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Abstract. The Number Theoretic Transform (NTT), Toom-Cook, and
Karatsuba are the most commonly used algorithms for implementing
lattice-based �nalists of the NIST PQC competition. In this paper, we
propose Toeplitz matrix-vector product (TMVP) based algorithms for
multiplication for all parameter sets of NTRU. We implement the pro-
posed algorithms on ARM Cortex-M4. The results show that TMVP-
based multiplication algorithms using the four-way TMVP formula are
more e�cient for NTRU. Our algorithms outperform the Toom-Cook
method by up to 25.3%, and the NTT method by up to 19.8%. More-
over, our algorithms require less stack space than the others in most
cases. We also observe the impact of these improvements on the overall
performance of NTRU. We speed up the encryption, decryption, en-
capsulation, and decapsulation by up to 13.7%, 17.5%, 3.5%, and 14.1%,
respectively, compared to state-of-the-art implementation.

Keywords: Lattice-based · Post-quantum · ARM Cortex-M4 · NTRU ·

Toeplitz · TMVP.

1 Introduction

The security of modern public-key cryptography relies on two hard-to-solve
mathematical problems: The integer factorization problem and the discrete log-
arithm problem. There are no classical algorithms to solve these problems in
polynomial time, even with very powerful computers. However, Shor's quantum
computer algorithm [25] can solve these problems in polynomial time. The cur-
rent asymmetric systems are still not broken because large enough quantum
computers have not yet been built. In the light of the developments in this
area, it is predicted that large-scale quantum computers will be built in �fteen
years. Until that day comes, the classical asymmetric cryptosystems will remain
secure. For this reason, research on quantum-resistant cryptosystems has been
pursued for almost four decades. The studies on post-quantum cryptography
(PQC) mainly focus on �ve main classes: lattice-based, code-based, multivariate
polynomial-based, hash-based, and isogeny-based.

⋆ The �rst author is partially supported by the Scienti�c and Technological Research
Council of Turkey (TÜB�TAK) 2211-c graduate scholarship program.
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NIST started PQC standardization competition process in 2017 [26] with 82
submissions, of which 69 were counted as the �rst round candidates. Only 26 of
these candidates could make it to the second round, which started in January
2019 [1]. In July 2020, the �nalists and the alternate candidates were announced
[22], and the third round of the NIST PQC competition o�cially began. Three
out of four public-key encryption (PKE)/key encapsulation mechanism (KEM)
�nalists and two out of three signature �nalists are based on lattices.

The lattice-based �nalists of the NIST PQC competition are de�ned on poly-
nomial quotient rings. The key generation, encryption, and decryption algo-
rithms of these schemes require multiplication in the ring Rq = Zq[x]/⟨f(x)⟩
which is speci�ed by di�erent parameters for each scheme. The algorithm used
for multiplication in the ring Rq = Zq[x]/⟨f(x)⟩ directly a�ects the e�ciency
of the scheme. Various multiplication algorithms can be used for e�cient imple-
mentations. The most commonly used algorithms are the schoolbook, Karatsuba
[20], Toom-Cook [29, 8], and the Number Theoretic Transform (NTT) [9]. The
paper [23] shows that multiplication algorithms based on Toeplitz matrix-vector
products (TMVP) might also be good alternatives for e�cient implementation
of lattice-based PQC schemes. When deciding the best algorithm to use, the
values of the parameters and the implementation platform must be taken into
account. If the modulus q is a prime and f(x) is the n-th cyclotomic polynomial
satisfying q ≡ 1 mod n, then NTT is the most e�cient algorithm to use. One of
the KEM �nalists, namely Kyber [4] is an example of such schemes that utilize
NTT multiplication. If the modulus q is not prime or speci�cally q is a power-
of-two as in Saber [10, 11] and NTRU [6], then NTT cannot be used directly.
In most of the implementations of such schemes, a combination of Toom-Cook,
Karatsuba, and schoolbook algorithms, together with polynomial reduction, is
used for multiplication in the ring Rq = Zq[x]/⟨f(x)⟩. In [23], applying the pro-
posed TMVP-based multiplication algorithm to Saber gives better results than
such implementations. Shortly after this improvement, in [7], it is shown that
NTT can be used when q is a power of two by making some adjustments.

Contribution: In this paper, we propose TMVP-based algorithms for multipli-
cation in the rings Z211 [x]/⟨x509 − 1⟩, Z211 [x]/⟨x677 − 1⟩, Z213 [x]/⟨x701 − 1⟩, and
Z212 [x]/⟨x821 − 1⟩ that speed up NTRU. The implementation of the proposed
algorithms are faster than others in the literature for all parameter sets of NTRU.

Code: Our code is available at https://github.com/iremkp/NTRU-tmvp4-m4.git.

Structure of the paper: In Section 2, the de�nition and some properties of
Toeplitz matrices, a brief description of the NTRU scheme, and some preliminary
information required to the subject are given. The TMVP-based multiplication
algorithms we propose and the results of our application to NTRU on ARM
Cortex-M4 can be found in Section 3. Section 4 concludes the paper with a
summary and some remarks.
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2 Preliminaries

This section includes some de�nitions and properties to provide a background
to the subject. First, we introduce Toeplitz matrices, and the formulas used
to calculate Toeplitz matrix-vector products (TMVP). Then, we show how a
multiplication in Zq[x]/⟨xn ± 1⟩ can be calculated as a TMVP. After recalling
one of the �nalists of NIST PQC competition, NTRU, we end this section with
a brief explanation of ARM Cortex-M4, which we use as the implementation
platform.

2.1 Toeplitz Matrices

Toeplitz matrices are used in many cryptographic applications in the litera-
ture. In [12], the �rst time cryptographic use of Toeplitz matrix-vector product
(TMVP) for multiplication in binary extension �elds can be seen. Since then,
many studies on cryptographic use of TMVP have been pursued [2, 12, 14, 15, 24,
27, 28]. Recently, in [23], TMVP is used to develop a multiplication algorithm
for Saber [10, 11].

De�nition 1. Let n be a positive integer. A Toeplitz matrix is an n× n matrix

in which the entries located on a line parallel to the main diagonal are constant.

The following matrix T is an example of a 5× 5 Toeplitz matrix:

T =


t0 t1 t2 t3 t4
t5 t0 t1 t2 t3
t6 t5 t0 t1 t2
t7 t6 t5 t0 t1
t8 t7 t6 t5 t0

 .

Since an n×n Toeplitz matrix can be determined with only 2n−1 elements,
it is su�cient to perform 2n − 1 entry additions to calculate the sum of two
Toeplitz matrices, which is again a Toeplitz matrix. Moreover, every submatrix of
a Toeplitz matrix is also a Toeplitz matrix. These properties allow us to calculate
a TMVP more e�ciently than the schoolbook matrix-vector multiplication via
TMVP formulas.

2.2 TMVP formulas

There are various split formulas in the literature for e�ciently compute a TMVP.
We refer the reader to [2, 13, 23] for further information on TMVP formulas. In
this section, we only recall the two-, three-, and four-way TMVP formulas we
use in this work. We use the notation A to denote an n×n Toeplitz matrix and
B for a vector of length n. For a k-split formula, we use the notations Ai and
Bi to denote the n/k-dimensional partitions of A and B, respectively.
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The two-way TMVP formula (TMVP-2): We can calculate an n dimen-
sional TMVP via three n/2-dimensional TMVPs as follows:

A ·B =

(
A1 A0

A2 A1

)(
B0

B1

)
=

(
P0 + P1

P0 − P2

)
, (1)

where

P0 = A1(B0 +B1),
P1 = (A0 −A1)B1,
P2 = (A1 −A2)B0.

The three-way TMVP formula with six multiplications (TMVP-3(6)):
An n-dimensional TMVP

A ·B =

A2 A1 A0

A3 A2 A1

A4 A3 A2

B0

B1

B2

 =

P1 + P4 + P5

P2 − P4 + P6

P3 − P5 − P6

 , (2)

where

P1 = (A0 +A1 +A2)B2,
P2 = (A1 +A2 +A3)B1,
P3 = (A2 +A3 +A4)B0,
P4 = A1(B1 −B2),
P5 = A2(B0 −B2),
P6 = A3(B0 −B1).

The four-way TMVP formula (TMVP-4): An n-dimensional TMVP can
be calculated via seven n/4-dimensional TMVPs by using the TMVP-4 formula
proposed in [23]. Without loss of generality, we assume that n is a multiple of
four. We partition the Toeplitz matrix and the vector and compute the product
as follows:

A ·B =


A3 A2 A1 A0

A4 A3 A2 A1

A5 A4 A3 A2

A6 A5 A4 A3




B0

B1

B2

B3

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 (3)
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where

P0 =
1

12
(12A6 − 4A5 − 15A4 + 5A3 + 3A2 −A1)B0,

P1 =
1

12
(12A5 + 8A4 − 7A3 − 2A2 +A1) (B0 +B1 +B2 +B3),

P2 =
1

24
(−12A5 + 16A4 −A3 − 4A2 +A1) (B0 −B1 +B2 −B3),

P3 =
1

24
(−6A5 −A4 + 7A3 +A2 −A1) (B0 + 2B1 + 4B2 + 8B3), (4)

P4 =
1

120
(6A5 − 5A4 − 5A3 + 5A2 −A1) (B0 − 2B1 + 4B2 − 8B3),

P5 =
1

120
(4A5 − 5A3 +A1) (B0 + 3B1 + 9B2 + 27B3),

P6 = (−12A5 + 4A4 + 15A3 − 5A2 − 3A1 +A0)B3.

The Toeplitz matrices Ai are of dimesion n/4× n/4, and the vectors Bi are
of dimension n/4×1. The arithmetic complexity of the TMVP-4 and the school-
book matrix-vector multiplication are given in Table 1. We use M(n) to denote
the arithmetic complexity of the corresponding algorithm for an n dimensional
TMVP.

Table 1. Arithmetic complexity comparison

Schoolbook M(n) = 2n2 − n

TMVP-2 M(n) = 3M(n/2) + 3n− 1

TMVP-3(6) M(n) = 6M(n/3) + 5n− 1

TMVP-4 M(n) = 7M(n/4) + 33n/2− 21

We use the arithmetic complexity values in Table 1 to determine the dimen-
sion at which the schoolbook algorithm is more e�cient. For example,

2.3 Multiplication modulo xn ± 1 using TMVP

If c(x) = c0 + c1x + · · · + cn−1x
n−1 is the product of a(x) = a0 + a1x + · · · +

an−1x
n−1 and b(x) = b0+b1x+· · ·+bn−1x

n−1 modulo xn±1 then the coe�cients
ci can be calculated via the following TMVP:

c0
c1
c2
...
...

cn−2

cn−1


=



a0 ∓an−1 ∓an−2 . . . ∓a3 ∓a2 ∓a1
a1 a0 ∓an−1 . . . ∓a4 ∓a3 ∓a2
a2 a1 a0 . . . ∓a5 ∓a4 ∓a3
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
an−2 an−3 an−4 . . . a1 a0 ∓an−1

an−1 an−2 an−3 . . . a2 a1 a0





b0
b1
b2
...
...

bn−2

bn−1


. (5)
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For large values of n schoolbook matrix-vector multiplication is not e�cient to
compute (5). Depending on the dimension n and the implementation platform,
we prefer to use TMVP formulas recursively or iteratively. The two- and three-
way formulas for TMVPs de�ned on integers given in [2, 13] require three and
six multiplications, respectively. The three- and four-way TMVP formulas, which
require �ve and seven multiplications, can be found in [23].

2.4 NTRU

NTRU is one of the lattice-based �nalists of the NIST PQC competition. NTRU
key encapsulation mechanism (KEM) is a merger of NTRUEncrypt and NTRU-
HRSS-KEM submissions of the �rst round, and it is based on the classical NTRU
system proposed by Ho�stein, Pipher, and Silverman [16, 17]. Unlike the origi-
nal NTRU, this system utilizes a perfectly correct deterministic public-key en-
cryption (DPKE) instead of a partially correct probabilistic one. The KEM is
obtained by applying a variant of FO transformation to this DPKE.

The key generation, encryption, and decryption algorithms of NTRU CPA-
DPKE are given in Algorithm 1, Algorithms 2, Algorithm 3, respectively. The
details of the operations used in these algorithms can be found in [6]. In Algo-
rithms 1, 2, and 3, n is an odd prime number and Φi is the the i-th cyclotomic
polynomial. Therefore, we have Φ1 = x − 1, Φn = xn−1 + xn−2 + · · · + x + 1,
and Φ1Φn = xn − 1.

Algorithm 1 KeyGen(seed)
1: (f,g)← Sample(seed)
2: fq ← (1/f) mod (q,Φn)
3: h← (3.g.fq) mod (q,Φ1Φn)
4: hq ← (1/h) mod (q,Φn)
5: fp ← (1/f) mod (3,Φn)
6: return ((f,fp,fq),h)

Algorithm 2 Encrypt(h,(r,m))

1: m′ ← Lift(m)
2: c← (r.h+m′) mod (q,Φ1Φn)
3: return c

Algorithm 3 Decrypt((f, fp,hq),c)

1: if c ̸≡ 0(mod (q,Φ1)) return (0, 0, 1)
2: a← (c.f) mod (q,Φ1Φn)
3: m← (a.fp) mod (3,Φn)
4: m′ ← Lift(m)
5: r← ((c-m)′.hq) mod (q,Φn)
6: if r.m ∈ Lr × Lm return (r,m, 0)
7: else return (0, 0, 1)

Multiplication in Zq[x]/⟨Φ1Φn⟩ = Zq[x]/⟨xn − 1⟩ is the main operation we
work on to improve the e�ciency of encryption and decryption algorithms. Im-
provements in multiplication have minimal impact on the key generation be-
cause of polynomial inversion operations. We propose TMVP-based algorithms
for multiplication in the rings Z2q [x]/⟨xn−1⟩ where n and q parameters are from
NTRU. We explain the details of the algorithm and share the implementation
results in Section 3.
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2.5 ARM Cortex-M4

The ARM Cortex-M4 microcontroller implements the ARMv7E-M instruction
set, and NIST recommends it as a reference implementation platform for the
evaluation of PQC candidates on microcontrollers. It has fourteen 32-bit regis-
ters available for the developer. As in many implementations [3, 5, 18, 19, 21] of
the NIST PQC competition candidates, we use the STM32F407DISC1 develop-
ment board. The SIMD (single instruction multiple data) instructions supported
by ARM Cortex-M4 allow us to perform arithmetic operations on 16-bit half-
words of multiple registers in parallel. Since we work on NTRU, which uses
integers of bit length less than 16, we can place two coe�cients in one register.
These instructions enable e�cient implementation of schoolbook matrix-vector
multiplication for small dimensions. smuadx and smlad are two examples of such
instructions that we frequently use in our implementations. The operations that
these instructions perform are given as follows:

smuadx Rd, Rn, Rm : Rd = RnbRmt + RntRmb

smlad Rd, Rn, Rm, Rs : Rd = RnbRmb + RntRmt + Rs

The indices b and t denote the bottom (bits 0 − 15) and top (bits 16 − 31)
halfwords of the relevant register. So smlad calculates the sum of the product
of the bottom half words and the top halfwords of Rn and Rm. Then, adds this
result to Rs, and writes the �nal result to Rd. The contents of Rn, Rm, and Rs

do not change after smlad instruction.

3 TMVP-based Multiplication for NTRU

In [23], it is shown that TMVP-based algorithms are good alternatives for ef-
�cient multiplication in the rings of the form Zq[x]/⟨xn ± 1⟩. The algorithm
proposed in [23] outperforms all other Cortex-M4 implementations that use a
combination of Toom-Cook, Karatsuba, and schoolbook methods. In this work,
we propose similar algorithms utilizing the TMVP-4 formula for ntruhps2048509,
ntruhrss701, ntruhps2048677, and ntruhps4096821, and implement them on ARM
Cortex-M4. The results show that our implementations are faster than the ones
in [7, 19].

3.1 Padding prime-dimensional TMVPs

NTRU uses multiplication in the ring Zq[x]/⟨xn− 1⟩ for key generation, encryp-
tion and decryption algorithms. As we mention in Section 2, we can represent
the multiplication c(x) = a(x)b(x) in Zq[x]/⟨xn − 1⟩ as the following TMVP:
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

c0
c1
c2
...
...

cn−2

cn−1


=



a0 an−1 an−2 . . . a3 a2 a1
a1 a0 an−1 . . . a4 a3 a2
a2 a1 a0 . . . a5 a4 a3
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
an−2 an−3 an−4 . . . a1 a0 an−1

an−1 an−2 an−3 . . . a2 a1 a0





b0
b1
b2
...
...

bn−2

bn−1


(6)

where a(x) =
∑n−1

i=0 aix
i, b(x) =

∑n−1
i=0 bix

i, and c(x) =
∑n−1

i=0 cix
i. For all

parameter sets of NTRU, the modulus q is a power of two and the dimension
n is a prime. The prime-dimension prevents us using the e�cient TMVP split
formulas. We would not consider the schoolbook method for e�cient matrix-
vector multiplication for these dimensions. So, we pad these prime-dimensional
TMVPs to facilitate the TMVP formulas in the literature. Our padding strategy
for the Toeplitz matrix in (6) is adding as many zeros as needed to the �rst row
and the �rst column until we attain the targeted dimension and complete the
rest of the entries in such a way that preserves the Toeplitz structure. On the
other hand, we append just as many zero entries at the end of the vector. For
example, if we decide to obtain an m-dimensional TMVP via padding (6) we
would have the following TMVP:



c0
c1
c2
.
.
.

cm−n

.

.

.
cn−2

cn−1

cn
.
.
.

cm−2

cm−1



=



a0 an−1 . . . a2 a1 0 . . . 0
a1 a0 . . . a3 a2 a1 . . . 0
a2 a1 . . . a4 a3 a2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

am−n am−n−1 . . . am−n+2 am−n+1 am−n . . . a1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

an−2 an−3 . . . a0 an−1 an−2 . . . a2n−m−1

an−1 an−2 . . . a1 a0 an−1 . . . a2n−m

0 an−1 . . . a2 a1 a0 . . . an−2

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
0 0 an−1 am−n am−n−1 am−n−2 . . . an−1

0 0 . . . am−n+1 am−n am−n−1 . . . a0





b0
b1
b2
.
.
.

bm−n

.

.

.
bn−2

bn−1

0

.

.

.
0
0



(7)

Here, we assume that m is a proper dimension for using TMVP formulas.
As can be seen in (7), we append m − n zero entries at the end of the vector
and the �rst row and column of the Toeplitz matrix in (6). Then, we �ll the
entries so that elements on a line parallel to the main diagonal are the same.
After calculating the TMVP in (7) e�ciently via TMVP split formulas, ignoring
the last m−n terms is all we need to do to obtain the result of (6). We �rst need
to decide the dimension m before padding. The dimension of the padded TMVP
mainly depends on n and the formulas we choose to use. In the following sections,
we share our choices for dimensions and explain the TMVP-based multiplication
algorithms we propose for every parameter set of NTRU.
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3.2 TMVP-based multiplication algorithms for NTRU

As mentioned in the previous section, the dimensions of TMVPs representing the
residue polynomial multiplication are prime for NTRU. Therefore, we pad these
prime-dimensional TMVPs in order to get TMVPs of the selected dimension. We
determine the dimensions depending on several factors, such as n, split formulas
we use, and the dimension for schoolbook multiplications. We elaborately explain
our way of deciding the dimension for padded TMVPs for every parameter set.

Multiplication Algorithm for ntruhps2048509: For this parameter set of
NTRU, we have q = 211 and n = 509 with the modulus polynomial x509− 1. So,
ntruhps2048509 requires multiplication in the ring Z211 [x]/⟨x509 − 1⟩ which can
be calculated via the following TMVP:

c0
c1
c2
...
...

c507
c508


=



a0 a508 a507 . . . a3 a2 a1
a1 a0 a508 . . . a4 a3 a2
a2 a1 a0 . . . a5 a4 a3
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
a507 a506 a505 . . . a1 a0 a508
a508 a507 a506 . . . a2 a1 a0





b0
b1
b2
...
...

b507
b508


(8)

We would not consider the schoolbook matrix-vector multiplication algorithm
as an option for this dimension. So, we should pad both the Toeplitz matrix
and the vector in (8) to obtain a suitable dimension for using the TMVP-4 for-
mula followed by other TMVP formulas, which yields small dimensional TMVPs.
Since we want to use the TMVP-4 formula, we start checking the options for
dimension with the smallest multiple of four that exceeds 509, which is 512.
The TMVP-4 formula yields seven 128-dimensional TMVPs when it is applied
to a 512-dimensional TMVP. Since 128 is a power of two, we are free to apply
TMVP-2 formulas until we reach a size of which the schoolbook is faster than
TMVP formulas. According to [23], 16 is the optimal dimension for switching
the multiplication algorithm from TMVP-2 to the schoolbook method. So, we
decide 512 for the dimension of the padded matrix, which is given in (9).

c0
c1
c2
...
...

c507
c508
c509
c510
c511


=



a0 a508 a507 . . . a3 a2 a1 0 0 0
a1 a0 a508 . . . a4 a3 a2 a1 0 0
a2 a1 a0 . . . a5 a4 a3 a2 a1 0
...

...
...

. . .
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
a507 a506 a505 . . . a1 a0 a508 a507 a506 a505
a508 a507 a506 . . . a2 a1 a0 a508 a507 a506
0 a508 a507 . . . a3 a2 a1 a0 a508 a507
0 0 a508 . . . a4 a3 a2 a1 a0 a508
0 0 0 . . . a5 a4 a3 a2 a1 a0





b0
b1
b2
...
...

bn−2

bn−1

0
0
0


(9)
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As seen in (9), we add three zero entries at the end of the �rst row and the �rst
column of the Toeplitz matrix and complete the rest accordingly to preserve the
Toeplitz structure. Similarly, we pad the vector with three zero entries as well.
We use the TMVP-4 formula followed by three layers of the TMVP-2 formula and
end up with 7.3.3.3=189 schoolbook matrix-vector multiplications of dimension
16.

512
TMVP-4−−−−−→ 128

TMVP-2−−−−−→ 64
TMVP-2−−−−−→ 32

TMVP-2−−−−−→ 16

We use the name TMVPmul-509-512 to refer the algorithm following the path
given above. TMVPmul-509-512 performs 189 schoolbook matrix-vector multipli-
cations and gives us 189 vectors of length 16. Then, we recombine these vectors
according to the formulas we use, and obtain (c0, c1, . . . , c508, c509, c510, c511) of
length 512 as the result of (7). Omitting the last three terms c509, c510, c511
gives us (c0, c1, . . . , c508) of length 509 which is the result of (8) that we were
looking for at the beginning. The results of the Cortex-M4 implementation of
the algorithm TMVPmul-509-512 are given in Table 3. The results show that
TMVPmul-509-512 is the most e�cient algorithm for ntruhps2048509 compared
to any other algorithm in the literature. For the algorithms in the next sections,
we skip some detailed explanations we give in this section to prevent unnecessary
repetitions.

Multiplication Algorithm for ntruhrss701 and ntruhps2048677: We have
q = 213, n = 701, and f(x) = x701 − 1 for ntruhrss701. Like the previous one, we
start checking the dimensions with the smallest multiple of four that is larger
than 701, which is 704. After applying the TMVP-4 formula to a 704-dimensional
TMVP, we have seven 176-dimensional TMVPs. Since 176 is a multiple of 16,
we can apply four layers of the TMVP-2 formula and end up with 189 TMVPs
of dimension 11 to be calculated via the schoolbook method. We named this
algorithm TMVPmul-701-704.

704
TMVP-4−−−−−→ 176

TMVP-2−−−−−→ 88
TMVP-2−−−−−→ 44

TMVP-2−−−−−→ 22
TMVP-2−−−−−→ 11

We implement the algorithm TMVPmul-701-704 and it seems like we improve
the multiplication in Z213 [x]/⟨x701 − 1⟩. However, when we test the correctness,
we observe that the algorithm fails sometimes in certain components of the
result. We think incorrect memory usage might cause this problem, but we can
not exactly point it out. We presume that for an odd-dimensional schoolbook
matrix-vector multiplication (11 in this case), loading/storing from/to addresses
that are not multiple of four may cause this fault. On the other hand, it is known
that accessing addresses that are not divisible by four causes a performance hit.
Therefore, we see no harm in increasing the dimension to �nd a path that requires
small and even dimensional TMVPs to be calculated via the schoolbook matrix-
vector multiplication. We avoid the paths that end up with an odd dimension
from now on. So, we keep checking the dimensions hoping to �nd a path with
small and even dimensional TMVPs at the end. We see that 720 is another
possible dimension for an e�cient computation tracing the following path:
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720
TMVP-4−−−−−→ 180

TMVP-3−−−−−→ 60
TMVP-3−−−−−→ 20

TMVP-2−−−−−→ 10

We implement this algorithm which we call TMVPmul-701-720 on ARM
Cortex-M4 and observe that it is faster than TMVPmul-701-704. The results
in Table 3 show that TMVPmul-701-720 is faster than any other Cortex-M4
implementations in the literature.

For ntruhps2048677 the parameters are given as q = 211, n = 677, and
f(x) = x677 − 1. Following the same strategy, we start checking the dimensions
with the smallest multiple of four exceeding 677. 680 is the �rst one we try, which
yields seven 170-dimensional TMVPs after applying the TMVP-4 formula. For
170, the only option is TMVP-2 which yields three 85-dimensional TMVPs. 85 is
not a multiple of two or three, and it is too large for the dimension of a TMVP to
a compute via schoolbook algorithm. So, we continue checking with 684, which
yields 19-dimensional TMVPs after a layer of TMVP-4 followed by two layers
of TMVP-3. We eliminate this path ending with an odd dimension (19 in this
case) due to the reason we explained before. Also, we believe that 19 is not a
small enough dimension for an e�cient schoolbook matrix-vector multiplication
considering the implementation platform we use. For the dimensions 688, 692,
696, and 700, a path does not exist that ends up with small enough TMVPs
via a combination of four-, three-, and two-way formulas. The next dimension
is 704, which we already examine for ntruhrss701. Because of the same motive
explained above, we choose 720 for the dimension of the padded matrix for
ntruhps2048677 as well. Appending 43 zero entries at the end of the vector and
the �rst row and column of the Toeplitz matrix gives us 720-dimensional padded
TMVP. The multiplication algorithm for ntruhps2048677 which we denote by
TMVPmul-677-720 tracing the same path as TMVPmul-701-720 is implemented
on ARM Cortex-M4 and share the results in Table 3. Our implementation of
TMVPmul-677-720 is the fastest compared to other Cortex-M4 implementations
in the literature.

Multiplication Algorithm for ntruhps4096821: For this parameter set of
NTRU, we have q = 212 and n = 821 with the modulus polynomial x821 − 1.
Starting with the nearest multiple of four which is 824, we check possible paths
and eliminate those requiring large or odd-dimensional schoolbook multiplica-
tions. We determine 864 as the dimension of the padded TMVP after this elim-
ination. The multiplication algorithm we propose for ntruhps4096821 which is
referred by TMVPmul-821-864 traces the following path:

864
TMVP-4−−−−−→ 216

TMVP-3−−−−−→ 72
TMVP-3−−−−−→ 24

TMVP-2−−−−−→ 12

The results of the implementation of TMVPmul-821-864 on ARM Cortex-M4 are
given in Table 3. It can be seen that TMVPmul-821-864 implementation is faster
than the state-of-the-art implementations.
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3.3 Implementation Results

In the previous section, we present the TMVP-based algorithms for multipli-
cation in Zq[x]/⟨xn − 1⟩ for di�erent values of n and q. We implement these
algorithms on ARM Cortex-M4, a recommended platform by NIST for evaluat-
ing post-quantum cryptographic schemes on microcontrollers. The digital signal
processing (DSP) instructions that the Cortex-M4 microprocessor supports al-
low us to simultaneously perform operations on halfwords of di�erent registers.
These instructions are called SIMD (single instruction multiple data) and enable
us to implement e�cient matrix-vector multiplications for small dimensions. The
source code of our implementation can be found at https://github.com/iremkp/NTRU-
tmvp4-m4.git. The adjustments on parameters required by both the NTT and
TMVP-based methods are given in Table 2. The �rst two columns contain the
original n and q parameters of NTRU, whereas the values in the middle two
columns are used to enable the NTT method for NTRU. The last two columns
of Table 2 contain the n, q pairs used by TMVPmul-509-512, TMVPmul-677-720,
TMVPmul-701-720, and TMVPmul-821-864, respectively.

Table 2. Comparison of the algorithms for polynomial multiplication

NTT TMVPmul
n q n q n q

509 2048 1024 1043969 512 2048
677 2048 1536 1389569 720 2048
701 8192 1536 5747201 720 8192
821 4096 1725 3365569 864 4096

Unlike the NTT method, TMVP-based algorithms do not entail a modi�-
cation on modulus q as can be seen in Table 2. In fact, the modi�cations on n
required by TMVP-based multiplication algorithms seem negligible compared to
the NTT method. We think that being able to keep the parameters relatively
smaller has a remarkable e�ect on the performance of the TMVP-based algo-
rithms. The performance results of our multiplication algorithms and the others
in the literature are given in Table 3. Our codes are compiled with arm-none-

eabi-gcc version 10.3.1. The cycle counts are the average of the results of 100
executions.
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Table 3. Comparison of the algorithms for polynomial multiplication

Cycles Stack
Toom([18])NTT([7]) TMVPmul Toom([18])NTT([7]) TMVPmul

ntruhps2048509 108717 101326 81238 7660 8352 7052
ntruhps2048677 182150 156235 144289 12984 100 10664
ntruhrss701 179994 155898 144228 13420 104 10668
ntruhps4096821 239133 199299 192983 15708 128 12788
The cycle count for Toom method includes the polynomial reduction.

As the results in Table 3 show, our TMVPmul-509-512 algorithm is 19.8%
faster and consumes 15.5% less stack memory than the NTT method in [7].
Similarly, TMVPmul-509-512 is 25.2% faster and consumes 7.9% less stack mem-
ory than the Toom-Cook method in [18]. For the other parameter sets, we also
speedup the residue polynomial multiplication but we are not able to reduce the
stack usage. Compared to NTT implementation [7], we improve the ring mul-
tiplication by 7.5%, 7.6%, and 3.1% with TMVPmul-701-720,TMVPmul-677-720,
and TMVPmul-821-864, respectively.

To observe the e�ect of the proposed algorithms on overall performance of
NTRU, we use the software package accompanying the paper [7]. We integrate
the assembly codes we write for the algorithms TMVPmul-509-512,TMVPmul-

677-720,TMVPmul-701-720, and TMVPmul-821-864 to the implementations of
ntruhps2048509, ntruhps2048677, ntruhrss701, and ntruhps4096821, respectively.
Table 4 shows the results of the applications of the proposed multiplication algo-
rithms to both the NTRU CPA-DPKE and NTRU CCA-KEM. The comparison
of the results of our algorithms and the NTT method can be also seen in Table
4.

Improving polynomial multiplication does not signi�cantly impact the per-
formance of the NTRU CPA-DPKE key generation algorithm since the polyno-
mial inversion operations dominate it. Nonetheless, we reduce the stack memory
usage by 13.9%, 9.2%, 10.5%, and 9.5% for the algorithms given in Table 4.
Although the improvement in performance of the NTRU CPA-DPKE key gen-
eration algorithm is not much, the encryption and decryption algorithms are
accelerated. The percentages of the improvements are given in Table 4. Our al-
gorithms speed up encryption by 13.7%, 4.9%, 4.1%, and 1.8%, and decryption
by 17.5%, 13%, 11.6%, and 11.8% compared to [7]. The decryption algorithm of
NTRU requires three multiplications, and TMVP-based algorithms can target
all of these multiplications, whereas NTT targets only one of them. For this
reason, the improvements are more prominent for decryption than they are for
encryption. Similarly, we speed up decapsulation more than encapsulation. More
or less, our application outperforms the NTT method for NTRU CCA-KEM for
encapsulation and decapsulation.
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Table 4. Results of application to NTRU

NTT [7] This work

ntruhps2048509

CCA

KeyGen:
79665 k 78766 k (−1.1%) cycles
21404 18748 (−12.4%) bytes

Encaps:
569 k 549 k (−3.5%) cycles
14080 12780 (−9.2%) bytes

Decaps:
538 k 462 k (−14.1%) cycles
14812 12156 (−17.9%) bytes

CPA

KeyGen:
79618 k 78718 k (−1.1%) cycles
18972 16316 (−13.9%) bytes

Enc:
153 k 132 k (−13.7%) cycles
11440 10140 (−11.3%) bytes

Dec:
434 k 358 k (−17.5%) cycles
13852 11196 (−15.5%) bytes

ntruhps2048677

CCA

KeyGen:
143731 k 142378 k (−0.9%) cycles
28512 26192 (−8.1%) bytes

Encaps:
827 k 816 k (−1.3%) cycles
9044 18264 (+101.9%) bytes

Decaps:
818 k 729 k (−10.9%) cycles
19736 17416 (−11.8%) bytes

CPA

KeyGen:
143672 k 142301 k (−0.9%) cycles
25280 22960 (−9.2%) bytes

Enc:
224 k 213 k (−4.9%) cycles
4196 14760 (+251.8%) bytes

Dec:
676 k 588 k (−13.0%) cycles
18472 16152 (−12.6%) bytes

ntruhrss701

CCA

KeyGen:
154406 k 153508 k (−0.6%) cycles
27572 24820 (−9.9%) bytes

Encaps:
380 k 369 k (−2.9%) cycles
7412 16612 (+124.1%) bytes

Decaps:
871 k 787 k (−9.6%) cycles
20564 17812 (−13.4%) bytes

CPA

KeyGen:
154377 k 153479 k (−0.6%) cycles
26156 23404 (−10.5%) bytes

Enc:
274 k 263 k (−4.1%) cycles
5716 14916 (+160.1%) bytes

Dec:
716 k 633 k (−11.6%) cycles
19084 16332 (−14.4%) bytes

ntruhps4096821

CCA

KeyGen:
207504 k 212377 k (+2.3%) cycles
34516 31604 (−8.4%) bytes

Encaps:
1035 k 1026 k (−0.9%) cycles
10936 21996 (+101.1%) bytes

Decaps:
1030 k 914 k (−11.3%) cycles
23964 21044 (−12.2%) bytes

CPA

KeyGen:
208772 k 212270 k (+1.7%) cycles
30604 27692 (−9.5%) bytes

Enc:
285 k 280 k (−1.8%) cycles
5096 17756 (+248.4%) bytes

Dec:
862 k 760 k (−11.8%) cycles
22348 19428 (−13.1%) bytes
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4 Conclusion

This paper showed that using the TMVP approach for multiplications in NTRU
results in a better running time for all parameter sets and less stack space usage
in most cases. We designed new multiplication algorithms for ntruhps2048509,
ntruhps2048677, ntruhps4096821, and ntruhrss701 by combining the four-, three-,
two-way TMVP formulas, and the standard (schoolbook) multiplication method.
The 4-way method calls seven products of size one-fourth of the original size
and improves the arithmetic complexity. Using the TMVP-4 formula leads to
better implementation results on ARM Cortex M4. The running time of the
proposed algorithms for NTRU enhances the best-known previous NTRU en-
cryption, decryption, encapsulation, and decapsulation implementation results
by up to 13.7%, 17.5%, 3.5%, and 14.1%, respectively. Moreover, it was revealed
that the stack usage decreases in most cases.

Based on the results of this work, the proposed TMVP-based algorithms in
this paper are very advantageous for NTRU. With TMVP-based algorithms, we
can target every multiplication in every algorithm of NTRU, unlike the NTT
method. Another practical feature of TMVP-based algorithms is that they can
be diversi�ed easily because the restriction on parameters is not that exclusive. In
fact, the only restriction required is n to be a multiple of some integer depending
on the TMVP formulas used. TMVP-based multiplication algorithms have never
been considered for post-quantum schemes before [23]. The results show that the
TMVP approach for multiplication in residue polynomial rings can be preferred
to obtain high speed and e�cient results for the post-quantum cryptography
that uses those rings. With this work, we believe that TMVP-based algorithms
attract the attention of the cryptographic community, and more research on the
subject will take place in the future.
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