
Universally Composable Σ-protocols in the
Global Random-Oracle Model

Anna Lysyanskaya and Leah Namisa Rosenbloom

Brown University, Providence RI 02906, USA
{anna lysyanskaya,leah rosenbloom}@brown.edu

11 June 2022

Abstract. Numerous cryptographic applications require efficient non-
interactive zero-knowledge proofs of knowledge (NIZKPoK) as a building
block. Typically they rely on the Fiat-Shamir heuristic to do so, as secu-
rity in the random-oracle model is considered good enough in practice.
However, there is a troubling disconnect between the stand-alone security
of such a protocol and its security as part of a larger, more complex sys-
tem where several protocols may be running at the same time. Provable
security in the general universal composition (GUC) model of Canetti
et al. is the best guarantee that nothing will go wrong when a system
is part of a larger whole, even when all parties share a common ran-
dom oracle. In this paper, we prove the minimal necessary properties of
generally universally composable (GUC-secure) NIZKPoK in any global
random-oracle model, and show how to achieve efficient and GUC-secure
NIZKPoK in both the restricted programmable and restricted observable
(non-programmable) global random-oracle models.

1 Introduction

Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) [5,28,43] form
the basis of many cryptographic protocols that are on the cusp of widespread
adoption in practice. For example, the Helios voting system [1] and other effi-
cient systems employing cryptographic shuffles [47] use zero-knowledge proofs of
knowledge to ensure that each participant in the system correctly followed the
protocol and shuffled or decrypted its inputs correctly. Anonymous e-cash [12]
and e-token [11] systems use them to compute proofs of validity of an e-coin or
e-token. In group signatures [18,2] they are used to ensure that the signer is in
possession of a group signing key. In anonymous credential constructions [13,14],
they are used to ensure that the user identified by a given pseudonym is in pos-
session of a credential issued by a particular organization.

The non-interactive aspect of NIZKPoK is especially important to most of
these applications—it enables a prover to form a proof of some attribute for a
general verifier rather than forcing the prover to talk to each verifier individually,
which is inefficient in most cases and infeasible for some applications. It is also
extremely important that the NIZKPoK be efficient. Thus, the constructions
cited above use efficient Σ-protocols [26] made non-interactive via the Fiat-
Shamir heuristic [29] to instantiate the NIZKPoK in the random-oracle model

2 A. Lysyanskaya and L. Rosenbloom

(ROM) [3]. Recall that a Σ-protocol for a relation R is, in a nutshell, a (1−negl)-
sound honest-verifier three-move proof system in which the single message from
the verifier to the prover is a random ℓ-bit string. The Fiat-Shamir transform
makes the proof system non-interactive by replacing the message from the verifier
with the output of a random oracle (RO).

Recently, a better understanding of how badly such NIZKPoK fare in the con-
current setting emerged [45,27,4,39]. Allowing for secure concurrent executions
is of vital importance for the real-world application of any of the cryptographic
protocols mentioned above, and especially for distributed protocols. But Drijvers
et al. [27] demonstrated subtleties in the proofs of security for concurrent pro-
tocol executions that often go undetected, leaving building-block cryptographic
protocols vulnerable to attacks like Wagner [45] and Benhamouda et al.’s ex-
ploitation of the ROS problem [4].

One way to circumvent the unique subtleties of composing cryptographic
primitives is to prove that each primitive is universally composable using Canetti’s
universal composition (UC) framework [19]. In the UC framework, the security
of a particular session of a protocol is analyzed with respect to an environment,
which represents an arbitrary set of concurrent protocols. The environment in
the UC framework can talk to and collude with the traditional “adversary” in
cryptographic protocols, directing it to interfere with the protocol. However, the
original UC framework did not provide a mechanism for parties in different set-
tings to use a shared global functionality, for instance a shared RO or common
reference string (CRS). In real-world applications, it is virtually guaranteed that
parties will share setup and state between sessions.

To address the issue of shared state and concurrency in the UC framework,
Canetti, Dodis, Pass, and Walfish developed the general UC (GUC) framework,
which considers “global” functionalities G that can be queried by any party in
any session at any time, including the environment [20]. Canetti, Jain, and Sca-
furo later showed several practical applications of the GUC framework with an
restricted observable global RO GroRO as the only trusted setup. They include
commitment, oblivious transfer, and secure function evaluation protocols, all
GUC-secure in the GroRO-hybrid model [22]. Building on Canetti et al.’s frame-
work, Camenisch, Drijvers, Gagliardoni, Lehmann, and Neven developed a re-
stricted programmable observable global RO, denoted GrpoRO, that allows for more
efficient GUC-secure commitments in the GrpoRO-hybrid model [10].

Thus, the GrpoRO- and GroRO-hybrid models are attractive ones for construct-
ing and analyzing practical and provably secure non-interactive zero-knowledge
proofs. Obtaining an efficient NIZKPoK (for a relation R) in the GrpoRO-hybrid
model from an efficient Σ-protocol (for the same relation) is a natural goal.
We show that it is possible to transform any Σ-protocol into a GUC-secure
NIZKPoK in the (programmable) GrpoRO-hybrid model using an algorithm called
a straight-line compiler, which we develop from the definition of NIZKPoK with
online extractors due to Fischlin [30]. While the programming property of GrpoRO
is helpful in proving security, it also localizes aspects of the global RO by provid-
ing a programming verification interface that concurrent protocols cannot access.
It is unclear how localized interfaces that are vital to the security of component

UC Σ-protocols in the Global ROM 3

protocols would impact the security of composed protocols, especially when com-
posing protocols that are provably secure in less restrictive models.

Therefore, we also consider NIZKPoK in the less restrictive (non-program-
mable) GroRO-hybrid model, where GroRO’s interfaces are completely public. Un-
fortunately, Pass [40] and Canetti et al. [22] point out that it is not possible
to construct ZKPoK in less than two rounds of communication using only a
global functionality, because there is no way for the simulator in the security
experiment to exercise control over it. We introduce a new model called the
GroRO-FCRS-hybrid model, in which participants have access to a trusted com-
mon reference string (CRS) functionality. Similar to the programming interface,
the CRS functionality is localized such that concurrent protocols do not have
access to the local session’s CRS generation mechanism. However, unlike local-
izing aspects of the global RO, localizing aspects of the protocol will not impact
the modeling of other protocols that may be composed with our GUC-secure
NIZKPoKs in the future. Fortunately, protocol participants can compute such a
trusted CRS for a one-time cost at the beginning of the session using only GroRO,
due to Canetti et al.’s GUC-secure non-interactive secure computation (NISC)
protocol [22]. We prove that any straight-line compiler in conjunction with our
new construction, which uses a special type of Σ-protocol called an OR-protocol
[26,24], is sufficient to transform any Σ-protocol into a GUC-secure NIZKPoK
in the GroRO-FCRS-hybrid model.

We realize our GUC transforms for Σ-protocols using Kondi and shelat’s
randomized version of the Fischlin transform [36,30], demonstrating that it is
possible to construct efficient GUC-secure NIZKPoK from a broad class of Σ-
protocols in both the GrpoRO and GroRO-FCRS-hybrid models. Along the way, we
uncover theoretical results and observations that may be of independent inter-
est. First, that straight-line extractors afford strong security guarantees: because
they work exclusively using information the adversary already knows, it is possi-
ble to compose them with other building blocks such as zero-knowledge simula-
tors without compromising the security of the overall system. This “decoupling”
property [30], and security properties of non-rewinding extractors in general, are
of interest in the quantum random-oracle model (QROM), where rewinding is
tricky because of the no-cloning theorem [46,35,44]. Second, we prove that there
are several security properties that are strictly necessary for a protocol to have
in order for it to be a GUC-secure NIZKPoK in any global ROM. Interestingly, a
straight-line compiler—and in particular the randomized Fischlin transform—is
uniquely positioned to realize these properties. It is the subject of future work
to explore whether other mechanisms of straight-line extraction [17,40,35,44] are
sufficient to bootstrap Σ-protocols into GUC-secure NIZKPoK in the GrpoRO- or
GroRO-FCRS-hybrid models, a different global ROM, or the QROM.

Organization. In the remainder of the introduction, we provide general back-
ground information on Σ-protocols, the GUC model, the global ROM(s), and
straight-line extraction. In Section 2, we give formal definitions of Σ-protocols
and straight-line compilers. Section 3 contains definitions of GUC-security in
various global ROMs and a proof that any NIZKPoK that is GUC-secure in

4 A. Lysyanskaya and L. Rosenbloom

any global ROM must have the security properties afforded by straight-line
compilers. In Section 4, we prove that any straight-line compiler is sufficient
to transform any Σ-protocol into a GUC-secure NIZKPoK in the GrpoRO-hybrid
model, and in Section 5 we prove that any straight-line compiler in conjunction
with our OR-protocol construction is sufficient to complete the transform in
the GroRO-FCRS-hybrid model. Finally in Section 6, we leverage the randomized
Fischlin transform to efficiently realize our constructions in both global ROMs.

Σ-Protocols. AΣ-protocol for a binaryNP relationR is a three-round, public-
coin proof system. On input x and w such that (x,w) ∈ R, the prover generates
his first message com (in the literature on Σ protocols, this first message is often
referred to as a “commitment”). In response, the honest verifier sends a unique ℓ-
length random “challenge” chl to the prover. Finally, the prover “responds” with
a value res. The resulting transcript (com, chl, res) is then fed to a verification
algorithm that determines whether the verifier accepts or rejects.

Σ-protocols must additionally satisfy three properties. First, they must sat-
isfy completeness: if the prover has a valid witness and both parties engage in
the protocol honestly, the verifier always accepts. Next, they must be special
honest-verifier zero-knowledge: there must exist a simulator algorithm that on
input x and chl ∈ {0, 1}ℓ outputs an accepting transcript (com, chl, res) for x
such that, if chl was chosen uniformly at random, (com, chl, res) is statistically
indistinguishable from that output by an honest verifier on input x. Finally, they
must have special soundness: if there are two accepting transcripts for any state-
ment with the same commitment com but different challenges, there exists an
extractor algorithm that can produce a valid witness from the transcripts. The
stronger version of soundness, special simulation soundness, says that special
soundness must still hold even if an adversary has oracle access to the simulator.

The Σ-protocol format captures many practical zero-knowledge proof sys-
tems. For example, Wikström [47] shows Σ-protocols for proving a rich set of
relations between ElGamal ciphertexts, which in turn allow proving that a set
of ciphertexts was shuffled correctly; similar protocols exist for Paillier cipher-
texts [23,17]. A robust body of literature exists giving Σ-protocols for proving
that values committed using Pedersen [41] and Fujisaki-Okamoto [32] commit-
ments satisfy general algebraic and Boolean circuits [8,15,16] and lie in certain
integer ranges [6,37]. For all the Σ-protocols listed above, the size and complexity
of the proof system is a O(1) factor of the complexity of verifying the underlying
relation R(x,w), making Σ-protocols extremely desirable in practice.

Σ-protocols are also the most efficient technique to achieve zero-knowledge
proofs of knowledge of a commitment opening in the lattice setting [38,25], where
the complexity grows by a factor of O(k) in order to achieve soundness (1−2−k).
Thus, for all the relations R cited above, our results immediately yield the most
efficient known GUC-secure NIZKPoK in the global ROM.

The General Universal Composability (GUC) Model. Our security ex-
periment is that of the GUC model of Canetti et al. [20], which enables the
UC-security analysis of protocols with global functionalities.

UC Σ-protocols in the Global ROM 5

Briefly, the UC and GUC modeling of the world envisions an adversarial
environment Z, which provides inputs to honest participants, observes their
outputs, and (on a high level) directs the order in which messages are passed
between different system components. Additionally, the world includes honest
participants (that receive inputs from Z and let Z observe their outputs) and
adversarial participants controlled by the adversary A (whose behavior is also
directed and observed by Z).

The ideal world additionally contains an ideal functionality F and an ideal
adversary S, also called the simulator. In the ideal world, the honest partici-
pants pass their inputs directly to F and receive output from it. The real world
does not contain such a functionality; instead, the honest participants run a
cryptographic protocol. The corrupted participants in the ideal world always
communicate through S, who simulates their view and may pass their inputs to
F through a private channel. There are also worlds in between these two: in a
G-hybrid world, the honest participants run a protocol that can make calls to an
ideal functionality G. In the GUC model, G is accessible not only to the honest
participants, but also to Z. A cryptographic protocol is said to be (G)UC-secure
with respect to a functionality F (or (G)UC-emulate F) if for any real-world ad-
versary A , there exists an “ideal” adversary S (also called the simulator), which
creates a view for the environment (in the ideal world) that is indistinguishable
from its view of the cryptographic protocol.

In our case, the ideal functionality is the NIZKPoK ideal functionality, or
FNIZK, which works as follows. An honest participant can compute a proof π
of knowledge of w such that (x,w) ∈ R by querying FNIZK’s Prove interface
and giving it (x,w). The string π itself is computed according to the algorithm
SimProve provided by the ideal adversary S. The functionality guarantees the
zero-knowledge property because SimProve is independent of w. An honest par-
ticipant can also verify a supposed proof π for x by querying FNIZK’s Verify

interface on input (x, π). FNIZK ensures the soundness of the proof system as fol-
lows: if the proof π was not issued by FNIZK, then it runs an extractor algorithm
Extract provided by S to try to compute a witness w from the proof π. Extract
may require additional inputs that may need to be supplied by S as well.

In Canetti’s original UC framework [19], all communications between par-
ticipants are passed through a special controller that determines whether the
communication is valid in the model of analysis. For example in the standard
UC model, Z can only control participants and direct inputs corresponding to a
particular session identifier (SID) s—any message between Z and a party with
sid ̸= s is rejected. In the GUC model, Z is allowed to engage with participants
under any SID and in particular query a global functionality, for instance GrpoRO
or GroRO, under any SID. The global functionality answers the queries of all par-
ties in all sessions in both real and ideal experiments. For a full specification of
the GUC model, we refer readers to Canetti et al. [20].

The Global Random-Oracle Models (Global ROMs). The traditional
random oracle (RO) H : {0, 1}∗ → {0, 1}ℓ is a function that takes any string
as input and returns a uniformly random ℓ-bit string as output [3]. The global

6 A. Lysyanskaya and L. Rosenbloom

random-oracle model (global ROM) allows us to capture the realistic scenario in
which the same RO is reused by many parties over many (potentially concurrent)
executions of numerous distinct protocols. As envisioned by Canetti et al. [22]
and formalized by Camenisch et al. [10], the “strict” global RO functionality
GsRO is a public, universally-accessible RO that can be queried by any party in
any protocol execution, including by the arbitrary concurrent protocols modeled
by the environment in the UC framework [20].

Pass [40], Canetti and Fischlin [21], Canetti et al. [20,22], and Camenisch
et al. [10] have all discussed the limitations of GsRO. In particular, Canetti and
Fischlin [21] demonstrated that it is impossible to achieve UC commitments with
only a global setup, and Canetti et al. extended this argument to commitments
and zero knowledge in the GUC framework [20] and the GroRO-hybrid model [22].
The limitation stems from the fact that in a “strict” setup, the simulator does not
have any special advantage over a regular protocol participant. In our setting,
FNIZK needs access to the adversary’s RO queries in order to extract witnesses
and ensure the special soundness property. Most zero-knowledge simulators also
rely on the extra ability to program the RO at selected points in order to simulate
proofs of statements without witnesses. In the rest of this section, we will discuss
and draw a distinction between these two privileges in the global ROM.

In order to resolve the former issue with extraction and realize GUC-secure
commitments in the (non-programmable) global ROM, Canetti et al. introduced
a global RO GroRO with a restricted “observability” property [22]. The simulator
(ideal adversary) S in the security proof of a protocol Π emulating an ideal
functionality F in the GroRO-hybrid model is able to observe all adversarial queries
to GroRO as follows. First, S can observe the corrupted parties’ queries to GroRO by
directly monitoring their input and output wires (recall that in the ideal world,
corrupted parties communicate through S). The environment’s queries to GroRO,
on the other hand, are not directly monitored by S. Since GroRO is completely
public, the environment is free to query it anytime; however, the environment is
not free to query it with the same SID as the participants in Π or F , because it
is external to Π by definition.

In order to ensure the environment’s queries are still available to the simula-
tor, GroRO checks whether the SID for a query matches the SID of the querying
party. In the event that it does not, this query is labelled “illegitimate,” creating
the restriction. GroRO makes a record of all illegitimate queries available to an
ideal functionality F with the correct SID, if it exists. We will see that for our
construction of GUC-secure NIZKPoK in the GroRO-FNIZK-hybrid model, FNIZK

can leverage these queries to extract witnesses from the environment’s proofs.

A key feature of this relaxation of the strict global setup is that it does not
hide any of its interfaces from the environment. GroRO might be checking quer-
ents’ SIDs and disclosing information to FNIZK, but its “front-facing” interface
looks no different to the environment than it does to any other party. While
in the original formulation of the definition GroRO makes the list of illegitimate
queries available to F , it is reasonable to imagine a world in which all of the
illegitimate queries are simply posted to a global public bulletin—honest parties
will never attempt to interfere with other parties’ sessions, so their queries will

UC Σ-protocols in the Global ROM 7

never be disclosed to anyone. Put differently, since the list of illegitimate queries
contains adversarial queries only, the environment (who is also puppet-mastering
the corrupted parties) cannot learn anything from seeing the list of illegitimate
queries that it did not already know—any information it would glean from the
global bulletin would be self-simulatable. Therefore, the observability property
of GroRO does not functionally change the view of the environment.

We contrast this with the “programmability” property of the restricted pro-
grammable observable global RO, GrpoRO [10]. Technically since GrpoRO is public,
anybody can program it. While there are uses for a non-restricted programmable
global RO [10], it would not work for NIZKPoK since anybody could forge a
proof. In order to ensure that programming is restricted to the simulator only,
GrpoRO has an IsProgrammed interface that allows participants with a particular
SID to check whether the output of GrpoRO was programmed on some input per-
taining to the same session. Honest parties in the challenge session can therefore
check whether the adversary has programmed GrpoRO, and can refuse to continue
the protocol if so. Camenisch et al. argue that since the simulator controls the
corrupted parties’ view of the experiment in the ideal world, it can pretend that
the simulator did not program anything and return “false” to all of the corrupted
parties’ IsProgrammed queries. Since only parties running a legitimate protocol
session s are allowed to use the IsProgrammed interface for s, the environment
cannot make IsProgrammed queries for s—if it could, it would easily be able to
distinguish between the real and ideal experiments by checking whether honest
parties’ responses were programmed. Unlike the former observability property,
the programmability property afforded by the IsProgrammed interface creates a
local restriction—it does not allow the environment to interact freely with the
interfaces of the RO just like any other party would.

We show how to construct efficient, GUC-secure NIZKPoK in the GrpoRO-
hybrid model. However, we believe there are downsides to GrpoRO: it is not clear
how compromising the fully-public aspect of the global ROM with a locally-
restricted interface might impact the overall composability of protocols proven
secure in the GrpoRO-hybrid model. In order to achieve efficient GUC-secure
NIZKPoK without this localized interface, we build a new hybrid model called
the GroRO-FCRS-hybrid model. The GroRO-FCRS-hybrid model shifts the localized
interface from inside of the global RO to inside of the protocol—as long par-
ticipants realize the functionality FCRS with a secure common reference string
(CRS), our GUC-secure NIZKPoK are guaranteed to retain composability with
primitives that are provably secure in (fully) global ROMs. For a one-time cost
at the beginning of the protocol execution, participants can compute this CRS
securely and realize FNIZK using only the observable global RO GroRO by leveraging
Canetti et al.’s GUC-secure NISC protocol [22]. Similar mechanisms are used in
practice to obtain practical NIZKPoK in other ROMs [7].

In the real world, our ideal CRS functionality FCRS returns a random string
CRS (the CRS our real-world participants might compute using the NISC proto-
col). In the ideal world, the simulator generates CRS itself, along with a trapdoor
trap that only it knows. The proof-generation process in our construction of
GUC-secure NIZKPoK in the GroRO-FCRS-hybrid model is to show that the prover

8 A. Lysyanskaya and L. Rosenbloom

either knows a “real” witness w for a statement x such that (x,w) ∈ R, or it
knows the trapdoor to the CRS. The Prove and SimProve algorithms differ only
in the witness used: a real prover must use a real witness, while the simulator
can use the CRS trapdoor in a way that we will show is imperceptible to the
environment. We formalize this intuition using an OR-protocol [24,26] over the
original relation R and what we call a samplable-hard relation for the CRS.

Straight-Line Extraction and the Fischlin Transform. The original Fis-
chlin transform [30] is a non-interactive transform for Σ-protocols in the stan-
dard ROM that allows for straight-line (or online) extraction. Straight-line ex-
traction is a process by which the extractor can produce a witness straight from
a valid proof without any further interaction with the prover. (In order to do so,
it will need additional, auxiliary information available to the extractor algorithm
only.) This is in contrast to extraction in the “rewinding” model, in which the
extractor resets the prover to a previous state and hopes for a certain pattern of
interaction before it can obtain a witness. Straight-line extraction is necessary
in the (G)UC model, which does not allow the simulator to rewind the envi-
ronment [20]. Furthermore, straight-line extraction produces a tight reduction,
which avoids security nuances surrounding the forking lemma [33].

In order to create a straight-line extractable proof system from a Σ-protocol,
the Fischlin transform essentially forces the prover to rewind itself, requiring
multiple proofs on repeated commitments until the probability that the prover
has generated at least two responses to different challenges on the same com-
mitment is overwhelming. Kondi and shelat recently showed that because the
Fischlin prover is deterministic—that is, because it tests challenges by iterating
from zero to some fixed constant—the original transform is open to a “replay”
attack that breaks the the witness indistinguishability property of OR-protocols
[36]. To avoid the attack, Fischlin’s original construction requires the underlying
Σ-protocols to have a property called quasi-unique responses, which Kondi and
shelat demonstrate precludes the transformation of OR-protocols. Kondi and
shelat show this property can be omitted (and most OR-protocols transformed)
as long as one randomizes the challenge selection process.

We review the resulting “randomized” Fischlin transform [31,36] that we will
leverage in our constructions. First, the prover generates a vector of r commit-
ments, where r is a parameter of the system. For each commitment, the prover
draws challenges uniformly at random from the t-bit challenge space, computes
responses, and queries the RO on the complete transcript until it finds one that
causes the RO to return a value with b leading zeroes, where t and b are also
parameters. If the prover does not find such a response, it chooses the tran-
script such that, on input this transcript, the RO returns the smallest value in
lexicographic order.

In the end, the prover sends only the responses with minimal return values
for each of the r repetitions to the verifier. The verifier is therefore only able to
see a single transcript for each commitment, and can check the validity of the
transcripts and oracle queries as usual. Since the transform allows the prover
some flexibility in choosing a minimal oracle response value (rather than forcing

UC Σ-protocols in the Global ROM 9

all b bits to be leading zeroes), the verifier checks that the sum of the oracle’s
responses to the transcripts is less than some maximal parameter, S.

The parameters b, r, S, and t are set such that there are guaranteed to be
(with overwhelming probability) two matching transcript queries, (x, com, chl,
res) and (x, com, chl′, res′), with the same commitment but different challenges.
When the extractor obtains these oracle queries via either the simulator in the
security experiment or the observability interface of the global RO, it is able
to extract a witness w such that (x,w) ∈ R with overwhelming probability, as
guaranteed by the special soundness property.

2 Preliminaries

We use standard notation, available for review in Appendix A.1.

2.1 Σ-protocols, Revisited

Recall from Section 1 that Σ-protocols are three-round, public-coin transactions
in which a prover “commits” to a value com, the verifier sends a unique ℓ-length
random “challenge” chl to the prover, and the prover “responds” with a value
res that must convince the verifier it knows a value corresponding to some public
statement x. If the verifier accepts the values (com, chl, res) as a “proof” of x,
it outputs 1 to accept the proof. Otherwise, it outputs 0 to reject.

Formally, letR be any efficiently computable binary relation. For pairs (x,w) ∈
R, or equivalently such that R(x,w) = 1, we call x a statement in the language
of R, denoted LR, and say w is a witness to x ∈ LR. We consider Σ-protocols
over a relation R between a prover P and a verifier V that have the general form
discussed above, which Damg̊ard formalizes as a Σ-protocol template [26].

Since we will later introduce compilers for Σ-protocols—first to make them
non-interactive and straight-line extractable and then to make them GUC-se-
cure—it will be helpful to define Σ-protocol interfaces with precise inputs and
outputs. We therefore present an algorithmic version of Damg̊ard’s definitions,
and include the originals in Appendix A.3.

Definition 1 (Σ-protocol Template). The protocol template for a relation
R is a tuple of efficient algorithms τ = (Setup, Commit, Challenge, Respond,
Decision), defined as follows.

– ppm ← Setup(1λ): Given a security parameter, generates a set of public
parameters ppm which minimally include the challenge length ℓ.

– com← Commit(ppm, x, w): P sends V a message com.

– chl← Challenge(ppm, x, com): V sends P a random ℓ-bit string chl.

– res← Respond(ppm, x, w, com, chl): P sends V a reply res.

– {0, 1} ← Decision(ppm, x, com, chl, res): V decides whether to output 1 (ac-
cept) or 0 (reject) based on the input (ppm, x, com, chl, res).

10 A. Lysyanskaya and L. Rosenbloom

The tuple (com, chl, res) is called a transcript or proof. We say a transcript or
proof is valid or accepting if Decision(ppm, x, com, chl, res) outputs 1.

Recall that Σ-protocols must also satisfy the properties of completeness, spe-
cial honest-verifier zero-knowledge (SHVZK), and special soundness (SS). The
SHVZK property requires the existence of a simulator algorithm for simulating
proofs, and the SS property requires an extractor algorithm for extracting wit-
nesses. Therefore, our algorithmic specification of a Σ-protocol includes three
additional algorithms: SimSetup, SimProve, and Extract.

In order to more easily translate our definition of Σ-protocols into the non-
interactive setting, we combine the Commit, Challenge, and Respond algorithms
of the protocol template into a Prove interface. For now we are still dealing
with the interactive version, and the specification of Prove below is a two-party
protocol where the first input to the algorithm is the prover’s input, and the
second input is the verifier’s. After running Prove, both parties obtain the same
copy of the proof transcript π = (com, chl, res). In the next section, we will
introduce a non-interactive straight-line compiler that makes the Prove interface
a non-interactive algorithm in the random-oracle model.

The non-interactive, straight-line extractable (NISLE) versions ofΣ-protocols
have different formulations of the SHVZK and SS properties. Because we will
work almost exclusively with the NISLE versions of SHVZK and SS, we defer a
formal definition and discussion of the original versions to Appendix A.4.

Definition 2 (Σ-protocol). A Σ-protocol for a relation R based on a protocol
template τ (Definition 1) is a tuple of efficient procedures ΣR,τ = (Setup, Prove,
Verify, SimSetup, SimProve, Extract), defined as follows.

– ppm ← Setup(1λ): Given a security parameter 1λ, invoke τ.Setup(1λ) to
obtain the public parameters ppm.

– π ← Prove((ppm, x, w), (ppm, x)): Let the first (resp. second) argument to
Prove be the input of the prover (resp. verifier), where both parties get ppm
and the statement x, but only the prover gets w. P and V run τ.Commit,
τ.Challenge, and τ.Respond. Output π = (com, chl, res).

– {0, 1} ← Verify(ppm, x, π): Given a proof π for statemenet x, parse π
as (com, chl, res) and output the result of running τ.Decision on input
(x, com, chl, res). Verify must satisfy the completeness property from Def-
inition 18 in Appendix A.4.

– (ppm, z)← SimSetup(1λ): Generate ppm and the simulation trapdoor z. To-
gether, SimSetup and SimProve must satisfy the special honest-verifier zero-
knowledge property from Definition 19 in Appendix A.4.

– π ← SimProve(ppm, z, x, chl) : Given public parameters ppm, trapdoor z,
statement x, and a challenge chl, produce a proof π = (com, chl, res).

– w ← Extract(ppm, x, π, π′) : Given two proofs π and π′ for a statement x,
output a witness w. Extract must satisfy the special soundness property
from Definition 20 in Appendix A.4.

For convenience and when the meaning is clear, we use ΣR to represent ΣR,τ

and omit ppm from the input of the algorithms.

UC Σ-protocols in the Global ROM 11

2.2 Straight-Line Compilers

The notion of a straight-line compiler (SLC) for Σ-protocols in the random-
oracle model (ROM) was introduced by Fischlin [31,30]. Fischlin’s work makes
use of the first non-interactive (NI) transform for Σ-protocols given by Fiat and
Shamir [29], which was proven secure in the standard ROM by Pointcheval and
Stern [42]. In Fiat and Shamir’s original NI transform, they make the Prove

protocol an algorithm by replacing the challenge issued by the verifier with the
output of a random oracle (RO) H on input (x, com). The simulation process is
similarly non-interactive, whereby the simulator obtains the challenge in advance
by programming the RO (as opposed to rewinding the prover).

An SLC is a special kind of non-interactive transform for Σ-protocols in the
ROM where the extraction process is also non-interactive, such that after Prove
outputs π for a statement x, Extract can output a valid witness for x without
any further interaction with the prover. Fischlin defines a new special soundness
(SS) game for the ROM in which A has oracle access to H, and Extract works
on input (x, π,QA), where QA are A ’s queries to H. Fischlin’s approach is not
the only one for achieving straight-line extraction. Verifiable encryption [17,9]
provides a different mechanism: the parameters ppm contain a public key, and
the proof π contains an encryption of the witness under this key. The extractor’s
trapdoor is the decryption key. This approach requires additional machinery:
it needs a proof systems for proving that a plaintext of a particular ciphertext
is a witness w, and thus cannot just be constructed directly from ΣR. While
our constructions follow Fischlin and interpret QA to be A ’s queries to H, the
definition below covers either approach: one can simply consider QA to be the
minimal privileged information needed for the extractor to function.

A non-interactive, straight-line extractable (NISLE) zero-knowledge proof
system must also satisfy a non-interactive equivalent of SHVZK. In particular,
its definition must reflect the fact that the simulator might be programming the
RO. Fischlin’s conception of the SHVZK property for SLCs allows the challenger
in the SHVZK game to update the RO after every Prove query, and gives the
adversary A oracle access to this new RO. The SHVZK property must continue
to hold even as the RO is updated, meaning that if the simulator changes the
RO at all, it must be done in a way that is imperceptible to A . Note that the
definition does not imply that the simulator has to program the RO—just that
if it does, it must do so imperceptibly. This nuance is important because we will
later give a construction in Section 5.3 for GUC-secure NIZKPoK in the (non-
programmable) GroRO-FCRS-hybrid model—this construction should not (and does
not) contradict our result from Section 3.5, which says that any GUC-secure
NIZKPoK must meet the requirements of non-interactive (multiple) SHVZK.

Similarly, Fischlin presents a slightly weaker version of completeness that
allows for the optimization of other parameters; other version of SLCs, for in-
stance Kondi and shelat’s randomized version of Fischlin’s transform [36], do not
require this property. In Fischlin’s weaker version (which we call overwhelming
completeness), any proof of a valid statement-witness pair computed according
to the Prove algorithm is accepted by Verify with probability that is overwhelm-
ing in the security parameter (rather than strictly 1). Certainly any SLC that

12 A. Lysyanskaya and L. Rosenbloom

satisfies the regular notion of completeness will also satisfy the weaker version
of overwhelming completeness, so we use the weaker version in order to identify
the minimal properties necessary for a protocol be a GUC-secure NIZKPoK.

To that end, we will show in Section 3.5 that the security properties guar-
anteed by an SLC are strictly necessary to transform a Σ-protocol into a GUC-
secure NIZKPoK in any global ROM. Later in Section 4, we will show that an
SLC is sufficient to transform any Σ-protocol into a GUC-secure NIZKPoK in
the (programmable) GrpoRO-hybrid model, and in Section 5 we will show that it
is sufficient in conjunction with our OR-protocol construction to complete the
transformation in the GrpoRO-FCRS-hybrid model.

Definition 3 (Straight-Line Compiler). An algorithm SLC is a straight-
line compiler (SLC) in the random-oracle model if given any Σ-protocol ΣR

for relation R (Definition 2) as input, it outputs a tuple of algorithms ΣSLC
R =

(SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) based on ΣR that sat-
isfy the following properties: overwhelming completeness (Definition 4), non-
interactive multiple special honest-verifier zero-knowledge (Definition 5), and
non-interactive special simulation soundness (Definition 6).

We refer to ΣSLC
R as a non-interactive, straight-line extractable (NISLE) Σ-

protocol, and proofs generated by ΣSLC
R as non-interactive, straight-line extractable

zero-knowledge proofs of knowledge (NISLE ZKPoK) in the random-oracle model.

Definition 4 (Overwhelming Completeness). For any security parameter
λ, any (x,w) ∈ R, and any π produced by running ΣSLC

R .ProveH(x,w),

Pr[ΣSLC
R .VerifyH(x, π) = 1] ≥ 1− negl(λ).

In the standard definition of SHVZK, A is only permitted to issue one Prove

query. In the GUC security experiment (and in most natural applications of Σ-
protocols), the environment is allowed to issue polynomially-many Prove queries,
and we will still need the SHVZK property to hold. Therefore, we present our ver-
sion of Fischlin’s definition of non-interactive multiple SHVZK (NIM-SHVZK).

Definition 5 (Non-Interactive Multiple SHVZK). A NISLE Σ-protocol
ΣSLC

R based on ΣR is non-interactive multiple special honest-verifier zero-know-
ledge (NIM-SHVZK) in the random-oracle model if there exist algorithms ΣSLC

R .
SimSetup and ΣSLC

R .SimProve such that for any security parameter λ, any PPT

adversary A , and a bit b ←$ {0, 1}, there exists some negligible function negl
such that Pr[b′ = b] ≤ 1

2 + negl(λ), where b′ is the result of running the game

NIM–SHVZKA ,ΣSLC
R
(1λ, b) from Figure 1. We say A wins the NIM–SHVZK game

if Pr[b′ = b] > 1
2 + negl(λ).

Similarly, the environment in the ideal-world GUC experiment will have ac-
cess to polynomially-many proofs generated by the SimProve algorithm, which
FNIZK will use to simulate proofs. We therefore define our straight-line compilers
to have the NI special simulation soundness property (NI-SSS), which says that
special soundness must still hold even after an adversary has seen polynomially-
many proofs from the simulator. Fischlin’s original construction is both NIM-
SHVZK and NI-SSS [30]. We will use his results in Section 6.1 to prove that the
randomized Fischlin transform [36,30] is also NIM-SHVZK and NI-SSS.

UC Σ-protocols in the Global ROM 13

NIM–SHVZKH
A ,ΣSLC

R
(1λ, 0)

1 : ppm← ΣSLC
R .SetupH(1λ)

2 : st← A H(1λ, ppm)

3 : i← 0

4 : while st /∈ {0, 1} :

5 : (Prove, x, w), st← A H(st)

6 : if R(x,w) = 1 :

7 : π ← ΣSLC
R .ProveH((x,w), (x, chl))

8 : else :

9 : π ← ⊥

10 : st← A H(st, π)

11 : return b′

NIM–SHVZKH
A ,ΣSLC

R
(1λ, 1)

1 : ppm, z ← ΣSLC
R .SimSetup(1λ)

2 : H0 ← H

3 : st← A H0(1λ, ppm)

4 : i← 0

5 : while st /∈ {0, 1} :

6 : (Prove, x, w), st← A Hi(st)

7 : if R(x,w) = 1 :

8 : i← i + 1

9 : π,Hi ← ΣSLC
R .SimProve(x, z, chl)

10 : else :

11 : π ← ⊥

12 : st← A Hi(st, π)

13 : return b′

Fig. 1. Non-Interactive Multiple SHVZK (NIM-SHVZK) Game.

Definition 6 (Non-Interactive Special Simulation Soundness). A NISLE
Σ-protocol ΣSLC

R based ΣR is non-interactive special simulation sound in the
random-oracle model if there exists an algorithm ΣSLC

R .Extract such that for
any security parameter λ and any PPT adversary A ,

Pr[Fail← NI–SSSHA ,ΣSLC
R
(1λ)] ≤ negl(λ),

where H is any random oracle and NI–SSS is the NI-SS game described in Fig-
ure 2. We say A wins if Pr[Fail← NI–SSSHA ,ΣSLC

R
(1λ)] > negl(λ).

Σ-protocols that maintain the zero-knowledge property under NI transforms
in the ROM must additionally have com messages with entropy that is super-
logarithmic in the security parameter [31], such that the adversary cannot pre-
emptively query the prefix (x, com) to the RO and check whether the challenge
supplied by the prover matches what it receives. We define and discuss Fischlin’s
superlogarithmic commitment entropy property further in Appendix A.6.

2.3 OR-protocols

Rather than producing a proof corresponding to a single statement x in a lan-
guage LR, the prover in an OR-protocol proves that it knows a witness for either
a statement x0 in LR0

or another statement x1 in LR1
. At a high level, the prover

does this by simulating the proof of the statement for which it does not have
a witness, while computing the proof of the statement for which it does have a
witness honestly.

14 A. Lysyanskaya and L. Rosenbloom

SSSH
A ,ΣSLC

R
(1λ)

1 : ppm, z ← ΣSLC
R .SimSetup(1λ)

2 : H0 ← H; i← 0; Response← ⊥

3 : st← A H0(1λ, ppm)

4 : while st ̸= halt :

5 : Query,QA
i , st← A Hi(st)

6 : if Query = (Prove, x, w) :

7 : if R(x,w) = 1 :

8 : π,H++i ← ΣSLC
R .SimProve(x, z, chl)

9 : Response← π

10 : elseif Query = (Challenge, x, π)

11 : if ΣSLC
R .VerifyHi(x, π) = 1 :

12 : w ← ΣSLC
R .Extract(x, π,QA

i)

13 : if R(x,w) = 0 : return Fail

14 : st← A Hi(st, Response)

15 : return Success

Fig. 2. Non-Interactive Special Simulation Soundness (NI-SSS) Game.

Our definition is adapted directly from Damg̊ard’s [26], with a few minor
tweaks to make it more general. Since we will use the OR-protocol functionality
as a black box in our construction, it suffices for the purpose of understanding our
results to treat the OR-protocol as a Σ-protocol (according to Definition 2) with
compound inputs. For example, we represent the compound statement x0 ∨ x1

with the upper-case variable X = (x0, x1). The witness W = (w, b) includes
a witness along with a bit b such that (xb, w) ∈ Rb. We provide the detailed
version of our definition alongside Damg̊ard’s, as well as a discussion of the
minor differences between them, in Appendix A.7.

3 Properties of GUC-secure NIZKPoK

In this section we formalize the definitions of the programmable global RO GrpoRO
and the observable global RO GroRO, the ideal NIZKPoK functionality FNIZK, the
CRS ideal functionality FCRS, and the security requirements for protocols that
GUC-realize FNIZK in the GrpoRO- and GroRO-FCRS-hybrid models. We then show
that the non-interactive multi-SHVZK and non-interactive special simulation
soundness properties are strictly necessary to obtain GUC-secure NIZKPoK in
any global ROM. In Sections 4 and 5, we will show how to use any straight-line
compiler to realize GUC compilers for Σ-protocols in the GrpoRO- and GroRO-FCRS-
hybrid models, respectively.

UC Σ-protocols in the Global ROM 15

3.1 GroRO and GrpoRO, Revisited

Building on the overview of the global ROM given in Section 1, we now formalize
Canetti et al.’s restricted observable global RO GroRO [22] and Camenisch et al.’s
restricted programmable observable global RO GrpoRO. As with traditional ROs,
both oracles act as functions that respond to each input string xi ∈ {0, 1}∗ with a
uniformly random ℓ-bit string vi ∈ {0, 1}ℓ. We call this original query algorithm
Query, and will now define the other types of queries handled by each oracle.
Since GrpoRO builds on the interfaces of GroRO, we will start with the specification
of GroRO and follow with the extra interfaces of GrpoRO.

Recall from Section 1 that since we are working in the GUC model, both
oracles will expect to see a calling party’s unique session identifier (SID). The
first thing GroRO does when it receives a query is to check whether the calling
party’s SID sid matches the session s for which it has requested randomness. If
sid ̸= s, GroRO assumes this is an “illegitimate” query made by the environment,
and records the query in its special list of illegitimate queries for s, denoted Qs.
In the original version of the definition (provided in Appendix A.10), only the
ideal functionality Fs for session s can query GroRO using the Observe interface
to get the list of illegitimate queries for s. However, note that no honest provers’
queries will ever be recorded in this list, as they will only ever be querying GroRO
for randomness sessions in which they are participating legitimately. Therefore,
we follow Camenisch et al.’s version of the restricted observability property [10]
and simply release the list Qs to anyone who wants it.

Definition 7 (Observable Global RO GroRO). [22] The observable global RO
GroRO is a tuple of algorithms (Query, Observe) defined over an output length ℓ
and an initially empty list of queries Q:

– v ← Query(x) : Parse x as (s, x′) where s is an SID. If the caller’s SID ̸= s,
add (x, v) to the list Qs of illegitimate queries for s. If there already exists
a pair (x, v) in the query list Q, return v. Otherwise, choose v uniformly at
random from {0, 1}ℓ, store the pair (x, v) in Q, and return v.

– Qs ← Observe(s) : If Qs does not yet exist, set Qs = ∅. Return Qs.

In addition to the Query and Observe interfaces, Camenisch et al.’s restricted
programmable observable global RO GrpoRO has two extra interfaces, Program and
IsProgrammed. GrpoRO keeps track of which queries have been programmed using
the set Program. Program takes a potential programming (x, v) as input and
checks whether the input x is already programmed; if it is, Program outputs 0
to indicate a failed programming. Otherwise, it adds (x, v) to Q and the list
of programmed queries prog and and returns 1. Note that there are no checks
on who can program GrpoRO, since privileged (simulator-only) programming is
not allowed in the GUC model. In order to functionally restrict this privilege to
the simulator, Camenisch et al. introduces the IsProgrammed interface, which
reveals whether or not GrpoRO was programmed on an index x = (s, x′), but only
to a calling party with sid = s. Notably, this interface directly restricts the
environment from ever seeing whether or not the oracle was programmed (since
the environment is by definition not part of any legitimate protocol session),

16 A. Lysyanskaya and L. Rosenbloom

and indirectly restricts the adversary from ever seeing whether or not the oracle
was programmed (since the simulator is in charge of its view in the ideal-world
experiment in which programming is employed).

Definition 8 (Restricted Programmable Observable Global RO GrpoRO).
[10] The restricted programmable observable global random oracle GrpoRO is a tu-
ple of algorithms (Query, Observe, Program, IsProgrammed) defined over an out-
put length ℓ and initially empty lists Q (queries) and prog (programmed queries):

– v ← Query(x) : Parse x as (s, x′) where s is an SID. If the caller’s SID ̸= s,
add (x, v) to the list Qs of illegitimate queries for s. If there already exists
a pair (x, v) in the query list Q, return v. Otherwise, choose v uniformly at
random from {0, 1}ℓ, store the pair (x, v) in Q, and return v.

– Qs ← Observe(s) : If Qs does not yet exist, set Qs = ∅. Return Qs.

– {0, 1} ← Program(x, v) : If ∃v′ ∈ {0, 1}ℓ such that (x, v′) ∈ Q and v ̸= v′,
output 0. Otherwise, add (x, v) to Q and prog and output 1.

– {0, 1} ← IsProgrammed(x) : Parse x as (s, x′). If the caller’s SID ̸= s,
output ⊥. Otherwise if x ∈ prog, output 1. Otherwise, output 0.

3.2 The NIZKPoK Ideal Functionality

We now formalize the NIZKPoK ideal functionality FNIZK. Recall from Section 1
that in the “ideal” world, the honest parties who would execute protocol Π
are actually dummy parties who do not perform any computations of their own.
Instead, they pass all of their inputs to an ideal functionality FNIZK, who instructs
them on how to respond. As is standard in the UC framework [19], there is one
ideal functionality for each SID s. A dummy party with SID s can only send
input and receive output from the FNIZK with the same SID, denoted Fs

NIZK.
Each Fs

NIZK will need to run some kind of setup, then process proofs and
verifications on behalf of the honest parties in its session. Recall that in order
to be NIZKPoK, the proofs must be non-interactive, zero-knowledge (satisfying
the SHVZK property), and proofs of knowledge (satisfying the SS property).
These properties imply the existence of SHVZK simulator algorithms SimSetup
and SimProve that do not take the prover’s witness as input, as well as of the
SS algorithm Extract that can compute witnesses from adversarially-created
proofs. During FNIZK’s Setup procedure, FNIZK requests the specifications of these
algorithms from the ideal adversary (simulator) S.

Note that there are two conditions in which FNIZK can output Fail. The first
is a completeness error, where FNIZK’s execution of the SimProve algorithm on
input (x,w) ∈ R fails to produce a proof π such that Verify(x, π) = 1. The
second is an extraction error, where FNIZK’s execution of the Extract algorithm
on input a valid, non-simulated proof tuple (x, π) fails to produce a witness
w such that R(x,w) = 1. In the proof of Theorem 1 in Section 3.5, we will
draw a direct correspondence between these failures and the functionality of a
Σ-protocol in order to prove that any protocol that GUC-realizes FNIZK must be
non-interactive multi-SHVZK and special simulation-sound.

UC Σ-protocols in the Global ROM 17

Definition 9 (NIZKPoK Ideal Functionality). The ideal functionality Fs
NIZK

of a non-interactive zero-knowledge proof of knowledge (NIZK PoK) for a par-
ticular SID s is defined as follows.

Setup: Upon receiving the request (Setup, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first
time that (Setup, s) was received, pass (Setup, s) to the ideal adversary S, who
returns the tuple (Algorithms, Setup, Prove, Verify, Simulate, Extract) with
definitions for the algorithms FNIZK will use. FNIZK stores the tuple.

Prove: Upon receiving a request (Prove, s, x, w) from a party P = (pid, sid),
check that sid = s and R(x,w) = 1. If not, output ⊥. Otherwise, compute
π according to the Simulate algorithm and check that Verify(x, π) = 1. If it
doesn’t, output Fail. Otherwise, record then output the message (Proof, s, x, π).

Verify: Upon receiving a request (Verify, s, x, π) from a party P = (pid, sid),
first check that sid = s. If it doesn’t, output ⊥. Otherwise if Verify(x, π) = 0,
output (Verification, s, x, π, 0). Otherwise if (Proof, s, x, π) is already stored,
output (Verification, s, x, π, 1). Otherwise, compute w according to the Extract
algorithm. If R(x,w) = 1, output (Verification, s, x, π, 1) for a successful ex-
traction. Else if R(x,w) = 0, output Fail.

For convenience and when the context is clear, we drop the message type and
sid from the notation.

3.3 The CRS Ideal Functionality

Below is the ideal common reference string (CRS) functionality for a session s,
which relies on a generic “GenCRS” algorithm. In Section 5.1, we will articulate
the properties that GenCRS must have for the purposes of our construction.

Definition 10 (CRS Ideal Functionality). The ideal functionality Fs
CRS of a

common reference string (CRS) for a particular SID s and a CRS generation
mechanism GenCRS is defined as follows.

Query: Upon receiving a request (Query, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Query, s) was received, compute x according to the algorithm GenCRS and
store the tuple (CRS, s, x). Return (CRS, s, x).

3.4 GUC Security Definitions

We are now ready to formalize what it means for a protocol Π to be a GUC-
secure NIZKPoK in the GrpoRO- and GroRO-FCRS-hybrid models. We review the
standard GUC model real- and ideal-world experiments given by Canetti et al.
[20] in Appendix A.9.

Definition 11 (GUC NIZKPoK in the GrpoRO-hybrid Model). A protocol
Π = (Setup, Prove, Verify, SimSetup, SimProve, Extract) with security param-
eter λ GUC-realizes the NIZKPoK ideal functionality FNIZK in the GrpoRO-hybrid

18 A. Lysyanskaya and L. Rosenbloom

model if for all efficient A , there exists an ideal adversary S efficient in expec-
tation such that for all efficient environments Z,

IDEAL
GrpoRO

FNIZK,S,Z(1
λ, aux) ≈c REAL

GrpoRO

Π,A ,Z(1
λ, aux),

where GrpoRO is the global RO from Definition 8 and aux is any auxiliary infor-
mation provided to the environment.

Definition 12 (GUC NIZKPoK in the GroRO-FCRS-hybrid Model). A pro-
tocol Π = (Setup, Prove, Verify, SimSetup, SimProve, Extract) with security
parameter λ GUC-realizes the NIZKPoK ideal functionality FNIZK in the GroRO-
FNIZK hybrid model if for all efficient A , there exists an ideal adversary S efficient
in expectation such that for all efficient environments Z,

IDEALGroRO

FNIZK,S,Z(1
λ, aux) ≈c REAL

GroRO,FCRS

Π,A ,Z (1λ, aux),

where GroRO is the global RO functionality from Definition 7, FCRS is the local CRS
functionality from Definition 10, and aux is any auxiliary information provided
to the environment.

3.5 GUC NIZKPoK Are NIM-SHVZK and NI-SSS

We prove in this section that any protocol Π that GUC-realizes FNIZK in any
global ROMmust be non-interactive multiple special honest-verifier zero-knowledge
(NIM-SHVZK) and non-interactive special simulation simulation sound (NI-
SSS) according to the definitions in Section 2.2. In other words, the NIM-SHVZK
and NI-SSS properties guaranteed by the straight-line compiler (SLC) in Defi-
nition 3 are strictly necessary to create GUC NIZKPoK in the global ROM.

As shown in Appendix B.1, any ordinary Σ-protocol that is regular SHVZK
is also multi-SHVZK, and any multi-SHVZK can be made NIM-SHVZK. The
more interesting result is the necessity of special simulation soundness, since
that is not a property guaranteed by all Σ-protocols—it will be up to the SLC
to create a special simulation sound NISLE Σ-protocol even when the underlying
Σ-protocol is only regular special sound. In the proof of Theorem 3 in the full
version of his paper [30], Fischlin shows that the NISLE Σ-protocols resulting
from his transform satisfy both NIM-SHVZK and NI-SSS. A key element in
Fischlin’s proof that will surface again in the proof of Lemma 3 below, as well
as in the proofs of Theorem 3 in Section 5.3 and Theorem 4 in Section 6.1, is
the observation that a non-interactive Extract algorithm functionally decouples
the extraction process from the rest of the experiment—interacting with the
extractor does not influence the adversary’s view in any way. Intuitively, this
is because Extract works solely using adversarial outputs (X,Π,QA) that the
adversary already knows. We use some of Fischlin’s ideas in the proofs below,
and extend his result to Kondi and shelat’s randomized transform in Section 6.1.

Since we wish to prove our result for any global ROM, we recall the strict
global RO GsRO outlined by Canetti et al. [22] and formalized by Camenisch et
al. [10]. GsRO has the same parameters as GrpoRO and GroRO but only one interface,
Query, that can be accessed freely by any party in the GUC experiment. Query

UC Σ-protocols in the Global ROM 19

is defined similarly to the Query functionalities of GroRO and GrpoRO above, except
that it does not need to store any extra lists of illegitimate queries. The func-
tionality of GsRO is the minimal-most assumption of an RO in the GUC model,
creating a direct correspondence to the standard RO H in the NIM–SHVZK and
NI–SSS experiments. Because the point of using GsRO here is to convey the min-
imal assumption needed and not to prove the result only for GsRO, we use the
generic notation GRO, which represents any global RO with a minimum of GsRO’s
Query interface. The GUC security definition in the GRO-hybrid model is the
same as in Definition 11, except that GrpoRO is replaced with GRO in the notation.

In the proof of the following theorem, our reduction will be playing the role
of the environment against a GUC experiment challenger using the NIM–SHVZK
and NI–SSS adversaries as black boxes. Using GRO makes sense in this context
given that the reduction/environment does not have any special control over
GRO, and cannot make use of any privileged interfaces. We still assume, however,
that the adversary playing the NI–SSS game outputs the information QA for the
reduction to use. Recall from Section 2.2 that while we use the notation QA for
convenience in our constructions (which all assume QA is a list of A ’s queries
to the RO), it can represent any information that the extractor needs. Finding
a sufficient global RO to bootstrap other forms of SLCs that do not rely on A ’s
RO query history into the GUC setting is left for future work.

Theorem 1. Let Π be a protocol that GUC-realizes FNIZK in the GRO-hybrid
model (Definition 11 where GrpoRO is replaced with GRO. Then Π must be both
NI multi-SHVZK (Definition 5) and NI special simulation-sound (Definition 6).

Proof Sketch. We proceed by cases and show that if Π is not NIM-SHVZK then
it does not GUC-realize FNIZK, and similarly that if Π is not NI-SSS then it does
not GUC-realize FNIZK. The full version of this proof is available in Appendix B.2.

In the first half of the proof, we construct a reduction that uses an adversary
that can win the NIM–SHVZK experiment from Figure 1 with non-negligible
advantage to determine whether it is talking to the real- or ideal-world GUC
experiment. The reduction forwards A ’s oracle queries to and from GRO and A ’s
prove queries to the GUC challenger, returning the proofs it receives back to A .
We note that since the reduction has no control over GRO, its view of GRO is exactly
the same as A ’s, so anything A can learn about the proofs from interacting with
GRO, the reduction can also learn. Furthermore if the GUC challenger is running
the ideal-world experiment and FNIZK outputs Fail (indicating that SimProve

failed to compute a valid proof for a statement-witness pair (x,w) ∈ R), the
reduction can immediately tell it is living in the ideal world, since the real proof
system is always complete (unless we are working in Fischlin’s overwhelming
completeness model, in which case we allow for a negligible completeness error).
As long the SimProve algorithm does not produce Fail, the reduction simulates
A ’s exact view of the challenger in the NIM–SHVZK game and succeeds in distin-
guishing the real- from ideal-world GUC experiments with the same probability
as A , arriving at the contradiction.

The second reduction uses an A that can win the NI–SSS game from Fig-
ure 2 with non-negligible advantage in order to distinguish between the GUC

20 A. Lysyanskaya and L. Rosenbloom

experiments. This reduction proceeds similarly to the last, forwarding all of A ’s
queries to the relevant parties. The argument regarding the reduction’s view of
GRO is identical to the argument above. In this case, however, there is a nuance
to A ’s view: the regular NI–SSS challenger always produces simulated proofs,
while the reduction will only produce simulated proofs if the GUC challenger is
running the ideal-world experiment. We argue that in the case that the GUC
challenger is running the real-world experiment, A ’s view from the reduction
reduces to the regular non-interactive special soundness game NI–SS given in
Appendix A.5, in which A gets to query a regular Prove oracle rather than
querying SimProve. The reduction therefore runs two copies of A , returning
proofs from the GUC challenger to the first copy A and generating proofs for
the second copy A ′ itself using Π.Prove. If the GUC challenger is running the
ideal-world experiment, the reduction is able to simulate A ’s exact view of the
NI–SSS game, and the reduction will be able to determine that it is living in
the ideal-world experiment with the same probability that A is able to output
a proof that causes FNIZK’s Extract algorithm to output Fail. If the GUC chal-
lenger is running the real-world experiment and A ′ can output a valid proof such
that Π.Extract fails but the GUC challenger outputs 1, the reduction knows it
is the real-world challenger, and can therefore distinguish the GUC experiments
with the same probability that A ′ succeeds in winning the NI–SS game.

Note this proof requires the reduction to be able to compute Π.Extract
itself, which it can only do because A ′ provides the auxiliary information QA ′

somewhere the reduction can see.1 Similarly, the reduction would not work if Π
was only special sound, since the adversary in the NI–SS game does not have
well-defined behavior with respect to simulated proofs. ⊓⊔

4 GUC NIZKPoK in the Programmable Global ROM

We will now prove that a straight-line compiler (SLC) is sufficient to transform
any Σ-protocol into a GUC-secure NIZKPoK in the the GrpoRO-hybrid model.

Theorem 2. Let ΣR be any Σ-protocol for relation R (Definition 2), GrpoRO be
the restricted programmable observable global random oracle (Definition 7), and
SLC be any straight-line compiler (Definition 3). Then the NISLE Σ-protocol
ΣSLC

R ← SLC(ΣR) GUC-realizes FNIZK in the GrpoRO-hybrid model (Definition 11).

Proof Sketch. In the ideal-world experiment, our simulator S hands the ideal
functionality FNIZK the tuple of algorithms ΣSLC

R , returns false to the corrupted
parties’ IsProgrammed queries, and otherwise functions as a dummy adversary,
forwarding communications between the environment and the protocol.

We proceed by creating a hybrid reduction starting in the real-world exper-
iment that replaces each piece of the real-world protocol ΣSLC

R with the func-
tionality of FNIZK. First, we replace all of the environment’s and adversary’s

1 As for the GUC challenger, the only hope it has of successfully running the extractor
against the reduction in this case is to find information about A ′’s proofs somewhere
outside of the entire experiment—in the GRO-hybrid setting, the only option is for
the GUC challenger to get special access to GRO.

UC Σ-protocols in the Global ROM 21

connections to the real-world protocol participants with the “challenger” of our
reduction, C. This difference is syntactic, so the first two hybrids are identical.

In the next hybrid, we replace C’s Prove functionality with the Prove in-
terface of FNIZK, and show the environment’s views are indistinguishable be-
tween these experiments as long as ΣR is non-interactive multiple special honest-
verifier zero-knowledge (NIM-SHVZK). Recall that the Prove functionality of
FNIZK uses the ΣSLC

R .SimProve algorithm, which simulates proofs the same way
as ΣR.Prove—by programming the RO to return a challenge it gets in advance.
In addition, C always returns false to any of the adversary’s IsProgrammed

queries. As long as ΣSLC
R .SimProve produces valid proofs for statements x ∈ LR

with overwhelming probability (which follows from overwhelming completeness),
the environment’s view of GrpoRO remains statistically indistinguishable between
the hybrids (which follows from the superlogarithmic commitment entropy prop-
erty in Defintion 22 and the restriction of the IsProgrammed interface) and the
real and simulated proofs are also statistically indistinguishable (which follows
from the statistical NIM-SHVZK property of the straight-line extractor), the
two hybrids are statistically indistinguishable. In the event that ΣR is only com-
putationally SHVZK, we construct a (tight) reduction that uses an environment
that can distinguish the two hybrids to win the NIM–SHVZK game from Fig-
ure 1. The reduction simply proceeds by forwarding all of the environment’s RO
queries to GrpoRO, all Prove queries to the NIM–SHVZK challenger, and answer-
ing Verify queries itself by running ΣSLC

R .Verify. If the NIM–SHVZK challenger
playing with bit b = 0 and the proofs are according to ΣSLC

R .Prove, this is exactly
what the environment expects from the first hybrid; otherwise if b = 1 and the
proofs are according to ΣSLC

R .SimProve, the environment knows it is living in the
second hybrid. Therefore, our reduction succeeds with the same probability as
the hybrid-distinguisher environment, contradicting the NIM-SHVZK property
of ΣSLC

R and proving that the hybrids must be computationally indistinguishable.

In the penultimate hybrid, we replace C’s Verify functionality with the
Verify functionality of FNIZK, and show the environment’s views are computa-
tionally indistinguishable between these hybrids as long as ΣR is non-interactive
special simulation-sound (NI-SSS). Recall that the Verify functionality of FNIZK

uses the ΣSLC
R∨S.Extract algorithm, and fails whenever the witness extracted from

a valid (non-simulated) proof is not valid. Our reduction uses an environment
that can distinguish the simulate-only hybrid from the simulate-and-extract hy-
brid as a black box to produce a proof that wins the NI–SSS game from Fig-
ure 2 as follows. For Prove queries, the reduction simulates proofs according
to either hybrid (both use ΣSLC

R .SimProve). Any time the environment wants to
verify a proof that the reduction did not create itself, it gathers the environ-
ment’s queries (which are freely available—recall that all of the environment’s
wires pass through our challenger C) and sends the proof along with the envi-
ronment’s queries to the NI–SSS challenger. Note that since the only difference
between the hybrids is that the second hybrid can output Fail while the first
never does, the only way for the environment to distinguish between them is to
produce such a failure by outputting a valid (non-simulated) proof that causes
ΣSLC

R .Extract to fail. Since the challenger in the NI–SSS game also uses the

22 A. Lysyanskaya and L. Rosenbloom

ΣSLC
R .Extract algorithm, the reduction succeeds with the probability as the en-

vironment, contradicting the NI–SSS property and proving that the hybrids must
be computationally indistinguishable.

The final step is to replace the challenger C with FNIZK and S. Note that since
C already runs the algorithms of FNIZK and returns false to corrupted parties’
IsProgrammed queries, this is again only a syntactic difference, and the last two
hybrids are identical. The full version of this proof is in Appendix B.3. ⊓⊔

5 GUC NIZKPoK in the Observable Global ROM

Recall from Section 1 that in order to avoid the session-localized IsProgrammed

interface, we pursue GUC-secure NIZKPoK in the GroRO-FCRS-hybrid model,
where FCRS outputs a CRS that real-world participants might generate at the
beginning of a session using Canetti et al.’s GUC-secure NISC protocol [22].

We begin by discussing the properties we need from our CRS generation
mechanism, then introduce a GUC compiler guc that creates GUC-secure NIZK-
PoK in the GroRO-FCRS-hybrid model.

5.1 Generating a CRS that Plays Nice with Σ-protocols

In our construction, the prover convinces the verifier that either it knows a “real”
witness w0 to the statement x0, or it knows the trapdoor trap to the CRS. In
the real world, nobody knows trap (as long as the CRS is generated securely, for
instance using the NISC protocol). Therefore, all proofs executed by the regular
Prove algorithm will be using the real witness w0 for the statement x0. In the
ideal world, the simulator gets to generate the CRS for each session s with a
trapdoor as part of the SimProve algorithm. SimProve is otherwise the same as
Prove, except the witness is always the trapdoor traps for the statement CRSs.

In order for this OR-proof to work, Prove and SimProve must be able to
interpret the CRS as a statement x1 with a corresponding trapdoor witness w1

such that the pair (x1, w1) satisfies some binary NP relation S. For efficiency
purposes (since the simulator must run in polynomial-time) the CRS must be
efficiently computable, and for security purposes, the trapdoor must be difficult
to compute. We call a relation that satisfies the efficiency property samplable
and a relation that satisfies the security property hard. The intuition is similar
to that of Fischlin’s one-way instance generator [31].

Definition 13 (Samplable-Hard Relation). A binary NP relation S is samp-
lable-hard with respect to a security parameter λ if it has the following properties.

1. Sampling a statement-witness pair is easy. There exists a sampling
algorithm κS that on input 1λ outputs (x,w) such that S(x,w) = 1 and
|x| = poly(λ).

2. Computing a witness from a statement is hard. For a randomly sam-
pled statement-witness pair (x,w)← κS(1

λ) the probability that an efficient

UC Σ-protocols in the Global ROM 23

adversary A can find a valid witness given only the statement is negligible.
Formally, for all PPT A ,

Pr[(x,w)← κS(1
λ), w′ ← A (1λ, x, κS) : (x,w

′) ∈ R] ≤ negl(λ).

Finally, we require that the relation S underlying the CRS has an efficient
corresponding Σ-protocol ΣS . Our construction will instantiate an OR-protocol
ΣR∨S based on ΣR and ΣS for the relation R ∨ S.

Putting all of the pieces together, the CRS generation mechanism GenCRS for
our construction fixes S as a samplable-hard relation with corresponding efficient
Σ-protocol ΣS , and consists of sampling (x,w) using κS(1

λ). We combine the
local CRS functionality FCRS based on the above GenCRS mechanism with the
restricted observable global RO GroRO to instantiate the GroRO-FCRS-hybrid model,
and are now ready to introduce our GUC compiler algorithm.

5.2 GUC Compiler

We propose a compiler that uses any SLC in conjunction with the OR-protocol
described in Section 5.1 above to transform any Σ-protocol into a GUC-secure
NIZKPoK in the GroRO-FCRS-hybrid model. The compiler works as follows.

The samplable-hard relation S and corresponding efficient Σ-protocol ΣS

underlying the CRS are fixed, and the algorithm GenCRS for FCRS is fixed as
(x,w)← κS(1

λ). The real-world Setup functionality runs the OR-protocol ΣR∨S
based on ΣR and ΣS through the SLC to obtain ΣSLC

R∨S, and returns the same
setup parameters as ΣSLC

R∨S.
For each SID s, provers in the real world query the CRS ideal functionality

Fs
CRS to obtain CRSs. Each time a prover with SID s needs to create a proof of a

statement x using witness w, it generates a proof that either it knows a witness
or the CRS trapdoor using ΣSLC

R∨S.Prove
GroRO(X,W), where X = (x, CRSs) and

W = (w, 0) to denote the supplied witness is for the first statement, x. In order
to verify the proof, a verifier first parses X = (x0, x1), obtains CRSs from Fs

CRS,
then checks whether x1 = CRSs. If it does, it the verifier outputs the result of
running ΣSLC

R∨S.Verify
GroRO(X,Π) = 1.

In the ideal world, the SimSetup algorithm is the same as the real-world
Setup, except that it additionally generates an empty list in which to store the
simulated CRS for each session, denoted simcrs. When it is time to prove a
statement x on behalf of an honest party in session s, the SimProve algorithm
generates (CRSs, traps) ← κS(1

λ) (if one has not been generated already), and
computes the proof using ΣSLC

R∨S.Prove
GroRO(X,W), where X = (x, CRSs) and W =

(traps, 1) to denote the supplied witness is for the second statement, CRSs.
Given a proof (X,Π) for session s, a listQA of adversarial provers’ queries for

session s, and the CRS list simcrs, the Extract algorithm first runs the same
checks as Σguc

R∨S.Verify. If they pass, Extract runs ΣSLC
R∨S.Extract(X,Π,Qs

P∗)
and tests the witness W = (w0, w1). If RR∨S(X,W) = 1 but R(x0, w0) = 0,
Extract outputs Fail. Otherwise, it outputs W .

Note that this formulation diverges from the general intuition of an OR-
protocol extractor (see Appendix A.7) in that we require any valid witness W

24 A. Lysyanskaya and L. Rosenbloom

to imply that R(x0, w0) = 1, not that either R(x0, w0) = 1 or S(x1, w1) = 1.
This is because we need to account for the fact that FNIZK will never invoke the
Extract algorithm on proofs it has generated using SimProve, and nobody else
should ever have access to the CRS trapdoor. If FNIZK gets a proof that verifies
because S(CRSs, w1) = 1, it must be the case that an adversarial prover has
acquired the trapdoor, and Extract forms its output in such a way that FNIZK

will output Fail. In our proof of security, we will bound the probability of this
failure by constructing a reduction to the hardness property of S.

We give a candidate construction of the compiler below, and prove in Sec-
tion 5.3 that it creates GUC-secure NIZKPoK in the GroRO-FCRS-hybrid model.

Definition 14 (Candidate Compiler). Let ΣR be any Σ-protocol for re-
lation R (Definition 2), GroRO be the restricted observable global random ora-
cle (Definition 7), FCRS be the ideal CRS functionality (Definition 10), ΣS be
a Σ-protocol for samplable-hard relation S (Definition 13), and SLC be any
straight-line compiler (Definition 3). Then our candidate compiler guc is an
algorithm that on input ΣR and SLC, produces a tuple of algorithms Σguc

R∨S =

(SetupGroRO

ΣR
, ProveGroRO,FCRS

ΣR
, VerifyGroRO,FCRS

ΣR
, SimSetupΣR

, SimProveΣR
, ExtractΣR

),
defined in Figure 3.

5.3 Realizing FNIZK in the GRO-FCRS-hybrid Model

We now prove that the algorithm guc compiles any Σ-protocol into a GUC-
secure NIZKPoK in the GRO-FCRS-hybrid model.

Theorem 3. Let ΣR be any Σ-protocol for relation R (Definition 2), GroRO be
the restricted observable global random oracle (Definition 7), SLC be any straight-
line compiler (Definition 3), FCRS be the ideal CRS functionality (Definition 10),
ΣS be a Σ-protocol for a samplable-hard relation S (Definition 13), and guc be
the algorithm described in Definition 14. Then the NISLE Σ-protocol Σguc

R∨S ←
guc(ΣR, SLC) GUC-realizes FNIZK in the GroRO-FCRS-hybrid model (Definition 12).

Proof Sketch. The proof proceeds similarly to that of Theorem 2 in Section 4,
where we construct a sequence of hybrid experiments that transition between the
real- and ideal-world executions of the compiledΣ-protocolΣguc

R∨S ← guc(ΣR, SLC).
In the ideal-world experiment, our simulator S hands the ideal functionality
FNIZK the tuple of algorithms Σguc

R∨S and otherwise functions as a dummy ad-
versary, forwarding communications between the environment and the protocol.
Throughout this proof when we say an argument is identical to an argument
from the proof of Theorem 2, we mean identical up the handling of GrpoRO’s
IsProgrammed interface, which does not exist in the GroRO-FCRS-hybrid model.

The first hybrid is identical to the first hybrid in the proof of Theorem 2: we
replace all of the real-world protocol participants, GroRO, and now FCRS with a
challenger C who controls all of the wires in and out of the environment and the
adversary, noting this step permits C to program GroRO.2 The second hybrid is also

2 As discussed by Camenish et al. [10], the challenger in such a hybrid experiment can
make use of techniques like programming and rewinding that are “illegal” for the
ideal-world simulator to employ in the GUC model.

UC Σ-protocols in the Global ROM 25

Parameters: R, ΣR, S, ΣS , SLC, GroRO,
FCRS with GenCRS := (x,w)← κS(1λ)

ppm← Σguc
R∨S.Setup

GRO
ΣR

(1λ)

1 : ppm← ΣSLC
R∨S.Setup

GRO(1λ)

2 : return ppm

(s,X,Π)← Σguc
R∨S.Prove

GRO,FCRS
ΣR

(s, x, w)

1 : if RP (x,w) ̸= 1

2 : return ⊥
3 : CRS← Fs

CRS.Query(s)

4 : X ← (x, CRS)

5 : W ← (w, 0)

6 : Π ← ΣSLC
R∨S.Prove

GRO(X,W)

7 : return (s,X,Π)

{0, 1} ← Σguc
R∨S.Verify

GRO,FCRS
ΣR

(s,X,Π)

1 : parse X = (x, CRS)

2 : CRS
′ ← FCRS.Query(s)

3 : if (CRS = CRS
′∧

4 : ΣSLC
R∨S.Verify

GRO(X,Π) = 1) :

5 : return 1

6 : else

7 : return 0

Parameters: R, ΣR, S, ΣS , SLC, GroRO

(ppm, simcrs)← Σguc
R∨S.SimSetupΣR

(1λ)

1 : ppm← ΣSLC
R∨S.Setup

GRO(1λ)

2 : simcrs← ⊥
3 : return (ppm, simcrs)

(s,X,Π, simcrs)← Σguc
R∨S.SimProveΣR(simcrs, s, x, w)

1 : if RP (x,w) ̸= 1

2 : return ⊥
3 : if ∄(CRSs, traps) s.t. (s, CRSs, traps) ∈ simcrs :

4 : (CRSs, traps)← κS(1λ)

5 : simcrs.append(s, CRSs, traps)

6 : X ← (x, CRSs)

7 : W ← (traps, 1)

8 : Π ← ΣSLC
R∨S.Prove

GRO(X,W)

9 : return (s,X,Π, simcrs)

W ← Σguc
R∨S.ExtractΣR(s,X,Π,Qs

A)

1 : W ← ΣSLC
R∨S.Extract(X,Π,Qs

A)

2 : parse X = (x, CRS)

3 : parse W = (w, trap)

4 : if (RR∨S(X,W) = 1 ∧R(x,w) = 0) :

5 : return Fail

6 : else

7 : return W

Fig. 3. Compiler Σguc
R∨S ← guc(ΣR, SLC) for ΣR in the GroRO-FCRS-hybrid Model

26 A. Lysyanskaya and L. Rosenbloom

identical to the one in the proof of Theorem 2 above, except instead of jumping
straight to replacing C’s real-world Prove algorithm with the Prove interface
of the ideal functionality, which will use Σguc

R∨S.SimSetup and Σguc
R∨S.SimProve, we

instead replace Prove with ΣSLC
R∨S.SimSetup and ΣSLC

R∨S.SimProve. This step allows
us to postpone giving C access to the CRS trapdoors, since we will need to
ensure that any adversarially-created proofs in the next hybrid will only avoid
extraction if the adversary is somehow able to generate the trapdoor itself. By the
arguments used in the proof of Theorem 2, we can reduce the indistinguishability
of the first two hybrids to the NIM-SHVZK property of ΣSLC

R∨S.

The third hybrid is identical in that we replace C’s Verify procedure with
FNIZK’s Verify interface, which uses Σ

guc
R∨S.Extract. The proof of indistinguisha-

bility of the second and third hybrids will differ slightly due to the new failure
condition in theΣ

guc
R∨S.Extract algorithm: namely, the clause that says if the over-

all witnessW = (w, traps) is a valid witness for the statementX = (x, CRSs) but
w is not a valid witness for x, output Fail. We can limit the probability of this
failure by constructing a reduction to the hardness property of the samplable-
hard relation: if the environment is able to produce a proof that meets the failure
condition, the reduction can produce a tuple (CRSs, traps) given only CRSs that
was the output of running the sampling algorithm κS(1

λ). Since the probabil-
ity of generating such a tuple is negligible by the hardness property of S, the
probability of such a failure is similarly negligible. The only other way for the en-
vironment to distinguish the hybrids is to produce a valid, non-extractable proof
of a statement X, such that RR∨S(X,W) = 0 for W ← ΣSLC

R∨S.Extract(X,W). In
this case, C can use this proof to contradict the NI-SSS (or NI-SS) property of
ΣSLC

R∨S in the exact same way as the parallel reduction in the proof of Theorem 2.

Finally, the penultimate hybrid replaces ΣSLC
R∨S.SimSetup and ΣSLC

R∨S.SimProve
with the candidate compiler’s algorithms Σ

guc
R∨S.SimSetup and Σ

guc
R∨S.SimProve.

This step effectively reverts the proofs back to the real-world Prove mechanism,
except C is using trapdoors rather than real witnesses. If the underlying OR-
protocol ΣR∨S is statistical SHVZK (and statistically witness-indistinguishable
according to Theorem 5 in Appendix A.7), then there is automatically negligible
difference in view between the third and penultimate hybrids. If, however, there
is computational wiggle room between the proofs in the two experiments, and the
distinguisher environment now has access to the extractor, we must ensure that
the only way the environment can distinguish the hybrids is by the contents of
the proofs (as opposed to somehow using its view of the new proofs to cause the
extractor to fail). We argue here that because the straight-line extractor works
exclusively based on statements, proofs, and oracle queries that the environment
made itself, anything the environment can learn from the extractor it could have
learned on its own. Therefore, it cannot have possibly learned anything new
about the hybrids from the extractor, and the reduction to computational NIM-
SHVZK proceeds the same as before.

The last hybrid replaces C with FNIZK and S—this is again a syntactic rear-
rangement, and is functionally identical to the ideal-world experiment. The full
version of this proof is in Appendix B.4. ⊓⊔

UC Σ-protocols in the Global ROM 27

6 Constructions via the Randomized Fischlin Transform

We demonstrated in the last two sections that any special straight-line compiler
(SLC) that satisfies Definition 3 is sufficient to transform any Σ-protocol ΣR into
a GUC-secure NIZKPoK in the GrpoRO-hybrid model, and sufficient in conjunc-
tion with our OR-protocol construction to make ΣR a GUC-secure NIZKPoK in
the GroRO-FCRS-hybrid model. In this section, we will show that the randomized
Fischlin transform [31,36] meets our definition of an SLC for a broad class of
Σ-protocols, and therefore enables us to practically instantiate both GUC com-
pilers. The efficiency of the resulting proof systems reduce to the efficiency of
the randomized Fischlin transform, which requires only a linear increase in the
size of the proofs for small multiplicative and additive constants.

In this section, we review the randomized Fischlin transform Fis and show
that it meets our definition of an SLC. We then apply Fis to efficiently realize
GUC-secure NIZKPoK in the GrpoRO- and GroRO-FCRS-hybrid models, respectively.

6.1 The Randomized Fischlin Transform, Revisited

Recall from Section 1 that the randomized Fischlin transform due to Kondi and
shelat [36] is a version of the Fischlin transform [31,30] in which the challenges
are selected uniformly at random from the challenge space. In order to use the
randomized Fischlin transform in a way that preserves the security properties of
the SLC given in Definition 3, the Σ-protocols used as input must have the strong
special soundness property, which is a common property of most Σ-protocols
[36] and notably does not preclude us from transforming an OR-protocol. The
strong special soundness property says that the extractor must still work as
long as there is some difference between the challenges and responses of two
transcripts—in particular, it could be that chl = chl′, as long as res ̸= res′.
We provide a definition of strong special soundness below, and a brief discussion
of the necessity of strong special soundness in Appendix A.11.

Definition 15 (Strong Special Soundness). A Σ-protocol ΣR for relation R
has strong special soundness if the condition chl ̸= chl′ in the special soundness
game (Definition 20) is replaced with the condition (chl, res) ̸= (chl′, res′).

In the full version of his paper, Fischlin proves that the standard Fischlin
transform over a Σ-protocol with the quasi-unique responses property creates a
protocol that is both NIM-SHVZK and NI-SSS in the standard ROM [30]. Kondi
and shelat show that the randomized Fischlin transform over a Σ-protocol with
the more general strong special soundness property creates a protocol that is
standard (non-multi) NI-SHVZK and standard (non-simulation) strong NI-SS
[36]. Therefore, it suffices to show that the NI multi -SHVZK and strong special
simulation soundness are similarly preserved under the randomized transform for
strong special sound Σ-protocols. Our proof of the theorem below draws heavily
on arguments from Fischlin [30] and Kondi and shelat [36]; the only novelty is in
the (nearly verbatim) application of Fischlin’s arguments for NIM-SHVZK and
NI-SSS to the randomized transform. We therefore defer the technical details of

28 A. Lysyanskaya and L. Rosenbloom

the randomized Fischlin transform to Definition 28 in Appendix A.12, and the
full version of the proof to Appendix B.5.

Theorem 4. Let ΣR be a Σ-protocol for relation R (Definition 2) with strong
special soundness (Definition 15). Then the randomized Fischlin transform Fis

(Definition 28) is a straight-line compiler for ΣR (Definition 3).

Proof sketch. Recall that a straight-line compiler according to our definition must
create protocols that are NIM-SHVZK and NIM-SSS. Kondi and shelat prove
in Theorem 6.4 [36] that the tuple of algorithms ΣFis

R (denoted πF−rand
NIZK in their

paper) produced by running the randomized Fischlin transform on any strong
special sound Σ-protocol ΣR for relation R is a non-interactive straight-line
extractable zero-knowledge proof of knowledge for LR in the standard random-
oracle model. Since Kondi and shelat use the standard definitions of SHVZK
and strong special soundness (Definitions 19 and 15, respectively), it remains to
show that ΣFis

R satisfies NIM-SHVZK and NIM-SSS.
Fischlin shows in the proof of Theorem 3 [30] that the standard Fischlin

transform satisfies the NIM-SHVZK and NI-SSS properties. Since the strong
special soundness property replaces the quasi-unique responses property and the
challenges in the randomized version are identically distributed to those in the
original version, the proof of NIM-SHVZK and NI-SSS for the randomized Fis-
chlin transform is almost identical to Fischlin’s proof of Theorem 3. We discuss
the minor differences in the full proof (Appendix B.5). ⊓⊔

6.2 Efficient, GUC-secure NIZKPoK in the GrpoRO-hybrid Model

We demonstrated in Section 4 that any SLC is a GUC compiler for any Σ-
protocol ΣR in the GrpoRO-hybrid model, and argued in Section 6.1 above that
the transform Fis is an SLC that transforms any strong special sound Σ-protocol
into a NISLE Σ-protocol. Therefore, Fis(ΣR) is a GUC compiler for any strong
special sound Σ-protocol ΣR in the GrpoRO-hybrid model.

Corollary 1. Let ΣR be any strong special sound Σ-protocol for a relation R
(Definitions 2 and 15) and Fis be the algorithm from Definition 28. Then ΣSLC

R ←
Fis(ΣR) GUC-realizes FNIZK in the GrpoRO-hybrid model.

Proof. The corollary follows directly from Theorems 2 and 4. ⊓⊔

6.3 Efficient, GUC-secure NIZKPoK in the GroRO-FCRS-hybrid Model

Our construction for the GroRO-FCRS-hybrid model requires two layered compilers:
any SLC, and the transform guc from Definition 14. We proved in Theorem 3
that guc(ΣR, SLC) GUC-realizes FNIZK for any Σ-protocol ΣR, and again in Sec-
tion 6.1 that Fis is an SLC. Therefore, guc(ΣR, Fis) is a GUC compiler for any
strong special sound Σ-protocol ΣR in the GroRO-FCRS-hybrid model.

Corollary 2. Let ΣR be any strong special sound Σ-protocol for a relation
R (Definitions 2 and 15) and guc be the algorithm from Definition 14. Then
Σ

guc
R∨S ← guc(ΣR, Fis) GUC-realizes FNIZK in the GroRO-FCRS-hybrid model.

Proof. The corollary follows directly from Theorems 3 and 4. ⊓⊔

UC Σ-protocols in the Global ROM 29

Acknowledgements

Many thanks to Yashvanth Kondi and abhi shelat for crucial security analysis
of our original OR-protocol construction, and to Jack Doerner for insightful
discussions about FNIZK that inspired our results in Section 3.5. Thank you to all
three for many productive conversations surrounding the interesting properties
of straight-line extractors.

References

1. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot, editor,
Proceedings of the 17th USENIX Security Symposium, pages 335–348, 2008.

2. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880, pages 255–270, 2000.

3. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62–73, 1993.

4. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana
Raykova. On the (in) security of ros. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 33–53. Springer, 2021.

5. Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-
interactive zero-knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

6. Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT ’00, pages 431–444, 2000.

7. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for
zk-snark parameters in the random beacon model. ePrint Archive, 2017.

8. Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates—
Building in Privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands, 1999.

9. Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryption, and
their applications to separable group signatures and signature sharing schemes. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 331–345. Springer, 2000.

10. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 280–312. Springer, 2018.

11. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: efficient periodic n-times anonymous
authentication. pages 201–210. ACM, 2006.

12. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-cash. In
Ronald Cramer, editor, Advances in Cryptology — Eurocrypt 2005, volume 3494,
pages 302–321. Springer, 2005.

13. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045, pages 93–118. Springer Verlag, 2001.

14. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In SCN 2002, volume 2576, pages 268–289, 2003.

15. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number n
is the product of two safe primes. In EUROCRYPT ’99, pages 107–122, 1999.

30 A. Lysyanskaya and L. Rosenbloom

16. Jan Camenisch and Markus Michels. Separability and efficiency for generic group
signature schemes. In CRYPTO ’99, volume 1666, pages 413–430, 1999.

17. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In CRYPTO ’03, volume 2729, pages 126–144, 2003.

18. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. In CRYPTO ’97, pages 410–424. Springer Verlag, 1997.

19. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

20. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Theory of Cryptography Conference, pages
61–85. Springer, 2007.

21. Ran Canetti and Marc Fischlin. Universally composable commitments. In Annual
International Cryptology Conference, pages 19–40. Springer, 2001.

22. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical uc security with
a global random oracle. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 597–608, 2014.

23. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Birgit Pfitzmann, editor, EURO-
CRYPT 2001, volume 2045, pages 280–300. Springer Verlag, 2001.

24. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Annual International
Cryptology Conference, pages 174–187. Springer, 1994.

25. Ronald Cramer, Ivan Damg̊ard, Chaoping Xing, and Chen Yuan. Amortized com-
plexity of zero-knowledge proofs revisited: Achieving linear soundness slack. In
Advances in Cryptology - EUROCRYPT 2017, volume 10210 of Lecture Notes in
Computer Science, pages 479–500, 2017.

26. Ivan Damg̊ard. On σ-protocols. University of Aarhus, Department of Computer
Science, 2002.

27. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs. On the security of two-round multi-signatures. In
2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE, 2019.

28. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. 29(1):1–28, 1999.

29. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186–194. Springer, 1986.

30. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. 2005.

31. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Annual International Cryptology Conference, pages 152–168.
Springer, 2005.

32. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In CRYPTO ’97, pages 16–30, 1997.

33. Eu-Jin Goh and Stanis law Jarecki. A signature scheme as secure as the diffie-
hellman problem. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 401–415. Springer, 2003.

34. Carmit Hazay and Yehuda Lindell. Efficient secure two-party protocols: Techniques
and constructions. Springer Science & Business Media, 2010.

35. Shuichi Katsumata. A new simple technique to bootstrap various lattice zero-
knowledge proofs to qrom secure nizks. In Annual International Cryptology Con-
ference, pages 580–610. Springer, 2021.

UC Σ-protocols in the Global ROM 31

36. Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random
oracle model with applications to signature aggregation. Cryptology ePrint Archive,
2022.

37. Helger Lipmaa. Statistical zero-knowledge proofs from diophantine equations.
Manuscript. Available from http://eprint.iacr.org/2001/086, 2001.

38. Vadim Lyubashevsky. Lattice signatures without trapdoors. In Advances in Cryp-
tology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 738–755. Springer, 2012.

39. Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: simple two-round schnorr
multi-signatures. In Annual International Cryptology Conference, pages 189–221.
Springer, 2021.

40. Rafael Pass. On deniability in the common reference string and random oracle
model. In Annual International Cryptology Conference, pages 316–337, 2003.

41. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO ’92, volume 576, pages 129–140, 1992.

42. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
International conference on the theory and applications of cryptographic techniques,
pages 387–398. Springer, 1996.

43. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, volume
2139 of Lecture Notes in Computer Science, pages 566–598. Springer, 2001.

44. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 755–784. Springer, 2015.

45. David Wagner. A generalized birthday problem. In Annual International Cryptol-
ogy Conference, pages 288–304. Springer, 2002.

46. John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Com-
puting, 39(1):25–58, 2009.

47. Douglas Wikström. A commitment-consistent proof of a shuffle. In Colin Boyd
and Juan Manuel González Nieto, editors, ACISP, pages 407–421. Springer, 2009.

http://eprint.iacr.org/2001/086

32 A. Lysyanskaya and L. Rosenbloom

Appendix

A Supplementary Definitions

A.1 Notation

We use λ for the security parameter, and say an algorithm A is efficient in λ
if its runtime can be expressed as a polynomial poly(λ) on input λ. We say a
function negl is negligible in λ if for every positive polynomial p there exists a
threshold N such that for all λ > N , negl(λ) < 1

p(λ) .

When we write y ← z where z is a quantity, we mean that y is assigned the
value z. Similarly, y ← A (x) means that y is assigned the output of algorithm
A on input x. We write ⊥ ← A (x) to indicate that A has halted with no
output, such that any process that invoked A can resume. By y ←$ Z where
Z is a set or a probability distribution, we mean that y is assigned an element
sampled uniformly at random from Z.

If two distributions Y and Z are equivalent, we use the notation Y = Z.
If Y and Z are statistically indistinguishable, we use the notation Y ≈s Z.
If Y and Z are only computationally indistinguishable, we use the notation
Y ≈c Z. When we say two distributions are statistically (resp. computationally)
indistinguishable, we mean that for all λ, the probability that any algorithm
A (resp. PPT algorithm A) can determine whether a mystery element x was
sampled from Y or Z is only negligibly greater than a random guess, or 1

2 +
negl(λ). We might also say in this case that A distinguishes Y from Z with
negligible advantage over a random guess.

A.2 Protocol Template

Definition 16 (Protocol Template for Relation R). [26,34] Let the com-
mon input to P and V be x, and the private input to P be a value w such that
(x,w) ∈ R. The protocol template is the following three-round transaction:

1. P sends V a message a.
2. V sends P a random ℓ-bit string e.
3. P sends V a reply z.
4. V decides to accept (output 1) or reject (output 0) based solely on the values

(x, a, e, z).

We say a transcript (a, e, z) is an accepting transcript for x if the protocol
instructs V to accept based on the values (x, a, e, z).

A.3 Σ-protocols

Definition 17 (Σ-protocol). [26,34] A protocol Π is a Σ-protocol for relation
R if it is a three-round public-coin protocol of the form in Definition 1 and the
following requirements hold:

UC Σ-protocols in the Global ROM 33

– Completeness: If P and V follow the protocol on input x and private input
w to P where (x,w) ∈ R, then V always accepts.

– Special Soundness: There exists a polynomial-time algorithm E that given
any x and any pair of accepting transcripts (com, chl, res) and
(com, chl′, res′) for x where chl ̸= chl′, outputs w such that (x,w) ∈ R.

– Special honest verifier zero knowledge: There exists a PPT simulator
M , which on input x and chl outputs a transcript of the form (com, chl, res)
with the same probability distribution as transcripts between the honest P and
V on common input x. Formally, for every x and w such that (x,w) ∈ R
and every chl ∈ {0, 1}ℓ it holds that{

M(x, chl)
}
≡

{
⟨P (x,w), V (x,w)⟩

}
where M(x, chl) denotes the output of simulator M on input x and chl,
and ⟨P (x,w), V (x,w)⟩ denotes the output transcript of an execution between
P and V , where P has input (x,w), V has input x, and V ’s random tape
(determining its query) equals chl.

The value ℓ is called the challenge length.

A.4 Standard Σ-protocol Security Definitions

We will now formalize the completeness, special honest-verifier zero-knowledge,
and special soundness properties. Other than notational differences, our formu-
lation is due to Damg̊ard [26].

The completeness property requires that any proof computed using the Prove
algorithm on a valid statement-witness pair should induce the Verify algorithm
to accept.

Definition 18 (Completeness). A Σ-protocol ΣR for relation R is complete
if for all (x,w) ∈ R and π ← ΣR.Prove((x,w), x), ΣR.Verify(x, π) = 1.

The special honest-verifier zero-knowledge (SHVZK) property essentially says
that no efficient algorithm should be able to distinguish between proofs generated
using the Setup and Prove algorithms from proofs generated using the SimSetup
and SimProve algorithms. We formalize the SHVZK property as a game between
an adversary algorithm A and a challenger C who is running one of two experi-
ments: the b = 0 experiment in which C responds to A ’s queries (Prove, x, w) by
returning π ← ΣR.Prove((x,w), (x, chl)), and the b = 1 experiment in which C
responds to Prove queries by returning π ← ΣR.SimProve(x, z, chl) for z gen-
erated using ΣR.SimSetup. Note that since we are in the honest-verifier (public-
coin) setting, we can assume C runs the proof process with the correct verifier
algorithm whose challenge chl is the contents of its random tape. As a result, the
challenges in ΣR.Prove((x,w), (x, chl)) and ΣR.SimProve(x, z, chl) are identi-
cally distributed. The word “special” here refers to the fact that the SimProve

algorithm gets to see the honest verifier’s random tape, and thus the challenge,
prior to computing the simulated proof. That is the simulator’s advantage over
a real prover who gets its challenge from the verifier only after it has issued its

34 A. Lysyanskaya and L. Rosenbloom

commit message. We say a Σ-protocol is SHVZK with respect to a security pa-
rameter λ if the probability that A can distinguish between the two experiments
is only negligibly better than a random guess.

In the original definition of Σ-protocols given in Appendix A.3, SHVZK
is a statistical security property—that is, the experiments described above are
statistically indistinguishable, and even an unbounded (non-PPT) A cannot dis-
tinguish them. Later in the paper we will prove that our GUC-compiler works for
both statistical and computational SHVZK Σ-protocols. Therefore, we write our
definition to permit both versions. Where there is no qualifier before SHVZK,
the reader can assume we mean the traditional (statistical) notion of SHVZK.

Definition 19 (Special Honest-Verifier Zero-Knowledge). A Σ-protocol
ΣR for relation R is statistical (resp. computational) special honest-verifier zero-
knowledge (SHVZK) if there exist algorithms SimSetup and SimProve such that
for any security parameter λ, any adversary (resp. any PPT adversary) A , and a
bit b←$ {0, 1}, there exists some negligible function negl such that Pr[b′ = b] ≤
1
2 + negl(λ), where b′ is the result of running the game SHVZKA ,ΣR

(1λ, b) from

Figure 4. We say A wins the SHVZK game if Pr[b′ = b] > 1
2 + negl(λ).

SHVZKA ,ΣR(1λ, 0): Real

1 : ppm← ΣR.Setup(1λ)

2 : (Prove, x, w), st← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : π ← ΣR.Prove((x,w), (x, chl))

5 : else :

6 : π ← ⊥
7 : b′ ← A (st, π)

8 : return b′

SHVZKA ,ΣR(1λ, 1): Ideal

1 : (ppm, z)← ΣR.SimSetup(1λ)

2 : (Prove, x, w), st← A (1λ, ppm)

3 : if (x,w) ∈ R :

4 : π ← ΣR.SimProve(x, z, chl)

5 : else :

6 : π ← ⊥
7 : b′ ← A (st, π)

8 : return b′

Fig. 4. Special Honest-Verifier Zero-Knowledge (SHVZK) Game.

Note that in the standard definition of SHVZK, A is only permitted to
issue one Prove query. In the GUC security experiment (and in most natural
applications ofΣ-protocols), the adversary is allowed to issue polynomially-many
Prove queries and we will still need the SHVZK property to hold. Therefore, the
definition we care about is multiple SHVZK (multi-SHVZK), also called multi-
proof or multi-theorem SHVZK. We will formalize a version of multi-SHVZK
for non-interactive straight-line extractable Σ-protocols in the next section, and
prove later in Section 3.5 that any protocol that GUC-realizes the NIZKPoK
ideal functionality in any global ROM must have this property. To justify our
switch to the multi-proof setting for the basic (interactive) Σ-protocols and show
that it does not compromise the generality of our results, we define multi-SHVZK

UC Σ-protocols in the Global ROM 35

for interactive Σ-protocols in Appendix B.1, and prove using a standard hybrid
argument that if ΣR is SHVZK, it is also multi-SHVZK.

Finally, the special soundness property essentially says that for any pair of
valid proofs generated by an adversary A for a statement x that have the same
commitment but different challenges, the Extract algorithm can extract a wit-
ness such that R(x,w) = 1 with overwhelming probability. The word “special”
here refers to the fact that the Extract algorithm relies on access to multiple
valid transcripts in order to obtain a witness; by default, “special” soundness
actually refers to “two-special” soundness (such that Extract needs two tran-
scripts), but Σ-protocols can also be n-special sound for some integer n > 2. To
maintain consistency with the original definitions and keep things simple in the
proofs, we have left our definition as two-special, but it is easy to replace any
mention of two transcripts π, π′ throughout the paper with π1, . . . , πn.

We again formalize the intuition of special soundness with a game in which
A issues a challenge tuple (x, π, π′) that is designed to force the Extract algo-
rithm to fail—that is, the witness w returned by Extract(x, π, π′) is such that
R(x,w) = 0.

Definition 20 (Special Soundness). A Σ-protocol ΣR for relation R is spe-
cial sound if there exists a PPT algorithm Extract such that for any security
parameter λ, any PPT adversary A ,

Pr[Fail← SSA ,ΣR
(1λ)] ≤ negl(λ),

where SS is the special soundness game described in Figure 5. We say A wins
the SS game if Pr[Fail← SSA ,ΣR

(1λ)] > negl(λ).

SSA ,ΣR(1λ)

1 : ppm← ΣR.Setup(1λ)

2 : (Challenge, x, π, π′)← A (1λ, ppm)

3 : parse π = (com, chl, res), π′ = (com′, chl′, res′)

4 : if ΣR.Verify(x, π) = ΣR.Verify(x, π′) = 1 ∧
5 : com = com

′ ∧ chl ̸= chl
′ :

6 : w ← ΣR.Extract(x, π, π′)

7 : if R(x,w) = 0 :

8 : return Fail

9 : return Success

Fig. 5. Special Soundness (SS) Game.

Similar to our need for the multi-SHVZK property, we will later show in
Section 3.5 that GUC security requires a stronger form of soundness called special

36 A. Lysyanskaya and L. Rosenbloom

simulation soundness (SSS), which guarantees that the Extract algorithm will
still succeed with overwhelming probability even if A has oracle access to the
proof simulator algorithm SimProve instead of Prove. Unlike multi-SHVZK,
SSS does not follow from regular special soundness (SS). However, a regular SS
Σ-protocol can be bootstrapped into an SSS one via a non-interactive straight-
line compiler discussed in the next section, and Fischlin shows that for non-
interactive straight-line extractable (NISLE) Σ-protocols, multi-SHVZK implies
special simulation soundness. We formalize the notion of non-interactive SSS for
the compiler in the next section, and prove in Section 3.5 that any protocol that
GUC-realizes the NIZKPoK ideal functionality in any global ROM must have
the non-interactive SSS property.

A.5 Non-Interactive Special Soundness

In the traditional definition of the special soundness experiment, A computes
proofs during this experiment by himself, without access to proofs computed by
non-adversarial participants. We make a syntactic modification to the traditional
definition by allowing A to outsource the computation of proofs to the Prove

oracle that just follows the correct algorithm for generating proofs. This syntactic
modification does not make the definition any different (since the adversary
can easily run Prove himself), but it will be helpful to us in the argument of
Theorem 1.

Definition 21 (Non-Interactive Special Soundness). A NISLE Σ-protocol
ΣSLC

R based on any Σ-protocol ΣR for relation R is non-interactive special sound
(NI-SS) if there exists an algorithm ΣSLC

R .Extract such that for any security
parameter λ and any PPT adversary A ,

Pr[Fail← NI–SSA ,ΣSLC
R
(1λ)] ≤ negl(λ),

where H is any random oracle and NI–SS is the NI-SS game described in Fig-
ure 6. We say A wins the NI–SS game if Pr[Fail← NI–SSHA ,ΣSLC

R
(1λ)] > negl(λ).

A.6 Additional Properties of NISLC-Compliant Σ-protocols

By introducing a random oracle into the security experiment, NI transforms of
any kind open up a new sort of security vulnerability for Σ-protocols rooted in
the adversary’s ability to freely interact with the RO. In particular, if an ad-
versary A can predict how the prover is going to query the oracle in order to
generate a proof of a statement x, A can go through this process itself and “pre-
dict” the challenge that will be returned. In other words, if A is able to predict
com and query the RO on (x, com) before the prover does, it will be able to learn
the RO’s original response chl∗ before the simulator has had a chance to pro-
gram a different one. A will then be able to distinguish the NIM-SHVZK games
based on whether or not the chl returned by the SHVZK challenger matches
chl∗. To handle this vulnerability, we follow Fischlin [31] in assuming that the

UC Σ-protocols in the Global ROM 37

NI–SSH
A ,ΣSLC

R
(1λ)

1 : ppm← ΣSLC
R .Setup(1λ)

2 : st← A H(1λ, ppm)

3 : while st ̸= halt :

4 : Query,QA , st← A H(st)

5 : Response← ⊥
6 : if Query = (Prove, x, w) :

7 : if R(x,w) = 1 :

8 : π ← ΣSLC
R .ProveH(x, chl)

9 : Response← π

10 : elseif Query = (Challenge, x, π)

11 : if ΣSLC
R .VerifyH(x, π) = 1 :

12 : w ← ΣSLC
R .Extract(x, π,QA)

13 : if R(x,w) = 0 :

14 : return Fail

15 : st← A H(st, Response)

16 : return Success

Fig. 6. Non-Interactive Special Soundness (NI-SS) Game.

38 A. Lysyanskaya and L. Rosenbloom

com messages of the underlying Σ-protocols have entropy that is superlogarith-
mic in the security parameter. We stress that any Σ-protocol that maintains
the SHVZK property under any NI transform in the ROM, including the plain
Fiat-Shamir transform, must have this property.

Definition 22 (Superlogarithmic Commitment Entropy). Let ΣR be any
Σ-protocol for binary NP relation R and template τ as specified in Definition 2.
ΣR has superlogarithmic commitment entropy if for all (x,w) ∈ LR, the min-
entropy of com← τ.Commit(x,w) is superlogarithmic in λ.

Recall from Section 1 that Fischlin additionally requires a “quasi-unique
responses” property that would preclude us from using his transform on an OR-
protocol. In order to solve this problem we exchange the Fischlin transform for
the randomized Fischlin transform due to Kondi and shelat [36], which relies on
a weaker assumption called strong special soundness. We define and discuss this
property as well as the randomized Fischlin transform in Section 6.1.

A.7 The OR-protocol

The following definition is the original OR-protocol as imagined by Cramer [24]
and formalized by Damg(̊a)rd [26]. Given both statements x0, x1 and a witness
wb for one of the statements xb, the OR-protocol prover first samples a random
challenge chl1−b to correspond to the statement for which it does not have a
witness, x1−b. It then invokes the Simulate algorithm on input (x1−b, chl1−b)
to obtain the entire simulated proof transcript (com1−b, chl1−b, res1−b). The
prover then forms the first message commitment comb for xb honestly according
to the Commit algorithm, and sends the tuple (com0, com1) to the verifier, who
returns the overall protocol challenge CHL.

Once it receives CHL from the verifier, the prover sets the second individual Σ-
protocol challenge chlb = chl1−b⊕CHL. Note this step “fixes” the challenge chlb
such that the prover cannot cheat and simulate the proof of both statements.
Given chlb, the prover can compute resb according to the Respond algorithm.
Finally, the prover sends both transcripts (com0, chl0, res0) and (com1, chl1, res1)
to the verifier, who checks that both are transcripts are valid and also that
chl0 ⊕ chl1 = CHL.

Definition 23 (Original OR-Protocol). [26] Let the common input to P and
V be a pair (x0, x1), and the private input to P be a value w and a bit b such
that (xb, w) ∈ R. The OR-protocol is the following transaction:

1. P computes the first message ab according to the template using (xb, w)
as input. P chooses e1−b at random and runs the simulator M on input
(x1−b, e1−b); let (a1−b, e1−b, z1−b) be the output of M . P sends V (a0, a1).

2. V sends P a random ℓ-bit string s.
3. P sets eb = s ⊕ e1−b and computes the answer zb to challenge eb according

to the template using (xb, ab, eb, w) as input. P sends (e0, z0, e1, z1) to V .
4. V checks that e0⊕e1 = s and that both transcripts (a0, e0, z0) and (a1, e1, z1)

are accepting on inputs x0 and x1, respectively.

UC Σ-protocols in the Global ROM 39

Note that the original formulation does not explicitly state which template or
Σ-protocol specification the prover uses at each step of the protocol execution.
Since the proofs of statements x0 and x1 are computed independently, it is
reasonable to consider the case in which x0 and x1 are associated with different
relations, protocol templates, and Σ-protocols. In the spirit of keeping the CRS
generation mechanism that we will introduce for our OR-protocol construction
in Section 5.1 as general as possible, we consider the more general case where
R0 and R1 are independent. Our version of the OR-protocol therefore depends
on two different Σ-protocols ΣR0

and ΣR1
, allowing the prover to differentiate

its instructions depending on the witness it has. For example, if the prover has
wb for a statement xb, it would use the SimProve algorithm of ΣR1−b

to obtain
the transcript for x1−b, then use the algorithms in the protocol template τRb

to
generate the transcript for xb.

In order to keep the notation consistent with Σ-protocols while avoiding
variable clutter, we use capital letters to represent compound objects as follows.
The statement X to be proven in an OR-protocol consists of a tuple representing
both statements x0 and x1, or X = (x0, x1). The compound proof Π is a tuple
including π0 = (com0, chl0, res0) and π1 = (com1, chl1, res1), as well as the
verifier’s challenge, CHL. We write this tuple Π = (π0, π1, CHL). Similarly, the
witness W must include not only the witness w for one of the statements, but
also a bit b indicating the statement to which w corresponds. In other words,
if (x0, w) ∈ R0 then b = 0 and the witness tuple is W = (w, 0). Otherwise if
(x1, w) ∈ R1, then the tuple is W = (w, 1). In the special case that W is returned
from the extractor, we let W = (w0, w1), with the acknowledgement that only
one of the witnesses produced by the Extract operation must be legitimate—
either R0(x0, w0) = 1 or R1(x1, w1) = 1.

Definition 24 (OR-Protocol). An OR-protocol for a relation ROR = R0∨R1

based on Σ-protocols ΣR0,τ0 and ΣR1,τ1 (see Definition 2) is a tuple of proce-
dures ΣOR = (Setup, Prove, Verify, SimSetup, Simulate, Extract) defined as
follows.

– PPM ← Setup(1λ): Given a security parameter 1λ, run ΣR0
.Setup(1λ) to

obtain ppm0 and ΣR1
.Setup(1λ) to obtain ppm1. Output PPM = (ppm0, ppm1).

– Π ← Prove(X,W): Parse X = (x0, x1) and W = (w, b), and let b be the bit
such that (xb, w) ∈ Rb. Execute the following:

• Com ← Commit(X,W): P computes comb according to τb.Commit(xb, w).
P chooses chl1−b at random and generates (com1−b, chl1−b, res1−b) by
running ΣR1−b

.Simulate(x1−b, chl1−b). P sends V Com = (com0, com1).

• CHL← Challenge(X, Com): V sends P a random ℓ-bit string CHL.

• Res ← Respond(X,W, Com, Chl): P sets chlb = CHL⊕ chl1−b and com-
putes resb according to τb.Respond(xb, w, comb, chlb). P sends (Chl, Res)
= (chl0, chl1, res0, res1) to V .

The output “proof” Π is a tuple (π0, π1, CHL), where πb = (comb, chlb, resb).

40 A. Lysyanskaya and L. Rosenbloom

– {0, 1} ← Verify(X,Π): Parse Π as (π0, π1, CHL), where πb = (comb, chlb, resb).
Execute the following:

• {0, 1} ← Decision(X, Com, Chl, Res): If τ0.Decision(x0, com0, chl0, res0)
= 1 and τ1.Decision(x1, com1, chl1, res1) = 1, return 1. Otherwise, re-
turn 0.

If Decision(X, Com, Chl, Res) = 1 and chl0⊕chl1 = CHL, output 1 (accept).
Otherwise, output 0 (reject).

– (PPM, Z)← SimSetup(1λ): Generate (ppm0, z0) by running ΣR0
.SimSetup(1λ)

and (ppm1, z1) by running ΣR1
.SimSetup(1λ). Return (PPM, Z) where Z =

(z0, z1).

– Π ← SimProve(X,Z, CHL) : Parse X = (x0, x1) and Z = (z0, z1). Generate
chl0 uniformly at random and set chl1 = chl0⊕CHL. Obtain π0 by running
ΣR0

.Simulate(x0, chl0) and π1 by running ΣR1
.Simulate(x1, chl1). Return

Π = (π0, π1, CHL).

– W ← Extract(X,Π,Π ′): Parse X = (x0, x1), Π = (π0, π1), and Π ′ =
(π′

0, π
′
1). Obtain w0 by running ΣR0 .Extract(x0, π0, π

′
0) and w1 by running

ΣR1 .Extract(x1, π1, π
′
1). Return W = (w0, w1).

Theorem 5. Given Σ-protocols ΣR0
for a relation R0 and ΣR1

for relation R1,
the protocol ΣOR from Definition 24 is a Σ-protocol for relation ROR = R0 ∨
R1. Moreover, for any verifier V ∗, the probability distribution of conversations
between P and V ∗ where w is such that (xb, w) ∈ Rb is independent of b.

Proof. We refer the reader to Damg̊ard’s proof [26]. ⊓⊔

A.8 The Original Fischlin Transform

Definition 25 (Original Fischlin Transform). [31] Let (PFS , VFS) be an
interactive Fiat-Shamir (FS) proof of knowledge over relation R with challenge
length ℓ = O(log λ) bits. Let b be the number of test bits, r be the number of
repetitions, S be the maximum sum over all repetitions, and t be the number
of bits per trial such that br = ω(log λ), 2t−b = ω(log λ), b, r, t = O(log λ) and
b ≤ t ≤ ℓ. Let H : {0, 1}∗ → {0, 1}b be a random oracle that maps to b bits.
Define the following NI proof system for relation R in the ROM as follows.

Prover. The prover PH runs the prover of the underlying FS proof system
PFS(x,w) in r independent repetitions to obtain the commitment vector a =
a1, . . . , ar. Then for each repetition 1 ≤ i ≤ r, PH tests t-bit challenges ei =
0, 1, . . . 2t − 1 and computes the response zi using PFS until it finds one such
that H(x, a, i, ei, zi) = 0b. If no such tuple is found, the prover picks the minimal
value over all 2t oracle queries. The prover outputs the proof (x, π) where π =
(ai, ei, zi) for 1 ≤ i ≤ r.

Verifier. The verifier V H accepts (outputs 1) if and only if V1,FS(x, πi) = 1 for
1 ≤ i ≤ r where πi = (ai, ei, zi), and if

∑r
i=1 H(x, a, i, ei, zi) ≤ S. Otherwise,

the verifier rejects (outputs 0).

UC Σ-protocols in the Global ROM 41

A.9 The GUC Real- and Ideal-World Experiments

Real-World Experiment. The real-world experiment REALGRO,FCRS

Σ
guc

R ,A ,Z(1
λ, aux) is ex-

ecuted as follows.

1. The experiment invokes the environment Z on input (1λ, aux).

2. Z invokes A on input of its choice and GRO on input 1ℓ.3

3. Z invokes arbitrary parties with arbitrary SIDs. Z can corrupt up to all but
one of the parties by sending messages through A . Z can invoke new parties
whenever it chooses,4 but must decide at the time of invocation whether or
not they are corrupted (passive corruption model).

4. As is standard in the UC and GUC models, Z passes inputs and receives
outputs to the input-output tapes of all parties to the protocol on its own.
Additionally, it communicates with corrupted parties through A . In par-
ticular (briefly), Z can send arbitrary Setup, Prove, and Verify requests
to any party, and have corrupted parties send any corrupted Setup, Prove,
and Verify requests on its behalf. It can also arbitrarily query GRO using any
SID, and execute any version of Setup, Prove, and Verify itself.

5. In order to respond honestly to Setup, Prove, and Verify requests, the
parties run the protocols Σguc

R .Setup, Σguc
R .Prove, and Σguc

R .Verify, respec-
tively.

Ideal-World Experiment. The ideal world experiment IDEALGRO

Σ
guc

R ,S,Z(1
λ, aux) is

executed as follows.

1. The experiment invokes the environment Z on input (1λ, aux).

2. Z invokes S on input of its choice5 and GRO on input 1ℓ.

3. Same as Step 3 in the real world experiment.

4. Same as Step 4 in the real world experiment.

5. Rather than respond to Setup, Prove, and Verify requests themselves, hon-
est parties invoke the (local) ideal functionality FNIZK for their SID s. At
initialization, FNIZK obtains specifications for the algorithms Setup, Prove,
Verify, Simulate, and Extract from S. After the ideal functionality is set
up, honest parties with SID s forward all Prove and Verify requests directly
to FNIZK, which responds according to its specification, given in Definition 9.

3 One can also imagine that GRO with output length ℓ already exists, or was invoked
by the experiment. Since a precise invocation of GRO is not clear in the literature, we
chose to maintain internal consistency with the rest of the definition and have the
experiment initialize GRO during setup.

4 In order to guarantee that the experiment runs in time polynomial in the security
parameter, the UC model places certain restrictions on the runtime of the arbitrary
parties Z invokes. For a full discussion, we refer readers to Canetti et al. [19].

5 To the environment, this process looks exactly the same as in the real world. However
in the ideal world, the simulator comes pre-programmed with special instructions to
help the ideal functionality simulate the protocol.

42 A. Lysyanskaya and L. Rosenbloom

A.10 Global Random Oracle

Definition 26 (Global Random Oracle). [22] The global random oracle
(global RO) is a public random oracle functionality parameterized by the out-
put length ℓ(λ) and a list F of ideal functionalities. The oracle works as follows.

1. Upon receiving a query x from some party P = (pid, sid) or from the sim-
ulator S, do:
– If there already exists a pair (x, v) for some v ∈ {0, 1}ℓ(λ) in the (initially

empty) list Q of past queries, return v to P . Otherwise, chose v uniformly
from {0, 1}ℓ(λ), store the pair (x, v) in Q, and return v to P .

– Parse x as (s, x′). If sid ̸= s then add (s, x′, v) to the (initially empty)
list of illegitimate queries for SID s, denoted Qs.

2. Upon receiving a request from an instance of an ideal functionality in the list
F with SID s, return to this instance the list Qs of illegitimate queries for
SID s.

A.11 Discussion of Strong Special Soundness

Recall Definition 15: A Σ-protocol ΣR has strong special soundness if the
condition chl ̸= chl′ in the Extract algorithm from Definition 20 is replaced
with the condition (chl, res) ̸= (chl′, res′).

The strengthening of the extractor afforded by strong special soundness al-
lows the randomized Fischlin prover to iterate over the same challenge without
compromising soundness. If, for example, the Σ-protocol allowed both (com, chl,
res||0) and (com, chl, res||1) to verify without extraction, repeating the proto-
col for the same challenge (as is the case with the Fischlin prover) would not
guarantee soundness, since a cheating prover could simply simulate one instance
and tack on some extra bits at the end.

Fischlin navigated around this issue using the quasi-unique responses prop-
erty, which requires that ifΣR.Verify(x, com, chl, res) = ΣR.Verify(x, com, chl,
res′) = 1, then res = res′ with overwhelming probability. As noted by Kondi
and shelat, this also prevents two provers with different witnesses, w0 and w1

for the same statement x, from answering the same challenge in a different way.
This situation always occurs when the simulator is using a different witness than
a real prover (as is the case with our OR-protocol transform from Definition 14),
and also occurs during the normal functioning of most OR-protocols. For a more
in depth discussion on the Fischlin transform applied to OR-protocols and the
strong special soundness property, we refer the reader to Section 6 of Kondi and
shelat [36].

A.12 Randomized Fischlin Transform

Recall from Section 1 that the (randomized) Fischlin transform works by check-
ing for each completed transcript whether the output of the RO for that tran-
script maps to a b-bit string. Therefore before we can apply the transform, we

UC Σ-protocols in the Global ROM 43

need a random oracle that maps to b bits. For the purposes of this general defin-
tion, we let the global RO be the general global RO GRO described in Section 3.5.
Since GRO is global and can be reused for different setups, rather than alter the
output length or introduce a second RO, we construct the truncation function
suggested by Fischlin [31] that maps the output of GRO to b bits by cutting off
all but b bits of the output.

Definition 27 (Bit Truncation Function). The RO bit truncation function
trunc : {0, 1}ℓ → {0, 1}b maps the ℓ-bit output of H to a b-bit output by cutting
off the ℓ− b leading bits.

The RO functionality of the (randomized) Fischlin transform where the RO
H : {0, 1}∗ → {0, 1}b is therefore replaced by trunc(H) : {0, 1}∗ → {0, 1}b.
We omit overly-technical details such as the precise generation of the public
parameters, which can be found in brief in Appendix A.8. For a more in depth
treatment of the Fischlin and randomized Fischlin transforms, we invite readers
to peruse [31] and [36], respectively.

Definition 28 (Randomized Fischlin Transform). Let ΣR,τ be any special
Σ-protocol for relation R and protocol template τ as given in Definition 2 with
the strong special soundness property from Definition 15 and a challenge length
ℓ = O(log λ) bits. Let H be any random oracle. Then the randomized Fischlin
transform of ΣR,τ , denoted Fis, is an algorithm that takes ΣR,τ as input and
creates a tuple of algorithms ΣFis

R = (SetupH , ProveH , VerifyH , SimSetup,
SimProve, Extract), defined as follows.

– ppm ← SetupH(1λ) : H is fixed. Let b, r, S, t be set according to the Fis-
chlin transform (see Appendix A.8 for details). Then the public parame-
ters are ppm = (ppmΣ , b, r, S, t, trunc), where ppmΣ is obtained by running
τ.Setup(1λ) and trunc is the bit truncation function from Definition 27.

– (x,Π) ← ProveH(x,w) : Compute the vector of r commitments com =
⟨com0, com1, . . . , comr⟩, by running τ.Commit(x,w) r times. To compute each
response resi, the prover tests each t-bit challenge chli as follows. First, it
selects chli uniformly at random from the challenge space. Then, it repeats
τ.Respond(x,w, com, chl) until it finds one such that trunc(GRO(x, com, i, chli,
resi)) = 0b, or else it takes the minimal over all of the responses. Finally,
it returns (x,Π), where Π = (π1, . . . , πr), and each πi = (comi, chli, resi).

– {0, 1} ← VerifyH(x,Π) : Parse Π = (π1, . . . , πr). Output 1 (accept) if and
only if ΣR.Verify(x, πi) = 1 and

∑r
i=1 trunc(GRO(x, com, i, chli, resi)) ≤ S

for 1 ≤ i ≤ r. Otherwise, outputs 0 (reject).

– (ppm, z)← SimSetup(1λ) : Fix H and generate ppm the same as in ΣFis
R .Setup.

Generate the simulator state information z by running ΣR,τ .SimSetup and
return (ppm, z).

– (x,Π) ← SimProve(x, z, chl1, . . . , chlr) : For each proof 1 ≤ i ≤ r, sample
2t random b-bit strings and assign them to the t-bit challenges chli. Let
µ : {0, 1}t → {0, 1}b represent the map between the challenges and the b-bit

44 A. Lysyanskaya and L. Rosenbloom

outputs, which are potential outputs of H. Let the final challenge for the ith

proof chli be the first challenge in lexicographic order to map to the minimal
response. Run ΣR,τ .Simulate(x, z, chl) to obtain πi = (comi, chli, resi).
Repeat this process for all r proofs. For each proof, program the output of H
on input (x, com, i, chli, resi) to end with the b-bit output µi(chli), and let
the ℓ−b leading bits be random. Finally, output the proof tuple (x,Π), where
Π = (Π1, . . . ,Πr).

– w ← Extract(X,Π,QA) : Parse Π = (π1, . . . , πr) and each πi = (comi, chli,
resi). Given a list QA the adversary’s queries to H, search for two queries
(x, com, i, chli, resi) and (x, com, i, chl′i, res

′
i) such that (chli, resi) ̸= (chl′i, res

′
i)

and ΣR.Verify(x, (comi, chli, resi)) = ΣR.Verify(x, (comi, chl
′
i, res

′
i)) =

1. If no such queries exist, output Fail. Otherwise, obtain w by running
ΣR.Extract(x, (comi, chli, resi), (comi, chl

′
i, res

′
i)).

The full proof that the randomized Fischlin transform described above is a
straight-line compiler can be found in Appendix B.5.

A.13 Compiling Σ-protocols into GUC-secure NIZKPoK

We introduce the idea of a GUC compiler for Σ-protocols in the global ROM.
Similar to the specification of a straight-line compiler in Section 3, our GUC
compiler takes any Σ-protocol as input, and produces a tuple of algorithms
Σguc

R∨S based on ΣR that have access to a generic global random oracle GRO from
Section 3.5. In Section 4 we will show that an SLC is a sufficient GUC compiler for
Σ-protocols in the programmable GrpoRO-hybrid model, and in Section 5 we will
demonstrate how to use an SLC in conjunction with an OR-protocol in order
to construct a new GUC compiler for Σ-protocols in the non-programmable
GroRO-FCRS-hybrid model.

Definition 29 (GUC Compiler). An algorithm GUCΣ is a GUC-compiler for
Σ-protocols in the global random-oracle model if given any Σ-protocol ΣR from
Definition 2 as input, it outputs a tuple of algorithms Σ

guc
R∨S = (SetupGRO , ProveGRO ,

VerifyGRO , SimSetup, SimProve, Extract) based on ΣR with oracle access to the
global random oracle GRO such that Σ

guc
R∨S GUC-realizes the NIZKPoK ideal func-

tionality FNIZK in the GRO-hybrid model.

B Supplementary Proofs

B.1 SSHVZK Implies Multi-SSHVZK

Definition 30 (Multiple SSHVZK). A Σ-protocol ΣR for relation R is mul-
tiple special honest-verifier zero-knowledge (multi-SSHVZK) if there exist algo-
rithms ΣR.SimSetup and ΣR.SimProve such that for any security parameter λ,
any PPT adversary A , and a bit b←$ {0, 1}, there exists some negligible function
negl such that Pr[b′ = b] ≤ 1

2 +negl(λ), where b′ is the result of running the game

M-SSHVZKA ,ΣR
(1λ, b) from Figure 1. We say A wins the M–SHVZK game if

Pr[b′ = b] > 1
2 + negl(λ).

UC Σ-protocols in the Global ROM 45

M–SHVZKA ,ΣR(1λ, 0)

1 : ppm← ΣR.Setup(1λ)

2 : st← A (1λ, ppm)

3 : while st ̸= b′ :

4 : (Prove, x, w), st← A (st)

5 : if R(x,w) = 1 :

6 : π ← ΣR.Prove((x,w), (x, chl))

7 : else :

8 : π ← ⊥
9 : st← A (st, π)

10 : return b′

M–SHVZKA ,ΣR(1λ, 1)

1 : ppm, z ← ΣR.SimSetup(1λ)

2 : st← A (1λ, ppm)

3 : while st ̸= b′ :

4 : (Prove, x, w), st← A (st)

5 : if R(x,w) = 1 :

6 : π ← ΣR.SimProve(x, z, chl)

7 : else :

8 : π ← ⊥
9 : st← A (st, π)

10 : return b′

Fig. 7. Multiple SSHVZK (Multi-SSHVZK) Game.

Lemma 1. If a Σ-protocol ΣR is SSHVZK according to Definition 19, then it
is multi-SSHVZK according to Definition 30.

Proof. We proceed by contrapositive and show that a protocol that is not multi-
SSHVZK cannot be SSHVZK. In particular, consider an adversary A who can
distinguish the following worlds: world 1) the first j proofs returned by the
multi-SSHVZK challenger are real and the j + 1st onward are simulated, and
world 2) the first j+1 proofs are real and the j+2nd onward are simulated. We
construct a reduction that uses A as a black box to win the regular SSHVZK
game from Figure 4 as follows. The reduction proceeds by answering the first j
of A ’s queries (Prove, x, w) by running ΣR.Prove(x,w). On the j + 1st query
(Prove, xj , wj), A issues (Prove, xj , wj) to its SSHVZK challenger and receives
πj that is either a result of running ΣR.Prove((xj , wj), (xj , chlj)) or a result of
runningΣR.SimProve(xj , z, chlj). It returns πj to A , sets up the simulator state
z by running ΣR.SimSetup(1

λ), and proceeds to answer the rest of A ’s queries
(Prove, x, w) by running ΣR.SimProve(x, z, chl) (note that since challenges are
guaranteed to be independently distributed in the honest-verifier model, the
reduction can simulate the rest of the proofs for A without “cheating” on its
own challenge instance chlj). The reduction continues until A returns b′ at
which point the reduction also outputs b′. Clearly if A has distinguished the
proof in the j+1st slot as real or simulated, so has the reduction—the reduction
wins the SSHVZK game with the same probability that A distinguishes the j-
and j + 1-hybrids of the multi-SSHVZK game. Therefore, the probability that
A can distinguish the jth from the j +1st hybrid must be negligible in λ. Since
A is PPT and the reduction is tight, the overall probability that A can win the
multi-SSHVZK game is similarly negligible.

46 A. Lysyanskaya and L. Rosenbloom

B.2 Full Proof of Theorem 1

The following is the full proof of Theorem 1 from Section 3.5.

Recall Theorem 1: Let Π be a protocol that GUC-realizes FNIZK according to
Definition 11 above, where GrpoRO is replaced with GRO. ThenΠ must be both non-
interactive multi-SSHVZK according to Definition 5 and non-interactive special
simulation sound according to Definition 6.

Proof. We proceed by contrapositive and demonstrate that any protocol Π that
is not both NIM-SSHVZK and NI-SSS cannot possibly GUC-realize FNIZK. We
begin by showing that if Π is not NIM-SSHVZK, it does not GUC-realize FNIZK

in any global ROM.

Lemma 2. Any protocol Π that is not NI-multi-SSHVZK in the GRO-hybrid
model according to Definition 5 does not GUC–realize FNIZK in the GRO-hybrid
model.

Proof. We construct a reduction that uses an algorithm A GRO that wins the game
NIM–SHVZK from Figure 1 with non-negligible advantage as a black box to dis-
tinguish between the real- and ideal-world GUC experiments. The reduction gets
ppm from its GUC challenger C, who either calculates ppm ← Π.SetupGRO(1λ) if
it is running the real-world experiment or ppm, z ← Π.SimSetup(1λ) if it is run-
ning the ideal-world experiment, and the reduction initializes A on (1λ, ppm).
The reduction passes all of A ’s random oracle queries to and from GRO and all
of A ’s queries (Prove, xi, wi) to C under some protocol session s. In response
to the query (Prove, s, xi, wi), C returns π that is either the result of running
Π.ProveGRO(xi, wi) or the result of running Π.SimProve(xi, z, chli) (where GRO
is potentially programmed). Clearly if the simulator hands FNIZK algorithms
SimSetup and SimProve that cause a completeness error (such that R(xi, wi)
= 1 but Verify(xi, πi) = 0) and FNIZK outputs Fail, the reduction can tell
immediately that it is living in the ideal-world experiment without any further
interaction with A , and we arrive at the contradiction. Similarly if the reduc-
tion notices any inconsistencies in GRO it can immediately output “ideal”—the
reduction itself does not have any control over GRO and therefore A ’s view of
GRO in the NI-Multi-SSHVZK experiment directly depends on whether the GUC
experiment is real-world (such that GRO does not change) or ideal-world (such
that GRO may change depending on the specification of SimSetup and SimProve

and whether or not GRO is programmable).
The reduction proceeds in the manner above until A outputs a bit b′ to

indicate whether it is talking to M–SHVZK(1λ, 0) or M–SHVZK(1λ, 1), and the
reduction outputs whatever A outputs. Note that if b = 0 and the reduction is
getting proofs from the standard Π.ProveGRO algorithm, the reduction produces
A ’s exact view in the experiment NIM–SHVZKGRO(1λ, 0) which also generates
proofs using Π.ProveGRO . If b = 1 and the reduction is getting proofs from an
FNIZK whose Prove functionality never outputs Fail, this is exactly what A ex-
pects to see from the experiment M–SHVZK(1λ, 1), which generates proofs using
Π.SimSetup and Π.SimProve. Therefore, the reduction succeeds in distinguish-
ing the real from ideal experiments with the same (non-negligible) probability
as A , completing the contradiction. ⊓⊔

UC Σ-protocols in the Global ROM 47

We now show that if Π is not NI special simulation sound, it does not GUC-
realize FNIZK in any global ROM.

Lemma 3. Any protocol Π that is not special simulation sound via query history
in the GRO-hybrid model according to Definition 6 does not GUC–realize FNIZK in
the GRO-hybrid model according to Definition 11, where GrpoRO is replaced with
GRO.

Proof. We again construct a reduction that uses an algorithm A GRO—this time
one that wins the special simulation soundness via query history game NI–SSS
from Figure 2—as a black box to distinguish between the real- and ideal-world
GUC experiments. The reduction gets ppm from its GUC challenger C, where
ppm ← Π.SetupGRO(1λ) if C is running the real-world experiment or ppm, z ←
Π.SimSetup(1λ) if C is running the ideal-world experiment, and the reduction
initializes A on (1λ, ppm). The reduction passes all of A ’s random oracle queries
to and from GRO and all of A ’s queries (Prove, xi, wi) to C as (Prove, s, xi, wi) un-
der some challenge protocol session s. In response to the query (Prove, s, xi, wi),
C returns π that is either the result of running Π.ProveGRO(xi, wi) or the result
of running Π.SimProve(xi, z, chli) (where GRO is potentially programmed). Let
the set of proofs returned by C up to query i be denoted P = π1, . . . , πi. The
argument surrounding the reduction’s view of GRO is the same as above—if the
C is running the ideal-world experiment and FNIZK’s Prove interface makes any
noticeable changes to GRO, the reduction will be able to tell immediately that it is
living in the ideal world. Similarly if FNIZK’s Prove interface has a completeness
error that causes FNIZK to output Fail, the reduction outputs “ideal” without
any further interaction with A .

When A issues a query (Challenge, xi, πi), B issues the query (Verify, s, xi, πi)
to C. By assumption, A will eventually issue a challenge proof (xi, πi) such that
Π.Verify(xi, πi) = 1 and (xi, πi) /∈ P butR(xi, wi) = 0 for w ← Π.Extract(xi, πi,QA),
causing the NI–SSS experiment to output Fail. When the reduction outputs
this proof to the C, we argue that it will succeed in distinguishing the real from
ideal worlds with the same probability as A . Note that if the reduction is talk-
ing to the ideal-world GUC experiment then the challenger’s responses to the
queries (Prove, s, xi, wi) and (Verify, s, xi, πi) will be distributed identically to
what A is expecting from the queries (Prove, xi, wi) and (Challenge, xi, πi)
in the NI–SSS game for the following reasons. First, assuming the Prove inter-
face of FNIZK does not output Fail and A ’s view of GRO remains consistent as
discussed above, FNIZK’s SimSetup and SimProve algorithms must respond to
queries (Prove, s, xi, wi) with proofs πi that are indistinguishable from the πi

produced by Π.SimSetup(1λ) and Π.SimProve(xi, z, chli) via the same argu-
ment as in Lemma 2 above. Second, FNIZK’s Extract algorithm makes the same
checks on Extract as the challenger makes on Π.Extract in the NI–SSS game.
Therefore, if the reduction is talking to the ideal-world experiment, A ’s proof
will cause FNIZK to output Fail with the same non-negligible advantage as A
has in the NI–SSS game.

If the reduction is talking to the real-world experiment, we argue that the
reduction succeeds with the same probability as an A playing the regular special

48 A. Lysyanskaya and L. Rosenbloom

soundness with query history (SS-Q) game from Figure 6 in Appendix A.5. Note
that if the reduction is talking to the real-world GUC experiment then the chal-
lenger’s responses to the queries (Prove, s, xi, wi) and (Verify, s, xi, πi) will be
distributed identically to what A is expecting from the queries (Prove, xi, wi)
and (Challenge, xi, πi) in the NI–SS game for the following reasons. First, GRO re-
mains consistent throughout the protocol and C responds to queries (Prove, s, xi, wi)
with proofs πi ← Π.Prove(s, xi, wi), exactly as A expects from the NI–SS chal-
lenger. Whenever A issues a query (Challenge, xi, πi) for a proof (xi, πi) /∈ P
whereΠ.Verify(xi, πi) = 1 but (xi, πi) /∈ P , the reduction runsΠ.Extract(xi, πi,QA)
itself (recall from the NI–SS and NI–SSS experiments that we assume A outputs
its RO query history whenever it issues a challenge). If Π.Extract(xi, πi,QA)
outputs Fail, then the reduction knows it has a proof that succeeds in breaking
the regular special soundness property. When it queries this proof (Verify, s, xi, πi)
to C and gets a response (Verify, s, xi, πi, 1) rather than a message Fail, it
knows it is living in the real-world experiment, since FNIZK would have made the
same checks as the reduction. Therefore, the reduction succeeds in this case with
the same probability as A can win the NI–SS game, completing the contradic-
tion. ⊓⊔

To see why it was necessary for us to use the special simulation soundness
property in the proof of Lemma 3, consider the case in which the reduction is
talking to the ideal-world GUC challenger: the regular special soundness adver-
sary is not defined to handle proofs from the simulator, so its behavior in this
case is undefined and therefore useless to the reduction. To see why it was nec-
essary for us to use the non-interactive versions of multi-SSHVZK and special
simulation soundness definitions, note that the Prove and Verify interfaces of
FNIZK are non-interactive with respect to the oracle GRO—in order for the simu-
lation and extraction algorithms of Π to correspond with the interfaces of FNIZK

they must be similarly non-interactive with respect to GRO.
We have now shown that both the NI multi-SSHVZK and NI special simula-

tion soundness properties are necessary for a protocol Π to GUC-realize FNIZK

in the GRO-hybrid model, completing the proof of Theorem 1. ⊓⊔

B.3 Full Proof of Theorem 2

Recall Theorem 2: Let ΣR be any Σ-protocol for relation R (Definition 2),
GrpoRO be the restricted programmable observable global random oracle (Defini-
tion 7), and SLC be any straight-line compiler (Definition 3). Then the NISLE
Σ-protocol ΣSLC

R ← SLC(ΣR) GUC-realizes FNIZK in the GrpoRO-hybrid model
(Definition 11).

Proof. We must demonstrate that ΣSLC
R∨S ← SLC(ΣR) GUC-realizes FNIZK in the

GrpoRO-hybrid model—that is, we must satisfy Definition 11. Briefly, we must
show that for all efficient A , there exists an ideal adversary S efficient in expec-
tation such that for all efficient environments Z,

IDEALGRO

FNIZK,S,Z(1
λ, aux) ≈c REAL

GRO,FCRS

Σ
guc
R∨S,A ,Z(1

λ, aux).

UC Σ-protocols in the Global ROM 49

We review the precise formulation of the GUC experiment in Appendix 3.

Construction of the Simulator S. The simulator (also known as the ideal ad-
versary) S, works as follows. When the ideal functionality FNIZK asks it for the
specification of algorithms, S returns the algorithms in ΣSLC

R . When FNIZK asks it
for the queries of adversarial provers for an SID s, S returns the corrupted par-
ties’ GrpoRO queries Qs

A . If any of the corrupted parties issue an IsProgrammed

query to GrpoRO through S (recall that the environment cannot issue such queries
to GrpoRO directly, but must instruct a corrupted party with the correct sid to
do so, and this way the query must go through S), S “lies” as described by
Camenisch et al. [10] and outputs false regardless of whether GrpoRO was pro-
grammed or not. Otherwise, S behaves identically to the dummy adversary A ,
forwarding communications between Z and the corrupted parties.

Now we wish to show that the real world, in which parties prove statements
using real witnesses and verify proofs according to the protocol, is indistinguish-
able from the ideal world, in which the ideal functionality (with help from the
simulator) proves statements by programming the RO and verifies proofs by
extracting witnesses. We start with the real-world experiment and show it is
possible to construct a series of hybrid experiments, each negligibly different
from the last, that transform the real world experiment into the ideal world
experiment.

Experiment A. The first experiment is the same as the real world experiment,
except there is a “challenger” C who controls the environment’s and adversary’s
views of the rest of the protocol. In particular, the challenger simulates all of
the honest parties and GrpoRO. The challenger does everything on behalf of all
parties exactly the same as the parties would do for themselves in the real world
experiment.

Lemma 4 (REAL = Experiment A). In the view of the environment, Exper-
iment A is identical to the real world experiment. Formally,

REAL
GrpoRO

Σ
guc

R ,A ,Z(1
λ, aux) = ExpAC,A ,Z(1

λ, aux).

Proof. The challenger simulates all of the real world parties in Experiment A,
and the simulated output is defined to be identical to the output of the parties
in the real world. ⊓⊔

In other words, there is no way for Z to tell whether it is interacting with
separate parties, including the “real” GrpoRO, or whether it is interacting with a
puppet master who simulates all of the parties, including GrpoRO.
Experiment B. Experiment B is the same as Experiment A, except that instead
of executing real proofs on behalf of the honest parties, the challenger C runs
the Simulate algorithm of ΣSLC

R . That is, given a statement x to prove for a
session s, C runs ΣSLC

R .SimulateGrpoRO(x) to obtain π. C then checks to make sure
that ΣSLC

R .Verify(x, π) = 1. If it does not, C outputs Fail; otherwise, it outputs
(x, π). If any of the corrupted parties make IsProgrammed queries, chl simply
returns false, regardless of whether GrpoRO was programmed on the queried
index.

50 A. Lysyanskaya and L. Rosenbloom

Lemma 5 (Experiment A ≈c Experiment B). Provided ΣSLC
R is SHVZK,

Experiment B is computationally indistinguishable from Experiment A. For-
mally,

ExpAC,A ,Z(1
λ, aux) ≈c ExpBC,A ,Z(1

λ, aux).

Proof. Note that in both experiments, the challenger C returns random strings
as the output of GrpoRO. However, in Experiment B, C must program GrpoRO’s
outputs after the adversary begins issuing Prove queries, in order to maintain
consistency with the simulated proofs. Recall from Definition 3 that the SLC
simulator ΣSLC

R .Simulate essentially forks the RO by programming it, such that
the adversary sees either the “normal” RO G0rpoRO used by a real-world prover, or

it sees the programmed RO G1rpoRO that contains programmed outputs. Therefore,
in order to guarantee that the hybrids are indistinguishable, we must first argue
that there is only a negligible difference between G0rpoRO and G1rpoRO.

As long as the domain of GrpoRO is exponential in the security parameter (as
is standard for random oracles), Z is only allowed to make polynomially-many
queries to GrpoRO throughout the duration of the experiment (as is required by
a polynomial-time experiment), and commitments have superlogarithmic min-
entropy (as described in Definition 22), the probability that the environment
can predict a commitment for some statement x and query it to GroRO before
obtaining a proof (such that it is able to check the challenge in the proof against
the challenge it got previously from GroRO) is negligible. Furthermore, recall from
Definition 8 of GrpoRO that Z is not part of any legitimate protocol session and is
therefore not allowed to make IsProgrammed queries of its own, and C answers all
of the corrupted parties’ IsProgrammed queries by returning false. Therefore,
Z’s view of the random oracle in Experiment A is computationally close to its
view in Experiment B.

The only other potential difference between Experiments A and B is the con-
tents of the proofs, and that Experiment B can output Fail, while Experiment
A never does. Assume for a contradiction that ZAB can distinguish the proof
process in Experiment B from the proof process in Experiment A. We can use
ZAB as a black box to break the SHVZK property of ΣSLC

R as follows.

Note first that Experiment B only outputs Fail if there is some internal in-
consistency with the simulator, such that a proof of (x, π) for some x ∈ LR does
not verify. In this case, after receiving a query Prove(x, π) from ZAB and a corre-
sponding response (x, π) from its challenger, the reduction can tell immediately
if the challenger is running ΣSLC

R .Simulate, triggering the contradiction.

Otherwise, ZAB must be able to tell the difference between Experiments
A and B by looking at the proofs themselves. If ΣR is statistical SHVZK,
then the outputs of ΣSLC

R .Simulate(x) are statistically close to the outputs of
ΣSLC

R .Prove(x,w), and we are done. If ΣR is only computational SHVZK, the
reduction continues as follows.

When Z issues any query (Prove, x, w) for a proof of some statement x,
C forwards the query to its SHVZK challenger and receives either a simulated
proof (produced by running ΣSLC

R .Simulate(x)) or a real proof (produced by run-
ning ΣSLC

R .Prove(x,w)). C forwards the response back to Z, and repeats until

UC Σ-protocols in the Global ROM 51

Z outputs a bit indicating that it is living either in Experiment A or in Ex-
periment B. If Z outputs “A”, C outputs “Real” to indicate its challenger was
using ΣSLC

R .Prove; otherwise if Z outputs “B”, C outputs “Simulated” to indi-
cate its challenger was using ΣSLC

R .Simulate. C succeeds in breaking the (com-
putational) SHVZK property of ΣSLC

R with this method whenever Z succeeds in
distinguishing Experiments A and B, completing the contradiction. Therefore,
the distributions representing Z’s view of Experiment A and Experiment B are
computationally indistinguishable. ⊓⊔

In the next experiment, Experiment C, we replace the real-world verification
mechanism with extraction.

Experiment C. Experiment C is the same as Experiment B, except now in-
stead of running the normal verification protocol on non-simulated (adversar-
ial) proofs, the challenger C attempts to extract a witness as follows. Given
a proof (x, π) for a session s that C did not previously simulate itself, C pro-
ceeds as follows. If ΣSLC

R .Verify(x, π) = 0, C simply outputs 0. Otherwise if
ΣSLC

R .Verify(x, π) = 1, C gathers the environment’s and adversary’s queries Qs
P∗

to GrpoRO from reviewing the traffic on its wires. It then runsΣSLC
R .ExtractGrpoRO(x, π,Qs

P∗)
to obtain w. If R(x,w) = 1, C outputs 1. Otherwise, it outputs Fail.

Lemma 6 (Experiment B ≈c Experiment C). Provided ΣSLC
R is special sim-

ulation sound, Experiment C is computationally indistinguishable from Experi-
ment B. Formally,

ExpBC,A ,Z(1
λ, aux) ≈c ExpCC,A ,Z(1

λ, aux).

Proof. Given an environment ZBC that can distinguish between Experiment B
and Experiment C, we construct a reduction that contradicts the special simu-
lation soundness property of ΣSLC

R .
Consider the circumstances under which it is possible for ZBC to notice

a difference between Experiment B and Experiment C. The only difference in
output between Experiments B and C is that Experiment C can fail, while
Experiment B never does. In particular, Experiment C fails only when ZBC is
able to produce a proof tuple (x, π) such that ΣSLC

R .VerifyGrpoRO(x, π) = 1 but
R(x,w) = 0, where w was obtained by running ΣSLC

R .ExtractGrpoRO(x, π,Qs
P∗).

Given oracle access to its challenger the ΣSLC
R .Extract algorithm, the reduction

uses ZBC to break the special soundness property as follows.
For Prove queries, the reduction proceeds as Experiment B (identical to Ex-

periment C). Any time ZBC wants to verify a proof tuple (x, π) for session s that
the reduction did not create itself, the reduction gathers the queries Qs

P∗ and
sends (x, π,Qs

P∗) to its challenger, who returns w. By the logic in the preced-
ing paragraph, an environment that can distinguish Experiments B and C with
non-negligible advantage must eventually issue some proof tuple (x, π) such that
ΣSLC

R .VerifyGrpoRO(x, π) = 1, but the witness returned byΣSLC
R .ExtractGrpoRO(x, π,Qs

P∗)
is such that R(x,w) = 0. By passing this tuple to the extractor, the reduction has
also successfully produced a proof (x, π) such that ΣSLC

R .VerifyGrpoRO(x, π) = 1,
but R(x,w) = 0. The non-negligible existence of such a proof tuple contradicts

52 A. Lysyanskaya and L. Rosenbloom

the special soundness property, which says if ΣSLC
R .VerifyGrpoRO(x, π) = 1, R(x,w)

must equal 1 with overwhelming probability. Therefore, Experiment B must be
computationally indistinguishable from Experiment C. ⊓⊔

Finally, we show that Experiment C is identical to the ideal-world experiment
by rearranging the components to get rid of the challenger. Note that at this
point, the functionality of the challenger is identical to that of FNIZK for both
the Prove and Verify procedures. Therefore, we can replace C with FNIZK and
S, who keeps track of the corrupted parties’ communications with GrpoRO.

Lemma 7 (Experiment C = IDEAL). In the view of the environment, Ex-
periment C is identical to the ideal world experiment. Formally,

ExpCC,A ,Z(1
λ, aux) = IDEALGRO

FNIZK,S,Z(1
λ, aux).

Proof. Note that in Experiment C, the challenger C answers honest parties’
Prove queries by running ΣSLC

R .SimulateGrpoRO(x), and Verify queries by running
ΣSLC

R .ExtractGrpoRO(x, π,Qs
P∗), with the same surrounding checks and procedures.

Therefore, we can replace C in Experiment C with FNIZK in the ideal-world ex-
periment. Since there is no longer a challenger controlling the wires in and out of
the adversary, we must additionally replace A with the ideal adversary S. Recall
that A is the dummy adversary, and that S behaves exactly like A throughout
the execution of the experiment, except that it forwards Z’s communications
with the corrupted parties to FNIZK through a private channel upon request, and
also returns false to IsProgrammed queries. Furthermore, since C programs
GrpoRO the same way as S, the environment’s view of GrpoRO is identical in both
experiments. Therefore, the environment’s view of Experiment C is identical to
its view of the ideal-world experiment. ⊓⊔

We have now shown that the real-world experiment, which uses our construc-
tion ΣSLC

R , and the ideal-world experiment, which uses FNIZK, are indistinguish-
able, completing the proof of Theorem 3. ⊓⊔

B.4 Full Proof of Theorem 3

Recall Theorem 3: Let ΣR be any Σ-protocol for relation R (Definition 2),
GroRO be the restricted observable global random oracle (Definition 7), SLC be
any straight-line compiler (Definition 3), FCRS be the ideal CRS functionality
(Definition 10), ΣS be a Σ-protocol for a samplable-hard relation S (Defini-
tion 13), and guc be the algorithm described in Definition 14. Then the NISLE
Σ-protocol Σguc

R∨S ← guc(ΣR, SLC) GUC-realizes FNIZK in the GroRO-FCRS-hybrid
model (Definition 12).
Proof. We must show that Σ

guc
R∨S ← guc(ΣR, SLC) GUC-realizes FNIZK in the GRO-

FCRS-hybrid model—that is, we must satisfy Definition 12. Briefly, we must show
that for all efficient A , there exists an ideal adversary S efficient in expectation
such that for all efficient environments Z,

IDEALGRO

FNIZK,S,Z(1
λ, aux) ≈c REAL

GRO,FCRS

Σ
guc
R∨S,A ,Z(1

λ, aux).

UC Σ-protocols in the Global ROM 53

Construction of the Simulator S. The simulator (also known as the ideal ad-
versary) S, works as follows. When the ideal functionality FNIZK asks it for the
specification of algorithms, S returns the algorithms in Σguc

R∨S. When FNIZK asks it
for the queries of adversarial provers for an SID s, S returns the corrupted par-
ties’ GroRO queries Qs

A . Otherwise, S behaves identically to the dummy adversary
A , forwarding communications between Z and the corrupted parties.

Now we wish to show that the real world, in which parties prove statements
using real witnesses and verify proofs according to the protocol, is indistinguish-
able from the ideal world, in which the ideal functionality (with help from the
simulator) proves statements using the trapdoor to the CRS and verifies proofs
by extracting witnesses. We again start with the real world experiment and show
it is possible to construct a series of hybrid experiments, each negligibly differ-
ent from the last, that transform the real world experiment into the ideal world
experiment.

Experiment A. The first experiment is the same as the real-world experiment,
except there is again a “challenger” C who controls the environment’s and ad-
versary’s views of the rest of the protocol. In particular, the challenger simulates
all of the honest parties (including the subroutine calls to FCRS) and GroRO. The
challenger does everything on behalf of all parties exactly the same as the parties
would do for themselves in the real world experiment.

Lemma 8 (REAL = Experiment A). In the view of the environment, Exper-
iment A is identical to the real world experiment. Formally,

REALGRO,FCRS

Σ
guc
R∨S,A ,Z(1

λ, aux) = ExpAC,A ,Z(1
λ, aux).

Proof. The challenger simulates all of the real world parties in Experiment A,
and the simulated output is defined to be identical to the output of the parties
in the real world. ⊓⊔

In other words, there is no way for Z to tell whether it is interacting with
separate parties, including the “real” GroRO, or whether it is interacting with
a puppet master who simulates all of the parties, including GroRO. In the next
experiment, the challenger will leverage this identical view to invoke the “tradi-
tional” simulator of the straight-line extractable OR-protocol ΣSLC

R∨S, which uses a
programmable RO. Hiding the CRS trapdoor from the challenger while allowing
it to simulate proofs via programming will allow us to construct a reduction (in
future steps) that can either break special soundness or extract the CRS trap-
door. Eventually, we will arrive at the conclusion that the programming view in
Experiment B is indistinguishable from the “unconventional” simulator in Σguc

R∨S,
which uses the trapdoor to the CRS.

Experiment B. Experiment B is the same as Experiment A, except that instead
of executing real proofs on behalf of the honest parties, the challenger C programs
GroRO in order to simulate both components of the OR-protocol. That is, given
a statement x to prove for a session s, C prepares the compound statement
X = (x, CRSs) by simulating the functionality of Fs

CRS. It then computes the proof

54 A. Lysyanskaya and L. Rosenbloom

(X,Π) by running the simulator of the straight-line extractable OR-protocol,
ΣSLC

R∨S.Simulate(X), and outputs (X,Π).

Lemma 9 (Experiment A ≈s Experiment B). Provided ΣR∨S is statistical
(resp. computational) SHVZK, Experiment B is statistically (resp. computation-
ally) indistinguishable from Experiment A. Formally,

ExpAC,A ,Z(1
λ, aux) ≈s ExpBC,A ,Z(1

λ, aux).

Proof. The proof is the same the proof of Lemma 5 in Section 4, except that we
do not have to consider the Fail condition. ⊓⊔

In the next experiment, Experiment C, we again replace the real-world veri-
fication mechanism with extraction. We proceed to show via a reduction that an
environment that can distinguish between Experiment B, which uses real-world
verification, and Experiment C, which uses the same extraction functionality as
FNIZK, can be used to contradict either the special simulation soundness prop-
erty of ΣSLC

R∨S or the hardness property of the samplable hard relation used to
construct the CRS.

Experiment C. Experiment C is the same as Experiment B, except now in-
stead of running the normal verification algorithm on non-simulated (adversar-
ial) proofs (X,Π), the challenger C proceeds as follows. If C previously sim-
ulated (X,Π), C outputs 1. If ΣSLC

R∨S.Verify(X,Π) = 0, C outputs 0. Other-
wise if (X,Π) is not a simulated proof and ΣSLC

R∨S.Verify(X,Π) = 1, C runs
Σguc

R∨S.Extract(X,Π) to obtainW = (w0, w1). IfW is such that RR∨S(X,W) = 1,
C outputs 1. Otherwise if RR∨S(X,W) = 0 or Σguc

R∨S.Extract outputs Fail, C out-
puts Fail.

Lemma 10 (Experiment B ≈c Experiment C). Experiment C is computa-
tionally indistinguishable from Experiment B. Formally,

ExpBC,A ,Z(1
λ, aux) ≈c ExpCC,A ,Z(1

λ, aux).

Proof. Note that there are now two conditions under which Experiment C can fail
and behave differently from Experiment B. Given an environment ZBC that can
distinguish between Experiment B and Experiment C, we construct a reduction
that contradicts either the special simulation soundness property of ΣSLC

R∨S or the
hardness property of the samplable hard relation used to construct the CRS. The
first part of the reduction—the reduction to special soundness—is identical to
the reduction from Lemma 6 in Section 4 above. This rules out the first failure:
that ΣSLC

R∨S.Verify(X,Π) = 1, but RR∨S(X,W) = 0.
The second failure condition occurs when ZBC is able to produce some proof

(X,Π) in some session s that causes Σguc
R∨S.Extract(X,Π) to output Fail. Recall

that this condition happens when RR∨S(X,W) = 1 but R(x0, w0) = 0—that is,
RR∨S(X,W) = 1 because S(x1, w1) = 1, where x1 = CRSs and w1 = traps. In
other words, the failure occurs if ZBC is able to produce a proof that verifies
using the CRS trapdoor that should only be available to the simulator for session
s in the ideal world.

UC Σ-protocols in the Global ROM 55

We use this ZBC as a black box to construct a reduction that breaks the
hardness property of the samplable hard relation S as follows. For Prove queries,
the reduction proceeds as Experiment B/C, except that it obtains the CRS CRSs
for each SID s from its challenger the samplable-hard CRS sampling algorithm
κS . The reduction sets CRSs = x and answers Prove(x,w) queries as usual,
by setting X = (x, CRSs) and running ΣSLC

R∨S.Simulate(X). It answers queries
Verify(X,Π) for X = (x, CRSs) according to Experiment C until ZBC produces
a proof (X,Π) for session s that causes Σguc

R∨S.Extract(X,Π) to return a W =
(w0, w1) such that S(CRSs, w1) = 1. The reduction can now produce a witness
w1 such that S(CRSs, w1) = 1, contradicting the hardness property of S, which
says that the probability of computing a w′ for some x ← κS(1

λ) such that
S(x,w′) = 1 is negligible in λ.

Therefore, both failure conditions happen with negligible probability, and
Experiment B is computationally indistinguishable from Experiment C. ⊓⊔

Finally, we replace the simulated proof process from Experiment B, which
uses straight-line extractable OR-protocol simulator ΣSLC

R∨S.Simulate, with the
GUC-transform simulator Σguc

R∨S.Simulate, which proceeds as a “genuine” prover
using the trapdoor to the CRS rather than a witness to the statement x. This
process essentially reverts the change between Experiments A and B, since the
challenger is going back to using the Σguc

R∨S.Prove algorithm, only this time with
the witness W = (traps, 1) rather than the witness W = (w, 0).

Experiment D. Experiment D is the same as Experiment C, except in how
it generates the honest participants’ proofs. Rather than programming GroRO,
the challenger computes proofs of statements x for the honest parties by run-
ning Σ

guc
R∨S.Simulate(x). Recall that this process consists of generating the CRS

and trapdoor pair (CRSs, traps) for each session s according to the sampling
algorithm κS(1

λ), then running ΣSLC
R∨S.Prove(X,W) for X = (x, CRSs) and W =

(traps, 1).

Lemma 11 (Experiment C ≈s Experiment D). Provided ΣSLC
R∨S is statistical

(resp. computational) SHVZK, Experiment D is statistically (resp. computation-
ally) indistinguishable from Experiment C. Formally,

ExpCC,A ,Z(1
λ, aux) ≈s(c) ExpDC,A ,Z(1

λ, aux).

Proof. This step reverts the proofs to being effectively non-simulated as in exper-
iment A, since using the trapdoor witness involves computing the OR-protocol
honestly according to ΣSLC

R∨S.Prove(X,W) for X = (x, CRSs) and W = (traps, 1).
Moreover, the environment’s view of the CRS is the same as in Experiment A,
since we defined FCRS to use κS(1

λ) as the CRS generation functionality. There-
fore, the argument for statistical indistinguishability between the OR-protocol-
simulated proofs in Experiment C and the GUC-transform-simulated proofs in
Experiment D is again identical to the (statistical) argument from Lemma 5.

If there is computational wiggle room between the proofs in Experiments C
and D, and the Experiment C-D distinguisher environment ZCD is now dealing
with the extractor rather than a normal verifier, we cannot use the exact same

56 A. Lysyanskaya and L. Rosenbloom

argument from the proof of Lemma 5. In particular, we have to make sure that
the only way that ZCD can distinguish between hybrid j and hybrid j + 1 is
if it can tell the difference between a real and a simulated proof in the j + 1st

slot. Otherwise—if ZCD could somehow compose its knowledge of the simu-
lated proofs with whatever it obtains from the extractor in order to construct
a proof that causes the extractor to fail—ZCD would be able to distinguish the
experiments immediately, regardless of the nature of the j + 1st proof.

We argue that because anything ZCD can learn from a straight-line extractor
it can learn from itself, it must not learn anything new about the proofs between
Experiments C and D. This is a substantial bonus of straight-line extraction—it
stops the the extractor from getting in the way of other desirable properties of
the system.

Consider the inputs (X,Π,Qs
P∗) to the algorithm Σguc

R∨S.Extract that is re-
sponsible for the verification procedure in Experiments C and D. (X,Π) is a
proof that ZCD itself produced. Similarly, Qs

P∗ is a list of queries to GroRO made
by either ZCD itself, or by the corrupted parties through A at ZCD’s request.
Therefore, ZCD can fully simulate its own view of the extractor, and cannot
possibly learn anything new about whether it is living in Experiment C or Ex-
periment D from the proof verification process.

We have shown that if ZCD is able to distinguish between the hybrids, it must
be able to distinguish whether the proof in the j + 1st slot is real or simulated.
The rest of the argument is the same as the computational section of the proof
of Lemma 5.

Finally, we show that Experiment D is identical to the ideal world experiment
by rearranging the components to get rid of the challenger. Note that at this
point, the functionality of the challenger is identical to that of FNIZK for both
the Prove and Verify procedures. Therefore, we can replace C with FNIZK and
S, who takes over keeping track of the corrupted parties’ communications with
GRO.

Lemma 12 (Experiment D = IDEAL). In the view of the environment, Ex-
periment D is identical to the ideal world experiment. Formally,

ExpDC,A ,Z(1
λ, aux) = IDEALGroRO

FNIZK,S,Z(1
λ, aux).

Proof. Note that in Experiment D, the challenger C answers honest parties’
Prove queries by running Σguc

R∨S.Simulate(x), and Verify queries by running
Σguc

R∨S.Extract(X,Π), with the same surrounding checks and procedures. There-
fore, we can replace C in Experiment D with FNIZK in the ideal-world experiment.
Since there is no longer a challenger controlling the wires in and out of the adver-
sary, we must additionally replace A with the ideal adversary S. Recall that A
is the dummy adversary, and that S behaves exactly like A throughout the ex-
ecution of the experiment, except that it forwards Z’s communications with the
corrupted parties to FNIZK through a private channel upon request. Furthermore,
since C is no longer programming GroRO in order to simulate proofs in Experi-
ment D, the functionality of GroRO is identical in both experiments. Therefore,

UC Σ-protocols in the Global ROM 57

the environment’s view of Experiment D is identical to its view of the ideal-world
experiment. ⊓⊔

We have now shown that the real-world experiment, which uses our construc-
tion Σguc

R∨S, and the ideal-world experiment, which uses FNIZK, are indistinguish-
able, completing the proof of Theorem 3. ⊓⊔

B.5 Full Proof of Theorem 4

Recall Theorem 4: Provided ΣR is a Σ-protocol for relation R according to
Definition 2 with strong special soundness as given in Definition 15, the random-
ized Fischlin transform Fis for ΣR described in Definition 28 is a straight-line
compiler according to Definition 3.

Proof. Kondi and shelat prove in Theorem 6.4 of their work [36] that the tu-
ple of algorithms ΣFis

R (denoted πF−rand
NIZK in their paper) produced by running

the randomized Fischlin transform on any strong special sound Σ-protocol ΣR

for relation R is a non-interactive straight-line extractable zero-knowledge proof
of knowledge for LR in the random-oracle model. Since Kondi and shelat use
the standard definitions of special SHVZK and strong special soundness (Defini-
tions 19 and 15, respectively), it remains to show that ΣFis

R satisfies the special
multi-SHVZK property from Definition 5 and the special simulation soundness
property from Definition 6.

We argue that almost the exact same arguments from the proof of Theorem
3 of the full version of Fischlin’s paper [30] can be used to show that Kondi
and shelat’s transform also satisfies special multi-SHVZK and special simulation
soundness. We briefly review the identical aspects of the proof and discuss the
differences in depth below.

The multi-SHVZK property follows identically regular (single-proof) SHVZK
because of the independence and superlogarithmic entropy of the commitments
(such that the oracles in both experiments are still indistinguishable), along with
a hybrid argument that distinguishing the j from the j + 1st proof of a multi-
proof simulator would allow a reduction to distinguish whether the j+1st proof
from its SHVZK challenger was real or simulated.

Simulation soundness follows from a reduction to the multi-SHVZK prop-
erty and the regular special soundness extractor as follows. First, Fischlin rules
out some trivial attacks in which the adversary modifies an existing proof π =
(com, chl, res) for a statement x to produce some new accepting transcript
π′ = (com, chl, res′) where res ̸= res′. In Fischlin’s proof this attack is ruled out
by the unique responses property, which guarantees that if ΣR.Verify(x, π) =
ΣR.Verify(x, π

′) = 1, res = res′ with overwhelming probability. In our proof,
this attack is ruled out by strong special soundness, which guarantees that
ΣR.Extract(x, π, π

′) will still produce a witness w such that R(x,w) = 1 for
res ̸= res′. The extractor still works in both cases for proofs π = (com, chl, res)
and π′ = (com, chl′, res′) where chl ̸= chl′. Therefore, Fischlin proceeds as-
suming the adversary has generated a proof with a fresh commitment vector for
its statement x, and shows that for such a proof, the multi-SHVZK property
implies special simulation soundness.

58 A. Lysyanskaya and L. Rosenbloom

Te rest of the argument is identical to the proof of Theorem 3. Briefly, Fis-
chlin proceeds by contradiction, using an algorithm B with oracle access to the
simulator that can produce a proof causing the extractor to fail as a black box
in order to contradict either the multi-SHVZK property or the regular special
soundness property of ΣFis

R . First, the reduction creates a distinguisher algo-
rithm DH with oracle access to H to encompass the “real” B that simply passes
inputs and outputs between B, the reduction, and H, and returns 1 when-
ever B is able to produce a valid but non-extractable proof (xi, πi) such that
ΣFis

R .Verify(xi, πi) = 1 but R(x,wi) = 0. Next, the reduction creates a second
distinguisher algorithm AH also with oracle access to H that simulates a differ-
ent copy of B, denoted B′, that similarly passes inputs and outputs and returns
1 whenever B′ is able to produce a valid but non-extractable proof.

When the real B issues the ith query (Prove, xi, wi), D passes this query
to the reduction, who queries its multi-SHVZK challenger for a proof π that
is either the result of running ΣFis

R .Prove(xi, wi) or Σ
Fis
R .SimProve(xi, zi, chli)

for some chl. The reduction returns π to D who returns it to B. When the
simulated copy B′ running inside of A issues queries (Prove, xi, wi), A creates a
real proof π′ ← ΣFis

R .ProveH(xi, wi) and returns π′ to B′. This step essentially
reduces B′ to the adversary in the regular special soundness experiment for ΣR,
who is free to run the Prove algorithm on anything it wants. We note here that
since the challenges produced by Kondi and shelat’s transform are distributed
identically to those produced by Fischlin’s, B and B′ views of the proofs in
this experiment are identical to those in the original experiment conducted by
Fischlin. Any time B (res. B′) issues a proof (xi, πi), D (resp. A) checks that
ΣFis

R .Verify(xi, πi) = 1, obtains w by running ΣFis
R .Extract(xi, πi) and outputs

1 if R(x,wi) = 0. The reduction outputs whatever D outputs.
Consider the eventual outputs of D and A. If the reduction is communi-

cating with the simulator in the ideal-world multi-SHVZK experiment, then
the reduction successfully outputs 1 to indicate it is running inside Multi-
SHVZK-IDEAL whenever D successfully outputs 1 to indicate that B has
produced a valid non-extractable proof. Since we assumed this probability to be
non-negligible by assumption, we arrive at a contradiction of the multi-SHVZK
property. If the reduction is communicating with a real prover in the real-world
multi-SHVZK experiment, D and therefore B must succeed with the same prob-
ability as A by the following logic. Because extraction relies only on the relevant
adversary’s queries, the functionality of the extractor for adversary B′ is in-
dependent of whether the multi-SHVZK challenger is also running real Prove
queries—in other words, A’s output does not rely on the RO queries issued by the
multi-SHVZK challenger and vice versa. D and A are therefore essentially iden-
tical, parallel (independent) experiments, such that D’s output (sourced from B)
and A’s output (sourced from B′) must be identically distributed. Therefore if B
succeeds with non-negligible probability, so does A, contradicting the underlying
special soundness property of ΣFis

R . ⊓⊔

	Universally Composable -protocols in the Global Random-Oracle Model

