
Spats: user-defined confidential assets for the

Spark transaction protocol

Aaron Feickert1 and Aram Jivanyan∗2,3

1Cypher Stack
2Firo

3Yerevan State University

March 2, 2022

In privacy-preserving transaction protocols, confidential asset designs permit
transfer of quantities of distinct asset types in a way that obscures their types
and values. Spark is a protocol that provides flexible privacy properties relating
to addressing, transaction sources and recipients, and value transfer; however,
it does not natively support the use of multiple confidential asset types. Here
we describe Spats, a new design for confidential assets compatible with Spark
that focuses on efficient and modular implementation. It does so by extending
coin value commitments to bind and mask an asset type, and asserting in zero
knowledge that this type is maintained throughout transactions. We describe
the cryptographic components and changes to the Spark protocol necessary for
the design of Spats.

1 Introduction

Privacy-preserving transaction protocols have seen a wealth of research. Pro-
tocols like RingCT [13] in Monero, Sprout and Sapling [1, 3, 10] in Zcash,
Mimblewimble [7] in Grin and Beam, and Lelantus [11] in Firo each take differ-
ent approaches toward privacy. These protocols may provide useful functional-
ity relating to transaction graph ambiguity or obfuscation, addressing, amount
confidentiality, and scaling.

Spark [12] is a recent protocol, based on techniques from Lelantus, that pro-
vides trustless and flexible confidential transactions. In Spark, coins of hidden
and arbitrary value can be transferred in a manner that uses zero-knowledge
proofs to hide amounts and provide ambiguity as to the coins consumed in
a transaction, while using a non-interactive ephemeral approach to dissociate
recipient addresses from coins directed to them.

∗Corresponding author: aram@firo.org

1



However, Spark, like many other privacy-focused protocols, is limited to
the transfer of a single asset type. The concept of confidential assets refers to
protocol designs that permit the maintenance of distinct pools of value that can
be transferred in a manner hiding the amounts and types of assets involved in
transactions.

Early work in this area was conducted by Poelstra and collaborators [14],
with the Bitcoin and Mimblewimble designs in mind. This approach to confiden-
tial assets uses Pedersen commitments with asset-specific generators to produce
transactions where the types, amounts, and distributions of transferred assets
are hidden; however, the transaction graph itself is only obscured up to the
practical limits imposed by the overlying protocols. Further, this relative lack
of information leakage comes at a cost: commitment range proofs cannot be
aggregated to save space, and each generated coin must come equipped with a
proof that it corresponds to a valid asset type.

Later work by Beam [5] extends the Lelantus protocol by applying Poelstra
et al.’s construction to take advantage of transaction graph obfuscation. In this
design, the identity of consumed coins is hidden by re-randomized commitments,
and one-of-many asset validity proofs use a design by Groth and Kohlweiss [9]
(later optimized by Bootle and collaborators [2]) with improved scaling.

In this paper, we propose Spats, a new design for confidential assets that
offers different tradeoffs in efficiency and information leakage. Unlike earlier
work that relies on asset-specific commitment generators to separate assets for
balance integrity, Spats coins bind to asset types using an extended commitment
with fixed global generators. This design choice permits range proof aggregation;
when used with range proof constructions like Bulletproofs [4] or Bulletproofs+
[6] that scale logarithmically with the number of commitment assertions, the
space savings can be impressive. Further, by restricting each transaction to a
single hidden asset type in addition to a base asset used for fee handling, we
replace multiple asset validity proofs with a single fixed-size asset type equality
proof that applies to all consumed and generated coins of the hidden type.

We note carefully that a modification of the full protocol security model of
[12] accounting for our changes, while important, is deferred to future work.

2 Primitives

We describe the cryptographic constructions required for the Spats protocol.
Throughout this paper, let G be a prime-order group where the discrete log-
arithm, computational Diffie-Hellman, and decisional Diffie-Hellman problems
are hard, and let F be its scalar field.

2.1 Extended commitments

The constructions used in Spats, like some of those used in the original Spark
protocol, use homomorphic commitments with two independent value compo-
nents; for clarity, we refer to these as extended commitments. Such a com-

2



mitment scheme is common, and is often used more generally to bind to and
hide a vector of values with a single mask. The public parameters are ppcom =
(G,F, F,G,H), where F,G,H ∈ G are independent public generators; that is,
they have no efficiently-computable discrete logarithm relationship. The com-
mitment scheme consists of a function Comm : F3 → G that is additively homo-
morphic. For our purposes, we let Comm be a Pedersen commitment, where

Comm(v, v′,m) = vF + v′G+mH

for all values v, v′ ∈ F and masks m ∈ F.

2.2 Parallel one-of-many proving system

The parallel one-of-many proving system definition used in Spark is modi-
fied to support extended commitments. The public parameters are pppar =
(n,m, ppcomm), where ppcom are the public parameters for an extended commit-
ment construction. The algorithm tuple (ParallelProve,ParallelVerify) is modified
to support the following relation:{

pppar, {Sk, Vk}N−1
k=0 ⊂ G2, S′, V ′ ∈ G; l ∈ N, (s, v) ∈ F :

0 ≤ l < N, Sl − S′ = Comm(0, 0, s), Vl − V ′ = Comm(0, 0, v)}

The existing parallel one-of-many proving system in the Spark protocol is
trivially modified to support this definition, since it also reduces to an assertion
of commitments to zero.

2.3 Range proving system

The range proving construction is modified to support extended commitments.
The public parameters are pprp = (vmax, ppcomm), where ppcomm are the public
parameters for an extended commitment construction. The algorithm tuple
(RangeProve,RangeVerify) is modified to support the following relation:

{pprp, {Cj}mj=1 ∈ G; {(aj , vj , rj)}mj=1 ∈ F :

∀j ∈ [1,m], 0 ≤ vj < vmax, Cj = Comm(aj , vj , rj)}

We describe here a modification to the Bulletproofs+ range proving system
to support this construction. A work-in-progress report [15] provides a partial
security proof. Note that we use additive notation to describe these changes,
in order to match this convention in the Spark protocol, and we describe here
only those aspects of the prover and verifier algorithms that are modified from
those in [6].

The prover selects a value α ∈ F uniformly at random. It constructs

A = a⃗LG⃗+ a⃗RH⃗ + Comm(α, 0, α)

3



and defines

α̂ = α+

m∑
j=1

z2jajy
mn+1

as an additional witness to the weighted inner-product argument protocol we
describe now.

The zero-knowledge weighted inner-product protocol is modified to support
the following relation:

{pperp, G⃗, H⃗ ∈ Gn, P ∈ G; (⃗a, b⃗) ∈ Fn, (α, α) ∈ F :

P = a⃗G⃗+ b⃗H⃗ + Comm(α, a⃗⊙y b⃗, α)}

In the case n > 1, the prover selects dL, dR ∈ F uniformly at random. It
computes

L = (y−n̂a⃗1)G⃗2 + b⃗2H⃗1 + Comm(dL, cL, dL)

R = (yn̂a⃗2)G⃗1 + b⃗1H⃗2 + Comm(dR, cR, dR)

and α̂ = dLe
2 + α+ dRe

−2.
In the case n = 1, the prover selects δ, η ∈ F uniformly at random. It

computes

A = rG⃗+ sH⃗ + Comm(δ, r ⊙y b⃗+ s⊙y a⃗, δ)

B = Comm(η, r ⊙y s, η)

and δ′ = η + δe+ αe2. It sends δ′ to the verifier.
The verifier accepts if and only if the following holds:

e2P + eA+B = (r′e)G⃗+ (s′e)H⃗ + Comm(δ′, r′ ⊙y s
′, δ′)

Observe that this construction adds only δ′ to the overall proof structure.

2.4 Aggregated representation proof

We require a proving system to assert in zero knowledge that the prover knows
discrete logarithm representations of a set of extended commitments with a zero
component. In the context of Spats, this is used to show that certain extended
commitments reduce to standard commitments by setting one component’s dis-
crete logarithm to zero, and is useful by allowing optimal aggregation of com-
mitment range proofs for space efficiency. Let ppagg = (ppcomm) be the public
parameters of such a proving system, where ppcomm are the public parameters
for an extended commitment construction.

The proving system is a tuple of algorithms (AggProve,AggVerify) for the
following relation:

{ppagg, {Ci}n−1
i=0 ; ({yi, zi}

n−1
i=0 ) : ∀i ∈ [0, n), Ci = Comm(0, yi, zi)}

The batch Schnorr proving system described in [8] may be easily general-
ized for this purpose, since an extended commitment with a zero component is
algebraically equivalent to a standard Pedersen commitment.

4



2.5 Asset type equality proof

We introduce a new proving system to prove in zero knowledge that a set of
extended commitments share a common single discrete logarithm in one compo-
nent. In the context of Spats, this proving system will be used to assert in zero
knowledge that coins consumed and generated in a transaction share a common
asset type. Let

pptype = (ppcomm)

be the public parameters of such a proving system, where ppcomm are the public
parameters for an extended commitment construction.

The proving system is a tuple of algorithms (TypeProve,TypeVerify) for the
following relation:

{pptype, {Ci}n−1
i=0 ∈ G; (x, {yi, zi}n−1

i=0 ) ∈ F : ∀i ∈ [0, n), Ci = Comm(x, yi, zi)}

The protocol proceeds as follows:

1. The prover selects rx, ry, rz, sy, sz ∈ F uniformly at random.

2. The prover computes A = Comm(rx, ry, rz) and B = Comm(0, sy, sz), and
sends these values to the verifier.

3. The verifier selects c ∈ F uniformly at random, and sends this challenge
value to the prover.

4. The prover computes the values

tx = rx + cx

ty = ry + cy0

tz = rz + cz0

uy = sy +

n−1∑
i=1

ci(yi − y0)

uz = sz +

n−1∑
i=1

ci(zi − z0)

and sends them to the verifier.

5. The verifier accepts the proof if and only if the following hold:

Comm(tx, ty, tz) = A+ cC0 (1)

Comm(0, uy, uz) = B +

n−1∑
i=1

ci(Ci − C0) (2)

We now prove that this construction is a sigma protocol for the given relation.

5



Proof. To show the construction is a sigma protocol, we must show that it is
complete, special sound, and honest-verifier zero knowledge.

Completeness follows trivially by inspection.
We now show that the protocol is n-special sound by constructing an ex-

tractor that produces a witness set on n accepting transcripts with distinct
challenges. Consider n distinct challenges {cj}n−1

j=0 corresponding to response

transcripts {(tjx, tjy, tjz, uj
y, u

j
z)}n−1

j=0 , respectively, where we use superscript index-
ing. By applying Equation 1 to the j = 0 and j = 1 transcripts and subtracting
them, we obtain the following:

Comm(t1x − t0x, t
1
y − t0y, t

1
z − t0z) = (c1 − c0)C0

Since c1 ̸= c0 by assumption, we have the following extracted witnesses:

x =
t1x − t0x
c1 − c0

y0 =
t1y − t0y
c1 − c0

z0 =
t1z − t0z
c1 − c0

To extract the remaining witness elements, apply Equation 2 to obtain the
following system of equations:

B +

n−1∑
i=1

ci0(Ci − C0) = Comm(0, u0
y, u

0
z)

B +

n−1∑
i=1

ci1(Ci − C0) = Comm(0, u1
y, u

1
z)

...

B +

n−1∑
i=1

cin−1(Ci − C0) = Comm(0, un−1
y , un−1

z )

(3)

Subtract each equation from the first:

n−1∑
i=1

(ci1 − ci0)(Ci − C0) = Comm(0, u1
y − u0

y, u
1
z − u0

z)

n−1∑
i=1

(ci2 − ci0)(Ci − C0) = Comm(0, u2
y − u0

y, u
2
z − u0

z)

...

n−1∑
i=1

(cin−1 − ci0)(Ci − C0) = Comm(0, un−1
y − u0

y, u
n−1
z − u0

z)

6



Then we define a set {yi}n−1
i=1 via the following linear system:

n−1∑
i=1

(ci1 − ci0)(yi − y0) = u1
y − u0

y

n−1∑
i=1

(ci2 − ci0)(yi − y0) = u2
y − u0

y

...

n−1∑
i=1

(cin−1 − ci0)(yi − y0) = un−1
y − u0

y

Since the challenges are uniformly distributed, the system has a unique solution
in {yi}n−1

i=1 with high probability. We can form a similar linear system to obtain
unique {zi}n−1

i=1 .
This implies that the terms Ci − C0 = Comm(0, yi − y0, zi − z0) satisfy the

original linear system in Equation 3 for all i ∈ [1, n). From our earlier extraction
we have C0 = Comm(x, yi, zi), so for i ∈ [1, n) we have Ci = Comm(x, yi, zi) as
required.

It remains to show that these solutions are unique; that is, that no Ci has
a different representation with coefficients x′, y′i, z

′
i consistent with successful

verification. If this were the case, then we must have the polynomial equation∑n−1
i=0 ci(yi − y′i) = 0 in c; however, since c is selected randomly by the verifier,

all coefficients of the polynomial must (with overwhelming probability) be zero
by the Schwartz-Zippel lemma. Hence each yi = y′i (and by the same reasoning,
zi = z′i and x = x′), and the extracted witness set is unique.

It remains to prove that the protocol is honest-verifier zero knowledge. To
show this, we construct a simulator that produces transcripts distributed iden-
tically to those of valid proofs. Given a valid statement and random chal-
lenge c ∈ F, the simulator chooses tx, ty, tz ∈ F uniformly at random, and sets
A = Comm(tx, ty, tz) − cC0 using these values. It selects uy, uz ∈ F uniformly
at random, and sets

B = Comm(0, uy, uz)−
n−1∑
i=1

ci(Ci − C0)

using these values. By construction, this transcript passes the verification Equa-
tions 1 and 2. Since the extended commitment generators are independent, all
proof elements in both the simulation and real proofs are identically uniformly
distributed.

This completes the proof.

2.6 Balance proof

We require a representation proof for use in balance assertion. It proves that
a extended commitment is bound to a zero value. In the context of Spats, this

7



proving system will be used to assert that value is maintained between consumed
and generated coins in a transaction. Let

ppbal = (ppcomm)

be the public parameters of such a proving system, where ppcomm are the public
parameters for an extended commitment construction.

The proving system is a tuple of algorithms (BalanceProve,BalanceVerify) for
the following relation:

{ppbal, C ∈ G; (x, z) ∈ F : C = Comm(x, 0, z)}

The protocol proceeds as follows:

1. The prover selects rx, rz ∈ F uniformly at random.

2. The prover computes A = Comm(rx, 0, rz) and sends this value to the
verifier.

3. The verifier selects c ∈ F uniformly at random, and sends this challenge
value to the prover.

4. The prover computes the values

tx = rx + cx

tz = rz + cz

and sends them to the verifier.

5. The verifier accepts the proof if and only if Comm(tx, 0, tz) = A + cC
holds.

This construction is a sigma protocol for the given relation; the proof is standard,
and we omit it here.

3 Protocol

We now describe the changes to the Spark protocol algorithms required for
Spats. We assume the use of notation from [12]. Note that key creation, address
creation, and coin recovery are unchanged, so we do not repeat those algorithms
here.

In the Spats construction, an asset type is defined as a scalar a ∈ F; all
coins associated to a given asset type must share a common a. The intent is
that asset types, like coin values, are bound to coins in a hidden manner and
made public only when introducing new value into the system. Consensus rules
must determine the conditions under which new value for any asset type may
be added.

As a matter of terminology and notational convenience, if a coin has asset
type a = 0, we call it a base asset coin; otherwise, we call it a generic asset
coin.

8



3.1 CreateCoin

This algorithm generates a new coin of arbitrary asset type destined for a given
public address. It uses a type bit to determine if the value and asset type are
intended to be publicly visible.

Inputs: Destination public address addrpk, value v ∈ [0, vmax), memo m,
asset type a ∈ F, type bit b

Outputs: Coin Coin, nonce k

1. Parse the recipient address addrpk = (d,Q1, Q2).

2. Sample a nonce k ∈ F.

3. Compute the recovery key K = Hk(k)Hdiv(d).

4. Compute the serial number commitment

S = Comm(Hser(k), 0, 0) +Q2.

5. Generate the value commitment C = Comm(a, v,Hval(k)).

6. If b = 0, set the recipient data r = (v, a, d, k,m); otherwise, set r =
(d, k,m).

7. Generate an AEAD encryption key kaead = AEADKeyGen(Hk(k)Q1); en-
crypt the recipient data

r = AEADEncrypt(kaead, r, r).

8. If b = 0, output the coin Coin = (S,K,C, r) and nonce k; otherwise,
output the coin Coin = (S,K,C, v, a, r) and nonce k.

The case b = 0 represents a coin with hidden value being generated in a spend
transaction, while the case b = 1 represents a coin with plaintext value being
generated in a mint transaction.

3.2 Mint

This algorithm generates new coins of arbitrary asset type from either a mining-
type process defined by consensus rules, or by consuming non-Spark outputs
from a base layer with public value. Note that while such implementation-
specific auxiliary data may be necessary for generating such a transaction and
included, we do not specifically list this here.

Inputs: Set of t output coin public addresses, values, memos, and asset
types:

{addrpk,j , vj ,mj , aj}t−1
j=0

Outputs: Mint transaction txmint

9



1. Generate a set OutCoins = {CreateCoin(addrpk,j , vj ,mj , aj , 1)}t−1
j=0 of out-

put coins.

2. Parse the output coin value commitments {Cj}t−1
j=0 from OutCoins, where

each Cj contains nonce kj .

3. Generate a representation proof for value assertion:

Πval = RepProve
(
pprep, H, {Cj − Comm(aj , vj , 0)}t−1

j=0; {Hval(kj)}t−1
j=0

)
4. Output the mint transaction txmint = (OutCoins,Πval).

3.3 Identify

This algorithm allows a recipient (or designated entity) to determine if it controls
a coin; if so, it computes the value, memo, and diversifier from the coin (in
addition to the coin nonce). It requires the incoming view key used to produce
diversified addresses to do so. If the coin is not destined for any diversified
address, the algorithm returns failure.

It is assumed that the recipient has run the Verify algorithm on the transac-
tion generating the coin being identified.

Inputs: Incoming view key addrin, coin Coin
Outputs: Value v, memo m, asset type a, diversifier i, nonce k

1. Parse the incoming view key addrin = (s1, P2).

2. If Coin was generated in a mint transaction, parse Coin = (S,K,C, v, a, r);
otherwise, parse Coin = (S,K,C, r).

3. Generate an AEAD encryption key kaead = AEADKeyGen(s1K) and de-
crypt

r = AEADDecrypt(kaead, r, r);

if decryption fails, return failure.

4. If Coin was generated in a mint transaction, parse the recipient data r =
(d, k,m); otherwise, parse r = (v, a, d, k,m).

5. Check that K = Hk(k)Hdiv(d), and return failure otherwise.

6. Check that C = Comm(a, v,Hval(k)), and return failure otherwise.

7. Decrypt the diversifier i = SymDecrypt(SymKeyGen(s1), d).

8. Check that

S = Comm(Hser(k), 0, 0) + Comm(HQ2(s1, i), 0, 0) + P2,

and return failure otherwise.

9. Output (v,m, a, i, k).

10



3.4 Spend

This algorithm allows a recipient to generate a transaction that consumes coins
it controls, and generates new coins destined for arbitrary public addresses. A
spend transaction spends coins of two asset types separately; one is a generic
asset type (where the type itself is hidden), and the other is the base asset type.
This ensures that fees can be denominated consistently and publicly.

It is assumed that the recipient has run the Recover algorithm on all coins
that it wishes to consume in such a transaction.

Inputs:

• A full view key addrfull

• A spend key addrsk

• A set of N input coins GenericInCoins, of generic asset type, as part of a
cover set

• A set of N input coins BaseInCoins, of base asset type, as part of a cover
set

• For each u ∈ [0, w) coin of generic type a ̸= 0 to spend, the index in
GenericInCoins, serial number, tag, value, and nonce: (lu, su, Tu, vu, ku)

• For each u ∈ [0, w) coin of base type a = 0 to spend, the index in
BaseInCoins, serial number, tag, value, and nonce: (lu, su, Tu, vu, ku)

• An integer fee value f ∈ [0, vmax)

• A set of t generic-type output coin public addresses, values, and memos:

{addrpk,j , vj ,mj}t−1
j=0

• A set of t base-type output coin public addresses, values, and memos:

{addrpk,j , vj ,mj}t−1
j=0

Outputs: Spend transaction txspend

1. Parse the required full view key component D from addrfull.

2. Parse the spend key addrsk = (s1, s2, r).

3. Parse the cover set serial number commitments and value commitments
{(Si, Ci)}N−1

i=0 from BaseInCoins and {(Si, Ci)}N−1
i=0 from GenericInCoins.

4. For each u ∈ [0, w):

(a) Compute the serial number commitment offset:

S′
u = Comm(su, 0,−Hser′(su, D)) +D

11



(b) Compute the value commitment offset:

C ′
u = Comm(0, vu,Hval′(su, D))

(c) Generate a parallel one-out-of-many proof:

(Πpar)u = ParProve(pppar, {Si, Ci}N−1
i=0 , S′

u, C
′
u;

(lu,Hser′(su, D),Hval(ku)−Hval′(su, D)))

5. For each u ∈ [0, w):

(a) Compute the serial number commitment offset:

S′
u = Comm(su, 0,−Hser′(su, D)) +D

(b) Compute the value commitment offset:

C ′
u = Comm(a, vu,Hval′(su, D))

(c) Generate a parallel one-out-of-many proof:

(Πpar)u = ParProve(pppar, {Si, Ci}N−1
i=0 , S′

u, C
′
u;

(lu,Hser′(su, D),Hval(ku)−Hval′(su, D)))

6. Generate a set BaseOutCoins = {CreateCoin(addrpk,j , vj ,mj , 0, 0)}t−1
j=0 of

base-type output coins.

7. Generate a set GenericOutCoins = {CreateCoin(addrpk,j , vj ,mj , a, 0)}
t−1
j=0

of generic-type output coins.

8. Parse the coin value commitments {Cj}t−1
j=0 from BaseOutCoins, where

each Cj is associated to nonce kj .

9. Parse the coin value commitments {Cj}
t−1
j=0 from GenericOutCoins, where

each Cj is associated to nonce kj .

10. Generate an aggregated range proof for all output coins:

Πrp = RangeProve
(
pprp, {Cj}t−1

j=0 ∪ {Cj}
t−1
j=0;

{(0, vj ,Hval(kj))}t−1
j=0 ∪ {(a, vj ,Hval(kj))}

t−1
j=0

)
11. Generate a proof that all base-type assets have a = 0:

Πbase = AggProve
(
ppagg, {Cj}t−1

j=0; ({vj ,Hval(kj)}t−1
j=0)

)

12



12. Generate a proof that all generic-type coins have the same type:

Πtype = TypeProve
(
pptype, {C ′

u}
w−1
u=0 ∪ {Cj}

t−1
j=0;(

a, {vu,Hval′(su, D)}w−1
u=0 ∪ {vj ,Hval(kj)}

t−1
j=0

))
13. Generate representation proofs for balance assertion:

Πbal = RepProve

pprep, H,

w−1∑
u=0

C ′
u −

t−1∑
j=0

Cj − Comm(0, f, 0);

w−1∑
u=0

Hval′(su, D)−
t−1∑
j=0

Hval(kj)



Πbal = RepProve

pprep, H,

w−1∑
u=0

C ′
u −

t−1∑
j=0

Cj ;

w−1∑
u=0

Hval′(su, D)−
t−1∑
j=0

Hval(kj)


14. Define the following binding hash:

µ = Hbind(BaseInCoins,GenericInCoins,BaseOutCoins,GenericOutCoins,

{S′
u, C

′
u, Tu, (Πpar)u, }

w−1

u=0 ,
{
S′
u, C

′
u, Tu, (Πpar)u,

}w−1

u=0
,

Πbase,Πrp,Πbal,Πbal,Πtype)

15. Generate a modified Chaum-Pedersen proof, where we additionally bind
µ to the initial transcript:

Πchaum = ChaumProve((ppchaum, µ), {S′
u, Tu}w−1

u=0 ∪ {S′
u, Tu}

w−1
u=0 ;

({su, r,−Hser′(su, D)}w−1
u=0 ∪ {su, r,−Hser′(su, D)}w−1

u=0 ))

16. Output the tuple:

txspend = (BaseInCoins,GenericInCoins,BaseOutCoins,GenericOutCoins,

f, {S′
u, C

′
u, Tu, (Πpar)u}

w−1

u=0 ,
{
S′
u, C

′
u, Tu, (Πpar)u

}w−1

u=0
,

Πbase,Πrp,Πbal,Πbal,Πtype,Πchaum)

13



Observe that this effectively maintains two “pools” of coins available for
cover sets. Coins minted with a = 0, or those generated in spends produced by
consuming base-type coins, are the only coins used for producing BaseInCoins
cover sets. Coins minted with a ̸= 0, or those generated in spends produced by
consuming generic-type coins, are the only coins used for GenericInCoins cover
sets.

Also note that it is possible to aggregate all output coin range proofs using a
suitable range proving system; this is particularly relevant for designs like those
of [4, 6] that scale logarithmically in size for aggregation purposes.

Transaction verification is modified in a straightforward manner to verify
the relevant proofs.

4 Efficiency

We briefly outline the efficiency of Spats compared to the original Spark pro-
tocol. Table 1 shows the change in size of mint transaction components, and
Table 2 shows the change in size of spend transaction components. We assume
throughout that both group and scalar elements have 32-byte representations,
and that asset type identifiers are restricted to τ bytes.

Component ∆G ∆F ∆ bytes
a τt
Total τt

Table 1: Mint transaction size change by component (t generated generic-type
coins)

Component ∆G ∆F ∆ bytes
Πrp 1
Πbal 1
Πbal 1 2
Πbase 2 2
{rj} τt
Πtype 2 5
Total 5 11 τt

Table 2: Spend transaction size change by component (t generated generic-type
coins)

A mint transaction with t generated generic-type coins increases by τt bytes.
A spend transaction with t generated generic-type coins increases by 512 + τt
bytes.

14



References

[1] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive zero knowledge for a von Neumann architecture.
In Proceedings of the 23rd USENIX Conference on Security Symposium,
SEC’14, page 781–796, USA, 2014. USENIX Association.

[2] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based on
DDH. In Günther Pernul, Peter Y A Ryan, and Edgar Weippl, editors,
Computer Security – ESORICS 2015, pages 243–265, Cham, 2015. Springer
International Publishing.

[3] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computa-
tion for zk-SNARK parameters in the random beacon model. Cryptology
ePrint Archive, Report 2017/1050, 2017. https://ia.cr/2017/1050.

[4] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 315–334, 2018.

[5] Pyrros Chaidos and Vladislav Gelfer. Lelantus-CLA. Cryptology ePrint
Archive, Report 2021/1036, 2021. https://ia.cr/2021/1036.

[6] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and
Jae Hong Seo. Bulletproofs+: Shorter proofs for privacy-enhanced dis-
tributed ledger. Cryptology ePrint Archive, Report 2020/735, 2020. https:
//ia.cr/2020/735.

[7] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash sys-
tems: A cryptographic investigation of Mimblewimble. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
pages 657–689, Cham, 2019. Springer International Publishing.

[8] R. Gennaro, D. Leigh, R. Sundaram, and W. Yerazunis. Batching Schnorr
identification scheme with applications to privacy-preserving authorization
and low-bandwidth communication devices. In Pil Joong Lee, editor, Ad-
vances in Cryptology - ASIACRYPT 2004, pages 276–292, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg.

[9] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to
leak a secret and spend a coin. In Elisabeth Oswald and Marc Fischlin, edi-
tors, Advances in Cryptology - EUROCRYPT 2015, pages 253–280, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[10] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification, 2021. https://github.com/zcash/zips/blob/

master/protocol/protocol.pdf.

15

https://ia.cr/2017/1050
https://ia.cr/2021/1036
https://ia.cr/2020/735
https://ia.cr/2020/735
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf


[11] Aram Jivanyan. Lelantus: A new design for anonymous and confiden-
tial cryptocurrencies. Cryptology ePrint Archive, Report 2019/373, 2019.
https://ia.cr/2019/373.

[12] Aram Jivanyan and Aaron Feickert. Lelantus Spark: Secure and flexible
private transactions. Cryptology ePrint Archive, Report 2021/1173, 2021.
https://ia.cr/2021/1173.

[13] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions.
Ledger, 1:1–18, 2016.

[14] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and
Pieter Wuille. Confidential assets. In Aviv Zohar, Ittay Eyal, Vanessa
Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimil-
iano Sala, editors, Financial Cryptography and Data Security, pages 43–63,
Berlin, Heidelberg, 2019. Springer Berlin Heidelberg.

[15] sowle. Bulletproofs+ with double-blinded commitments. GitHub repos-
itory, 2022. https://github.com/hyle-team/docs/blob/master/zano/

BPP_with_double_blinded_commitments_(draft).pdf.

16

https://ia.cr/2019/373
https://ia.cr/2021/1173
https://github.com/hyle-team/docs/blob/master/zano/BPP_with_double_blinded_commitments_(draft).pdf
https://github.com/hyle-team/docs/blob/master/zano/BPP_with_double_blinded_commitments_(draft).pdf

	Introduction
	Primitives
	Extended commitments
	Parallel one-of-many proving system
	Range proving system
	Aggregated representation proof
	Asset type equality proof
	Balance proof

	Protocol
	CreateCoin
	Mint
	Identify
	Spend

	Efficiency

