A Plug-n-Play Framework for Scaling Private Set
Intersection to Billion-sized Sets

Saikrishna Badrinarayanan, Ranjit Kumaresan, Mihai Christodorescu, Vinjith Nagaraja,
Karan Patel, Srinivasan Raghuraman, Peter Rindal, Wei Sun, Minghua Xu

Visa Research

Abstract

Motivated by the recent advances in practical secure computation, we design and implement
a framework for scaling solutions for the problem of private set intersection (PSI) into the
realm of big data. A protocol for PSI enables two parties each holding a set of elements to
jointly compute the intersection of these sets without revealing the elements that are not in
the intersection. Following a long line of research, recent protocols for PSI only have ~ 5x
computation and communication overhead over an insecure set intersection. However, this
performance is typically demonstrated for set sizes in the order of ten million. In this work, we
aim to scale these protocols to efficiently handle set sizes of one billion elements or more.

We achieve this via a careful application of a binning approach that enables parallelizing
any arbitrary PSI protocol. Building on this idea, we designed and implemented a framework
that takes a pair of PSI executables (i.e., for each of the two parties) that typically works
for million-sized sets, and then scales it to billion-sized sets (and beyond). For example, our
framework can perform a join of billion-sized sets in 83 minutes compared to 2000 minutes of
Pinkas et al. (ACM TPS 2018), an improvement of 25x. Furthermore, we present an end-to-
end Spark application where two enterprises, each possessing private databases, can perform a
restricted class of database join operations (specifically, join operations with only an on clause
which is a conjunction of equality checks involving attributes from both parties, followed by a
where clause which can be split into conjunctive clauses where each conjunction is a function
of a single table) without revealing any data that is not part of the output. *

1 Introduction

Private set intersection (PSI) enables two parties, each holding a private set of elements to
compute the intersection of the two sets while revealing nothing more than the intersection itself.
PSI is an extremely well-motivated problem and has found applications in a variety of settings. For
instance, PSI has been used to measure the effectiveness of online advertising [IKNT17|, private
contact discovery [CLR17, RA17, DRRT18], privacy-preserving location sharing [NTL*11], privacy-
preserving ride sharing [HOS17], remote diagnostics [BPSWO07] and botnet detection [NMH"10].
In the last few years, PSI has become truly practical with extremely fast implementations [FNP04,

IThe authors grant TACR a non-exclusive and irrevocable license to distribute the article under the
https://creativecommons.org/licenses/by-nc/3.0/

KS05] [HN10, DCT10, CKT10, DCW13, PSZ14, PSSZ15, KKRT16, 00S16, RR17a, RR17b, KMP 17,
HV17]
[PSWW18, PRTY19, DRRT18, PSZ18, FNO19, PRTY20]. In terms of performance, the most com-
putationally efficient PSI protocol [KKRT16] can privately compute the intersection of two million
size sets in about 4 seconds. On the other hand, and for settings where only low bandwidth com-
munication is available, one can employ the communication-optimal PSI protocol [ACT11] whose
communication is only marginally more than an insecure set intersection protocol. Several recent
works, most notably [PRTY19, PRTY20, CM20] have studied the balance between computation
and communication, and even optimize for monetary cost of running PSI protocols in the cloud.
While significant, progress has been made in advancing the efficiency of PSI protocols, almost all
documented research in this area has so far focused on settings with set sizes of at most 224 ~ 16
million.> One notable exception is the work of [SK14] who demonstrate the feasibility of PSI over
billion sized sets albeit in the non-standard server-aided model where a mutually trusted third party
server aids in the computation. Another notable exception is the recent work of [PSZ16, PSZ18]
whose implementation on 2 servers each with < 16 GB memory takes 34.2 hours to compute the
intersection of two billion-element sets. Clearly, this leaves a lot of room for improvement. This is
the gap we aspire to fill in this paper.

(Issues in) scaling existing PSI protocols. Broadly speaking, memory consumption is a big
problem when implementing cryptographic schemes that operate on large amounts of data. In fact,
many if not all implemented PSI protocols (e.g., those based on garbled circuits, or bloom filters,
or cuckoo hashing) quickly exceed the main memory, thereby requiring more engineering effort.
Even computing the plaintext intersection for billions of elements becomes a nontrivial problem.
That said, many of the PSI protocols somewhat benefit from thread-level parallelism (e.g., for
preprocessing OTs, generating garbled circuits) and hardware support (e.g., AES-NI). Some of the
steps that do not parallelize well are those dealing with data structures (such as cuckoo hashing or
bloom filters), however these may be preprocessed since only one party’s input is required.

Concretely, we discuss the implementation of the OT-based PSI protocol of [PSZ18] running on
billion-sized sets containing 128-bit elements. The work of [PSZ18] makes use of solid state drives
in their PSI execution on billion-sized sets. As documented in [PSZ18], the total execution time
is 34.2 hours.> In comparison, the (insecure) naive hashing protocol for set intersection required
74 mins, of which 19 min (26%) are for hashing and transferring data and 55 min (74%) are for
computing the plaintext intersection.

1.1 Owur Contributions

We study the possibility of parallelizing PSI protocols by distributing a party’s workload into
multiple worker nodes running within its premises. Towards this, we propose a simple technique
that can parallelize any PSI protocol in a blackbox way. Finally, we build a framework to test out
the feasibility of our technique in scaling PSI via Spark in a practical use case involving private
database join operations. Comparing to the work of [PSZ18], our protocols for the same setting

2This does not necessarily apply to the setting of unbalanced PSI where the set sizes can be orders of magnitude
apart [AK17, PSWW18, BP19, HCR18, HCR17]. For instance, [DK19] do unbalanced PSI with 228 elements on one
side and say 1024 elements on the other side.

3For a further breakdown of this number, [PSZ18] note that 30.0 hours (88%) are for simple hashing (cuckoo
hashing runs in parallel and requires 16.3 hours), 3 hours (9%) are for computing the OTs, and 1.2 hours (4%) are
for computing the plaintext intersection.

of billion-sized sets containing 128-bit elements, we require a total execution time of 83 minutes in
total, a 25x improvement compared to [PSZ18]. We explain these in more detail below.

1.1.1 Techniques to parallelize PSI
We describe a few approaches at a high level and analyze their security and generality.

Self-reduction. A natural approach is to reduce an instance of PSI on large sets to multiple
instances of PSI on smaller sets. Some care needs to be taken to ensure that privacy is still
preserved. Specifically, note that PSI protocols are not guaranteed to hide the size of the input
sets. For instance, if the sets are partitioned based on lexicographic ordering of the elements,
then this would likely result in partitions being of unequal size, and thus either party could learn
how the elements of the other party’s set are distributed. We avoid such issues by proposing a
natural random self-reduction which we refer to as our binning technique (see Section 3 for a formal
description). Loosely speaking, our binning technique proceeds by asking each party to (1) locally
randomize its input set (by applying a random oracle), (2) locally partition the randomized set, say
lexicographically, into smaller sets, (3) locally pad each of these smaller sets with dummy elements
so that they are all of the same size, (4) feed each small set into an independent PSI instance with
the other party, and (5) finally use each PSI instance’s output to recover the intersection in the
original input set.

Important note. Partitioning elements into bins is a standard technique that appears several times
and in several forms in the PSI literature. For instance, in [PSWW 18] such a binning strategy is
used to enable a reduction from PSI to private set membership by partitioning n elements into
m bins for m ~ n. Among other similar works, the protocols of [KKRT16, PSZ14] enjoy high
efficiency by employing cuckoo hashing which partitions n elements into m = 1.2n bins. A similar
partitioning approach is also used in the case of unbalanced sets of sizes ng and ny; with ng > n,
and even there (cf. [PSZ18]) the set of size ng is partitioned into &~ 2.4n; bins.

Where our approach differs from prior work is that we perform a self-reduction (i.e., PSI to
itself) with a choice of parameters that differs from prior works mentioned above. In particular, for
large n, we will be partitioning a set of size n into m bins for n > m (e.g., n = 10° and m = 64).
While our PSI self-reduction is very simple and straightforward, to the best of our knowledge, we
are not aware of any prior work documenting or implementing the self-reduction for the parameters
that we employ in this paper. In particular, while the binning technique that we described above
appears (nearly) verbatim in Section 3.1.1 of [PSZ18], the corresponding analysis in Section 3.1.2
of [PSZ18] focuses on m = n resulting in n instances of PSI each of size 2 (14 0(1)) (see Table 3
in [PSZ18] for exact numbers).> On the other hand, we provide a hybrid approach where we employ
the binning technique (referred to as simple hashing in Section 3.1.1 of [PSZ18]) to set up input
sets (for independent PSI instances) which are large enough to enable application of a fast PSI
protocol [KKRT16] (for independent PSI instances) that employs cuckoo hashing. To see how this
affects performance, note that in Section 6.2.4 of [PSZ18], which details the performance of their
best PSI protocol on billion element sets, the authors note that the cuckoo hashing step requires
16.3 hours. In contrast, applying our binning technique with our choice of parameters, i.e., m = 64
for n = 10°, even serially would likely result in significant improvements since the best known

4Using m ~ n in our self-reduction would incur an unacceptable overhead due to padding. Please see Subsection 3.1
on how to choose the optimum value of m.
5In that Section, they also analyze the choice of m for PSI with unbalanced sets.

PSI protocols on instances of size n/m =~ 224 use cuckoo hashing and still complete in under 2
minutes [KKRT16].

Big data frameworks. Another approach to parallelize a PSI protocol II is to implement it in a
big data framework like Spark which will distribute the work among many nodes. The downside
is the lack of generality, in that each protocol must be rewritten in Scala to scale it. For instance,
there exist efficient PSI protocols based on a variety of techniques and assumptions. Choice of
what protocol to implement may also depend on the setting (e.g., client-server), set sizes (balanced
or unbalanced), network bandwidth, or whether the PSI output needs to be kept secret-shared in
order to pipeline it into other MPC protocols. Also, recent PSI protocols rely on data structures
such as cuckoo hashing whose efficient scaling may be nontrivial [YS17] and may depend on the
underlying big data framework.

In this paper, we show how our binning technique allows us to leverage a big data framework
like Spark in a protocol agnostic way. The high level idea is to express (PSI) protocols in terms
of its round functions aka next message functions.® These round functions are to be executed by
a designated party at a particular round to determine the next message that needs to be sent by
that party. More concretely, a round function takes as input the current state of the protocol,
and the inputs and randomness of the designated party, and outputs the next message that the
designated party sends to to the other party.” Expressing PSI protocols in this way, allows a
protocol agnostic® way of orchestrating on each Spark cluster. Please see Section 5 for specific
implementation of KKRT protocol [KKRT16]. Furthermore, such an orchestration does not require
reconfiguring the clusters or modifying the internals of Spark (c.f. unlike [ZDB*17]).

1.1.2 Private database joins

Building on our techniques to parallelize PSI protocols, we describe how to implement an end-to-end
private database join application. We consider a setting where two enterprises wish to perform a
data exchange. That is, each of these two parties have databases storing sensitive information, and
they wish to enrich their data based on information from the database tables of the other party.
More concretely, the operation they wish to perform can be expressed succinctly as a join operation
(inner, outer, left, or right) which specifies the attributes that need to be matched, and additional
attributes that need to be fetched on the matched rows. A necessary privacy requirement in this
setting is that either enterprise wishes to not reveal any information other than what is revealed
by the output of the join operation.

Since enterprises often have (access to) dedicated clusters supporting their big data frameworks,
an import design goal is to leverage these frameworks to (1) increase the efficiency of the join
operation, and also to (2) integrate with existing data pipelines for pre- or post-processing. In this
work, we focus specifically on Spark. We picked Spark because it is open-source and widely adopted
big data analytics engine for large-scale data processing. Additionally, it comes with higher-level
libraries and extensions which makes it an ideal choice for various use cases beyond PSI. We assume
that the two enterprises each employ a Spark cluster consisting of multiple nodes co-ordinated by an
orchestrator (that may be on either side). Note that each Spark cluster has complete access to that

6This is a standard technique to capture protocols in cryptography, for example while designing zero-knowledge
compilers that transform a semi-honest secure protocol into a maliciously secure protocol.

"Most PSI protocols have very few rounds (exceptions include circuit PSI protocols that rely on the GMW
compiler).

8We support any PSI protocol irrespective of the underlying cryptographic assumptions or algorithmic techniques.

party’s input dataset only. Communication between the clusters that is required for private database
join will be facilitated via dedicated edge servers. More details about our system architecture can
be found in Subsection 4.2. Functionally, an analyst may connect to the orchestrator and use, for
instance, a JupyterLab interface to issue private database join instructions to initiate and run our
protocol on the specified datasets.

Plug-n-Play framework. By itself, Spark does not provide any privacy guarantees for computa-
tions that cross data boundaries. In Section 4, we describe a natural transformation of the private
database join problem into a PSI problem. (The transformation itself can be carried out locally,
and additionally admits parallelization via Spark.) Then, to solve the resultant PSI problem, we
implement a generic framework that can apply our binning technique on top of any existing PSI
implementation. Our framework is generic in that one could plug in any C/C++ PSI implementa-
tion (say from [Rin]) to our framework. Using the Java Native Interface (JNI) [Wik20] technology,
our framework integrates the native implementation with the rest of our Spark pipeline. We refer
to Subsection 4.3 for additional details.

Important note. Our system SPARK-PSI described in Section 4, 4.3 supports a restricted class
of join operations, namely join operations with only an on clause which is a conjunction of equality
checks involving attributes from both parties, followed by a where clause which can be split into
conjunctive clauses where each conjunction is a function of a single table. Parts of this restriction
may be removed say if the underlying PSI protocol supports (the nonstandard but useful notion
of) “PSI with computation” (PSIC) or “Circuit PSI” [BP19, MC18, PR] (where the PSI outputs
are secret shared or in a form that can be fed into a different secure computation protocol) and is
amenable to scaling via the binning approach. Post-join operations involving grouping, aggregation,
and ordering can be enabled if these (nonstandard but useful) variants are used as the underlying
PSI protocol. A circuit-PSI protocol realizing the circuit-PSI functionality in [PR] (that allows set
elements along with associated data as input) can be scaled via our binning approach to efficiently
enable operations mentioned above. Despite this, we chose not to do this since the fastest circuit-
PSI protocols are significantly slower than the fastest (standard) PSI protocols, and furthermore,
supporting arbitrary (post-)join operations requires generic MPC techniques on the secret shared
PSI output (plus associated data), which is beyond the scope of this work.

1.2 Organization

We give a brief overview of PSI and Spark along with the associated threat models in Section 2.
Then, we describe and analyze the binning technique in Section 3. After this, we describe the
architecture and functionality of our private database join application in Subsection 4.2. Imple-
mentation details of the application can be found in Subsection 4.3, and our experimental evaluation
is described in Section 5.

2 Preliminaries

2.1 Private Set Intersection

In the problem of private set intersection (PSI), two parties (sometimes referred to as “sender”
and “receiver”) each hold a set of items and wish to learn nothing more than the intersection of
these sets. In this paper, we present generic techniques to securely parallelize any PSI protocol,

with security against semihonest (aka honest-but-curious) adversaries. For our experiments, we
apply our parallelization technique on the KKRT PSI protocol [KKRT16]. The KKRT protocol
is an OT-based PSI (like [PSZ14, PSZ18, O0S16]) and relies heavily on modern OT extension
protocols [YI03, VK13, GA13]. We chose KKRT because it is currently the fastest PSI protocol
against semihonest adversaries.

2.2 Apache Spark

Apache Spark is an open-source, fast, and distributed computing framework used for large-scale
data workloads. It utilizes in-memory caching and optimizes query execution for any size of data.
It is faster and more flexible than other systems such as Google’s MapReduce [DG04], as it runs
in memory, which makes processing much faster than disk [ZCF*10], and allows for complex pro-
cessing schemes, instead of MapReduce’s linear model. On top of Spark, there are libraries for
running distributed computations ranging from SQL queries, to machine-learning algorithms, to
graph analytics, and to data streaming.

A Spark application consists of a driver program that translates user-provided data processing
pipelines into individual tasks and distributes these tasks to worker nodes. The basic abstrac-
tions available in Spark are built on a distributed data structure called resilient distributed dataset
(RDD) [ZCD"12] and these abstraction offer distributed data processing operators such as map,
filter, reduce, broadcast, etc. Higher-level abstractions expose popular APIs such as SQL, streaming,
and graph processing.

Implementing state-of-art PSI protocols on top of Spark holds the promise of using the demon-
strated capabilities of Spark and similar data platforms to achieve significant performance gains.
Unfortunately Spark lacks any multi-tenant concepts, running all applications and scheduling all
tasks in one security domain. This is incompatible with the basic settings of PSI protocols which
involve two or more untrusted parties, which require multiple security domains with strong isolation
between them. We address this problem by assigning each party to one Spark cluster, thus achieving
isolation by physically separating each party’s computation, and then introducing an orchestrator
component that coordinates multiple independent Spark clusters in different data centers to jointly
perform the PSI tasks. Section 4 describes our multi-cluster architecture and motivates our design.

A second security challenge in Apache Spark is the default data-partitioning scheme, which can
reveal information about a party’s dataset. For example, if data partitioning relies on the first byte
in each record to distribute data records to nodes, an adversary can learn how many records start
with 0x00, how many with 0x01, and so on. This leaks information about the data distribution
in a dataset and undermines the security guarantees offered by a PSI protocol. We address this
problem by introducing a secure binning approach (described in Section 3) that makes such leaks
statistically inconsequential while still allowing each Spark cluster to partition data and distribute
tasks as is locally optimal.

Finally, adding an orchestrator outside of the Spark clusters and treating individual Spark
clusters’ schedulers as black boxes, which are convenient for operational purposes, can lead to sub-
optimal execution plans. In particular, the local optimization of schedules at each cluster may
contradict with desired performance from collaborative computing across multiple clusters with
different data sizes and hardware configurations. We take advantage of Spark’s lazy evaluation
capability, which can be used to delay the execution of a task until a certain action is triggered.
Subsection 4.3 presents how we effectively use lazy evaluation to loosely and efficiently coordinate
across clusters.

2.3 Threat Model

We consider a semi-honest adversary and detail its capabilities with respect to the PSI protocol we
wish to deploy on Spark, to the Spark framework, and to our overall SPARK-PST system.

2.3.1 Threat Model of the PSI Protocol

In standard cryptography terminology, we assume that the PSI protocol is secure against semi-
honest (aka honest-but-curious) adversaries. That is, we expect the participants to faithfully follow
the instructions of the protocol but allow the parties to learn as much as they can from the protocol
messages. We believe that this assumption fits many use cases, where parties are likely already under
certain agreements to participate honestly. We further assume that all cryptographic primitives are
secure. Finally, we note that the PSI protocol does reveal the sizes of the sets to both parties, as
well as the final outputs in the clear (see [GA11] for size-hiding PSI, and [PSWW18, MC18] for
protecting the outputs).

2.3.2 Threat Model of the Spark Framework

We assume that every Spark cluster’s built-in security features are enabled and that the Spark
implementation is free of vulnerabilities. These features include data-at-rest encryption, access
management, quota management, queue management, etc. We further assume that these features
guarantee a locally secure computing environment at each local cluster, such that an attacker cannot
gain access to a Spark cluster unless authorized.

2.3.3 Threat Model of SPARK-PSI

We assume that only authorized users can issue commands to the orchestrator and we further
assume that the orchestrator is operated by one of the two parties. We note that it could be
operated by some (semi-honest) third party without impacting security.

The adversary can observe the network communication between different parties during execu-
tion of the protocol. It may also control some of the parties to observe data present in the storage
and memory of their clusters, as well as the order of memory accesses.

Our semi-honest adversary model implies that we expect participants to supply correct inputs
to the PSI protocol. While in practice input validity is important, it is outside the scope of this
work as we believe it can be tackled as a future, separate layer on top of SPARK-PSI.

3 Parallelizing PSI via Binning

We describe an efficient technique to scale any PSI protocol II. For simplicity, we assume that both
parties have equal sized sets, say of size n. Each set contains elements of length « bits (typically and
wlog x = 128). Then, for a given parameter m, we show how to solve PSI on instances of size n, via
m invocations of IT on set sizes ~ n/m with minimal overhead. Our parallelization technique will
be statistically secure. To aid in the analysis, we use ¢ to denote the statistical security parameter
(typically, set to 80). Our PSI protocol, denoted by Ilpps; (stands for Parallel PSI) is illustrated in
Fig. 1.

Our idea is to first let each party to locally partition their set into m > 1 subsets. That is,
the parties first locally sample a random hash function h : {0,1}* — {1,...,m}. Each party P

l Tokenization

Tokens
Mapping
l Padding

l Bin to Bin PSI

Bin m: 3, 20, 43,297, 97.. I

l Aggregating

Intersection Records

Figure 1: Binning Pipeline

transforms its set S = {s1,...,s,} into subsets Ti,...,T,, such that for all s € S it holds that
5 € Thes)- Modeling h as a random function ensures that the elements {h(s) | s € S} are all
distributed uniformly. This directly implies that E[size of T;] = n/m.

However, observe that the number of elements in any given bin T; does in fact leak information
about the distribution of the input set. For example, say there are no items in T}, then this implies
that the set S does not contain any element s that s.t. h(s) = 4. To maintain the security guarantees
of PSI, it is critical that this information is not leaked.

Now given that the parties have locally partitioned their sets into 77, ...,T,,, next they pad
each T; with uniformly random dummy elements to ensure that the size of each padded set equals
(1 + dp)n/m for some parameter dy. Since S C {0,1}", there are 2" possible elements and the
probability of a dummy item being in the intersection is negligible. Alternatively, if x is large
enough, we can ensure that no dummy item is in the intersection by asking each party to pad its j-th
bin with dummy items s’ sampled from non-overlapping subsets of {0,1}" such that h(s’) = j' # j.
Then, the two parties engage in m parallel instances of II, where in the i-th instance m;, parties
input their respective i-th padded tokenized set. Once all m instances of IT deliver output, parties
then by simply combining these m individual outputs to obtain the final output.

In summary, our binning technique proceeds by asking each party to (1) locally tokenize the
sets, (2) locally map the set elements into m bins, (3) locally pad each bin with dummy elements
to ensure that each bin contains exactly (1 + do)n/m elements, (4) execute m instances of a PSI
protocol with the other party, (5) finally combine the outputs of the individual PSI protocols to get
the final output.

3.1 Analysis

We compute the value of the parameter dg that ensures that the binning step does not fail except
with negligible probability. For a fixed ¢ € [n] and j € {1,...,m}, suppose X, ; is the indicator
variable that equals 1 iff the i-th element s; ended up in 7}, and suppose X; = Zie[n] X;,; denotes
the size of T;. For a fixed j, since X, ; variables are independent of each other (since h is modeled as

a random function), a Chernoff bound yields P[X,; > (14 6)y] < e=0"1/3 where p = E[X;] =n/m

and 0 < § < 1. The above analysis was for a single bin 7. By union bound, we see that the
probability that any of the m bins have greater than (1 + §)u elements is < me=9"1/3, Thus if we
set the failure probability me=9°n/3m — 277, we get 6 = \/3m/n - (cIn2+ Inm) def dg- That is,
the above binning technique requires only max bin size at most (1+dg)n/m w.h.p. More concretely,
suppose set size n = 10° and statistical parameter ¢ = 80, then choosing parameter m = 64, we
see that the max bin size of any of the 64 bins is at most n’ ~ 15.68 x 10° (with dp = 0.0034) with
probability (1 —2780).

Note that existing PSI protocols [KKRT16, PRTY20, CM20] can already efficiently handle set
sizes of n’. Therefore, in principle, we can use 64 instances of PSI protocol of say |[KKRT16] to
implement a PSI protocol that operates on 1 billion sized sets.

3.2 Simulation

Formally, we prove security in the so called simulation paradigm that is standard in cryptography.
In short, this enables proving that all attacks that can be carried by an adversary in the designed
protocol can be simulated in an ideal world where parties only interact with an imaginary trusted
third party Fps) that accepts inputs from the parties, computes the intersection locally, and returns
only the intersection to the parties. As our binning technique self-reduces PSI, we inherit the
security properties of the underlying PSI protocol II (i.e., that operates on smaller set sizes).
For the reduction, we assume the h is statistically close to a random function (alternatively, a
nonprogrammable random oracle), and this enables us to prove that our reduction is statistically
secure. However, our final protocol Ilpps; (where the underlying PSI instances II are instantiated
with the real PSI protocols) will be computationally secure. Concretely say if the underlying PSI
protocol II relies on DDH, then our protocol Ilpps; remains secure assuming DDH holds. This
is the case, for instance, when the underlying PSI protocol is [KKRT16] assuming the OTs are
instantiated via DDH [MNO1].

We provide a short sketch of the simulation of our protocol Ilpps; in the Fpg ideal world. Note
that we are in the semi-honest model, so the simulator has access to the input tape of the corrupt
party. In addition, we are in the Fpgi-hybrid model where our protocol Ilpps can call the PSI
functionality Fps; as a subroutine. We note however these calls will be on subsets of the overall
data. For the sake of readability, we denote this functionality as Fpg.

Since our protocol is effectively symmetric, w.l.o.g., we assume P, to be the corrupt party. The
simulator begins by feeding the input Sy to the ideal PSI functionality Fps to obtain the PSI
output I’ = Sy N .S;. Next it partitions I’ into m bins as specified by h, i.e. I; = {i € I' | h(i) = j}
denotes bin j. If any bin I; has more than (1 + do)n/m elements, then the simulator aborts. Then
for each bin j, the simulator emulating F¢g, in the hybrid world receives from Py a padded set of
size (1 + dp)n/m, and returns I; as the output of the call to Fjg. Finally, the simulator outputs
I'. This completes the description of the simulation.

Note that the simulation fails if (1) simulator encounters binning failure (i.e., bin size exceeds
(1+89)n/m), or (2) dummy item added by one party matches an item from the other party. Thus
from the analysis in the previous section, we conclude that the ideal world simulation is statistically
indistinguishable from the hybrid-world protocol.

3.3 Applying our binning technique

We emphasize that our technique works for any PSI protocol (no matter what assumption it is based
on) for all settings including cases where the sets are unbalanced. Furthermore, the PSI instances
operating on different bins could in principle use different PSI protocols or implementations (which
can be useful if the underlying infrastructure is heterogeneous).

By design our technique is highly conducive for an efficient Spark implementation (or in any
other big data framework). Also, large input sets may already be distributed across several nodes in
a Spark cluster. We provide a quick overview of how our protocol would operate in such a setting.
At the beginning of the protocol the hash function h is sampled and distributed to the nodes in
both clusters. Within each cluster, each node uses h as a mapping function to define the new
partitions 71, ..., T, which are each assigned to some worker node in the same cluster. The main
phase of the protocol proceeds as described by running m parallel instances” of the PSI protocol
across the two clusters which outputs the intersection sets I, ..., I,, such that the final output is
defined as I' = U;I;. In the next sections, we describe our system SPARK-PSI that applies our
binning technique in a real-world application.

4 Scalable Private Database Joins

In this section, we describe how to perform SQL styled join queries with the use of our parallel PSI
protocol implemented via Spark. In Subsection 4.1, we describe the problem of private database
joins across different data domains, and outline a solution which leverages our binning technique
for parallelizing PSI. Then, in Subsection 4.2, we describe the architecture of our system SPARK-
PSI that solves the database join problem. Finally, in Subsection 4.3, we describe the various
techniques we employ to efficiently implement our binning technique in Spark.

4.1 Database Joins Across Data Domains

In the problem of private database joins, we have two distinct parties A, B, who wish to perform
a join operation on their private data. To model the problem, we denote Domain A as the data
domain of party A, and likewise Domain B for party B. We assume that one of the parties hosts an
orchestrator which is essentially a server that exposes metadata such as schemas of the data sets
that are available for the join operation. (For more details, see Subsection 4.2). This way parties
discover the available types of queries and can submit them via the orchestrator API. When a query
is submitted, the orchestrator will validate the correctness of the query and forward to request to
the other party for approval. While many types of query languages could be supported, we have
chosen to implement a subset of SQL.

More precisely we support any query which can be divided into the following. A select clause
which specifies one more columns among the two tables. A join on clause which compares one or
more columns for equality between the two sets. A where clause which can be split into conjunctive
clauses where each conjunction is a function of a single table.

For example, we support the following query:

SELECT DomainB.tableO.col4, DomainA.table0O.col3

91f we have k worker nodes on each side, then we can run k instances of I in parallel, and repeat this m/k times
to complete the PSI portion of the execution.

10

FROM DomainA.tableO

JOIN DomainB.tableO

ON DomainA.tableQ.coll = DomainB.tableO.col2
AND DomainA.table0O.col2 = DomainB.table0O.col6
WHERE DomainA.table0O.col3 > 23.

In this example a column from both parties is being selected where they are being joined on the
equality of the join keys

DomainA.table0.coll = DomainB.table0.col2
DomainA.table0.col2 DomainB.table0.col6

along with the added constraint
DomainA.tableO.col3 > 23.

Our framework transforms this query by first filtering the local data sets based on the WHERE clause.
We require that each of the where clauses be a function of a single table. For example, we do not
support a where clause such as

WHERE DomainA.tableO.colO > DomainB.tableO.col7

because this predicate compares across the two data sets.'®

Once the local where clauses have filtered the input tables, the parties tokenize the join key
columns. The join key columns refer to the columns which appear in the JOIN ON clause. In
the example above these are DomainA.table0.coll, DomainA.table0.col2 from the first party
(Domain A) and DomainB.table0.col2, DomainB.table0.col6 from the second party (Domain
B). For each row of the respective data sets, the parties generate a set of tokens by hashing together
their join keys. For example, Domain A can generate their set A as

A = {H(DomainA.table0.coll[i],
DomainA.table0.col2]i]) |

ie€{l,..,n} }

Let B denote the analogous set of tokens for Domain B. We note that rows with the same join keys
will have the same token and that the A, B sets will contain only a single copy of that token. Later
we will need to map elements of A, B back to the rows which they correspond to. For this task we
will logically add an additional column to each input table which we label as token and stores that
row’s token value. That is, for the example above we have

DomainA.table0.token = H(DomainA.tableO.coll[ﬂ,
DomainA.tableO. 0012[2'})
Now the parties can execute a PSI protocols on their respective A, B sets as inputs. The protocol

outputs the intersection I = AN B to both parties. As described in the previous section, this phase
is parallelized with the use of our binning technique.

10Restricting clauses this way enables us to reduce the above problem to the PSI problem. We note that the
restriction above can be lifted if we use more sophisticated PSI protocols that can keep the PSI output in secret
shared form without revealing it. We leave this for future work.

11

In the final phase the parties use the intersection I to construct the output table. Here we will
assume that only Domain A should obtain the output table but note that this general procedure
can provide output to both. Both parties take subsets of their tables such that only rows which
have a token value in I remain. This can efficiently be implemented using the token column that
was appended to the input tables. From this subset, Domain B sends their columns which appear
in the select clause along with the token value. Let this table be denoted as table*. Domain A
then joins their table with table* to construct the final output table.

In summary, the private database join operation can be performed via the following three
phases. The first phase, referred to as tokenization, translates a possibly complex join query into
a set intersection problem. In the second phase our parallel PSI protocol runs and outputs the
intersection to both parties. The final phase is referred to as reverse-lookup which instructs the
parties to use the intersection to construct the final join output which may contain significantly
more information than the intersection alone, e.g. additional attributes being selected. In the next
section, we will see the design of an architecture that enables us to efficiently execute these several
phases in a setting where parties have Spark clusters.

4.2 System Architecture

Figure 2 describes the overall architecture of our system where we connect two distinct parties (or
data domains) each having a Spark cluster. To solve the private database join problem, we need
to co-ordinate the two Spark clusters to implement the various phases described in the previous
section.

This co-ordination is carried out by an orchestrator that exposes an interface (such as UI appli-
cation/portal /Jupyter Lab) to specify the database join operation and to receive the results. Our
orchestrator interfaces with each party’s Spark cluster via Apache Livy [Liv17].

In more detail, the orchestrator is responsible for storing various metadata such as the schemas
of the data sets. We assume that these schemas are made available to the orchestrator by the parties
in an initialization phase. Following this, either party can authenticate itself to the orchestrator
and submit a SQL styled query. The orchestrator is then responsible for parsing the query and
compiling Spark jobs for two clusters for different phases of the private database join operation,
including the PSI protocols. The orchestrator then initiates the protocol by sending both clusters
the relevant parameters for different phases of the protocol, e.g. data sets identifiers, join columns,
network configuration, etc. Once the database join protocol completes, the orchestrator will record
audit logs and potentially facilitate access to the output of the join.

The Apache Livy [Liv17] interface helps internally to manage Spark session and submission of
Spark code for PSI computation. Communication between the two clusters for various phases of the
join protocol (e.g., for the PSI subprotocols) is facilitated via dedicated edge servers which work as
Kafka brokers to establish a secure data transmission channel. While we have chosen Apache Kafka
for implementing the communication pipeline, our architecture allows the parties to plug their own
communication channel of choice to read/write data back and forth. Additionally, our architecture
doesn’t change any internals of Spark that makes easier to adopt and deploy at scale.

Security implications. We discuss some security considerations and highlight some security
implications that are a consequence of our architecture described above. While the theoretical
security of the database join protocol is guaranteed by employing a secure PSI protocol, we now
discuss other security features provided by our architecture. More concretely, we highlight that in

12

@ Authentication

grossansss—— Clients
: @ Job Request/
Domain A SQL Query Domain B
A4 @ Tokenization
Orchestrator = = pesssssssfussssnsnsnsnnssnsssnssnsnnnnnnnnnnnsnnnnns
@ PSI Execution
@ Tokenization
' @ PSI Execution
: Edge server Edge server
A 4 Bytes m.:lullsc

Apache Livy | | Apache Kafka Apache Kafka | | Apache Livy

Spark cluster * * Spark cluster

v

Spark Driver

Scala PSI Lib

Worker Node 0

libPSI (C++)
>

v

Worker Node 1

Worker Node 0

v

libPSI (C++)
<

Spark Driver

Worker Node 1 [®==*

Scala PSI Lib

Figure 2: Spark-PSI Framework.(I) Clients need authentication first so that they can talk to the
orchestrator (2) Clients have two modes to start a job: a JSON style request or a SQL style query.
(3 The orchestrator parses the query for tokenization of related columns. (@) Execute Spark PSI
pipelines (B) Intermediate bytes are exchanged through Kafka brokers deployed on edge servers.

addition to the built-in security features of Spark cluster, our design ensures cluster isolation and
session isolation which we describe next.

The orchestrator provides a protected virtual computing environment for each database join job
thereby guaranteeing session isolation. While standard TLS is used to protect the communication
between different Spark clusters, the orchestrator provides additional communication protection
such as session specific encryption and authentication keys, randomizing and anonymizing the
endpoints, managing allow and deny lists, and monitoring/preventing DOS/DDOS attack to the
environments. The orchestrator also provides an additional layer of user authentication and autho-
rization. All of the computing resources, including tasks, cached data, communication channels,
and metadata are protected within this session. No foreign user or job may peek or alter the in-
ternal state of the session. Each parties’ Spark session is isolated from each other and only reports
execution state back to orchestrator.

On the other hand, cluster isolation aims at protecting computing resources from each parties
from misuse or abuse in the database join jobs. To accomplish this, the orchestrator is the only node
in the environment that controls and is visible to the end-to-end processing flows. It is also the only
party that has the metadata for Spark clusters involved in the session. Recall that a separate secure

13

Domain A

Domain B

PSI Instance

1]

Setup Phase

o

Finalize Setup

Ainit
bytes

B init
bytes

Spark Workers

Token Bin;
Split to chunks

Spark Workers

Token Bin;
Split to chunks

Alinit
bytes

B init

e ®

PSI Instance

Setup Phase

H (]
@ g s |
Server Server ¥y m B B
APSI I@
PSI Phase ® bytes | 051 ph
| ase
v : . = 1©
Finalize PSI 1 : : bytes
@ joi II Token Bin,, Token Bin,,
Ji::ine)(

Intersection
index

Figure 3: KKRT Implementation Workflow. (I) [DomainA.setupl] Domain A in its setup phase
generates encrypted data and transmits them to Domain B. 2) [DomainB.setupl] Domain B per-
forms its setup phase with data received from Domain A and in turn generates encrypted data
and transmits them to Domain A. (3) [DomainA.setup2| Domain A finalizes setup phase. (4) [Do-
mainA .psil] and (3) [DomainB.psil] Domains A and B execute the online PSI phase, which proceeds
over multiple rounds. (6) [DomainA.psi2] Domain A enters the Finalize PSI phase and computes
the intersection with Domain B as row indices. (7) Domain A retrieves matching records by doing
a reverse lookup into its dataset using the computed indices.

communication channel is employed via Livy and Kafka that limits the parties from accessing each
other’s Spark cluster. This keeps the orchestrator out of the data flow pipeline thereby preventing
the party operating the orchestrator from gaining advantages over other parties involved. It also
ensures that each Spark cluster is self-autonomous and requires little or no changes to participate
in a database join protocol with other parties. The orchestrator also takes care of job failures or
uneven computing speed to ensure out-of-the-box reusability of Spark clusters that typically already
exist in enterprise organizations.

Finally, we remark that the low level APIs calling cryptographic libraries and exchanging data
between C++ instances and Spark dataframes, lie in each party’s data cluster and thus do not
introduce any information leakage. The high level APIs package the secure Spark execution pipeline
as a service, and are responsible for mapping independent jobs to each executor and collecting the
results from them. See Subsection 4.3 for more details.

Taken together, our architecture essentially provides the theoretical security that is guaranteed
by the underlying PSI subprotocol. More concretely, when one party is compromised by the adver-
sary, the other party’s data remains completely private except whatever is revealed by the output
of the computation.

14

4.3 SPARK-PSI Implementation

We provide details on how we leverage Spark to implement the binning technique. Our underlying
PSI protocol is the KKRT protocol implemented in C++-.

KKRT Workflow. Figure 3 shows the detailed data flows in our SPARK-PSI framework instanti-
ated with the KKRT protocol. All of the phases shown in Figure 3 are invoked by the orchestrator
sequentially. The orchestrator starts the native KKRT execution by submitting metadata informa-
tion about the datasets to both parties. Based on the request, both parties start executing their
Spark code which creates new dataframes by loading the required data set using the supported
JDBC driver. This dataframe is then hashed into the tokens of fixed length by both parties. This
token dataframe is then mapped to m number of bins (in Spark terminology partitions) using the
custom partitioner by both parties, which is basically distributing tokens evenly on both side. Then
the final intersection is obtained by taking the union of each bin intersection. Note that tokeniza-
tion and binning are generic functionalities in our framework and can be used by any other PSI
algorithm. This way Spark achieves parallel execution of multiple bins on both sides.

The native KKRT protocol is executed via a generic JNI interface that connects to the Spark
code. Specifically, the JNT interface is in terms of round functions, and therefore is agnostic about
internal protocol implementation. Note that there is a one-time setup phase for KKRT (this setup
is required only once for a pair of parties). This is described in Steps (D),), (3) in Figure 3. Later,
the online PSI phase that actually computes the intersection between the bins is shown in Steps (@),
®), 6, and (7). The parties use edge servers to mirror data whenever there is a write operation on
any of the Kafka brokers. Note that the main PSI phase consists of sending the encrypted data sets
and can be a performance bottleneck as Kafka is optimized for small size messages. To overcome
this issue, we are chunking encrypted data sets into smaller partitions on both sides so that we can
utilize Kafka’s capability efficiently. We also keep the intermediate data retention period very short
on Kafka broker to overcome storage and security concerns.

The above strategy also has the benefit of enabling streaming of the underlying PSI protocol
messages. Note that the native KKRT implementation is designed to send and receive data as
soon as it is generated. As such, our Spark implementation continually forwards the protocol
messages to and from Kafka the moment they become available. This effectively results in additional
parallelization due to the Spark worker not needing to block for slow network I/O. Note that we
also explicitly cache token dataframe and instance address dataframe which are used in multiple
phases to avoid any re-computation. This way we take advantage of Spark’s lazy evaluation that
optimizes execution plan based on DAG and RDD persistence.

Reusable components for parallelizing other PSI protocols. Our code is packaged as a
Spark-Scala library which includes an end-to-end example implementation of native KKRT protocol.
This library itself has many useful reusable components such as JDBC connectors to work with
multiple data sources, methods for tokenization and binning approach, general C++ interface to
link other native PSI algorithms and a generic JNI interface between Scala and C++ interface.
All these functions are implemented in base class of the library, which may be reused for other
native PSI implementations. Additionally, our library decouples networking methods from actual
PSI computation which adds flexibility to the framework to support other networking channels if
required.

Any PSI implementation can be plugged into SPARK-PSI by exposing a C/C++ API that can
be invoked by the framework. The API is structured around the concept of setup rounds and online

15

rounds and does not make assumptions about the cryptographic protocol executed in these rounds.
The following functions are part of the API:

e get-setup-round-count() -> count — retrieves the total number of setup rounds required
by this PSI implementation;

e setup(id, in-data) -> out-data — invokes round id on the appropriate party with data
received from the other party in the previous round of the setup and returns the data to be
sent;

e get-online-round-count() -> count — retrieves the total number of online rounds required
by this PSI implementation;

e psi-round(id, in-data) -> out-data — invokes the online round id on the appropriate
party with data received from the other party in the previous round of the PSI protocol and
returns the data to be sent.

The data passed to an invocation of psi-round is the data from a single bin, and SPARK-PST orches-
trates the parallel invocations of this API over all of the bins. For example, KKRT has three setup
rounds (which we label for clarity in the rest of the paper as DomainA.setupl, DomainB.setupl,
and DomainA.setup2) and three online rounds (labeled DomainA.psil, DomainB.psil, and Do-
mainA.psi2). When running KKRT with 256 bins (as done in one of the experiments detailed in
Section 5), the setup rounds DomainA.setupl, DomainB.setupl, and DomainA.setup2 each invoke
setup once with the appropriate round id, and the online rounds DomainA.psil, DomainB.psil,
and DomainA.psi2 each invoke psi-round with the appropriate round id 256 times.

5 Experimental Evaluation

In this section, we describe the performance of our SPARK-PSI implementation, and provide
detailed benchmarks for various steps. Then, we provide our end-to-end performance numbers and
study the impact of number of bins on the running time. The highlight of this section is our running
time of 82.88 minutes for sets of size 1 billion. We obtain this when we use m = 2048 bins.!!

5.1 System Setup

Our experiments are evaluated on a setup similar to the one described in Figure 2. Each party runs
an independent standalone six-node Spark (v2.4.5) cluster with 1 server for driver and 5 servers for
workers. Additionally we have an independent Kafka (v2.12-2.5.0) VM on each side for inter-cluster
communication. The orchestrator server, which triggers the PSI computation, is on Domain A. All
servers have 8 vCPUs (2.6 GHz), 64 GB RAM and run Ubuntu 18.04.4 LTS.

5.2 Microbenchmarking

We first benchmark the performance of the various steps in the binning pipeline (cf. Figure 1) and
the KKRT implementation workflow (cf. Figure 3). For these experiments, we assume that each
party uses a dataset of size 100M as input.

1 This corresponds to dp = 0.019 for a bin size of ~ 500K (cf. Section 3.1).

16

Time (s) by dataset size
10M 50M 100M

DomainA .tokenize 47.21 91.20 124.68
DomainB.tokenize 45.90 92.89 121.64

SPARK-PSI step

DomainA.psil 8.40 20.64 31.55
DomainB.psil 40.83 121.73 247.30
DomainA.psi2 14.92 4749 88.05

Table 1: Microbenchmark of SPARK-PSI when using KKRT PSI and 2048 bins.

KKRT PSI round Time (s) by number of bins

256 2048
DomainA.psil.write 36.44 13.36
DomainB.psil.read 178.76 98.77
DomainB.psil.write 15.24 8.12
DomainA.psi2.read 25.61 21.35

Table 2: Network latency for a dataset of size 100M.

Table 1 describes the total time required for the individual phases of our protocol when the
number of bins equals 2048. For example, DomainA .tokenize (resp. DomainB.tokenize) denotes the
time taken for tokenizing A’s input (resp. B’s input) and mapping these tokens into different bins
and padding each bin to be of the same size (cf. Figure 1). Note that the tokenization step is done
in parallel. DomainA .psil denotes the time taken for executing Step (@) for all the bins. In this
step, Domain A generates and transfers approximately 60n bytes for dataset size n (i.e., 100M) to
Domain B. Likewise, DomainB.psil denotes the time taken for executing Step () for all the bins. In
this step, Domain B generates and transfers approximately 22n bytes back to Domain A. Finally,
DomainA.psi2 denotes the time taken for executing Steps (6) and (7), where the intersection is
determined for all the bins. Note that we have excluded benchmarking Steps (D), 2), 3 in Figure 3
as these correspond to the setup functions which have a constant cost, and more importantly these
functions need to be executed only once between a pair of parties (and can be reused for subsequent
PSI executions).

Communication vs. number of bins. Table 2 describes the impact of bin size on the time taken
for reading and writing data via Kafka (i.e., inter-cluster communication). (Note that the numbers
in Table 1 include the time taken for reading and writing data.) Here, DomainA.psil produces
intermediate data of size 9.1GB which is sent to Doman B, while DomainB.psil produces 3.03GB
intermediate data that is sent to A. As evident from the benchmarks in Table 2, more bins improve
networking performance as the message chunks become smaller. In more detail, when we go with
256 bins, individual messages of size 35.55MB are sent over Kafka for DomainA.psil. With 2048
bins, the corresponding individual message size is only 4.44MB.

17

Time (m)

Number

. Insecure Insecure
of bins single-cluster cross-cluster SPARK-PSI
Spark join Spark join
256 3.76 7.60 11.41
4,096 5.62 4.90 8.71
8,192 10.83 10.26 9.79

Table 3: Total execution time for different joins over datasets of size 100M. Fastest times in each
column are highlighted.

5.3 End-to-End Performance

Shuffle overhead of our protocol. In Table 3, we compare the performance of our protocol
with the performance of insecure joins on datasets of size 100M. To evaluate and compare with
the performance of insecure joins, we consider two variants. In the first variant, which we call
single-cluster Spark join, we employ a single cluster with six nodes (one server for driver and five
servers for workers) to perform the join on two datasets each of size 100M. Here, we assume that
both datasets reside on the same cluster. The join computation then proceeds by partitioning the
data into multiple bins and then computing the intersection directly using a single Spark join call.
In the second variant, which we call cross-cluster Spark join, we employ two clusters each with six
nodes, and each containing only one 100M tokenized dataset. Now, to perform the join, each cluster
partitions its dataset into multiple bins. Then one of the clusters sends the partitioned dataset to
the other cluster, which then aggregates the received data into one dataset, and then computed the
final join using a single Spark join call.

In the case of insecure join on a single cluster, we observe that increasing the number of bins
leads to an increase in the number of data shuffling operations (shuffle read/write), which ends
up slowing down the execution. When we split the insecure join across two clusters, we incur the
overhead of network communication across clusters and the additional shuffling on the destination
cluster, but gain a parallelism because we have twice the compute resources.

When we switch to SPARK-PSI, we maintain the overhead of cross-cluster communication and
incur additional overhead of the PSI computation, but we avoid the extra data shuffling (as we
employ broadcast join). We believe the effect of the broadcast join appears most significant when
we have smaller per-bin data (as is the case with 8,192 bins) making SPARK-PSI faster than the
insecure cross-cluster join in some cases. Our secure system introduces an overhead of up to 77%
in the worst case on top of the insecure cross-cluster join.

Choosing the optimal bin size. In Table 4 we report the running time of the PSI as a function
of the number of bins and dataset size, and plot the same in figure 4. The highlight of this table
is our running time of 82.88 minutes for dataset size 1B, roughly a 25x speedup over the prior
work of Pinkas et al. [PSZ18]. As evident from the table, we obtain this running time when we set
the number of bins m = 2048. Also as evident from the table and from the corresponding plot in
Figure 4, the performance of our protocol on datasets of a given size first begins to improve as we
increase the number of bins, and then hits an inflection point after which the performance degrades.
The initial improvement is a result of parallelization. Higher number of bins results in smaller bin

18

Time (m) by dataset size

1M 10M 100M 1B

Number of bins

1 1.07 12.04 - -

16 0.75 2.00 - -
64 0.78 1.66 15.27 154.10
256 099 1.47 1141 116.89
1,024 1.03 1.63 8.57 86.54
2,048 1.11 1.86 8.12 82.88
4,096 1.40 1.94 8.71 90.46
8,192 245 3.07 9.79 94.74

Table 4: Total execution time for PSI with various dataset sizes and bin sizes. Fastest times in
each column are highlighted.

size on Spark and this is ideal especially for larger datasets, but the strategy of increasing the
number of bins doesn’t continue to work as the task scheduling overhead in Spark (and the padding
overhead of the binning technique itself) slows down the execution. Also, we believe that better
performance is possible if we use more executor cores (i.e., a larger cluster) as this is likely to allow
better parallelization.

6 Related work

Private Set Intersection. Several protocols have been proposed to realize PSI such as the
efficient but insecure naive hashing solution, public key cryptography based protocols [Mea86,
HFH99, FNP04, FHNP16, DCT10, GA11, ACT11, RR17a, CLR17], those based on oblivious
transfer [DCW13, PSZ14, KKRT16, PRTY19, PRTY20, CM20] and other circuit-based solu-
tions [HEKM11, PSSZ15, PSWW18, BP19]. Another popular model for PSI is to introduce a
semi-trusted third party that aids in efficiently computing the intersection [SK14, ATD15, ATD16].
We refer to [PSZ16] for a more detailed overview on the various approaches taken to solve
PSI. In addition, other variants of PSI have also been extensively studied such as multi-party
PSI [KMP™17, HV17], PSI cardinality [CGT12, IKNT17|, PSI sum [IKN*17, TKNT19], threshold
PSI [GS19, BMR20] to name a few. Apart from PSI, there is also a line of work on performing
other set operations such as union privately [KS05, BA16, DC17, KRTW19].

Privacy-Preserving Frameworks. Modern big data systems have demonstrated unprecedented
scalability and performance since the MapReduce programming model [DGO08]. This introduces
both opportunities and challenges alike for secure distributed computing over massive data sets
and cloud computing.

Dong et al. [DCW13] introduce garbled Bloom filters to design an efficient PSI protocol over
big data, which is implemented using the MapReduce framework. PSJoin [DYC'19] makes use
of differential privacy to build a MapReduce-based privacy-preserving similarity join. Hahn et
al. [HLK19] use searchable encryption and key-policy attribute-based encryption to design a protcol
for secure joins that leak the fine granular access pattern and frequency of elements selected for the
join.

19

—eo— 1M
102 | |-= 10M \\N,w

—e— 100M

10!

Time (m)

100

| | | |

| | | |
1 16 64 256 1024 2048 4096 8192
Number of bins

Figure 4: Different input sizes achieve optimal execution time for different number of bins.

SMCQL [BEE"17] uses the garbled-circuit based backend ObliVM [LWN™15] to compute query
results over the union of several source databases without revealing sensitive information about indi-
vidual tuples. Although optimized, it introduces a prohibitive overhead. ConClave [VSG™19] builds
a secure query compiler based on ShareMind [BLW08] and Obliv-C [ZE15] to improve scalability.
ConClave works in the server-aided model in order to decrease computational overhead. However,
these systems still leave much to be desired in terms of performing efficient secure computation
over big data. Furthermore, existing works are tailor-made to meet specific requirements and hence
would not offer the same performance gains for arbitrary secure computation.

Another set of privacy-preserving frameworks makes wuse of hardware enclaves.
Opaque [ZDB7'17| is an oblivious distributed data analytics platform which utilized Intel
SGX hardware enclaves to provide strong security guarantees. OCQ [DLP'20] further decreases
communication and computation costs of Opaque via an oblivious planner. Unlike these methods,
SPARK-PSI does not depend on hardware. Other recent works include CryptDB [PRZB11] and
Seabed [PBC'16] which provide protocols for the secure execution of analytical queries over
encrypted big data. Senate [RP20] describes a framework for enabling privacy preserving database
queries in a multiparty setting.

7 Conclusion

In this paper, we described the analysis and application of a simple technique to parallelize any PSI
protocol. Using this, we studied how different PSI protocols in the literature can be easily scaled
to set sizes &~ 60x greater than standard benchmarks. We then described a Spark framework and
architecture to implement our technique in a private database join application. Our experiments
show that this framework is ready for use in real-world scenarios. Additionally, our framework
provides reusable components that enable cryptographers to scale novel PSI protocols to sets of
size one billion.

20

We see several threads for future work. One is to explore novel optimizations to our Spark
framework including use of alternative architectural components. Another is to generalize our
Spark framework to secure computation workloads (as opposed to just PSI). For instance, secure
private evaluation of random forests (a collection of decision trees) can be naturally parallelized
with Spark. Finally, we mention the study of the generality of the binning technique to malicious
settings and to variants of PSI such as threshold PSI, PSI-sum, and PSI-cardinality.

Disclaimer

All trademarks are the property of their respective owners, are used for identification purposes only,
and do not necessarily imply product endorsement or affiliation with the author(s).

References

[ACT11]

[AK17]

[ATD15]

[ATD16]

[BA16]

[BEE*17]

[BLWOS]

Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size matters: Size-
hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and
Antonio Nicolosi, editors, Public Key Cryptography - PKC 2011 - 14th International
Conference on Practice and Theory in Public Key Cryptography, Taormina, Italy,
March 6-9, 2011. Proceedings, volume 6571 of Lecture Notes in Computer Science,
pages 156-173. Springer, 2011.

Thomas Schneider N. Asokan Benny Pinkas Agnes Kiss, Jian Liu. Private set intersec-
tion for unequal set sizes with mobile applications. In Proc. Priv. Enhancing Technol.
(4), pages 177-197, 2017.

Aydin Abadi, Sotirios Terzis, and Changyu Dong. O-PSI: delegated private set intersec-
tion on outsourced datasets. In Hannes Federrath and Dieter Gollmann, editors, ICT
Systems Security and Privacy Protection - 30th IFIP TC 11 International Conference,
SEC 2015, Hamburg, Germany, May 26-28, 2015, Proceedings, volume 455 of IFIP
Advances in Information and Communication Technology, pages 3—-17. Springer, 2015.

Aydin Abadi, Sotirios Terzis, and Changyu Dong. VD-PSI: verifiable delegated private
set intersection on outsourced private datasets. In Jens Grossklags and Bart Preneel,
editors, Financial Cryptography and Data Security - 20th International Conference, FC
2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected Papers, volume
9603 of Lecture Notes in Computer Science, pages 149-168. Springer, 2016.

Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset operations.
Int. J. Inf. Sec., 15(5):493-518, 2016.

Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. Smcql: secure querying for federated databases. Proceedings of the VLDB
Endowment, 10(6):673-684, 2017.

Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Furopean Symposium on Research in Computer
Security, pages 192-206. Springer, 2008.

21

[BMR20]

[BP19]

[BPSWO07]

[CGT12]

[CKT10]

[CLR17]

[CM20]

[DC17]

[DCT10]

[DCW13]

Saikrishna Badrinarayanan, Peihan Miao, and Peter Rindal. Multi-party threshold
private set intersection with sublinear communication. TACR Cryptol. ePrint Arch.,
2020:600, 2020.

Oleksandr Tkachenko Avishay Yanai Benny Pinkas, Thomas Schneider. Efficient circuit-
based psi with linear communication. In Eurocrypt 3, pages 122-153, 2019.

Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-
preserving remote diagnostics. In C'CS, 2007.

Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private computation of
cardinality of set intersection and union. In Josef Pieprzyk, Ahmad-Reza Sadeghi, and
Mark Manulis, editors, Cryptology and Network Security, 11th International Confer-
ence, CANS 2012, Darmstadt, Germany, December 12-14, 2012. Proceedings, volume
7712, pages 218-231. Springer, 2012.

Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set
intersection protocols secure in malicious model. In Masayuki Abe, editor, Advances in
Cryptology - ASTACRYPT 2010 - 16th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Singapore, December 5-9, 2010. Pro-
ceedings, volume 6477 of Lecture Notes in Computer Science, pages 213-231. Springer,
2010.

Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homo-
morphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 1243-1255. ACM, 2017.

Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Con-
ference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part III, volume 12172 of Lecture Notes in Computer Science, pages 34—63. Springer,
2020.

Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations.
In Josef Pieprzyk and Suriadi Suriadi, editors, Information Security and Privacy -
22nd Australasian Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017,
Proceedings, Part II, volume 10343 of Lecture Notes in Computer Science, pages 261—
278. Springer, 2017.

Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In FC, 2010.

Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Proceedings of the 2018 ACM SIGSAC
conference on Computer € communications security, pages 789-800, 2013.

22

[DG04]

[DGOS]

[DK19]

[DLP+20]

[DRRT18]

[DYC*19]

[FHNP16]

[FNO19]

[FNP04]

|GA11]

[GA13]

[GS19]

[HCR17]

[HCR18]

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI’04: Sizth Symposium on Operating System Design and Implementa-
tion, pages 137-150, San Francisco, CA, 2004.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

Thomas Schneider Matthias Senker Christian Weinert Daniel Kales, Christian Rech-
berger. Mobile private contact discovery at scale. In USENIX Annual Technical Con-
ference, pages 1447-1464, 2019.

Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica.
Oblivious coopetitive analytics using hardware enclaves. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1-17, 2020.

Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scaling private
contact discovery. Proc. Priv. Enhancing Technol., 2018(4):159-178, 2018.

Xiaofeng Ding, Wanlu Yang, Kim-Kwang Raymond Choo, Xiaoli Wang, and Hai Jin.
Privacy preserving similarity joins using mapreduce. Inf. Sci., 493:20-33, 2019.

Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. Efficient set
intersection with simulation-based security. J. Cryptology, 29(1):115-155, 2016.

Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection
with linear communication from general assumptions. In Lorenzo Cavallaro, Johannes
Kinder, and Josep Domingo-Ferrer, editors, Proceedings of the 18th ACM Workshop
on Privacy in the Electronic Society, WPES@QCCS 2019, London, UK, November 11,
2019, pages 14-25. ACM, 2019.

Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In EUROCRYPT, 2004.

Gene Tsudik Giuseppe Ateniese, Emiliano De Cristofaro. (if) size matters: Size-hiding
private set intersection. In PKC| pages 156173, 2011.

Thomas Schneider Michael Zohner Gilad Asharov, Yehuda Lindell. More efficient obliv-
ious transfer and extensions for faster secure computation. In CCS, pages 535-548,
2013.

Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private
set intersection. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture
Notes in Computer Science, pages 3—29. Springer, 2019.

Kim Laine Hao Chen and Peter Rindal. Fast private set intersection from homomorphic
encryption. In CCS, pages 1243-1255, 2017.

Kim Laine Hao Chen, Zhicong Huang and Peter Rindal. Labeled psi from fully homo-
morphic encryption with malicious security. In CCS, pages 1223-1237, 2018.

23

[HEKM11]

[HFHO9]

[HLK19)

[HN10]

[HOS17]

[HV17]

[TKN+17]

[TKN*19]

[KKRT16]

[KMP+17]

[KRTW19]

[KS05]
[Liv17]

Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In 20th USENIX Security Symposium, San Fran-
cisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association, 2011.

Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy and
trust in electronic communities. In Stuart I. Feldman and Michael P. Wellman, editors,
Proceedings of the First ACM Conference on Electronic Commerce (EC-99), Denver,
CO, USA, November 3-5, 1999, pages 78-86. ACM, 1999.

Florian Hahn, Nicolas Loza, and Florian Kerschbaum. Joins over encrypted data with
fine granular security. In 85th IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019, pages 674-685. IEEE, 2019.

Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious
adversaries. In PKC, 2010.

Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-
preserving ridesharing. In CSF, 2017.

Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-party
private set-intersection. In Serge Fehr, editor, PKC, 2017.

Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. Private intersection-sum protocol with applications
to attributing aggregate ad conversions. 2017. ia.cr/2017/735.

Mihaela Ton, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shob-
hit Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying secure comput-
ing commercially: Private intersection-sum protocols and their business applications.
IACR Cryptol. ePrint Arch., 2019:723, 2019.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious prf with applications to private set intersection. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 818-829,
2016.

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. In CCS, 2017.

Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set
union from symmetric-key techniques. In Steven D. Galbraith and Shiho Moriai, edi-
tors, Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security, Kobe, Japan, De-
cember 8-12, 2019, Proceedings, Part II, volume 11922 of Lecture Notes in Computer
Science, pages 636—666. Springer, 2019.

Lea Kissner and Dawn Song. Privacy-preserving set operations. In CRYPTO, 2005.
Apache Livy. Apache livy, 2017.

24

ia.cr/2017/735

[LWN+15]

[MC18]

[Mea86|

[MNO1]

[NMH*+10]

[NTL+11]

[00S16]

[PBC*16]

[PR]
[PRTY19]

[PRTY20]

[PRZB11]

[PSSZ15]

Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm: A
programming framework for secure computation. In 2015 IEEE Symposium on Security
and Privacy, pages 359-376. IEEE, 2015.

Claudio Orlandi Michele Ciampi. Combining private set-intersection with secure two-
party computation. In SCN, pages 464-482, 2018.

Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use
in the absence of a continuously available third party. In Proceedings of the 1986 IEEE
Symposium on Security and Privacy, Oakland, California, USA, April 7-9, 1986, pages
134-137. IEEE Computer Society, 1986.

Benny Pinkas Moni Naor. Efficient oblivious transfer protocols. In SODA, pages 448
457, 2001.

Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov.
Botgrep: Finding p2p bots with structured graph analysis. In USENIX security sym-
posium, 2010.

Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, and
Dan Boneh. Location privacy via private proximity testing. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS 2011, San Diego, California,
USA, 6th February - 9th February 2011. The Internet Society, 2011.

Michele Orru, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n OT
extension with application to private set intersection. In CT-RSA, 2016.

Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran Ram-
jee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna Badri-
narayanan. Big data analytics over encrypted datasets with seabed. In 12th { USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages 587—
602, 2016.

Phillipp Schoppmann Peter Rindal. Vole-psi: Fast oprf and circuit-psi from vector-ole.
In Eurocrypt.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
private set intersection from sparse ot extension. In CRYPTO, 2019.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT, 2020.

Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: protecting confidentiality with encrypted query processing. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 85-100,
2011.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In USENIX, 2015.

25

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-

[PSZ14]
[PSZ16]
[PSZ18]
[RA17]
[Rin|

[RP20]

[RR17a]
[RR17D]

[SK14]

[VK13]

[VSG+19]

[Wik20]
[YI03]

[YS17]

[ZCD+12]

based PSI via cuckoo hashing. In EUROCRYPT, 2018.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on ot extension. In USENIX, 2014.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection
based on OT extension. TACR Cryptol. ePrint Arch., 2016:930, 2016.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection
based on OT extension. ACM Trans. Priv. Secur., 21(2):7:1-7:35, 2018.

Amanda C. Davi Resende and Diego F. Aranha. Unbalanced approximate private set
intersection. TACR Cryptol. ePrint Arch., 2017:677, 2017.

Peter Rindal. libPSI: an efficient, portable, and easy to use Private Set Intersection
Library. https://github.com/osu-crypto/1ibPSI.

Avishay Yanai Ryan Deng Raluca Ada Popa Joseph M. Hellerstein Rishabh Poddar,
Sukrit Kalra. Senate: A maliciously-secure mpc platform for collaborative analytics.
IACR Cryptol. ePrint Arch., 2020:1350, 2020.

Peter Rindal and Mike Rosulek. Improved private set intersection against malicious
adversaries. In FUROCRYPT, 2017.

Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual
execution. In CCS, 2017.

Mariana Raykova Saeed Sadeghian Seny Kamara, Payman Mohassel. Scaling private
set intersection to billion-element sets. In Financial Cryptography and Data Security,
pages 195-215, 2014.

Ranjit Kumaresan Vladimir Kolesnikov. Improved ot extension for transferring short
secrets. In Crypto (2), pages 54-70, 2013.

Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets,
and Azer Bestavros. Conclave: secure multi-party computation on big data. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019, pages 1-18, 2019.

Wikipedia. Java native interface - wikipedia, 2020.

Kobbi Nissim Erez Petrank Yuval Ishai, Joe Kilian. Extending oblivious transfers
efficiently. In Crypto, pages 145-161, 2003.

Song Jiang Qiuyu Li Shunde Cao Pengfei Zuo Yuanyuan Sun, Yu Hua. Smartcuckoo:
A fast and cost-efficient hashing index scheme for cloud storage systems. In USENIX
Annual Technical Conference, pages 553—-565, 2017.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Presented
as part of the 9th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 12), pages 15 28, 2012.

26

https://github.com/osu-crypto/libPSI

[ZCF*10]

[ZDB+17]

[ZE15]

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, page 10, USA, 2010.
USENIX Association.

Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E Gonza-
lez, and Ton Stoica. Opaque: An oblivious and encrypted distributed analytics plat-
form. In 14th {USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 17), pages 283-298, 2017.

Samee Zahur and David Evans. Obliv-c: A language for extensible data-oblivious
computation. TACR Cryptol. ePrint Arch., 2015:1153, 2015.

27

	Introduction
	Our Contributions
	Techniques to parallelize PSI
	Private database joins

	Organization

	Preliminaries
	Private Set Intersection
	Apache Spark
	Threat Model
	Threat Model of the PSI Protocol
	Threat Model of the Spark Framework
	Threat Model of Spark-PSI

	Parallelizing PSI via Binning
	Analysis
	Simulation
	Applying our binning technique

	Scalable Private Database Joins
	Database Joins Across Data Domains
	System Architecture
	Spark-PSI Implementation

	Experimental Evaluation
	System Setup
	Microbenchmarking
	End-to-End Performance

	Related work
	Conclusion

