
Unlinkable Delegation of WebAuthn Credentials
Nick Frymann

n.frymann@surrey.ac.uk

1
Surrey Centre for Cyber Security

University of Surrey

Guildford, UK

Daniel Gardham
1,2

daniel.gardham@rhul.ac.uk

2
Information Security Group

Royal Holloway, University of London

Egham, UK

Mark Manulis

mark@manulis.eu

Universität der Bundeswehr München

Munich, Germany

ABSTRACT
The W3C’s WebAuthn standard employs digital signatures to offer

phishing protection and unlinkability on the web using authentica-

tors which manage keys on behalf of users. This introduces chal-

lenges when the account owner wants to delegate certain rights to

a proxy user, such as to access their accounts or perform actions on

their behalf, as delegation must not undermine the decentralisation,

unlinkability, and attestation properties provided by WebAuthn.

We present two approaches, called remote and direct delegation
of WebAuthn credentials, maintaining the standard’s properties.

Both approaches are compatible with Yubico’s recent Asynchronous

Remote Key Generation (ARKG) primitive proposed for backing

up credentials. For remote delegation, the account owner stores

delegation credentials at the relying party on behalf of proxies,

whereas the direct variant uses a delegation-by-warrant approach,

through which the proxy receives delegation credentials from the

account owner and presents them later to the relying party. To

realise direct delegation we introduce Proxy Signature with Un-

linkable Warrants (PSUW), a new proxy signature scheme that

extends WebAuthn’s unlinkability property to proxy users and can

be constructed generically from ARKG.

We discuss an implementation of both delegation approaches,

designed to be compatible with WebAuthn, including extensions

required for CTAP, and provide a software-based prototype demon-

strating overall feasibility. On the performance side, we observe

only a minor increase of a few milliseconds in the signing and veri-

fication times for delegated WebAuthn credentials based on ARKG

and PSUW primitives. We also discuss additional functionality, such

as revocation and permissions management, and mention usability

considerations.

KEYWORDS
WebAuthn/FIDO2, privacy, delegation, proxy signatures, authenti-

cation

1 INTRODUCTION
With ever-growing reliance on web-based services, from online

shopping and banking to employee intranets and cloud storage, the

need to keep accounts secure is imperative. Developments in web-

based authentication standards, such as FIDO (Federated Online

IDentity) Universal 2nd Factor (U2F) [54] and WebAuthn [35] aim

to reduce reliance on passwords and one-time passcodes (OTPs),

such as HOTP [40], TOTP [41], and insecure SMS variants [42],

by enabling the use of hardware and platform authenticators that

manage asymmetric and unlinkable signing keys on behalf of users.

WebAuthn’s digital signatures and the use of independent sign-

ing keys offer stronger security protection and unlinkability for

web accounts, yet introduce challenges when the account owner

wishes to delegate certain rights to some proxy user, such as to ac-

cess their accounts or perform actions on their behalf, possibly for

a specific time period. This is particularly useful in the enterprise

environment, where employees may be required to give others,

such as personal assistants, access to their accounts for day-to-day

activities, when unable to work due to sickness or annual leave.

Aside from corporate life, users may need to delegate account ac-

cess to close friends or relatives, e.g., many banks offer third-party

access to support vulnerable users, a service that has seen increas-

ing demand since COVID-19 when (vulnerable) people were not

able to attend branches.

Interestingly, with traditional authentication methods such as

passwords or OTPs (which WebAuthn aims to replace) delegation

can be performed relatively easily, albeit not necessarily securely.

For example, delegated access to an account protected by a pass-

word can be performed by sharing the latter. However, delegation

achieved by sharing passwords is susceptible to reused passwords

(see e.g. a study by Pearman et al. [45]), which may inadvertently

give access to other accounts, and can only be revoked by chang-

ing the account password—which must be done manually. This

requires greater trust into the proxy who may change the account

password without permission. Additionally, accounts protected

by multi-factor authentication (MFA), including using OTPs, may

be undermined by sharing OTP secrets or registering multiple

something-you-own factors (such as phone numbers) for proxies;

also these must be separately and often manually revoked by hand

when the proxy’s access is to be revoked.

Existing methods. Application-specific delegation may be pro-

vided to users of the same service provider in a more secure manner,

such as allowing access to a mailbox to another user without shar-

ing passwords, e.g., delegated access in Office 365’s Outlook. There

are also existing standards that aim to achieve this on the web

and in local networks. OAuth [29], analysed by Fett et al. [20], is

an open standard for authorisation, or access delegation, through

which users can grant applications, especially websites, access to

account data without sharing passwords. For example, users can

create a Facebook account by granting Facebook access to an exist-

ing Google account, sharing their display name, email address and

birthday. OpenID Connect (OIDC) [53] is an authentication layer

built on top of OAuth which uses OpenID [50], analysed by Recor-

don and Reed [47], which is a decentralised authentication protocol

that allows an identity provider (IdP) to share identity data (e.g.,

name) to a relying party—who depends on the identity provider.

The OAuth and OIDC standards provide authorisation and au-

thentication mechanisms on the web, much like Kerberos [39] for

authentication and client authorisation. Single-Sign On (SSO), a

Nick Frymann, Daniel Gardham, Mark Manulis

Host deviceHost device RP

Using a roaming authenticator Using an embedded authenticator

Local presence or verification check CTAP WebAuthn API

Figure 1: Using roaming and embedded authenticators.

federated identity, is often achieved through Security Assertion

Markup Language (SAML) [46], analysed by Armando et al. [5] and

Groß [26], which uses cookies and provides a standard language for

exchanging authentication and authorisation information between

IdPs and service providers. Existing identity-providing protocols

are discussed and compared by Naik and Jenkins [43].

Additionally, there exist schemes for delegating signing rights

in the realm of digital signatures, called proxy signatures, first

introduced by Mambo et al. [38]. However, when viewed from

the perspective of WebAuthn, existing proxy signatures would not

maintain the unlinkability properties of WebAuthn credentials and,

in some cases, its decentralised nature. See Section 1.1.1 for more on

WebAuthn properties and Section 3.1 for a discussion on existing

proxy signature schemes in the context of WebAuthn delegation.

For example, access to WebAuthn accounts must be delegatable

without disclosing the proxy user’s identity to the service provider;

otherwise delegated accounts may become linkable.

More recently, Yubico has proposed a protocol for backing up

WebAuthn credentials [37] without compromising WebAuthn prop-

erties. Their approach is based on a new Asynchronous Remote

Key Generation (ARKG) primitive [24], which allows a primary au-

thenticator to create pubic key credentials for one or more trusted

backup authenticators, owned by the same user, whilst maintaining

the unlinkability and decentralisation properties of WebAuthn—

which many of the current approaches do not provide as shown in

a recent study by Kunke et al. [36].

We observe that Yubico’s approach can be viewed as some form

of self-delegation, however, delegating to other users gives rise

to further challenges and considerations due to the new and less-

trusted security setting, as opposed to the trusted ownership of

primary and backup authenticators.

1.1 WebAuthn properties, delegation challenges,
and naïve approaches

1.1.1 Overview of WebAuthn and its properties. WebAuthn [35] is

a web-based application programming interface (API) that allows

web servers, called Relying Parties (RPs), to communicate with

conforming authenticators on a user’s device—the host device.

As outlined in Figure 1 this communication is facilitated by a

WebAuthn client through its implementation of the WebAuthn

standard—the RP calls functions provided by the API. RPs may use

this to employ asymmetric cryptography to authenticate users on

the web, with keying material stored on and managed by the user’s

authenticator.

Authenticators and clients. WebAuthn authenticators may be

software- or platform-based, called embedded or bound (which are

part of the host device), such as Windows Hello, or a separate

hardware token, called a roaming authenticator, for example a

YubiKey from Yubico.

These authenticators interact with RPs via a client, such as a web

browser, which can communicate with software and hardware on

the user’s host device, unlike the sandboxed website—the browser

bridges this gap.

The Client-to-Authenticator Protocol (CTAP) [21] allows roam-
ing hardware tokens to communicate with a client running on a

host device, such as a user’s phone or computer, over some trans-

port such as Bluetooth, NFC, or USB. The client provides RPs with

the ability to communicate with roaming and software authenti-

cators. Note that the older FIDO standard describes CTAP1/U2F

and Universal Authentication Framework (UAF), whereas FIDO2 is

the newer umbrella specification for W3C’s WebAuthn and CTAP

(version 2.1) in combination to give passwordless, second- and

multi-factor authentication on the web [23].

Registration and authentication. During registration, the authen-

ticator receives a random challenge from the RP. It requires the

user to perform a gesture, for example, to press an on-screen confir-

mation button, present a biometric factor, or enter a passcode, in

order to unlock the authenticator for use. The authenticator then

generates a private-public key pair unique to this registration, sub-

mitting this challenge along with the new public key. Later, when

authenticating, the authenticator receives another challenge from

the RP and signs it with the corresponding private key after the

user performs the required gesture.

Gestures provide RPs with a check for either user presence (e.g.

press to confirm) or verification (e.g. biometrics), depending on

the what is offered by the authenticator. As in Figure 1, the user

performs gestures on both hardware tokens and platform authen-

ticators. The ceremonies for registration and authentication are

detailed in the standard [35, §§7.1,7.2].

A recent analysis by Barbosa et al. [6] confirms the authentica-

tion security of the WebAuthn protocol against active imperson-

ation attacks. In addition, the following properties are commonly

associated with the WebAuthn standard, and become important in

the context of delegation.

Unlinkability. The unlinkability of registered public keys, re-

quired by WebAuthn, prevents users from being correlated across

registrations since it cannot be determined whether two keys were

produced by the same authenticator.

This is achieved by registering a freshly-generated private-public

key pair, giving a unique key pair registered for each account. This

property means that users cannot be identified across RPs, unless

they willingly reuse login names, e.g., usernames or email addresses.

Attestation. Authenticators may present RPs with certificates

from vendors to prove their make and model, and therefore security

assurances, so that user verification may be delegated to the au-

thenticator. This means that verification may be performed locally

on the authenticator with RPs trusting these local user verification

methods where required, since the authenticator attests to this ver-

ification with its attestation certificate. This is designed for use in

high-security applications [22].

Unlinkable Delegation of WebAuthn Credentials

Attestation uses an attestation ID, AAGUID, shared between au-

thenticators of similar functionality, makes and model, so as to not

break unlinkability. Attestation statements may be verified using

the certificate chain and its AAGUID.
Since attestation is given as a signature and certificate chain

over credentials emitted by an authenticator, credential attestation

may be undermined by sharing private keying material between

authenticators. Barbosa et al. [6] cover attestation as part of their

analysis of WebAuthn and CTAP’s authentication security.

Storage. Authenticators may generate fresh key pairs for each

registration and record the private key locally to ensure unlinkabil-

ity. However, some authenticators, such as resource-constrained

roaming hardware tokens, may not record their private keys locally.

For example, by using additional credential data that may be

sent during registration, private keys may be stored with the RP,

encrypted under a symmetric key held by the authenticator. This

means that private keys are not recorded by the authenticator

and are only learnt during the authentication process, where the

authenticator receives these additional credential data as part of its

challenge.

1.1.2 Delegation-specific challenges. Any approach for delegating

WebAuthn credentials should preserve the unlinkability of WebAu-

thn credentials, not undermine its decentralised nature, and retain

the ability to perform attestation. In addition, it is highly desirable

that users are able revoke access for delegated credentials and set

permissions which are understood and enforced by RPs. Finally,

proxies need not hold their own accounts at RPs for delegation. RPs

must be unable to link proxies to their delegators, even if the proxy

already holds their own account at the same RP.

Delegation must preserve the unlinkability of delegator’s orig-

inal WebAuthn credentials across different accounts. This means

that delegated credentials must not contain any information that

would allow RPs to link a delegator’s accounts and, therefore, the

unlinkability guarantees must be extended to cover credentials of

proxy users.

In particular, delegated credentials must not reveal any informa-

tion that would allow RPs to identify the proxy user, who may be

in possession of delegated credentials to multiple accounts. This

preserves the unlinkability guarantee for delegators and extends it

to proxies.

Given the decentralised nature of WebAuthn, where credentials

are stored directly with RPs and on user-owned devices, delegation

solutions should not require a third party, whose reliability and

trustworthiness would need to be relied upon.

Since attestation uses manufacturer certificates to prove the

make and model of an authenticator when generating credentials,

which may describe security guarantees offered by the authen-

ticator, sharing private keying materials between authenticators

may undermine these security guarantees—the trustworthiness of

attestation guarantees could be weakened.

However, RPs may offer some flexibility in handling attestation.

For example, an RP may accept a credential registered on behalf of

another authenticator (i.e., the credential is signed with a private

key that does not match the public key being registered), with

the provision that the latter authenticator may be rejected when

providing its own attestation during authentication, if it does not

meet the RP’s attestation policy.

Delegators should also be able to revoke account access from

proxies at a later time. In addition, the ability to add context- or

application-specific permissions that may also include an expiry

date, and define the types of actions that can be performed with

delegated credentials, should also be considered.

In particular, it must not be possible for a proxy user to take over

the ownership of the account by deleting the original delegator’s

credentials. In order to enforce permissions, RPs must be able to

distinguish that account access is being performed by a proxy with

a delegated credential and be able to process additional data that

identifies the credential as being for a proxy.

These requirements rule out a number of initial approaches to

delegation. The first naïve approach that maintains unlinkability

would include the proxy user generating multiple independent key

pairs in advance and sending these to the delegator, who registers

them at RPs to perform delegation. This approach is inefficient and

unworkable for resource-constrained authenticators which may

not store (many) keys locally.

The second naïve approach is the reversed version—where the

delegator generates key pairs for proxy users on-demand (e.g., upon

performing the delegation) and then sends them the private keys.

This approach would undermine the attestation requirement due

to the sharing of private keying material between authenticators.

Finally, a third naïve approach could involve a trusted third

party to mediate the delegation and potentially provide a cloud-

backed key management solution. However, this would depend

on the reliability and trustworthiness of the third party, as well as

weakening the decentralised nature ofWebAuthn and going against

the recommendations of the standard [35, §§13.2,13.4.6].

1.2 Contribution and organisation
We propose two approaches for delegation of WebAuthn creden-

tials aiming to preserve the decentralisation, unlinkability and at-

testation properties of the standard. Our approaches, presented in

Section 2, enable the account owner to either configure delegation

credentials and permissions remotely at the relying party, or to send

them directly to the proxy user.

Both approaches are compatible and built on top of the recent

Asynchronous Remote Key Generation (ARKG) [24] scheme, which

has been proposed by Yubico to W3C for WebAuthn backup and ac-

count recovery [37]. Our remote delegation approach uses ARKG di-

rectly to create unlinkable delegated credentials for proxy users.Our

direct delegation approach is performed using warrants and re-

quires a new class of proxy signatures that we call Proxy Signature

with Unlinkable Warrants (PSUW) and present in Section 3.

PSUW is used to create warrants that can extend the required

unlinkability property to proxy signers. Our PSUW scheme is very

efficient and is constructed generically from ARKG. In Section 4, we

provide cryptographic implementations that are compatible with

WebAuthn, analyse and compare performance of our delegation ap-

proaches, discuss in detail various aspects of their intergration with

WebAuthn and CTAP, give a prototype of the delegation schemes

which uses standard WebAuthn calls, and provide remarks on their

usability. We conclude in Section 5.

Nick Frymann, Daniel Gardham, Mark Manulis

2 DELEGATINGWEBAUTHN ACCOUNT
CREDENTIALS

In this section we specify two approaches allowing users to delegate

access to their WebAuthn accounts to proxies. Our delegation ap-

proaches are compatible with Yubico’s recent proposal for backing

upWebAuthn credentials and using them for account recovery [37].

2.1 From account recovery to delegation
Yubico’s solution for the credential backup and account recovery

problem in WebAuthn is based on a novel ARKG protocol [24]

which helps to preserve the decentralisation, unlinkability, and

attestation properties of the standard. The ARKG protocol allows

a primary authenticator to register keys on behalf of additional

backup authenticators, which may be later used to regain access

to accounts. After the authenticators have been setup, the primary

authenticator generates and registers unlinkable public keys on

behalf of backup authenticators upon registering with RPs.

In a nutshell, during the setup phase a backup authenticator with

the private key sk sends to the primary authenticator its public key

pk. When registering with RPs, derived public keys pk′ are gener-
ated based on the backup’s public key pk, computed and registered

by the primary authenticator. After the primary authenticator is

lost or damaged, a backup authenticator is able to compute the cor-

responding private key sk′ for the pk′ registered on its behalf using

credential data cred stored at the RP, which gives the link between

pk and pk′ and allows the corresponding sk′ to be computed with

knowledge of sk.
ARKG maintains the unlinkability property of WebAuthn, as

arbitrary derived public keys pk′, and pk, exhibit unlinkability
that is compatible with WebAuthn. Attestation is also maintained

since sk′ is not shared between authenticators and the backup

authenticator may provide attestation statements for RPs to verify

when regaining access to accounts, i.e., when completing their

authentication challenge.

Yubico’s credential backup solution assumes that the primary

and backup authenticators are owned and controlled by the same

user and, once setup, the primary authenticator can invisibily reg-

ister or re-register keys for backup authenticators when needed.

This approach and the underlying trust assumptions do not readily

translate to delegation, as delegators should be able to delegate,

as well as grant and revoke permissions, to proxies at their dis-

cretion. RPs need to enforce limited access to accounts, requiring

that proxy users cannot lock delegators out of their own accounts

or perform actions for which they do not have permission. This

results in delegation which requires additional data and parameters,

so RPs can determine the level of access to grant to proxy users;

ARKG without any changes grants full account access, since it is

roughly equivalent to a standard account credential.

2.2 Two approaches for delegation
In our first approach, called remote delegation, delegation is config-

ured remotely on the relying party, whereas in the second approach,

called direct delegation, delegated credentials are sent directly to the
proxy. Our approaches address the requirements from Section 1.1.2

and cater for different types of authenticators, and their capabilities,

such as storage-constrained hardware tokens—the remote variant

Delegator Proxy

RP

1○ pkp

2○
pk
′ , c
re
d 3

○
C
h
a
lle
n
g
e
, cred

4
○

R
e
s
p
o
n
s
e

(a) Remote delegation.

Delegator Proxy

RP

1○ pkp

2○warr, ddata

3
○

C
h
a
lle
n
g
e

4
○

R
e
s
p
o
n
s
e
, w

arr

(b) Direct delegation.

Figure 2: Overview of WebAuthn credential delegation vari-
ants. The remote variant uses RPs to store and manage dele-
gated credentials, whereas the direct variant uses warrants
sent to proxies.

is best suited to this kind, whereas direct delegation is suited for

platform authenticators in computers and mobile devices. Neither

approach requires proxies to hold an account at the RP in order to

complete delegation.

We aim to use ARKG, which is currently under consideration for

standardisation by W3C’s WebAuthn working group, as a building

block for both delegation approaches so that they can be realised

with minimal changes for RPs and authenticators that may already

support ARKG for credential backup.

Both approaches share the same setup phase where the dele-

gator communicates with the proxy. Following the setup phase,

delegation can be performed for different accounts at one or more

relying parties. In the remote approach, the delegator deposits a

public key and some additional data intended for the proxy user

with the RP, i.e., delegation is configured and achieved through

the RP. The proxy user will be able to prove its authorisation by

communicating with the RP at a later stage. In the direct approach,

the delegator sends a warrant with some additional data to the

proxy user who may later prove to the RP that they are authorised

to access the delegator’s account. Both variants are depicted in

Figure 2 and detailed in Sections 2.3 to 2.5.

2.3 Setup phase (common for remote and direct
delegation)

This phase is the same for both delegation approaches and cor-

responds to step 1 where the delegator learns a public key pkp
of the proxy user. This public key will enable the generation of

multiple delegated credentials, potentially for different accounts

owned by the delegator. The delegator already has an independent

private-public key pair (skd, pkd), registered via WebAuthn, for

each account it holds—with which it can delegate account access.

The proxy user must know the corresponding private key skp
in order to sign future WebAuthn challenges when accessing the

delegator’s account. To access the delegator’s account, proxies will

need to know that delegation has been granted along with the login

name used for the delegator’s account. Conceptually, the setup

phase is similar to that of ARKG [24] when viewing a proxy user’s

pkp as a backup authenticator’s pk. The main difference is in the

Unlinkable Delegation of WebAuthn Credentials

channel through which pkp is transmitted given the differences in

the ownership of the authenticators, as discussed in more detail in

Section 4.

2.4 Remote delegation
In the remote variant (see Figure 2a), to perform delegation in

step 2 , the account owner logs into their account at the RP using

WebAuthn credentials and configures delegation for the proxy user

by generating an unlinkable public key pk′ from the proxy user’s

public key pkp using ARKG. In addition to pk′, the delegator stores
at the RP the corresponding ARKG credential information cred. In
order to access the account in steps 3 and 4 , the proxy user will

use ARKG to derive the corresponding signing key sk′ from its

private key skp and cred, and sign on the RP’s authentication chal-

lenge. Remote delegation can be performed for multiple accounts

following a single setup phase since many unlinkable pk′ may be

generated for the same proxy’s pkp.
Note that all derived keys pk′ are unrelated to the delegator’s

pkd and they are registered directly with the RP for the account,

maintaining WebAuthn unlinkability and providing a decentralised

design—as credentials are stored with only the RP and authenticator

involved, with no third party.

Since the RP records proxy credentials, regardless of whether

they have ever been used, credentials registered for proxies may be

deleted, i.e., revoked, on an as-needed basis. As the RP is always

aware of delegations as soon as they are registered, it may provide

a web interface allowing the delegator to set permissions against

individual account credentials, including those for proxies. This

meets the revocation and policy control requirement, as well as

ensuring the RPs are aware that this credential is for a proxy user.

2.5 Direct delegation
Our direct delegation variant (see Figure 2b) uses a new proxy

signature scheme that involves a common delegation-by-warrant

approach, but outputs warrants that remain unlinkable with respect

to the proxy users. We also show how to construct such a proxy

signature scheme using ARKG as a building block (see Section 3.3).

To delegate access to the account, for which the delegator’s public

key pkd is registered with an RP, the delegator uses its private key

skd to create a warrant warr for the proxy user for whom pkp
was received as part of the setup phase. This warrant contains the

delegator’s signature on a warrant public key pkwwhich is different

from and unlinkable to pkp. The delegator sendswarr together with
some delegation data ddata to the proxy user in step 2 . The proxy

user can compute the warrant signing key skw using received ddata
and is able to use skw to sign RP’s authentication challenges when

accessing the delegator’s account in steps 3 and 4 . The RP checks

validity of the warrant using delegator’s registered pkd prior to

granting account access.

Observe that multiple warrants containing different pkw can

be generated by the delegator for the same proxy user after the

initial setup phase. These pkw remain unlinkable. In this way, the

delegator can repeatedly grant access to the same proxy user for

one or more of its WebAuthn accounts for the same or different RPs.

The communication channel required for step 2 can be established

Delegator

Proxy

Account 1 Account 2

pkd1 pkd2

pkw1 pkw2

Send pkp

Unlinkable (via WebAuthn)

R
e
g
is
te
r
s

R
e
g
is
te
r
s

G
e
n
e
r
a
te
s

G
e
n
e
r
a
te
s

D
e
l
e
g
a
t
e
s
t
o

D
e
l
e
g
a
t
e
s
t
o

Unlinkable

Figure 3: Unlinkability of delegated WebAuthn credentials.
pkw is a warrant public key specific to each delegation.

on-demand, in a similar way as during the setup phase (see Section 4

for more details).

Note that since RPs are unaware of direct delegations until they

are presented with warrants by proxy signers, warrants must be

validated against the delegator’s existing WebAuthn account cre-

dentials, that is using the delegator’s public key pkd for the account,
to prove that it was issued by the account owner. This requires that

warrants, the public key pkw to which access is granted, and the

existing account credential be linked. However, warrants must not

undermine the unlinkability of existing account owner’s creden-

tials, whilst extending the unlinkability property to their proxies—

resulting in registrations and delegations remaining uncorrelatable

across accounts and RPs, as visualised in Figure 3. The delegator’s

account public key pkd is unlinkable to delegator’s public keys used
on other accounts by virtue of them being registered as normal

with WebAuthn. For proxy signers, however, this means that their

warrant public keys pkw created by the delegator must also remain

unlinkable. This essentially motivates the need for the new type

of proxy signatures, which we call PSUW and detail in Section 3,

through which delegators can issue warrants that cannot be linked

to a proxy signer’s pkp. Our direct approach therefore does not

require a third party to complete the delegation, maintaining the

decentralisation of WebAuthn.

Any issued warrants may be invalidated by replacing the account

credential for pkd, which may be seen as equivalent to changing

the password given to someone to access accounts. Alternatively,

RPs could allow users to blacklist warrants, which would require

additional server-side logic and delegators to record generated

warrants to later add them to blacklists. The warrants used in

the direct variant may contain additional signed data, including

Nick Frymann, Daniel Gardham, Mark Manulis

expiry timestamps and permissions granted to the proxy. RPs would

need to understand the warrant permissions format—this offers

the benefit of being signed by the delegator by default, in a well-

known and easily-parsed warrant format (see also Section 4 for

more details on revocation and permissions).

3 PROXY SIGNATUREWITH UNLINKABLE
WARRANTS

In this section we present a new scheme called Proxy Signature

with Unlinkable Warrants (PSUW), a new type of proxy signature

required for the direct delegation of WebAuthn credentials. PSUW

adopts the delegation-by-warrant approach however, in contrast to

other proxy signature schemes, delegated warrants and signatures

produced by proxies remain unlinkable to the identities of the prox-

ies. This helps to protect the unlinkability of multiple WebAuthn

accounts access to which has been delegated to the same or multiple

proxies. Following a brief comparison with related work on proxy

signatures, we model security of PSUW and show how to construct

it generically using ARKG and an ordinary digital signature scheme.

3.1 Related work on proxy signatures
Proxy signatures were introduced by Mambo et al. [38], with se-

curity formalised by Boldyreva et al. [8]. Typically, delegation to

a proxy signer is performed by issuing a warrant that contains a

certificate on the proxy signer’s public key that verifies against the

delegator’s public key. This warrant then becomes part of the proxy

signature, and is verified within the proxy signature’s verification.

Any scheme that follows this approach cannot achieve unlinkable

warrants since the proxy signer’s public key is required to verify

the warrant, which make them unsuitable for application inWebAu-

thn. Nonetheless, a range of constructions from different hardness

assumptions exist, e.g., based on discrete logarithms [8, 31, 38, 55],

integer factorisation [57], and lattice-based problems [30].

In addition to standard proxy signatures there have been propos-

als to provide various degrees of privacy for the warrants, such as

anonymous proxy signatures by Shum and Wei [52], with a formal

model and a general construction proposed later by Fuchsbauer and

Pointcheval [25]—giving the properties of proxy anonymity and

traceability. Their model assumes three parties, the issuer, user, and

opener. The construction bears similarity with the approach taken

in group signatures Chaum and van Heyst [13] through encryption

of the warrant under the opener’s public key with appropriate zero-

knowledge proofs, such that the proxy signer remains anonymous

yet traceable by the opener if needed. We observe that although

this scheme offers richer functionality than ours, such function-

ality is not needed in the context of WebAuthn. Removal of the

traceability requirement from [25] would still yield a complex con-

struction requiring zero-knowledge proofs to protect privacy and

hence would not be compatible with the WebAuthn standard. Using

central authorities would also not suit its decentralised nature.

We also note the work of Yu et al. [58], who also call their scheme

‘anonymous proxy signature’. However, their construction has dif-

ferent functionality and is a combination of a proxy signature and

a ring signature [48], the term ‘anonymous’ comes from the fact

that a proxy is hidden within a larger set of proxies when verifying

the ring signature. Moreover, their security analysis is focused only

on the unforgeability properties. Similarly, the scheme proposed

by Wu et al. [56] combines standard proxy signatures with group

signatures, and is similarly not applicable for our setting.

Finally, we note the work by Derler et al. [16], which contructs

warrant-hiding proxy signatures (see also [28]) and blank signatures

(see also [27]) from anonymous credentials [12]. In the former,

warrant-hiding means that the message space delegated to a proxy

remains unknown to the verifier, other than the message being

presented for verification. In the latter, a format for the message

has a structure that can be changed in a prescribed way. These

techniques are not what is required to realise unlinkable delegation

in WebAuthn.

3.2 Modelling PSUW
We define here the syntax and security properties of PSUW.

3.2.1 Syntax of PSUW. The scheme has six algorithms. Public pa-
rameters pp are implicitly given as input to all algorithms.

Definition 1 (PSUW). A Proxy Signature with Unlinkable War-
rants scheme consists of the following six algorithms:

• Setup(𝜆) generates and outputs public parameters pp of the
scheme for security parameter 𝜆 ∈ N.

• DKGen() samples a private-public key pair (skd, pkd) for a
delegator when called.

• PKGen() samples a private-public key pair (skp, pkp) for a
proxy signer when called.

• Delegate(skd, pkp) takes as input skd and pkp. It proba-
bilistically returns warrant warr and delegation data ddata,
which the proxy signer may use with its own signing key skp
to generate proxy signatures.

• Sign(skp, pkd,warr, ddata,𝑚) takes as input skp, pkd,warr,
ddata, message𝑚, and returns a proxy signature 𝜎 under skp
for𝑚, or ⊥ on error (e.g. warr or ddata are invalid for pkd).
Note thatwarr ∈ 𝜎 , allowing𝜎 to be verifiable as a standalone
signature. ddata is used to compute the signing key, but is
not included in the proxy signature 𝜎 output.

• Verify(pkd, 𝜎,𝑚) takes as input pkd, 𝜎 ,𝑚, and returns 1 if
𝜎 is valid with respect to pkd for𝑚, otherwise 0.

3.2.2 Security definitions. We give the adversarial model and de-

fine two properties for PSUW: Warrant-Unlinkability and Unforge-

ability.

Adversaries and oracles. We model an adversary A as a proba-

bilistic polynomial time (PPT) algorithm, which may call, using the

parameters to which it is given access, any of the public procedures

given in Section 3.2.1.

The adversary A may make a polynomial number of queries to

the oracles given in Figure 4:

• OReg, when called, samples a new key pair (skp, pkp), stor-
ing the key pair in list LReg, and returns pkp.

• ODelegate (pkp), is initialised with the delegator’s private

key skd. On input proxy-signer public key pkp, it records
the result ofDelegate(skd, pkp) in list LDel, returningwarr
and ddata without giving A access to skd. If (·, pkp) ∉
LReg, it aborts. This models an honest delegation to pkp.

Unlinkable Delegation of WebAuthn Credentials

OReg when called

1 : (skp, pkp) ←$PKGen()
2 : LReg← LReg ∪ (skp, pkp)
3 : return pkp

OCorr on input pkp

1 : retrieve (skp, pkp) from LReg else abort

2 : LCorrupt← LCorrupt ∪ (skp, pkp)
3 : return skp

ODelegate on input pkp

1 : if (·, pkp) ∉ LReg then abort

2 : (warr, ddata) ← Delegate(skd, pkp)
3 : LDel← LDel ∪ (pkp,warr)
4 : return warr, ddata

OSign on input (pkp,warr, ddata,𝑚)
1 : retrieve (skp, pkp) from LReg else abort

2 : �̄� ← Sign(skp, pkd,warr, ddata,𝑚)

3 : if �̄� =
? ⊥ then abort

4 : LSign← LSign ∪ (�̄�, pkp,warr, ddata,𝑚)
5 : return �̄�

Figure 4: Oracles for PSUW security experiments.

• OSign (pkp,warr, ddata,𝑚), is intialisedwith the delegator’s
public key pkd. On input proxy-signer public key pkp, war-
rant warr, delegation ddata, and a message𝑚, it records in

list LSign the result of calling Sign(skp,warr, ddata,𝑚) for
(skp, pkp) ∈ LReg. It aborts if Sign returns ⊥. This models

asking for a signature on a message of A’s choice.

• OCorr (pkp), on input proxy-signer public key pkp, returns
the corresponding private key skp from list LReg and adds

the key to list LCorrupt. If (·, pkp) ∉ LReg, it aborts. This
models the leak of private keying material for proxy.

Correctness. Our scheme is correct if, ∀𝜆 ∈ N, the following hold:

pp← Setup(𝜆)
(skd, pkd) ← DKGen()
(skp, pkp) ← PKGen()

(warr, ddata) ← Delegate(skd, pkp)
𝜎 ← Sign(skp, pkd,warr, ddata,𝑚)
1 =

? Verify(pkd, 𝜎,𝑚)

Warrant-Unlinkability. The Warrant-Unlinkability (wu) prop-
erty of a PSUW scheme ensures that an adversary, when given

proxy signature 𝜎 , warrantwarr, and delegation data ddata, cannot
determine the identity pkp for which the delegation was performed.

The unlinkability property of WebAuthn requires that users can-

not be correlated across registrations. We capture this property by

requiring that an entity, such as an RP in the case of WebAuthn,

be able to determine the identity of the user who delegated sign-

ing rights, i.e., account access, but not the identity of the proxy

signer. This means that unlinkability is maintained for both the

delegator—where knowing the identity of proxy signers might pro-

vide linkability for account holders too—and the proxy signer.

We model Warrant-Unlinkability in Figure 5a. The experiment

Expwu-𝑏
A (𝜆) is parameterised with bit 𝑏. It chooses a delegator’s

key pair (skd, pkd) and challenges an adversary A to determine

which of its proxy-signing keys was used to delegate signing rights

for pkd and sign message 𝑚. A is given access to oracles OReg,
ODelegate, OSign and OCorr.

Definition 2 (Warrant-Unlinkability). This is offered by
PSUW if the following is negligible in 𝜆:

Advwu-𝑏
PSUW,A (𝜆) B��

Pr

[
Expwu-1

A (𝜆) = 1

]
− Pr

[
Expwu-0

A (𝜆) = 1

] ��
Unforgeability. For a PSUW scheme to satisfy the Unforgeability

property, an adversary A must not be able to forge proxy signa-

tures with respect to a delegator’s pkd without knowledge of the

corresponding skd, as modelled in Figure 5b.

The experiment challenges A to give a valid proxy signature 𝜎 ,

for a message𝑚 of its choice, for a delegator’s pkd. The adversary
is given access to the OReg, ODelegate, OSign, and OCorr oracles.
A wins if it can break either the delegation (line 4) or signing

procedures (lines 5 and 6).

Definition 3 (Unforgeability). A PSUW scheme provides Un-
forgeability if the following advantage is negligible in 𝜆:

AdvunforgePSUW,A (𝜆) B Pr

[
ExpunforgeA (𝜆) = 1

]
3.3 Our generic PSUW construction
We proceed with a generic construction of PSUW, based on the

ARKG primitive and an ordinary digital signature scheme, and then

analyse its security.

3.3.1 Building blocks. We recall the two building blocks.

Asynchronous Remote Key Generation (ARKG) [24]. An ARKG

scheme has five algorithms, ARKG B (Setup,KGen,DerivePK,
DeriveSK,Check). Setup(𝜆) returns public parameters pp for the

scheme. KGen samples a key pair (sk, pk) when called. Derived

public key algorithm DerivePK(pk, aux) returns a new public key

pk′ and derivation data cred. Derived private key sk′ for pk′ is com-

puted and returned by DeriveSK(sk, cred). Check(sk′, pk′) returns
1 if (sk′, pk′) form a valid key pair, otherwise 0. In our construction,

we use ARKG which offers the following two properties:

PK-Unlinkability (pku) is provided by ARKG if AdvpkuARKG,A (𝜆)
is negligible in 𝜆 for a PPT adversary A to distinguish between

derived public keys and uniformly-sampled public keys. The adver-

sary is given access to challenge oracle O𝑏pkp which is initialised

with a bit 𝑏 and public key pk. When called, it returns either the

Nick Frymann, Daniel Gardham, Mark Manulis

Expwu-𝑏
A (𝜆)

1 : pp← Setup(𝜆)
2 : (skd, pkd) ←$DKGen()

3 : (ST, pkp
0
, pkp

1
,𝑚) ← A

OReg,ODelegate,OSign,OCorr
1

(pp, pkd)
4 : retrieve (skp

0
, pkp

0
) and (skp

1
, pkp

1
) from LReg else

return 0

5 : (warr, ddata) ← Delegate(skd, pkp𝑏)
6 : �̄� ← Sign(skp𝑏 , pkd,warr, ddata,𝑚)

7 : 𝑏′ ← A
OReg,ODelegate,OSign,OCorr
2

(ST, �̄�,warr, ddata)
8 : return 𝑏 =

?

𝑏′ ∧ (·, pkp
0
) ∉ LCorrupt ∧ (·, pkp

1
) ∉ LCorrupt

(a) Warrant-Unlinkability experiment.

ExpunforgeA (𝜆)
1 : pp← Setup(𝜆)
2 : (skd, pkd) ←$DKGen()

3 : (�̄�,𝑚) ← AOReg,ODelegate,OSign,OCorr (pp, pkd)
4 : parse �̄� as (warr, ·)
5 : return Verify(pkd, �̄�,𝑚) = 1

6 : ∧ ((·,warr) ∉ LDel ∨
7 :

[
∃pkp,𝑚 s.t. (·, ·,warr, ·,𝑚) ∉ LSign ∧

8 : (pkp,warr) ∈ LDel ∧ (·, pkp) ∉ LCorrupt
]
)

(b) Unforgeability experiment.

Figure 5: Security experiments for PSUW.

PSUW.Setup(1𝜆)
1 : return pp = (1𝜆,ARKG.Setup(1𝜆),DS.Setup(1𝜆))

PSUW.DKGen(pp)
1 : return (skd, pkd) = DS.KGen(pp)

PSUW.PKGen(pp)
1 : return (skp, pkp) = ARKG.KGen(pp)

PSUW.Delegate(skd, pkp)
1 : (pkw, cred) ←$ARKG.DerivePK(pp, pkp,Ø)
2 : 𝜎 ← DS.Sign(skd, pkw)
3 : return warr = (pkw, 𝜎), ddata = cred

PSUW.Sign(skp, pkd,warr, ddata,𝑚)
1 : parse warr as pkw, 𝜎
2 : parse ddata as cred

3 : if DS.Verify(pkd, pkw, 𝜎) =? 0 then return ⊥
4 : skw← ARKG.DeriveSK(pp, skp, cred)

5 : if skw =
? ⊥ then return ⊥

6 : 𝑠 ← DS.Sign(skw,𝑚)
7 : return �̄� = (𝑠,warr)

PSUW.Verify(pkd, 𝜎,𝑚)
1 : parse �̄� as 𝑠,warr

2 : parse warr as pkw, 𝜎

3 : return DS.Verify(pkd, 𝜎, pkw) ∧ DS.Verify(pkw, 𝑠,𝑚)

Figure 6: Algorithms of our PSUW construction.

result of DerivePK(pp, pk, aux) when 𝑏 = 0 or samples and returns

a new public key from D when 𝑏 = 1.

Malicious-Strong Key Secrecy (msKS) is provided by ARKG if

AdvmsKS
ARKG,A (𝜆) is negligible in 𝜆 for a PPT adversary A to derive

a valid key pair sk★, pk★ and corresponding cred★ for an initial

public key pk. It is given access to derived public key oracle Opk′
and derived private key oracle Osk′ . It wins if sk★, pk★ and corre-

sponding cred★ verify against ARKG.Check and it did not trivially

obtain these by querying the oracles.

For formal definitions of these properties, we refer to the work of

Frymann et al. [24, §4.1]. Note that their construction of ARKG sat-

isfies the above properties under the well-known snPRF-ODH [10]

and Discrete Logarithm hardness assumptions in the random oracle

model. This construction will be used to instantiate our generic

PSUW scheme and is recalled in Appendix A.

Digital Signature (DS). A digital signature scheme has three algo-

rithms, DS B (DS.KGen,DS.Sign,DS.Verify). The key generation

algorithm DS.KGen takes as input a security parameter 𝜆 and out-

puts a key pair (sk, pk). The signing algorithm takes as input a sign-

ing key sk with a message𝑚 and outputs a signature 𝜎 . DS.Verify

takes as input a candidate tuple (pk, 𝜎,𝑚) and outputs 1 if 𝜎 verifies

with respect to public key pk and message𝑚, otherwise 0.

Two variants of DS unforgeability are required. We first require

standard existential unforgeability under chosen-message attack

(EUF-CMA), which challenges an adversary to produce a forgery

(𝜎★,𝑚★) that verifies with respect to pk without knowledge of the

corresponding sk. In this experiment, the adversary has access to a

signing oracle OSign and wins if 𝜎★ was produced on𝑚★
that was

not queried to OSign. We also require strong unforgeability under

chosen-message attack (SUF-CMA) [4], in which case 𝜎★ was not

obtained from OSign on query𝑚★
.

3.3.2 PSUW algorithms. The algorithms of our generic PSUW con-

struction are specified in Figure 6, which use the algorithms from

ARKG and DS as underlying building blocks.

3.3.3 Security analysis of the generic PSUW scheme.

Theorem 1. PSUW satisfies Warrant-Unlinkability if ARKG sat-
isfies PK-Unlinkability.

Theorem 2. PSUW satisfies Unforgeability if DS is SUF-CMA
secure and ARKG offers both Malicious-Strong Key Secrecy and PK-
Unlinkability.

Unlinkable Delegation of WebAuthn Credentials

Table 1: Mean execution time for a single primitive call, in
milliseconds and averaged from 1000 timings.

Primitive Delegate Sign Verify

ECDSA (plain WebAuthn) – 1.9 1.6

ARKG (remote delegation) 5.6 3.8 1.6

PSUW (direct delegation) 7.5 5.4 3.2

Proof. Proofs for Theorems 1 and 2 are given in Appendix B.

□

Remark 1. Looking ahead, we will instantiate DS with ECDSA,
which is known to only provide EUF-CMA security. However, it has
been shown that the only attack on strong unforgeability [19] for an
ECDSA signature of the form (𝑠, 𝑡) ∈ G, is the forgery (−𝑠, 𝑡) ∈ G.

As noted by Fersch in [18, Remark 3.2.3], there are numerous tech-
niques to mitigate such an attack by normalising the 𝑠 component
so that only one of 𝑠 or −𝑠 can be verified. For example, enforcing
𝑠 ∈ [1, (𝑞−1)/2], so that either 𝑠 or −𝑠 = 𝑞−𝑠 verifies. In our instanti-
ation and implementation, we enforce this 𝑠-component normalisation
to acheive a strongly-unforgeable ECDSA.

4 ACHIEVING DELEGATION IN WEBAUTHN
In this section, we discuss instantiations and perfomance of our

ARKG-based delegation approaches and the new PSUW primitive,

and provide detailed technical and practical considerations for im-

plementing and integrating delegation functionality intoWebAuthn,

as well as discussing our prototype.

4.1 Cryptographic implementation
We instantiate the cryptographic building blocks in our delegation

approaches using compatible, standard-based, and efficient algo-

rithms that are already being used in the WebAuthn standard. This

includes ECDSA standard [44] on the P-256 curve (see ECC [11]),

which is used for theDS building blockwithin PSUWand to perform

all signing operations used in our delegation approaches. Using

ECDSA gives further straightforward compatibility with ARKG

and PSUW. Credential public keys [35, §6.5.1] in WebAuthn are

described using the COSE [51] format. ECDSA on P-256 curve

with SHA-256 is given a standard and registered COSE algorithm

name EC256 and type -7. The COSE algorithm is specified when

producing WebAuthn credentials.

The instantiation and implementation of ARKG uses the original

proposal from Yubico [24, 37], which is currently being considered

for standardisation of WebAuthn credential backups. It adopts the

standards-based HKDF [33] with SHA-256 [17] and HMAC-SHA-

256 [32] algorithms, which are widely supported in the WebAuthn

ecosystem. We adopt the same algorithms to implement PSUW (see

our code [2]). In this way, we ensure that our delegation approaches

would work well with authenticators that implement ARKG primi-

tive for backup purposes.

Performance. In Table 1, the performance for each of the prim-

itives required for delegating and authenticating in WebAuthn is

presented. The timings were taken using our benchmarking pro-

gram and PSUW implementation, with Python source code avail-

able [2]. The existing ARKG code by Lundberg and Nilsson [37] and

Python’s fastecdsa are used as our ARKG and DS building blocks,

respectively. These timings are abstracted from the full delegation,

registration, and authentication procedures as these encounter un-

avoidable, and in some cases unpredictable, overheads, including

packing data into message formats for WebAuthn processing and

network performance. We capture instead the measurable differ-

ence between an example of plain WebAuthn, using ECDSA, and

our two delegation approaches: remote using ARKG and direct

using PSUW. Each primitive was invoked 1000 times on an Intel i7-

8700 (3.20 GHz), using a single-threaded software implementation,

with the average for a single call recorded.

Compared to a plain WebAuthn sign-and-verify challenge using

ECDSA, the ARKG primitive in the remote delegation approach

gives an increase of only 1.9 ms in execution time for the signature

generation. From ARKG to PSUW used in the direct delegation, we

observe an increase of 1.6 ms for the signing operation. PSUW also

incurs an average increase of 1.6 ms in verification over ECDSA

and ARKG, as it must verify both the warrant’s signature and the

signature on the challenge. ARKG’s verification requires a single

ECDSA signature verification as its response is a standard ECDSA

signature, but for a derived private-public key pair. Note that these

timings are reported without any bespoke optimisations made to

the underlying libraries used.

4.2 Approach for integration with WebAuthn
In order to integrate delegation into WebAuthn, we require either

a companion program or a client extension that implements both

CTAP with changes listed here and the standard WebAuthn API—

no changes are required for WebAuthn as we employ its extensions

provision. This program will facilitate communications between

the authenticators for the setup phase and direct delegation.

4.2.1 Using and extending CTAP. As authenticators cannot commu-

nicate directly, a companion program or client (browser) extension

is required to complete the setup and delegation phases between

the delegator and proxy. This companion program will use new

CTAP [21] calls to communicate with supported authenticators to

export and import delegation credentials and data:

authenticatorExportDelegationKey Return pkp to be given to

a delegator from freshly-sampled (skp, pkp), recording skp.
authenticatorImportDelegationKey Record proxy public key

pkp and some user-defined identifier id for a proxy. This
may also include AAGUID so the proxy’s authenticator could
be verified against the RP’s attestation policy, if available.

authenticatorMakeDelegatedCredential On input rp, the RP’s
domain matched against a stored credential’s rp field, addi-

tional signed data aux (e.g., timestamp, permissions) and

the user-defined identifier id for the proxy, generate dele-
gation data (warr, ddata).

authenticatorListDelegationKeys Return list of ids and any

AAGUID for imported delegation keys pkp.
authenticatorImportWarrant Record input warr and ddata.
authenticatorDeleteDelegationKey Given input id, delete pkp

corresponding to id.

Nick Frymann, Daniel Gardham, Mark Manulis

The CTAP authenticatorMakeCredential call is used for the

remote variant, where extension data instructs the authenticator

how to handle the request (i.e., that the credential should be created

using a known proxy’s key). Since a proxymay also have their own

account(s) at an RP, a list of PublicKeyCredentialDescriptors,
given in CTAP’s allowList, should be supplied by the RP. This al-

lows the proxy’s authenticator to locate the delegated credential, so

it does not inadvertently use the proxy’s own credential. The proxy

then runs ARKG.DeriveSK for recorded pkp until ARKG.DeriveSK
succeeds, so no identifiers are present in ddata.

For remote delegation, the authenticator will supply the RP with

(pk′, cred) during RP-initiated delegation, with cred used as the

credential’s ID. For direct delegation, the companion program will

instead send (warr, ddata) to the proxy, which will store this pair.

In order to generate warrants, the private key for a given del-

egator’s account must be stored locally. For the remote variant,

encrypted private keys stored remotely may be provided as input to

authenticatorMakeDelegatedCredential, as the user must first

authenticate with the RP before completing the delegation to obtain

this encrypted private key. This makes remote delegation better

suited for hardware tokens that may not have private keys stored

locally nor the space to store warrants for direct delegation.

CTAP and WebAuthn credential extensions. Additional data emit-

ted or used by the authenticator, transferred via CTAP and stored

in WebAuthn credentials, is achieved using the credential’s ‘exten-

sions’ field. This is a CBOR-encoded [9] mapping of an extension

ID to the extension’s data, e.g., the warrant for direct delegation,

which is also a map of keys to values.

This field is designed for clients to pass credentials with exten-

sion data between authenticators and RPs, allowing for additional

functionality between authenticator vendors and RPs without being

part of the WebAuthn standard. However, in practice many clients

remove extension data for extensions not in their approved list.

4.2.2 Client communication. Both variants require the proxy to

send the delegator a public key pkp, and possibly AAGUID, over
an authenticated channel (step 1 in Figures 2a and 2b), also used

to send warrants for direct delegation (step 2 in Figure 2b). The

companion program does this on behalf of authenticators—which

cannot communicate directly.

Setting up this direct authenticated channel between the dele-

gator and proxy can be achieved through various means as these

channels are independent of WebAuthn itself and its credentials.

Here we discuss several approaches to discovering users and estab-

lishing proxy and delegator communications.

Out of band and messaging platforms. A relatively straightfor-

ward approach to send pkp and warrants is to have users employ

out-of-band channels, such as email or existing instant messaging

applications. Mobile devices could use QR codes to transmit pkp
and delegation data, by scanning it in person or remotely when sent

through some existing channel. This offers the benefit that users

can use existing channels, which may provide mechanisms for at

least identifying users, but the security of these channels may not

be assured. These platforms may require additional out-of-band au-

thentication channels. In practice, we expect, e.g., email, ideally with

DMARC [34], and existing messaging platforms, such as Signal [3]—

whose protocol was analysed by Cohn-Gordon et al. [14]—and, for

enterprise, Microsoft Teams, to potentially be used to achieve dele-

gation with existing identity services.

Proximity-based physical transports. Physical transports, such
as Bluetooth or USB, offer some security by requiring physical

proximity between delegator and proxy, and provide some built-in

methods to securing the communication channel, e.g., Bluetooth’s

numeric comparison for LE Secure Connections [7]—examined by

Zhang et al. [59]. The offline nature of transports like Bluetooth

lends itself to our direct delegation approach. Depending on the

transport used, the built-in security functionalities offered may
be sufficient, but these offer limited flexibility or cross-platform

support, e.g., not all desktop computers have Bluetooth or NFC.

Third parties and federated identity providers. Using a third party,
or federated identity provider, delegators can establish an end-

to-end encrypted channel with proxy users. These identities are

used by the delegator and proxy to authenticate one another, but

are not used at all in WebAuthn as this would break unlinkability.

These identity providers mediate connections between clients and

therefore must be trusted to maintain privacy and to help establish

authenticated secure channels between clients.

4.2.3 Remote delegation. In the ARKG-based credential backup

proposal [37], the credential’s ID is used to store data, using which

the backup authenticator can compute the private key and sign

authentication challenges. This approach alone is not suitable for

delegation as the RP must enforce permissions. However, it may

still be used to embed credential data for the proxy. The authenti-

cator must add to the credential extensions map an extension ID

for ‘delegation’—so the RP knows that this is a delegated creden-

tial, regardless of how its creation was initiated (e.g., via the RP’s

interface or the client’s handling of the WebAuthn call).

Since RPs store delegated credentials as soon as they are created

(step 2 in Figure 2a), revocation and other permissions for dele-

gated credentials can be realised easily by configuring delegated

credentials directly with the RP. The RP may implement a web

interface, and corresponding backend logic, allowing the account

owner to set such permissions for submitted delegated credentials

or revoke them later by deleting these credentials. This requires no

changes to WebAuthn, but does make use of its extension field.

Currently, there is no way to have the client initiate a registration

ceremony in the WebAuthn standard. The RP decides when to initi-

ate the ceremony when, e.g., the user clicks a button to create an

account or add a credential on their account page. In order to com-

plete the delegation, in the case where RPs provide a button to add

additional credentials, the clientmay ask the user to specifywhether

they want to register a delegated credential, and, if so, to whom.

The companion program must therefore show this option as part of

its handling of navigator.credentials.create() calls, particu-

larly as it may need to call and display locally the delegator-defined

proxy IDs, obtained using authenticatorListDelegationKeys,
in order to allow the delegator to choose to which proxy it will

delegate.

Remote delegation requires the RP to store the derived public key

and credential data, much like it would for backup and additional

Unlinkable Delegation of WebAuthn Credentials

account credentials [35, §13.4.6]. This means that RPs must be able

to support having multiple credentials associated with accounts, as

recommended by the standard.

As this variant requires the delegator to authenticate with the RP

as part of step 2 in Figure 2a in order to submit the proxy’s creden-

tial, it can learn its private key in the case where it does not store its

own private keys locally, such as for hardware tokens, and provide

this later as input to authenticatorMakeDelegatedCredential.
However, this does require that RPs create their own user interfaces

and additional backend logic to facilitate permissions, revocation

and validity periods.

For remote delegation, the delegator may optionally provide

AAGUID for the proxy user to the RP when submitting delegated

credentials. Whilst this cannot be verified, it does allow for early

rejection if the proxy’s claimed AAGUID would not be sufficient.

The RP may then validate this AAGUID when the proxy authenti-

cates by calling navigator.credentials.create(), discarding
the presented credential.

4.2.4 Direct delegation. For direct delegation, WebAuthn creden-

tial extension fields [35, §5.7] must be used to provide RPs with

warrants during authentication (step 4 in Figure 2b). This offers the

benefit that RPs do not need to support having multiple credentials

associated with accounts as the warrant may be verified during the

proxy’s authentication without recording it. RPs that support our

WebAuthn extension will parse the warrant given in the extension

field, which may include permissions and validity timestamps, and

verify against these as required. We view this additional informa-

tion about permissions as additional auxiliary (public) input to the

Delegate algorithm, signing it together with pkw and storing it in

our warr warrant format.

Although the warrant may include additional signed data, such

as its validity period and permissions for the proxy user, it may still

need to be revoked before it expires. The recommended approach to

revoke proxy access is for the delegator to replace its own account

credential at the RP, which would result in the replacement of

the delegator’s public key, thus invalidating any existing warrants

signed for that credential.We expect that in practice delegationswill

not be performed too frequently per account, making this approach

viable. Alternatively, the RP could provide blacklist functionality.

As direct delegation occurs offline, its features may be more

limited as the delegator cannot lookup, unless cached, what features

RPs support, such as permissions and the delegation extension itself.

This also means that if the delegator’s authenticator does not store

keys locally, it cannot sign the warrant and complete the delegation.

We expect direct delegation to be used in devices with better

storage capabilities, such as mobile phones, which lends itself to

the use of QR codes and proximity-based communication of setup

and delegation data.

During authentication (steps 3 and 4 in Figure 2b), the RP may

request an attestation statement from the proxy user’s authentica-

tor by calling navigator.credentials.create(), without stor-
ing the presented credential, allowing policies to be enforced.

4.3 Prototype for delegation in WebAuthn
To demonstrate technical feasibility, we have built a prototype

with source code [1] using an open-source virtual authenticator by

Culnane et al. [15], which we extended to implement the additional

CTAP calls from Section 4.2.1. To demonstrate the setup and direct

delegation phases, our prototype includes a simple companion

application, written in Python, to import and export proxy public

keys (pkp) and warrants (pkw, ddata).
The companion program uses the new CTAP calls and our PSUW

primitive, as well as the existing ARKG implementation [37]. We

refer to the prototype’s source code repository [1] for detailed

instructions, screen recordings, and discussion on the practical

decisions made and how the prototype works.

4.4 Usability considerations
The usability of the delegation approaches depends greatly on their

user-facing implementations, which has not been the focus of our

prototype. User interaction is discussed in the standard (see e.g. [35,

§§7.1,7.2]). In the case of the remote variant, key setup and per-

missions configuration is managed through the interface provided

by RPs. Although this leads to a differing interfaces across RPs,

these interfaces are designed according to the, potentially context-

dependent, needs of the RP. We expect remote delegation to have

similar usability consideration as with OAuth 2.0 access tokens,

which users manage manually over a web interface—the usability

and user acceptance of which, and other authentication mecha-

nisms, is investigated by Ruoti et al. [49]. For direct delegation, the

use of a client extension or companion application means that the

delegation interface and process is consistent across RPs and can be

managed in one central interface on user devices. This does mean

that, for the occasional delegation, users must find and navigate

a foreign interface, whereas for the remote variant, they would

instead use their existing account settings and management pages.

In contrast, for proxy users we do not see any changes to standard

WebAuthn practice when it comes to accessing delegator’s web

accounts after the delegation credentials have been issued.

We observe that recent usability studies, such as the work by

Kunke et al. [36], focus on currently-used approaches forWebAuthn

recovery. It is currently too early to conduct a proper usability

study for delegation in WebAuthn since current authenticators

do not implement ARKG, nor PSUW, and most web browsers do

not pass unknown WebAuthn extension data between RPs and

authenticators.

5 CONCLUSION
We proposed two approaches for delegation of WebAuthn creden-

tials preserving the security, privacy, and decentralisation aspects

of the standard. Both approaches share the same setup procedure,

employing ARKG, which makes them compatible with Yubico’s

recent proposal for account recovery in WebAuthn.

Our remote delegation approach allows account owners to con-

figure and manage delegation with associated permissions at the

relying party, whereas for direct delegation, the owner issues a

warrant containing delegation credentials directly to the proxy

user. To realise this approach, we introduced a novel type of proxy

signatures with unlinkable warrants, which might be of indepen-

dent interest. We discussed integration details using WebAuthn

and CTAP extensions and ways to realise communication between

delegators and proxies.

Nick Frymann, Daniel Gardham, Mark Manulis

We conducted performance experiments of our primitive which

show that delegated authentication can be achieved at a low cost

of a few extra milliseconds when compared to the standard au-

thentication in WebAuthn. We additionally provided a prototype

to demonstrate how delegation could work in practice, with our

scheme supporting ECDSA signatures as used in WebAuthn.

REFERENCES
[1] 2021. Source code and documentation for WebAuthn credential delegation protoype.

https://github.com/UoS-SCCS/WebAuthn-Credential-Delegation

[2] 2021. Source code for PSUW primitive. https://github.com/UoS-SCCS/PSUW-

Primitive

[3] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. 2019. The Double Ratchet: Secu-

rity Notions, Proofs, and Modularization for the Signal Protocol. In EUROCRYPT
2019. Springer, LNCS.

[4] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. 2002. On the Security of Joint Signa-

ture and Encryption. In Advances in Cryptology — EUROCRYPT 2002, Vol. 2332.
Springer, LNCS, 83–107.

[5] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar, and

Llanos Tobarra. 2008. Formal analysis of SAML 2.0 web browser single sign-on:

breaking the SAML-based single sign-on for google apps. In FMSE ’08. 1–10.
[6] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. 2021.

Provable Security Analysis of FIDO2, Vol. 12827. Springer, LNCS.

[7] Bluetooth SIG, Inc. 2019. Bluetooth Core Specification. Technical Report.
[8] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. 2012. Secure

Proxy Signature Schemes for Delegation of Signing Rights. Journal of Cryptology
25 (2012), 57–115.

[9] Carsten Bormann and Paul E. Hoffman. 2020. Concise Binary Object Representation
(CBOR). Technical Report.

[10] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. 2017.

PRF-ODH: Relations, Instantiations, and Impossibility Results. In Advances in
Cryptology – CRYPTO 2017. Vol. 10403. LNCS, 651–681.

[11] Certicom Research. 2009. SEC 1: Elliptic Curve Cryptography. Technical Report.
[12] David Chaum. 1985. Security Without Identification: Transaction Systems to

Make Big Brother Obsolete. Commun. ACM 28, 10 (1985), 1030–1044.

[13] David Chaum and Eugène van Heyst. 1991. Group Signatures. In EUROCRYPT
’91, Vol. 547. Springer, LNCS, 257–265.

[14] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. 2020. A Formal Security Analysis of the Signal Messaging Protoco.

J. Cryptol. 33, 4 (2020), 1914–1983.
[15] Chris Culnane, Christopher J. P. Newton, and Helen Treharne. 2021. Technical

Report on a Virtual CTAP2 WebAuthn Authenticator. arXiv:2108.04131 Source

code: https://github.com/UoS-SCCS/VirtualWebAuthn.

[16] David Derler, Christian Hanser, and Daniel Slamanig. 2014. Privacy-Enhancing

Proxy Signatures from Non-interactive Anonymous Credentials. In CODASPY
’14, Vol. 8566. Springer, LNCS, 49–65.

[17] D. Eastlake and T. Hansen. 2006. US Secure Hash Algorithms (SHA and HMAC-
SHA). Technical Report.

[18] Manuel Fersch. 2018. The Provable Security of Elgamal-type Signature Schemes.
Ph.D. Dissertation. Ruhr University Bochum, Germany.

[19] Manuel Fersch, Eike Kiltz, and Bertram Poettering. 2016. On the Provable Security

of (EC)DSA Signatures. In ACM CCS 2016. ACM, 1651–1662.

[20] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal

Security Analysis of OAuth 2.0. In ACM CCS 2016. ACM, 1204–1215.

[21] FIDO Alliance. 2018. Client to Authenticator Protocol (CTAP). Technical Report.
[22] FIDO Alliance. 2018. FIDO Authenticator Security Requirements. Technical

Report.

[23] FIDO Alliance. 2021. FIDO Alliance Specifications Overview. Technical Report.
[24] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg,MarkManulis,

and Dain Nilsson. 2020. Asynchronous Remote Key Generation: An Analysis of

Yubico’s Proposal for W3C WebAuthn. In ACM CCS 2020. ACM, 939–954.

[25] Georg Fuchsbauer and David Pointcheval. 2008. Anonymous Proxy Signatures.

In SCN ’08. Springer, 201–217.
[26] Thomas Groß. 2003. Security analysis of the SAML single sign-on

browser/artifact profile. In ACSAC ’03. IEEE, 298–307.
[27] Christian Hanser and Daniel Slamanig. 2013. Blank Digital Signatures. In ASIA

CCS ’13. ACM, 95–106.

[28] Christian Hanser and Daniel Slamanig. 2013. Warrant-Hiding Delegation-by-

Certificate Proxy Signature Schemes. In Progress in Cryptology — INDOCRYPT
2013, Vol. 8250. Springer, LNCS, 60–77.

[29] D. Hardt. 2012. The OAuth 2.0 Authorization Framework. Technical Report.
[30] Yali Jiang, Fanyu Kong, and Xiuling Ju. 2010. Lattice-Based Proxy Signature. In

CIS ’10. IEEE, 382–385.
[31] Seungjoo Kim, Sangjoon Park, and Dongho Won. 1997. Proxy signatures, Revis-

ited. In Information and Communications Security, Vol. 1334. Springer, 223–232.

[32] H. Krawczyk, M. Bellare, and R. Canetti. 1997. HMAC: Keyed-Hashing for Message
Authentication. Technical Report.

[33] H. Krawczyk and P. Eronen. 2010. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). Technical Report.

[34] Murray Kucherawy and Elizabeth Zwicky. 2015. Domain-based Message Authen-
tication, Reporting, and Conformance (DMARC). Technical Report.

[35] Akshay Kumar, Emil Lundberg, J.C. Jones, Michael Jones, and Jeff Hodges. 2021.

WebAuthentication: AnAPI for accessing Public Key Credentials - Level 2. Technical
Report. W3C. https://www.w3.org/TR/webauthn-2/.

[36] Johannes Kunke, Stephan Wiefling, Markus Ullmann, and Luigi Lo Iacono. 2021.

Evaluation of Account Recovery Strategies with FIDO2-based Passwordless

Authentication. arXiv:2105.12477

[37] Emil Lundberg and Dain Nilsson. 2019. Webauthn recovery extension. https:

//github.com/Yubico/webauthn-recovery-extension/

[38] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. 1996. Proxy signatures:

Delegation of the power to sign messages. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Science 79, 9 (1996), 1338–1354.

[39] Steven P Miller, B Clifford Neuman, Jeffrey I Schiller, and Jermoe H Saltzer. 1988.

Kerberos authentication and authorization system. In Project Athena Technical
Plan.

[40] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. 2005. HOTP:
An HMAC-Based One-Time Password Algorithm. Technical Report.

[41] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. 2011. TOTP: Time-Based One-Time
Password Algorithm. Technical Report.

[42] Collin Mulliner, Ravishankar Borgaonkar, Patrick Stewin, and Jean-Pierre Seifert.

2013. SMS-Based One-Time Passwords: Attacks and Defense. In DIMVA ’13,
Vol. 7967. Springer, LNCS, 150–159.

[43] Nitin Naik and Paul Jenkins. 2016. An Analysis of Open Stan-

dard Identity Protocols in Cloud Computing Security Paradigm. In

ASC/PiCom/DataCom/CyberSciTech ’16. IEEE, 428–431.
[44] National Institute of Standards and Technology. 2013. Digital Signature Standard

(DSS). Technical Report. https://doi.org/10.6028/nist.fips.186-4

[45] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.

Let’s Go in for a Closer Look: Observing Passwords in Their Natural Habitat. In

ACM CCS 2017. ACM, 295–310.

[46] Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and Tom

Scavo. 2008. Security Assertion Markup Language (SAML) V2.0 Technical Overview.
Technical Report. OASIS Open.

[47] David Recordon and Drummond Reed. 2006. OpenID 2.0: a platform for user-

centric identity management. In DIM ’06. ACM, 11–16.

[48] Ronald L. Rivest, Adi Shamir, and Yael Tauman. 2001. How to Leak a Secret. In

Advances in Cryptology — ASIACRYPT 2001, Vol. 2248. Springer, LNCS, 552–565.
[49] Scott Ruoti, Brent Roberts, and Kent Seamons. 2015. Authentication Melee: A

Usability Analysis of Seven Web Authentication Systems. InWWW ’15. ACM.

[50] N. Sakimura, J. Bradley, M. Jones, B. deMedeiros, and C. Mortimore. 2014. OpenID
Connect Core 1.0 incorporating errata set 1. Technical Report. OpenID Foundation.

[51] Jim Schaad. 2017. CBOR Object Signing and Encryption (COSE). RFC 8152.

[52] Kwan Shum and Victor K Wei. 2002. A strong proxy signature scheme with

proxy signer privacy protection. In 11th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises. IEEE, 55–56.

[53] Prabath Siriwardena. 2020. OpenID Connect (OIDC). In Advanced API Security.
Apress, Berkeley, CA, 129–155.

[54] Sampath Srinivas, Dirk Balfanz, and Eric Tiffany. 2014. Universal 2nd Factor (U2F)
Overview. Technical Report.

[55] Zuowen Tan and Zhuojun Liu. 2004. Provably secure delegation-by-certification

proxy signature schemes. In InfoSecu ’04. ACM, 38–43.

[56] Ke-li Wu, Jing Zou, Xiang-HeWei, and Feng-Yu Liu. 2008. Proxy group signature:

a new anonymous proxy signature scheme. In ICML ’08, Vol. 3. IEEE, 1369–1373.
[57] Yong Yu, Yi Mu, Willy Susilo, Ying Sun, and Yafu Ji. 2012. Provably secure proxy

signature scheme from factorization. Mathematical and Computer Modelling 55,

3 (2012), 1160–1168.

[58] Yong Yu, Chunxiang Xu, Xinyi Huang, and Yi Mu. 2009. An efficient anonymous

proxy signature scheme with provable security. Computer Standards & Interfaces
31, 2 (2009), 348–353.

[59] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. 2019.

On the (In)security of Bluetooth Low Energy One-Way Secure Connections Only

Mode. arXiv:1908.10497

https://github.com/UoS-SCCS/WebAuthn-Credential-Delegation
https://github.com/UoS-SCCS/PSUW-Primitive
https://github.com/UoS-SCCS/PSUW-Primitive
https://arxiv.org/abs/2108.04131
https://github.com/UoS-SCCS/VirtualWebAuthn
https://arxiv.org/abs/2105.12477
https://github.com/Yubico/webauthn-recovery-extension/
https://github.com/Yubico/webauthn-recovery-extension/
https://doi.org/10.6028/nist.fips.186-4
https://arxiv.org/abs/1908.10497

Unlinkable Delegation of WebAuthn Credentials

A RECALLING ARKG
In Figure 7, we recall the ARKG construction by Frymann et al. [24]

for DL-based keys.

Their construction is in a cyclic group G of order 𝑞 based on

DL keys (sk, pk) = (𝑥, 𝑔𝑥) for a generator 𝑔 ∈ G and 𝑥 ∈ Z𝑞 .
Note that multiplicative notation is used for group operations.

The following three building blocks are required: a pseudoran-

dom function PRF(𝑘,𝑚), message authentication code MAC =

(KGen, Tag,Verify) and key derivation function KDF(𝑘, 𝑙), used as

KDF1 (𝑘) = KDF(𝑘, 𝑙1) and KDF2 (𝑘) = KDF(𝑘, 𝑙2), where KDF1 :

G→ Z𝑞 , KDF2 : G→ {0, 1}∗ with fixed labels 𝑙1, 𝑙2.

Setup(𝜆)
return pp = ((G, 𝑔, 𝑞),MAC,KDF1,KDF2)

DerivePK(pk = 𝑆, aux)
1 : (𝑒, 𝐸) ← KGen()
2 : ck ← KDF1 (𝑆𝑒)
3 : mk ← KDF2 (𝑆𝑒)

4 : 𝑃 ← 𝑔ck · 𝑆
5 : 𝜇 ← MAC(mk, (𝐸, aux))
6 : return pk′ = 𝑃, cred = (𝐸, aux, 𝜇)

DeriveSK(sk = 𝑠, (𝐸, aux, 𝜇))
1 : ck ← KDF1 (𝐸𝑠)
2 : mk ← KDF2 (𝐸𝑠)
3 : if 𝜇 = MAC(mk, (𝐸, aux)) then
4 : return sk′ = ck + 𝑠 mod 𝑞

5 : else return ⊥

KGen()
𝑥 ←$Z𝑞

return (sk, pk) = (𝑥,𝑔𝑥)

Check(sk′ = 𝑥, pk′ = 𝑋)
return 𝑔𝑥 =

?

𝑋

Figure 7: ARKG construction for DL-based keys.

Nick Frymann, Daniel Gardham, Mark Manulis

B SECURITY PROOFS
Here we present the security proofs for Theorems 1 and 2.

B.1 Proof of Theorem 1
Proof. G0 is defined exactly by Expwu-𝑏

A (𝜆), giving

Pr[G0 = 1] = Pr

[
Expwu-𝑏
A (𝜆) = 1

]
WedefineG1 to beG0 wherewe replace line 4with ‘(warr, ddata)

← PSUW.Delegate(skd, pkp
0
)’ and line 5 with ‘𝜎 ← PSUW.Sign

(skp
0
,warr, ddata,𝑚)’. We argue that the difference in success prob-

abilities for G0 and G1 is negligible. In particular, [24, Remark 2] en-

sures any two keys output by (ARKG.DerivePK,ARKG.DeriveSK)
are indistinguishable if ARKG has the PK-Unlinkability property.

Thus, the difference in success probabilities for G0 and G1 is also

bound by an adversary against the pku property, for a function 𝜀 (𝜆)
that is negligible in 𝜆.

|Pr[G0 = 1] − Pr[G1 = 1] | ⩽ 𝜀 (𝜆)
We now observe that G1 is independent of the challenge bit 𝑏

and thus the winning probability of A is exactly
1

2
. The sequence

of games G0 to G1 gives

Pr

[
Expwu-𝑏
A (𝜆)

]
=

1

2

+ 𝜀 (𝜆)

and hence

Advwu-𝑏
PSUW,A (𝜆) =

����Pr

[
Expwu-𝑏
A (𝜆)

]
− 1

2

���� ⩽ 𝜀 (𝜆) .

□

B.2 Proof of Theorem 2
Proof. We begin by observing that an adversary A wins the

experiment ExpunforgeA (𝜆) if, intuitively, it is either able to break

the delegation of warrants or it is able to produce a forgery on

the signature. This is reflected in line 4 of the experiment, in the

body of PSUW.Verify, where two checks are performed. That is

‘DS.Verify(pkd, 𝜎, pkw)’ and ‘DS.Verify(pkw, 𝑠,𝑚)’. We split the ad-

vantage ofA over these two winning conditions E1 and E2, which

we formally define in Figures 8 and 9, giving

Pr

[
ExpunforgeA (𝜆) = 1

]
= Pr[E1 = 1] + Pr[E2 = 1]

We argue that an adversary against unforgeability is bound by

the union of probabilities over each winning condition.

E1: Forgery on delegation 𝜎 w.r.t pkd. We argue directly that the

probability an adversary wins this game is bound by the strong

unforgeability property of the digital signature DS.

To see this, we build an adversary B that utilises A against

ExpunforgePSUW,A (𝜆) to win Exp
suf-cma
DS,B (𝜆). B invokes its experiment and

receives its challenge key pair (sk★, pk★), for which it must cre-

ate a forgery. It challenges A against E1, given in Figure 8, with

the exception that it sets (skd, pkd) ← (sk★, pk★). Furthermore,

in the delegate oracle ODelegate, line 2 is replaced with a call to

B’s signing oracle, provided by the Expsuf-cma
DS,B (𝜆) experiment. All

other oracle queries can be answered by B, including OSign which

executes DS.Sign, since this is done with respect to keys generated

by E1. Finally, A outputs 𝜎 . B extracts 𝜎 and pkw from 𝜎 . It sets

ExpunforgeA (𝜆)
1 : (skd, pkd) ←$PSUW.DKGen(pp)

2 : (�̄�,𝑚) ← AOReg,ODelegate,OSign,OCorr (pp, pkd)
3 : retrieve warr from �̄�

4 : return PSUW.VerifyE1

(pkd, �̄�,𝑚)

1 : parse �̄� as 𝑠,warr

2 : parse warr as pkw, 𝜎

3 : return DS.Verify(pkd, 𝜎, pkw)

5 : ∧ ((·,warr) ∉ LDel ∨
6 :

[
∃pkp,𝑚 s.t. (·, ·,warr, ·,𝑚) ∉ LSign ∧

7 : (pkp,warr) ∈ LDel ∧ (·, pkp) ∉ LCorrupt
]
)

Figure 8: Formal experiment for E1.

ExpunforgeA (𝜆)
1 : (skd, pkd) ←$PSUW.DKGen(pp)

2 : (�̄�,𝑚) ← AOReg,ODelegate,OSign,OCorr (pp, pkd)
3 : retrieve warr from �̄�

4 : return PSUW.VerifyE2

(pkd, �̄�,𝑚)

1 : parse �̄� as 𝑠,warr

2 : parse warr as pkw, 𝜎

3 : return DS.Verify(pkw, 𝑠,𝑚)

5 : ∧ ((·,warr) ∉ LDel ∨
6 :

[
∃pkp,𝑚 s.t. (·, ·,warr, ·,𝑚) ∉ LSign ∧

7 : (pkp,warr) ∈ LDel ∧ (·, pkp) ∉ LCorrupt
]
)

Figure 9: Formal experiment for E2.

𝜎★← 𝜎 and𝑚★← pkw, and forwards (𝜎★,𝑚★) as a response to
its unforgeability game. The check ‘(·,warr) ∉ LDel’ in E1 ensures

that ifA wins, then 𝜎★,𝑚★
was not obtained from the signing ora-

cle. In particular, since A is playing against strong unforgeability,

any randomisation of a signature 𝜎 comprising warr ∈ LDel (to
trivially achieve warr★ ∉ LDel) would allow B to win its SUF-CMA

experiment. Thus if A wins against E1, then B also wins. Hence

Pr[E1 = 1] ⩽ Advsuf-cma
DS,B (𝜆)

E2: Forgery on message signature 𝑠 w.r.t pkw. We begin by defin-

ing a new game G1 as G0 B E2, given in Figure 9, except we

require the adversary to output ‘(𝜎,𝑚, skw)’ on line 2. We fur-

ther modify the game with an additional check on line 6, giving

‘(·, ·,warr, ·,𝑚) ∉ LSign ∧ ARKG.Check(skw, pkw)’. The differ-

ence in success probability between G1 and G0 is bound by the

adversary’s ability to produce 𝑠 such that DS.Verify(pkw, 𝑠,𝑚) = 1

without knowledge of an skw. We require that A does not reran-

domise a signature obtained from an oracle query, but this is already

enforced by the check that (·, ·,warr, ·,𝑚) ∉ LSign. To embed the

challenge keys for EUF-CMA, it must guess not only the proxy

signer the adversary will target for a forgery for, but also the dele-

gation. It does so with probability 1/𝑞Del where 𝑞Del is the length of

Unlinkable Delegation of WebAuthn Credentials

LDel. We note that the PK-Unlinkability property of ARKG ensures

that keys derived from pkp are indistinguishable from keys created

from DS.KGen, and in particular, from the challenge keys provided

by the unforgeability experiment of DS. Finally, to answer oracle

queries to OSign, the challenger instead uses its access to the DS

signing oracle to compute 𝜎 ← DS.Sign(skw∗,𝑚). Hence, this is
precisely the EUF-CMA property of DS and we have

|Pr[G1 = 1] − Pr[G0 = 1] | ⩽ 𝑞Del · Adveuf-cma
DS,B (𝜆)

G1. We now claim thatA’s advantage against G1 is bound by an

adversary B against ExpmsKS
ARKG,B (𝜆) of ARKG. B invokes its experi-

ment to obtain a challenge public key pk★. It executes G1 against

A and guesses for which key pair generated by OReg the adversary
will produce a forgery. On this registration query, B instead sets

(skp, pkp) ← (⊥, pk★), otherwise it executes OReg as normal. To

answer OSign queries, in the case pkp ≠ pk★, it runs the oracle as
described. Otherwise, instead of calling ARKG.DeriveSK on line 4

of the PSUW.Sign algorithm, it uses its private key oracle Osk′ to
obtain skw★

. IfA queries OCorr (pkp) for pkp = pk★ then the game

aborts. For ODelegate queries on pkp★, it calls the Opk′ oracle from
ExpmsKS

ARKG,B (𝜆). Thus, B is able to simulate the experiment against

A perfectly.

After some time, A outputs forgery (𝜎,𝑚, skw). B retrieves

pkw★
from 𝜎 and searches LDel for the entry in the form of (pkw★,

cred★). It then builds the response (skw★, pkw★, cred★) and for-

wards it to its ExpmsKS
ARKG,B (𝜆) experiment. Since (pkw★, cred★) were

obtained from an execution of ARKG.DerivePK, the correctness of
ARKG ensures a corresponding sk′ ← ARKG.DeriveSK(sk★, cred★)
such that ARKG.Check(sk′, pkw★) passes. Furthermore, since the

experiment has verified that ARKG.Check(skw★, pkw★) = 1, we

have that (skw★, pkw★, cred★)wins themsKS game provided cred★

was not queried. However, this only occurs if A called OSign for

warr★ ∋ pkw★
, ddata = cred★, in which case it has lost its Unforge-

ability game. We note that A only wins its msKS experiment if it

correctly embedded the challenge into the pkp for which B created

a forgery. This occurs with probability 1/𝑞Reg, where 𝑞Reg is the

number of registration queries made to OReg, which is polynomial

in 𝜆. Thus the advantage of A is bound by an adversary B against

msKS of ARKG, giving

Pr[G1 = 1] ⩽ 𝑞Reg · AdvmsKS
ARKG,B (𝜆)

Therefore,

Pr[E2 = 1] ⩽ 𝑞Del · Adveuf-cma
DS,B (𝜆) + 𝑞Reg · AdvmsKS

ARKG,B (𝜆)
Since the variables 𝑞Del and 𝑞Reg are polynomial in the security pa-

rameter, we conclude that the advantage of an adversary is bounded

by a function 𝜀 (𝜆) that is negligible in 𝜆.

Pr

[
ExpunforgeA (𝜆) = 1

]
= Pr[E1 = 1] + Pr[E2 = 1] ⩽ 𝜀 (𝜆)

□

	Abstract
	1 Introduction
	1.1 WebAuthn properties, delegation challenges, and naïve approaches
	1.2 Contribution and organisation

	2 Delegating WebAuthn Account Credentials
	2.1 From account recovery to delegation
	2.2 Two approaches for delegation
	2.3 Setup phase (common for remote and direct delegation)
	2.4 Remote delegation
	2.5 Direct delegation

	3 Proxy Signature with Unlinkable Warrants
	3.1 Related work on proxy signatures
	3.2 Modelling PSUW
	3.3 Our generic PSUW construction

	4 Achieving Delegation in WebAuthn
	4.1 Cryptographic implementation
	4.2 Approach for integration with WebAuthn
	4.3 Prototype for delegation in WebAuthn
	4.4 Usability considerations

	5 Conclusion
	References
	A Recalling ARKG
	B Security Proofs
	B.1 Proof of theorem:psu
	B.2 Proof of theorem:unforge

