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Abstract. Numerous cryptographic applications require efficient non-
interactive zero-knowledge proofs of knowledge (NIZK PoK) as a build-
ing block. Typically they rely on the Fiat-Shamir heuristic to do so, as
security in the random-oracle model is considered good enough in prac-
tice. However, there is a troubling disconnect between the stand-alone
security of such a protocol and its security as part of a larger, more com-
plex system where several protocols may be running at the same time.
Provable security in the universal composition (UC) model of Canetti
is the best guarantee that nothing will go wrong when a system is part
of a larger whole. In this paper, we show how to achieve efficient UC-
secure NIZK PoK in the global random-oracle model of Canetti, Jain,
and Scafuro.

1 Introduction

Non-interactive zero-knowledge proofs of knowledge (NIZK PoK) [6, 26, 41] form
the basis of many cryptographic protocols that are on the cusp of widespread
adoption in practice. For example, the Helios voting system [1] and other effi-
cient systems employing cryptographic shuffles [45] use zero-knowledge proofs of
knowledge to ensure that each participant in the system correctly followed the
protocol and shuffled or decrypted its inputs correctly. Anonymous e-cash [10]
and e-token [9] systems use them to compute proofs of validity of an e-coin or
e-token. In group signatures [16, 2] they are used to ensure that the signer is
in possession of a group signing key. In anonymous credential constructions [11,
12], they are used to ensure that the user identified by a given pseudonym is in
possession of a credential issued by a particular organization.

The non-interactive aspect of NIZK PoK is especially important to most of
these applications—it enables a prover to form a proof of some attribute for a
general verifier rather than forcing the prover to talk to each verifier individually,
which is inefficient in most cases and infeasible for some applications (e.g. those
performed on the blockchain). It is also extremely important that the NIZK PoK
be efficient. Thus, the constructions cited above use efficient Σ-protocols [24]
made non-interactive via the Fiat-Shamir heuristic [27] to instantiate the NIZK
PoK in the random-oracle model (ROM) [4]. Recall that a Σ-protocol for a
relation R is, in a nutshell, a (1 − negl)-sound honest-verifier three-move proof
system in which the single message from the verifier to the prover is a random
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`-bit string. The Fiat-Shamir transform makes it non-interactive by replacing
the message from the verifier by the output of the random oracle (RO).

Recently, a better understanding of how such NIZK PoK fare in the concur-
rent setting emerged [43, 25, 5, 37]. Allowing for secure concurrent executions is
of vital importance for the real-world application of any of the cryptographic pro-
tocols mentioned above, especially for distributed protocols where participants
can join or leave at any time. But Drijvers et al. [25] demonstrated subtleties
in the proofs of security for concurrent protocol executions that often go unde-
tected, leaving building-block cryptographic protocols vulnerable to attacks like
Wagner [43] and Benhamouda et al.’s exploitation of the ROS problem [5].

One way to circumvent the unique subtleties of composing cryptographic
primitives is to prove that each primitive is universally composable (UC-secure)
using Canetti’s universal composition (UC) framework [17]. In the UC frame-
work, the security of a particular session of a protocol is analyzed with respect to
an environment, which represents an arbitrary set of concurrent protocols. The
environment in the UC framework can talk to and collude with the traditional
idea of an “adversary” in cryptographic protocols, directing it to interfere with
the protocol. However, the original UC framework did not provide a mechanism
for parties in different settings to use a shared global functionality, including
shared state, a shared RO or common reference string (CRS). In real-world
applications—and especially in complex decentralized systems—it is virtually
guaranteed that parties will share setup and state between sessions.

To address the issue of shared state and concurrency in the UC framework,
Canetti et al. developed the general UC (GUC) framework, which considers
“global” functionalities G that can be queried by any party in any session at any
time, including the environment [18]. This model is more general than the earlier
“universal composition with joint state” (JUC) model developed by Canetti
and Rabin [20]. Canetti et al. later showed several practical applications of the
GUC framework with a global RO GRO as the only trusted setup, including
commitment, oblivious transfer, and secure function evaluation protocols, all
GUC-secure in the GRO-hybrid model [19].

Thus, the GRO-hybrid model is an attractive one for constructing and ana-
lyzing practical and provably secure non-interactive zero-knowledge proofs. Ob-
taining an efficient NIZK PoK (for a relation R) in the GRO-hybrid model from
an efficient Σ-protocol (for the same relation) seems like a natural goal. Unfortu-
nately, Canetti et al. point out that it is not possible to construct ZK PoK in less
than two rounds of communication using only a global functionality, due to the
fact that there is no way for the simulator in the security experiment to exercise
control over it, for instance by programming the RO or having a trapdoor to
the CRS [19, 38]. Therefore, we set our sights on the combined GRO-CRS hybrid
model.

The GRO-CRS hybrid model is a good compromise for the analysis of NIZK
PoK in the GUC framework. While the CRS is technically a local functionality
(and therefore subject to the same rigid separation as local functionalities in the
original UC model), Canetti et al.’s results on GUC-secure computation with a
global RO [19] would enable parties to pre-compute the CRS for their session
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using only GRO. This would offload the computation to a one-time cost at the
beginning of a protocol session, which could cover an entire system of protocols
involving NIZK PoK among various parties. Notably since the environment in
the GUC framework is allowed to spawn arbitrary parties to take part in any
session, the security of the pre-computed CRS is maintained with participant
turnover—parties would not need to recompute the CRS or start a new session
every time a party joined or left the session.

In this work, we ask the question, “what kind of composable security guar-
antees can we get for Σ-protocols in a setting where all parties share the same
random oracle?” We answer by introducing a GUC-transform that takes any
Σ-protocol and turns it into a non-interactive, GUC-secure NIZK PoK in the
GRO-CRS hybrid model. In other words, we show that any Σ-protocol can be
made to emulate, or GUC-realize, the desired ideal functionality of a NIZK PoK
in the GRO-CRS hybrid model. While traditionally Σ-protocols are statistical
zero-knowledge, we show that our transform still works in the case that the
underlying Σ-protocol is only computational zero-knowledge. The efficiency of
our construction reduces to the efficiency of the Fischlin transform [28], which
requires only a linear increase in the size of the proofs for small multiplicative
and additive constants.

In the remainder of the introduction, we provide general background infor-
mation about Σ-protocols, the GUC framework, the GRO-hybrid model, and the
Fischlin transform, discuss our contributions, and present the organization of
the rest of the paper.

1.1 Σ-Protocols

A Σ-protocol for a relation R is a three-round, public-coin proof system. On
input x and w such that (x,w) ∈ R, the prover generates his first message com

(in the literature on Σ protocols, this first message is often referred to as a
“commitment”). In response, the honest verifier sends a unique `-length random
“challenge” chl to the prover. Finally, the prover “responds” with a value res.
The resulting transcript (com, chl, res) is then fed to a verification algorithm
that determines whether the verifier accepts or rejects.

Σ-protocols must additionally satisfy three properties. First, they must sat-
isfy completeness: if the prover has a valid witness and both parties engage in
the protocol honestly, the verifier always accepts. Next, they must be special
honest-verifier zero-knowledge: there must exist a simulator algorithm that on
input x and chl ∈ {0, 1}` outputs an accepting transcript (com, chl, res) for x
such that, if chl was chosen uniformly at random, (com, chl, res) is statistically
indistinguishable from that output by an honest verifier on input x.

Finally, it must have special soundness: if there are two accepting transcripts
for any statement with the same commitment com but different challenges, there
exists an extractor algorithm that can produce a valid witness from the tran-
scripts. The stronger version, special simulation soundness, says that special
soundness must still hold even if an adversary has seen polynomially-many proofs
from the simulator. The purpose of the special soundness property is to afford
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the verifier security against a cheating prover, who might try to prove a state-
ment for which it does not know a witness. This is a variant of the “proof of
knowledge” property, which quantifies what it means for a prover to “know” a
witness [31, 3].

The Σ-protocol format captures many practical zero-knowledge proof sys-
tems. For example, Wikström [45] shows Σ-protocols for proving a rich set of
relations between ElGamal ciphertexts, which in turn allow proving that a set
of ciphertexts was shuffled correctly; similar protocols exist for Paillier cipher-
texts [21, 15]. A rich body of literature exists giving Σ-protocols for proving that
values committed using Pedersen [39] and Fujisaki-Okamoto [29] commitments
satisfy general algebraic and Boolean circuits [8, 13, 14] and lie in certain integer
ranges [7, 35]. For all the Σ-protocols listed above, the size and complexity of
the proof system is a O(1) factor of the complexity of verifying the underly-
ing relation R(x,w), making Σ-protocols extremely desirable in practice. These
Σ-protocols (and their Fiat-Shamir non-interactive counterparts) are used in
numerous cryptographic protocols (as discussed above) and also made their way
into implementations such as Idemix and Hyperledger.

Σ-protocols are also the most efficient technique to achieve zero-knowledge
proofs of knowledge of a commitment opening in the lattice setting [36, 23], where
the complexity grows by a factor of O(k) in order to achieve soundness (1−2−k).
Thus, for all the relations R cited above, our results immediately yield the most
efficient known GUC-composable NIZK PoK in the GRO-CRS hybrid model.

1.2 The General Universal Composability (GUC) Model

Our security experiment is that of the GUC model of Canetti et al. [18], which
enables the UC-security analysis of protocols with global functionalities.

Briefly, the UC and GUC modeling of the world envisions an adversarial
environment Z, which provides inputs to honest participants, observes their
outputs, and (on a high level) directs the order in which messages are passed
between different system components. Additionally, the world includes honest
participants (that receive inputs from Z and let Z observe their outputs) and
adversarial participants whose behavior is directed by Z.

The ideal world additionally contains an ideal functionality F . In the ideal
world, the honest participants pass their inputs directly to F and receive output
from it. The real world does not contain such a functionality; instead, the honest
participants run a cryptographic protocol. There are also worlds in between these
two: in a G-hybrid world, the honest participants run a protocol that can make
calls to an ideal functionality G. In the GUC model, G is accessible not only to
the honest participants, but also to Z.

A cryptographic protocol (G)UC-emulates a functionality F if for any real-
world adversary A there exists an “ideal” adversary S (also called the simu-
lator), which creates a view for the environment (in the ideal world) that is
indistinguishable from its view in the cryptographic protocol.

In our case, the ideal functionality is the ideal NIZK PoK functionality, or
FNZP, which works as follows. An honest participant can compute a proof π of
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knowledge of w such thatR(x,w) by querying FNZP’s Prove interface and giving it
(x,w). The string π itself is computed according to the algorithm Simulate pro-
vided by the ideal adversary S. The functionality guarantees the zero-knowledge
property because Simulate is independent of w. An honest participant can also
verify a purported proof π for x by querying FNZP’s Verify interface and giving
it (x, π). FNZP ensures the soundness of the proof system as follows: if the proof π
was not issued by F , then it runs an extractor algorithm Extract provided by S
to try to compute a witness w from the proof π. Extract may require additional
inputs that may need to be supplied by S as well.

In the ideal world, the ideal adversary S has two functions. First, it specifies
the algorithms that the ideal functionality will use in order to create responses for
the honest parties, i.e., simulate proofs of statements, and extract witnesses from
adversarially-created proofs. Second, it serves as the communication channel
for the corrupted parties: all communications going in to and coming out of
corrupted parties are passed through S. This is the “ideal” version of A who,
in the real-world model, serves as the communication channel between Z and
the corrupted parties. Of course in order to avoid tipping off the environment,
S cannot treat Z’s instructions to the corrupted parties any differently than A
would. It can, however, pass the communications of the corrupted parties—and
specifically the parties’ queries to the RO—to the ideal functionality through
a private channel upon request. As an added constraint, we allow only non-
adaptive corruptions—that is, the environment must decide at the time of a
party’s initialization whether or not it is corrupted.

In Canetti’s original UC framework [17], all communications between in-
stances of ITMs are passed through a special controller that determines whether
the communication is valid in the model of analysis. For example in the standard
UC model, Z can only control participants and direct inputs corresponding to a
particular session identifier (SID) s—any message between Z and a party with
sid 6= s is rejected. In the GUC model, Z is allowed to engage with participants
under any SID and in particular query a global functionality, for instance GRO,
under any SID. The global functionality answers the queries of all parties in all
sessions in both real and ideal experiments. For a full specification of the GUC
model, we refer readers to Canetti et al. [18].

1.3 The Global Random Oracle GRO

As defined by Canetti, Jain, and Scafuro [19], the global functionality [18] GRO
is a public, universally-accessible RO that can be queried by any party in any
protocol execution, including by the arbitrary concurrent protocols modeled by
the environment in the UC framework. Significantly, GRO allows us to capture
the realistic scenario in which the same RO is reused by many parties over many
executions in numerous distinct protocols. The global ROM is both more general
and affords stronger security guarantees than the traditional ROM.

Like in the traditional ROM, adversarial queries to GRO are of essential im-
portance in the security experiment. The simulator (ideal adversary) in the secu-
rity proof of a protocol Π emulating an ideal functionality F in the GRO-hybrid
model is able to access the queries of corrupted parties using the same mechanism
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as in the traditional ROM—by monitoring the communication wires between the
corrupted parties and the rest of the experiment. The environment’s queries to
GRO, on the other hand, are not directly monitored by the simulator. Since GRO
is completely public, the environment is free to query it anytime; however, the
environment is not free to query it with the same SID as the participants in Π
or F because it is external to these protocols.

In order to ensure these queries are still available to the simulator, Canetti
et al. designed GRO to check whether the SID for a query matches the SID
of the querying party [19]. In the event that it does not, this query is labelled
“illegitimate.” GRO makes a record of all illegitimate queries available to an ideal
functionality F with the correct SID, if it exists.

We will see that in the case of NIZK PoK, the algorithm that the ideal
functionality F uses to verify proofs can use these queries to extract witnesses.

1.4 The Fischlin Transform

The Fischlin transform [28] is a non-interactive transform for Σ-protocols that
allows for straight-line (or online) extraction, a process by which the extractor
can produce a witness straight from a proof that passes verification without any
further interaction with the prover. (In order to do so, it will need additional,
auxiliary information available to the extractor algorithm only.) This is in con-
trast to extraction in the “rewinding” model, in which the extractor resets the
adversarial prover to a previous state and hopes for a certain pattern of interac-
tion before a witness can be output. Straight-line extraction is necessary in the
UC framework because it is structurally infeasible to rewind the environment
(the definition of the UC framework simply does not allow it). Furthermore,
straight-line extraction produces a tight reduction, which avoids security nu-
ances surrounding the forking lemma [30].

In order to create a straight-line extractable proof system from a Σ-protocol,
the Fischlin transform essentially forces the prover to rewind itself, requiring
multiple proofs on repeated commitments until the probability that the prover
has generated at least two responses to different challenges on the same commit-
ment is overwhelming. We describe the process informally below, and include
Fischlin’s original definition in Appendix A.5.

First, the prover generates a vector of r commitments, where r is a parameter
of the system. For each commitment, the prover iterates through each t-bit
challenge 0, 1, . . . , 2t−1, computes responses, and queries the RO on the complete
transcript until it finds one that causes the RO to return a value with b leading
zeroes, where t and b are also parameters. If the prover does not find such a
response, it chooses the transcript such that, on input this transcript, the RO
returns the smallest value in lexicographic order.

In the end, the prover sends only the responses with minimal return values
for each of the r repetitions to the verifier. The verifier is therefore only able to
see a single transcript for each commitment, and can check the validity of the
transcripts and oracle queries as usual. Since the transform allows the prover
some flexibility in choosing a minimal oracle response value (rather than forcing
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all b bits to be leading zeroes), the verifier checks that the sum of the oracle’s
responses to the transcripts is less than some maximal parameter, S.

The parameters b, r, S, and t are set such that there are guaranteed to be
(with overwhelming probability) two matching transcript queries, (x, com, chl,
res) and (x, com, chl′, res′), with the same commitment but different challenges.

1.5 Our Contributions

Our main contribution is the GUC-transform for Σ-protocols in the GRO-CRS
hybrid model. As a secondary result, we prove that our transform still works
when the underlying Σ-protocol is only computational zero-knowledge. In ad-
dition to our construction, we develop the GRO-CRS hybrid model, which may
be of independent interest when analyzing the composability of more complex
protocols in the global ROM. Throughout the paper we reframe existing def-
initions as algorithms with precise inputs and outputs, making them readily
transformable and compatible with the modularity of the UC framework.

Our transform works as follows. To guarantee the security of the prover’s
witness (and achieve the special honest-verifier zero-knowledge property) with-
out programming GRO, our construction uses an OR-protocol [22, 24], where the
prover proves that either it knows a real witness to a statement, or else it knows
the simulator’s secret trapdoor to the CRS. To guarantee security against a
cheating prover (and achieve the special soundness property) without rewinding
the environment, we leverage Fischlin’s straight-line extractor [28].

In proving our construction GUC-secure in the GRO-CRS hybrid model, we
unearth an interesting nuance about straight-line extraction. Because straight-
line extractors work solely based on the adversary’s previous queries to the RO,
the adversary cannot learn anything new from interacting with the extractor
that it could not compute itself. Unlike decryption oracles in chosen ciphertext
attack experiments, the self-simulatable nature of straight-line extraction means
that adversarial access to an extraction oracle does not impact the rest of the
reduction, and will compose easily with other desirable security properties such
as statistical and computational zero-knowledge. Similar to Fischlin’s observa-
tion that his construction “decouples” the protocol from the RO, we observe
that his construction also decouples the extraction process from the rest of the
reduction.

This decoupling property, and properties of non-rewinding extractors in gen-
eral, are of interest in the quantum random-oracle model (QROM), where rewind-
ing is tricky because of the no-cloning theorem [44, 34]. Notably, Unruh [42] and
Katsumata [33] have developed straight-line extractable transforms in the (pro-
grammable) QROM. A transform similar to ours might leverage these straight-
line extractable transforms to achieve a version of GUC-security for quantum-
secure NIZK PoK in the global (non-programmable) QROM.

Organization. In Section 2, we present notation and preliminary definitions
we will use throughout the paper. We formulate the ideal functionality of NIZK
PoK as well as the GRO-CRS hybrid model in Section 3, followed by our main
construction of straight-line extractable OR-protocols and the GUC-transform.
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In Section 4, we prove that our construction GUC-realizes the NIZK PoK func-
tionality in the GRO-CRS hybrid model.

2 Preliminaries

Notation. We use λ for the security parameter, and say an algorithm is efficient
(in λ) if its runtime can be expressed as a polynomial on input λ, or poly(λ). An
efficient algorithm that uses randomness in its computation is called probabilistic
polynomial-time, abbreviated PPT.

By y ← A (x), we mean the output y is obtained by running algorithm A
on input x. By y ← Z where Z is a set or a probability distribution, we mean
an element y sampled from Z. When we enclose a variable y in brackets {y},
we reference the probability distribution over all possible values for y. If two
distributions Y and Z are equivalent, we use the notation Y = Z. If Y and Z
are statistically indistinguishable, we use the notation Y ≈s Z. If Y and Z are
only computationally indistinguishable, we use the notation Y ≈c Z.

A protocol is a collection of algorithms executed by multiple parties. We say
a party is “honest” in its execution of a protocol if it follows the specification
of the protocol. Following the UC framework [17], we model our protocol par-
ticipants as interactive Turing machines (ITMs). Each instance of an ITM has a
unique identity tape including a personal identifier (PID) and a session identifier
(SID). In the spirit of the precision and modularity of the UC model, we distill
the functionalities existing primitives into tuples of algorithms. Where the algo-
rithmic definition is simply a reorganization of an existing definition, we state
the source and provide the original version in the Appendix.

We adopt several assumptions for the convenience of simple notation and
security analysis. To avoid the repeated inclusion of public parameters and state
information in the specifications of algorithms, we assume the calling ITMs are
stateful. When algorithms reference variables that are not explicitly included
as input, we assume these variables were previously initialized (for instance by
some setup algorithm), and are available in memory. Similarly, we assume that
all messages exchanged as part of the security experiment implicitly include
the sender’s PID and SID. Finally, when an algorithm is designed to reject a
request, rather than output nothing and stall the experiment indefinitely, we
use the special “empty” symbol, ⊥.

2.1 Σ-protocols Revisited

Recall from the introduction that Σ-protocols are three-round, public-coin trans-
actions in which a prover “commits” to a value com, the verifier sends a unique
`-length random “challenge” chl to the prover, and the prover “responds” with
a value res that must convince the verifier it knows a value corresponding to
some public statement. If the verifier accepts all of the values (com, chl, res)
as a “proof” of the statement x, it outputs 1 to accept the proof. Otherwise, it
outputs 0 to reject. In this section, we define a “protocol template” τ to precisely
capture this interaction.



UC Σ-protocols in the Global RO Model 9

Recall that Σ-protocols must also satisfy the properties of completeness,
special honest-verifier zero-knowledge, and special soundness. Therefore, the full
definition of a Σ-protocol must not only include specifications of Prove and
Verify algorithms, but also of the Simulate and Extract algorithms required
by the zero-knowledge and soundness properties, respectively. Once the protocol
template is defined, we introduce the Σ-protocol object, which uses the protocol
template τ to specify the Prove and Verify algorithms and additionally includes
specifications of the Simulate and Extract algorithms.

Formally, letR be an efficiently computable binary relation. For pairs (x,w) ∈
R we call x the statement and w the witness. We consider two-party protocols
between a prover P and a verifier V , both efficient ITMs, of the general form
defined by Damg̊ard [24]. Damg̊ard’s original version is in Appendix A.2, and
we present our algorithmic version below.

Definition 1 (Protocol Template). The protocol template for a relation R
is a tuple of efficient algorithms τ = (Setup, Commit, Challenge, Respond,
Verdict), defined as follows.

– ppm ← Setup(1λ): Given a security parameter, generates a set of public
parameters ppm which minimally include the challenge length `.

– com← Commit(x,w): P sends V a message com.

– chl← Challenge(x, com): V sends P a random `-bit string chl.

– res← Respond(x,w, com, chl): P sends V a reply res.

– {0, 1} ← Verdict(x, com, chl, res): V decides to accept (output 1) or reject
(output 0) based on the input (x, com, chl, res).

The tuple (com, chl, res) is called a transcript. A transcript is accepting for x
if Verdict(x, com, chl, res) outputs 1.

A Σ-protocol is a protocol of the form in Definition 1 with the complete-
ness, special honest-verifier zero-knowledge, and special soundness properties.
Since we will later introduce a transform for Σ-protocols to make them GUC-
secure, it will be useful to think of Σ-protocols as well-defined objects that
can be passed as input to a transform. We therefore create the object ΣR =
(Setup, Prove, Verify, Simulate, Extract) that is the precise algorithmic spec-
ification of a Σ-protocol over a relation R. When an algorithm or ITM gets the
object ΣR as input, it gains access to the full specification of each algorithm in
ΣR, defined as follows.

Note that in the following definition, Prove is a two-party protocol between a
prover and a verifier, where the first input to the algorithm is the prover’s input,
and the second input is the verifier’s. After running Prove, which consists of
the template protocol algorithms Commit, Challenge, and Respond, both parties
obtain a copy of the output proof π.

Definition 2 (Σ-protocol). A Σ-protocol for a relation R based on template τ
(see Definition 1) is a tuple of efficient procedures ΣR,τ = (Setup, Prove, Verify,
Simulate, Extract), where Prove is a two-party protocol between P and V and
the rest are algorithms. The procedures are defined as follows.
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– ppm ← Setup(1λ): Given a security parameter 1λ, invoke τ.Setup(1λ) to
obtain ppm.

– π ← Prove((x,w), x): Let the first (resp. second) argument to protocol Prove
be the input of the prover (resp. verifier). P and V run τ.Commit, τ.Challenge,
and τ.Respond. We use π to represent the transcript (com, chl, res).

– {0, 1} ← Verify(x, π): V runs τ.Verdict on input (x, com, chl, res). The
completeness property requires that if (x,w) ∈ R and π ← Prove((x,w), x),
Verify(x, π) = 1.

– π ← Simulate(x, chl) : For every x and w such that (x,w) ∈ R and every
chl ∈ {0, 1}`, the special honest-verifier zero-knowledge property requires
that for all π′ ← Simulate(x, chl) and π ← Prove((x,w), x) where V ’s
random tape is chl, {π′} ≈s {π}, where {π′} (resp. {π}) is the distribution
of proofs made by the simulator (resp. prover).

– w ← Extract(x, com, chl, chl’, res, res’) : The special soundness property
requires that as long as chl 6= chl’, τ.Verdict(x, com, chl, res) = 1, and
τ.Verdict(x, com, chl’, res’) = 1, Extract outputs w such that (x,w) ∈ R.

For convenience, we drop τ from the notation and use ΣR to represent ΣR,τ .

The non-interactive version of a Σ-protocol is almost the same as a regular
Σ-protocol, except Prove is an algorithm executed solely by the prover. The first
non-interactive transform for Σ-protocols was given by Fiat and Shamir [27] and
proven secure in the ROM by Pointcheval and Stern [40]. Fischlin’s transform
[28] uses the RO differently, but draws on the work of Fiat and Shamir. We
present a version of the Fiat-Shamir transform for our model in Appendix A.4.

Significantly, non-interactivity in the global ROM makes the proof tuple
(x, π) universally verifiable. Following Canetti et al., we note that the universal
verifiability property makes all non-interactive proofs in the global ROM inher-
ently transferable [19]. The special soundness property, however, still guarantees
that a cheating prover produce a fresh proof of a statement.

2.2 OR-protocols

In this section, we introduce the interactive version of a Σ-protocol that we will
need for our construction, called an OR-protocol [22, 24]. Rather than producing
a proof corresponding to a single statement x, the prover in an OR-protocol
proves that it knows a witness for either one statement x0 or another statement
x1. At a high level, the prover does this by simulating the proof of the statement
for which it does not have a witness, while computing the proof of the statement
for which it does have a witness honestly. The original idea, introduced as “proofs
of partial knowledge” by Cramer et al. [22] and again formalized for Σ-protocols
by Damg̊ard [24], works as follows.

Given both statements x0, x1 and a witness wb for one of the statements xb,
the prover first samples a random challenge chl1−b to correspond to the state-
ment for which it does not have a witness, x1−b. It then invokes the Simulate
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algorithm on input (x1−b, chl1−b) to obtain the entire simulated proof transcript
(com1−b, chl1−b, res1−b). The prover then forms the first message commitment
comb for xb honestly according to the Commit algorithm, and sends the tuple
(com0, com1) to the verifier, who returns the overall protocol challenge CHL.

Once it receives CHL from the verifier, the prover sets the second individual Σ-
protocol challenge chlb = chl1−b⊕CHL. Note this step “fixes” the challenge chlb
such that the prover cannot cheat and simulate the proof of both statements.
Given chlb, the prover can compute resb according to the Respond algorithm.
Finally, the prover sends both transcripts (com0, chl0, res0) and (com1, chl1, res1)
to the verifier, who checks that both are transcripts are valid and also that
chl0 ⊕ chl1 = CHL.

As is, the definition of Damg̊ard (provided in Appendix A.3) does not ex-
plicitly state which template or Σ-protocol specification the prover uses at each
step of the protocol execution. Since the proofs of statements x0 and x1 are
computed independently, it is reasonable to consider the case in which x0 and
x1 are associated with different relations, protocol templates, and Σ-protocols.

In the spirit of a fully modular design, we consider the more general case
where R0 and R1 are independent. Our version of the OR-protocol therefore
depends on two different Σ-protocols ΣR0 and ΣR1 , allowing the prover to dif-
ferentiate its instructions depending on the witness it has. For example, if the
prover has wb for a statement xb, it would use the Simulate algorithm of ΣR1−b

to obtain the transcript for x1−b, then use the algorithms in the protocol tem-
plate τRb

to generate the transcript for xb.
In order to keep the notation consistent with Σ-protocols and avoid variable

clutter, we use capital letters to represent compound objects as follows. The
statement X to be proven in an OR-protocol consists of a tuple representing
both statements x0 and x1, or X = (x0, x1). The compound proof Π is a tuple
including π0 = (com0, chl0, res0) and π1 = (com1, chl1, res1), as well as the
verifier’s challenge, CHL. We write this tuple Π = (π0, π1, CHL).

Similarly, the witness W must include not only the witness w for one of the
statements, but also a bit b indicating the statement to which w corresponds.
In other words, if (x0, w) ∈ R0 then b = 0 and the witness tuple W = (w, 0).
Otherwise if (x1, w) ∈ R1, then b = 1 and the tuple W = (w, 1). In the spe-
cial case that W is returned from the extractor, we let W = (w0, w1), with the
acknowledgement that only one of the witnesses produced by the Extract oper-
ation must be legitimate—either R0(x0, w0) = 1 or R1(x1, w1) = 1. The formal
specification is as follows.

Definition 3 (OR-Protocol). An OR-protocol for a relation ROR = R0 ∨R1

based on Σ-protocols ΣR0
and ΣR1

(see Definition 2) is a tuple of procedures
ΣOR = (Setup, Prove, Verify, Simulate, Extract) defined as follows.

– ppm ← Setup(1λ): Given a security parameter 1λ, run ΣR0
.Setup(1λ) to

obtain ppm0 and ΣR1
.Setup(1λ) to obtain ppm1. Return ppm = (ppm0, ppm1).

– Π ← Prove(X,W ): Parse X = (x0, x1) and W = (w, b), and let b be the bit
such that (xb, w) ∈ Rb. Execute the following:



12 A. Lysyanskaya and L. Rosenbloom

• Com← Commit(X,W ): P computes comb according to τRb
.Commit(xb, w).

P chooses chl1−b at random and generates (com1−b, chl1−b, res1−b) by
running ΣR1−b

.Simulate(x1−b, chl1−b). P sends V Com = (com0, com1).

• CHL← Challenge(X, Com): V sends P a random `-bit string CHL.

• Res← Respond(X,W, Com, Chl): P sets chlb = CHL⊕ chl1−b and com-
putes resb according to τRb

.Respond(xb, w, comb, chlb). P sends (Chl, Res)
= (chl0, chl1, res0, res1) to V .

The output “proof” Π is a tuple (π0, π1, CHL), where πb = (comb, chlb, resb).

– {0, 1} ← Verify(X,Π): Parse Π as (π0, π1, CHL), where πb = (comb, chlb, resb).
Execute the following:

• {0, 1} ← Verdict(X, Com, Chl, Res): If τR0 .Verdict(x0, com0, chl0, res0)
= 1 and τR1 .Verdict(x1, com1, chl1, res1) = 1, return 1 (accept). Oth-
erwise, return 0 (reject).

If Verdict(X, Com, Chl, Res) = 1 and chl0⊕chl1 = CHL, output 1 (accept).
Otherwise, output 0 (reject).

– Π ← Simulate(X, CHL) : Parse X = (x0, x1). Generate chl0 uniformly at
random and set chl1 = chl0 ⊕ CHL. Obtain π0 by running
ΣR0

.Simulate(x0, chl0) and π1 by running ΣR1
.Simulate(x1, chl1). Return

Π = (π0, π1, CHL).

– W ← Extract(X, Com, Chl, Chl’, Res, Res’, CHL, CHL’): Given two “accept-
ing transcripts” (Com, Chl, Res, CHL) and (Com, Chl’, Res’, CHL’), parse X
as (x0, x1), Com as (com0, com1), . . . , and Res′ as (res′0, res

′
1). Obtain w0

by running ΣR0 .Extract(x0, com0, chl0, chl
′
0, res0, res

′
0) and w1 by running

ΣR1 .Extract(x1, com1, chl1, chl
′
1, res1, res

′
1). Return W = (w0, w1).

Theorem 1. Given Σ-protocols ΣR0
for a relation R0 and ΣR1

for relation R1,
the protocol ΣOR is a Σ-protocol for relation ROR = R0∨R1. Moreover, for any
verifier V ∗, the probability distribution of conversations between P and V ∗ where
w is such that (xb, w) ∈ Rb is independent of b.

Proof. We refer the reader to Damg̊ard’s proof [24]. ut

The independence of the bit b creates a property called witness indistin-
guishability, which makes it impossible for the verifier to tell which proof was
computed “honestly” (with the witness wb), and which proof was simulated. As
we will see in the next section, this property will allow us to build a Simulate

algorithm for the non-programmable GRO-CRS hybrid model.

2.3 GRO Revisited

Building on the overview of Canetti et al.’s global RO GRO [19] given in the
introduction, we now present the formal details of its functionality.

As with traditional ROs, GRO responds to each query string x ∈ {0, 1}∗
with a consistent, uniformly random, and fixed-length string v ∈ {0, 1}`. We call
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this original query algorithm RandQuery, since the caller is querying the oracle
for randomness. In order to keep track of the “illegitimate” queries made by
the environment, all queries must also include the SID for which the query was
issued. GRO then checks to see if the querying party’s SID matches the SID in
the query. If it doesn’t, GRO records the query in the special list of illegitimate
queries for each SID s, denoted Qs. If at any time an ideal functionality F wants
to see the list of illegitimate queries for s, GRO checks whether F is indeed the
correct functionality for s. If it is, GRO returns the list Qs. Otherwise it returns
⊥. We call this type of query algorithm IllQuery, since the caller is querying
the oracle for illegitimate queries.

Our definition is notationally different but functionally identical to Canetti
et al.’s [19], which is available in Appendix A.8. Recall that in order to avoid
messy notation, the query to GRO is assumed to include the querying party’s PID
and SID. GRO is also assumed to maintain state, which in this case includes the
output length `, ideal functionality list F , query list Q, and illegitimate query
lists Qsid for all sid.

Definition 4 (Global Random Oracle). The global random oracle (global
RO) GRO is a tuple of algorithms (Setup, RandQuery, IllQuery) defined as fol-
lows.

– ⊥ ← Setup(1`,F) : Set the output length of RandQuery to be `. Store the list
of ideal functionalities F .

– v ← RandQuery(x) : Parse x as (s, x′) where s is an SID. If the caller’s
SID 6= s, add (x, v) to the list Qs of illegitimate queries for s. If there
already exists a pair (x, v) in the query list Q, return v. Otherwise, choose v
uniformly at random from {0, 1}`, store the pair (x, v) in Q, and return v.

– Qs ← IllQuery(s) : If the caller’s PID is in the list of ideal functionalities
F and its SID = s, return Qs. Otherwise, output ⊥.

For convenience, the default query GRO(·) to GRO is shorthand for RandQuery(·).

3 Construction

Our construction takes any interactive Σ-protocol and transforms it into a non-
interactive GUC-secure Σ-protocol. Because of the impossibility of proving the
GUC-security of non-interactive Σ-protocols using only a global setup [38, 18,
19], we prove the security of our construction in a hybrid model that combines
the global RO functionality with a local CRS functionality. In short, we use the
local CRS to give our simulator the minimal “special power” needed to simulate
NIZK PoK in the global ROM. Importantly, special knowledge about the CRS is
restricted to the simulator—all of the “real world” parties executing the protocol
prove statements using real witnesses.

The organization of this section is as follows. First, we specify the NIZK PoK
ideal functionality, which captures the special honest-verifier zero-knowledge and
special soundness properties of Σ-protocols. Next, we introduce the GRO-CRS
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hybrid model, which is a combination of the global RO and local CRS functional-
ities discussed above. Finally, we compose all of the building blocks from Section
2 to obtain a straight-line extractable OR-protocol, which we use as the basis
for our GUC-transform. In the next section, we will prove that our construction
GUC-realizes the NIZK PoK functionality in the GRO-CRS hybrid model.

3.1 NIZK PoK Ideal Functionality

In the “ideal” world, honest parties executing the Σ-protocol are “dummy par-
ties” who do not perform any computations of their own. Instead, they pass all
of their inputs to an ideal functionality FNZP, who instructs them on how to re-
spond. As is standard in the UC framework [17], there is one ideal functionality
for each SID s. A dummy party with SID s can only send input and receive
output from the FNZP with the same SID, denoted FsNZP.

In our setting, each FsNZP will need to process proofs and verifications of the
Σ-protocols from Definition 2. Recall that the proofs must be zero-knowledge
(satisfying the special honest-verifier zero-knowledge property) and also proofs of
knowledge (satisfying the special soundness property). These properties require
the construction of a special honest-verifier zero-knowledge simulator algorithm
Simulate and a special soundness extractor algorithm Extract, respectively.

Note that in the following definition, there are two conditions in which FNZP

can output Fail. The first is if the Simulate algorithm fails to produce a proof π
of a statement x such that Verify(x, π) = 1. The second is if the Extract algo-
rithm fails to produce a witness w from a non-simulated proof π of a statement
x such that R(x,w) = 1. In our security proof in the next section, we will need
to argue that for our construction, the probability of these failures is negligible
in the security parameter. FsNZP works as follows.

Definition 5 (The NIZK PoK Ideal Functionality). The ideal function-
ality FsNZP of a non-interactive zero-knowledge proof of knowledge (NIZK PoK)
for a particular SID s is defined as follows.

Setup: Upon receiving the request (Setup, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first
time that (Setup, s) was received, pass (Setup, s) to the ideal adversary S, who
returns the tuple (Algorithms, Setup, Prove, Verify, Simulate, Extract) with
definitions for the algorithms FNZP will use. FNZP stores the tuple.

Prove: Upon receiving a request (Prove, s, x, w) from a party P = (pid, sid),
check that sid = s and R(x,w) = 1. If not, output ⊥. Otherwise, compute
π according to the Simulate algorithm and check that Verify(x, π) = 1. If it
doesn’t, output Fail. Otherwise, record then output the message (Proof, s, x, π).

Verify: Upon receiving a request (Verify, s, x, π) from a party P = (pid, sid),
first check that sid = s. If it doesn’t, output ⊥. Otherwise if Verify(x, π) = 0,
output (Verification, s, x, π, 0). Otherwise if (Proof, s, x, π) is already stored,
output (Verification, s, x, π, 1). Otherwise, compute w according to the Extract
algorithm. If R(x,w) = 1, output (Verification, s, x, π, 1) for a successful ex-
traction. Else if R(x,w) = 0, output Fail.
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3.2 The GRO-CRS Hybrid Model

In order to enable FNZP to simulate proofs of statements without real witnesses, it
will need some minimal “special power” that a real prover does not have. Because
GRO is not programmable, the traditional “special power” of the simulator in
the RO model—getting the challenge in advance then programming the RO to
output that challenge for the desired commitment—will not work. Instead, we
will give our simulator the trapdoor to a local CRS, and have provers prove that
either they know a “real” witness to the statement x0, or they know a trapdoor
to the CRS. Since our construction uses an OR-protocol, we must be able to
interpret the CRS as a statement x with a corresponding trapdoor witness w
such that the pair (x,w) satisfies some binary NP relation S.

In the “real” world, there is no CRS trapdoor—only a CRS “ideal function-
ality” for SID s that returns the CRSs to any querying party with SID s. In
practice, parties might use secure multi-party computation to generate a CRS
for each session in a way that guarantees the CRS is truly random and that
no party can compute a trapdoor. As mentioned in the introduction, Canetti et
al. [19] showed this can be done in the GRO-hybrid model without trusted setup.

We first present the ideal CRS functionality for an SID s, which relies on
a generic “GenCRS” algorithm, and then we discuss the properties that GenCRS

must have in order to satisfy the requirements of our construction.

Definition 6 (The CRS Ideal Functionality). The ideal functionality FsCRS
of a common reference string (CRS) for a particular SID s and generation mech-
anism GenCRS is defined as follows.

Query: Upon receiving a request (Query, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Query, s) was received, compute x according to the algorithm GenCRS and
store the tuple (CRS, s, x). Return (CRS, s, x).

In order to produce a CRS that can function as a statement in an OR-
protocol, the GenCRS algorithm in our construction must generate the CRS as a
statement x in a language over some relation S, with a corresponding witness w
such that S(x,w) = 1. Efficiency dictates that the GenCRS algorithm must be able
to efficiently generate the CRS and trapdoor (or statement-witness) pair, while
security dictates that the trapdoor (witness) should not be efficiently computable
from the CRS (statement). We call a relation that satisfies the efficiency property
samplable and a relation that satisfies the security property hard. The intuition
is similar to that of Fischlin’s one-way instance generator [28].

Definition 7 (Samplable Hard Relation). A binary NP relation S is sam-
plable and hard with respect to a security parameter λ if it has the following
properties.

1. Sampling a statement-witness pair is easy. There exists a sampling
algorithm κS that on input 1λ outputs (x,w) such that S(x,w) = 1 and
|x| = poly(λ).
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2. Computing a witness from a statement is hard. For a randomly sam-
pled statement-witness pair (x,w)← κS(1λ) the probability that an efficient
adversary A can find a valid witness given only the statement is negligible.
Formally, for all PPT A ,

Pr[(x,w)← κS(1λ), w′ ← A (1λ, x, κS) : (x,w′) ∈ R] ≤ negl(λ).

Finally, we require that the relation S underlying the CRS has an efficient
corresponding Σ-protocol that can be used as part of the OR-protocol.1 We call
such a relation a Σ-friendly relation.

Definition 8 (Σ-Friendly Relation). A Σ-friendly relation S is a binary NP
relation with a corresponding efficient Σ-protocol ΣS.

Therefore, GenCRS for our construction consists of sampling (x,w) using
κS(1λ), where S is a samplable hard, Σ-friendly relation. We combine the local
CRS functionality FCRS based on the above GenCRS mechanism with the global
RO functionality GRO to create the GRO-CRS hybrid model.

Definition 9 (GUC-security in the GRO-CRS Hybrid Model). A protocol
Σ with security parameter λ GUC-realizes an ideal functionality F in the GRO-
CRS hybrid model if for all efficient A , there exists an ideal adversary S efficient
in expectation such that for all efficient environments Z,

IDEALGRO

F,S,Z(1λ, aux) ≈c REALGRO,FCRS

Σ,A ,Z (1λ, aux),

where GRO is the global RO functionality from Definition 4, FCRS is the local CRS
functionality from Definition 6, and aux is any auxiliary information provided
to the environment.

3.3 Straight-Line Extractable OR-protocol

The core of our construction is a straight-line extractable OR-protocol in which a
prover demonstrates using the Fischlin proof technique [28] that it either knows
a witness to a statement, or else it knows the trapdoor to the CRS for its SID.
Before we can apply the Fischlin transform, we need a random oracle that maps
to b bits. Since GRO is global and can be reused for different setups, rather than
alter the output length or introduce a second RO, we construct the truncation
function suggested by Fischlin [28] that maps the output of GRO to b bits by
cutting off all but b bits of the output.

Definition 10 (Bit Truncation Function). The GRO bit truncation function
trunc : {0, 1}` → {0, 1}b maps the `-bit output of GRO to a b-bit output by cutting
off the `− b leading bits.

1 While all relations are guaranteed to have a corresponding Σ-protocol, they are not
necessarily guaranteed to have an efficient one.
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The RO functionality in the straight-line extractable OR-protocol is therefore
a modification of the Fischlin transform where the RO H : {0, 1}∗ → {0, 1}b is
replaced by trunc(GRO) : {0, 1}∗ → {0, 1}b. We apply the modified GRO-Fischlin
transform to the interactive OR-protocol in Definition 3 in order to make it
non-interactive and straight-line extractable. In the following section, we will
instantiate the straight-line extractable OR-protocol using the Σ-protocols ΣR
and ΣS , where ΣR is any Σ-protocol over any relation R, and ΣS is the Σ-
protocol corresponding to the samplable hard, Σ-friendly relation S. We will
demonstrate how to use this OR-protocol in order to achieve a transform that
makes any Σ-protocol ΣR GUC-secure in the global hybrid model.

The straight-line extractable OR-protocol works as follows. The public pa-
rameters ppm set during the Setup algorithm must now include the public pa-
rameters of the underlying OR-protocol ΣOR and the parameters b, r, S, t de-
scribed in the Fischlin transformation [28], as well as the GRO bit truncation
function trunc. The Prove algorithm uses the Fischlin technique with ΣOR as
the underlying Σ-protocol. We again use capital letters for the statements, com-
mitments, challenges, responses, and proofs to denote they are really a pair of
each. The overall Prove process is the same as the process described in Section
1.4 on the Fischlin transform: the prover generates a vector of commitments,
tests challenges until it finds one that causes the RO to return an all-zero (or
else minimal) bit string, and returns a vector of proofs with only one minimal-
return transcript included for each commitment. Similarly, the Verify algorithm
parses and verifies each proof and checks to make sure the sum of the returns
from the RO is less than some maximal value. Since this is an OR-protocol, the
verifier must also check to make sure CHLi = chli0 ⊕ chli1 for i = 1, . . . , r.

In order to simulate proofs, the traditional Fischlin construction relies on the
special honest-verifier zero-knowledge simulator of the underlying Σ-protocol.
For each of the r proofs, the Simulate algorithm samples 2t random b-bit strings
and assigns them to the t-bit challenges 0, 1, . . . , 2t−1. It then picks the challenge
CHLi that maps to the minimal string and runs the simulator ΣOR.Simulate on
input (X, CHL) to obtain the proof Π. Once it has completed this process for all
r proofs, it take the commitment vector Com and programs GRO at each input
(X, Com, i, Chli, Resi, CHLi) to output a random string ending in the b minimal
bits. Note that since GRO is not programmable, we will not be able to use
Fischlin’s simulator in our construction. We will, however, demonstrate that our
simulator is indistinguishable from the simulator that can program GRO.

Finally, the Fischlin extractor relies on a list QP∗ of adversarial provers’
queries to GRO. In our definition of the straight-line extractable OR-protocol,
we give this list as input to the Extract algorithm, and will later demonstrate
in the definition of our GUC-transform how exactly the adversary’s query list is
generated in the GUC model. Given the list and a proof from which to extract,
the algorithm searches the list for two queries with matching commitment vectors
and i values, but different challenges. If it finds two such queries, it runs the
underlying extractor algorithm ΣOR.Extract on the transcripts. Otherwise, if it
cannot find enough information to run the OR-protocol extractor, the Fischlin
extractor outputs Fail.
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Fischlin demonstrates that the success of the simulator is directly propor-
tional to the success of the underlying Σ-protocol simulator, and that with
sufficiently-sized parameters b, r, S, and t the extractor will fail with negligi-
ble probability [28]. We use Fischlin’s results as a key part of our proof in the
next section.

Definition 11 (The Straight-Line Extractable OR-protocol). Let ΣOR
be an interactive OR-protocol with challenge length ` = O(log λ) bits. Then the
straight-line extractable OR-protocol Σ∗OR is a non-interactive, straight-line ex-
tractable transform of ΣOR, defined as follows.

– ppm ← Setup(1λ) : Let b, r, S, t be set according to the Fischlin transform
(see Definition 17 in Appendix A.5 for details). Then the public parame-
ters are ppm = (ppmΣ , b, r, S, t, trunc), where ppmΣ is obtained by running
ΣOR.Setup(1λ) and trunc is the bit truncation function from Definition 10.

– (X,Π) ← Prove(X,W ) : To compute the vector of r commitments Com =
〈Com0, Com1, . . . , Comr〉, the prover repeats the commitment step of ΣOR.Prove
(X,W ) r times. Recall that as part of the OR-protocol commitment step, the
prover generates chl1−b at random. To compute each response Resi, the
prover tests t-bit challenges CHLi as follows. First, it sets chlb = chl1−b ⊕
CHL. Then, it repeats the response step of ΣOR.Prove(X,W ) until it finds
one such that trunc(GRO(X, Com, i, Chli, Resi, CHLi)) = 0b, or else it takes
the minimal over all of the responses. Finally, it returns (X,Π), where
Π = (Π1, . . . ,Πr), and each Πi = (π0i, π1i, CHLi) for 1 ≤ i ≤ r.

– {0, 1} ← Verify(X,Π) : Parse Π = (Π1, . . . ,Πr). The verifier outputs 1
(accepts) if and only if ΣOR.Verify(X,Πi) = 1 and CHLi = chli0 ⊕ chli1
for all 1 ≤ i ≤ r, and

∑r
i=1 trunc(GRO(X, Com, i, Chli, Resi, CHLi)) ≤ S.

Otherwise, the verifier outputs 0 (rejects).

– (X,Π) ← Simulate(X) : For each proof 1 ≤ i ≤ r, sample 2t random
b-bit strings and assign them to the t-bit challenges CHLi ∈ {0, 1}t. Let
µ : {0, 1}t → {0, 1}b represent the map between the challenges and the b-bit
outputs, which are potential outputs of the RO. Let the final challenge for the
ith proof CHLi be the first challenge in lexicographic order to map to the mini-
mal response. Run ΣOR.Simulate(X, CHL) to obtain Πi = (Comi, Chli, Resi).
Repeat this process for all r proofs. For each proof, program the output of GRO
on input (X, Com, i, Chli, Resi, CHLi) to end with the b-bit output µi(CHLi),
and let the ` − b leading bits be random. Finally, output the proof tuple
(X,Π), where Π = (Π1, . . . ,Πr).

– W ← Extract(X,Π,QP∗) : Parse Π = (Π1, . . . ,Πr) and each Πi = (Com,
Chli, Resi, CHLi). Given a list QP∗ of adversarial provers’ queries to GRO, the
extractor searches for two queries (X, Com, i, Chli, Resi, CHLi) and (X, Com,
i, Chl′i, Res

′
i, CHL

′
i) such that CHLi 6= CHL′i, ΣOR.Verify(X, (Comi, Chli, Resi,

CHLi)) = 1, and ΣOR.Verify(X, (Comi, Chl
′
i, Res

′
i, CHL

′
i)) = 1. If no two

queries exist, output Fail. Otherwise, obtain W by running ΣOR.Extract(X,
Com, Chl, Chl’, Res, Res’, CHL, CHL’). If there exists a witness w ∈ W such
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that R(x,w) = 1, outputs W . Otherwise, if Extract outputs Fail or if
R(x,w) = 0 for both w ∈W , output Fail.

Theorem 2. Let ΣOR be a Σ-protocol for relation ROR = R0 ∨ R1. Then the
protocol Σ∗OR is a non-interactive, straight-line extractable Σ-protocol with the
stronger property of special simulation soundness for relation ROR in the random
oracle model.

Proof. We refer the reader to Fischlin’s proof [28]. ut

Finally, we are ready to introduce construction of our main result, the GUC-
transform for Σ-protocols.

3.4 Non-Interactive GUC-Secure Σ-protocols

We propose a transform that makes any Σ-protocol ΣR non-interactive and
GUC-secure in the GRO-CRS hybrid model. The transform works as follows.

First, the Setup functionality picks a samplable hard, Σ-friendly relation S
and defines a new Σ-protocol ΣOR over the relation ROR = R ∨ S using the
specifications of ΣR and ΣS . This OR-protocol is used as input to the straight-
line extractable OR-protocol transform given in the previous definition. The
public parameters of our system are the same as the public parameters from the
straight-line extractable OR-protocol, obtained by running Σ∗OR.Setup(1λ).

For each SID s, provers query the CRS ideal functionality FsCRS to obtain
CRSs. Each time a prover with SID s needs to create a proof of a statement x,
it generates a proof using the straight-line extractable OR-protocol Σ∗OR that
either they know a witness w for the statement x, or they know the trapdoor
traps to CRSs. Since no real prover will ever have the CRS trapdoor, it must
prove knowledge of the witness w. In other words, the compound statement to
be proven is X = (x, CRSs), and the compound witness W = (w, 0) denotes
a “genuine” proof of the statement x using the corresponding witness w. The
prover then uses Σ∗OR.Prove(X,W ) to obtain the proof (X,Π), and returns it.

In order to verify the proof, a verifier checks whether Σ∗OR.Verify(X,Π) = 1.
Recall that from the witness indistinguishability property of OR-protocols (see
Theorem 1), a verifier cannot tell from the proof whether the prover used a real
witness or the CRS trapdoor. This property will be important to the proof of
GUC-security, since our Simulate algorithm uses the CRS trapdoor rather than
a real witness in all of its proofs.

In particular, rather than use the original Simulate algorithm to simulate
proofs (which would require the global random oracle to be programmable),
the simulator in our construction works as follows. The first time the simulator
is invoked for an SID s, it generates (CRSs, traps) itself using the sampling
algorithm κS on input 1λ. It then sets X = (x, CRSs) as before, but rather than
use a real witness, it sets W = (traps, 1), denoting a “genuine” proof of the
statement CRSs. The simulator then uses ΣOR.Prove(X,W ) to obtain the proof
(X,Π), and returns it.

Given a proof (X,Π), the Extract algorithm first prepares the list of ad-
versarial queries to GRO as follows. It obtains the corrupted parties’ queries by
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querying the ideal adversary S, who gets to observe the corrupted parties’ com-
munications. It obtains the environment’s queries by issuing an illegitimate list
query to GRO for SID s. Finally, it takes the combined list of adversarial proof
queries, denoted QsP∗ , and runs Σ∗OR.Extract(X,Π,QsP∗).

Note that while it is possible for Σ∗OR.Extract to output Fail, the proba-
bility is negligible by Fischlin’s result (see Theorem 2). This result will also be
important to the proof of GUC-security, since a verification process that outputs
Fail would instantly tip off Z that it is living in the ideal world. As we will see
in the next section, the straight-line extraction process lends itself to security for
proofs that are only computationally zero-knowledge, since Z can already see
all of its own oracle queries and there is nothing new to learn from interacting
with the extractor.

Our main result, the GUC-transform Σuc
R for any Σ-protocol ΣR, is formal-

ized below.

Definition 12 (GUC-Transform for ΣR). Let ΣR be any Σ-protocol. Our
transform Σuc

R is a non-interactive, straight-line extractable transform of ΣR,
defined as follows.

– ppm← Setup(1λ): Choose a samplable hard, Σ-friendly relation S with cor-
responding efficient Σ-protocol ΣS. Let the compound relation ROR = R∨S,
and let ΣOR be the OR-protocol based on ΣR and ΣS. Generate ppm by run-
ning Σ∗OR.Setup(1λ).

– (X,Π) ← Prove(x,w): Let the prover have identity P = (pid, sid). If
R(x,w) 6= 1, return ⊥. Otherwise, if this is P’s first execution of Prove,
obtain the CRS CRSsid by calling FCRS.Query. The compound statement X
to be proven is the logical OR of x and CRSsid, or X = (x, CRSsid). The
compound witness W is a combination of the bit 0, denoting a “genuine”
proof of statement x, and the witness w corresponding to x, or W = (w, 0).
Obtain (X,Π) by running Σ∗OR.Prove(X,W ) and return it.

– {0, 1} ← Verify(X,Π): The verifier outputs 1 (accept) if and only if
Σ∗OR.Verify(X,Π) = 1. Otherwise, it outputs 0 (reject).

– (X,Π)← Simulate(x) : If this is the first time Simulate is being called for
a particular SID s, generate (CRSs, traps) using the sampling algorithm κS
on input 1λ and store it. The compound statement X to be proven is the same
as in Prove, or X = (x, CRSs). The compound witness W = (traps, 1) is now
a combination of the bit 1, denoting a “genuine” proof of statement CRSs,
and the CRS trapdoor traps. Obtain (X,Π) by running Σ∗OR.Prove(X,W )
and return it.

– W ← Extract(X,Π): Parse X = (x, CRSs). First, obtain the adversary’s
queries QsA for SID s by querying S, who gets to observe corrupted parties’
communications, including their queries to GRO. Next, obtain the environ-
ment’s queries QsZ for s by issuing an illegitimate list query IllQuery(s)
to GRO. Let the combined list of adversarial provers’ queries for SID s be
QsP∗ = QA

s ∪QZs . Run Σ∗OR.Extract(X,Π,QsP∗) and return the output.
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In the following section, we prove that our construction GUC-realizes the
NIZK PoK functionality FNZP in the GRO-CRS hybrid model.

4 Security Analysis

We wish to show that our transform Σuc
R takes any Σ-protocol ΣR and turns it

into a generally universally composable (GUC-secure) Σ-protocol.

Theorem 3. If ΣR is a Σ-protocol, Σuc
R is a non-interactive Σ-protocol that

GUC-realizes FNZP in the GRO-CRS hybrid model.

Proof. Recall that in order to show that Σuc
R GUC-realizes FNZP in the GRO-CRS

hybrid model, we must satisfy Definition 9. In short, we must show that for all
efficient A , there exists an ideal adversary S efficient in expectation such that
for all efficient environments Z,

IDEALGRO

FNZP,S,Z(1λ, aux) ≈c REALGRO,FCRS

Σ,A ,Z (1λ, aux).

We review the standard GUC model real- and ideal-world experiments [18]
in Appendix A.7, noting that we are working in the non-adaptive corruption
model in which Z must decide at the time of party invocation whether or not
the party is corrupted. The construction of the ideal adversary S is as follows.

Construction of the Ideal Adversary. The ideal adversary (also known as the
simulator) S, works as follows. When the ideal functionality FNZP asks it for the
specification of algorithms, S returns the algorithms inΣuc

R . When FNZP asks it for
the queries of adversarial provers for an SID s, S returns the corrupted parties’
GRO queries QsA . Otherwise, S behaves identically to the dummy adversary A ,
forwarding communications between Z and the corrupted parties.

Now we wish to show that the real world, in which parties prove statements
using real witnesses and verify proofs according to the protocol, is indistinguish-
able from the ideal world, in which the ideal functionality proves statements
using the trapdoor to the CRS and verifies proofs by extracting witnesses. We
start with the real world experiment and show it is possible to construct a series
of hybrid experiments, each negligibly different from the last, that transform the
real world experiment into the ideal world experiment.

Experiment A. The first experiment is the same as the real world experiment,
except there is a “challenger” C who controls the environment’s and adversary’s
views of the rest of the protocol. In particular, the challenger simulates all of the
honest parties (including the subroutine calls to FCRS) and GRO. The challenger
does everything on behalf of all parties exactly the same as the parties would do
for themselves in the real world experiment.

Lemma 1 (REAL = Experiment A). In the view of the environment, Ex-
periment A is identical to the real world experiment. Formally,

REALGRO,FCRS

Σuc
R ,A ,Z (1λ, aux) = ExpAC,A ,Z(1λ, aux).
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Proof. The challenger simulates all of the real world parties in Experiment A,
and the simulated output is defined to be identical to the output of the parties
in the real world. ut

In other words, there is no way for Z to tell whether it is interacting with
separate parties, including the “real” GRO, or whether it is interacting with a
puppet master who simulates all of the parties, including GRO. We will leverage
this identical view to show in the next experiment that the “traditional” simula-
tor of the straight-line extractable OR-protocolΣ∗OR, which uses a programmable
RO, is statistically indistinguishable from the unconventional simulator in Σuc

R ,
which uses the trapdoor to the CRS.

Experiment B. Experiment B is the same as experiment A, except that instead
of executing real proofs on behalf of the honest parties, the challenger C programs
GRO in order to simulate both components of the OR-protocol. That is, given
a statement x to prove for a session s, C prepares the compound statement
X = (x, CRSs) by simulating the functionality of FsCRS. It then obtains the proof
(X,Π) by running the simulator of the straight-line extractable OR-protocol,
Σ∗OR.Simulate(X). Finally, it checks that Σuc

R .Verify(X,Π) = 1. If it doesn’t,
C outputs Fail. Otherwise, it outputs (X,Π).

Lemma 2 (Experiment A ≈s Experiment B). Experiment B is statistically
indistinguishable from Experiment A. Formally,

ExpAC,A ,Z(1λ, aux) ≈s ExpBC,A ,Z(1λ, aux).

Proof. Note that in both experiments, the challenger is programming convinc-
ingly (pseudo)random random strings as the output of GRO. As long as the
domain of GRO is exponential in the security parameter (as is standard for ran-
dom oracles) and Z is only allowed to make polynomially-many queries to GRO
throughout the duration of the experiment, Z’s view of the random oracle in
experiment A is statistically close to its view in experiment B. Moreover, sim-
ulated proofs are statistically indistinguishable from non-simulated proofs by
the honest-verifier zero-knowledge property of Σ∗OR. The only other potential
difference between the environment’s view in experiments A and B is that the
challenger in experiment B can output Fail, while the challenger in experiment
A never does. However, experiment B only fails if the Fischlin simulator fails.
Since the security of the Fischlin simulator tightly reduces to the statistical zero-
knowledge of the underlying Σ-protocol [28], the failure of the Fischlin simulator
is statistically close to the failure of the simulator for the underlying Σ-protocol,
which is negligible. Therefore, the distributions representing Z’s view of experi-
ment A and experiment B are statistically indistinguishable. ut

Remark. We demonstrate below via a reduction that experiment A is still
computationally indistinguishable from experiment B in the case that ΣOR is
only computationally honest-verifier zero-knowledge.

In the next experiment (experiment C), we replace the real-world verification
mechanism with extraction. Given a proof (X,Π), the challenger C runs through



UC Σ-protocols in the Global RO Model 23

a series of checks identical to the checks performed by FNZP. If C did not previously
simulate the proof and Σuc

R .Verify(X,Π) = 1, C runs Σuc
R .Extract(X,Π) and

outputs the result. Recall that this process can fail in a few different ways. First,
the straight-line OR-protocol extractor Σ∗OR.Extract can fail to find enough
query transcripts to run the OR-protocol’s underlying extractor ΣOR.Extract.
Second, the witnesses W = (w0, w1) that Σ∗OR.Extract produces might fail to
satisfy any relation, such that both R(x,w0) = 0 and S(CRSs, w1) = 0. Finally,
it might be the case that just S(CRSs, w1) = 1, which means that an adversarial
prover somehow got access to the simulator’s CRS trapdoor traps.

We proceed to show via a reduction that an environment that can distinguish
between experiment B, which uses real-world verification, and experiment C,
which uses the functionality of FNZP, can be used to contradict the hardness
property of the samplable hard relation used to construct the CRS.

Experiment C. Experiment C is the same as experiment B, except now in-
stead of running the normal verification protocol on non-simulated (adversarial)
proofs, the challenger C attempts to extract a witness as follows. For a proof
(X,Π) that it did not simulate previously, C first checks whether Σuc

R .Verify(X,
Π) = 1. If it doesn’t, C simply outputs 0. Otherwise, C runs Σuc

R .Extract(X,Π)
to extract W . If Extract outputs a witness w0 such that R(x,w0) = 1, C outputs
1. Otherwise, if Extract outputs Fail or if R(x,w0) = 0, C outputs Fail.

Lemma 3 (Experiment B ≈c Experiment C). Experiment C is computa-
tionally indistinguishable from Experiment B. Formally,

ExpBC,A ,Z(1λ, aux) ≈c ExpCC,A ,Z(1λ, aux).

Proof. Given an environment ZB that can distinguish between experiment B
and experiment C, we construct a reduction that contradicts either the results
of Fischlin, the special soundness property of ΣOR, or the hardness property
of the samplable hard relation S used to construct the CRS. Note that the
only difference between experiment B and experiment C is that experiment C
sometimes outputs Fail while verifying a proof, while Experiment C never does.
Therefore, if ZB is able to determine the difference between experiment B and
experiment C with non-negligible probability, the output Fail must occur with
non-negligible probability.

Consider the circumstances in which experiment C outputs Fail. The first
condition in which the experiment C challenger outputs Fail is if the Extract

algorithm outputs Fail, which only happens if the Σ∗OR.Extract algorithm can-
not find two transcripts with the same prefix (Com, i) but different challenges
CHLi 6= CHL′i. Note that since C is in control of all of the wires in the exper-
iment and GRO, it gets to see all of the adversarial provers’ queries to GRO,
enabling it to construct a full adversarial query set QsP∗ for each session s, and
provide that list to Σ∗OR.Extract along with the proof (X,Π). Therefore, the
case in which Σ∗OR.Extract(X,Π,QsP∗) fails contradicts Fischlin’s result from
Theorem 2, which guarantees that if Σ∗OR.Verify(X,Π) = 1, the prover must
have queried GRO enough times to produce at least two transcripts that satisfy
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the requirements of the extractor. So, with all but negligible probability, the
challenger is guaranteed to extract something for the witness W .

The second Fail condition happens when the first witness w0 that Extract
produces does not satisfy R(x,w0) = 1. If neither of the witnesses satisfy R and
neither of the witnesses satisfy S, that is if R(x,w0) = 0 and S(CRSs, w1) = 0,
then C can produce a proof (X,Π) for which ΣOR.Verify(X,Π) = 1 but for
which extraction fails, contradicting the special soundness property of ΣOR.
Since this condition also guaranteed to happen with negligible probability, one
of the witnesses must satisfy S(CRS, w) = 1.

Finally if it is true that S(CRS, w) = 1 for some w ∈ W , C can construct a
reduction that is able to produce a witness w for x sampled according to the
CRS sampling algorithm κS(1λ). The reduction sets CRSs = x and proceeds
as experiment C. If the adversary produces w such that S(x,w) = 1, then the
reduction breaks the hardness property of the samplable hard relation S.

Therefore, the output Fail—and consequently the event that ZB distin-
guishes between experiment B and experiment C with non-negligible advantage—
must occur with negligible probability. ut

Finally, we replace the simulated proof process from experiment B, which uses
the traditional OR-protocol simulator Σ∗OR.Simulate, with the GUC-transform
simulator Σuc

R .Simulate, which proceeds as a “genuine” prover using the trap-
door to the CRS rather than a witness to the statement x. This process essen-
tially reverts the change between experiments A and B, since the challenger is
going back to using the Σuc

R .Prove algorithm, only this time with the witness
W = (traps, 1) rather than the witness W = (w, 0).

Experiment D. Experiment D is the same as experiment C, except in how it
generates the honest participants’ proofs. Rather than programming GRO, the
challenger computes proofs of statements x for the honest parties by running
Σuc
OR.Simulate(x). Recall that this process consists of generating the CRS and

trapdoor pair (CRSs, traps) for each session s according to the sampling algo-
rithm κS(1λ), then running Σ∗OR.Prove(X,W ) for X = (x, CRSs) and W =
(traps, 1).

Lemma 4 (Experiment C ≈s Experiment D). Experiment D is statistically
indistinguishable from Experiment C. Formally,

ExpCC,A ,Z(1λ, aux) ≈s ExpDC,A ,Z(1λ, aux).

Proof. This step reverts the proofs to being effectively non-simulated as in exper-
iment A, since using the trapdoor witness involves computing the OR-protocol
honestly according to ΣOR.Prove(X,W ) for X = (x, CRSs) and W = (traps, 1).
Moreover, Z’s view of the CRS is the same as in experiment A, since we de-
fined FCRS to use κS(1λ) as the CRS generation functionality. Therefore, the
argument for statistical indistinguishability between the OR-protocol-simulated
proofs in experiment C and the GUC-transform-simulated proofs in experiment
D is identical to that used to prove experiment A ≈s experiment B. ut

Finally, we show that Experiment D is identical to the ideal world experiment
by rearranging the components to get rid of the challenger. Note that at this
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point, the functionality of the challenger is identical to that of FNZP for both the
Prove and Verify procedures. Therefore, we can replace C with FNZP and S, who
takes over keeping track of the corrupted parties’ communications with GRO.

Lemma 5 (Experiment D = IDEAL). In the view of the environment, Ex-
periment D is identical to the ideal world experiment. Formally,

ExpDC,A ,Z(1λ, aux) = IDEALGRO

FNZP,S,Z(1λ, aux).

Proof. Note that in experiment D, the challenger C answers honest parties’
Prove queries by running Σuc

R .Simulate(x), and Verify queries by running
Σuc
R .Extract(X,Π), with the same surrounding checks and procedures. There-

fore, we can replace C in experiment D with FNZP in the ideal world experiment.
Since there is no longer a challenger controlling the wires in and out of the
adversary, we must additionally replace A with the ideal adversary S. Recall
that A is the dummy adversary, and that S behaves exactly like A throughout
the execution of the experiment, except that it forwards Z’s communications
with the corrupted parties to FNZP through a private channel upon request. Fur-
thermore, since C is no longer programming GRO in order to simulate proofs in
experiment D, the functionality of GRO is identical in both experiments. There-
fore, the environment’s view of experiment D is identical to its view of the ideal
world experiment. ut

In demonstrating the indistinguishability of the environment’s view of the
real and ideal experiments, we have shown that our construction GUC-realizes
FNZP in the GRO-CRS hybrid model. Finally, we argue that Σuc

R is indeed a non-
interactive Σ-protocol, completing the proof that Σuc

R is a GUC-transform of
ΣR that maintains the overall Σ-protocol structure.

Clearly, Σuc
R is non-interactive because Prove is an algorithm that the prover

executes without interacting with the verifier. The algorithmic breakdown of Σuc
R

given in Definition 12 clearly resembles the overall structure of a Σ-protocol,
with one key difference: the Simulate algorithm does not receive a challenge,
and must simulate proofs using the CRS trapdoor instead. Since GRO is not pro-
grammable, the traditional notion of Σ-protocol simulation cannot work in the
GUC framework. The spirit of special honest-verifier zero-knowledge property,
however, is maintained in that the simulated proofs are still statistically indis-
tinguishable from regular proofs due to the witness indistinguishability property
of OR-protocols. Therefore, we argue our construction is as close as it is possible
to get to the traditional Σ-protocol simulation functionality within the GUC
framework.

While the Σuc
R .Extract algorithm takes different arguments as input, the

functionality is effectively the same as the traditional Σ-protocol extractor.
Our constructions of Σ∗OR.Extract and Σuc

R .Extract simply spell out where
the extractor is supposed to get the transcripts to invoke the special soundness
property. The underlying extraction process still boils down to the OR-protocol
extractor ΣOR.Extract, which takes the traditional arguments as input. Sim-
ilarly, the Prove algorithm takes as input a single statement and witness pair
(x,w) and produces a compound proof (X,Π) where X = (x, CRSs) and Π is
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an OR-protocol proof. That way, Σuc
R truly feels like a “transform”—able to

take any statement x in the language of R as input, and produce a proof that
GUC-realizes FNZP. Unlike the simulator, these differences are merely cosmetic,
allowing for cleaner explanations and notation—it would be possible to rearrange
both functionalities to exactly match the original notation of the Σ-protocol.

We have now shown that Σuc
R is itself a Σ-protocol that GUC-realizes FNZP,

completing the proof of the theorem. ut

Finally, we demonstrate that GUC-security also holds in the relaxed case
where the underlying Σ-protocols are only computational honest-verifier zero-
knowledge. That is, we consider the case where simulated proofs are only compu-
tationally indistinguishable from real ones, replacing {π} ≈s {π′} with {π} ≈c
{π′} in the Simulate algorithm of Σ-protocols in Definition 2. The interesting
thing in this case is that even though the zero-knowledge property only holds
computationally, it still will not interfere with the knowledge extraction process
necessary to satisfy security in the GUC model. In general, computational zero-
knowledge may fail to compose with a knowledge extractor for the same proof
system; but here, since extraction is exclusively through the oracle query history
(such that anything Z can compute from interacting with the extractor it can
compute on its own), the two security properties—computational zero-knowledge
and knowledge extraction—will compose with each other.

Theorem 4. If ΣR is a Σ-protocol with only computational honest-verifier zero-
knowledge, Σuc

R is a Σ-protocol with computational honest-verifier zero-knowledge
that GUC-realizes FNZP in the GRO-CRS hybrid model.

Experiment A and the proof that REAL = ExpA is the same. Experiment
B is the same as above, only this time Σ∗OR.Simulate(X) is only guaranteed to
produce proofs that are computationally indistinguishable from real proofs. We
replace the lemma ExpA ≈s ExpB as follows.

Lemma 6 (Experiment A ≈c Experiment B). Experiment B is computa-
tionally indistinguishable from Experiment A. Formally,

ExpAC,A ,Z(1λ, aux) ≈s ExpBC,A ,Z(1λ, aux).

Proof. Given an environment ZA that can distinguish between experiment A
and experiment B, we construct a reduction that breaks the (computational)
honest-verifier zero-knowledge property of ΣOR. In particular, we consider a
hybrid argument in which ZA can distinguish between a world in which the first
j proofs are constructed according to experiment A and the rest are constructed
according to experiment B, and a world in which the first j + 1 proofs are
constructed according to experiment A and the rest are constructed according
to experiment B. The reduction works as follows.

Upon getting an initial input of the security parameter from the honest-
verifier zero-knowledge challenger, the reduction initializes ZA and runs the ex-
periment according to experiment A up to the j + 1st prove query by letting
ZA and A interact freely with the honest parties. When it gets the j + 1st
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prove query Prove(x,w) from ZA, it issues the same challenge Prove(x,w) to
its challenger and either obtains a real proof (X,Π) ← Σ∗OR.Prove(X,W ), or
a simulated proof (X,Π) ← Σ∗OR.Simulate(X). The reduction then programs
GRO to make the output consistent with the proof (X,Π) it receives from its
challenger, and returns (X,Π) to ZA.

For the remaining prove queries, the reduction proceeds according to exper-
iment B, simulating each proof and programming GRO to maintain a consistent
view. If ZA outputs j, the reduction outputs “Real” to indicate that the proof
was calculated using the Prove algorithm. If ZA outputs j + 1, the reduction
outputs “Ideal” to indicate that the proof was calculated using the Simulate

algorithm.
Analysis. If ZA is able to distinguish between the hybrids, it must be able to

tell whether the proof in the j+ 1st slot was calculated according to experiment
A—in other words, according to the “real world” Prove algorithm—or accord-
ing to experiment B—in other words, according to the “ideal world” Simulate

algorithm. This is in direct correspondence to whether the challenge the reduc-
tion received was generated using Prove or Simulate. Therefore the reduction is
tight, and will break the honest-verifier zero-knowledge property with the same
probability as ZA is able to distinguish hybrid j from hybrid j+ 1. As there can
only be polynomially-many Prove queries, the probability that ZA can distin-
guish experiment A from experiment B overall is negligible. ut

Since the special soundness property remains unchanged, experiment C is
unchanged. Note that since there is no change in the structure of the proofs
between experiments B and C, the proof that ExpB ≈c ExpC is identical to
the proof that ExpB ≈c ExpC from Theorem 3.

In experiment D, the simulated proofs are again only computationally zero-
knowledge. Because there is computational wiggle room between the proofs in
experiments C and D, and the experiment C-D distinguisher environment ZC
is now dealing with the extractor rather than a normal verifier, we cannot use
the exact same argument as in the proof that ExpA ≈c ExpB. In particular, we
have to make sure that the only way that ZC can distinguish between hybrid j
and j + 1 is if it can tell the difference between a real and a simulated proof in
the j+1st slot. We argue that because anything ZC can learn from the extractor
it can learn from itself, it must not learn anything new about the proofs between
experiments C and D.

Lemma 7 (Experiment C ≈c Experiment D). Experiment D is computa-
tionally indistinguishable from Experiment C. Formally,

ExpCC,A ,Z(1λ, aux) ≈s ExpDC,A ,Z(1λ, aux).

Proof. Like the proof of ExpC ≈s ExpD in Theorem 3 above, this step reverts
the proofs to being effectively non-simulated, and the reduction argument is
similar to that used to prove Experiment A ≈c Experiment B. However since
the distribution of the proofs are no longer statistically indistinguishable be-
tween experiments C and D, it might be the case that the environment ZC can
learn something from playing with the simulated proofs in experiment D that it
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did not learn in experiment C, and vice versa. In particular, unlike experiment
A, the verification process for the honest parties in experiment D is that the
challenger tries to extract a witness using Σuc

R .Extract. If for some reason the
extraction process causes the challenger to output Fail in experiment C but not
in experiment D, ZC would be able to distinguish the experiments regardless of
the nature of the j + 1st proof. Therefore, in order to use the same argument as
in ExpA ≈c ExpB, we must first argue that the reduction is still well-formed,
and that the only way ZC will distinguish the j from the j + 1st hybrid is if it
can tell the difference between a real proof and a simulated one.

Consider the inputs (X,Π,QsP∗) to the algorithm Σ∗OR.Extract that is re-
sponsible for the verification procedure in experiments C and D. (X,Π) is a
proof that ZC itself produced. Similarly, QsP∗ is a list of queries to GRO made by
either ZC itself, or by the corrupted parties through A at ZC ’s request. There-
fore, ZC can fully simulate its own view of the extractor, and cannot possibly
learn anything new about whether it is living in experiment C or experiment D
from the proof verification process.

We have shown that if ZC is able to distinguish between the hybrids, it must
be able to distinguish whether the proof in the j + 1st slot is real or simulated.
The rest of the argument is the same as the proof that ExpA ≈c ExpB. ut

Finally, the proof that ExpD = IDEAL is the same. ut
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A Supplementary materials

A.1 Protocol Template

Definition 13 (Protocol Template for Relation R). [24, 32] Let the com-
mon input to P and V be x, and the private input to P be a value w such that
(x,w) ∈ R. The protocol template is the following three-round transaction:

1. P sends V a message a.
2. V sends P a random `-bit string e.
3. P sends V a reply z.
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4. V decides to accept (output 1) or reject (output 0) based solely on the values
(x, a, e, z).

We say a transcript (a, e, z) is an accepting transcript for x if the protocol
instructs V to accept based on the values (x, a, e, z).

A.2 Σ-protocol

Definition 14 (Σ-protocol). [24, 32] A protocol Π is a Σ-protocol for relation
R if it is a three-round public-coin protocol of the form in Definition 1 and the
following requirements hold:

– Completeness: If P and V follow the protocol on input x and private input
w to P where (x,w) ∈ R, then V always accepts.

– Special Soundness: There exists a polynomial-time algorithm E that given
any x and any pair of accepting transcripts (com, chl, res) and
(com, chl’, res’) for x where chl 6= chl’, outputs w such that (x,w) ∈ R.

– Special honest verifier zero knowledge: There exists a PPT simulator
M , which on input x and chl outputs a transcript of the form (com, chl, res)
with the same probability distribution as transcripts between the honest P and
V on common input x. Formally, for every x and w such that (x,w) ∈ R
and every chl ∈ {0, 1}` it holds that{

M(x, chl)
}
≡
{
〈P (x,w), V (x,w)〉

}
where M(x, chl) denotes the output of simulator M on input x and chl,
and 〈P (x,w), V (x,w)〉 denotes the output transcript of an execution between
P and V , where P has input (x,w), V has input x, and V ’s random tape
(determining its query) equals chl.

The value ` is called the challenge length.

A.3 The OR-protocol

Definition 15 (OR-protocol for Relation R). [24, 32], [32] Let the common
input to P and V be a pair (x0, x1), and the private input to P be a value w and
a bit b such that (xb, w) ∈ R. The OR-protocol is the following transaction:

1. P computes the first message ab according to the template using (xb, w)
as input. P chooses e1−b at random and runs the simulator M on input
(x1−b, e1−b); let (a1−b, e1−b, z1−b) be the output of M . P sends V (a0, a1).

2. V sends P a random `-bit string s.
3. P sets eb = s ⊕ e1−b and computes the answer zb to challenge eb according

to the template using (xb, ab, eb, w) as input. P sends (e0, z0, e1, z1) to V .
4. V checks that e0⊕e1 = s and that both transcripts (a0, e0, z0) and (a1, e1, z1)

are accepting on inputs x0 and x1, respectively.
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A.4 The Fiat-Shamir Transform

Recall that in a Σ-protocol, Prove protocol of consists of the commitment, chal-
lenge, and response procedures specified by the protocol template. The step re-
quiring interaction with the verifier is the challenge phase, during which the veri-
fier gets to see the prover’s commitment. Issuing the challenge after the commit-
ment is fixed ensures that the prover cannot cheat and just change the commit-
ment to fit the challenge. In order to make the Prove procedure non-interactive
and still maintain security for the verifier, the prover needs to truly commit to
its commitment before the challenge is issued. In addition, the “honest-verifier”
zero-knowledge property—the prover’s guarantee that answering the challenge
will not reveal anything about its secret—requires the challenge to be random.

Fiat and Shamir [27] proposed a non-interactive transform that was later
shown to satisfy these conditions in the random oracle model [40]. Rather than
asking the verifier for a challenge based on its commitment, the prover queries the
random oracle H : {0, 1}∗ → {0, 1}` on input (x, com), and receives the random
string chl in return. This process “fixes” the challenge as the oracle’s response
to the prover’s commitment. To confirm that the prover is not cheating, the
verification algorithm queries the oracle also and confirms that H(x, com) = chl.
Commit and Respond are similarly modified to eliminate interaction—rather than
sending com and res one by one to the verifier, the prover computes and stores
the outputs of each algorithm until they are ready to be included in the final
transcript. In order to avoid requiring any prior interaction between the prover
and the verifier, the output of Prove (and therefore Simulate) includes the
statement as well as the proof, or (x, π).

Definition 16 (Fiat-Shamir Transform). The non-interactive transform for
a Σ-protocol ΣR based on protocol template τR transforms ΣR into a tuple of
non-interactive algorithms Σ∗R based on τ∗R in the random oracle model. The
transform is made up of the following modifications to the algorithms in ΣR and
τR. Otherwise, Σ∗R and τ∗R are identical to ΣR and τR, respectively.

– Modifications to τR: Before or during the execution of Setup, the random or-
acle H : {0, 1}∗ → {0, 1}` must be initialized. The specification of Challenge
is replaced as follows: P obtains the challenge chl by querying H on input
(x, com). During the execution of Commit and Respond, P does not send
anything to V , but rather computes and stores the values. The acceptance
conditions of Verdict additionally include a check that H(x, com) = chl.

– Modifications to ΣR: Σ∗R takes as input the modified protocol template τ∗R.
Prove is now an algorithm that P executes independently of V . The output
of Prove and Simulate contains both the statement and proof, written (x, π).

A.5 The Fischlin Transform

Definition 17 (Fischlin Transform). [28] Let (PFS , VFS) be an interactive
Fiat-Shamir (FS) proof of knowledge over relation R with challenge length ` =
O(log λ) bits. Let b be the number of test bits, r be the number of repetitions, S
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be the maximum sum over all repetitions, and t be the number of bits per trial
such that br = ω(log λ), 2t−b = ω(log λ), b, r, t = O(log λ) and b ≤ t ≤ `. Let
H : {0, 1}∗ → {0, 1}b be a random oracle that maps to b bits. Define the following
NI proof system for relation R in the ROM as follows.

Prover. The prover PH runs the prover of the underlying FS proof system
PFS(x,w) in r independent repetitions to obtain the commitment vector a =
a1, . . . , ar. Then for each repetition 1 ≤ i ≤ r, PH tests t-bit challenges ei =
0, 1, . . . 2t − 1 and computes the response zi using PFS until it finds one such
that H(x, a, i, ei, zi) = 0b. If no such tuple is found, the prover picks the minimal
value over all 2t oracle queries. The prover outputs the proof (x, π) where π =
(ai, ei, zi) for 1 ≤ i ≤ r.

Verifier. The verifier V H accepts (outputs 1) if and only if V1,FS(x, πi) = 1 for
1 ≤ i ≤ r where πi = (ai, ei, zi), and if

∑r
i=1H(x, a, i, ei, zi) ≤ S. Otherwise,

the verifier rejects (outputs 0).

Online Extractor. For all polynomial-time algorithms A , let QH(A ) denote
the set of queries A makes to the random oracle H. Given π = (ai, ei, zi) for 1 ≤
i ≤ r, search through QH(A ) for a pair of queries (x, a, i, ei, zi) and (x, a, i, e′i, z

′
i)

for ei 6= e′i and such that VFS(x, ai, e
′
i, z
′
i) = 1. If two such queries are found,

run the knowledge extractor of the underlying FS proof system on these values
and output the witness w. Otherwise, output ⊥.

Zero-Knowledge Simulator. Because the zero-knowledge simulator requires
the random oracle H to be programmable, it is not applicable to our setting and
therefore omitted. We refer the interested reader to [28].

A.6 The GUC Real- and Ideal-World Experiments

Real-World Experiment. The real-world experiment REALGRO,FCRS

Σuc
R ,A ,Z (1λ, aux) is

executed as follows.

1. The experiment invokes the environment Z on input (1λ, aux).
2. Z invokes A on input of its choice and GRO on input 1`.2

3. Z invokes arbitrary parties with arbitrary SIDs. Z can corrupt up to all but
one of the parties by sending messages through A . Z can invoke new parties
whenever it chooses,3 but must decide at the time of invocation whether or
not they are corrupted (passive corruption model).

4. As is standard in the UC and GUC models, Z passes inputs and receives
outputs to the input-output tapes of all parties to the protocol on its own.

2 One can also imagine that GRO with output length ` already exists, or was invoked
by the experiment. Since a precise invocation of GRO is not clear in the literature,
we chose to maintain internal consistency with the rest of the definition and have
the experiment initialize GRO during setup.

3 In order to guarantee that the experiment runs in time polynomial in the security
parameter, the UC model places certain restrictions on the runtime of the arbitrary
parties Z invokes. For a full discussion, we refer readers to Canetti et al. [17].
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Additionally, it communicates with corrupted parties through A . In partic-
ular (briefly), Z can send arbitrary Setup, Prove, and Verify requests to
any party, and have corrupted parties send any corrupted Setup, Prove, and
Verify requests on its behalf. It can also arbitrarily query GRO using any
SID, and execute any version of Setup, Prove, and Verify itself.

5. In order to respond honestly to Setup, Prove, and Verify requests, the par-
ties run the protocols Σuc

R .Setup, Σuc
R .Prove, and Σuc

R .Verify, respectively.

Ideal-World Experiment. The ideal world experiment IDEALGRO

Σuc
R ,S,Z

(1λ, aux) is

executed as follows.

1. The experiment invokes the environment Z on input (1λ, aux).
2. Z invokes S on input of its choice4 and GRO on input 1`.
3. Same as Step 3 in the real world experiment.
4. Same as Step 4 in the real world experiment.
5. Rather than respond to Setup, Prove, and Verify requests themselves, hon-

est parties invoke the (local) ideal functionality FNZP for their SID s. At
initialization, FNZP obtains specifications for the algorithms Setup, Prove,
Verify, Simulate, and Extract from S. After the ideal functionality is set
up, honest parties with SID s forward all Prove and Verify requests directly
to FNZP, which responds according to its specification, given in Definition 5.

A.7 GUC-Security in the Global ROM

Formally, the definition of GUC-security in the global ROM states that for all
efficient adversaries A , we must be able to construct an ideal adversary S that
can direct the ideal functionality F to simulate a protocol Σ. S must be efficient
in expectation, and must function the same for all efficient environments Z.
We say Σ GUC-realizes an ideal functionality F if the probability distribution
representing the environment’s view of the “real” experiment (with Σ, A , and
Z) is computationally indistinguishable from the distribution representing its
view of the “ideal” experiment (with F , S, and Z).

Definition 18 (GUC-Security in the Global ROM). [18, 19] A protocol
Σ with security parameter λ GUC-realizes an ideal functionality FNZP in the
global ROM if for all efficient A , there exists an ideal adversary S efficient in
expectation such that for all efficient environments Z,

IDEALGRO

F,S,Z(1λ, aux) ≈c REALGRO

Σ,A ,Z(1λ, aux),

where GRO is the global RO functionality in Definition 4, and aux is any auxiliary
information provided to the environment.

4 To the environment, this process looks exactly the same as in the real world. However
in the ideal world, the simulator comes pre-programmed with special instructions to
help the ideal functionality simulate the protocol.
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A.8 Global Random Oracle

Definition 19 (Global Random Oracle). [19] The global random oracle
(global RO) is a public random oracle functionality parameterized by the out-
put length `(λ) and a list F of ideal functionalities. The oracle works as follows.

1. Upon receiving a query x from some party P = (pid, sid) or from the sim-
ulator S, do:
– If there already exists a pair (x, v) for some v ∈ {0, 1}`(λ) in the (initially

empty) list Q of past queries, return v to P . Otherwise, chose v uniformly
from {0, 1}`(λ), store the pair (x, v) in Q, and return v to P .

– Parse x as (s, x′). If sid 6= s then add (s, x′, v) to the (initially empty)
list of illegitimate queries for SID s, denoted Qs.

2. Upon receiving a request from an instance of an ideal functionality in the list
F with SID s, return to this instance the list Qs of illegitimate queries for
SID s.


