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In privacy-preserving transaction protocols, confidential asset designs permit
transfer of quantities of distinct asset types in a way that obscures their types
and values. Spark is a protocol that provides flexible privacy properties relating
to addressing, transaction sources and recipients, and value transfer; however,
it does not natively support the use of multiple confidential asset types or non-
fungible tokens. Here we describe Spats, a new design for confidential assets
and serialized tokens compatible with Spark that focuses on efficient and mod-
ular implementation. It does so by extending coin value commitments to bind
and mask an asset type and identifier, and asserting in zero knowledge that
they are maintained throughout transactions. We describe the cryptographic
components and changes to the Spark protocol necessary for the design of Spats.

1 Introduction

Privacy-preserving transaction protocols have seen a wealth of research. Pro-
tocols like RingCT [13] in Monero, Sprout and Sapling [1, 3, 10] in Zcash,
Mimblewimble [7] in Grin and Beam, and Lelantus [11] in Firo each take differ-
ent approaches toward privacy. These protocols may provide useful functional-
ity relating to transaction graph ambiguity or obfuscation, addressing, amount
confidentiality, and scaling.

Spark [12] is a recent protocol, based on techniques from Lelantus, that pro-
vides trustless and flexible confidential transactions. In Spark, coins of hidden
and arbitrary value can be transferred in a manner that uses zero-knowledge
proofs to hide amounts and provide ambiguity as to the coins consumed in
a transaction, while using a non-interactive ephemeral approach to dissociate
recipient addresses from coins directed to them.

However, Spark, like many other privacy-focused protocols, is limited to
the transfer of a single asset type. The concept of confidential assets refers to
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protocol designs that permit the maintenance of distinct pools of value that can
be transferred in a manner hiding the amounts and types of assets involved in
transactions.

Early work in this area was conducted by Poelstra and collaborators [14],
with the Bitcoin and Mimblewimble designs in mind. This approach to confiden-
tial assets uses Pedersen commitments with asset-specific generators to produce
transactions where the types, amounts, and distributions of transferred assets
are hidden, with the advantage that multiple types may be included in a sin-
gle transaction with balance separation; however, the transaction graph itself
is only obscured up to the practical limits imposed by the overlying protocols.
Further, this relative lack of information leakage comes at a cost: commitment
range proofs cannot be aggregated to save space, and each generated coin must
come equipped with a proof that it corresponds to a valid asset type.

Later work by Beam [5] extends the Lelantus protocol by applying Poelstra
et al.’s construction to take advantage of transaction graph obfuscation. In this
design, the identity of consumed coins is hidden by re-randomized commitments,
and one-of-many asset validity proofs use a design by Groth and Kohlweiss [9]
(later optimized by Bootle and collaborators [2]) with improved scaling. This
design unfortunately inherits the range proof and type validity requirements of
[14].

In this paper, we propose Spats, a new design for confidential assets that
offers different tradeoffs in efficiency and information leakage, and also admits
functionality suitable for private non-fungible tokens, where uniqueness and
atomicity are required. Unlike protocols that rely on asset-specific commitment
generators to separate assets for balance integrity, Spats coins bind to asset
types and (optionally) token identifiers using an extended commitment with
fixed global generators. This design choice permits range proof aggregation;
when used with range proof constructions like Bulletproofs [4] or Bulletproofs+
[6] that scale logarithmically with the number of commitment assertions, the
space savings can be impressive. Spats transactions require separate balance
assertions for each hidden asset type or non-fungible token present in a trans-
action. While this approach limits flexibility somewhat, it has the advantage
of replacing separate expensive type validity proofs with a simpler and smaller
fixed-size proof that applies to all consumed and generated coins of a given type
or token.

We note carefully that a modification of the full protocol security model of
[12] accounting for our changes, while important, is deferred to future work.

2 Primitives

We describe the cryptographic constructions required for the Spats protocol.
Throughout this paper, let G be a prime-order group where the discrete log-
arithm, computational Diffie-Hellman, and decisional Diffie-Hellman problems
are hard, and let F be its scalar field.
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2.1 Extended commitments

The constructions used in Spats require homomorphic commitments with multi-
ple independent value components; for clarity, we refer to these as extended com-
mitments. Such a commitment scheme is common, and is often used more gener-
ally to bind to and hide a vector of values with a single mask. The public param-
eters are ppcom,n = (G,F, {Gi}n−1

i=0 , H), where n > 1 and {Gi}n−1
i=0 ∪{H} ⊂ G is a

set of independent public generators; that is, they have no efficiently-computable
discrete logarithm relationship. The commitment scheme consists of a function
Comn : Fn+1 → G that is additively homomorphic. For our purposes, we let
Comn be a Pedersen-type commitment, where

Comn({vi}n−1
i=0 ,m) =

n−1∑
i=0

viGi +mH

for all values {vi}n−1
i=0 ⊂ F and masks m ∈ F.

Because the generators are independent, such a commitment scheme is com-
putationally binding. It is also perfectly hiding.

2.2 Parallel one-of-many proving system

The parallel one-of-many proving system definition used in Spark is modi-
fied to support extended commitments. The public parameters are pppar =
(n,m, ppcom,2, ppcom,3), where ppcom,2 and ppcom,2 are the public parameters for
extended commitment constructions. We note that while commitment genera-
tors must be independent within a parameter set, they need not be independent
across distinct parameter sets. The algorithm tuple (ParallelProve,ParallelVerify)
is modified to support the following relation:{

pppar, {Sk, Vk}N−1
k=0 ⊂ G2, S′, V ′ ∈ G; l ∈ N, (s, v) ∈ F :

0 ≤ l < N, Sl − S′ = Com2(0, 0, s), Vl − V ′ = Com3(0, 0, 0, v)}

The existing parallel one-of-many proving system in the Spark protocol is
trivially modified to support this definition, since it also reduces to an assertion
of commitments to zero.

2.3 Range proving system

The range proving construction is modified to support extended commitments.
The public parameters are pprp = (vmax, ppcom,n), where ppcomn

are the public
parameters for an extended commitment construction. The algorithm tuple
(RangeProve,RangeVerify) is modified to support the following relation:

{pprp, {Cj}m−1
j=0 ∈ G; {(vj,i,mj)}m−1,n−1

j,i=0 ∈ F :

∀j ∈ [0,m), 0 ≤ vj < vmax, Cj = Comn({vj,i}n−1
i=0 ,mj)}
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It is possible to produce a straightforward modification to the Bulletproofs+
range proving system to support this construction. Zarcanum [15] describes
such a modification for such a proving system, and updates the corresponding
security proofs.

We note that the modification adds only n− 1 additional scalar elements to
the overall proof structure, compared to a standard Bulletproofs+ range proof.

2.4 Base asset proof

We require a proving system to assert in zero knowledge that the prover knows
discrete logarithm representations of a set of extended commitments with cer-
tain zero components. In the context of Spats, this is used to show that certain
extended commitments represent a base asset type reducing to standard Peder-
sen commitments by setting certain discrete logarithms to zero, and is useful by
allowing optimal aggregation of commitment range proofs for space efficiency.
Let ppbase = (ppcom,3) be the public parameters of such a proving system, where
ppcom3 are the public parameters for an extended commitment construction.

The proving system is a tuple of algorithms (BaseProve,BaseVerify) for the
following relation:

{ppbase, {Ci}n−1
i=0 ; ({yi, zi}

n−1
i=0 ) : ∀i ∈ [0, n), Ci = Com3(0, 0, yi, zi)}

The batch Schnorr proving system described in [8] may be easily generalized
for this purpose, since an extended commitment with such zero components is
algebraically equivalent to a standard Pedersen commitment.

2.5 Type equality proof

We introduce a new proving system to prove in zero knowledge that a set of
extended commitments share common single discrete logarithms in certain com-
ponents. In the context of Spats, this proving system will be used to assert in
zero knowledge that coins consumed and generated in a transaction share a
common asset type and identifier. Let

pptype = (ppcom,3)

be the public parameters of such a proving system, where ppcom,3 are the public
parameters for an extended commitment construction.

The proving system is a tuple of algorithms (TypeProve,TypeVerify) for the
following relation:{

pptype, {Ci}n−1
i=0 ∈ G; (w, x, {yi, zi}n−1

i=0 ) ∈ F :

∀i ∈ [0, n), Ci = Com3(w, x, yi, zi)}

The protocol proceeds as follows:

1. The prover selects rw, rx, ry, rz, sy, sz ∈ F uniformly at random.
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2. The prover computes A = Com3(rw, rx, ry, rz) and B = Com3(0, 0, sy, sz),
and sends these values to the verifier.

3. The verifier selects c ∈ F uniformly at random, and sends this challenge
value to the prover.

4. The prover computes the values

tw = rw + cw

tx = rx + cx

ty = ry + cy0

tz = rz + cz0

uy = sy +

n−1∑
i=1

ci(yi − y0)

uz = sz +

n−1∑
i=1

ci(zi − z0)

and sends them to the verifier.

5. The verifier accepts the proof if and only if the following hold:

Com3(tw, tx, ty, tz) = A+ cC0 (1)

Com3(0, 0, uy, uz) = B +

n−1∑
i=1

ci(Ci − C0) (2)

We now prove that this construction is a sigma protocol for the given relation.

Proof. To show the construction is a sigma protocol, we must show that it is
complete, special sound, and honest-verifier zero knowledge.

Completeness follows trivially by inspection.
We now show that the protocol is n-special sound by constructing an ex-

tractor that produces a witness set on n accepting transcripts with distinct
challenges. Consider n distinct challenges {cj}n−1

j=0 corresponding to response

transcripts {(tjw, tjx, tjy, tjz, uj
y, u

j
z)}n−1

j=0 , respectively, where we use superscript
indexing. By applying Equation 1 to the j = 0 and j = 1 transcripts and
subtracting them, we obtain the following:

Com3(t
1
w − t0w, t

1
x − t0x, t

1
y − t0y, t

1
z − t0z) = (c1 − c0)C0
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Since c1 ̸= c0 by assumption, we have the following extracted witnesses:

w =
t1w − t0w
c1 − c0

x =
t1x − t0x
c1 − c0

y0 =
t1y − t0y
c1 − c0

z0 =
t1z − t0z
c1 − c0

To extract the remaining witness elements, apply Equation 2 to obtain the
following system of equations:

B +

n−1∑
i=1

ci0(Ci − C0) = Com3(0, 0, u
0
y, u

0
z)

B +

n−1∑
i=1

ci1(Ci − C0) = Com3(0, 0, u
1
y, u

1
z)

...

B +

n−1∑
i=1

cin−1(Ci − C0) = Com3(0, 0, u
n−1
y , un−1

z )

(3)

Subtract each equation from the first:

n−1∑
i=1

(ci1 − ci0)(Ci − C0) = Com3(0, 0, u
1
y − u0

y, u
1
z − u0

z)

n−1∑
i=1

(ci2 − ci0)(Ci − C0) = Com3(0, 0, u
2
y − u0

y, u
2
z − u0

z)

...

n−1∑
i=1

(cin−1 − ci0)(Ci − C0) = Com3(0, 0, u
n−1
y − u0

y, u
n−1
z − u0

z)
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Then we define a set {yi}n−1
i=1 via the following linear system:

n−1∑
i=1

(ci1 − ci0)(yi − y0) = u1
y − u0

y

n−1∑
i=1

(ci2 − ci0)(yi − y0) = u2
y − u0

y

...

n−1∑
i=1

(cin−1 − ci0)(yi − y0) = un−1
y − u0

y

Since the challenges are uniformly distributed, the system has a unique solution
in {yi}n−1

i=1 with high probability. We can form a similar linear system to obtain
unique {zi}n−1

i=1 .
This implies that the terms Ci −C0 = Com3(0, 0, yi − y0, zi − z0) satisfy the

original linear system in Equation 3 for all i ∈ [1, n). From our earlier extraction
we have C0 = Com3(w, x, y0, z0), so for i ∈ [1, n) we have Ci = Com3(w, x, yi, zi)
as required.

It remains to show that these solutions are unique; that is, that no Ci has a
different representation with coefficients w′, x′, y′i, z

′
i consistent with successful

verification. If this were the case, then we must have the polynomial equation∑n−1
i=0 ci(yi − y′i) = 0 in c; however, since c is selected randomly by the verifier,

all coefficients of the polynomial must (with overwhelming probability) be zero
by the Schwartz-Zippel lemma. Hence each yi = y′i (and by the same reasoning,
zi = z′i and w = w′ and x = x′), and the extracted witness set is unique.

It remains to prove that the protocol is honest-verifier zero knowledge. To
show this, we construct a simulator that produces transcripts distributed iden-
tically to those of valid proofs. Given a valid statement and random challenge
c ∈ F, the simulator chooses tw, tx, ty, tz ∈ F uniformly at random, and sets
A = Com3(tw, tx, ty, tz)− cC0 using these values. It selects uy, uz ∈ F uniformly
at random, and sets

B = Com3(0, 0, uy, uz)−
n−1∑
i=1

ci(Ci − C0)

using these values. By construction, this transcript passes the verification Equa-
tions 1 and 2. Since the extended commitment generators are independent, all
proof elements in both the simulation and real proofs are identically uniformly
distributed.

This completes the proof.

2.6 Extended balance proof

We require a representation proof for use in balance assertion. It proves that
an extended commitment is bound to a zero value. In the context of Spats,
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this proving system will be used to assert that value is maintained between
consumed and generated coins in a transaction. Let

ppbal = (ppcom,3)

be the public parameters of such a proving system, where ppcom,3 are the public
parameters for an extended commitment construction.

The proving system is a tuple of algorithms (BalanceProve,BalanceVerify) for
the following relation:

{ppbal, C ∈ G; (w, x, z) ∈ F : C = Com3(w, x, 0, z)}

The protocol proceeds as follows:

1. The prover selects rw, rx, rz ∈ F uniformly at random.

2. The prover computes A = Com3(rw, rx, 0, rz) and sends this value to the
verifier.

3. The verifier selects c ∈ F uniformly at random, and sends this challenge
value to the prover.

4. The prover computes the values

tw = rw + cw

tx = rx + cx

tz = rz + cz

and sends them to the verifier.

5. The verifier accepts the proof if and only if Com3(tw, tx, 0, tz) = A + cC
holds.

This construction is a sigma protocol for the given relation; the proof is standard,
and we omit it here.

3 Protocol

We now describe the changes to the Spark protocol algorithms required for
Spats. We assume the use of notation from [12]. Note that key creation, address
creation, and coin recovery are unchanged, so we do not repeat those algorithms
here.

In addition to binding to a value and mask, each coin in Spats also binds
to an asset type a ∈ F and identifier ι ∈ F. All coins of a common asset type
share a common a. In cases where coins of a given type are intended to be
fungible and divisible, we set ι = 0. In cases where coins of a given type are
intended to represent non-fungible tokens that are atomic, each such token is
represented by a coin whose identifier ι is unique within its type. Consensus
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rules must determine the conditions under which new coins for any asset type
may be added.

As a matter of terminology and notational convenience, if a coin has asset
type a = 0, we call it a base asset coin; if we do not specify a particular a,
we call it a generic asset coin. While Spats can be easily generalized such
that this distinction is irrelevant, the implementation we describe here requires
differentiation; this is to allow for transactions to include fees that are always
denominated in the base asset type.

We note a crucial requirement for non-fungible token issuance that is es-
sential to ensure uniqueness and atomicity. When a new non-fungible token
is issued for a particular asset type, its value must be set to v = 1. This en-
sures that when the token is transferred, it can only be done atomically. Spend
transactions are constructed intended to allow consumption and production of
multiple coins of generic asset type, and the associated proofs require that all
such coins share the same asset type and identifier. The requirement that a
given non-fungible token have v = 1 at the time of issuance ensures that if mul-
tiple coins are produced in a transaction transferring the token, exactly one such
coin will also have v = 1. This has the advantage of making spend transactions
uniform, regardless of whether or not they consume and generate non-fungible
tokens.

3.1 CreateCoin

This algorithm generates a new coin of arbitrary asset type and identifier des-
tined for a given public address. It uses a type bit to determine if the value,
asset type, and identifier are intended to be publicly visible.

Inputs: Destination public address addrpk, value v ∈ [0, vmax), memo m,
asset type a ∈ F, identifier ι ∈ F, type bit b

Outputs: Coin Coin, nonce k

1. Parse the recipient address addrpk = (d,Q1, Q2).

2. Sample a nonce k ∈ F.

3. Compute the recovery key K = Hk(k)Hdiv(d).

4. Compute the serial number commitment

S = Com2(Hser(k), 0, 0) +Q2.

5. Generate the value commitment C = Com3(a, ι, v,Hval(k)).

6. If b = 0, set the recipient data r = (a, ι, v, d, k,m); otherwise, set r =
(d, k,m).

7. Generate an AEAD encryption key kaead = AEADKeyGen(Hk(k)Q1); en-
crypt the recipient data

r = AEADEncrypt(kaead, r, r).
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8. If b = 0, output the coin Coin = (S,K,C, r) and nonce k; otherwise,
output the coin Coin = (S,K,C, a, ι, v, r) and nonce k.

The case b = 0 represents a coin with hidden value being generated in a spend
transaction, while the case b = 1 represents a coin with known value being
generated in a mint transaction.

3.2 Mint

This algorithm generates new coins of arbitrary asset type and identifier from
either a mining-type process defined by consensus rules, or by consuming non-
Spark outputs from a base layer with public value. Note that while such
implementation-specific auxiliary data may be necessary for generating such
a transaction and included, we do not specifically list this here.

Inputs: Set of t output coin public addresses, values, memos, asset types,
and identifiers:

{addrpk,j , vj ,mj , aj , ιj}t−1
j=0

Outputs: Mint transaction txmint

1. For any j ∈ [0, t), if ιj ̸= 0 and vj ̸= 1, abort.

2. For any j ∈ [0, t), if aj = 0 and ιj ̸= 0, abort.

3. Generate a set OutCoins = {CreateCoin(addrpk,j , vj ,mj , aj , ιj , 1)}t−1
j=0 of

output coins.

4. Parse the output coin value commitments {Cj}t−1
j=0 from OutCoins, where

each Cj contains nonce kj .

5. Generate a representation proof for value, asset type, and identifier asser-
tion:

Πval = RepProve (pprep, H,

{Cj − Com3(aj , ιj , vj , 0)}t−1
j=0; {Hval(kj)}t−1

j=0

)
6. Output the mint transaction txmint = (OutCoins,Πval).

3.3 Identify

This algorithm allows a recipient (or designated entity) to determine if it controls
a coin; if so, it computes the value, memo, asset type, identifier, and diversifier
from the coin (in addition to the coin nonce). It requires the incoming view
key used to produce diversified addresses to do so. If the coin is not destined
for any diversified address assocated to the incoming view key, the algorithm
returns failure.

It is assumed that the recipient has run the Verify algorithm on the transac-
tion generating the coin being identified.
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Inputs: Incoming view key addrin, coin Coin
Outputs: Value v, memo m, asset type a, identifier ι, diversifier i, nonce k

1. Parse the incoming view key addrin = (s1, P2).

2. If Coin was generated in a mint transaction, parse its components as Coin =
(S,K,C, a, ι, v, r); otherwise, parse Coin = (S,K,C, r).

3. Generate an AEAD encryption key kaead = AEADKeyGen(s1K) and de-
crypt

r = AEADDecrypt(kaead, r, r);

if decryption fails, return failure.

4. If Coin was generated in a mint transaction, parse the recipient data r =
(d, k,m); otherwise, parse r = (a, ι, v, d, k,m).

5. Check that K = Hk(k)Hdiv(d), and return failure otherwise.

6. Check that C = Com3(a, ι, v,Hval(k)), and return failure otherwise.

7. Decrypt the diversifier i = SymDecrypt(SymKeyGen(s1), d).

8. Check that

S = Com2(Hser(k), 0, 0) + Com2(HQ2(s1, i), 0, 0) + P2,

and return failure otherwise.

9. Output (v,m, a, ι, i, k).

3.4 Spend

This algorithm allows a recipient to generate a transaction that consumes coins
it controls, and generates new coins destined for arbitrary public addresses. A
spend transaction spends coins of two asset types separately: one is a generic
asset type a = a′ for some a′, and the other is the base asset type a = 0. This
ensures that fees can be denominated consistently and publicly. It is required
that all consumed and generated coins of type a = a′ share a common identifier
ι = ι′ for some ι′, and that all generated coins of type a = 0 have identifier
ι = 0.

The transaction also includes a transparent fee f and optional transparent
output value v that are included in the base asset balance.

It is assumed that the recipient has run the Recover algorithm on all coins
that it wishes to consume in such a transaction.

Inputs:

• A full view key addrfull

• A spend key addrsk
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• A set of N input coins InCoins as a cover set, each of which was generated
in a previous valid transaction

• A set of indexes in InCoins, serial numbers, tags, values, and nonces

{lu, su, Tu, vu, ku}w+w′−1
u=0 such that the [0, w)-subset corresponds to base

coins with a = 0 to spend and the [w,w′)-subset corresponds to generic
coins of a common type a′ to spend

• An integer fee value f ∈ [0, vmax) and optional transparent output value
v ∈ [0, vmax)

• A set of output coin public addresses, values, and memos:

{addrpk,j , vj ,mj}t+t′−1
j=0

such that the [0, t)-subset corresponds to base coins with a = 0 to generate
and the [t, t′)-subset corresponds to coins of type a′ to generate

Outputs: Spend transaction txspend

1. Parse the required full view key component D from addrfull.

2. Parse the spend key addrsk = (s1, s2, r).

3. Parse the cover set serial number commitments and value commitments
{(Si, Ci)}N−1

i=0 from InCoins.

4. For each u ∈ [0, w + w′ − 1):

(a) Compute the serial number commitment offset:

S′
u = Com2(su, 0,−Hser′(su, D)) +D

(b) Compute the value commitment offset:

C ′
u = Com3(a, ι, vu,Hval′(su, D))

(c) Generate a parallel one-out-of-many proof:

(Πpar)u = ParProve(pppar, {Si, Ci}N−1
i=0 , S′

u, C
′
u;

(lu,Hser′(su, D),Hval(ku)−Hval′(su, D)))

5. Generate a set OutCoins = {CreateCoin(addrpk,j , vj ,mj , a, ι, 0)}t+t′−1
j=0 of

output coins.

6. Parse the coin value commitments {Cj}t+t′−1
j=0 from OutCoins, where each

Cj is associated to nonce kj .

7. Generate an aggregated range proof for all output coins:

Πrp = RangeProve
(
pprp, {Cj}t+t′−1

j=0 ; {(a, ι, vj ,Hval(kj))}t+t′−1
j=0

)
12



8. Generate a proof that all base-type assets have a = ι = 0:

Πbase = BaseProve
(
ppagg, {C ′

u}w−1
u=0 ∪ {Cj}t−1

j=0;(
{vu,Hval′(su, D)}w−1

u=0 ∪ {vj ,Hval(kj)}t−1
j=0

))
9. Generate a proof that all generic-type coins have the same type and iden-

tifier:

Πtype = TypeProve
(
pptype, {C ′

u}w+w′−1
u=w ∪ {Cj}t+t′−1

j=t ;(
a, ι, {vu,Hval′(su, D)}w+w′−1

u=w ∪ {vj ,Hval(kj)}t+t′−1
j=t

))
10. Generate proofs for balance assertion:

Πbal = RepProve

pprep, H,

w−1∑
u=0

C ′
u −

t−1∑
j=0

Cj − Com3(0, 0, f + v, 0);

w−1∑
u=0

Hval′(su, D)−
t−1∑
j=0

Hval(kj)



Πbal′ = BalanceProve

ppbal,

w+w′−1∑
u=w

C ′
u −

t+t′−1∑
j=t

Cj ;(w′ − t′)a, (w′ − t′)ι,

w+w′−1∑
u=w

Hval′(su, D)−
t+t′−1∑
j=t

Hval(kj)


11. Define the following binding hash:

µ = Hbind(InCoins,OutCoins, {S′
u, C

′
u, Tu, (Πpar)u, }

w+w′−1

u=0 ,

Πbase,Πrp,Πbal,Πbal′ ,Πtype, f, v)

12. Generate a modified Chaum-Pedersen proof, where we additionally bind
µ to the initial transcript:

Πchaum = ChaumProve((ppchaum, µ), {S′
u, Tu}w+w′−1

u=0 ;

({su, r,−Hser′(su, D)}w+w′−1
u=0 ))

13. Output the tuple:

txspend = (InCoins,OutCoins, f, v, {S′
u, C

′
u, Tu, (Πpar)u}

w+w′−1

u=0 ,

Πbase,Πrp,Πbal,Πbal′ ,Πtype,Πchaum)

Transaction verification is modified in a straightforward manner to verify
the relevant proofs.
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4 Efficiency

We briefly outline the efficiency of Spats compared to the original Spark pro-
tocol. Table 1 shows the change in size of mint transaction components, and
Table 2 shows the change in size of spend transaction components. We assume
that asset type representations are restricted to τa bytes, and that identifier
representations are restricted to τι bytes.

Component ∆G ∆F ∆ bytes
a τat

′

ι τιt
′

Total (τa + τι)t
′

Table 1: Mint transaction size change by component (t′ generated generic-type
coins)

Component ∆G ∆F ∆ bytes
Πrp 2
Πbal′ 1 3
Πbase 2 2
{rj} (τa + τι)t

′

Πtype 2 6
Total 5 13 (τa + τι)t

′

Table 2: Spend transaction size change by component (t′ generated generic-type
coins)

A mint transaction with t′ generated generic-type coins increases by (τa+τι)t
′

bytes. A spend transaction with t′ generated generic-type coins increases by
576 + (τa + τι)t

′ bytes, if we assume a 32-byte representation for group and
scalar elements.

5 Ownership of non-fungible tokens

5.1 Overview

A common requirement for the use of non-fungible tokens is that the entity
controlling the token be able to prove ownership.

In the case of non-private transaction protocols, this is typically straightfor-
ward, as token ownership can be viewed on a public ledger, and the owner can
sign arbitrary messages with a key associated to its address.

For private transaction protocols like Spats, ownership is more complex.
This is in part because token transfers are not publicly associated with ad-
dresses on a ledger. Further, the spend status of tokens is generally unknown
without external information; this means that even if a token owner proves that
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a particular transaction transfers control of a token to it, a verifier cannot be
certain that the token was not later transferred elsewhere.

We take an approach similar to the Spark authorizing proof in [12], which
proves knowledge of the spend key corresponding to a coin’s destination address
in zero knowledge, and also asserts that a given tag binds uniquely and correctly
to the coin. Unlike the authorizing proof, which operates on a re-randomized
version of the coin’s serial commitment to avoid linking directly to the coin, we
will produce a proof that operates on the serial commitment directly.

By providing such a proof (and the tag), a token owner can assert ownership
in zero knowledge. After verifying the proof against statement values from
its own view of the ledger, the verifier can check its list of tags revealed in
transactions. If it sees the token tag in this list, the ownership proof is invalid,
as the prover has transferred the token; otherwise, it is valid.

The prover also provides a claimed asset type and identifier for the token,
and proves in zero knowledge that these are correctly bound to the token via
the corresponding coin’s value commitment, and that the value bound to this
commitment is v = 1.

We note an important downside to this approach to ownership assertion.
Once the verifier knows the tag corresponding to the token, it can continue to
watch the ledger for this tag. If it sees the tag in a later valid transaction, it
knows the transaction corresponds to a transfer of the token. However, the ver-
ifier will be unable to determine the destination of the transfer without external
information.

5.2 Proving system

For convenience, let s = Hser(k) +HQ2
(s1, i) + s2. Then recall from [12] that

a coin serial commitment is of the form S = Com2(s, r, 0). Here s1 and s2 are
part of the owner’s view key, and r is part of the owner’s spend key. Further,
recall that the coin’s tag is the unique value T such that U = sT + rG for
globally-fixed generators U and G.

Consider the following relation, where we assume the public parameters used
in Spats:

{S,C, T, a, ι; (s, r,m) :

S = Com2(s, r, 0), U = sT + rG,C = Com3(a, ι, 1,m)}

Note that a sigma protocol for this relation can be easily constructed as a
conjunction of a modification of the Chaum-Pedersen-type proving system used
for authorizing proofs in [12] (for the first two conditions in the relation) and a
Schnorr-type sigma protocol (for the last relation). We omit the details here.

Such a sigma protocol may be made non-interactive using the Fiat-Shamir
technique, and bound to an arbitrary message. This allows a prover to provide
a context-dependent proof of ownership to the verifier.
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