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Abstract. In this paper we consider two-round secure computation pro-
tocols which use different communication channels in different rounds:
namely, protocols where broadcast is available in neither round, both
rounds, only the first round, or only the second round. The prior works
of Cohen, Garay and Zikas (Eurocrypt 2020) and Damg̊ard, Magri, Ravi,
Siniscalchi and Yakoubov (Crypto 2021) give tight characterizations of
which security guarantees are achievable for various thresholds in each
of the communication structures.
In this paper, we determine what is possible in the honest majority set-
ting without a PKI, closing a question left open by Damg̊ard et al. We
show that without a PKI, having an honest majority does not make it
possible to achieve stronger security guarantees compared to the dishon-
est majority setting. However, if two thirds of the parties are guaranteed
to be honest, identifiable abort is additionally achievable using broadcast
only in the second round.
We use fundamentally different techniques from the previous works in
order to avoid relying on private communication in the first round when
a PKI is not available, since assuming such private channels without
the availability of public encryption keys is unrealistic. We also show
that, somewhat surprisingly, the availability of private channels in the
first round does not enable stronger security guarantees unless the cor-
ruption threshold is one. In that case, prior work has shown that with
private channels in the first round, guaranteed output delivery is always
achievable; we show that without these channels, fairness is unachievable
even with broadcast in both rounds, and unanimous abort is unachiev-
able without broadcast in the second round.
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1 Introduction

It is known that secure computation is possible in two rounds (whereas one
round is clearly not enough). However, most known two-round protocols either
only achieve the weakest security guarantee (selective abort) [ACGJ19], or make
use of a broadcast channel in both rounds [GLS15]. Implementing broadcast
via a protocol among the parties makes no sense in this setting, as the resulting
protocol would require much more than two rounds. However, broadcast can also
be done using physical assumptions or external services such as blockchains. This
typically means that broadcast is expensive and/or slow, so it is important to
try to minimize the usage of broadcast (while achieving as strong a security
guarantee as possible).

Before discussing previous work in this direction and our contribution, we
establish some useful termonology.

1.1 Terminology

In this work, we categorize protocols in terms of (a) the kinds of communication
required in each round, (b) the security guarantees they achieve, (c) the setup
they require, and (d) the corruption threshold t they support. We will use short-
hand for all of these classifications to make our discussions less cumbersome.

Communication Structure We refer to protocols that use two rounds of broadcast
as BC-BC; protocols that use broadcast in the first round only as BC-P2P;
protocols that use broadcast in the second round only as P2P-BC; and protocols
that don’t use broadcast at all as P2P-P2P.

Note that, when no PKI is available, it is not realistic to assume private
channels in the first round since it is unclear how such private channels would
be realized in practice without public keys. Therefore, in what follows, “P2P”
in the first round refers to open peer-to-peer channels which an adversary can
listen in on – unless we explicitly state otherwise. We do assume the availability
of private channels in the second round, since one can broadcast (or send over



peer-to-peer channels) an encryption under a public key received in the first
round.

Security Guarantees There are five notions of security that a secure computation
protocol could hope to achieve, described informally below.

Selective Abort (SA): A secure computation protocol achieves selective
abort if every honest party either obtains the output, or aborts.
Unanimous Abort (UA): A secure computation protocol achieves unan-
imous abort if either all honest parties obtain the output, or they all (unan-
imously) abort.
Identifiable Abort (IA): A secure computation protocol achieves identi-
fiable abort if either all honest parties obtain the output, or they all (unani-
mously) abort, identifying one corrupt party.
Fairness (FAIR): A secure computation protocol achieves fairness if either
all parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.
Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the com-
putation output no matter what the adversary does.

Selective abort is the weakest notion of security, and is implied by all the
others; guaranteed output delivery is the strongest, and implies all the others.
(Notably, fairness and identifiable abort are incomparable.)

Setup The following forms of setup, from strongest to weakest, are commonly
considered in the MPC literature:

Correlated randomness (CR), where the parties are given input-independent
secrets which may be correlated,
A public key infrastructure (PKI), where each party has an indepen-
dent honestly generated public-secret key pair where the public key is known
to everyone, and
A common reference string (CRS), where no per-party information is
available, but a single trusted reference string is given.

We focus on protocols that only use a CRS, which is the weakest form of
setup (except for the extreme case of no setup at all). To make our prose more
readable, when talking about e.g. a secure computation protocol that achieves
security with identifiable abort given a CRS and uses broadcast in the second
round only, we will refer to it as a P2P-BC, IA, CRS protocol. If we additionally
want to specify the corruption threshold t to be x, we call it a P2P-BC, IA,
CRS, t ≤ x protocol.

1.2 Prior Work

Cohen, Garay and Zikas [CGZ20] initiated the study of two-round secure com-
putation with broadcast available in one, but not both, rounds. They showed
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that, in the P2P-BC setting, UA is possible even given a dishonest majority, and
that it is the strongest achievable guarantee in this setting. They also showed
that, in the BC-P2P setting, SA is the strongest achievable security guarantee
given a dishonest majority.

The subsequent work by Damg̊ard, Magri, Ravi, Siniscalchi and Yakoubov
[DMR+21] continued this line of inquiry, focusing on the honest majority set-
ting. They showed that given an honest majority, in the P2P-BC setting IA is
achievable (but fairness is not), and in the BC-P2P setting, the strongest security
guarantee — GOD — is achievable.

The constructions of Cohen et al. do not explicitly use a PKI, but they do
rely on private communication in the first round, which in practice requires a
PKI, as discussed above. The constructions of Damg̊ard et al. rely on a PKI even
more heavily. The natural open question therefore is: what can be done assuming
no PKI — only a CRS, and no private communication in the first round?

We note that the recent work of Goel, Jain, Prabhakaran and Raghunath
[GJPR21] considers instead the plain model or the availability only of a bare
PKI. They show that in plain model, in the absence of private channels, no se-
cure computation is possible even given an honest majority. Further, given broad-
cast (in both rounds) IA is impossible in the plain model, while the strongest
guarantee of GOD is feasible in the bare PKI model (where it is assumed that
corrupt parties may generate their public key maliciously). Our model is incom-
parable to that of Goel et al. since we consider the availability of a CRS, and
communication patterns where broadcast is limited to one of the two rounds.

1.3 Our Contributions

In this work, we answer the above question by completely characterizing what
can be done in two rounds assuming only a CRS and no private communication
in round 1.

We first make a relatively simple observation, showing that the positive re-
sults from Cohen et al. still hold, even without private communication in the
first round. We then show that assuming only a CRS, an honest majority does
not give much of an advantage over a dishonest majority: regardless of the cor-
ruption threshold, UA is the strongest possible guarantee in the P2P-BC setting
(Theorem 1), and SA is strongest possible guarantee in the BC-P2P setting
(Theorem 2).3 However, if at least two thirds of the parties are honest, in the
P2P-BC setting IA is additionally possible (Theorem 7). To show this we give a
construction based on a new primitive called one-or-nothing secret sharing with
intermediaries (adapted from one-or-nothing secret sharing [DMR+21]), which
may be of independent interest.

Most of our lower bounds hold even given private communication in the first
round; however, our constructions do not require it. This shows that surprisingly,

3Given an additional round of communication instead of a PKI, things look differ-
ent; Badrinarayanan et al. [BMMR21] study broadcast-optimal three-round MPC with
GOD given an honest majority and CRS, and show that GOD is achievable in the
BC-BC-P2P setting.
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in most cases, having private communication in the first round cannot help
achieve stronger guarantees.

The one exception is the case where the adversary can only corrupt one
party (that is, t = 1); for t = 1 and n ≥ 4, guaranteed output delivery can be
achieved given private channels in the first round [IKP10,IKKP15] even when
broadcast is completely unavailable. However, we show that without private
channels in the first round, fairness (and thus also guaranteed output delivery)
is unachievable (Cor 2), even if broadcast is available in both rounds. We also
show that without private channels in the first round, if broadcast is unavailable
in the second round, selective abort is the only achievable guarantee (Cor 1).

We summarize our findings in Table 1, and the special case of t = 1 in Table 2.

1.4 Technical Overview

In Section 1.4.1, we summarize our lower bounds; in Section 1.4.2, we summarize
our construction.

1.4.1 Lower Bounds In Section 3, we describe our four lower bounds, which
use slightly different techniques. Importantly, our first two lower bounds hold
even if private channels are available in the first round, in contrast to our con-
structions which avoid the use of private channels before the parties had a chance
to exchange public keys.

In the proof of Theorem 1, we show that in any hypothetical P2P-BC, IA,
CRS protocol, an adversary who controls just a third of the parties can split
the honest parties into two disjoint sets S0 and S1, and by sending first-round
messages based on input x0 to S0 and based on x1 to S1, obtain two different
outputs: both use the fixed inputs of the honest parties, but one uses x0 as the
corrupt parties’ input, and one uses x1. Allowing the adversary to learn the
output on two different sets of corrupt party inputs (together with the same set
of honest party inputs) is clearly a violation of security.

In the proof of Theorem 2, we show that in any hypothetical BC-P2P, UA,
CRS protocol, an adversary who is able to control just two parties is able to
perform an even more powerful attack: after execution, she is able to recompute
the function output locally on corrupt party inputs of her choice (together with
the same fixed set of honest party inputs). This is called a residual function
attack.

When t = 1, we show that the availability of private channels makes a dif-
ference. When private channels are available in the first round, the strongest
guarantee — guaranteed output delivery — is known to be achievable as long
as n ≥ 4 [IKP10,IKKP15]. However, we show that without private channels in
the first round, the landscape is quite different. In this setting, an adversary
can observe all messages sent by an honest party P in the first round; so, those
first-round messages cannot suffice to compute the function on P ’s input — P ’s
second-round messages are crucially necessary for this. If P ’s first-round mes-
sages were enough, the adversary would be able to mount a residual function
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The General Case
Broadcast
Pattern t

Selective
Abort
(SA)

Unanimous
Abort (UA)

Identifiable
Abort (IA)

Fairness
(FAIR)

Guaranteed
Output
Delivery
(GOD)

R1 R2

BC BC

n
2 ≤ t < n

3 3 3[CGZ20] w.m.c 7[Cle86] 7

P2P BC 3 3[CGZ20]
w.m.c

7[CGZ20] 7 7

BC P2P 3 7[CGZ20] 7 7 7

P2P P2P 3[CGZ20]
w.m.c

7 7 7 7

BC BC

n
3 ≤ t <

n
2

3 3 3[CGZ20] w.m.c 7[PR18,GLS15] 7

P2P BC 3 3[CGZ20]
w.m.c

7(Theorem 1) 7 7

BC P2P 3 7[PR18] 7 7[PR18,GLS15] 7

P2P P2P 3[CGZ20]
w.m.c

7 7[CL14] 7 7[LSP82]

BC BC

t < n
3

3 3 3[CGZ20] w.m.c 7 for t > 1
[GIKR02]

7 for t > 1

P2P BC 3 3[CGZ20]
w.m.c

3(Theorem 7) 7 for t > 1 7 for t > 1

BC P2P 3 7 for t > 1
(Theorem 2)

7 for t > 1 7 for t > 1
[GIKR02]

7 for t > 1

P2P P2P 3[CGZ20]
w.m.c

7 for t > 1
[DMR+21]

7 for t > 1 7 for t > 1 7 for t > 1

Table 1: Feasibility and impossibility for two-round MPC with different guaran-
tees and broadcast patterns when only a CRS is available (but no PKI or cor-
related randomness). The R1 column describes whether broadcast is available
in round 1; the R2 column describes whether broadcast is available in round 2.
(In our constructions, round 1 communications are not private. However, in the
work of Cohen et al. [CGZ20] and other prior work, they often are; we write
“w.m.c.” (“with minor changes”) to denote minor changes to the construction of
Cohen et al. to eliminate the use of private channels in the first round of their
construction, as described in Section 1.4.3. The only case where the availability
of private channels in the first round enables greater security is in the case where
t = 1; Table 2 describes this case.
Arrows indicate implication: the possibility of a stronger security guarantee im-
plies the possibility of weaker ones in the same setting, and the impossibility of a
weaker guarantee implies the impossibility of stronger ones in the same setting.
Beige table cells are lower bounds; green table cells are upper bounds.
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The t = 1 Case
Broadcast
Pattern t

Selective
Abort
(SA)

Unanimous
Abort (UA)

Identifiable
Abort (IA)

Fairness
(FAIR)

Guaranteed
Output
Delivery
(GOD)

R1 R2

Without Private Channels in Round 1:

BC BC

t = 1, n > 1

Table 1 Table 1 Table 1 7Cor 2 7

P2P BC Table 1 Table 1 Table 1 7 7

BC P2P Table 1 7Cor 1 7 7Cor 1, 2 7

P2P P2P Table 1 7 7 7 7

With Private Channels in Round 1:

Any
t = 1, n = 4 3 3 3[IKKP15] 3 3[IKKP15]

t = 1, n ≥ 5 3 3 3[IKP10] 3 3[IKP10]

Table 2: Feasibility and impossibility for two-round MPC with different guaran-
tees and broadcast patterns when only a CRS is available, when t = 1. We refer
to Table 1 for the cases already covered therein.

attack: given P ’s first-round messages, the adversary would be able to compute
the function on P ’s input (along with inputs of her choice on behalf of the other
parties) in her head, by simulating all the other parties. However, if we aim for
either unanimous abort (without use of broadcast in the second round) or fair-
ness, we can also argue that P ’s second-round messages cannot be necessary. If
we would like to achieve unanimous abort without use of broadcast in the sec-
ond round, it is important that the adversary not be able to break unanimity by
sending different second-round messages to different parties. If we would like to
achieve fairness, it is similarly important that the adversary not be able to deny
the honest parties access to the output by withholding her second-round mes-
sages. So, to achieve either of those goals, the second-round message both must
and cannot matter; we thus rule out BC-P2P, UA, CRS protocols (Cor 1) and
BC-BC, FAIR, CRS protocols (Cor 2) when no private channels are available in
the first round.

1.4.2 Upper Bounds In Section 5, we give a P2P-BC, IA, CRS, t < n
3 con-

struction (Figure 5.1). Our construction builds on the construction of Damg̊ard
et al. [DMR+21] (which, in turn, builds on the construction of Cohen et al.
[CGZ20]). Like those prior works, we take a protocol that requires two rounds of
broadcast, and compile it. Since broadcast is only available in the second round,
the key is to ensure that a corrupt party can’t break the security of the underly-
ing protocol by sending inconsistent messages to different honest parties in the
first round. The solution is to delay computation of the second round messages
until parties are sure they agree on what was said in the first round.
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Following previous work, we do this by having each party G garble her second-
message function (which takes as input all the first-round messages that party
expects to receive) and broadcast that garbled circuit in the second round. G
additionally secret shares all of the labels for her garbled circuit. We can get
identifiable abort from this if we make sure that one of two things happen: (a)
sufficiently many parties receive a given first-round message bit coming from
a sender S, implying that the label corresponding to that bit is reconstructed
(unanimously, over broadcast); or (b) someone is unanimously identified as a
cheater. (Of course, two labels for the same input wire should never be recon-
structed, since this would compromise the security of the garbled circuit scheme.)

To achieve this, Damg̊ard et al. introduce (and use in their construction) the
notion of one-or-nothing secret sharing. Unfortunately, this primitive crucially
relies on a PKI: in the second round, each player must be able to prove that she
received a certain message from S in the first round (or abstain if she received
nothing). Given a PKI, this can be done by having S sign her first-round mes-
sages. Of course, without a PKI, this cannot work as there is no time to agree
on public keys.

Therefore, without a PKI, we need a different approach. The approach we
use is instead to check in the second round whether there is sufficient consensus
among the parties about what S sent in the first round, and only reconstruct the
corresponding labels if this is the case. To this end, we define a new primitive in
the CRS model called one-or-nothing secret sharing with intermediaries. In such
a scheme, each garbler G performs two layers of Shamir sharing: first, each label
is shared, creating for each party R a share sR. Second, each sR is shared among
all parties. Everyone now acts as intermediaries, and passes their sub-shares of sR
on to R in the second round. This ensures that a corrupt G cannot fail to deliver
a share to R, since G cannot fail to communicate with more than t intermedi-
aries without being identified. Simultaneously, each participant R broadcasts a
message enabling the public recovery of only the label share corresponding to
what she received from S in the first round. Enough shares for a given label are
only recoverable if enough participants received the same bit from S, implicitly
implementing the consensus check we mentioned above.

There is one final caveat we need to take care of: the standard network
model assumes peer-to-peer “open” channels where the adversary can observe
all messages sent. With a PKI, we can make use of private channels (even in
the first round), by using public-key encryption. However, in the absence of a
PKI, this makes little sense, so we should not use private channels in the first
round. Under this constraint we cannot send shares of secrets in the first round.
So, we need to figure out a way for G to send sub-shares of R’s share sR to
intermediaries, and for intermediaries to pass these sub-shares on to R, in a
single round of broadcast.

The approach we use is as follows: in the second round, for each sub-share of
sR intended for intermediary I, G will broadcast an encryption c of that sub-share,
under a public key received from I in the first round. Simultaneously, I passes on
all of sub-shares to R by broadcasting transfer keys. Depending on which value
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should be decrypted, R broadcasts the relevant decryption key which enables the
recovery of the corresponding plaintext. We informally refer to this approach as
transferrable encryption, where a party is able to transfer decryption capabilities
to another, even without first seeing the ciphertext in question.

The P2P-BC, IA, CRS, 3t < n construction following the above blueprint is
formalized in Figure 5.1.

1.4.3 Modifying Prior P2P-BC Constructions The work of Cohen et al.
gives a construction in the P2P-BC and P2P-P2P settings that uses only a CRS
(not a PKI); however, they use private communication in the first round. We
observe that we can modify their construction in a straightforward way to only
use public peer-to-peer communication in the first round, which is more realistic
without a PKI. Their construction is a compiler, and in the first round, two things
are sent: messages from the underlying construction; and (full-threshold) secret
shares of garbled circuit labels, which need to be communicated privately, and
which are then selectively published in the second round. Let’s pick an underlying
construction that uses public communication only (as e.g. the construction of
[GS18]). Now, to avoid private communication in the first round, we modify
the protocol to delay secret sharing until the second round. Instead, the only
additional thing the parties do in the first round is exchange public encryption
keys. Like in our construction (described above), it might look like delaying
secret sharing poses a problem, since the share recipients need to broadcast the
relevant shares to enable output recovery, but if they only receive their shares in
the second (last) round, they don’t have time to do this. So, we have the share
sender G encrypt each share meant for receiver R under a one-time public key
belonging to R. Simultaneously, R will publish the corresponding secret key if
and only if she wishes to enable the reconstruction of that label.4 In this way,
the same guarantees can be achieved without using private communication in
the first round.

1.4.4 Broadcast Complexity In the previous two works, no attempt was
made to minimize the broadcast overhead of the compilers. They all require the
broadcast of garbled second-message functions, the size of which often scales with
the complexity of the function computed, which is potentially large. We observe
that a generic broadcast optimization (which is folklore, and has appeared in
some previous work [HR14,GP16,CCD+20]) can be applied to any message which
is already known to the sender in the first round, but need not be broadcast until
the second round. Using this optimization, the size of the additional broadcasts
that our compiler — and the compilers of Cohen et al. and Damg̊ard et al.—
requires becomes independent of the size of the function being computed.

4Note that the full power of our one-or-nothing secret sharing with intermediaries
is not necessary here; in our construction, we only require two levels of sharing and
intermediaries in order to achieve identifiable abort, while this construction aims only
for selective and unanimous abort in the two different settings respectively.
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The broadcast optimization is quite straightforward. It enables reliable broad-
cast of arbitrarily long messages, while only sending fixed-length messages over
the broadcast channel in the second round. The dealer sends its message to all
the recipients over peer-to-peer channels in the first round. Each recipient then
echos the message it received over peer-to-peer channels in the second round. Fi-
nally, in the second round, each party also broadcasts a hash of the message. If
there exists a majority of parties who broadcast the same hash h, then each hon-
est party outputs a pre-image of h. (Each party must have received a pre-image
of h because at least one of the broadcasters of h must be honest.) Otherwise,
honest parties blame the dealer. Only hashes are sent over the broadcast channel,
and the size of those hashes is independent of the size of the message.

Finally, we note that when applying this optimization to our construction,
and that of Cohen et al. and Damg̊ard et al., garbled circuits which were pre-
viously not broadcast until the second round are now sent (over peer-to-peer
channels) in the first round. This necessitates the use of adaptive garbled cir-
cuits5.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [CGZ20]. As in their work, we state our results
in a stand-alone setting.6

Real-world. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input.

The protocol is executed in rounds (i.e., the protocol is synchronous). Each
round consists of the send phase and the receive phase, where parties can respec-
tively send the messages from this round to other parties and receive messages
from other parties. In every round parties can communicate either over a broad-
cast channel or a fully connected peer-to-peer (P2P) network. If peer-to-peer
communication occurs in the first round without a PKI, we assume these chan-
nels are “open”; that is, the adversary sees all messages sent.7 In other cases,

5Adaptive garbling schemes [BHR12a] remain secure against an adversary who ob-
tains the garbled circuit and then selects the input.

6We note that our security proofs can translate to an appropriate (synchronous)
composable setting with minimal changes.

7Some of our negative results hold even if private peer-to-peer channels are available
in the first round. However, our positive results do not make use of such channels.
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we assume that these channels can be private, since communications can be en-
crypted using public keys that are either available via a PKI or exchanged in
the first round. In all cases, we assume the channels to be ideally authenticated.

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output, and
the adversary outputs an arbitrary function of the corrupt parties’ view. The
view of a party during the execution consists of its input, random coins and the
messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let I ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sl-abort),
unanimous abort (un-abort), identifiable abort (id-abort), fairness (fairness) and
guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type ∈ {sl-abort, un-abort, id-abort,
fairness, god}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let
I ⊆ [n], of size at most t, be the set of indices of the corrupt parties. Then,
the joint ideal execution of f under (S, I) on input vector x = (x1, . . . , xn),
auxiliary input aux to S and security parameter λ, denoted IDEALtype

f,I,S(aux)(x, λ),
is defined as the output vector of P1, . . . , Pn and S resulting from the following
ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi
to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′i be the value actually sent as the input
of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′1, . . . , x′n). If there are no corrupt parties or type = god, proceed to step 4.
(a) If type ∈ {sl-abort, un-abort, id-abort}: The trusted party sends {yi}i∈I to
S.

(b) If type = fairness: The trusted party sends ready to S.
3. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will
not get the output as J ⊆ [n] \ I. (Note that J can be empty, allowing
all parties to obtain the output.) It sends (abort,J ) to the trusted party.

(b) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n] \ I.
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(c) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ I who will be blamed, and send (abort, i∗) to the
trusted party. If it does, we take J = [n] \ I.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {sl-abort, un-abort, fairness}, we let abortmsg = ⊥.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party then sends abortmsg to every party Pj, j ∈ J , and
yj to every party Pj, j ∈ [n] \ J .

Note that, if type = god, we will never be in this setting, since S was
not allowed to ask for an abort.

(b) Otherwise, it sends y to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {xi}i∈I , the messages received by the
corrupt parties from the trusted party and its auxiliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3. Consider type ∈ {sl-abort, un-abort, id-abort, fairness, god}. Let f :
({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol Π t-securely computes
the function f with type security if for every PPT real-world adversary A with
auxiliary input aux, there exists a PPT simulator S such that for every I ⊆ [n]
of size at most t, for all x ∈ ({0, 1}∗)n, for all large enough λ ∈ N, it holds that

REALΠ,I,A(aux)(x, λ) c≡ IDEALtype
f,I,S(aux)(x, λ).

2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol Π as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msgi,
to compute Pi’s first messages to its peers; snd-msgi, to compute Pi’s second
messages; and outputi, to compute Pi’s output. Thus, a protocol Π can be
defined as {(frst-msgi, snd-msgi, outputi)}i∈[n].

The syntax of the algorithms is as follows:

– frst-msgi(xi, ri) → (msg1
i→1, . . . ,msg1

i→n) produces the first-round mes-
sages of party Pi to all parties. Note that a party’s message to itself can
be considered to be its state.

– snd-msgi(xi, ri,msg1
1→i, . . . ,msg1

n→i)→ (msg2
i→1, . . . ,msg2

i→n) produces the
second-round messages of party Pi to all parties.

– outputi(xi, ri,msg1
1→i, . . . ,msg1

n→i,msg2
1→i, . . . ,msg2

n→i)→ yi produces the
output returned to party Pi.

11



We implicitly assume that all of these algorithms also take a CRS as input
when one is available.

When the first round is over broadcast channels, we consider frst-msgi to
return only one message — msg1

i . Similarly, when the second round is over
broadcast channels, we consider snd-msgi to return only msg2

i .
Throughout our negative results, we omit the randomness r, and instead

focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

3 Lower Bounds

In this section, we present four negative results in the setting where no PKI
is available, but a CRS is. Our first two negative results (Section 3.1) hold
even when private channels are available in the first round (which is arguably
unrealistic without a PKI). In Theorem 1, we show that if n ≤ 3t, no P2P-BC,
IA, CRS protocol exists. In Theorem 2, we show that if t > 1, no BC-P2P, UA,
CRS protocol exists. Theorem 2 extends the impossibility result of Patra and
Ravi [PR18], which holds for n ≤ 3t.

Our last two negative results (Section 3.2) hold only when private channels
are not available in the first round, and focus on the case when t = 1. In Cor 1,
we show that if the adversary corrupts even one participant, no BC-P2P, UA,
CRS protocol exists if the first-round messages are public; similarly, in Cor 2,
we show that in the same setting, no BC-BC, FAIR, CRS protocol exists. This
strengthens the impossibility result of Gordon et al. [GLS15] which holds for
n ≤ 3t. t = 1 is the only case where the availability of private channels in the
first round enables stronger security guarantees; with private channels in the
first round, the strongest guarantee — guaranteed output delivery — is possible
for t = 1 and n ≥ 4 even when no broadcast is available [IKP10,IKKP15].

3.1 General Impossibility Results

Theorem 1 (P2P-BC, IA, CRS, n ≤ 3t). There exist functions f such that
no n-party two-round protocol can compute f with identifiable abort against t ≥ n

3
corruptions while making use of broadcast only in the second round (i.e. where the
first round is over peer-to-peer channels 8 and second round uses both broadcast
and peer-to-peer channels).

In our proof, we use the function fot. Let the input of P1 be a pair of strings
x1 = (z0, z1), where z0, z1 ∈ {0, 1}λ, and the input of Pn be a choice bit xn =
c ∈ {0, 1}. The input of other parties is ⊥ (i.e. xi = ⊥ for i ∈ [n] \ {1, n}). fot
allows everyone to learn zc.

Proof. We prove Theorem 1 by contradiction. Let Π be an n-party protocol
computing fot that achieves identifiable abort against t ≥ n

3 corruptions by
using broadcast in the second round only.

8The peer-to-peer channels can be private or “open”.
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Below, we show a strategy that allows an adversary corrupting a set I of
t parties, where P1 /∈ I, to learn both z0 and z1. This would complete the
proof, since it violates the security of Π (in the ideal execution the adversary
learns only one of the input strings of honest P1). To show this, we analyze two
scenarios:

Scenario 1: Consider an adversary who corrupts a set of t parties, I, such
that P1 /∈ I but Pn ∈ I. Let S0 and S1 denote two disjoint sets of honest
parties of equal size, where |S0| = |S1| = n−t

2 ≤ t (we assume for simplicity
that the number of honest parties is even). The adversary does the following
on behalf of Pn (she behaves honestly on behalf of the other corrupt parties):

Round 1. Compute and send messages based on input xn = 0 and xn =
1 to parties in S0 and S1 respectively. (It is possible for the adversary to
send inconsistent first-round messages as the first round is communicated
over peer-to-peer channels.)
Round 2. Behave honestly with respect to input xn = 0 (i.e. compute
and send second round messages on behalf of parties in I as if they
received first round messages from Pn based on xn = 0).

Scenario 2: Consider an adversary who corrupts parties in S1 (where S1
is as defined in Scenario 1 and in particular, does not include Pn or P1).
Suppose the input of honest Pn is xn = 0. The adversary behaves as follows
on behalf of corrupt parties:

Round 1. Behave honestly as per protocol specifications.
Round 2. Pretend to have received first round messages from Pn based
on xn = 1. (The adversary can do this without being caught, due to the
absence of PKI or correlated randomness.)

The honest parties in S0 cannot distinguish between the above two scenarios.
Since the honest parties in S0 do not know whom to blame, it must be the case
that both the above scenarios result in the honest parties receiving an output.
The output obtained by honest parties (including Pn) in Scenario 2 must be z0
as it should be computed with respect to the input xn = 0 of honest Pn . Since
the adversary’s view in Scenario 1 subsumes the view of honest Pn in Scenario
2, we can conclude that the adversary in Scenario 1 is able to learn the output
z0.

Similarly, we can argue that in Scenario 1, if the adversary had sent second
round messages on behalf of parties in I based on input xn = 1 instead, then the
adversary could obtain output computed with respect to xn = 1 (i.e. z1). This is
because, in this case, honest parties in S1 cannot identify whether Pn is corrupt
or the t parties in S0 are lying about having received Round 1 messages based on
xn = 0. Therefore, by locally computing Round 2 messages on behalf of parties
in I based on xn = 1, the adversary can obtain z1 as well. This completes the
argument that the adversary can learn both z0 and z1, thereby completing the
proof of Theorem 1.

Theorem 2 (BC-P2P, UA, CRS, t > 1). There exist functions f such that
no n-party two-round protocol can compute f with unanimous abort against t > 1
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corruptions while making use of broadcast only in the first round (i.e. where the
first round uses both broadcast and peer-to-peer channels 8 and second round uses
only peer-to-peer channels).

In our proof, we use the function fmot. Let the input of Pn be a pair of
strings xn = (z0, z1), where z0, z1 ∈ {0, 1}λ, and the input of every other party
Pi (i ∈ {1, . . . , n − 1}) be a single bit xi ∈ {0, 1}. fmot allows everyone to learn
zc, where c = ⊕n−1

i=1 xi.
Proof. We prove Theorem 2 by contradiction. Let Π be an n-party protocol
securely computing fmot with unanimous abort using broadcast only in the first
round. We describe a sequence of scenarios H1, C2, H2, . . . , Cn−1, Hn−1, Hn. The
vector of inputs (x1, . . . , xn) is fixed across all scenarios. In all the scenarios,
the adversary uses honest inputs for corrupt parties but may drop incoming or
outgoing messages on behalf of corrupt parties.

We begin with a high-level overview of the argument. Each scenario Hi (i ∈
{2, . . . , n}) involves the adversary corrupting P1, while H1 denotes an honest
execution. The sequence of these scenarios is such that corrupt P1 drops her peer-
to-peer messages in both rounds to one additional honest party in each scenario.
However, she behaves honestly in her first-round broadcast communication. The
idea is to show that the output of Hi and Hi+1 is identical for each i ∈ [n− 1].
We show this by interleaving the above sequence with scenarios C2, . . . , Cn−1,
in each of which P1 as well as one other party are corrupt. (The only exception
is C2, where P1 is honest.) This lets us infer that the output of Scenario Hn

is identical to that of Scenario H1: i.e. the output is y = f(x1, . . . , xn) = zc,
since in H1 everyone behaves honestly and the output y is well-defined. Since
the only communication from P1 in Scenario Hn is her broadcast and private
communication to Pn in Round 1, intuitively, Pn had sufficient information about
x1 required for output computation at the end of Round 1 itself. Building on
this intuition, we demonstrate that Π is susceptible to a residual attack by Pn
(which contradicts the security of Π).

Before describing the scenarios in detail, we first define some useful notation.
Let µ denote the negligible probability with which the security of Π fails. Let
m̃sg2

i→j denote Pi’s second-round message to Pj (sent over peer-to-peer channel),
computed honestly given that Pi did not receive the private message (i.e. the
communication over peer-to-peer channel) from P1 in the first round.

We now analyze the following sequence of scenarios H1, C2, H2, C3, H3, . . . ,
C(n−1), H(n−1), Hn.

Scenario H1: All parties behave honestly. Since everyone behaved hon-
estly, it follows from correctness that P1 obtains the output y = f(x1, . . . , xn) =
zc with probability at least 1− µ.

Scenario C2: P2 is corrupt.
Round 1: P2 behaves honestly.
Round 2: P2 pretends to P3, . . . , Pn that she did not receive private
communication from P1 in Round 1. In more detail, P2 sends m̃sg2

2→j to
Pj for j ∈ {3, . . . , n}.
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P1 must output y = zc with probability at least 1−µ since her view is iden-
tically distributed to her view in Scenario H1. Unanimity (which breaks with
probability at most µ) dictates that when honest P1 outputs y = zc (which
occurs with probability at least 1 − µ), the other honest parties P3, . . . , Pn
must also obtain y = zc with probability at least 1− 2µ.

Scenario H2: P1 is corrupt.
Round 1: P1 behaves honestly in the broadcast communication and in
private communication with P3, . . . , Pn. However, she does not send pri-
vate messages to P2.
Round 2: P1 communicates honestly with P3, . . . , Pn but sends no mes-
sages to P2.

The views of parties P3, . . . , Pn is identically distributed to their views in
the previous scenario (where the view of Pj , where j ∈ {3, . . . , n} includes
m̃sg2

2→j). So, their output must be the same as in the previous scenario
(y = zc) with probability at least 1 − 2µ. P2 must also output y = zc with
probability at least 1− 3µ to maintain unanimity.

For i ∈ [3, . . . , n− 1], we define scenarios Ci and Hi as follows:

Scenario Ci: P1 and Pi are corrupt.
Round 1: P1 behaves as in the previous scenario (Scenario Hi−1). Pi
behaves honestly.
Round 2: P1 behaves as in the previous scenario. Pi behaves honestly
towards P2, . . . , Pi−1, and pretends to parties Pi+1, . . . , Pn that she did
not receive private communication from P1 in round 1. In more detail, Pi
sends m̃sg2

i→j to j ∈ {i+ 1, . . . , n}.
P2, . . . , Pi−1 can’t distinguish this from the previous scenario, since their
views are identically distributed. So, their outputs must be the same as in
the previous scenario (i.e. y = zc) with probability at least 1−(2(i−1)−1)µ =
1− (2i− 3)µ . Pi+1, . . . , Pn must also output y = zc with probability at least
1− (2i− 3)µ− µ = 1− 2(i− 1)µ to maintain unanimity.

Scenario Hi: P1 is corrupt.
Round 1: P1 behaves honestly in the broadcast communication and in
private communication with Pi+1, . . . , Pn. However, she does not send
private messages to P2, . . . , Pi.
Round 2: P1 communicates honestly with Pi+1, . . . , Pn but sends no
messages to P2, . . . , Pi.

Parties Pi+1, . . . , Pn can’t distinguish this from the previous scenario, since
their views are identically distributed (where the view Pj , where j ∈ {i +
1, . . . , n}, includes {m̃sg2

2→j , . . . , m̃sg2
i→j}). So, their output must be the same

as in the previous scenario (i.e. y = zc) with probability at least 1−2(i−1)µ.
P2, . . . , Pi must also output y = zc with probability at least 1−2(i−1)µ−µ =
1− (2i− 1)µ to maintain unanimity.

Finally, we define scenario Hn as follows:
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Scenario Hn: P1 is corrupt.
Round 1: P1 behaves honestly in the broadcast communication and in
private communication with Pn. However, she does not send private mes-
sages to P2, . . . , Pn−1. (This is the same as in the previous — Scenario
Hn−1.)
Round 2: P1 sends no messages.

Parties P2, . . . , Pn−1 can’t distinguish this from the previous scenario, since
their views are identically distributed. So, their output must be the same as
in the previous scenario (i.e. y = zc) with probability at least 1− (2(n− 1)−
1)µ = 1 − (2n − 3)µ. Pn must also output y = zc with probability at least
1− (2n− 3)µ− µ = 1− 2(n− 1)µ to maintain unanimity.

In the last scenario, we claim that the output (which is identical to zc as
shown above) is computed with respect to input x′1 = x1 of corrupt P1. This is be-
cause the output in the last scenario must be computed on honest inputs of par-
ties P2, . . . , Pn (as they are honest in the last scenario) and f(x′1, x2, . . . , xn) = zc
holds only if x′1 = x1 (recall that c = ⊕n−1

i=1 xi is based on the fixed combination
of inputs (x1, . . . , xn) used in the above scenarios).

Next, we note that in the last scenario, P1 has spoken only in the first round
broadcast and private communication to Pn. We argue that Π is susceptible to
the following residual attack. Consider a different scenario H∗n where the ad-
versary passively corrupts Pn and behaves in the following manner. She fixes
the first round broadcast and private communication obtained from P1. She
chooses inputs (x′2, . . . , x′n) and randomness on behalf of parties P2, . . . Pn. Now,
it is easy to see that the adversary in H∗n can locally emulate all the messages
of Scenario Hn in her head with respect to inputs (x1, x

′
2, x
′
3, . . . , x

′
n). This is

because the output of Hn was computed with respect to x1 (as argued previ-
ously) and the only communication of P1 throughout Scenario Hn was in its
broadcast and private communication to Pn which is available to the adversary
in H∗n at the end of the first round. Lastly, since the adversary’s view in H∗n
subsumes the view of honest Pn in Scenario Hn (if it occurred with respect to
inputs (x1, x

′
2 . . . , x

′
n)), we can conclude that the adversary is able to learn the

output f(x1, x
′
2 . . . , x

′
n) with overwhelming probability. Thus, the adversary in

H∗n can obtain f(x1, x
′
2 . . . , x

′
n) with overwhelming probability for any inputs

(x′2, . . . , x′n) of her choice.
This contradicts the security of Π because it allows the adversary corrupting

Pn to learn x1. For instance, the adversary can choose x′n = (z′0, z′1) with z′0 6= z′1
and (x′2, . . . , x′n−1) such that x′2 ⊕ x′3 ⊕ · · · ⊕ x′n−1 = 0. This would allow her to
deduce x1 directly based on the output (which would evaluate to z′x1

). This is
in contrast to the ideal execution where the adversary passively corrupting Pn
only learns c from the output which does not reveal x1 (as c would depend on
the inputs of other honest parties as well).

Lastly, we point out that the above proof breaks down in the presence of
a PKI or correlated randomness. This is because if such a setup is present, the
adversary corrupting Pn in Scenario H∗n will not be able to emulate the messages
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of an honest party Pi with respect to some chosen input x′i (as the computation
of these messages might require private information given to Pi as a part of the
setup, which is not available to the adversary). In fact, there exist constructions
achieving guaranteed output delivery (which implies unanimous abort) in the
BC-P2P, PKI setting when t < n/2 [DMR+21].

3.2 Impossibility Results with Public First-Round Peer-to-Peer
Channels

In this section, we present two impossibility results for the setting where the
peer-to-peer channels in the first round are public (observable by the adversary).
9 Both these results hold when the adversary corrupts one of n parties (where
n > 1). First, we show that fairness is impossible in the BC-BC setting. Second,
we show that unanimous abort is impossible in the BC-P2P setting.

We begin with recalling some useful definitions and theorems from the work
of Damg̊ard et al. [DMR+21] (we refer to their paper for the formal details and
proofs).

Definition 4 (Last Message Resiliency [DMR+21]). A protocol is r-last
message resilient if, in an honest execution, any protocol participant Pi can com-
pute its output without using r of the messages it received in the last round.

Theorem 3. [DMR+21] Any protocol Π which achieves secure computation
with unanimous abort with corruption threshold t and whose last round can be
executed over peer-to-peer channels must be t-last message resilient, as long as
n− t ≥ 2 (that is, as long as there are at least two honest parties).

Proof (Sketch). Informally, Damg̊ard et al. argue that if Π is not t-last message
resilient, then an adversary can disrupt unanimity between a pair of honest
parties, say Pj and Pk, by doing the following: behaving honestly in the first
round, behaving honestly in the second round towards Pk, and not sending
messages on behalf of t corrupt parties to Pj . Pk will compute the correct output,
since her view is the same as in an all-honest execution; however, Pj will not,
since the protocol is not t-last message resilient.

Theorem 4. [DMR+21] Any protocol Π which achieves secure computation
with fairness with corruption threshold t must be t-last message resilient.

Proof (Sketch). Informally, Damg̊ard et al. argue that if Π is not t-last message
resilient, then an adversary can violate fairness 10 by behaving honestly up until
the last round and remaining silent in the last round (where the last round could

9Recall that we assume throughout this work that the peer-to-peer channels in the
second round are private, as this can be easily realized by parties sending their public
keys in the first round which can then be used to encrypt messages in the second round.

10We assume that the function computed by Π is such that the adversary cannot
compute the output locally by using her own inputs, therefore the argument for fairness
can be invoked. This property holds for the function f that we consider later.
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use both broadcast and peer-to-peer channels). It is easy to see that the honest
parties would not be able to compute the output if the protocol is not t-last
message resilient, while the adversary would be, as her view subsumes the views
of the corrupt parties in an all-honest execution.

Next, we show that two-round protocols using broadcast and public peer-to-
peer channels in the first round cannot be t-last message resilient.

Theorem 5. There exists a function f such that any two-round protocol Π
securely realizing f whose first round can be executed over broadcast and public
peer-to-peer channels cannot be r-last message resilient for r > 0. (Note that
this holds regardless of of corruption threshold t; in particular, it holds even
when t = 0, and all the adversary can do is observe the network.)

Proof. We prove Theorem 5 by contradiction. Consider some function f where
a residual function attack is clearly a violation of privacy; for instance, take the
function fot described in the proof of Theorem 1, where party P1’s input consists
of a pair of strings (x1 = (z0, z1) ∈ {0, 1}2λ), and party Pn’s input consists of a
bit (xn = c ∈ {0, 1}). All parties receive zc as output.

Assume, for the sake of contradiction, that the protocol Π is r-last message
resilient, and realizes fot in two rounds without using private channels in the
first round. Of course, in an all-honest execution, Pn learns zc. By r-last mes-
sage resiliency (for r ≥ 1), Pn can compute zc even without P1’s second-round
message.

Now, an adversary observing the network can mount a residual attack by
eavesdropping all of P1’s first-round messages, and running the rest of the pro-
tocol in her head. More concretely, she can compute first- and second-round
messages on behalf of all the other participants P2, . . . , Pn (using arbitrary in-
puts x′2, . . . , x′n of her choice), and run the rest of the protocol, ending up with
the output z0 if x′n = 0 and z1 if x′n = 1. The absence of a second-round message
from P1 should not affect the output by r-last message resiliency.

The above proof breaks down in the presence of a PKI or private peer-to-peer
channels in the first round. This is because in such a case, the adversary would
not be able to emulate the messages on behalf of parties P2, . . . , Pn with respect
to inputs of her choice. If a PKI is available, their messages may need to depend
on their secret keys, which the adversary does not know; if private channels are
available in the first round, their messages may depend on private information
that they receive from P1 in that round.

Corollary 1 (BC-P2P, UA, CRS, t ≥ 1). There exists a function f such that
no n-party two-round protocol Π can compute f with unanimous abort against
t ≥ 1 corruptions while making use of broadcast and public peer-to-peer channels
in the first round and (private) peer-to-peer channels in the second round, as
long as n− t ≥ 2 (that is, as long as there are at least two honest parties).

This corollary follows from Theorem 3 and Theorem 5.
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Corollary 2 (BC-BC, FAIR, CRS, t ≥ 1). There exists a function f such
that no n-party two-round protocol Π can compute f with fairness against t ≥ 1
corruptions while making use of broadcast and public peer-to-peer channels in the
first round and both broadcast and (private) peer-to-peer channels in the second
round.

This corollary follows from Theorem 4 and Theorem 5.

4 One-or-Nothing Secret Sharing with Intermediaries

Damg̊ard et al. [DMR+21] introduce one-or-nothing secret sharing, which allows
a dealer to share a vector of secrets in such a way that during reconstruction, at
most one of the secrets is recovered (the share holders essentially vote on which
one). The correctness guarantee is that if sufficiently many share holders vote
for a certain index, and no-one votes against that index (though some parties
may equivocate), the value at that index is recovered; the security guarantee is
that if at least one party votes for a certain index, the adversary learns nothing
about the values at any other index. Damg̊ard et al. present two versions of this
primitive: the default version, and a non-interactive version, where parties can
vote even if they have not received a share from the dealer. This is done by
assuming the dealer shares secret keys with each party, which can be realized
via non-interactive key exchange, using a PKI.

Unfortunately, this non-interactive one-or-nothing secret sharing tool (re-
ferred to as 1or0) does not extend to a setting where no PKI is available. In the
absence of PKI, the main challenge is to ensure that the share intended for a
party, say P , gets delivered (so that her share corresponding to the secret at the
index she votes for can be recovered). We achieve this by modeling the fact that
other parties can be intermediaries who aid this share transfer. For the setting
where only a CRS is available, we propose a new variant of one-or-nothing secret
sharing: namely, one-or-nothing secret sharing with intermediaries (referred to
as 1or0wi).

In order to simplify the presentation of our P2P-BC, IA, CRS construction,
we define one-or-nothing secret sharing with intermediaries as a maliciously-
secure primitive. The first round of our protocol is reserved for the exchange of
public keys, so sharing and reconstruction must take place in a single round.
The definitions of one-or-nothing secret sharing with intermediaries capture the
fact that keys may not have been exchanged consistently, but demand that
reconstruction succeeds if blame cannot be assigned. We discuss the syntax,
definitions and construction of one-or-nothing secret sharing with intermediaries
below.

4.1 Syntax

A one-or-nothing secret sharing scheme [DMR+21] consists of four algorithms:
setup, share, vote, and reconstruct. setup returns a shared secret key be-
longing to the dealer and one of the receivers; these keys are then used within
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share, and again in vote. To make our one-or-nothing secret sharing with inter-
mediaries secure against malicious adversaries, we move to a public-key syntax,
which makes it easier to check parties’ behavior using zero knowledge proofs. We
change setup to return a common reference string crs; keys are then produced
by keygen, which creates a key pair for one of the receivers. share, vote and
reconstruct now all expect the receivers’ public keys as input. The syntax of
reconstruct is modified to support cheater identification; if sufficiently many
(at least n−t) parties vote for the same value, then either the secret correspond-
ing to this value will be reconstructed, or a cheating party will be identified. We
present the syntax of the maliciously-secure one-or-nothing secret sharing with
intermediaries below.

setup(1λ)→ crs is an algorithm which takes as input the security parameter
and generates the common random / reference string.
keygen(crs)→ (sk, pk) is an algorithm which takes as input the common
reference string and generates a key pair.
share(crs, pk1, . . . , pkn, z

(1), . . . , z(l))→ s is an algorithm run by the dealer
D which takes as input all the parties’ public keys, and the l values that are
being shared. It outputs a single share s.
vote(crs, ski, pk1, . . . , pkn, vi)→ si is an algorithm run by party i which
takes as input party i’s secret key, all the parties’ public keys, and a vote vi,
where vi ∈ {1, . . . , l,⊥} can either be an index of a value, or it can be ⊥ if
party i is unsure which value it wants to vote for. It returns a ballot si.
Note that, to allow share and vote to be executed in a single round, vote
does not take as input the share s.
reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn))→ {z(v),⊥,⊥i} is an al-
gorithm which takes as input the output of share run by the dealer D,
the outputs of vote run by each of the n parties, as well as their votes, and
outputs the value z(v) which received a majority of votes, or ⊥, or ⊥i where
i denotes the identity of a cheater.

4.2 Security

We require one-or-nothing secret sharing with intermediaries to satisfy pri-
vacy and identifiability, described below. Notice that identifiability naturally
implies correctness. Our definitions of privacy and identifiability both assume
that corrupt parties might provide honest parties, including the dealer, with
inconsistent or incorrect public keys. Below, we denote the set of n parties as
{D,P1, . . . , Pn−1}, where D denotes the dealer.

Definition 5 (1or0wi: Privacy). Informally, this property requires that when
fewer than n− 2t honest parties produce their ballot using v, then the adversary
learns nothing about z(v).

More formally,
a one-or-nothing secret sharing with intermediaries scheme is private if for

any security parameter λ ∈ N, for every PPT adversary A, it holds that Pr[A wins] ≤
1
2 + negl(λ) in the following experiment:
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A Challenger C

b← {0, 1}
A ⊂ {1, . . . , n− 1} (s.t. |A| ≤ t)
−−−−−−−−−−−−−−−−−−−−−−−−−−B H := {D, 1, . . . , n− 1}\A

crs← setup(1λ)

(ski, pki)← keygen(crs) for i ∈ H

crs, {pki}i∈H
C−−−−−−−−−−−−−−−−−−−−−−−−−−
v, z(v)

0 , z(v)
1 (s.t. |z(v)

0 | = |z
(v)
1 |)

−−−−−−−−−−−−−−−−−−−−−−−−−−B z(v) := z(v)
b

{z(v′)}v′∈{1,...,l}\{v}
−−−−−−−−−−−−−−−−−−−−−−−−−−B

{pkj→i}j∈A,i∈H, {vi}i∈H

Let pki→j = pki for i, j ∈ H

s← share(crs, pk1→D, . . . , pkn→D, z
(1), . . . , z(l))

For i ∈ H:

si ← vote(crs, ski, pk1→i, . . . , pkn→i, vi)
s, {si}i∈H

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B

Let S denote set of indices i ∈ H

such that vi = v. A wins if

b′ = b and |S| < n− 2t.

Definition 6 (1or0wi: Identifiability). Informally, this property requires that
when at least n−t parties produce their ballot using the same v, either reconstruct
returns z(v) or a corrupt party is identified.

More formally,

a one-or-nothing secret sharing with intermediaries scheme is identifiable if
for any security parameter λ ∈ N, for every PPT adversary A, it holds that
Pr[A wins] is negligible in the following experiment:
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A Challenger C

A ⊂ {D, 1, . . . , n− 1} (s.t. |A| ≤ t)
−−−−−−−−−−−−−−−−−−−−−−−−−−B H := {D, 1, . . . , n− 1}\A

crs← setup(1λ)

(ski, pki)← keygen(crs) for i ∈ H

crs, {pki}i∈H
C−−−−−−−−−−−−−−−−−−−−−−−−−−

{z(v)}v∈{1,...,l} if D ∈ H
−−−−−−−−−−−−−−−−−−−−−−−−−−B

{pkj→i}j∈A,i∈H, v, {vi}i∈H

Let pki→j = pki for i, j ∈ H

If D ∈ H:

s← share(crs, pk1→D, . . . , pkn→D, z
(1), . . . , z(l))

For i ∈ H:

si ← vote(crs, ski, pk1→i, . . . , pkn→i, vi)
s if D ∈ H, {si}i∈H

C−−−−−−−−−−−−−−−−−−−−−−−−−−

{(pki, vi, si)}i∈A
−−−−−−−−−−−−−−−−−−−−−−−−−−B

z ← reconstruct
(
crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn)

)
z

C−−−−−−−−−−−−−−−−−−−−−−−−−−

A wins if there exists a set S

with |S| ≥ n− t such that vi = v

for i ∈ S and z is neither

(a) z(v) nor (b) ⊥i, where i ∈ A

It is easy to see that the identifiability property defined above implies cor-
rectness (i.e. when all algorithms are executed honestly, if at least n− t parties
produce their ballot using the same v, reconstruct returns z(v)). In more detail,
it is implied by the experiment above corresponding to the case when A = ∅.

Lastly, we remark that in the work of Damg̊ard et al., one-or-nothing secret
sharing additionally required contradiction-privacy. This guaranteed the privacy
of all secrets when a pair of honest parties produce ballots for different indices.
Notably, our one-or-nothing secret sharing with intermediaries does not have
this property; however, when n > 3t, the privacy property implies that at most
one secret is reconstructed.11

11Suppose, for contradiction, secrets at two indices are reconstructed: let those in-
dices be v and v′. Then, privacy dictates that at least n− 2t honest parties must have
produced ballots for v and a (disjoint) set of n− 2t honest parties must have produced
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4.3 Construction

Our construction uses what we informally refer to as transferrable encryption,
which allows a sender to encrypt a message to an intermediary, who, even before
seeing the ciphertext, can transfer the ability to decrypt to another receiver.
This can be achieved, for instance, simply by having the intermediary encrypt
her (single-use) secret decryption key to the receiver.

We now informally describe the one-or-nothing secret sharing with interme-
diaries algorithms keygen, share, vote, and reconstruct:
1. Informally, keygen generates may single-use public-key encryption key pairs

for each party i, designated for transference of decryption power to different
parties j. Each party i will end up with a key pair (sk(v)

j→i, pk(v)
j→i) for every

party j and shared value index v.
2. In the share algorithm the dealer threshold secret shares each secret z(v) as
s

(v)
1 , . . . , s

(v)
n , and then threshold secret shares each s

(v)
i as s(v)

i→1, . . . , s
(v)
i→n.

Then, the dealer broadcasts an encryption of each sub-share s(v)
i→j under a

key pk(v)
i→j belonging to party j; later, during vote, party j will the act as

an intermediary, and forward that share to party i.
3. vote is dived into two sub-steps (the first of which is independent of the

party’s vote):
(a) Each party j broadcasts transfer keys for each index v and each other

party i that can be applied to the encryption of s(v)
i→j (under party j’s

public key pk(v)
i→j) to make it decryptable using party i’s secret decryption

key sk(v)
i→i. (Such a transfer key can simply be an encryption of sk(v)

i→j

under party i’s public key pk(v)
i→i.)

(b) To vote for the reconstruction of z(v), each party i broadcasts her relevant
secret decryption key sk(v)

i→i.
4. Finally, the reconstruct algorithm decrypts all the shares made available

through the broadcast of the relevant decryption keys, and reconstructs z(v)

if at least n− t votes supported v; otherwise, a cheating party is identified.

Finally, to achieve security against an active adversary, each party provides a
non-interactive zero-knowledge proof (NIZK) to ensure that each step is honestly
computed. Therefore, the setup algorithm is also tasked with providing the CRSs
required for the NIZKs.

More formally, let PKE = (keygen, enc, dec) be a public key encryption
scheme with CPA security, and let NIZK = (setupZK, prove, verify, simP, extract)
be a non-interactive zero-knowledge proof system for the following relations:

Rkeygen =


φ = pk

w = (sk, r)
(sk, pk)← PKE.keygen(1λ; r)

 ,

ballots for v′. This can occur only if (n−2t)+(n−2t) ≤ n− t holds, which contradicts
the assumption that n > 3t.
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Rshare =


φ = {pk(v)

i→j , c
(v)
i→j}v∈[l],i,j∈[n]

w =

 {z(v), r(v), {r(v)
i ,

{r(v)
i→j}j∈[n]}i∈[n]}v∈[l]


{

(s(v)
1 , . . . , s

(v)
n )← Shamir.share(z(v); r(v))

}
v∈[l]

∧
{

(s(v)
i→1, . . . , s

(v)
i→n)← Shamir.share(s(v)

i ; r(v)
i )
}
v∈[l],i∈[n]

∧
{
c

(v)
i→j ← PKE.enc(pk(v)

i→j , s
(v)
i→j ; r

(v)
i→j)

}
v∈[l],i,j∈[n]


,

Rvote =


φ =

 {pk(v)
j→j , pk(v)

j→i, tk(v)
j→i}v∈[l],j∈[n],

vi, sk(vi)
i→i


w =

(
{sk(v)

j→i, r̄
(v)
j→i, r

(v)
j }v∈[l],j∈[n]

)
{

(sk(v)
j→i, pk(v)

j→i)← PKE.keygen(1λ; r̄(v)
j→i)

}
j∈[n],v∈[l]

∧
{

tk(v)
j→i ← PKE.enc(pk(v)

j→j , sk(v)
j→i; r

(v)
j )
}
v∈[l],j∈[n]


.

Figure 4.1 describes our one-or-nothing secret sharing with intermediaries
(1or0wi) scheme.

Figure 4.1: Construction of 1or0wi

setup(1λ) : Set up and output the common reference strings
crskeygen ← setupZK(1λ,Rkeygen),
crsshare ← setupZK(1λ,Rshare), and
crsvote ← setupZK(1λ,Rvote)

for the zero knowledge proof system. Return crs =
(crskeygen, crsshare, crsvote).

keygen(crs), run by party i:
1. For each j ∈ [n] and v ∈ [l], (sk(v)

j→i, pk(v)
j→i)← PKE.keygen(1λ; r̄(v)

j→i).
2. For each j ∈ [n] and v ∈ [l], π(v)

j→i ← NIZK.prove(crskeygen, φ =
pk(v)
j→i, w = (sk(v)

j→i, r̄
(v)
j→i)).

3. Let ski = ({sk(v)
j→i, r̄

(v)
j→i}j∈[n],v∈[l]), and pki =

({pk(v)
j→i, π

(v)
j→i}j∈[n],v∈[l]).

4. Output (ski, pki).

share(crs, pk1, . . . , pkn, z
(1), . . . , z(l)), run by the dealer D (where

pki = {pk(v)
j→i, π

(v)
j→i}j∈[n],v∈[l]):

1. For each v ∈ [l], compute (s(v)
1 , . . . , s

(v)
n ) ← Shamir.share(z(v); r(v))

as the threshold sharing of z(v) with threshold (n− t− 1).
2. For each i ∈ [n] and v ∈ [l], compute (s(v)

i→1, . . . , s
(v)
i→n) ←

Shamir.share(s(v)
i ; r(v)

i ) as the threshold sharing of s(v)
i with thresh-

old (n− 2t− 1).
3. For each i, j ∈ [n] and v ∈ [l], compute c

(v)
i→j ←

PKE.enc(pk(v)
i→j , s

(v)
i→j ; r

(v)
i→j).

4. Set
– φshare = ({pk(v)

i→j , c
(v)
i→j}v∈[l],i,j∈[n]) and
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– wshare = ({z(v), r(v), {r(v)
i , {r(v)

i→j}j∈[n]}i∈[n]}v∈[l]).
Compute πshare ← prove(crsshare, φshare, wshare).

5. Set s = (φshare, πshare) and output s.

vote(crs, ski, pk1, . . . , pkn, vi), run by party i (where pki =
{pk(v)

j→i, π
(v)
j→i}j∈[n],v∈[l] and ski = {sk(v)

j→i, r̄
(v)
j→i}j∈[n],v∈[l]):

1. For each v ∈ [l] and j ∈ [n], let tk(v)
j→i ← PKE.enc(pk(v)

j→j , sk(v)
j→i; r

(v)
j ).

2. Set
– φvote,i = ({pk(v)

j→j , pk(v)
j→i, tk(v)

j→i}v∈[l],j∈[n], vi, sk(vi)
i→i) a

– wvote,i = ({sk(v)
j→i, r̄

(v)
j→i, r

(v)
j }v∈[l],j∈[n]).

Compute πvote,i ← prove(crsvote, φvote,i, wvote,i).
3. Set si = (φvote,i, πvote,i) and output si.

reconstruct(crs, s, (pk1, v1, s1), . . . , (pkn, vn, sn)) (where s =
({pk(v)

i→j , c
(v)
i→j}v∈[l],i,j∈[n], πshare), pki = {pk(v)

j→i, π
(v)
j→i}j∈[n],v∈[l] and

si = (φvote,i = ({pk(v)
j→j , pk(v)

j→i, tk(v)
j→i}v∈[l],j∈[n], vi, sk(vi)

i→i), πvote,i)):
Identify the winning vote:

1. If there does not exist a v ∈ {1, . . . , l} such that at least (n−t) parties
vote for v, output ⊥. Let Svote ⊆ [n] be the set of parties i such that
vi = v.
Verify the zero knowledge proofs:

2. For i, j ∈ [n], if NIZK.verify(crskeygen, φ = pk(v)
j→i, π

(v)
j→i) = reject

(where pk(v)
j→i, π

(v)
j→i are taken from pki), return ⊥i.

3. If NIZK.verify(crsshare, φshare, πshare) = reject (where φshare, πshare
are taken from s), return ⊥D.

4. For i ∈ [n], if NIZK.verify(crsvote, φvote,i, πvote,i) = reject (where
φvote,i, πvote,i are taken from si), return ⊥i.
Check the consistency of the share, ballots and keys:

5. For i ∈ [n], let S′i ⊆ [n] be the set of parties j ∈ [n] such that (a)
pk(v)
i→i is the same in pki and sj , and (b) pk(v)

j→j is the same in pkj and
si. If |S′i| < n− t, return ⊥i.

6. Let SD ⊆ [n] be the set of parties i such that {pk(v)
j→i}j∈[n] is the same

in pki and s. If |SD| < n− t, return ⊥D.
7. For i ∈ Svote, let Si = S′i ∩ SD. Note that |Si| ≥ n− 2t.

For j ∈ Si, we have a ciphertext tk(v)
i→j (contained in sj), a secret key

sk(v)
i→i (contained in si) and a ciphertext c(v)

i→j (contained in s). Let
sk(v)
i→j ← PKE.dec(sk(v)

i→i, tk(v)
i→j). Let s(v)

i→j ← PKE.dec(sk(v)
i→j , c

(v)
i→j).

8. For each i ∈ Svote, let s(v)
i ← Shamir.reconstruct({s(v)

i→j}j∈Si).
9. Output z(v) ← Shamir.reconstruct({s(v)

i }i∈Svote).
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Maliciously secure one-or-nothing secret sharing with intermediaries when
n > 3t.

aany string m(⊥) is to be interpreted as ⊥.

Theorem 6. The construction in Figure 4.1 is a maliciously secure one-or-
nothing secret sharing with intermediaries when n > 3t if PKE is a public key
encryption scheme with CPA security, and NIZK is a secure non-interactive zero-
knowledge proof system.

Proof. We prove privacy and identifiability (which implies correctness) below.

Privacy. Let H denote the set of indices of honest parties and S ⊂ H (where
|S| ≤ n− 2t− 1) denote the set of indices of honest parties that produce ballot
for v. We show that the adversary learns nothing about s(v)

i for any i ∈ H \ S.
This would suffice to show that the adversary learns nothing about z(v). This is
because the adversary would have access to at most t+ |S| ≤ t+ (n− 2t− 1) =
n− t− 1 shares of z(v) (which is shared using threshold (n− t− 1)). Privacy of
threshold sharing dictates that the adversary learns nothing about z(v).

Consider an honest party i ∈ H \ S. Suppose party i votes for vi 6= v.
Firstly, we argue that the adversary learns nothing about sk(v)

i→j for any j ∈ H
as follows : Based on the specifications of vote, honest Pi reveals nothing about
sk(v)
i→i. It now follows from the CPA security of the PKE that the adversary

learns nothing about sk(v)
i→j from tk(v)

i→j (contained in sj). Further, the zero-
knowledge property of NIZK generated by honest Pj ensures that the adversary
learns nothing about sk(v)

i→j from {π(v)
i→j} (contained in pkj) and πvote,j . We can

now infer from CPA security of the PKE and zero-knowledge property of the
NIZK generated by the honest dealer, that the adversary learns nothing about
{s(v)
i→j}j∈H from {c(v)

i→j}j∈H and πshare respectively.
We can thus conclude that the adversary has access to at most t shares of

s
(v)
i which is shared using threshold (n−2t−1) ≥ t. It now follows from privacy

of threshold sharing that the adversary learns nothing about s(v)
i ; completing

the proof.

Identifiability. Suppose (n − t) parties, say constituting the set Svote, produce
ballot using the same v. Let H denote the set of indices corresponding to honest
parties.

First, we argue that ⊥i, where i ∈ H is output with negligible probability.
We observe that this can happen only when one of the following holds (a) NIZK
proof πshare (if i is the dealer) or πvote,i or π(v)

j→i (for any j ∈ [n]) does not
verify or (b) |S′i| < n − t or (c) i is the dealer and |SD| < n − t. First, it
directly follows from correctness of NIZK that (a) cannot occur with respect to
an honest Pi, except with negligible probability. Next, we note that H ⊆ S′i. This
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is because each pair of honest parties will be in agreement with respect to each
other’s public keys. Thus, |S′i| ≥ n− t, implying that (b) cannot hold. Similarly,
an honest dealer would also be in agreement with all the honest parties with
respect to their public keys. Thus, |SD| ≥ n− t, implying that (c) cannot hold.
This completes the argument that ⊥i, where i ∈ H is output with negligible
probability. From the above, we can conclude that when ⊥i is output, i /∈ H
with overwhelming probability. Therefore, to complete the proof, it suffices to
show that when no cheater is identified, z(v) is reconstructed.

Suppose no cheating party is identified. Since |SD| ≥ n − t > 2t must hold,
SD constitutes honest parties who must have verified πshare by a potentially
corrupt dealer. It follows from simulation-soundness of NIZK that the encryp-
tions {c(v)

k→j}k,j∈[n] must have indeed been computed correctly. Next, consider
k ∈ Svote and j ∈ Sk (where Sk = S′k ∩ SD).

Recall that Pk and Pj are in mutual agreement with respect to their pub-
lic keys and (πvote,k, π

(v)
k→k) sent by Pk and (πvote,j , π

(v)
k→j) sent by Pj verified

successfully (otherwise a party must have been identified as cheater). Simulation
soundness of NIZK ensures that the public key pk(v)

k→k used by Pj to broadcast ci-
phertext tk(v)

k→j (contained in sj) corresponds to the secret key sk(v)
k→k (contained

in sk) broadcast by Pk. It now follows from the correctness of the encryption
scheme that sk(v)

k→j is obtained upon decrypting tk(v)
k→j with overwhelming prob-

ability. Further, since j ∈ SD, it follows from simulation-soundness of the NIZK
πshare and πvote,j that the public key pk(v)

k→j (used by dealer for the ciphertext
c
(v)
k→j) corresponds to the secret key sk(v)

k→j (used by Pj during vote). It thus
follows s(v)

k→j is obtained upon decrypting c(v)
k→j with overwhelming probability.

Next, since |Sk| ≥ n − 2t and s
(v)
k is shared using threshold (n − 2t − 1), it

follows from correctness of shamir’s threshold sharing that s(v)
k 6= ⊥ is recon-

structed successfully for all k ∈ Svote. Lastly, since |Svote| ≥ n − t, z(v) 6= ⊥
which is shared using threshold (n− t−1) is also reconstructed successfully (due
to correctness of shamir’s threshold sharing). This completes the proof.

5 Upper Bounds: P2P-BC, IA, 3t < n

Our upper bounds are based on those of Cohen et al. [CGZ20] and Damg̊ard et
al. [DMR+21]. They take a BC-BC protocol Πbc, and compile it to the P2P-BC
setting. The primary challenge here is making sure that corrupt parties cannot
break security by sending different messages to honest parties in the first round.
Our compiler makes sure that if corrupt party first-round messages are consistent
enough, honest party second-round messages are produced on the same set of
first-round messages; otherwise, a corrupt party is unanimously identified. To
achieve this, we (and the prior works) have each party garble her second-message
function, which has her own input hardcoded, and takes as input all the first-
round messages she receives. Each party also secret-shares all of the labels for her
own garbled circuit. In the second round, over broadcast, parties echo the first-
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round messages they received, distribute their garbled circuit, and contribute to
label reconstruction (for everyone’s garbled circuits) corresponding to the first-
round messages they received. If there aren’t n− t parties who all echo the same
first-round message from a given Pi, honest parties abort blaming Pi; if there
aren’t n− t parties who all contribute valid ballots for Pj ’s labels, honest parties
abort blaming Pj . Note that if an (identifiable) abort happens, reconstruction is
allowed to fail.

Using Shamir secret sharing with threshold s = 3n
5 , this leads to a P2P-BC,

IA, CRS protocol with t < n
5 . The reason we have corruption threshold t = n

5
and sharing threshold s = 3n

5 is that we have two constraints:

1. In order to prevent the adversary from learning two labels for the same wire
by sending different first-round messages to two subsets of the honest parties,
we need s ≥ t+ n−t

2 .
2. In order to ensure that even after (a) t parties echo a different message from

party m and (b) a different t parties give bad label shares we still have enough
shares to reconstruct, we need s < n−2t. (If only t parties have inconsistent
claims with the message sender and a different t parties have inconsistent
claims with the label share dealer, we have no idea who to blame, so we have
to reconstruct!)

We get

t+ n− t
2 ≤ s < n− 2t

⇒ t+ n < 2n− 4t
⇒ 5t < n.

However, 5t < n does not match the lower bound from Theorem 1.
To match the lower bound we need a more sophisticated mechanism of sharing

such that all parties can contribute valid shares of each label, or someone is unan-
imously identified as a cheater. In Section 4 we construct exactly such a primi-
tive, which we call one-or-nothing secret sharing with intermediaries (1or0wi).
Intuitively, our one-or-nothing secret sharing with intermediaries achieves this
goal by having each dealer use all of the parties as intermediaries to all share
recipients; if sufficiently many intermediaries don’t succeed in helping the dealer
G give a share to a recipient P , then either the dealer or the recipient can be
identified as corrupt, since they are in conflict with more than t intermediaries
(we refer to Section 4 to a more detailed description of how this works).

We are now ready to describe our final protocol with identifiable abort for
threshold 3t < n. In the first round (which is over public peer-to-peer channels),
the parties send their first-round messages of Πbc along with the public keys
produced by the key generation algorithm of 1or0wi. In the second round (which
is over broadcast), the parties execute the following steps:

1. They compute a garbling of the second-message function of Πbc;
2. they use 1or0wi to share the labels of their garbled circuit;
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3. they use 1or0wi to vote for the labels of the garbled circuits of the other
participants based on the first-round messages of Πbc (received in the peer-
to-peer round); and

4. they echo the first-round messages of Πbc received in the first round.

Before computing the output, each party Pi performs some validations on the
echoed messages. Namely, Pi checks that (a) all the parties generated their bal-
lots for each garbled circuit based on the first-round messages that they echoed,
and (b) all the parties have mutual successful communication with at least n− t
others in the first round. If there is a party Pj that does not pass these checks,
party Pi identifies Pj as a cheater. If all of the parties pass the checks, then party
Pi invokes the reconstruct algorithm of 1or0wi. If reconstruct blames party
Pj , Pi aborts and identifies that party as a cheater. Otherwise, Pi reconstructs
labels for all the garbled circuits, uses the garbled circuits to obtain the second-
round messages of Πbc, and uses those second-round messages to complete the
protocol and obtain the computation output.

Roughly speaking, the identifiable abort property is guaranteed since the one-
or-nothing secret sharing with intermediaries is secure against active adversaries.
Therefore, if the two validations (a) and (b) succeed, we can rely on the properties
of 1or0wi to guarantee that Πbc is executed or a malicious party is identified.

More formally our protocol is described in Figure 5.1 and we assume that
the parties have access to the following tools:

Tools.
– A two-round broadcast protocol Πbc achieving security with identifiable

abort. (This could, for instance, be the protocol described by Cohen et
al. [CGZ20].)
Πbc is represented by the set of functions {frst-msgi, snd-msgi, outputi}i∈[n].

– A garbling scheme (garble, eval, simGC) (defined in Appendix A.4).
– A one-or-nothing secret sharing with intermediaries

1or0wi = (setup, keygen, share, vote, reconstruct) (defined in Sec-
tion 4).

Notation. Let Ci(xi, ri,msg1
1, . . . ,msg1

n) denote the boolean circuit that takes
Pi’s input xi, randomness ri and the first round messages msg1

1, . . . ,msg1
n,

and outputs msg2
i . For simplicity assume that (xi, ri) consists of z bits, and

each first round message is ` bits long, so each circuit has L = z+ n · ` input
bits. Note that Ci is public. Let g be the size of a garbled Ci.

Figure 5.1: Π id-abort
p2pbc with n > 3t

Private input. Every party Pi has a private input xi ∈ {0, 1}∗ and
randomness ri ∈ {0, 1}∗.
Setup.
– CRS setup for one-or-nothing secret sharing with intermediaries:
crs← setup(1λ).

29



– Setup for Πbc (which includes CRS when instantiated using the pro-
tocol of [CGZ20]). a

First Round. Each party Pi does the following:
1. Let (ski, pki) ← keygen(1λ), where pki =

{
pk(1)
i =

(pk(1,1)
i , . . . , pk(1,L)

i ), . . . , pk(n)
i = (pk(n,1)

i , . . . , pk(n,L)
i )

}
is a vector of

nL public keys with the corresponding vector of secret keys ski ={
sk(1)
i = (sk(1,1)

i , . . . , sk(1,L)
i ), . . . , sk(n)

i = (sk(n,1)
i , . . . , sk(n,L)

i )
}

(We abuse notation slightly by assuming that keygen(1λ) outputs a
vector of public keys and secret keys; we do this for simplicity)

2. Let msg1
i ← frst-msgi(xi, ri) be Pi’s first round message in Πbc.

3. Send (pki,msg1
i ) to Pj for j ∈ [n].

Second Round. Each party Pi does the following:
We specify multiple broadcast messages separately for clarity; however, they are all sent
simultaneously as a single round of communication.
1. Let pkj→i = {pk(1)

j→i, . . . , pk(n)
j→i} denote the pkj received privately

from Pj (j ∈ [n]), where pk(k)
j→i = (pk(k,1)

j→i , . . . , pk(k,L)
j→i ) for k ∈ [n].

2. Compute (GCi, ~Ki) ← garble(1λ, Ci;Ri), where ~Ki =
{K(0)

i,l ,K
(1)
i,l }l∈[L].

3. For every l ∈ [z + 1, . . . , L], let si,l ← share(crs, pk(i,l)
1→i, . . . , pk(i,l)

n→i,

K
(0)
i,l ,K

(1)
i,l ). Broadcast {si,l}l∈[z+1,...,L].

4. Let (νi,z+1, . . . , νi,L) denote the bits comprising
(msg1

1→i, . . . ,msg1
n→i), where msg1

j→i refers to msg1
j received

from Pj in Round 1.
5. For each k ∈ [n] and l ∈ [z + 1, L]: Compute and broadcast s(k)

i,l ←
vote(crs, sk(k,l)

i , pk(k,l)
1→i , . . . , pk(k,l)

n→i, νi,l).
Broadcast own garbled circuit:

6. Let (νi,1, . . . , νi,z) denote the bits corresponding to (xi, ri).
7. For l ∈ [z], let Ki,l = K

(νi,l)
i,l .

8. Broadcast (GCi, {Ki,l}l∈[z]).
Echo first-round messages:

9. Broadcast (msg1
1→i, . . . ,msg1

n→i).
Let msg1

i = msg1
i→i denote the party’s own first-round message.

Output Computation. Each party Pi does the following:
If there is a party who did not generate ballots for each garbled circuit based on the
first-round messages that she echoed, blame that party:

1. For j ∈ [n] : Check if {msg1
k→j}k∈[n] broadcast by Pj is consistent

with {s(k)
j,l }k∈[n],l∈[z+1,L]. Output abortj if the check fails. Else, set

(νj,z+1, . . . , νj,L) as the bits comprising (msg1
1→j , . . . ,msg1

n→j).
If there is a party who did not have mutual successful communication with at least
n− t others in the first round, blame that party:

2. For j ∈ [n] : If there does not exist a set |Sj | ≥ n − t such that, for
k ∈ Sj , msg1

j→k = msg1
j holds; output abortj .
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Decrypt the shares:
3. For k ∈ [n] (whose garbled circuit we will now consider):

(a) For l ∈ [z + 1, L], compute Kk,l ←
reconstruct(crs, sk,l, (pk(k,l)

1 , v1,l, s
(k)
1,l ), . . . , (pk(k,l)

n , vn,l, s
(k,l)
n,l ).

If reconstruct returns ⊥id, output abortid. Else, continue.
(b) Evaluate msg2

k ← eval(GCk, (Kk,1, . . . ,Kk,L)). If the evaluation
fails, output abortk.

4. Output y ← outputi(xi, ri,msg1
1, . . . ,msg1

n,msg2
1, . . . ,msg2

n).

P2P-BC, IA, t < n
3 secure computation in the CRS model.

aFor simplicity (to avoid introducing additional notation), we assume im-
plicitly that the set of functions {frst-msgi, snd-msgi, outputi}i∈[n] of Πbc use
the relevant setup information.

Theorem 7 (P2P-BC, ID, CRS, n > 3t). Let f be an efficiently computable
n-party function and let n > 3t. Let Πbc be a BC-BC, ID, CRS protocol that
securely computes f with the additional constraint that the straight-line simula-
tor can extract inputs from corrupt parties’ first-round messages. Assuming that
(garble, eval, simGC) is a secure garbling scheme, and (setup, keygen, share,
vote, reconstruct) is a secure one-or-nothing secret sharing with intermedi-
aries. Then, Π id-abort

p2pbc securely computes f with identifiable abort over two rounds,
the first of which is over peer-to-peer channels, and the second of which is over
a broadcast and peer-to-peer channels.
Proof. Let A and H be, respectively, the set of corrupt parties and the set of
honest parties.

We assume that A is deterministic and that the output of A consists of her
entire view during the protocol, i.e., the auxiliary information, the input and the
CRS setup (which includes the CRS setup if required by the underlying protocol
Πbc) of all corrupt parties, and the messages received by honest parties during
the protocol. We start by giving the description of the receiver specific adversary
and then of our simulator S.

Figure 5.2: The Receiver Specific Adversary Aq

Setup.
– Aq runs setup for one-or-nothing secret sharing with intermediaries:
crs ← setup(1λ). The setup of the underlying protocol Πbc is also
run.

First Round. For each i ∈ H, upon receiving the first-broadcast- round
message msg1

i from an honest party Pi in Πbc; Aq computes the following
steps:
1. Let (ski, pki) ← keygen(1λ), where pki =

{
pk(1)
i =

(pk(1,1)
i , . . . , pk(1,L)

i ), . . . , pk(n)
i = (pk(n,1)

i , . . . , pk(n,L)
i )

}
is a vector of
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nL public keys with the corresponding vector of secret keys ski ={
sk(1)
i = (sk(1,1)

i , . . . , sk(1,L)
i ), . . . , sk(n)

i = (sk(n,1)
i , . . . , sk(n,L)

i )
}

2. Send (pki,msg1
i ) to A in Π id-abort

p2pbc .
3. For each party Pj s.t. j ∈ A : Let {msg1

j→i}i∈H,j∈A be the messages
received by S by A in the first round. If at least ( 1

3 + 1) fraction of
these messages are consistent w.r.t. a same message m̄sg1 then Aq
sets msg1

j = m̄sg1, otherwise she sets msg1
j = msgj→q. Aq broadcasts

msg1
j in Πbc.

Second Round. For each i ∈ H, upon receiving the second-broadcast-
round message msg2

i from an honest party Pi in Πbc; Aq computes the
following steps:
We specify multiple broadcast messages separately for clarity; however, they are all sent
simultaneously as a single round of communication.
1. Let pkj→i = {pk(1)

j→i, . . . , pk(n)
j→i} denote the pkj received privately

from Pj (j ∈ [n]), where pk(k)
j→i = (pk(k,1)

j→i , . . . , pk(k,L)
j→i ) for k ∈ [n].

2. Let (νi,z+1, . . . , νi,L) denote the bits comprising
(msg1

1→i, . . . ,msg1
n→i), where msg1

j→i refers to msg1
j received

from Pj in Round 1.
3. For each k ∈ A and l ∈ [z+ 1, L]: Compute and broadcast (in Π id-abort

p2pbc

to A) (s(k)
i,l )← vote(crs, sk(k,l)

i , pk(k,l)
1→i , . . . , pk(k,l)

n→i, νi,l)
4. Let Ci be the circuit computing snd-msgi run (GCi, {K̃i,l}l∈[L]) ←

simGC(1λ, Ci,msg2
i ).

5. For every l ∈ [z + 1, . . . , L], broadcast si,l ← share(crs, pk(i,l)
1→i,

. . . , pk(i,l)
n→i,K

(0)
i,l ,K

(1)
i,l ), where Kνi,l

i,l = K̃i,l and K
1−νi,l
i,l is chosen at

random.
6. Broadcast (GCi, {K̃i,l}l∈[z]) in Π id-abort

p2pbc to A.
7. Broadcast (msg1

1→i, . . . ,msg1
n→i) in Π id-abort

p2pbc to A.
Output Computation. S on behalf of each party Pi, where i ∈ H, does
the following:
1. For j ∈ [n] : ν(k)

j,l is not Check if {msg1
k→j}k∈[n] broadcast by Pj is

consistent with {s(k)
j,l }k∈[n],l∈[z+1,L]. Output abortj if the check fails.

Decrypt the shares:
2. For k ∈ [n] (whose garbled circuit we will now consider):

(a) For l ∈ [z + 1, L], Kk,l ←
reconstruct(crs, sk,l, (pk(k,l)

1 , v1,l, s
(k)
1,l ), . . . , (pk(k,l)

n , vn,l, s
(k,l)
n,l ).

(b) Evaluate msg2
k ← eval(GCk, (Kk,1, . . . ,Kk,L)).

3. Finally, Aq broadcasts the messages msg2
j for every corrupt Pj in Πbc,

outputs whatever A outputs, and halts.

By the security of Πbc, for every q ∈ A there exists a simulator Sq for the
adversarial strategy Aq such that for every auxiliary information aux and input
vector x = (x1, . . . , xn) it holds that ideal world and real world are computation-
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ally indistinguishable. Every simulator Sq starts by extracting corrupt parties’
input values ~x′k = {x′i,k}i∈A, and sending them to her trusted party. Upon receiv-
ing the output value y, the simulator Sq sends a message abortj/continue (for
some j ∈ A), and finally outputs the simulated view of the adversary, consisting
of its input and the simulated messages of Πbc:

ˆviewq = { ˆauxq, {(xqi , r
q
i )}i∈A, m̂sg1,q

1 , . . . , m̂sg1,q
n , m̂sg2,q

1 , . . . , m̂sg2,q
n }.

Our simulator S will make use of SRS that is the simulator Sq where q is the
minimal index s.t. q ∈ H.

Figure 5.3: Simulator S

The simulator S starts by invoking SRS and simulating for SRS the in-
teraction with Aq making use of the adversary A as described above. S
receives back (from SRS) ~x = {xi}i∈A or an abortj , for some j ∈ A. S
simulates the interaction between SRS and the ideal functionality, relying
on the trusted third party that computes F . Specifically, S forwards the
messages (e.g. extracted inputs or abort messages) that she receives from
SRS to the trusted third party, and if SRS did not abort she receives y in
response. S forwards y to SRS which outputs the simulated view:

ˆviewRS = { ˆaux, {(xi, ri)}i∈A, m̂sg1
1, . . . , m̂sg1

n, m̂sg2
1, . . . , m̂sg2

n}.

After invoking SRS (as described above) to get simulated honest party first
round messages, the simulator S executes the following steps. Note that
because the adversary A is deterministic, the executions above and below
will always result in the same adversarial behavior (and transcript) up
until the second round.

Setup.
– CRS setup for one-or-nothing secret sharing with intermediaries :
crs ← setup(1λ). The setup of the underlying protocol Πbc is also
run.

First Round. S on behalf of each party Pi, where i ∈ H, does the fol-
lowing:
1. Let (ski, pki) ← keygen(1λ), where pki =

{
pk(1)
i =

(pk(1,1)
i , . . . , pk(1,L)

i ), . . . , pk(n)
i = (pk(n,1)

i , . . . , pk(n,L)
i )

}
is a vector of

nL public keys with the corresponding vector of secret keys ski ={
sk(1)
i = (sk(1,1)

i , . . . , sk(1,L)
i ), . . . , sk(n)

i = (sk(n,1)
i , . . . , sk(n,L)

i )
}

.
2. Send (pki, m̂sg1

i ) to Pj for j ∈ A.
Second Round. Let {msg1

j→i}i∈H,j∈A be the messages received by S by
A in the first round. If at least ( 1

3 + 1) fraction of these messages are
consistent for all j ∈ A, S sets flag = 1, otherwise she sets flag = 0. S on
behalf of each party Pi, where i ∈ H, does the following:
We specify multiple broadcast messages separately for clarity; however, they are all sent
simultaneously as a single round of communication.
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1. Let pkj→i = {pk(1)
j→i, . . . , pk(n)

j→i} denote the pkj received privately
from Pj (j ∈ [n]), where pk(k)

j→i = (pk(k,1)
j→i , . . . , pk(k,L)

j→i ) for k ∈ [n].
2. Let (νi,z+1, . . . , νi,L) denote the bits comprising

(msg1
1→i, . . . ,msg1

n→i), where msg1
j→i refers to msg1

j received
from Pj in Round 1.

3. For each k ∈ A and l ∈ [z + 1, L]: Compute and broadcast s(k)
i,l ←

vote(crs, sk(k,l)
i , pk(k,l)

1→i , . . . , pk(k,l)
n→i, νi,l).

4. For l ∈ [z + 1, L]
(a) If flag = 0 then let Ci be the circuit computing snd-msgi run

(GCi, {K̃i,l}l∈[L]) ← simGC(1λ, Ci, 0L) and send abortj to the
trusted third party.

(b) Otherwise run (GCi, {K̃i,l}l∈[L])← simGC(1λ, Ci, m̂sg2
i ).

5. For every l ∈ [z + 1, . . . , L], broadcast si,l ← share(crs, pk(i,l)
1→i,

. . . , pk(i,l)
n→i,K

(0)
i,l ,K

(1)
i,l ), where Kνi,l

i,l = K̃i,l and K
1−νi,l
i,l is chosen at

random.
6. Broadcast (GCi, {K̃i,l}l∈[z]).
7. Broadcast (msg1

1→i, . . . ,msg1
n→i).

Output Computation. S on behalf of each party Pi, where i ∈ H, does
the following:

If there is a party who did not generate ballots for each garbled circuit based on the
first-round messages that she echoed, blame that party:

1. For j ∈ [n] : Check if {msg1
k→j}k∈[n] broadcast by Pj is consistent

with {s(k)
j,l }k∈[n],l∈[z+1,L]. Output abortj if the check fails. Else, set

(νj,z+1, . . . , νj,L) as the bits comprising (msg1
1→j , . . . ,msg1

n→j).
2. For j ∈ [n] : If there does not exist a set |Sj | ≥ n − t such that, for
k ∈ Sj , msg1

j→k = msg1
j holds; send abortj to the trusted third party.

3. For k ∈ [n] (whose garbled circuit we will now consider):
(a) For each l ∈ [z + 1, . . . , L] : Compute Kk,l ←

reconstruct(crs, sk,l, (pk(k,l)
1 , v1,l, s

(k)
1,l ), . . . , (pk(k,l)

n , vn,l, s
(k,l)
n,l ).

i. If reconstruct returns (⊥, id), output abortid.
(b) Evaluate msg2

k ← eval(GCk, (Kk,1, . . . ,Kk,L)). If evaluation fails
send abortk to the trusted third party.

4. If S did not abort sends continue to the trusted third party.
5. S outputs the output of A and terminates.

We now define a series of hybrid experiments in order to prove that the joint
distribution of the output of A and the output of the honest parties in the ideal
execution is computationally indistinguishable from the joint distribution of the
output of A and the output of honest parties in a real protocol execution. The
hybrid experiments are listed below. The output of the experiments is defined
as the output of A and the output of the honest parties.
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1. Expt0
A,A,Π id-abort

p2pbc
: In this experiment, the simulator S0 has access to the inter-

nal state of the trusted party computing F , therefore S0 can see the input
values of honest parties and chooses the output values of the honest parties.
In the execution of Π id-abort

p2pbc the simulator is interacting with A on behalf of
the honest parties. The output of this hybrid experiment is the output of the
honest parties and the output of A in the execution of Π id-abort

p2pbc explained
above. It follows trivially that the output of Expt0

A,A,Π id-abort
p2pbc

and the output
of the real world experiment are identically distributed.

2. Expt1
A,A,Π id-abort

p2pbc
: In this experiment Expt0

A,A,Π id-abort
p2pbc

is modified as follows. The
simulator S1 start invoking SRS on her input and receiving back ~x = {xi}i∈A

or an aborti, for some i ∈ A. S1 simulates the interaction between SRS and
the ideal functionality relying on the trusted third party. Specifically, S1
forwards the message that she received from SRS to F and if SRS did not
abort she receives back y. S1 forwards y to SRS.
Let {msg1

j→i}j∈A be the set of messages received from A in Round 1, from
all i ∈ H. S1 checks that if at least ( 1

3 + 1) fraction of these messages are
consistent then S1 sets flag = 1, otherwise S1 sends abortj to the trusted
third party after that the second round is played (as an honest player and S
would do).
S1 executes also the same checks that the ideal world simulator S (described
above) in steps 1, 2, 3(a)i and 3b does. If one of the checks fail S1 aborts
identifying the cheater according to the strategy of S in the corresponding
steps.
Claim. Expt0

A,A,Π id-abort
p2pbc

and Expt1
A,A,Π id-abort

p2pbc
are computationally indistinguish-

able.
Proof (Sketch). In Expt0

A,A,Π id-abort
p2pbc

the honest parties output abortj if A,
on behalf of some malicious party Pj does not send consistent first-round
messages of Πbc to at least ( 1

3 + 1) fraction of honest parties. Note that if
Pj does not send consistent first-round messages of Πbc to at least ( 1

3 + 1)
fraction of honest parties, then even in Expt0

A,A,Π id-abort
p2pbc

, honest parties abort
identifying Pj (as in such a case, Pj ’s first-round message will be echoed by
fewer than (n− t) parties).
If the check described above did not fail, then A recovers the garbled circuits
and labels of the honest parties and therefore A gets to learn the output.
At this point A could sends labels and garbled circuits on behalf of dishon-
est parties. If the garbled circuit evaluation fails corresponding to garbler
Pj or the ballots for the one-or-nothing secret sharing with intermediaries
are generated inconsistently w.r.t. the first-round messages, honest parties
abort identifying the cheater j or k respectively (as described for the honest
parties and S) in Expt0

A,A,Π id-abort
p2pbc

. Finally, we note that if the reconstruction
fails (check 3(a)i of S) both S0 that S1 can identify the cheater due to the
identifiability property of the one-or-nothing secret sharing with intermedi-
aries. In this case in Expt1

A,A,Π id-abort
p2pbc

one of the checks in steps 1, 2, 3(a)i and
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3b of S fail and therefore S1 in Expt1
A,A,Π id-abort

p2pbc
sends abortj , or abortid or

abortk to F accordingly. We conclude that honest parties aborts (identify-
ing the correct cheater) in Expt1

A,A,Π id-abort
p2pbc

only when the honest parties are
aborting in Expt0

A,A,Π id-abort
p2pbc

. If all the checks above did not fail then it is pos-
sible to claim that Expt0

A,A,Π id-abort
p2pbc

and Expt1
A,A,Π id-abort

p2pbc
are computationally

indistinguishable relying on the security of Πbc.

3. Expt2
A,A,Π id-abort

p2pbc
: This experiment proceeds as the experiment Expt1

A,A,Π id-abort
p2pbc

except that for the honest parties, S2 executes share following the steps 5
described for S.

Claim. Expt2
A,A,Π id-abort

p2pbc
and Expt1

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

The proof proceeds via |H| + 1 hybrids arguments: in the i-th hybrid ex-
periment, honest party Ph with h ≤ i executes share as in Expt2

A,A,Π id-abort
p2pbc

and for h > i executes share as in Expt1
A,A,Π id-abort

p2pbc
. It follows from the secu-

rity properties of one-or-nothing secret sharing with intermediaries that two
consecutive hybrids are computationally indistinguishable. In more detail,
let us consider the labels K0

h,v,K
1
h,v for the garbled circuit of the honest

party Ph and specifically for a wire v, where v corresponds to the input
of some malicious party Pj (i.e. to the messages msg1

j→h). We analyze the
following cases:
(a) In the first round A (on behalf of Pj) sends to the honest parties more

than 1
3 + 1 fraction of first round messages of Πbc that are consistent

w.r.t. a same message, say msg1
j . Therefore more than half of the honest

parties will runs vote w.r.t. the same bits bv, where bv corresponds to the
vth bit of msg1

j . In this case from the privacy of the one-or-nothing secret
sharing with intermediaries we are guaranteed that no-information will
be revealed about K1−bv

h,v (which in Expt4
A,A,Π id-abort

p2pbc
will corresponds to

the label that we are not giving as input to the simulator of the garbled
circuit).

(b) If conditions 3a does not verify i.e. less then 1
3 fraction of the parties

voted for the same bit, the privacy of one-or-nothing secret sharing with
intermediaries guarantees that the adversary learns none of the labels.

The same analysis can be conducted for the wire of the garbled circuits of
party Ph.
The proof conclude observing that the 0-th hybrid corresponds to Expt1

A,A,Π id-abort
p2pbc

and the |H|-th corresponds to Expt2
A,A,Π id-abort

p2pbc
.

4. Expt3
A,A,Π id-abort

p2pbc
: This experiment proceeds as the experiment Expt2

A,A,Π id-abort
p2pbc

except that the garbled circuits corresponding to the honest parties are com-
puted using the simulated procedure simGC. In more detail, S4 executes, for
all h ∈ H, (GCh, {K̃h,l}l∈[L]) ← simGC(1λ, Ch,msg2

h), where msg2
h is the mes-

sage computed by Ph in the execution of Πbc and Ch is the circuit snd-msgh.
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Claim. Expt2
A,A,Π id-abort

p2pbc
and Expt3

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

Proof (Sketch). The proof proceeds via |H|+1 hybrids arguments: in the i-th
hybrid experiment the garbled circuit of honest party Ph with h ≤ i are sim-
ulated as in Expt3

A,A,Π id-abort
p2pbc

and for h > i are computed as in Expt2
A,A,Π id-abort

p2pbc
.

In order to claim that two neighboring hybrids are computationally indis-
tinguishable we can rely on security of garbling scheme. The proof conclude
observing that the 0-th hybrid corresponds to Expt2

A,A,Π id-abort
p2pbc

and the |H|-th
corresponds to Expt3

A,A,Π id-abort
p2pbc

.

5. Expt4
A,A,Π id-abort

p2pbc
: in this experiment Expt3

A,A,Π id-abort
p2pbc

is modified as follows.
Let Ch be the circuit snd-msgh. if A, on behalf of some malicious party
j sends more than 1

3 fraction of inconsistent first round messages of Πbc

then S4 Ph (for all h ∈ H) executes (GCh, {K̃h,l}l∈[L]) ← simGC(1λ, Ch, 0L, )
(i.e. she garbles the circuit on a dummy output); otherwise she executes
(GCh, {K̃h,l}l∈[L]) ← simGC(1λ, Ch,msg2

h), where msg2
h is the message com-

puted by Ph in the execution of Πbc and Ch is the circuit snd-msgh.

Claim. Expt3
A,A,Π id-abort

p2pbc
and Expt4

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

Proof (Sketch). This proceeds via hybrid experiments similar as in the proof
of Claim 4, the only extra observation is that in both in Expt3

A,A,Π id-abort
p2pbc

that
in Expt4

A,A,Π id-abort
p2pbc

A does not learn all the labels for the garbled circuit if
the A on behalf of some malicious party j sends more than 1

3 of inconsistent
1st round messages of Πbc. Note that due to partial evaluation resiliency
property of the garbled circuit if A does not learn all the labels, A is not
able to evaluate the garbled circuit of the honest party Ph.

6. Expt5
A,A,Π id-abort

p2pbc
: This experiment proceeds as the experiment Expt4

A,A,Π id-abort
p2pbc

except that instead of computing the messages of Πbc using honest parties
inputs, the simulator S5 uses the messages given as output by SRS. In more
detail: For all h ∈ H in the first round: S5 sends m̂sg1

h; in the second round S5
computes (GCh, {K̃h,l}l∈[L]) ← simGC(1λ, Ch, m̂sg2

h) (If for all j ∈ A A sends
at least 1

3 + 1 of consistent 1st round messages of Πbc ) and executes vote
w.r.t. the messages {m̂sg1

h}h∈H.

Claim. Expt5
A,A,Π id-abort

p2pbc
and Expt4

A,A,Π id-abort
p2pbc

are computationally indistinguish-
able.

Proof (Sketch). In Expt5
A,A,Π id-abort

p2pbc
the adversary learns the second messages

of Πbc w.r.t. the honest parties only when the for all j ∈ A A sends at
least 1

3 + 1 fraction of consistent 1st round messages of Πbc. Therefore, the
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indistinguishability between Expt4
A,A,Π id-abort

p2pbc
and Expt5

A,A,Π id-abort
p2pbc

follows from
the security of Πbc. In more detail, any distinguisher between Expt5

A,A,Π id-abort
p2pbc

and Expt4
A,A,Π id-abort

p2pbc
can be used to distinguish between SRS and a real execu-

tion with the receiver-specific adversary. As observed in [CGZ20], the proof
crucially rely on the ability of the simulator SRS to extract the adversary’s
input from her first round of Πbc.

The proof ends observing that in Expt5
A,A,Π id-abort

p2pbc
S5 does not need anymore

to have access to the internal state of the trusted third party that computes
F and therefore Expt5

A,A,Π id-abort
p2pbc

and the ideal world experiment are identically
distributed.
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A Building Blocks

In this section we define the building blocks necessary for our protocols.

A.1 Symmetric Key Encryption

Definition 7 (Symmetric-Key Encryption (SKE)). A symmetric-key en-
cryption (SKE) scheme is a tuple of efficient algorithms SKE = (keygen, enc, dec)
defined as follows.

keygen(1λ)→ sk: The probabilistic algorithm keygen takes as input the se-
curity parameter λ ∈ N, and outputs a secret key sk.
enc(sk,msg; r)→ c: The probabilistic algorithm enc takes as input the secret
key pk, a message msg ∈M, and implicit randomness ρ ∈ R, and outputs a
ciphertext c = enc(sk,msg; r). The set of all ciphertexts is denoted by C.
dec(sk, c)→ msg: The deterministic algorithm dec takes as input the secret
key sk and a ciphertext c ∈ C and outputs msg = dec(sk, c) which is either
equal to some message msg ∈M or to an error symbol ⊥.

We require the following properties of a symmetric encryption scheme:

Correctness. We say that SKE satisfies correctness if for all sk← keygen(1λ),

Pr[dec(sk, enc(sk,msg)) = msg] ≥ 1− negl(λ)

(where the randomness is taken over the internal coin tosses of algorithm enc).

Semantic Security. We say that SKE satisfies semantic security if for all PPT
adversaries A, for (msg0,msg1)← A(1λ), if |msg0| = |msg1|,

Pr

A(c) = b :
sk← keygen(1λ); b← {0, 1};

c← enc(sk,msgb);

 ≤ 1
2 + negl(λ)

(where the randomness is taken over the internal coin tosses of A, keygen and
enc).

Instantiation. For our constructions, we use SKE with deterministic encryption
(such as one-time pad encryption) which satisfies perfect correctness.

A.2 Public Key Encryption

Definition 8 (Public-Key Encryption (PKE)). A public-key encryption
(PKE) scheme is a tuple of efficient algorithms PKE = (keygen, enc, dec) de-
fined as follows.
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keygen(1λ)→ (pk, sk): The probabilistic algorithm keygen takes as input the
security parameter λ ∈ N, and outputs a public/secret key pair (pk, sk).
enc(pk,msg; r)→ c: The probabilistic algorithm enc takes as input the public
key pk, a message msg ∈M, and implicit randomness ρ ∈ R, and outputs a
ciphertext c = enc(pk,msg; r). The set of all ciphertexts is denoted by C.
dec(sk, c)→ msg: The deterministic algorithm dec takes as input the secret
key sk and a ciphertext c ∈ C and outputs msg = dec(sk, c) which is either
equal to some message msg ∈M or to an error symbol ⊥.

We require the following properties of a PKE scheme:

Correctness. We say that PKE satisfies correctness if for all (pk, sk)← keygen(1λ),

Pr[dec(sk, enc(pk,msg)) = msg] = 1

(where the randomness is taken over the internal coin tosses of algorithm enc).

CPA Security. We say that PKE satisfies semantic security if for all PPT adver-
saries A, for (msg0,msg1)← A(1λ), if |msg0| = |msg1|,

Pr

A(pk, c) = b :
(pk, sk)← keygen(1λ); b← {0, 1};

c← enc(pk,msgb)

 ≤ 1
2 + negl(λ)

(where the randomness is taken over the internal coin tosses of A, keygen and
enc).

A.3 Non-Interactive Zero-Knowledge Arguments of Knowledge
We take this definition from Groth and Maller [GM17].
Definition 9 (Non-Interactive Zero-Knowledge Arguments of Knowl-
edge (NIZKAoK)). A non-interactive zero-knowledge argument of knowledge
(NIZK) scheme is a tuple of efficient algorithms NIZK = (setupZK, prove, verify, simP)
defined as follows.

setupZK(1λ,R)→ (crs, td): The algorithm setupZK takes as input the secu-
rity parameter λ ∈ N, and outputs the global common reference string crs
and the trapdoor td for the NIZK system.
prove(crs, φ, w)→ π: The algorithm prove takes as input the common ref-
erence string crs for a relation R, a statement φ and a witness w, and outputs
a proof π that (φ,w) ∈ R.
verify(crs, φ, π)→ accept/reject: The algorithm verify takes as input
the common reference string crs for a relation R, a statement φ and a proof π,
and verifies whether π proves the existence of a witness w such that (φ,w) ∈
R.
simP(crs, td, φ)→ π: The algorithm simP takes as input the common ref-
erence string crs for a relation R, the trapdoor td and a statement φ, and
outputs a simulated proof of the existence of a witness w such that (φ,w) ∈ R.

We require the following properties of a NIZK scheme:
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Correctness. We say that NIZK satisfies correctness if for any (φ,w) ∈ R, we
have that

Pr

verify(φ, π) = 1

∣∣∣∣∣∣∣∣
(crs, td)← setupZK(1λ,R)

π ← prove(φ,w)

 ≥ 1− negl(λ)

(where the randomness is taken over the internal coin tosses of setupZK, prove
and verify).

Zero Knowledge. We say that NIZK satisfies zero-knowledge if for all PPT ad-
versaries A,

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setupZK(1λ,R)

b← {0, 1}

Repeat poly(λ) times{
φ,w

−−−−−−−−−−−−−−−−−−−−−−−−−−B

if b = 0: π ← prove(crs, φ, w)

if b = 1: π ← simP(crs, td, φ)
π

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B

A wins if b = b′

Simulation Extractability. We say that NIZK satisfies simulation extractability
if for all PPT adversaries A there exists a PPT extraction algorithm extractA
such that

Pr[A wins] ≤ negl(λ)

in the following experiment:
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Adversary A Challenger C

crs
C−−−−−−−−−−−−−−−−−−−−−−−−−− (crs, td)← setupZK(1λ,R)

Qsim = ∅

Repeat poly(λ) times{
φ

−−−−−−−−−−−−−−−−−−−−−−−−−−B

π ← simP(crs, td, φ)
π

C−−−−−−−−−−−−−−−−−−−−−−−−−− add π to Qsim

φ∗, π∗

−−−−−−−−−−−−−−−−−−−−−−−−−−B

w∗ ← extractA(crs, td, τA)

If all of the following checks pass,

A wins:

(φ∗, w∗) 6∈ R

verify(crs, φ∗, π∗) = accept

π∗ 6∈ Qsim

Instantiation. Simulation extractable NIZK could be instantiated using, for
instance, technique from [DDO+01].

A.4 Garbling Scheme

A garbling scheme, introduced by Yao [Yao82] and formalized by Bellare et al.
[BHR12b], enables a party to “encrypt” or “garble” a circuit in such a way that
it can be evaluated on inputs — given tokens or “labels” corresponding to those
inputs — without revealing what the inputs are.

Definition 10 (Garbling Scheme). A projective garbling scheme is a tuple
of efficient algorithms GC = (garble, eval) defined as follows.

garble(1λ, C)→ (GC,K): The garbling algorithm garble takes as input the
security parameter λ and a boolean circuit C : {0, 1}` → {0, 1}m, and outputs
a garbled circuit GC and ` pairs of garbled labels K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ).

For simplicity we assume that for every i ∈ [`] and b ∈ {0, 1} it holds that
Kb
` ∈ {0, 1}λ.

eval(GC,K1, . . . ,K`)→ y: The evaluation algorithm eval takes as input the
garbled circuit GC and ` garbled labels K1, . . . ,K`, and outputs a value y ∈
{0, 1}m.

We require the following properties of a projective garbling scheme:
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Perfect Correctness. We say GC satisfies perfect correctness if for any boolean
circuit C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) it holds that

Pr[eval(GC,K[x]) = C(x)] = 1,

where (GC,K) ← garble(1λ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
` ), and K[x] =

(Kx1
1 , . . . ,Kx`

` ).
Next, we formally define the security notions we require for a garbling scheme.

When garbled circuits are used in such a way that decoding information is used
separately, obliviousness requires that a garbled circuit together with a set of la-
bels reveals nothing about the input the labels correspond to, and privacy requires
that the additional knowledge of the decoding information reveals only the appro-
priate output. In our work, we do not consider decoding information separately
(but rather, consider it to be included in the garbled circuit), so we do not need
obliviousness. However, we introduce a new property that is necessary for our
setting: partial evaluation resiliency, which requires that without knowledge of
at least one label corresponding to each bit of input, nothing about the output is
revealed.

Privacy. Informally, privacy requires that a garbled circuit together with a set
of labels reveal nothing about the input the labels correspond to (beyond the ap-
propriate output).

More formally, we say that GC satisfies privacy if there exists a simulator
simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−B
x = (x1, . . . , x`) ∈ {0, 1}`

−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}

if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
` ))← garble(1λ, C)

Ki = K
xi
i

for i ∈ [`]

if b = 1:

(GC, K1, . . . , K`)← simGC(1λ, C, C(x))
GC,K1, . . . ,K`

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B

A wins if b = b′
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Remark. It is possible to use an alternate variant of the simulator simGC
that takes as input a set of labels (K1, . . . ,K`) and returns a garbled circuit GC
compatible with these labels. The simulator of Yao’s [Yao82] garbling scheme can
be made to work easily as mentioned above.

Partial Evaluation Resiliency. We introduce an additional property of garbled
circuits which we call partial evaluation resiliency. Informally, this property re-
quires that unless the adversary has at least one label corresponding to every bit,
she learns nothing about the output.

More formally, we say that GC satisfies partial evaluation resiliency if there
exists a simulator simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m, i ∈ [`]
−−−−−−−−−−−−−−−−−−−−−−−−−−B

x = (x1, . . . , x`) ∈ {0, 1}`
−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}

if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
` ))← garble(1λ, C)

Kj = K
xj
j

for j ∈ [`]

if b = 1:

(GC, K1, . . . , K`)← simGC(1λ, C)

K = {Kj}j∈[`],j 6=i

GC,K
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B

A wins if b = b′

Note that existing garbling schemes clearly meet a weaker definition which
requires that given no labels, the garbled circuit GC reveals nothing about the
input. We can easily augment any garbling scheme GC = (garble, eval) that
meets this weaker definition to meet the stronger definition as well. We do this
simply by encrypting each label with `−1 one-time pads, each of which is bundled
with one of the other labels. More formally, we define G̃C = (g̃arble, ẽval) as
follows.

g̃arble(1λ):
1. Run (GC,K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` )← garble(1λ).

2. For each i, j ∈ [`], i 6= j: let ki,j ← {0, 1}λ.
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3. For each i ∈ [`], b ∈ {0, 1}: let K̃b
i =

(
Kb
i⊕
(
⊕j∈[`],j 6=iki,j

)
, {kj,i}j∈[`],j 6=i

)
.

4. Return (GC, K̃0
1 , K̃

1
1 , . . . , K̃

0
` , K̃

1
` ).

ẽval(GC, K̃1, . . . , K̃`):
1. For i ∈ [`]: parse (K ′i, {kj,i}j∈[`],j 6=i)← K̃i.
2. For i ∈ [`]: let Ki ← K ′i ⊕

(
⊕j∈[`],j 6=i ki,j

)
.

3. Return eval(GC,K1, . . . ,K`).

Adaptive Privacy. Informally, this property requires that privacy is maintained
against an adversary who first obtains the garbled circuit and then selects the
input. More formally, we say that GC satisfies adaptive privacy if there exists a
simulator simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1
2 + negl(λ)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m

−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}

if b = 0:

(GC, (K0
1 , K

1
1 , . . . , K

0
` , K

1
` ))← garble(1λ, C)

if b = 1:

GC← simGC(1λ, φ(C), “ckt”)

where φ(C) denotes the topology of C a

GC
C−−−−−−−−−−−−−−−−−−−−−−−−−−

x = (x1, . . . , x`) ∈ {0, 1}`
−−−−−−−−−−−−−−−−−−−−−−−−−−B if b = 0:

Ki = K
xi
i

for i ∈ [`]

if b = 1:

((K1, . . . , K`)← simGC(1λ, C(x), “input”)
K1, . . . ,K`

C−−−−−−−−−−−−−−−−−−−−−−−−−−
b′

−−−−−−−−−−−−−−−−−−−−−−−−−−B

A wins if b = b′

awe assume that the topology of a circuit does not reveal hard coded values (as
hard coded values are essentially fixed input labels for some wires)

Instantiation. For our constructions, adaptive garbled circuits can be obtained
using one-time pads with Yao’s garbled circuits (as shown by Bellare et al.
[BHR12a]).
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A.5 Threshold Secret Sharing Scheme

A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares
that can be distributed among different parties. To reconstruct the original secret
x at least t+ 1 shares need to be used.

Definition 11 (Secret Sharing). A t-out-of-n secret sharing scheme is a tuple
of efficient algorithms (share, reconstruct) defined as follows.

share(x)→ (s1, . . . , sn): The randomized algorithm share takes as input a
secret x and output a set of n shares.
reconstruct({si}i∈S⊆[n],|S|>t)→ x: The reconstruct algorithm reconstruct
takes as input a vector of at least t+ 1 shares and outputs the secret x.

We require the following properties of a t-out-of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the shares of
a secret x should always reconstruct to x. More formally, a secret sharing scheme
is perfectly correct if for any secret x, for any subset S ⊆ [n], |S| > t,

Pr

x = x′ :
(s1, . . . , sn)← share(x)

x′ ← reconstruct({si}i∈S)

 = 1,

where the probability is taken over the random coins of share. Moreover, if a
negligible error probability is allowed, we simply say that the scheme is correct.

Privacy. The privacy property requires that any combination of up to t shares
should leak no information about the secret x. More formally, we say that a
secret sharing scheme is private if for all (unbounded) adversaries A, for any
set A ⊆ {1, . . . , n}, |A| ≤ t and any two secrets x0, x1 (such that |x0| = |x1|),

Pr

A(s) = 1 :
{si}i∈[n] = share(x0);

s = {si}i∈A

 ≡ Pr

A(s) = 1 :
{si}i∈[n] = share(x1);

s = {si}i∈A

 .
Share Simulatability. Additionally, we require an efficient simulator for the gen-
erated shares. More formally, we say that a secret sharing scheme is share sim-
ulatable if there exists a PPT simulator simshare such that for every PPT
adversary A, for any set A ⊆ {1, . . . , n}, |A| ≤ t (and H = {1, . . . , n}\A), and
any two secrets x0, x1, for (s0, . . . , sn) ← share(x0), (s′1, . . . , s′n) ← share(x1)
and {s′′i }i∈H ← simshare({si}i∈A, x0),

|Pr [A({si}i∈A, {si}i∈H) = 1]− Pr [A({si}i∈A, {s′′i }i∈H) = 1] | ≤ negl(λ).

Instantiation. In our constructions, we use the Shamir’s threshold secret sharing
scheme [Sha79], and refer to its algorithms as (Shamir.s, Shamir.reconstruct).
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