in Section [5| l and the ones in the last column refer to the parameters in this subsection. Variables
with subscript enc are defined for the verlﬁable encryptlon in Section [6.3] Functions F} is used to prove that identity
¢ has exactly w ones. Triples (El,vl, ) and (Eg,Vg,,B2 )Y correspond to proving exactly ||(s!” ,s2 ,53 )H < B and

[Tenc|| < Benc respectively. The last trlple (Dy, ul,ﬁl ) corresponds to proving approximately that |Venc| < Buy,enc :=

(BencV Kencd/2 + 1)/ (Nenc + 1)d where venc is defined in .Fima,lly7 (Ebin, Vbin) is defined to prove that ¢ has binary
coefficients.

such a set G, proving i(X*) € G is equivalent to proving that i has binary coefficients and the sum of
coefficients of ¢ is equal to w which is covered in Section

Last but not least, we observe that including a verifiable encryption from Section [6.3] does not have a
significant impact on the signature size. Indeed, identity ¢ is already committed using the ABDLOP scheme
and additionally committing to the randomness r (in the “Ajtai part”) does not increase the commitment
size. Hence, the only extra cost consists of: (i) a ciphertext, (ii) masked opening of the randomness r, (iii)
commitments and masked openings to polynomials involved in the approximate range proof for v in . As
described in Fig. for our instantiation the verifiable encryption costs around 6.5KB compared to 19.0KB
shown in Fig. [I4]

In summary, we show in Fig. [I5 how to instantiate the protocol in Fig.[I0]to construct a group signature.

Parameters. We present our parameter selection in Fig. for a group signature instantiation which
achieves security level 111. We start by setting p = 238 — 107 and ¢ = (226 — 371) - p ~ 254. Then, we choose
d =128,k = 4and | = 2, thus Rya, = Z[X]/(X°*2+1). Next, let N = 2, M = 3 and 7 = 5, hence g = [p'/®].
Further, we pick large enough standard deviation s used for trapdoor sampling. We know from [MP12] that
52 2(s1(R) +1)4/¢? + 1 where s; is the operator norm. Note that if R did not have a polynomial structure,
ie R {-1,0, 1}(]\“’M)k‘ix”\”“d7 we could use upper-bounds for norms of random subgaussian matrices, e.g.
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[MP12][Lemma 2.9]. Namely, we would obtain the following bound

$1(R) < /(N + M)kd + VTNkd + 6 ~ 128

with probability at least 1 — 263, We found experimentally that for our structured matrix R a similar bound
holds with at least 99% probability

s1(R) < := 113

5:=2(x) + 1)/ p%7™ + 1.

Further, we describe how we choose N and M, i.e. the height and the width of the matrix A. Con-
cretely, in the traceability proof, the challenger sets B := AR — i*G and B’ = AR’ where R,R/

S’,(cgirM)XTN and i* <« G. Additionally, it samples sk&8™ := (s§", s§", s§") « pLETFONFME o q computes
u:= [A|ARJAR’] sk&™. It will hope that an adversary forges a signature for the identity z*lﬂ In that case,
we can extract from the forged signature the secret vector sk;x = (81,82,83) such that

and thus we set

S1 S%m
[AIARJAR'] |52 | = u = [AJAR|AR] | 55"
S3 S3

and thus

s:=85 —sf" + R(s2; —s§") + R/(s3 —s§™)

is a MSIS solution for the matrix A H Also, with high probability we have s # 0 since sk8™ was chosen
independently by the challenger. Now, we need to bound the norm of s. In order to do so, we will use the
property that for any x € R7Y, [Rx| < s1(R)|x| < ¢|x]|. Thus, we can bound the norm of s defined above
using the Cauchy-Schwarz inequality as follows:

sl < lIs1 =S¥ + ¥ls2 — s57| + ¥llss — s5"|
SVIL+Y? 92 \/H51 — st7[% + [52 — s57[% + [ls3 — s57[*.

Finally, we observe that we can bound the second term as:

_ 2 ! 2

§p —s§" S1 s§™

s —s8M || <2- Sof| +|s8" <4B? = (2B)%
gm S gm

S3 — S3 S3 S3

Hence

Is| < Busis := 25 - /1 + 202 - 4/2((27 + 1)N + M )kd.

Thus we have to choose N such that MSISy N4, Bygs 1S hard over Ryq, and take into account the 1/|G]|
security loss. Not to mention the fact that we want AR to be computationally indistinguishable from a
random matrix B, i.e. the MIWEy ps s, ,, problem over R4, to be hard.

Parameters for the ABDLOP commitment are chosen similarly as in the previous examples. In particular,
the proof system modulus ¢ has to be large enough to prove exactly that the norm of a user secret key is at
most B = 54/2((27 + 1)N + M)kd. Also, we aim for repetition rate 7 as in the previous examples.

2! Hence, there is a 1/|G| security loss.
22 Since we prove the norm of sk, exactly, there is no relaxation factor ¢ in front of the vector u as in previous works.
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parameters description value
P modulus for the group signature 2%% 107
d ring dimension for of R 128
k kd is the ring dimension of R4 4
N height of the A matrix 2
M N + M is the width of the A matrix 3
T 7N is the width of the gadget matrix G 5
w #1’s in the identity ¢ € G 4
|G| size of the identity space ~ 2%
Penc encryption modulus 3329
Nenc height of Aenc 4
Kenc width of Acnc 9
&enc €E_is the randomness distribution of renc Bind
q modulus for the proof system ~ 207
l # factors X + 1 splits into mod ¢ 2
Y1 rejection sampling constant for cs; 17
Y2 rejection sampling constant for cs 1.2
() rejection sampling constant exact ARP 2.5
'y(d> rejection sampling constant for non-exact ARP 12
K maximum coefficient of a challenge in C 2
n height of matrices A1, Az in ABDLOP 12
mi length of the message s1 in the “Ajtai” part 110
L length of the message m in the “BDLOP” part 0
2 - (# of garbage g; for soundness) 6
mo length of the randomness s2 in ABDLOP 41
v randomness ss is sampled from S;*? 1
¥ parameter to cut low-order bits from w ~ 237
D number of low-order bits cut from ta 29
repetition rate 7
extra cost of adding verifiable encryption 6.5KB
signature size 92KB
public key size 47.5KB
secret key size 6.3KB

Fig. 16: Parameter selection and concrete sizes for the group signature scheme.

6.5 Product Proofs over R, for a co-prime p

Another application of our techniques is a product proof over R, where p < ¢ is co-prime to our proof system
modulus ¢g. Namely, suppose we want to prove n equations of the form:

a;b; =c;fori=1,2,...,n (78)

where all a;,b;,¢; € Ry

Note that if p was a divisor of ¢, i.e. ¢ = kp for some integer k, then we would simply apply the
methodology from Section to prove ka;b; = kc; over R,. This immediately implies .

There are two fundamental reasons why we would consider proving such statements. Firstly, this allows
us to efficiently prove quadratic relations when p is small. Indeed, suppose that we choose p which is divisible
by ¢. Recall that the soundness error of the protocols in Section [4] mainly depends on the smallest prime
divisor of ¢, i.e. g1 < p. Hence, if we wish to have small p, we would need to decrease the number of subfields
[ that R, splits into (so that p~ %" is negligible). Moreover, if we additionally want to execute the protocol
in Fig. 8] e.g. in order to prove binary or Lo norms, we would need to increase the number of garbage terms
g1,-..,gx so that p~* is negligible. This, unfortunately, has a negative impact on the overall communication

size.
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The second reason is that, for suitable primes p, we could prove point-wise product relations @ o b=¢
over Z, which is a fundamental component in proving general circuit satisfiability and R1CS statements
[BCR*19]. Indeed, if we choose p such that X< + 1 splits into linear factors modulo p, then using Number
Theory Transform identically as done in [ALS20} [ENS20], we reduce the problem to proving products over
Rp-
We first provide a naive strategy for proving . Namely, we commit to ay, b;, ¢; using the ABDLOP
commitment [*°|and prove that the L, norms of each polynomial is at most p\/ﬁ/ 2. Then, we commit to each

a; bz — C;
p

k; =

and prove that |[k;| < (pd + 2)v/d/4. Finally, we prove quadratic equations
aib; — ¢; = pk; (79)

over Ry.

The intuition for soundness is that if we proved that a;, b;, ¢; and k; have small coefficients with respect
to ¢, and that holds over R, then this implies that a;b; — c; = pk; is true over integers since no modulo
wrap-around occurﬂ Consequently, we get a;b; = ¢; over R,

Unfortunately, the cost of this method is committing to additional k; for each out of n equations. We
circumvent this issue by not committing to k; but instead proving that p~!(a;b; — ¢;) € Ry has small

coefficients. As described before, we do that by committing to the masking polynomials (y1,...,¥256/4) €
RgSG/d and computing (21, ..., 2256/a) € R§56/d such that
7 p~H(a1by — i) 71
=R +
Z56/d pHanbn — c) U256/d

where R is a challenge matrix and ai—b; is a coeflicient vector of a;b; € R, Then, we need to prove that
polynomials z; were well-formed.

Let us focus on the constant coefficient 27 € Z, of z; since proving all the other ones follows identically.
Then, if we denote the first row of R by (r1,...,7r,) € Ry, we have:

n
31 :pilzfgﬂ(aibi*&)+ [IOO]gl
i=1
Hence, we simply need to prove that the constant coefficient of
n
p Z o_1(ri)(aib; —c;) +y1 — 21
i=1

is equal to zero. Note that all a;,b;,c; and y; are committed. Hence, this is a quadratic relation with an
automorphism and thus we can apply the protocol in Fig. [§| to prove this property.

7 Working Over General Rings

Throughout the paper, we have focused on working over the polynomial ring R = Z[X]/(X? + 1), and in
particular used the fact that s(X~!) is an automorphism in this ring. In this section, we explain how our

23 Hence, each coefficient of a;, b;, ¢; is between —p/2 and p/2.

24 This strategy was already used to prove integer multiplication in [LNS20].

%5 For simplicity, we omit bimodal rejection sampling which would end up having to prove cubic rather than quadratic
equations.
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main results can be generalized to virtually any other ring that one could be interested in. In particular, let
us define R = Z[X]/(X? + fa1 X 4+ fa 20X 2+ .+ f1X £1), where f; € Z.

The first thing to note is that all our protocols for proving linear a quadratic relations over R, did not
use any special properties of the ring except that the challenge differences need to be invertible. For purposes
of security, one should also be mindful of the “expansion factor” of the ring, which controls the growth of
polynomial products in the ring — if it is too big, then the reductions involving (Ring/Module)-SIS become
meaningless [LMO0G].

For our proofs over the ring R, to be meaningfully applied to proving knowledge of inner products
over Z, one needs a correspondence between the inner product and the constant coefficient of a polynomial
multiplication. Below, we show how one can achieve such a correspondence for any R. The multiplication
of a - b in the ring R can be written as a matrix-vector product Al;, where b consists of the coefficients of
b and the i*" column of A (if we number them starting from 0) consists of vectors whose elements are the
coefficients of the polynomial a - X* € R. It’s not hard to see that the first row of A is the vector @’ - M,
where

1 0 0 0 0
00 0 ... 0 +1

M = 0 0 0 i]. C2.d—1 7 (80)
0 0 +1 ... Cd—2,d—2 Cd—2,d—1

0 £lcg12 .- Ca-1,d-2 Ca-1,d-1

for some integers ¢; ; which are of no particular importance to this section. Therefore the inner product (7, 5)
is equal to @ -5 where @’ - M = #T. Since the determinant of M is +1, M ! is also an integer matrix, and
thus @’ = 7T - M~ is an integer vector and so a € R.

The protocol for proving a bound on |s|? over the ring R, uses the fact that the matrix M1 actually
corresponds to an automorphism over R,, and so the prover does not need to create a commitment to
both s and 57 - M~! — the verifier can essentially derive the latter by himself. In rings where 57 - M1 is
not an automorphism, the prover would additionally need to commit to the polynomial corresponding to
7=25" . M~', and then give a linear proof showing that this relationship is indeed satisfied, along with the
proof on the bound of |s|? = 5. The modification for proving that s contains only 0/1 coefficients would
proceed in the same manner. Proving component-wise products over general rings R can also be done, but
ends up again doubling the committed vector. Recall that the idea when working over the ring R, was to
pick a prime p « ¢ such that X% + 1 fully splits modulo p and then embed the coefficients into the CRT
slots. If, for a particular ring R, there is no such p, then one would need to use a different ring than the one
used for the commitment scheme which does have such a p, and make sure that multiplication of committed
values over this ring corresponds to the one used in the commitment scheme. One way to do this is to only
commit to polynomials of less than half the degree of the ring, so that multiplications in both rings is the
same as over Z[X].
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A Dilithium Compression

In this section, we reduce the commitment and communication size by applying compression techniques from
Dilithium-G |[DLL*17].

A.1 Low/High Order Bits

In order to reduce the size of the commitment, we need some algorithms that extract “higher-order” and
“lower-order” bits of elements in Z,. The goal is that when given an arbitrary element r € Z, and another
small element z € Z,, we would like to be able to recover the higher order bits of r + z without needing to
store z. The algorithms are exactly as in [DLL" 17|, and we repeat them for completeness in Figure They
are described as working on integers modulo ¢, but one can extend it to (vectors of) polynomials in R, by
simply being applied individually to each coefficient.

Power2Round, (r, D) Decompose, (7,7)
00 r:=7r mod* q 10 r:=r mod™ ¢
01 7o := r mod® 2P 11 7o ::rmodi'y
02 return (r —rg)/2" 12ifr—rp=q—1
13 thenry :=0;r0:=r90—1
UseGHint,(y, 7, ) 14 else r1 := (r —ro)/y
03 m:=(q¢g—1)/v 15 return (ry,ro)

04 71 := HighBits,(7,7)
05 return (r; +7) mod *m
HighBits, (7,)

MakeGHint, (2, 7,7) 16 (r1,70) := Decompose,(r,7)
06 m=(q—1)/v 17 return r;

07 71 := HighBits (7, 7)

08 w1 := HighBits (r + z,7) LowBits, (r, )

09 return (v; —r1) mod *m 18 (r1,70) := Decompose,(r, )

19 return rg

Fig. 17: Supporting algorithms for commitment compression.

Lemma A.1. Suppose that q and v are positive integers satisfying ¢ = 1 (mod 7). Fiz m = (¢ — 1)/7.
Let r and z be vectors of elements in R, where ||z| < /2, and let y,y’ be integral vectors of elements in
(=m/2,m/2]. Then the HighBits,, MakeGHint,, and UseGHint, algorithms satisfy the following properties:

1. UseGHint,(MakeGHint,(z,r,),r,v) = HighBits (r + z,7).
2. If UseGHint,(y,r,y) = UseGHint,(y’,r,7), theny =y’.
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Private information: (s1,m,s2) € Ry 2% 50 that ||s1] < o and [s2]e < v
.. . — ¢ _
Public information: A1 € Ry*™, A € Rox(ma=n) gr e Rlx(m2=n)

t A Al s
oo =[O ] o+ [5] o [30]
Prover Verifier

y1 < Dg?

y2,1 <« D27

Y22 < D,

w = A1y + A/2Y2,1 +¥y2,2
(w1, wo) := Decompose, (w,7)

Z1:=Yy1 + cs1
2y — [22,1] :: [}’2,1] Le [sm]
Z2,2 y2,2 52,2
fori=1,2:
if Rej, (24, ¢s4,8:) = 1
then (z1,z2,h) := (L, 1,1)
Z2,2 i=Z22 — cta 2 — Wo
if |(z2.1,222)] > B
then (z1,z2,h) := (L, 1,1)
h := MakeGHint, (z2,2, YW1 — 22,2, 7)
Z1,7Z221, h

W1 z UseGHint, (h,Alzl + A’QZQ,l —c- 2DtA,1,fy)
?
HZ1H < s514/2mad
?
|(z2,1, A1z1 + Abzo1 —c-2Pta1 —ywi)| < B

?
Il < %t

Fig. 18: Proof of knowledge of (s1,s2 := (s2,1,82,2),m,¢) € Ry" x Ry x ’Rf; x C satisfying (i) A1s1 +Absoq +822 =
20 . ta 1, B'so + m = tgp (ii) |s18] < 2514/2m1d and (iii) |s2¢] < 2B.

A.2 ABDLOP Commitment Compression

We apply the aforementioned compression techniques in the opening proof presented above. First, we reduce
the size of the ABDLOP commitment by not sending the low-order bits of t 4. Namely, for a suitable D € N
we write

ta=ta1 2P +tao where [tas], < 2P

and only send £ 4 ;. Thus, we reduce the commitment size by Dnd bits.
Further, instead of sampling uniformly random matrices A; and B, we can choose them in the more
structured way as originally in [BDL™ 18|

A Ay I o initrim
]| o R0 (s1)

We present the ABDLOP opening proof in Fig.[I8 Prover P starts by sampling vectors y; < D, y21 <
D27 and yg 2 < Dy, from discrete Gaussians and computing w = A1y + Abys 1 +y2,2. Additionally, P
calculates (w1, wo) = Decompose, (w,27) and sends w; to the verifier where ¢ — 1 is divisible by 7.

After receiving a challenge polynomial ¢ « C from V, the prover computes

Z2,1 Y21 S2.1
71 = + cs; and zo = = Tl +c ’
L= ! 2 [Z2,2] [Y2,2] [52,2]
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and applies rejection sampling for z; and zs. If it accepts, P modifies z5 2 := 29 2 — ct 4 2 — W( and calculates

the hint vector h = MakeGHint, (22,2, YW1 — 22,2, 7). Finally, the prover sends (z1, 22,1, h). In the last stage,

verifier V checks whether vectors z; and (z21,A121 + Abze 1 — - 2Dt,471 — ~vwy) has small norm and the
q—1

. 1
coefficients of h are between -5 and ‘12—7 and

w1 L UseHint, (h, Az + Abzo; —c- 2DtA,1,7) .

As opposed to the standard opening proof, the prover does not send any masked opening of s5 5. Instead,
P sends a vector of hints h which has much smaller impact on the communication size as opposed to z3 ».

Theorem A.2. Lets; = yina and s9 = yanv/med. Then, the protocol in Fig.|18§is a zero-knowledge proof
of knowledge.
For completeness, let my, mo = 640/d, v be an even divisor of ¢ — 1 and B be defined as

vnd
B = s94/2mod + 772D_1 vnd + 7 2’11 .

Then, the honest prover P convinces the honest verifier V with probability

1
2 exp (% +

1 1)’
—_— + —_—
2'y12 27%

For soundness, there is an extractor £ with the following properties. When given rewindable black-box
access to a probabilistic prover P*, which convinces V with probability € > 1/JC|, extractor € with probability
at least € — 1/|C| outputs (81,85 := (S2,1 || 82,2), M, ) € RI™ x Ry*2 x RY x C satisfying

A5 +ALSy  +800=2" tay, Bsyy+m=tp, [51¢]<254/2md, |[S2¢]<2B.

Proof. Since zero-knowledge follows from the standard techniques, we only focus on correctness and knowl-
edge soundness.

Correctness. First, if the rejection sampling steps pass, the distributions of z1,z, are discrete Gaussians
centered at 0 with standard deviations s; and sy respectively (though the latter one is conditioned on
(Z9,cs2) = 0). Since myd, mad > 640, we have that

PI'm [HZ1H < 51 led] >1- 2_141

z1<—D511
and
Pr D2 [”Zg” > 59 ngd]
Pr [z < 594/2mad | (z2, cs >0]>1— T — 7140
ZZHsz ” 2” x 92 2 ‘ < 2 2> = = PI‘Z2(7D;';2 [<Z2,CSQ> > O] =

52

by Lemma for t = v/2. Now, since we perturb the vector Z3 2, the bound on |zz| increases slightly. Using
the inequalities |[cta 2| < nltaz| = n2P~1vnd and ||wo| < yv/nd/2, we get

731 < ||?%21 " 0 n 0
Zog —ctas—Wwo|| ||| 2Z22 ctao Wy

The verification equation on h follows by definition of MakeGHint. Finally, note that

vnd
‘ <52\/2m2d+772D*1\/nd+ 7 2n = B.

Az + A/2Z271 + 229 = CQDtA,l + W — Wy

= CQDtAJ + YWy
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and thus
A1Z1 + A12Z2’1 - CQDtAJ = YW1 —Z2 2.

Consequently, by Lemma

UseGHint, (h7 Az + Abzoq —c- 2DtA71, 'y) = UseGHint, (MakeGHint, (z2 2, YW1 — 222,7) , YW1 — Z2,2,7)
= HighBits, (yw1,7)

= Wi.

Knowledge Soundness. Let P* be a probabilistic prover which convinces the verifier with probability ¢ >
|C|~L. Then, by [ACK21][Lemma 4] there is an algorithm € which extracts two accepting transcripts with
the same first message wy and distinct challenges with probability at least € — 1/|C|:

tr; = (Wh C(i)ﬂ zgi)v Zg,)lv hu)) for i = 07 L.

Let us define ¢ := ¢(!) — ¢(9 e €. Note that by definition of the challenge space, € is invertible over R, and

[¢llc < 2k. Let us define

u® = ywy + 2P, — Alzli) — ézél)l

Then, we have H(zg)17 u®)| < B for i = 0, 1. Then, by combining the two equations on u? we get

A2 =2 1 ALY — 2+ (™ —u@) = . 2P¢, .

Next, we set
(1) (0)
L1 zﬂ] , m:=tp—Bs.

(€] (0) =

— 1

gl = 7Z1 % , §2 = |:S2’1:| = —-
C c

a) — u®

Then, by construction |cs;| < 2s;v/2m1d and |csz| < 2B. O

B Security in the Random Oracle Model

All prior efficient lattice-based interactive proofs, e.g. |[ALS20, [ENS20, [LNS21a], can be made non-interactive
using the Fiat-Shamir transformation [FS86] and proven secure in the random oracle model |[BR93|. Indeed,
even though the original transformation was applied to X-protocols, i.e. public-coin three-round protocols,
they can also be applied to multi-round protocols. However, the main bottleneck in the (2u + 1)—rounﬂ
case, is that, in general, the security loss obtained by applying the Fiat-Shamir transformation can be in the
order of O(Q*) where @ is the number of random oracle queries made by an adversary. Note that p > 1 for
all aforementioned exact proof systems since they are either five-round [BLS19, [YAZ™'19, [ENS20, [LNS21a],
seven-round [ESLR22| or even nine-round as in Section Hence, even the case p# > 1 might have a significant
impact on the proof size, since one would need to aim for a much larger security level to accommodate for
the loss. However, the schemes assume that in practice the security loss is much milder than the general
bound O(Q*), and hence ignore it when setting up the parameters.

There have been several works on translating security properties of interactive protocols under the Fiat-
Shamir transformation in the random oracle model, e.g. [BCS16, |(GT21} |AFK21, Wik21]. The most recent
results, which are the most relevant to lattice-based zero-knowledge proofs, were proposed independently
by Attema et al. [AFK21] and Wikstrom [Wik21] who showed that the Fiat-Shamir transformation of any
(k1,...,ky,)-special-sound interactive proofs has a security loss of at most @ + 1. Even though this result
can be directly applied to some exact proofs systems, e.g. |[BLS19, [YAZ™19], more efficient protocols, such
as [ALS20, [ENS20] or our protocol in Section |5 do not appear to be special-sound. Hence, it is still an open

26 We assume that the first and last messages are sent from the prover.
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problem whether these interactive proofs also incur linear loss in the number of random oracle queries when
applying the Fiat-Shamir transformation.

In this section, we show that the Fiat-Shamir transformation of our interactive proof IT described in
Section [f] admits a security loss of at most @ + 1 in the random oracle model where @ is the number of
random oracle queries made by an adversary. Namely, let x be the knowledge error of I, i.e. the maximal
probability that a cheating prover can convince the verifier without having a valid witness for the claimed
statement. Then, the Fiat-Shamir transformed protocol FS[IT] has knowledge error at most (Q + 1) - &
To describe the core part of our techniques, we formalize the extraction strategy called “proof using a
probabilistic argument” which, as far as we are aware, was first used in |[ALS20|. Our methods will heavily
rely on the abstract sampling game framework introduced by Attema et al. [AFK21].

We note that this section only focuses on the knowledge soundness aspect. Indeed, correctness holds
directly by construction of the Fiat-Shamir transform, while non-interactive zero-knowledge follows from the
fact that the interactive protocol itself is (non-abort) honest-verifier zero-knowledge |[Lyul2].

B.1 Negative Multinomial Distribution

In our proofs, we will use certain properties of the following simplified negative multinomial distribution.
Namely, consider a bucket containing a green, b blue and ¢ red balls. In this experiment, ball are drawn
uniformly at random with replacement until the first green ball has been found. Let Y be the number of blue
balls drawn in this experiment which is denoted by ¥ ~ NMN(a, b, ¢). Then, we have the following result.

Lemma B.1. Leta,b>1 and ¢ >0 and Y ~ NMN(a,b,c). Then E[Y] = 2.
Proof. By a counting argument, for ¢ > 0 we have

z-‘rk)bz
a+ b + C k+2+1 :

MS

We claim that
o0 z+k (a + b)1+1

2 +b+Ck+’+1 =1

k=0
which directly implies that Pr[Y = i] = (af;%. To this end, let p := 57+ . Then

i(z+k) (a+b1+1_ H—k . c k_ a+b \'M
S (a+btepriet A a+b+c at+b+e

o8]

i+ k i

Z ( > 1 _p) +1

o

k=0

where f is the probability mass function of the negative binomial distribution. Hence, we obtain that

. bta i a b\’ , a
Py =i = o = (o) oty (0e) =/ (05)

Hence, using the formula for the expected value of the negative binomial distribution we get:

which concludes the proof. O
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B.2 Abstract Sampling Game Revisited

The key building block in analysing a knowledge extractor for our Fiat-Shamir transformed proof will be the
abstract sampling game defined below. Given the access to a prover P* attacking the non-interactive proof
FS(IT) in the random oracle model, our extractor will essentially play this game (in the recursive manner).
Since the game itself is similar to [AFK21], we also adapt the notation from the aforementioned work.

Notation. Let h and Uy,...,Uy, R, N1, ..., N}, be positive integers. Denote N := [N1]Yt x -+ x [N, ]V .
Further, let X < {0,1}* x {0,1}* be a set. Looking ahead, h denotes the number of random oracles that a
prover (or a subextractor) has access to and U; (resp. V;) is the cardinality of the domain (resp. co-domain)
of the i-th random oracldﬂ Similarly, R is the size of the randomness space of a prover/sub-extractor. Next,
X consists of valid witnesses along with auxiliary information.

The game considers a fixed (Uy +. ..+ Uy, + 1)-dimensional array M, where for all r € [R] and J; € [N;]Y:,
the entry M(r,J1, ..., jn) is of the form (v,h,i,s,z) where v € {0,1} (indicates correctness), h € [h] (specifies
for which random oracle we want to fork), i € [Un] (says for which query we will fork) and s,z € {0, 1}*
(outputs a witness candidate along with auxiliary information). Looking ahead, we will treat M as an
extractor of the sub-protocol which outputs the candidate witness. We say an entry of M is valid if v = 1.

We will rely on the following property of the set X with respect to the array M. It basically says that if
the extractor M outputs a witness S which is not valid, then by running the extractor again by forking the
random oracle in an appropriate place, the probability that M again outputs S is at most x.

Definition B.2. We say that set X is k-probabilistically-testable w.r.t. the array M if for any (r, 5'1, e ,fh) €
[R] x [N1]Y* x - -+ x [N,]Y* such that M(r,j1,...,jn) = (1,h,i,s,2) and (s,z) ¢ X, we have

. Pr I:M(Tu?la"'7,7h—1aj*a;h+1a"'ajh) = (1ah7ivsazl)] <K
3% «<[Nn]

where j* := (jn1,. -5 dhi-1,3% Jhit1s- - Jhon) € [Na]Pr.

Finally, for h € [h] and i € [Un], we define the function

-,

Qhii * [R] X N_) NZOa (Tajla"'ajh) = HJ* :M(Tajlv”~7jh—17]*7.;h+17--~7jh) = (1aha|av)}|

where )= (Jh,la sy Jhi—150 s Jnji+1y .- 7]h,Uh)'

Abstract Game. We formally define the game in Fig. and summarise its key properties in Lemma
We are interested in the following two cases when the abstract game does not abort. First case is when

Parameters: h,Un,...,Un, R,N1,..., Ny € N and the (U1 + ... + Uy + 1)-dimensional array M.

-

Sample (R, J1,...,Jn) « [R] x [N1]7* x -+ x [Na]V". Let M(R,J1,...,Jn) = (V,H,1,S,Z).
If V=0, return L.

Sample J* «— [NH] and set ]* = (JH,1, ey J|-|,|,17 J*, JH,|+1, ey JH,UH)~

MR, 1, ..., Juey, 3%, Jhgn, ... Jn) = (V HL 1, S, Z)).

IfV' =0or (H,1) # (H,I), go to Step 3.

Return (S,Z,S',7').

SR W

Fig. 19: Abstract sampling game.

<u

T To avoid technical difficulties, we restrict the domain of a random oracle from {0,1}* to {0,1}<* similarly as in

[AFK21).

68



S # S'. In our applications, this will imply that we break the binding property of the underlying commitment
scheme. The second one is when S = S’ A (S,Z) € X which directly says that we obtained a valid witness.
Finally, using the fact that X is k-probabilistically-testable w.r.t. M, we can bound the probability of the
last case occurring, i.e. S=5" A (S,Z) ¢ X.

Lemma B.3. Let X < {0,1}* x {0,1}* be a -probabilistically-testable set w.r.t. the array M and con-
sider the algorithm A described in Fig. [19 For h € [h] and i € [Un], denote the random variable Anj; :=

ani(R, Ji,..., jh) and let P := Zﬁzl Zﬂ‘l Pr[An > 0]. Then, the expected number of entries sampled by A
is P + 1. Moreover, if the fraction of valid entries in M is €, then

Pr[(S,2,5,2) —« AA(S#S v (S=5A(S5,Z)e X))] > e — Pk.
Proof. We first focus on the expected runtime. Let T be the number of samples generated by A excluding

the first one. Then, E[T|V = 0] - Pr[V = 0] = 0. On the other hand, we observe that for fixed h € [h],i € [Un]
and a € [Np]:

. N .
E[T|V=1/\H=t/\|=|/\Ah,i=a]=—h and Pr[V=1/\H=h/\I=I\Ah7i=a]=Ni.
a h
Hence,
h Un Np
E[T|V=1]-Pr[V=1]=Z E[TV=1AH=hAl=indni=a]-Pr[V=1AH=hal=iAAn;=d]
h=1i=1a=1
h Un Np
Ny
=3y J-Ni-Pr[Ah,i=a]
h=li—ta=1 ¢ h

Il
=
Ingls

PI‘[Ahﬁi > 0] =P

=
Il
—
Il
—

which concludes the first part of the proof.
Next, we prove the lower bound on the success probability. We first introduce the following sets:

GOOd(ha ia a) = {(T.vjla oo 75]1) : M(Tajla v ajh) = (17 h7 iasa Z) A ah,i(raj’lv o aj’h) = a}
InvWit(h,i,a) := {(r, J1,. .., jn) : M(r,J1, ..., jn) = (1,h,i,5,2) A (5,2) ¢ X}
GIW(h,i,a) := Good(h,i,a) n InvWit(h, i, a).

Then, by definition

Ni ‘PrlAni=a]=Pr[V=1AH=hAl=iAAni=a]= [Good(h, i, )| (82)

h R-N{* ... N/

Now, consider the probability that A does not output L. Note that the probability that A does not abort
in the second step is exactly €. Assuming A goes through the second step, one observes that the probability
that it terminates, i.e. outputs (S,Z,5’,Z’), is equal to one. Hence,

e =Pi[(S,2,5,2) « Al = Pr[(S,2,5',Z) « ArS %5
+Pr[(S,Z,5.,2Z)) — AnS =S A(S,Z) € X]
+Pr[(S,Z,5,Z)) — AnS =S A(S,Z) ¢ X].
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To prove the statement, we just need to show that Pr[(S,Z,5',Z') < AAS =S5 A (S, ) X] < Pk. To this
end, consider any (r, j1,...,jn) € GIW(h,i,a) for a > 0 and define M (r, ji,... ,]h) = (1,h,i,s,z). Then

Pr[(S,Z,5,Z') — An(S,Z) ¢ X | (R, J1,....00) = (r, 71, -, 5n)]

-, =

(Tm;lw"7;h717.7*7.7h+17"'7;h) = (1,h,i,Sl,Z/)]

Pr ][S/—SM

J*¥«—[Np

PI“J*<_[Nh] [M(T,jl, e ,;h,l,;*,jh+1, e 7jh) = (1,h,i,s, Z/)]

PrJ*<—[Nh] [M(T,jl, s 7jhflvj*ajh+1a v 7.;h) = (17 h, i> S/; Zl):|
Mo

a

<K

where 5* = (]q'hyl, . ,fm_l, J*, jh7i+1, o ,fhyh). For the inequality, we used the fact that X’ is k-probabilistically-
testable w.r.t. M and that the denominator is equal to a/Ny since (r,j1,...,jr) € Good(h,i,a). Using this
inequality, we obtain

F
Z

h
N 1
Pr[(S,2,5,Z') <« AAS=S'A(S,Z)¢ X] < )] 3 . h - -
a . C
h=li=la=1(;7, .. 7.)eGIW(h,i,a) R-NpEeo N
h Un Nn
Nn 1
gZ. Z H'7'R.NU1. . NUn
h=li=1a=1(;.5,,..,7})eGood(h,i,a) T h
_ i I3 Nn [Good(h,i,a)l
x KR—" U U
h=1li=1la=1 a R'Nll-...-Nh’
h Un Np
< Z k- Pr[Ani=a] < Pk
h=1i=1a=1
where for the second-to-last inequality we used . This concludes the proof. O

The next lemma describes a way to bound the value P. In our applications, P will be bounded by the number
of random oracle queries the cheating prover makes. It is a simple generalisation of [AFK21, Lemma 3], but
we provide the proof for completeness.

Lemma B.4 (|[AFK21|). Consider the game in Fig. and define functions v,h,1,5,3 such that
M(ijla s 7jh) = (U(’njh s 7.7h)7 h(rajh s ajh)yi(rajh s ,jh),ﬁ(’f',jl, s ajh)aj(’njh cee 7jh))-

As before, for h € [h] and i € [Un], denote the random variable An; := ah,i(RJl, .. .,jh), Additionally, let
us assume that for all (r, J1,. .. ,fh), there exists a subset

S(rj1s---.gn) S {(hi):he[h] e [Un]}
of cardinality at most Q, such that b(rjh ... ,]h) = (r, ﬂ, . ,;;L) and i(r,fl7 ... ,fh) = i(r, 517 . ,;;L) for
al (7. .. J;L) which, satisfy: ¥(t,1) € S(r,j1y- - n)sjeii = Jti- Then

h  Un
:ZZ r[Ani > 0] <Q+1.
h=1i=1
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Proof. By the law of total probability, we have

h
P = Z PI“[Ah’i > 0]

I
-
—
Py
[
=
>
=
=
!
I

h Unp
]] . 2 ZPT[Ah’i > 0|R =TA (J1a~"7Jh) :J]
h=1i=1

gZPr[R=rA(]1,...,jh)=;]~ Z 1+ Z Pr[Ah)i>O|R=TA(T1,...,jh)=f]
T’;‘ (h,i)GS(T’,;) (h:i)¢s(r7;)
<Q+ ). Pr[R=ra(Jy,....00)=71- > PrlAni>0R=7rnJ1,....0n) = jl.

¥ (h,i)¢S(r,)

Now, by definition of the set S(r, Ji,... ,fh), if (h,i) ¢ S(rjl, - ,fh) then for any jp; € [Vh]:

-,

b(rajlajh—hj*vjh-Flv'"7.7h) = h(’rajl;'-- ajh) and i(njhfh—lvf*ajh-&-la-~'7.7h) = i(’rm;lv--wjh)

where ;* = (jh,la B 7jh,i—17j|fl]<’i7jh,i+17 s 7jh,Uh)'
Hence, for all (h,i) ¢ {(b(r,fl7 AR . ,;h))} US(r, 1, ,jn) we have

Pl"[Ah,i > 0|R:T/\ (j1,-~.7]h) :;] =0
which implies that
SToPr [Ah,i >0/ R=7rnA 1., 0 = f] <Pr [Ah(mz,_..,;h),i(r,jl,...,;h) >R =7 (. dn) = j]
(hDgS(r.7)
< 1.
Therefore P < Q + X, 7Pr[R =172 Jiseo s dn) =jl<Q+1. -

Weighted Version of the Abstract Sampling Game. Similarly as in [AFK21], in order to obtain tight
bounds on the runtime of the extractor for the multi-round protocol, we need to consider a refined analysis
of the cost of playing the abstract sampling game. Informally, for multi-round protocols, every entry will
correspond to running the extractor of the underlying sub-protocol. As noted by Attema et al. [AFK21],
some invocations of the extractor are expensive, while others are cheap. To this end, we introduce a cost
function I" and a constant v which correspond to the expensive and cheap computation respectively.

The following lemma gives an upper-bound on the total cost of playing the abstract sampling game in
terms of the cost functions mentioned above. We simply adapt the proof from [AFK21, Lemma 5] to our
setting.

Lemma B.5. Consider the abstract sampling game in Fig. . Let I': [R] x [N1]Y* x --+ x [N,]Y» — Rxg
be a cost function and v € Rsg be a constant cost. As before, for h € [h] and i € [Un], denote the random
variable Ani := ani(R, Ji,..., jh) We define the cost of sampling an entry M (r, J1,... ,j'h) = (v, h,i,s, z) with
indices (h,i) = (H,l) to be F(r,fl,...,fh) and the cost of sampling an entry M(r,fl, ... ,fh) = (v,h,i,s,2)
with indices (h,i) # (H,I) to be . Let A be the total cost of playing this game. Then

— —

E[A] <2 -E[I'(RJy,....Jn)] + T~

where T := Y1 3P Pr[(H,1) # (h,i) A An; > 0].
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Proof. We first split the total cost A into the three cost measures Aq, Ay, A3 defined as follows.

— A; denotes the total cost of the elements M(r, j1,...,jn) = (1,h,i,s,z) with (h,i) = (H, ) sampled in
the game, while X denotes the number of entries of the form (1, h,i,-, ), such that (h,i) = (H, 1), sampled
(including the first one if V = 1).

— A is the total cost of the elements M (r, Ji,... ,jh) = (0,h,i,s,z) with (h,i) = (H,l) sampled, while Y
denotes the number of entries of the form (0, h,i,-,-), such that (h,i) = (H,I), sampled (including the
first one if V = 0).

— As denotes the total cost of the elements M(r, j1,...,jn) = (v,h,i,s,z) with (h,i) # (H,1) sampled in the
game, while Z denotes the number of entries of the form (v, h,i,-,-), such that (h,i) # (H, 1), sampled.

By definition, we have A = A; + Ay + Ajz. Also, since the cost v is constant, we have E[A3] = v - E[Z].
The first goal is to relate E[A;] and E[A2] to E[X] and E[Z] respectively. Now, for any h € [h] and i € [Up],
denote

]ﬁ = (J1, e, 3 Jheay oo, Jn) where T = hts- s dnizts Injists -, Jnon)
jﬁ’l(X) = (_Tl, ceey -Th—la jx, .Th+1, e ,jh) Where .Tx = (Jh71, e ,Jh,i_l,X, -Jh,i+17 oo >Jh,Uh)-

Moreover, for any (r*,7*) € [R] x [N1]V* x -+ x [Nn_1]Y"* x [Na]P"=1 x [Nnp1]P+t x - x [N3]U", let
A*(h,i,r*, 5%) denote the event

(e, J%) 2= [ (H) = () + (R TR = (0.5

We first bound E[A;|A(h,i,7*, j*)]. Note that for any h,i,7*, 7* such that Pr[A(h,i,r*, j*)] > 0, we have
[ee]
E[A|A(h,i,r*, ] Z = () A(h,i,7*, 7] - E[ALA(h, i, 7%, 7)) A X = 1]

First, fix £ > 0. Suppose that A(h, i, r*, ;*) A X =/ hold and let Ky, ..., K, be the random variables for which
M (R, Jni(K;)) = (1,h,i,-,-). Note that they are pairwise independent and their distribution is identical, as
seen in Step 3 of Fig. Then, by definition of A; we get

4
E[A|A(h, i, r*, Ax—e:ZE (R, Jn.i(K)|A(h,i,r*,7*) AV = 1]

= 0-E[T(R, Iy, ..., Jp)|A(h,i,r*,7*) AV = 1].
One can easily check that this equality also holds when ¢ = 0. Therefore, we get
[ee]
E[A A i, 7%, 7*)] = E[N(R,J1, ..., Jn)|A(h, i, 7%, 5%) AV = 1]+ DT Pr[X = f|A(h,i,r*, j*)] - ¢

£=0
= E[I'(R,J1, ..., Jp)|A(h,i, 7%, 7%) AV = 1] - E[X|A(h,i,7%, 7%)].

Similarly, one proves that
E[Ao]A(h,i,7*,7)] = E[I'(R, J1, ..., Jp)|A(h,i,7%, 7%) AV = 0] - E[Y|A(h,i,7*, 7%)].

Next, we bound the expected values of X and Y conditioned on A(h, i, r*,f*). First, using the observation
that V = 0 implies X = 0 and V = 1 implies X = 2, we have

E[X|A(h,i,r*,7*)] = 2 Pr[V = 1|A(h,i,r*, j*)]
and thus

E[AL|A(h,i,7*,7%)] = 2- Pr[V = 1|A(h,i,r*, 7*)] - E[[(R, J1, ..., Ju)|A(h, i, 7%, 7*) A V = 1].
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Next, we focus on E[Y]A(h, i7r*,f*)]. For fixed h, i,7*, j*, denote
a:= ah-,i(T*aj*) = |{j : M(T‘,jik, cee aﬁ:—hjajﬁ-&-la cee a.;::) = (17 hv iv " )}|

where j := (jr’;‘J7 IR D IR ,j;’:’Uh). Similarly, we define

b = bh,i(r*aj*) = |{.7 : M(r7jik7"'7jr>:717j7jl‘>:+17'" )j;l;) = (O7ha|aa)}|

We observe that

a

Pr[V = 1|A(h,i, 7%, j%)] = % and Pr[V = 0|A(h,i,7*, j%)] = 3
a

a+b

assuming that Pr[A(h,i,7* 7*)] > 0. Hence, if we condition the event V = 1 A A(h,i,7*,j*), we implicitly
assume that a > 0. Now, to bound E[Y|A(h, i,7*, 7*)], we observe that conditioned on V = 1 A A(h, i,7*, j*),
random variable Y follows the simplified negative multinomial distribution with parameters (a, b, Nn —a —b)
described in Section Hence, by Lemma

E[YIV =1 A A(h,i,r*,j%)] = b

a
Thus
E[Y[A(h,i,7*,j*)] = Pr[V = 0[A(h,i,r*, 7%)] + Pr[V = 1|A(h,i,7*, j*)] - b
a
B b N a 9
T a+4+b a+b a
_ b
B a+b

— 2. PrlV = 0JA(h, i, %))
where in the first equality we used the fact that E[Y|V = 0 A A(h,i,7*, j*)] = 1. Hence,
E[As|A(h, i, 7%, 7%)] = 2- Pr[V = 0|A(h,i,7*, 7*)] - E[['(R, J1, ..., Jn)|A(h,i,r*,7*) A V = 0],
and by combining the previous results
E[A; + Ay|A(h,i,r*, 7%)] = 2-E[T'(R, J1, ..., Jp)|A(h,i,r*, %) AV = 0].
Since the equality holds for all h,i,7*, j* such that Pr[A(h,i,r* j*)] > 0, we deduce that
E[A; + As] =2-E[I'(R, J1, ..., Jn)].
Finally, we still need to prove that E[Z] < T which implies that E[A3] = vE[Z] < T - . We use a similar
approach as for computing the expected value of Y. Namely, recall the values a,b defined above for fixed
h,i,r7* j* such that Pr[A(h,i,r*,7*)] > 0. Then, conditioned on V = 1 A A(h,i,r*, %), Z follows the
simplified negative multinomial distribution with parameters (a, N —a—b, ). Hence, by Lemmawe have

N—a-b
—

E[ZIV =1 A A(h,i,r*,%)] =

Moreover, E[Z|V = 0 A A(h,i,7*,7%)] = 0 by definition. In the following, we will use the observation that

Pr{(H,1) = (n, DR, J5) = (r,7)] = azihb‘
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Thus
E[Z|A(h,i,r*,7%)] = Pr[V = 1|A(h,i,7*, 7*)] - E[Z|V = 1 A A(h,i,r*, 5%)]

a N—-—a-—5b
a+b a

1
Pr[(H,1) = (h,D)[(R,J) = (r7*)]
Pr[(R, Ji ;) = (r,j*)] - Prl(H, 1) = (h,
Pr[A(h,i,r*, 5%)]
Pr[(H,1) # (h,i) A (R JE) = (r,5%)]
Pr[A(h,i,r*, j*)] '

Recall that we implicitly assumed that a > 0. For h,i,r*,j* such that a = 0, A(h,i,r*,f*) implies that
V = 0. Consequently, E[Z|A(h,i,7*, j*)] = 0. To sum up, we have

<

1 h
E[Z] = > Pr[A(h i, )] E[Z|A(h i, 7%, %)
li=1 T*J'* s.t.

ani(r¥,7%)>0

=2
Il

F

Il
M=

Z Pl"[(H,|) 7 (h7|) N (RvJﬁ,i) = (7’,5*)]

i=1 r*j* s.t.
ah,i("'*;j*)>0

=
Il
—
Il

S

Pr[(H,1) # (h,i) A Anj > 0]

i=1

Il
N EM:

which completes the proof. O

The next lemma shows how to upper-bound the parameter T'. Since the result is almost identical to Lemma
and [AFK21, Lemma 6], we omit the formal proof.

Lemma B.6 (JAFK21|). Consider the game in Fig. and define functions v,h,1,5,3 such that

M(T7jla"'7jh) = (n(rvjlw"7.;h)7h(r7.;17"'7.;h)7i(ra.;17"' ajh)?s(ra;h"'a;h)73(r7.;17"'7.;h>>-

—

As before, for h € [h] and i € [Un], denote the random variable An; := ahyi(R,jl, ...y dn). Additionally, let
us assume that for all (r, Ji,... ,fh), there exists a subset

S(r,j1s-- o jn) S {(hi):he[h] Aie[Un]}

of cardinality at most Q, such that b(rjh ... ,fh) = b(r, ﬂ, ... ,;;L) and i(r,fl7 ... ,fh) = i(r, 517 .. ,fh) for
al (7. .. J;L) which satisfy: ¥(t,7) € S(r, 71, Jn), Jei = Jt.i- Then

B.3 Fiat-Shamir Transformation

We are ready to analyse the non-interactive version of our protocols using the Fiat-Shamir transformation.
For concreteness and simplicity, we focus on the particular protocol for proving knowledge of a polynomial
vector s; € R7" which satisfies Ps; = u over Ry and [s1|* = B for public P € R?**™ and u e R}". For
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convenience, we will denote (pi)ie[nl] to be the rows of P. Hence Ps; = u is equivalent to Vi € [n1], p7 s1 = u;.
We formally define the statement 2 and the public parameters pp (i.e. the common random string) as follows:

= (P,u,B) and ppi= (A1 € Ry“™, Ay Ry¥™ B) e RIV/m2 By e Y™ be Ry™) .

Non-Interactive Protocol. We construct the non-interactive proof for the statement above using the
toolbox from Section 5] We highlight a few small differences. First, we send the ABDLOP commitment in
the first round, i.e. it is not given as a part of the statement. Second, we skip the rejection sampling steps
in the prover algorithm since we only focus on knowledge soundness. In particular, we do not commit to the
sign which is used for bimodal rejection sampling. Last but not least, for presentation purposes, we still keep
w, v (unlike in Section as part of the proof in order to follow the traditional Fiat-Shamir transformation
without any optimisations.

The prover algorithm starts by generating the ABDLOP commitment to s;. Namely, it samples sy < S]*2
and computes t4 := Aj1s; + Assy. Then comes the approximate range proof part. Concretely, it samples a
masking y(¢) Dj(‘r’g/d and the corresponding commitment t(¢) := B(¢)sy + y(¢). Hence, the first message of
the prover and the corresponding challenge are

ay = (tA,t(e)) and (R(()e),Rge)) := RO; (pp, z,a1)

where RO : {0,1}<"1 — ({0, 1}~256X7"1d)2 is the first random oracle. From the challenge the prover computes
the matrix R(®) := Rée) - Rge) which of the same distribution as R(®) in Fig. @ For convenience, we define

rge) € Ry" to be the polynomial vector for which its coefficient vector is the i-th row of R for i € [256].

Next, the prover computes 2(¢) := R(¢)5 + ¢(¢). Further, it samples g := (g1,...,gx) < {z : Ry : @ =0}
and creates the corresponding commitment t, := Byss + g. Thus, the second message of the prover and the
corresponding challenge are

ag = (5(6),%) and (%,j)ie[,\],je[zm] := ROz (pp, z, a1, az)

where RO : {0, 1}5%2 — Z)*257 is the second random oracle.
Now, the prover wants to prove that z(¢) = R(¢)5; + ¢(¢) and (51, 5) = B modulo ¢q. One observes that
this is equivalent to proving that the constant coefficients of

T .
o (rge)) s + X (1) modd, yF;/)d] - z](e) for j € [256], and o(s;)?s; — B

are equal to zero. To this end, the prover computes

256
h; = g; + Z Yi,j (O’(I‘j)Tsl + X(jil) mod d y|§]€/)d] — Z](e)) + Vi, 257 (O’(Sl)Tsl — B) for i = 1,2,..., A (83)
j=1

Hence, the prover’s next message and the corresponding challenge are

ag = (hlﬂ B '?h)\) and (Mlﬂ s 7HA+n1) = RO3 (ppax5a15a25a3)

where RO3 : {0, 1}5" — R+ is the third random oracle.
Up to this point, the prover wants to prove A + n; quadratic equations (with automorphisms) over R,
i.e. Equation and pl's; = u; fori = 1,2,...,ny. By amortising, we only prove a single quadratic equation:

A 256
0= Z i (gi + Z Vi (a(rj)Tsl 4+ XU modd, yF;/)d] - z](-e)) +%i257 - (0(s1)"s1 — B) — hlv)
i=1 j=1

ny
+ Z Hx+i - (p?sl - ui) .
i=1
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Let us define

S1

B(©) t(©) y© 256/d+ A o(s1)
B.—[Bg], tB.—[tg], m.—[g €R, and s:= m
o(m)

Then, the quadratic equation above can be written equivalently as

sTRgs + rfs +1r9=0

where
0 000
A
R, :— D1 Mi Y257 000 R2(M1+256/d+ ) x2(m1+256/d+X)
2 0 000"
0 000
FOA 256 n -
pI Zj:l Wi%i, o () + 2521 aviPi
0

A d i
et Zj:l pivi, g X7

— A wd ' - 2(m +256/d+\)
e i1 21 MiYi256/d—d+j X7 € Ry

H1
KX
0

A n1
ro = — Z(#i%ﬁ,sz +hi) = Z pa+iti € Ry
i=1 i=1

Finally, we run the sub-protocol for proving a single quadratic equation with automorphism. Namely, the
prover samples masking vectors y1 < D{}1,y2 < D{** and computes w = A1y + Agya. Then, it calculates
g1 = s Roy + y'Ras + rly, where y is defined as

Y1

o(y1) 2(mq +256/d+\)
By, € R, , (84)

—O'(Byg)

and the commitment ¢ = b”sy + g1 to g;. Then, the prover sets v = y'Roy + b”'y,. Hence, the prover’s
fourth message and the corresponding challenge are

aq = (t,w,v) and c:=ROy4 (pp,z,a1,as,as,as)

where ROy : {0,1}S% — C is the fourth random oracle.
Further, given a challenge ¢, the prover computes z; = cs; + y; for i = 1,2. So, the prover’s last message
is
as = (z1,22)
and thus the proof consists of
7= (a1, aq,as,as,as).
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The verifier is given a proof m and recomputes the corresponding challenges as well as R, r1, rg. Define

z
.f o(z1) et —pT
2= | 4, Bz and f:=ct—b" za. (85)
o(ctp —Bazy)

Then, the verifier checks whether the following relations hold:

?
|29 < B.
hi =0fori=1,2,...,\

?

7
|z1] < Bi and |z2] < B
A1Z1 + A2z2 ; w + CtA

?
z ' Roz + crsz +rg— f = .

Knowledge Soundness. We are ready to prove the main result of this section.

Theorem B.7 (Knowledge Soundness). Let ¢ > max (B,41 - \/%73 -m1dB,, %Bg — Be>. Then, there

exists an algorithm &, called a knowledge extractor, with the following properties. Given public parameters
pp and a statement x, as well as oracle access to any (potentially dishonest) Q-query random oracle prover
P*, which outputs a valid proof with probability €, the extractor runs in expected poly(|z|, Q) number of steps
and with probability at least

2 _
€— ( +q; 42 +q +2128)
C|
it either outputs 81 € Ry such that Ps; = u and Is1|? = B, or a MSIS,, 1, +m,. B Solution for the matriz

[A1 | As] where B := 4n\/B? + B3.

Proof. Consider a dishonest Q-query random oracle prover P* which provides a valid proof with probability
. After making at most @ queries to the random oracles, P* outputs a proof m = (a1, as, as,as,as). We
reformat the output and define:

Il = (pp,x,a1)712 = (pp,x,al,ag), cee 7—[5 = (pp7xaa13a2ua3aa4aa5)

as P*’s output. As in [AFK21], we extend P* to a random oracle algorithm .4 which also checks the validity
of the proof 7. Namely, by relaying all the random oracle queries P* is making, A runs P* to obtain
I=(I,15,15,14,I5) and 7. Then, it obtains the challenges by querying

(Rée),Rﬁe)) :=RO1 (1),  (Vijiernjerzsn) i= RO2 (I2), (k1,5 fiatny) = ROz (I3), ¢:=RO4(I4)
and then outputs
I7 Yy = (ppaxaala(R(()e)nge))va%(7i,j)1a31(ui)va4vcaa5> B and v:= V(ppaxvy)
where V(pp,z,y) = 1 if y is the accepting transcript for statement x with public parameters pp, and 0
otherwise. It is easy to see that 4 makes at most @ + 4 random oralce queries and the probability that A
outputs v = 1 is exactly ¢.

The goal now is to define an extractor £, which given black-box access to A, either outputs 51 € Ry™
such that Ps; = u and ||s,]| = B, or a MSIS,, ,,, ... 5 solution for the matrix [A; | A]. To this end, we

77



Black-box access to: A

1. Run A with randomness p < R as follows: relay the @ + u random oracle queries to the random oracles
and record all query-response pairs. Set ¢ = Iy and let ¢; be the response to query i. Obtain (I, yo,v).

2. If v = 0, abort and return v = 0.

3. Otherwise, repeat:

— sample ¢, € C\{c;} without replacement,

— run A with randomness p as follows to obtain (I',3’,v’): answer the query to i with ¢; while answering
all the other queries consistently if the query was performed by A in the previous run, and with fresh
random value otherwise,

until either 2 additional challenges ¢; with v' = 1 and I} = I4 have been found or until all challenges ¢} € C
have been tried.

4. If the latter case occurs, output v = 0.
5. For i =0,1,2, let y; := (pp7 z, a1, (R(()e)7 Rge)) az, (7i,5), as, (i), a, c(i),aéi)> be the extracted transcripts.
6. Parse ag) = (zgi),z(;)) and a1, a2, as,as as in the protocol description above.
2D (@ . _ _(e) - _
7. Define ¢ := ¢ — @ 5, = “—toy fori=1,2and m = (y(e),g) :=tp — BSo.
8. If zgl) — c(1)§¢ # ZEQ) — c(z)éi for some 7 = 1, 2:
- (22 —20) = (@ — )5,
— return I, as the MSIS solution to [A1 | A2] and v = 1.
2 —zV) — (@ — D)5
2 2 2

9. Otherwise, return I, (81,82,m,¢) and v = 1.

Fig. 20: Subextractor & as a (Q + 4)-query random oracle algorithm |[AFK21|.

introduce a sequence of subextractors &1, &, 3, &4 which are (Q +4)-query random oracle algorithms. Then,
we will define £ which runs & and answers its queries using lazy sampling.

We start by defining the extractor &4, which is a (@ +4)-query random oracle algorithm in Fig. Infor-
mally, &, focuses on finding the witness for a single quadratic equation with automorphism. We summarise
the security properties of £, below.

Lemma B.8. The extractor £, makes an expected number of at most 3 + 2Q queries to A. Furthemore, £4
outputs v = 1 with probability at least

2
e—(Q+1) —.
C]
Neat, let I = (I, I, I3, Iy, I5) be the index vector obtained by E4 in the first step and denote

(Ré“’),Rﬁe)) :=RO1 (1),  (7ij)iepr]jerzsm] = RO2 (I2),  (p1,. .+, irgn,) := RO3 (I3).
as the corresponding (recorded) random oracle responses. Further, parse
I4 = (pp,:mtA,t(e), %e)vtga hla cey h)\,t,W, 'U).

Then, conditioned on v = 1, the extractor either returns (81,82, m,c) € Ry x Ry x R356/d+)‘ x C which
satisfies the following relations:

ta A A, 0
t@ =10 |5+ |B@ s+ |y@|, |es1] <2Bi, |5 <2B;
t, 0 B, g
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and

A 256
0= 2 i (gi + Z Vi, (U(Pj)T§1 + XU modd, QF;/)d] - ZJ(-E)) + %257 (0(51)"81 — B) — hi)
i=1 =1

ny
+ Z Hati - (PZ§1 - ui) )
i=1

or a MSIS 5 solution for the matriz [A1 | Asg].

n,mi+ma,

Proof. To bound the probability of outputting v = 1, we directly apply |[AFK21} Proposition 2] for K, = 3.
This resul@ says that £ makes at most 3+ @ - (3 — 1) queries to A and the probability that & does returns
lis at least e — (Q +1)- % Then, |AFK21}, Proposition 1] says that by the end of Step 4 in Fig. ifv+#0
then £4 manages to extract a (1, 1,1, 3)-tree of accepting transcripts. Finally, we run the extraction strategy
from the proof of Theorem [4.2] to extract the ABDLOP opening and a solution to the quadratic equation,
or a MSIS solution. ]

We now turn to defining the subextractor £ which is informally responsible for proving knowledge of a
solution of multiple quadratic equations. We describe the subextractor in Fig. Here, &5 uses the early
abort feature of &4, as described in [AFK21]. Namely, £ computes the index vector I by running P* as the
first step. This allows the executions in the repeat loop of £5 to abort right after a single run of P* if I # Is.
This is highlighted in Step 3 of &3.

We now summarise the key properties of the extractor &;.

Lemma B.9. The extractor £3 makes an expected number of at most 6 + 5Q queries to A. Also, E3 outputs
v =1 with probability at least
2 _
e—(@+1)- <C+q1d/2>-
C|
Next, let I = (I, I, I3, 14, I5) be the index vector obtained by Es in the first step and denote
R R := RO, (I icinlie[zsr] == ROa (I),  Is := £ t© 2 ¢ b h
0 >4l . 1( 1)’ (’717])26[)\],]6[257] . 2( 2)a 3 - (pp,l‘, A, y 2t Tybgy 1, ey )\)'

Then, conditioned on v = 1, the extractor either returns (81,82, Mm,c) € Ry x Ry x R§56/d+>‘ x C which
satisfies the following relations:

ta Ay A, 0
t =10 |8+ |BO s+ |3 |, |es1] <2By, |8 <2Bs
t, 0 B, g
and
256 _
hi = gi + Z Yinj (U(I'j)T51 + X (=) modd, 17[(]%] - z](-e)) +%i2s7 - (0(81)781 — B) fori=1,2,...,,
j=1
Ts _ L
P St =u; fori=1,2,...,nq,

(86)
or a MSIS,, ... 1, 5 solution for the matriz [A; | As].

Proof. This is the place where we apply techniques from Section First, note that while running &, all
the queries made by different invocations of £4 are answered consistently using lazy sampling, except for the
query i where & provides with fresh and potentially different answers. Hence, this is indistinguishable from

28 Even though the original result only considers determinstic provers P*, it can be extended to probabilistic provers
by linearity of expected runtime and the success probability.
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1.

9.

Black-box access to: &4

Run &; with randomness p < R as follows: relay the @ + u random oracle queries to the random oracles
and record all query-response pairs. Set ¢ = Is and let (u1,..., uxr+n,) be the response to query i. Obtain
(I,y,v).

If v = 0, abort and return v = 0.

Otherwise, repeat:

- Sample (M&? A 7u&+n1) <« R;\+n17
— run & with randomness p as follows to obtain (I,3’,v'), aborting right after the initial run of P* if
I3 # I3: answer the query to i with (p7,..., 5, ,,) while answering all the other queries consistently if

the query was performed by &4 in the previous run, and with fresh random value otherwise,
until a challenge (1, ..., s n,) With ' = 1 and I3 = I3 has been found.

4. If y (resp. y') is a MSIS solution for the matrix [A1 | As], return I, y (resp. ') and v = 1.
. Parse y = (51,82, m = (79, g),¢) and y = (5,85, m’ = (59, g"),&).

e
If 81 # 8} or 83 # 85, return I, [?i(fl il)] as the MSIS solution to [A1 | A2] and v = 1.
cc' (82 — 85)
Parse (Rge), Rge)) = RO1 ([1) N (’yi,j)ie[)\]ng[gm] = R02 (IQ and I3 = (pp, x,tA,t(e), Z(e),tg, hl, ey h>\).
If all the following equations hold:

—hi=g+ Z?iﬁ Vi © (Cf(l‘j)T§1 + XU modd, QF;/)d] - Z§e)> +7is7 - (0(81)781 — B) fori=1,..., ),

— pTs; =w; fori=1,2,...,n1,
return I, (81,82, m,¢) and v = 1.
Otherwise, return v = 0.

¢ The extractor does not explicitly query the random oracles, but instead retrieves the outputs from the recorded
list of query-response pairs from Step 1.

getting the responses from the full-fledged random oracles j; € C’iUi where U; = |{0,1}S%

Fig. 21: Subextractor £3 as a (Q + 4)-query random oracle algorithm.

codomain of the i-th random oracle. Hence, the extractor is essentially running the abstract sampling game
from Fig. Indeed, we can treat the array M as the function table of the extractor £;. Given randomness
r and random oracle tables fi, an entry of M consists of a tuple (v, h,i,s,z), where v denotes the value of v,
h = 3 denotes the thirds random oracle, i is the value of ¢ = I3, s is the extracted vector (i.e. either a MSIS
solution or a valid solution for the single quadratic equation) and z = I.

We now show how different parameters, such as X', P, T, relate to our scenario. Let us define X = Xy u X}

where

We claim that X is q; 4 2—probabilistically—testable w.r.t. M. To see that, suppose that & outputs (v, h

Xo = {(x,I)€ RyT™A{0} x {0,1}* : [A1 Az]x=0n |z| < B}
X1 = {((gl,gg,y(e),g),I) € Ry x Ry x 7'\’,356/d+’\ x {0,1}* : equations in hold}.

i,s,z

L )

where v = 1, h = 3, and suppose that (s,z) ¢ X. First, this means that the output of s is not a valid MSIS
solution. But since v = 1, we have s = (51,52, y(%), g) and

256

A
0= Z Hi - (gi + Z Vit (U(rj)T§1 + XUl medd, QF;/)d] — z](-e)) + %257 (0(51)"81 — B) — h¢>
i=1 j=1

ny
+ Z prsi - (P s1— u;) .
i=1
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It ((él,ég,y(@,g)J) ¢ X, then with probability at most ql_d/2 over the choice of pf,...,p;, \\ < Ry, we
have

256

A
0= ui- (% + D i (U(rj)T§1 + XU modd. gl Zg('e)) + Y257 - (0(81) 781 — B) — hi)
=1 Jj=1

+Z“/\+%' Ts1 —w).

This means that if we run &4 for the same fixed random oracles apart from the i-th query to RO3, where we

pick a fresh random challenge (u}, ..., u;, | ), the extractor outputs exactly (1,3, 4, (1, S2, ¥, g),T') with
. —d/2

probability at most ¢; ' ~.

Next, to get the bounds on P and T used in Lemmas [B-4] and [B:6 we use the following observation from
[AFK21]. First, the index vector outputted by £4 matches the index vector outputted by P* by [AFK21|
Lemma 7]. Further for fixed randomness r, its output can only change if a random oracle is reprogrammed in
one of the querled indices. Hence, for each randomness r and fixed random oracles 31, ]2, ]3, Ja, there exists a
set S(r, 1, J2,J3,j4) < {(h,i) : h e [4] i€ {0,1}S“} (indicating queries made by P*) such that P*’s output
will not change if reprogrammed at the i-th index of the h-th random oracle where (h,i) ¢ S(r, 1, j2, J3, j4)-
Hence, the conditions of Lemmas and are satisfied and thus P < Q + 1 and T < Q.

We can now analyse the algorithm &. Concretely, by Lemmas and we get that 5 outputs
v = 1 with probability at least

( @+1)- C|>—(Q+1)-q1d/2—e—(Q+1)~<|§+q1d/2)-

For the expected number of queries to A, we apply the strategy from the proof of [AFK21, Proposition 2]
and analyse the weighted version of the abstract sampling game where I'(r, j1, j2, j3, j4) is the (expected)
cost of fully running £ and v = 1 which indicates the cost of an early abort invocation of £,. Then, by
Lemmas and we get that the expected cost of running &3 is at most

2-(3+2Q)+Q=6+5Q
which concludes the proof. O

Further, we turn to defining the subextractor & which is informally responsible for proving knowledge §;
and i such that R(®)5; + ¢ = (). We describe the subextractor in Fig. As before, & uses the early abort
feature as &. We summarise its security properties below.

Lemma B.10. The extractor £ makes an expected number of at most 12 + 11Q queries to A. Also, &
outputs v = 1 with probability at least

2 _
8_<Q+1><C|+QI /2+Q1>\>'
Next, let I = (I, 15, I3, 14, I5) be the index vector obtained by E in the first step and denote
(R((JE)aRgE)) = Rol (Il)v I2 = (pp7x7tA7t(e)7Z(6)7tg)'

Then, conditioned on v = 1, the extractor either returns: (51,52,37(6),@, c) € € Ry x Ry x R256/d+>‘ x C

which satisfies the following relations:

ta A A, 0
t@ =10 |5+ |B@ s+ |y@|, |es1] <2Bi, |5 <2B;
t, 0 B, g
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Black-box access to: £3

1. Run & with randomness p < R as follows: relay the Q + u random oracle queries to the random oracles
and record all query-response pairs. Set ¢ = Iz and let (i j)ie[x],je[257] D€ the response to query i. Obtain
(I,y,v).

2. If v = 0, abort and return v = 0.

3. Otherwise, repeat:

— sample (v} ;)ie[r],je[2s7] < Zo 27,
— run & with randomness p as follows to obtain (I',3’,v'), aborting right after the initial run of P* if
I, # I>: answer the query to i with (’727j)ie[)\]yje[257] while answering all the other queries consistently if
the query was performed by &3 in the previous run, and with fresh random value otherwise,
until a challenge (7; ;) with v =1 and I3 = I has been found.
4. If y (resp. y') is a MSIS solution for the matrix [A1 | As], return I, y (resp. ') and v = 1.

5. Parse y = (51,82, m = (9, 8),¢) and o/ = (5;,8,m’' = (¥, g),&).
e
6. If 51 # 8} or So # §5, return I, [gg’gl z}g] as the MSIS solution to [A; | A2] and v = 1.
2 — 92

7. Parse (Rée),Rge)) := RO, (I) and I := (pp, z,ta,t®, 2 t,).
8. If (Rée) - Rge)) 51+ 7 = #° and {51,51) = B, then return I, (51,82, m,¢) and v = 1.

9. Otherwise, return v = 0.

Fig. 22: Subextractor & as a (Q + 4)-query random oracle algorithm.

and

(Rée)iRge)) §1+:§(E) :Z(E)a <§17§1>:B5 pTgl = U; fori=1,2,...,n1, (87)
or a MSIS,, ... +m, 5 solution for the matriz [A; | As].

Proof. Almost identically as in the previous proof, we reduce the problem to the abstract sampling game
from Fig. [I9] Namely, let the array M be the function table of the extractor £;. Given randomness r and
random oracle tables j;-, an entry of M consists of a tuple (v, h,i,s,z), where v denotes the value of v, h = 2
denotes the second random oracle, i is the value of i = I, s is the extracted vector (i.e. either a MSIS solution
or a valid solution for the multiple quadratic equations). and z = I, which in particular contains (A1, ..., hy)
such that hy = ... =h) =0ifv=1.
Let X = &y u X} where
Xo = {(x,I) e R;"T™2\{0} x {0,1}* : [A1 Az]x =0 1 |z < B}

Xy = {((El,ég,y(e),g),I) € Ry x Ry x 7?,356/‘”)‘ x {0,1}* : equations in hold}.

We claim that X is ql_)‘—probabilistically—testable w.r.t. M. To see that, suppose that £ outputs (v, h,i,s,z),
where v = 1, h = 2, and suppose that (s,z) ¢ X. First, this means that the output of s is not a valid MSIS
solution. Moreover, since V= 1, we have § = (51,52,37(@),@) and

256
h; = gi + Z Vi (O'(I‘j)T§1 + X(jil) mod d QF;/)C” — Zj(e)) + Vi 257 ¢ (O’(gl)Tgl — B) fori=1,2,...,A
j=1

pls; = w; fori=1,2,...,n.
Now, because (s,2) ¢ X, either

(RY - RO)5+79 29 or Gui#B.
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Thus, for any polynomials f, ..., h) € R, with constant coefficients equal to zero, with probability at most
g7 over the randomness of (Vi) < Z377, we hav

256
Hp=gi+ YA, (o(rj)Tsl + Xymedd. glo) zﬁe)) + Vg5 - (0(81)781 — B) fori=1,2,...,\.
j=1
This means that if we run &3 for the same fixed random oracles apart from the i-th query to ROy, where we
pick a fresh random challenge (7; ;), the extractor outputs exactly (1,2, 1, (81,82, y(©),g),T') with probability
at most g7 A The rest of the proof follows identically as in the proof of Lemma m]

Finally, we define the extractor & in Fig.[23|which is informally responsible for proving approximate shortness
of §1. We then summarise the properties of £ below.

Black-box access to: £

1. Run &; with randomness p < R as follows: relay the @ + p random oracle queries to the random oracles and
record all query-response pairs. Set i = [; and let (R(()e), R<1€>) be the response to query . Obtain (I,y,v).
2. If v =0, abort and return v = 0.
3. Otherwise, repeat:
— sample (Rée)/,Rge)/) < ({o, 1}256””1"1)27
— run & with randomness p as follows to obtain (I',y’,v’), aborting right after the initial run of P* if
I, # I>: answer the query to i with (R(()e)/, Rge)/) while answering all the other queries consistently if
the query was performed by & in the previous run, and with fresh random value otherwise,
until a challenge (R, R{”") with v/ = 1 and I} = I; has been found.
If y (resp. ¥') is a MSIS solution for the matrix [A; | Az], return I, y (resp. ¢') and v = 1.
Parse y = (51,50, m = (3, 8),¢) and ¢/ = (51,55, m’ = (', &), 7).
~ /= —/
If 51 # 8} or 83 # 85, return I, [?i(fl N ?,1)] as the MSIS solution to [A1 | A2] and v = 1.
cc' (82 —85)
If |s1] < \/%Be, return I, (51,82,5®,¢) and v = 1.
Otherwise, return v = 0.

© N o o

Fig. 23: Subextractor £ as a (Q + 4)-query random oracle algorithm.

Lemma B.11. The extractor & makes an expected number of at most 24 + 23Q queries to A. Also, &
outputs v = 1 with probability at least

2

e—(Q+1) (|C|+q1d/2+qﬁ+2‘128)-

Neat, letI = (I, I, I3, Iy, I5) be the index vector obtained by & in the first step and denote I, := (pp, z,t4,t(¢)).
Then, conditioned on v = 1, the extractor either returns: (81,82,5(%),¢) € Ry x Ry x Rgsﬁ/dH‘ x C which
satisfies the following relations:

t Al _ As | _ 0 _ __
] = [ st [ st [ o] 1ot < 2B Il <28

and 5
Hng < 7Be7 <§1,§1>:B, pT§1 = U; fori: 1,2,...,’/7,1, (88)

V26

or a MSIS,, ... 4, 5 solution for the matriz [A; | As]

29 This observation follows directly by analysing this equation on the level of constant coefficients.
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Proof. As in the proof of Lemma [B.9] we reduce the problem to the abstract sampling game. Let the array
M Dbe the function table of the extractor £&. Given randomness r and random oracle tables fi7 an entry of
M consists of a tuple (v, h,i,s,z), where v denotes the value of v, h = 1 denotes the first random oracle, i is
the value of i = I, s is the extracted vector (i.e. either a MSIS solution or a valid solution for the multiple
quadratic equations). and z = I, which in particular contains z(¢) such that |2(¢)| < B, if v = 1.

Let X = &y u X; where

Xo = {06 1) e RPF™\{0} x (0,1} : [A1 Az]x = 0 A o] < B}
= { ((51,82,5).T) € Ry x Ry x REO/ (0,1} : equations in (5S) hold .

We claim that X is 27128-probabilistically-testable w.r.t. M. Indeed, suppose that & outputs (v, h,i,s,z),
where v = 1,h = 1, and suppose that (s,z) ¢ X. First, this means that the output of s is not a valid MSIS
solution. Because V = 1, we have s = (51,8,,¥(®), g) and

(Rée) — Rge)) §1 + ﬁ(e) = 5(8), <§1,§1> = B, pTgl = U; for i = 1,2, o, Ny.

Now, because (S,z) ¢ X, this means that [s;] > \/%Be. Then, by Lemma for any vector 2(®) € Z2%
such that |#(¢)'|| < B, we have:

(R R f(’{ro — [(Rée)/ -~ R&e)f) 5+ 7@ = 79" mod q] <9128,
0 ) 1 «— 5 ><7Y'L1

This implies that if we run & for the same fixed random oracles apart from the i-th query to RO, where
we pick a fresh random challenge (R(()c) ,Rge) ), the extractor outputs exactly (1,1,4, (51,82, y(9),T’) with

probability at most 2728, The rest of the proof follows identically as in the proof of Lemma m]

Eventually, we define the extractor £ to basically run & and answer any random oracle queries using lazy
sampling. It then obtains a vector s; € Ry"* such that Ps; = u over R, as well as (51,51) = B over Z, and

[s1] < \/%Be. However, by assumption on ¢:

2 2
Be) ~B.=-—-B>-B.<q

—g<-B<|s|?-B< =
q 5= 2

(=2}

and thus |s1|? = B which concludes the proof. o
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