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Abstract
In this article the security of the cipher feedback mode of operation with regular external serial
re-keying aiming to construct lightweight pseudo-random sequences generator is investigated.
For this purpose the new mode of operation called Multi-key CFB, MCFB is introduced, and
the estimations of provable security of this new mode in the LOR-CPA model are obtained.
Besides that, the counterexample to well-known result of Abdalla�Bellare about security of

encryption scheme with external re-keying is obtained.
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1 Introduction

This article arose from an attempt to build a lightweight pseudo-random sequence
generator. To build such a generator, it is natural to use regular re-encryption of the
original random sequence by a lightweight block cipher (for example, Magma) in a mode
with good mixing of the original sequence (CFB, OFB, CBC). Due to author's precedency,
the CFB mode was chosen.

In addition, it is natural to use a regular update of the initial random key, for which
it is reasonable to follow the recommendations of [7] and choose an external key update
using a key generator. In these recommendations, two types of external generators are
proposed: serial and parallel. It is appropriate to choose a serial key generator for use
in a pseudo-random sequences (PRS) generator, since it provides security for previously
encrypted messages when the current state of the generator is compromised [3] (so called
forward security).

Hereafter n is the block size, k is the key size. Since Magma is supposed to be used,
k = τ · n, τ = 4, are assumed for de�niteness.

The serial key generator is an automaton with one internal state. Initially, the initial
stateK∗

1 is randomly and equiprobably generated, which is used to generate the encryption
keyKEnc

1 as the output of the generator, as well as to generate the next stateK∗
2 . Herewith,

the initial state is overwritten and becomes inaccessible to the adversary. The process is
then repeated.

Let's introduce notation. In what follows, without further explanation, we will use
generally accepted terms and notation.
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Const1 = V ecn(0)∥ · · · ∥V ecn(τ − 1);

Const2 = V ecn(τ)∥ · · · ∥V ecn(2τ − 1).

Let's denote by λ the empty string. For our purpose it is convenient to formulate
especially the procedure of ECB enciphering:

ECBK(String)

1 : Output = λ

2 : j = ⌈|String|/n⌉
3 : for i = 0, j − 1 do

4 : Output = Output∥EK(MSBn(String << ni))

5 : endfor

6 : return Output

Here and hereafter MSBn denotes the n most signi�cant bits (leftmost bits) of the
bit string, and << l denotes the left shift of the bit string by l bits �lling the rightmost l
bit by zeros.

Serial Key Generator SG

1 : K←$ {0, 1}k

2 : K∗
1 ← K

3 : for i = 1,∞ do

4 : KEnc
i ← ECBK∗

i
(Const1)

5 : K∗
i+1 ← ECBK∗

i
(Const2)

6 : endfor

For convenience, let's introduce procedure:

UpdateSG(K)

1 : KEnc ← ECBK(Const1)

2 : K ← ECBK(Const2)

3 : return (KEnc,K)

The CFB (Cipher Feedback) encryption mode has been standardized in the [5, 9]
documents. Encryption according to this mode looks like this:

CFBK,IV (String)

1 : j = ⌈|String|/n⌉
2 : Output = λ

3 : Chain = IV

4 : for i = 1, j do

5 : Ci = EK (Chain)⊕MSBn(String << ni)

6 : Chain = C(i)

7 : Output = Output∥C(i)

8 : endfor

9 : return Output
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The issues of CFB mode security were considered in the papers [2, 6]
Thus, the proposed generator of pseudo-random sequences has the form:

PRNG(SG,CFB) with external rekeying

1 : Seeding

2 : K←$ {0, 1}k

3 : Initialization

4 : K∗
1 ← K

5 : Output← λ

6 : Output0 ← V ecn(0)∥ · · · ∥V ecn(m− 1)

7 : Working

8 : for i = 1,M do

9 : (KEnc
i ,K∗

i+1)← UpdateSG(K∗
i )

10 : IV ←$ {0, 1}n

11 : Output i ← CFBKEnc
i ,IV (Outputi−1)

12 : Output← Output∥Output i

13 : endfor

14 : return Output

So, the sequence obtained as a result of encryption in the CFB mode with regular
key exchange is considered as a single pseudo-random sequence, and, accordingly, the
question arises about the quality of such a PRS. It is proposed to evaluate the quality of
the proposed PRS by assessing the strength of the generator as an encryption scheme.

To assess the strength of the proposed generator 1 as an encryption scheme, one could
use the result [1, Theorem 4.1], however, this Theorem seems to be not quite true, and
for this reason the security estimates below are obtained directly for the PRS genera-
tor PRNG(SG, CFB). Reasons why we don't concern the result of Abdalla�Bellare as
truthful will be explained below.

The further presentation is structured as follows: �rst, the mode of using block ciphers
Multy-key CFB, MCFB is introduced, as a model of the generator proposed above. For
the introduced mode, security estimates are consequently obtained with using a random
key generator and with using random functions as cipher conversions. Then, based on
above, an estimate of the strength of the MCFB mode is obtained when using random
key generation and a pseudo-random family of encryption functions. The �nal estimate is
obtained from the previous one by moving on to consider the MCFB mode with a serial
generator and pseudo-random cipher conversions.

Let M ∈ N be the number of segments encrypted with the same key, which are
hereinafter referred to as sections, and let m ∈ N be the size of the partition.

Under the scheme encryption E = (G, E) we mean a set of a key generation algorithm
and a set of encryption functions indexed by keys. Usually a block cipher algorithm is a
triplet (G, E,D) � a set of key generation, encryption, decryption algorithms. But, since
the decryption function is not used in CFB mode, it is proposed to omit it.

The set of all random functionsRFn,n and an arbitrary family of pseudorandom func-
tions E are considered below as sets of encryption functions. In this case, for convenience,
the function itself is understood as a key indexing a random function.
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As key generators either a random generator RG,or the serial generator SG are con-
sidered. The random generator is choosing a key from a given key set (either the set of all
functions from {0, 1}n to {0, 1}n, or the set {0, 1}k) randomly equiprobable and regardless
of previous choices.

Let n, k be the length of the block and the length of the key of the encryption al-
gorithm, respectively. Let X, Y be the plaintext and ciphertext alphabets, respectively.
Then the mode MCFBext

m,M(G,F) with G key generator and F encryption functionset
with external rekeying is described as follows:

MCFBext
m,M(G,F)

1 : Input

2 : Xi, i = 1,mM

3 : Working

4 : for i = 0,mM − 1 do

5 : if i (mod m) = 0 do

6 : Ki←$G
7 : Chaini←$ {0, 1}n

8 : endif

9 : Yi ← Xi ⊕FKi(Chaini)

10 : Chaini+1 ← Yi

11 : endfor

12 : return Yi, i = 1,mM

2 Preliminaries

The adversary A is understood as a probabilistic algorithm designed to reveal the
cryptographic parameters of a cryptoscheme. As a rule, the adversary turns to the Oracle
to calculate the secret data.

The reference of the adversary to the oracle will be denoted by AO(·), where the dot
marks the values of the variables transmitted to the oracle.

De�nition 2.1. The family of pseudorandom functions (Pseudorandom Family, PRF) is
the set F = {FK | K ∈ keysF}, FK : {0, 1}l → {0, 1}L indexed by the elements of the
key set keysF .

If A is an arbitrary adversary, then the advantage of the observer A in distinguishing
the family F from the family of random functions RF l,L is the quantity

Advprf
F (A) = Pr

(
K←$ keysF | AFK(·) = 1

)
−Pr

(
R←$RF l,L | AR(·) = 1

)
where the probability is taken over all choices of keys, random functions, and adversary
A internal variables.

Insecurity of the F family is a quantity

InSecprf (F ; t, q) = max
A

Advprf
F (A)

where the maximum is taken over all adversaries, which are executed with time complexity
t and with the number of queries to the oracle q.
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If InSecprf (F ; t, q) ≤ ϵ, then F is (t, q, ϵ)− PRF-secure.
By time complexity we shall mean the execution time of experiments K←$ keysF ; v ←

AFK(·) and R←$RF l,L; v ← AR(·) as well as the execution time of the A's code in some
�xed RAM model, including the calculation time of FK and responses to queries to the
oracle.

De�nition 2.2. The Pseudorandom permutation family (PRP) {EK | K ∈ keysE} is
the set of permutations EK : {0, 1}l → {0, 1}l indexed by keys K ∈ keysE.

If A is an arbitrary adversary, then the advantage of the adversary A in distinguishing
between E and a random permutation is de�ned as

Advprp
E (A) = Pr

(
K←$ keysE | AEK(·) = 1

)
−Pr

(
P ←$P l | AP (·) = 1

)
where the probability is taken over all possible choices of keys, random permutations, and
the adversary's A internal variables. It is assumed that the adversary cannot access the
reverse permutations E−1

K (·), P−1(·).
The insecurity of family E is the value

InSecprp(E; t, q) = max
A

Advprp
E (A),

where the maximum is taken over all adversaries executing with time complexity t with
number of queries to oracle q.

If InSecprp(E; t, q) ≤ ε, then the family E is called (t, q, ε)− PRP-secure.

Statement 2.3 ([6]). Let E is a PRP-family over {0, 1}l. Then

InSecprf (E; t, q) ≤ InSecprp(E; t, q) +

(
q

2

)
· 1
2l

The security of the MCFBext symmetric cipher scheme is discussed below with re-
spect to the left-or-right indistinguishability model in a chosen-plaintext attack (LOR-
CPA). The LOR-CPA security model is studied in detail in [4]. In particular, this paper
explores how the LOR-CPA model relates to other symmetric encryption security models.

Informally, the attack in the LOR-CPA model is represented by a game between an
active adversary (left-right distinguisher) Dlr and an encryption oracle EK,b with key K
and bit b ∈ {0, 1}.

In each round, observer Dlr selects two plaintexts m
0
i and m1

i , |m0
i | = |m1

i |, and passes
them to EK,b. The oracle returns ci = EncK(m

b
i). The cases b = 0 and b = 1 are called left

and right, respectively. The observer Dlr publishes bit e as his guess about the value of b.
The advantage Adv(Dlr) of the adversary Dlr is de�ned as in the statistical test, that

is, as the di�erence between the output probabilities e = 0 in each of the two cases: b = 0
and b = 1.

De�nition 2.4 (LOR indistinguishability). Let E = (G, E) be a symmetric encryption
scheme. Let's de�ne the function lr(b, x0, x1) = xb. Then for an arbitrary adversary A its
advantage over the LOR-CPA security of E is de�ned as

Advlor−cpa
E (A) = Pr (K ← G | AEK

(lr(0, ·, ·)) = 0)−Pr (K ← G | AEK
(lr(1, ·, ·)) = 0)

LOR-CPA insecurity of scheme E is de�ned as

InSeclor−cpa
E (E ; t, qE , µE) = max

A
Advlor−cpa

E (A)
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where the maximum is taken over all adversaries, executing with time complexity t with
not greater than qE queries to oracle using totally µE bits.

If InSeclor−cpa(E ; t, q, µ) ≤ ε, then we shall say that the scheme E is (t, q, µ, ε)-LOR-
CPA-secure.

Let us de�ne, further, the security of the sequential key generator. In general, the
generator is de�ned as follows: let F : {0, 1}k×{0, 1}k → {0, 1}k be a PRF-family indexed
by keys from the set K = {0, 1}k. Then

SG[F ]

1 : Algorithm K
2 : K←$ {0, 1}k

3 : return K

4 : Algorithm N
5 : Out← F(K, 0)

6 : K ← F(K, 1)

7 : return (Out,K)

Let's de�ne also experimemts:

Experiment Expprg−real
SG,M,A

1 : St0 ← K
2 : s← λ

3 : for i = 1,M do

4 : (Outi, Sti)← N (Sti−1)

5 : s← s∥Outi

6 : endfor

7 : g ← A(s)
8 : return g

and

Experiment Expprg−rand
SG,M,A

1 : s← {0, 1}k·M

2 : g ← As
3 : return g

Then

De�nition 2.5.

AdvprgSG,M,A = Pr
[
Expprg−real

SG,M,A = 0
]
− Pr

[
Expprg−rand

SG,M,A = 0
]

InsecprgSG,M(t) = max
A
{AdvprgSG,M,A}

where the maximum is taken over all adversaries executing with time complexity t.
Time complexity is understood as the time of execution of two experiments and the

execution of the adversary's code in some �xed RAM model.
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The following result is true [1, Theorem 2.5]:

Statement 2.6.

InsecprgSG[F ],M(t) = InsecPRF(F ; t+ log2M, 2)

3 Strength of External MCFBMode with Random Key

Generator and Random Encryption Functions

Consider a symmetric encryption scheme MCFBext over a set of random functions
RF : {0, 1}n → {0, 1}n with a random key generator RG. Such generalized symmetric
encryption mode will be denoted MCFBext

m,M(RG,RF).

De�nition 3.1. Let's call by a collision in the MCFBext
m,M(RG,RF) mode a couple of

ticks (i, j), 0 ≤ i ≤ j ≤ mM − 1, in which (chaini, Fi(chaini)) = (chainj, Fj(chainj)).
We denote the collision in ticks (i, j) by col(i, j).

Statement 3.2. If there is a collision in the MCFBext
m,M(RG,RF) mode then the ad-

versary Dlr is able to distinguish between the results of encryption of the left and right
plaintexts, that is, win the LOR-CPA game.

Proof. Note that the adversary certainly knows all the values of chaini, i = 0,mM − 1,
since these are either initial vectors or directly observed ciphertext. So, let (i, j) collide in
the MCFBext

m,M(RG,RF) mode. Then

Fi(chaini) = Fj(chainj)

Hence,
Yi ⊕ Yj = Xi ⊕Xj = chaini+1 ⊕ chainj+1

Choosing bit e such that

me
i ⊕me

j = chaini+1 ⊕ chainj+1

adversary Dlr wins the LOR-CPA game.

It is assumed above that the equality m0
i ⊕m0

j = m1
i ⊕m1

j is impossible with reason-
able behavior of the adversary. Probability of ful�llment of this equality under a random
equiprobable and independent choice of values m0

i ,m
1
i ,m

0
j ,m

1
j will be discussed below in

the next work.

Statement 3.3. Denote by (Chain,F) = (chain0, F0(chain0)),. . .,(chainmM−1, FmM−1(chainmM−1))
set of sequences , arising during the operation of the symmetric encryption mode
MCFBext

m,M(RG,RFn,n) over the set of all random functions RFn,n.
Denote by C the set of those that contain at least one collision. Then

|C| ≤M ·
(
m

2

)
· 22mMn−n +

(
M

2

)
·
(
m

2

)
· 22mMn−2n
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Proof. Note that the set of mM cycles of operation of the MCFBext
m,M(RG,RF) mode is

naturally divided into M sections by m cycles:

0, . . . , m− 1,
. . .

tm, . . . , (t+ 1)m− 1
. . .

(M − 1)m, . . . , mM − 1

Herewith on each of the sections the same enciphering function is used.
We divide the set C into two classes. Denote by

CI = {col(i, j) ∈ (Chain,RF) | i− Res(i,m) = j − Res(j,m)}

that is, the set of collisions that occurred on segments of length m within the same section
with obviously identical cipher conversions Fi = Fj.

Denote by

CII = {col(i, j) ∈ (Chain,RF) | i− Res(i,m) ̸= j − Res(j,m)}

the set of collisions, which took place in the ticks belonging to the di�erent sections.
The Res(i,m) denotes above the residue from division of i by m.
Then C = CI ∪ CII , |C| ≤ |CI |+ |CII |.
Further, in the set CI , the locations of collisions can be chosen in M ·

(
m
2

)
ways.

There will be exactly 2(mM−1)n ways to choose the sequence
(chain0, F0(chain0)), . . . , (chainmM−1, FmM−1(chainnm−1)) under chosen location of
collision.

To substantiate this, we note that a collision will take place for any choice of cipher
conversion. Due to the randomness of functions from the set RFn,n, the elements of the
sequence chain0, . . . , chainmM−1 are chosen randomly, equiprobably and independently
of each other and run through the entire set of vectors {0, 1}mMn, whence, taking into
account the collision, there will be 2(mM−1)n of them.

Then

|CI | ≤M ·
(
m

2

)
· 2(mM−1)n · 2mMn

In the set CII , collision locations can be chosen in
(
M
2

)
·
(
m
2

)
ways. The number of ways

to choose the left coordinates of the sequence (Chain,RFn,n) in this case is 2(mM−1)n.
Further, due to the randomness of the choice of functions from the set RFn,n, the

elements of the form Fl(chainl) are chosen randomly, equiprobably and independently
of each other and of the elements of the sequence chain0, . . . , chainmM−1. Therefore, the
number of ways to choose the right coordinates of the sequence (Chain,Fn,n) does not
depend on the choice of the left coordinates and is equal to 2(mM−1)n.

Hence,

|CII | ≤
(
M

2

)
·
(
m

2

)
· 22(mM−1)n

Statement 3.4. Scheme of symmetric enciphering MCFBext
m,M(RG,RFn,n) over the set

of random functions RFn,n is (t, q, εMCFBext

m,M,n,q )-LOR-CPA-secure, herewith

q = mM,
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εMCFBext

m,M,n,q = M ·
(
m

2

)
· 2−n +

(
M

2

)
·
(
m

2

)
· 2−2n

Proof. Denote by Pb the probability distributions arising from the execution of the LOR-
CPA game with bit b. Then

AdvDlr
= P0(e = 0)−P1(e = 0)

In the absence of a collision, each value oi = Fi(chaini), Fi ∈ Fn,n, is chosen randomly,
equiprobably and independently of c0, . . . , ci−1, m

b
0, . . . ,m

b
i . Therefore, the collision prob-

ability in round i does not depend on bit b, and we have:

P0(C) = P1(C)

Denote this value by P(C).
Note further that in the absence of a collision, the adversary chooses e = 0 equally

likely for b = 0 and b = 1. Hence,

P0(e = 0 | C̄) = P1(e = 0 | C̄)

Therefore, the expression for the advantage of the adversary Dlr can be represented
as:

AdvDlr
=

= P0(e = 0 | C)P0(C) +P0(e = 0 | C̄)P0(C̄)−
−P1(e = 0 | C)P1(C)−P1(e = 0 | C̄)P1(C̄) =

= P(C) (P0(e = 0 | C)−P1(e = 0 | C)) ≤ P(C)

It remains to take into account the fact that the set of all sequences of the form
(chaini, Fi(chaini)), i = 0,mM − 1, has cardinality 22mMn due to the fact that RFn,n is
the set of all random functions, and use Statement 3.3

Note that the time t can be chosen arbitrarily.

4 Counterexample to result by Abdalla�Bellare

Let's remember that according to [2, Theorem 1],

InSec(CFBm(RG,RFn,n)) =

(
m

2

)
· 2−n.

Hence, according to Statement 3.4,

InSec(MCFBext
m,M(RG,RFn,n)) ≤M · InSec(CFBm(RG,RFn,n))+

(
M

2

)
·
(
m

2

)
· 2−2n,

or, more accurately,

InSec(MCFBext
m,M(RG,RFn,n)) = M · InSec(CFBm(RG,RFn,n)) + Pr[CII \ CI ] .

Obviously,

0 < Pr[CII \ CI ] ≤
(
M

2

)
·
(
m

2

)
· 2−2n.
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Now we can discuss our discrepancies with the result of [1, Theorem 4.1]. As applied to
our case, assuming G = RG in the indicated theorem, we obtain that, according to their
results, it should be:

InSec(MCFBext
m,M(RG,RFn,n)) = M · InSec(CFBm(RG,RFn,n)).

Thus, [1, Theorem 4.1] does not contain the second term from the previous Statement
3.4, which re�ects the cross-correlation of sections, the accumulation of material and the
transition of quantity into quality, and not at all because it is proved in the indicated
Theorem that it cannot be maybe.

Herewith both results are obtained in the same LOR-CPA model [1, page 15] : Several
(polynomial-time equivalent) defnitions for security of a symmetric encryption scheme
under chosen-plaintext attack were given in [2]. We use one of them, called left-or-right
security.

Thus, we consider that the previous Statement 3.4 is a counterexample to [1, Theorem
4.1]

In our opinion, the reason for the erroneousness of this theorem lies in the method
of hybrid experiments, which is used in the proof. More precisely, the reason is that the
method of hybrid experiments is applicable only when the nature of the object under
study allows its division into sub-objects and the reduction of the study of the original
object to the study of a set of unrelated sub-objects within the framework of the security
model used. Obviously, the method of hybrid experiments is applicable in the ROR-
CPA model (real-or-random indistinguishibility under chosen plaintext attack), but, as
the counterexample above shows, the method of hybrid experiments is not applicable in
the LOR-CPA model, since it is obviously not able to capture the correlation between
subobjects into which the original object is split.

As the topic of our next work we shall concern the correctness of [1, Theorem 4.1]
under framework of ROR-CPA security model.

5 Strength of External MCFBMode with Random Key

Generator and Pseudo-Random Encryption Func-

tions

Statement 5.1. Let F : {0, 1}n → {0, 1}n is (t′, q′, ε′)-PRF-secure family of pseudo-
random functions, q′ ≤ m. Then MCFBext

m,M(RG,F) is a (t, q, ε)-LOR-CPA-secure
scheme of symmetric encryption. Herewith q = q′ ·M , t = Mt′ + o(t′),

ε = 2Mε′ + εMCFBext

m,M,n,q

Proof. The proof is carried out in exactly the same way as the proof of [2, Theorem 1].
The main idea of the proof is that if for the mode MCFBext

m,M(RG,F) there exists
a left-right distinguisher for the mode with a random generator over the set of pseudo-
random functions, better than the distinguisher under above bounds, then it can be used
to construct a distinguishing algorithm between the set of pseudo-random functions F
and the set of all random functions.

Let Dlr is the left�right distinguisher between enciphering schemes
MCFBext

m,M(RG,F) and MCFBext
m,M(RG,RF), such that

Advlor−cpa
Dlr

(n) > 2Mε′ + εMCFBext

m,M,n,q
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Based on it, we construct a distinguisher Dprf of M�sets of functions from F and
RF , respectively:

Dprf

1 : Seeding

2 : b←$ {0, 1}
3 : {f1, . . . , fM } ←$RF
4 : Working

5 : for j = 1,M do

6 : for i = 1, q′ do

7 : Dlr Dprf

m0
i ;m

1
i

8 : Dprf CFB(Ffj )
mb

i

9 : CFB(Ffj ) Dlr

ci

10 : endfor

11 : endfor

12 : Dlr Dprf
e

13 : Dprf : e∗ ← (e ̸= b)

14 : Dprf Output
e∗

Here CFB(Ffj) is an oracle simulating the operation of the CFB mode with the
encryption function fj. For each pair of values i, j, this oracle, and, accordingly, the
oracle Ffj , is accessed only once, that is, the distinguisher Dprf produces exactly Mq′ calls
to the oracle simulating the {f1, . . . , fM } family of functions in a time not exceedingM ·t′.

For G ∈ {RF ,F} denote by Advlor−cpa
Dlr

(G) the advantage of the corresponding dis-
tinguisher in the LOR-CPA game against the mode encryption MCFBext

m,M(RG, G), and
through PrG the corresponding probability distribution.

Then the advantage of the adversary Dprf is as follows:

AdvDPRF
= PrF [e

∗ = 0]− PrRF [e
∗ = 0] .

Further,

PrG [e
∗ = 0] = Pr

[
e∗ = 0

∣∣∣{f1, . . . , fM } ←$G, e∗ ← D
{f1,...,fM }
PRF

]
=

= Pr

[
e = b

∣∣∣∣ b←$ {0, 1}, {f1, . . . , fM } ←$G, e← D
MCFB⌉§⊔(F){f1,...,fM },b
lr

]
.

Therefor b,{f1, . . . , fM } are chosen independently and equiprobably, parameter b is chosen
�rst, we have:

PrG [e
∗ = 0] =

1

2

∑
b∈{0,1}

Pr

[
D

MCFB⌉§⊔(F){f1,...,fM },b
lr = b

∣∣∣∣{f1, . . . , fM } ←$G

]
=
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=
1

2

(
Pr

[
D

MCFB⌉§⊔(F){f1,...,fM },0
lr = 0

∣∣∣∣{f1, . . . , fM } ←$G

]
+1− Pr

[
D

MCFB⌉§⊔(F){f1,...,fM },1
lr = 0

∣∣∣∣{f1, . . . , fM } ←$G

])
=

=
1

2
+

1

2
AdvDlr

(G).

According to assumption,
Advlor−cpa

Dlr
(F) > ε.

According to Statement (3.4),

Advlor−cpa
Dlr

(RG) ≤ εMCFBext

m,M,n,q .

Hence,

AdvDPRF
=

1

2

(
Advlor−cpa

Dlr
(F)− Advlor−cpa

Dlr
(RG)

)
>

1

2
(ε− εMCFBext

m,M,n,q ) = M · ε′.

On the other hand, due to the independence of the choice of the functions f1, . . . , fM ,

AdvDPRF
≤M · InSecPRF(F ; t′, q′) = M · ε′.

It is contradiction with choice of Dlr.
The Statement is proven.

6 Strength of External MCFB Mode with Serial Key

Generator and Pseudo-Random Encryption Func-

tions

Statement 6.1. Let F : {0, 1}n → {0, 1}n, G : {0, 1}k × {0, 1}k → {0, 1}k. Let
MCFBext

m,M(RG,F) is a (t, q, ε)-LOR-CPA-secure encryption scheme with q = mM .
Then MCFBext

m,M(SG[G],F) is a (t + log2M, q, ε′)-LOR-CPA-secure symmetric en-
cryption scheme. wherein

ε′ = 2MInsecPRF(G; t+ log2M, 2) + ε.

Proof. The proof is carried out in exactly the same way as the proof of Statement 5.1.
Let Dlr be the left-right distinguisher of MCFBext

m,M(SG[G],F) and
MCFBext

m,M(RG,F) encryption schemes, such that

Advlor−cpa
Dlr

> 2MInsecPRF(G; t+ log2M, 2) + ε

Based on it, we construct the distinguisher Dprg of sequential and random key gener-
ators:

12



Dprg

1 : Seeding

2 : b←$ {0, 1}
3 : {K1, . . . ,KM } ←$ {0, 1}k

4 : Working

5 : for j = 1,M do

6 : for i = 1,m do

7 : Dlr Dprg

m0
i ;m

1
i

8 : Dprg CFB(FKj )
mb

i

9 : CFB(FKj ) Dlr

ci

10 : endfor

11 : endfor

12 : Dlr Dprg
e

13 : Dprg : e∗ ← (e ̸= b)

14 : Dprg Output
e∗

Here CFB(FKj
) is an oracle simulating the operation of the CFB mode with the

encryption function FKj
. For each pair of values i, j, this oracle, and, accordingly, the

oracle FKj
, is accessed only once, that is, the distinguisher Dprg produces exactly q queries

to the oracle simulating the family of functions {FK1 , . . . ,FKM
} in a time not exceeding

t.
For G ∈ {SG[G],RG} denote by Advlor−cpa

Dlr
(G) the advantage of the corresponding

distinguisher in the LOR- CPA game against the encryption mode MCFBext
m,M(G,F),

and through PrG the corresponding probability distribution.
Then the advantage of the adversary Dprg is as follows:

AdvDPRG
= PrSG[G] [e

∗ = 0]− PrRG [e
∗ = 0] .

Further,

PrG [e
∗ = 0] = Pr

[
e∗ = 0

∣∣∣{K1, . . . , KM } ←$G, e∗ ← D
{K1,...,KM }
PRG

]
=

= Pr

[
e = b

∣∣∣∣ b←$ {0, 1}, {K1, . . . , KM } ←$G, e← D
MCFB⌉§⊔(F){K1,...,KM },b
lr

]
.

Since b,{K1, . . . , KM } are chosen independently and equiprobably, parameter b is
chosen �rst, we have:

PrG [e
∗ = 0] =

1

2

∑
b∈{0,1}

Pr

[
D

MCFB⌉§⊔(F){K1,...,KM },b
lr = b

∣∣∣∣{K1, . . . , KM } ←$G

]
=

=
1

2

(
Pr

[
D

MCFB⌉§⊔(F){K1,...,KM },0
lr = 0

∣∣∣∣{K1, . . . , KM } ←$G

]
13



+1− Pr

[
D

MCFB⌉§⊔(F){K1,...,KM },1
lr = 0

∣∣∣∣{K1, . . . , KM } ←$G

])
=

=
1

2
+

1

2
AdvDlr

(G).

According to the assumption

Advlor−cpa
Dlr

(SG[G]) > ε′.

According to the condition of the Statement,

Advlor−cpa
Dlr

(RG) ≤ ε.

Hence,

AdvDPRG
=

1

2

(
Advlor−cpa

Dlr
(SG[G])− Advlor−cpa

Dlr
(RG)

)
>

1

2
(ε′−ε) = M ·InsecPRF(G; t+log2M, 2).

From the other side of view, according to [1, Theorem 2.5],

AdvDPRG
≤M · InsecPRF(G; t+ log2M, 2).

We got a contradiction with the choice of Dlr.
The Statement has been proven.

7 Summary

Let us now combine the results of Statements 3.4,5.1,6.1.

Theorem 7.1. Let F : {0, 1}n → {0, 1}n, G : {0, 1}k × {0, 1}k → {0, 1}k. Then for
arbitrary time complexity t MCFBext

m,M(SG[G],F) is a (t + log2M,mM, ε)-LOR-CPA-
secure symmetric encryption scheme. wherein

ε = 2MInsecPRF(G; t+log2M, 2)+2MInsecPRF(F ; t/M,m)+M ·
(
m

2

)
·2−n+

(
M

2

)
·
(
m

2

)
·2−2n.

Corollary 7.2. Let E = {EK | K ∈ {0, 1}k} is a block cipher. Then for arbitrary time
complexity t MCFBext

m,M(SG[E], E) is a (t+ log2M,mM, ε)-LOR-CPA-secure symmetric
encryption scheme. wherein

ε = 2MInsecPRF(E; t+log2M, 2)+2MInsecPRF(E; t/M,m)+M ·
(
m

2

)
·2−n+

(
M

2

)
·
(
m

2

)
·2−2n.

Corollary 7.3. Let E = {EK | K ∈ {0, 1}k} is a block cipher, k = 4n. Then for
arbitrary time complexity t PRNG(SG, CFB) (1) is a (t + log2M, 4 ·M, ε)-LOR-CPA-
secure symmetric encryption scheme. wherein

ε = 2MInsecPRF(E; t+ log2M, 2) + 2MInsecPRF(E; t/M, 4) +
6M

2n
+

3M(M − 1)

22n
.
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