
Colordag: An Incentive-Compatible Blockchain

ITTAI ABRAHAM, VMware Research, Israel

DANNY DOLEV, The Hebrew University of Jerusalem, Israel

ITTAY EYAL, Technion and IC3, Israel

JOSEPH Y. HALPERN, Cornell University, NY, USA

Proof-of-work blockchain protocols rely on incentive compatibility. System participants, called miners, generate blocks that form

a directed acyclic graph (blockdag). The protocols aim to compensate miners based on their mining power, that is, the fraction of

computational resources they control. The protocol designates rewards, striving to make the prescribed protocol be the miners’

best response. Nakamoto’s Bitcoin protocol achieves this for miners controlling up to almost 1/4 of the total mining power, and

the Ethereum protocol does about the same. The state of the art in increasing this bound is Fruitchain, which works with a bound

of 1/2. Fruitchain guarantees that miners can increase their revenue by only a negligible amount if they deviate. It is thus an Y-Nash

equilibrium, for a small Y . However, Fruitchain’s mechanism allows a rational miner to deviate without penalty; we show that a simple

practical deviation guarantees a miner a small increase in expected utility without any risk. This deviation results in a violation of the

protocol desiderata. We conclude that, in our context, Y-Nash equilibrium is a rather fragile solution concept.

We propose a more robust approach that we call Y-sure Nash equilibrium, in which each miner’s behavior is almost always a strict

best response, and present Colordag, the first blockchain protocol that is an Y-sure Nash equilibrium for miners with less than 1/2 of
the mining power. To achieve this, Colordag utilizes three techniques. First, it assigns blocks colors; rewards are assigned based on

each color separately. By choosing sufficiently many colors, we can make sensitivity to network latency negligible. Second, Colordag

penalizes forking—intentional bifurcation of the blockdag. Third, Colordag prevents miners from retroactively changing rewards. All

this results in an Y-sure Nash equilibrium: Even when playing an extremely strong adversary with perfect knowledge of the future

(specifically, when agents will generate blocks and when messages will arrive), correct behavior is a strict best response with high

probability.

1 INTRODUCTION

At the heart of Bitcoin [13] and Ethereum [4, 21] is the Nakamoto Consensus protocol, which is based on proof-

of-work [1, 6, 10]. The system participants, called miners, maintain a ledger that records all transactions—payments

or so-called smart-contract operations. The transactions are batched into blocks; a miner can publish a block only

by expending computational power, at a rate proportional to her computational power in the system. This rate is

called mining power.

Nakamoto Consensus achieves desirable ledger properties even against an adversary that controls 𝛼 < 1/2 of the
mining power [8, 11, 15]. That is, as long as a majority of the miners follow the Nakamoto consensus protocol then

security is guaranteed. But Nakamoto’s protocol relies on incentives: The blocks form a tree, and each miner is rewarded

for each block it generated that is included in the longest path (blockchain) in the tree. Unfortunately, following the

Nakamoto consensus protocol is not a best response for miners that control a large fraction (but less than 1/2) of
the total computational power [7, 14, 17]. For example, under some minimal modeling assumptions, even a coalition

consisting of 1/4 of the miners can increase their reward by deviating from the Nakamoto Consensus protocol.
1
Stated

differently, Nakamoto Consensus is not a coalition-robust equilibrium for coalitions that control more than 1/4 of the
mining power.

1
Under the most optimistic assumptions on the underlying network, this bound grows only to 1/3.

1



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

Pass and Shi [16] make major progress with the Fruitchain protocol. In Fruitchain, the miners form a dag (rather than

a tree) with the longest chain determining rewards. However, miners are rewarded for a special type of block, called

fruit. Each fruit block 𝑐 is the child of a regular block 𝑏1, and its miner is rewarded if a subsequent block 𝑏2 points to the

fruit, both blocks 𝑏1 and 𝑏2 are on the longest chain, and the path between them is shorter than some constant. If the

longest chain is extended such that the fruit 𝑐 does not provide a reward, then 𝑐 is called stale. Fruitchain is an Y-Nash

Equilibrium (NE), that is, a miner, even with mining power arbitrarily close to 1/2, can only improve her revenue by a

negligible amount by deviating from the protocol.

However, Fruitchain allows for a simple deviation by which any coalition can increase its utility without taking any

risk: Specifically, a miner only points to its own fruit when generating blocks, ignoring fruit generated by others. This

simple deviation dominates the prescribed protocol, as in creates a small probability that the ignored fruit will become

stale, increasing the miner’s relative revenue. The probability increase is negligible in the staleness parameter, but there

is no risk to the miner. Moreover, if all parties are small and play this simple deviation, then the probability that any

of them can point to its own fruit before it becomes stale is small; this implies a violation of the ledger properties, as

progress becomes arbitrarily slow. Our conclusion is that the notion of an Y-equilibrium is fragile, as it might incentivize

deviation, even for a small benefit.

We present a more robust solution concept we call Y-sure NE. A protocol is an Y-sure NE for coalitions of size smaller

than 1/2 if, for any such coalition, playing the prescribed protocol is a strict best response except for some set of runs

(executions) that has probability at most Y.

Our main contribution is the Colordag protocol, a PoW-based protocol that is an Y-sure NE for coalitions smaller

than 1/2. Like various solutions, starting from Lewenberg et al. [12, 20], Colordag constructs a directed acyclic graph

rather than a tree. Like Ethereum [21], this graph is only used for reward calculation, and the ledger is simply the

longest path in the graph, as proposed by Nakamoto [13].

To achieve the required properties, Colordag makes use of three key ideas.

(1) Due to the distributed nature of the system, two miners might generate a block before hearing of each others’

blocks. The result is a fork where two blocks point to the same parent. This gives an advantage to the attacker, as

the two blocks only extend the longest chain by one. To deal with forks that occur naturally, Colordag colors

blocks randomly, and calculates reward by looking at each subgraph (minor) of a certain color separately. Adding

more colors allows us to keep the original rate of block production, while mitigating the effects of forking:

the fact that there are fewer blocks of a given color reduces the probability of forks in the minors. Previous

work [2, 8, 22] randomly attributed properties to blocks for performance or resilience. In contrast, here coloring

is used only for calculating the reward.

(2) To disincentivize deviation, Colordag penalizes forking: If there is more than one acceptable block of a given

depth 𝑇 , then (as in Sliwinski and Wattenhofer [19]) all blocks of depth 𝑇 get reward 0. Since miners aim to

maximize their relative reward [3], and (by assumption) there are fewer deviators than honest parties, a symmetric

penalty to a deviator and an honest party results in the deviator suffering more than the honest parties.

(3) Finally, Colordag prevents behavior that tries to retroactively change rewards. The basic idea is that honest

blocks of a given color will almost always be on a chain that is almost the longest in its minor. Blocks that do not

have this property are called unacceptable; they get no reward and do not affect the rewards of others.

The rest of the paper is organized as follows. In Section 2, we describe an abstract model of a PoW system, similar

to models used in previous work, and discuss the bitcoin desiderata. In Section 3, we formalize mining as a game, so

2



Colordag: An Incentive-Compatible Blockchain

that we can make notions like incentive compatibility and best response precise. In Section 4, we formally describe

the Colordag mechanism: the Colordag protocol and the revenue scheme that we use. We then prove in Section 5 that

Colordag satisfies the ledger desiderata and is an Y-sure equilibrium in the face of coalitions with less than half the

computational power, and even if the coalition knows what the scheduler does in advance. Specifically, we show that,

for the appropriate choice of parameters, in all but a negligible fraction of histories, miners strictly lose if they deviate

from the Colordag protocol. Finally, in Section 6, we conclude; we discuss the values of the Colordag parameters when

dealing with a weaker adversary than we assume here and the path to a practical implementation.

2 MODEL AND DESIDERATA

Blockchain protocols operate by propagating data structures called blocks over a reliable peer-to-peer network. We

abstract this layer away and describe our model (see Section 2.1), which is similar to previous work. The goal of the

protocol is to implement a distributed ledger (see Section 2.2), roughly speaking, a commonly-agreed upon record of

transactions.

2.1 Model

The system proceeds in rounds in a synchronous fashion, as is common in many other analyses (e.g., [7, 8, 15, 16]). A

history ℎ is a complete description of what happens to the system over time. Formally, ℎ is a function from rounds to a

description of what has happened in the system up to round 𝑡 (which blocks were generated, which were made public,

which agents are in the system, and so on). We denote by ℎ(𝑡) the prefix of ℎ up to time 𝑡 . There are a possibly infinite

number of agents, called miners, named 1, 2, . . .. For each history ℎ and miner 𝑖 , there exist rounds 𝑇
ℎ,𝑖
1

and 𝑇
ℎ,𝑖
2

such

that 𝑖 is active between 𝑇
ℎ,𝑖
1

and 𝑇
ℎ,𝑖
2

. Like previous work (e.g., [15]), we assume the system runs for a bounded time, up

to some 𝑇max. Without this assumption, even events with arbitrarily small frequency happen with probability one.

LetAg(ℎ, 𝑡) be the set of activeminers in the system at round 𝑡 of historyℎ, that is, all miners 𝑖 such that𝑇
ℎ,𝑖
1

≤ 𝑡 ≤ 𝑇ℎ,𝑖
2

.

For any given history and time, the set Ag(ℎ, 𝑡) is finite. Each miner 𝑖 has so-called mining power, a positive value

representing her computational power. The power of a miner 𝑖 at time 𝑡 , denoted Powℎ𝑡 (𝑖), is her fraction of the mining

power at time 𝑡 in history ℎ. Let Powℎ (𝑖) = sup𝑡 𝑃𝑜𝑤
ℎ
𝑡 (𝑖), and let Pow(𝑖) = supℎ Pow

ℎ (𝑖). We will be interested in the

case that, for all miners 𝑖 , there exists some 𝛼 < 1/2 such that Pow(𝑖) ≤ 𝛼 .
Each miner builds a local version of a directed acyclic graph called a blockdag. We refer to each node and its incoming

edges in the graph as a block. Our hope is that miners have an “almost-common” view of the blockdag. Following the

standard convention, we assume that the blockdag has a commonly-agreed-upon root that we refer to as the genesis

block. The depth of a blockdag𝐺 , 𝑑 (𝐺), is the length of a longest path in𝐺 . The depth of a block 𝑏 in𝐺 , denoted 𝑑 (𝐺,𝑏),
is the length of a longest path in 𝐺 from the genesis to 𝑏.2

In every round, the scheduler chooses one miner at random (an miner 𝑖 being chosen represents it having solved

a computational puzzle.) Each miner 𝑖 is chosen in round 𝑡 with probability proportional to Pow𝑡 (𝑖). If the scheduler
chooses a miner 𝑖 in round 𝑡 , then 𝑖 either selects some set 𝑃 of the nodes currently in its blockdag, with the constraint

that no node in 𝑃 can be the ancestor of another node in 𝑃 , and adds a new vertex 𝑣 to the blockdag with 𝑃 as its parents

or does nothing. If 𝑖 adds (𝑃, 𝑣), then 𝑖 can either broadcast this fact or save it for possible later broadcast. Note that a

miner cannot send (𝑃, 𝑣) to a strict subset of miners; it is either broadcast to all miners or sent to none of them. Miners

can also broadcast pairs that they saved earlier. If 𝑃 violates the constraint that no node in 𝑃 can be the ancestor of

2
We follow the standard graph-theoretic terminology here. In blockchain literature, what we are calling the depth of a node is sometimes called its height.

3



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

another node in 𝑃 , the message (𝑃, 𝑣) is ignored. We assume in the rest of the paper that this does not occur, as the

outcome is indistinguishable from simply not generating a block.

Denote by𝐺ℎ (𝑡 ) the blockdag including all blocks published at or before round 𝑡 in execution ℎ. Let𝐺
ℎ (𝑡 )
𝑖

denote 𝑖’s

view of𝐺ℎ (𝑡 ) ; this is the blockdag at round 𝑡 of history ℎ according to 𝑖 . Note that blocks that node 𝑖 has generated but

not published are not included in 𝐺
ℎ (𝑡 )
𝑖

; however, if a block 𝑏 ∈ 𝐺ℎ (𝑡 )
𝑖

refers to a block 𝑏 ′ (i.e., 𝑏 is a child of 𝑏 ′, since

we assume that the message broadcast by the miner that created block 𝑏 has a hash of all the parents of 𝑏), then 𝑏 ′ is

included in 𝐺
ℎ (𝑡 )
𝑖

. We omit the ℎ if it is clear from context or if we are making a probabilistic statement; that is, if we

say that a certain property of the graph holds at time 𝑡 with probability 𝑝 , then we mean that the set of histories ℎ for

which the property of 𝐺ℎ (𝑡 ) holds has probability 𝑝 .

The scheduler determines the message delivery time of each message. There is an upper bound Δ ≥ 1 on the number

of rounds that it takes for a message to arrive. The arrival time of each message may be different for different miners;

that is, if miner 𝑖 broadcasts (𝑃, 𝑣) at round 𝑡 , miners 𝑗 and 𝑗 ′ might receive (𝑃, 𝑣) in different rounds. Messages may

also be reordered (subject to the bound on message delivery time).

The scheduler’s protocol and the strategies used by the miners together determine a probability on the set of histories

of the system. While we have specified that all messages must be delivered within Δ rounds, we have not specified a

probability over message delivery times or on block-generation times. Our results hold whatever the probability is

over message-delivery times (subject to it being at most Δ). Thus, when we talk about a probability on histories, it is a

probability determined by the strategies of the miners and a scheduler that satisfies the constraints above.

2.2 Desiderata

A ledger function L takes a blockdag𝐺 and returns a sequence L(𝐺) of blocks in𝐺 ; the 𝑘th element in the sequence is

denoted L𝑘 (𝐺). The length of the ledger is denoted |L(𝐺) |. We want the ledgers that arise from the blockdags created

by Colordag to satisfy certain properties [8, 11, 15].

The first property requires that once a block allocation is set, its position in the ledger remains the same in the view

of all miners.

Definition 1 (Ledger Consistency). There exists a constant 𝐾 such that, for all miners 𝑖 and 𝑗 , if 𝑘 ≤ |L(𝐺ℎ (𝑡 )
𝑖

) | −𝐾
and 𝑡 ≤ 𝑡 ′, then L𝑘 (𝐺

ℎ (𝑡 )
𝑖

) = L𝑘 (𝐺
ℎ (𝑡 ′)
𝑗

).

The next desideratum is that the length of the ledger should increase at a linear rate. Let |L(𝐺) | denote the number

of elements in the sequence L(𝐺).

Definition 2 (Ledger Growth). There exists a constant 𝑔 such that, for all rounds 𝑡 < 𝑡 ′ and all miners 𝑖 , there exists

a constant 𝑔 such that if 𝑡 ′ − 𝑡 > 𝑔, then |L(𝐺ℎ (𝑡
′)

𝑖
) | ≥ |L(𝐺ℎ (𝑡 )

𝑖
) | + 1.

The final ledger desideratum says that the fraction of the total number of blocks in the ledger that are generated by

honest miners should be larger than a positive constant.

Definition 3 (Ledger qality). There exist constants 𝐷 > 0 and ` ∈ (0, 1) such that for all rounds 𝑡 and 𝑡 ′ such that

𝑡 ′ − 𝑡 ≥ 𝐷 , the fraction of blocks mined by honest miners placed on the ledger between round 𝑡 and 𝑡 ′ is at least `.

To motivate miners’ behavior, the system rewards miners for the blocks they generate. The revenue from each block

is determined by the revenue scheme. Formally, a revenue scheme 𝑟 is a function that associates with each block 𝑏 and

labeled blockdag 𝐺 a nonnegative real number 𝑟 (𝐺,𝑏), which we think of as the revenue associated with block 𝑏 in the

blockdag 𝐺 . Our final desideratum requires that revenue stabilizes.

4



Colordag: An Incentive-Compatible Blockchain

Definition 4 (Revenue Consistency). There exists a constant 𝐾 such that, for all miners 𝑖 and 𝑗 and times 𝑡 , 𝑡 ′,

and 𝑡 ′′ such that 𝑡 ′, 𝑡 ′′ > 𝑡 + 𝐾 , if 𝑏 is published at time 𝑡 in history ℎ, then 𝑟 (𝐺ℎ (𝑡
′)

𝑖
, 𝑏) = 𝑟 (𝐺ℎ (𝑡

′′)
𝑗

, 𝑏).

Previous work (e.g., [13, 16, 21]) did not state this requirement explicitly. There, it follows from ledger consistency,

since all and only blocks in the ledger get revenue.
3
In contrast, with Colordag, a miner might get revenue for a block

even if it is not on the ledger, and may not get revenue for some blocks that are on the ledger. We thus need to separately

require that the revenue that a miner gets from a block eventually stabilizes.

3 REVENUE SCHEME AND 𝜺-SURE NE

It is not hard to design protocols that satisfy the blockdag desiderata. However, there is no guarantee that the miners

will actually use those protocols. We assume that miners are rational, so our goal is to have a protocol that is incentive-

compatible: it is in the miners’ best interests (appropriately understood) to follow the protocol. Before describing our

protocol, we need to explain how the miners get utility in our setting.

3.1 Revenue Scheme

A miner’s utility in a blockdag is determined by the miner’s revenue. We denote by 𝐵
ℎ (𝑡 )
𝑖

(or simply 𝐵𝑖 when ℎ and 𝑡

are clear from context) the blocks generated by miner 𝑖 in history ℎ(𝑡). Given a revenue scheme 𝑟 , for each miner 𝑖 ,

history ℎ, and round 𝑡 , we can calculate the revenue 𝑟 (𝐺ℎ (𝑡 )
𝑖

, 𝑏) for every block 𝑏 ∈ 𝐵ℎ (𝑡 )
𝑖

.

Given a revenue scheme 𝑟 , miner 𝑖’s total revenue at round 𝑡 according to 𝑟 in history ℎ of a protocol is the sum∑
𝑏∈𝐵ℎ (𝑡 )

𝑖

𝑟 (𝐺ℎ (𝑡 )
𝑖

, 𝑏) of the revenue obtained for each block 𝑏 generated by 𝑖 while it is active in history ℎ. Finally, 𝑖’s

utility according to revenue scheme 𝑟 at round 𝑡 in history ℎ is 𝑖’s normalized share of the total revenue while it is

active. Taking time(𝑏) to be the time that block 𝑏 was published, we define:

𝑢𝑟𝑖 (ℎ, 𝑡) =

∑
𝑏∈𝐵ℎ

𝑖
𝑟 (𝐺ℎ (𝑡 )

𝑖
, 𝑏)∑

{𝑏 |𝑇ℎ,𝑖
1

≤time(𝑏) ≤𝑇ℎ,𝑖
2

} 𝑟 (𝐺
ℎ (𝑡 )
𝑖

, 𝑏)
.

This way of determining a miner’s utility from a revenue function is common (see, e.g., [3, 7, 9, 16, 17]). Intuitively,

the utility is normalized because the value to a miner of holding a unit of currency depends on the total amount of

currency that has been generated. A miner is interested in its utility during the time that it is active. Although miner 𝑖’s

utility may change over time, for a protocol that has the revenue consistency property (as Colordag does), in every

history, 𝑖’s utility eventually stabilizes (since the set of blocks that are played between 𝑇
ℎ,𝑖
1

and 𝑇
ℎ,𝑖
2

for which each

miner gets revenue and the revenue that the miners get for these blocks eventually stabilize). When we talk about 𝑖’s

utility in history ℎ, we mean the utility after all the revenue up to 𝑇
ℎ,𝑖
2

has stabilized.

3.2 𝜺-sure NE

As we said in the introduction, we are interested in strategy profiles that form a Y-sure Nash Equilibrium (NE), a

strengthening of Y-NE. We now define these notions carefully.

In the definition of Y-sure NE, we are interested in the probability that any history in of a set of histories 𝐻 will

occur, denoted Pr[𝐻 ]. (Note that a history corresponds to a path in the game tree.) In general, the probability of a

history depends on the strategies used by the miners. We are interested in sets of histories that have probability at

3
Ethereum’s uncle blocks [21] are off-chain but rewarded; however, their rewards are explicitly placed in the ledger after a small number of blocks,

therefore revenue consistency for Ethereum also follows almost trivially from ledger consistency.

5



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

least (1 − Y), independent of the strategies used by the miners. To ensure that this is the case, we take 𝐻 to be a set of

histories determined by the scheduler’s behavior. The scheduler is a probabilistic algorithm. It chooses miners for block

generation with probability Pow𝑖 (𝑡), and chooses network propagation time arbitrarily, bounded by a constant Δ. The

probabilities of the different histories are then defined by the probabilities of the scheduler’s random coins.

We denote the strategy of each miner 𝑖 by 𝜎𝑖 , a strategy profile by 𝜎 = (𝜎1, . . . , 𝜎𝑛), and the profile excluding the

strategy of 𝑖 by 𝜎−𝑖 . The profile with miner 𝑖’s strategy replaced by 𝜎 ′
𝑖
is (𝜎 ′

𝑖
, 𝜎−𝑖 ).

Definition 5 (Y-sure NE). A strategy profile 𝜎 = (𝜎1, . . . , 𝜎𝑛) is an Y-sure NE if, for each agent 𝑖 , there exists a set 𝐻𝑖
of histories with probability at least 1 − Y such that, conditional on 𝐻𝑖 , 𝜎𝑖 is a best response to 𝜎−𝑖 ; that is, for all strategies

𝜎 ′
𝑖
≠ 𝜎𝑖 of agent 𝑖 :

𝑢𝑖 (𝜎 | 𝐻𝑖 ) > 𝑢𝑖 ((𝜎 ′𝑖 , 𝜎−𝑖 ) | 𝐻𝑖 )

Of course, if, for each agent 𝑖 , we take 𝐻𝑖 to consist of all histories; then we just get back NE, so all Nash equilibria

are Y-sure NE for all Y. As the next result shows, if all utilities are in the interval [𝑚,𝑀] then every Y-sure NE strategy

profile is an (𝑀 −𝑚)Y-NE. Since in our setting, the utility of a miner 𝑖 is the fraction of total revenue that 𝑖 obtains

while 𝑖 is active, the utility is in [0, 1], so is clearly bounded.

Lemma 1. If a strategy profile 𝜎 is an Y-sure NE and all players’ utilities are bounded in the range [𝑚,𝑀], then 𝜎 is an

(𝑀 −𝑚)Y-Nash Equilibrium.

Proof. For a player 𝑖 , there is a set of histories 𝐻𝑖 with probability Pr[𝐻𝑖 ] > 1 − Y where 𝜎𝑖 is a best response. In
histories not in 𝐻𝑖 , denoted 𝐻 𝑖 , player 𝑖 might improve her utility by up to (𝑀 −𝑚). The probability of 𝐻𝑖 is bounded

by Y. Therefore, the utility increase of a player by switching her strategy is at most 0(1 − Y) + (𝑀 −𝑚)Y = (𝑀 −𝑚)Y.
Thus, 𝜎 is an (𝑀 −𝑚)Y-NE. □

However, there are Y-NE that are not Y ′-sure NE for any Y ′ < 1. For example, consider a game where a player

chooses 0 or 1. She gets utility 0 for choosing 0 and utility Y for choosing 1. Choosing 0 is Y-NE but is not Y ′-sure NE for

any Y ′ as choosing 1 strictly increases her utility in all histories. Thus, Y-sure NE is a solution that lies strictly between

Y-Nash and Nash equilibria.

We will show that, for all Y, we can choose parameter settings to make Colordag an Y-sure NE. In addition, it satisfies

the ledger desiderata.

4 COLORDAG

The Colordag mechanism consists of a recommended strategy that we want participants to follow and a revenue scheme.

The strategy, denoted 𝜎cd (cd stands for Colordag) is extremely simple: If chosen at round 𝑡 in history ℎ, miner 𝑖 takes 𝑃

to consist of the leaves of𝐺
ℎ (𝑡 )
𝑖

. It thus generates a block labeled 𝑏 with parents 𝑃 and broadcasts (𝑃,𝑏), adding it to its

local view 𝐺
ℎ (𝑡 )
𝑖

.

The reward function is more involved. Before describing it formally, we give some intuition for it. Suppose that we

give all blocks reward 1. It is easy to see that 𝜎cd is a Nash equilibrium. But, with this reward function, so is every

strategy profile where miners always publish the blocks they generate at some point. For example, miners can hang

blocks off the genesis; this is also a best response. But if all miners choose to do this, it would be impossible to define a

ledger that preserves consistency.

There is a simple fix to the second problem: if there is more than one block of the same depth, all blocks of that depth

get reward 0. This stops hanging blocks off the genesis from being a best response. But now we have a new problem –

6



Colordag: An Incentive-Compatible Blockchain

𝐵1 𝑌1

𝑅1

𝐵2

𝐵3

𝑅2

𝑌2

𝑌3

𝑅3

(a) A colored dag.

𝐵1 𝐵2 𝐵3

𝑅1 𝑅2 𝑅3

𝑌1 𝑌2 𝑌3

(b) Graph minors.

Fig. 1. Coloring a dag.

𝑏0 𝑏1 𝑏′

𝑏

𝑏′′ 𝑏2 𝑏∗

Fig. 2. An unacceptable block.

we lose reward consistency. At any point, an adversary can penalize an arbitrary block 𝑏 by adding a new block with the

same depth as 𝑏. To obtain reward consistency, we would want to call the adversary’s block in such cases unacceptable,

and completely ignore it. Intuitively, we want blocks that hang off a block of depth 𝑇 to be viewed as unacceptable if

they are added after the blockdag has height sufficiently greater than 𝑇 . This motivates our notion of unacceptability.

Roughly speaking, our reward function gives a reward of 1 to all blocks except those that are unacceptable or those

that are forked; these get reward 0. The mechanism thus relies on a rational miner not being able to form a longer

chain privately than the honest miners can can form. However, forks can happen naturally, due to network latency,

meaning honest miners’ chain-extension rate is less than their block-generation rate, whereas the rational miner’s rate

is unimpaired. To mitigate the effect of forking, we color the nodes, effectively partitioning the blockdag into disjoint

graph minors [5] (one minor for each color); we determine forking (and acceptability) in these graph minors. We can

make the amount of forking as small as we want by using enough colors. We now present the key components needed

for the reward function, and then give the actual function.

Coloring nodes: Because messages may take up to Δ rounds to arrive, two honest miners can both extend a block 𝑏,

because neither has heard of the other’s extension at the point when it is doing its own extension. To make our results

as strong as possible, following the literature [8, 11, 19], we assume that a deviating miner is able to avoid forking with

its own blocks. Thus, a deviator can extend paths in the blockdag faster than would be indicated by her relative power.

In particular, a deviator with power less than (but close to) 1/2 may be able to (with high probability) build paths longer

than the honest miners can build, due to forking.

To deal with this problem, Colordag assigns each block a color chosen at random from a sufficiently large set of 𝑁𝐶

colors; that is, it assigns each block a number in {1, . . . , 𝑁𝐶 } (which we view as a color). In practice, this would be

done by taking the color to be the hash of the contents of the block mod 𝑁𝐶 . This ensures that, except with negligible

probability, (1) all colors are equally likely, (2) the color of a block 𝑏 is learned by the miner that generates 𝑏 only after 𝑏

is generated, and (3) colors are commonly known (every miner can compute the color of every block, just knowing its

content). In our model, this is like having the scheduler allocate a random color when it chooses a miner in a round.

Figure 1a shows a blockdag where the nodes are colored either blue (B), red (R), or yellow (Y).

After coloring each node in the graph𝐺 , we consider the graph minor𝐺𝑐 corresponding to color 𝑐 : The nodes in this

graph minor are just the nodes of color 𝑐 in 𝐺 ; node 𝑏 ′ is a child of 𝑏 in 𝐺𝑐 iff 𝑏
′
is a descendant of 𝑏 in 𝐺 and there is

no path in 𝐺 from 𝑏 to 𝑏 ′ with an intermediate node (i.e., one strictly between 𝑏 and 𝑏 ′) of color 𝑐 . Figure 1b shows the

minors resulting from our example.

The key point is that, by taking 𝑁𝐶 sufficiently large, we make the probability of a fork among the blocks generated

by honest miners in𝐺𝑐 arbitrarily small. The reasoning is simple: Suppose that 𝑏 and 𝑏 ′ are generated by honest miners

at times 𝑡𝑏 and 𝑡𝑏′ , respectively, where 𝑡𝑏′ > 𝑡𝑏 . If 𝑏 and 𝑏 ′ have the same color and there are enough colors, then with

7



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

high probability, 𝑡𝑏′ > 𝑡𝑏 + Δ, so 𝑏 ′ is a descendant of 𝑏 in 𝐺 , and hence also in 𝐺𝑐 . In other words, if two blocks are

neither an ancestor nor a descendant of one another in 𝐺 , they are unlikely to have the same color.

Acceptable blocks: We now define what it means for a block to be acceptable. We want it to be the case that a block is

unacceptable if it has depth𝑇 but was added after the depth of the blockdag is considerably greater than𝑇 . The way we

capture this is by requiring acceptable blocks to be on paths that are almost as long as the longest path in the graph.

Given a dag𝐺𝑐 , we “close off”𝐺𝑐 so that it has a unique initial node and a unique final node (even if it did not already

have them), by adding special vertices 𝑏0 and 𝑏∗, where 𝑏0 is the parent of all the roots of 𝐺𝑐 and 𝑏∗ is the child of all

leaves in 𝐺𝑐 . We refer to this graph as 𝐺+
𝑐 . We denote by |𝑄 | the length of a path 𝑄 , which is the number of edges in 𝑄 ,

and hence one less than the number of vertices in 𝑄 .

Given a graph 𝐺 , for each color 𝑐 , we choose one particular longest path in 𝐺+
𝑐 from 𝑏0 to 𝑏∗. If there is more than

one longest path, we use a canonical tie-breaking rule, which we now define, as it will be useful later. Intuitively, if

there are several paths of maximal length, we order the paths by considering the point where they first differ, and

choose using some fixed tie-breaking rule that depends only on the contents of the blocks where they first differ.

Definition 6 (Canonical path). Given a blockdag, the canonical path starts at the genesis and continues as all longest

paths do up to the first point where some longest paths diverge (this could already happen at the genesis). At this point, we

choose some tie-breaking rule to decide which longest paths to follow.4 The canonical path continues as all these longest

paths until the next point of divergence. Again, at this point we use the tie-breaking rule to decide which longest paths to

follow. We apply this procedure each time longest paths diverge.

The key point is that all these tie-breaking rules are local. The decisions made are the same (if all the prefixes of

these paths exist) in all the graphs we consider.

Definition 7 (Acceptable). A path 𝑃 in𝐺+
𝑐 from block 𝑏0 to block 𝑏∗ is 𝑁ℓ -almost-optimal if the symmetric difference

between 𝑃 and the canonical longest path 𝑃∗ (i.e., the set of blocks in exactly one of the paths 𝑃 and 𝑃∗) has fewer than 𝑁ℓ
blocks. A block 𝑏 of color 𝑐 is 𝑁ℓ -acceptable iff it is on an 𝑁ℓ -almost-optimal path 𝑃 of color 𝑐 . The path 𝑃 is said to be a

witness to the acceptability of 𝑏.

The revenue scheme: We need one more definition before we can define the revenue scheme.

Definition 8 (Forked Block). An 𝑁ℓ -acceptable block 𝑏 in blockdag 𝐺 is 𝑁ℓ -forked if there is another 𝑁ℓ -acceptable

block 𝑏 ′ with the same color as 𝑏, say 𝑐 , such that 𝑑 (𝐺𝑐 , 𝑏) = 𝑑 (𝐺𝑐 , 𝑏 ′).

We can now make Colordag’s revenue scheme precise. As we said, a block of color 𝑐 gets reward 1 unless it is

unacceptable or it is forked in 𝐺𝑐 . The revenue scheme takes 𝑁ℓ as a parameter, so we denote it 𝑟 cd
𝑁ℓ

.

Definition 9 (Colordag Revenue Scheme). A node 𝑏 is 𝑁ℓ -compensated if 𝑏 is 𝑁ℓ -acceptable in 𝐺𝑐 and is not

𝑁ℓ -forked; 𝑟 cd𝑁ℓ
(𝐺,𝑏) = 1 if 𝑏 is 𝑁ℓ -compensated; otherwise, 𝑟 cd

𝑁ℓ
(𝐺,𝑏) = 0.

Colordag Ledger Function. The ledger function of Colordag chooses a fixed color 𝑐 , and given graph 𝐺 , chooses the

canonical path in the subgraph of 𝐺 of color 𝑐 .

Definition 10 (Colordag Ledger Function). Given a blockdag𝐺 and a fixed color 𝑐 , Colordag’s ledger function Lcd

returns a sequence consisting of the blocks on the canonical path in 𝐺𝑐 .
4
For example, in practice this could be the smallest hash of the block contents.

8



Colordag: An Incentive-Compatible Blockchain

Reward Calculation. As we now show, the reward calculation can be done in polynomial time. Given 𝑁ℓ , a graph 𝐺 ,

and a block 𝑏 of color 𝑐 , we want to calculate 𝑟 cd
𝑁ℓ

(𝐺,𝑏). The first task is to construct the graph minor 𝐺𝑐 of color 𝑐;

this clearly can be done in time polynomial in |𝐺 |. The next step is to determine the canonical longest path 𝑃∗ in𝐺𝑐 .

We can do this quickly, since it is well known that longest paths in dags can be calculated in linear time [18]. (Indeed,

it is straightforward to keep a table of lengths of longest paths and update it as 𝐺𝑐 grows over time.) Finally, using

depth-first search, we can quickly compute the block 𝑏2 of least depth on 𝑃∗ that is a descendant of 𝑏 (which is 𝑏 itself

if 𝑏 is on 𝑃∗) and the block of greatest depth 𝑏1 on 𝑃
∗
that is an ancestor of 𝑏. By construction there is a path from 𝑏1

to 𝑏2 that includes 𝑏. If it has length greater than the length of the subpath from 𝑏1 to 𝑏2 on 𝑃
∗ \𝑁ℓ , then 𝑏 is acceptable.

If 𝑏 is forked, then similar arguments allow us to check whether a block forking 𝑏 is acceptable. If 𝑏 is acceptable and

no block forking 𝑏 is acceptable, then 𝑟 cd
𝑁ℓ

(𝐺,𝑏) = 1; otherwise, 𝑟 cd
𝑁ℓ

(𝐺,𝑏) = 0.

5 ANALYSIS

In this section, we show that Colordag satisfies all the blockdag desiderata and is an Y-sure NE (and thus also an Y-NE).

The first step in doing this is to identify a set 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿
of “reasonable” histories that has probability at least 1 − Y.

One of the things that makes a history reasonable is that there is little forking. The whole point of coloring is that we

can make the probability of forking arbitrarily small in the graphs of color 𝑐 , by choosing enough colors.

Definition 11. A pair (𝑏1, 𝑏2) of blocks is a natural 𝑐-fork in a history ℎ if 𝑏1 and 𝑏2 both have color 𝑐 , they are both

generated within a window of Δ rounds, and neither is an ancestor of the other in 𝐺ℎ . An interval [𝑡1, 𝑡2] suffers at most

𝛿-𝑐-forking loss if, the set of blocks 𝑏1 generated in [𝑡1, 𝑡2 | for which there exists a block 𝑏2 such that (𝑏1, 𝑏2) is a natural
𝑐-fork is a fraction less than 𝛿 of the total number of blocks of color 𝑐 generated in [𝑡1, 𝑡2].

We now consider histories that satisfy three properties that will turn out to be key to our arguments.

Definition 12 (Safe history). A history is (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max)-safe if, for all miners 𝑖 , and all colors 𝑐 ,

SH1. for every subinterval [𝑡 ′
1
, 𝑡 ′
2
] of [0,𝑇max], such that at least 𝑁ℓ blocks of color 𝑐 are generated in the interval [𝑡 ′

1
, 𝑡 ′
2
],

miner 𝑖 generates less than 1/2 − 𝛿 of them;

SH2. every subinterval [𝑡 ′
1
, 𝑡 ′
2
] of [0,𝑇max] such that 𝑡 ′

2
− 𝑡 ′

1
≥ 𝑁ℓ suffers at most 𝛿-𝑐-forking loss; and

SH3. for every subinterval [𝑡 ′
1
, 𝑡 ′
2
] of [0,𝑇max] such that 𝑡 ′

2
− 𝑡 ′

1
≥ 𝑁ℓ , there are at least 𝛿𝐶 (𝑡 ′2 − 𝑡

′
1
) blocks of color 𝑐

generated in [𝑡 ′
1
, 𝑡 ′
2
].

Let 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max denote the set of histories that are (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max)-safe.

Proposition 1. Suppose that for all miners 𝑖 , Pow(𝑖) ≤ 𝛼 < 1/2. Then for all Y > 0, there exists a positive integer 𝑇 ∗
max

such that for all 𝑇max ≥ 𝑇 ∗
max, there exist 𝑁𝐶 , 𝑁ℓ < 𝑇max, 𝛿 ∈ (0, 1/2), and 𝛿𝐶 ∈ (0, 1) such that Pr(𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max ) ≥

1 − Y.

To prove the proposition, we use Hoeffding’s inequality to find conditions on the parameters on 𝑁𝐶 , 𝑁ℓ , 𝛿 , and 𝛿𝐶 for

the conditions SH1-SH3 to hold given 𝛼 and 𝑇max with probability 1 − Y/3. If all conditions are satisfied, then SH1-SH3

hold with probability at least 1 − Y. Finally, we show that such conditions can be found for all sufficiently large 𝑇max

values. The proof is deferred to Appendix A.

We say that (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 if Proposition 1 holds for this choice of 𝑁𝐶 , 𝑁ℓ , 𝛿 , 𝛿𝐶 and𝑇max.

We show that (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max)-safe histories are “good” (in systems where (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for the
desired Y, and 𝛼 < 1/2). The following propositions show that good things happen in 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max

. The first one

shows that all of blocks generated by honest miners are acceptable.

9



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

𝑄∗

𝑄
𝑏0

𝑏1

𝑏

𝑏2
𝑃

𝑃 ′
𝑃∗

Fig. 3. Honest (and hence acceptable) blocks on the path containing all non-forked honest.

Proposition 2. For all histories ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max and all colors 𝑐 , there exists a path 𝑃 from 𝑏0 to 𝑏∗ in 𝐺ℎ (𝑡 )𝑐 that

contains all blocks of honest miners of color 𝑐 that are not naturally 𝑐-forked. Moreover, every block on 𝑃 is acceptable.

Proof. Fix a color 𝑐 . If 𝑏 and 𝑏 ′ are blocks of honest miners in𝐺
ℎ (𝑡 )
𝑐 that are not naturally forked, then either 𝑏 is an

ancestor of 𝑏 ′ or 𝑏 ′ is an ancestor of 𝑏 in 𝐺
ℎ (𝑡 )
𝑐 . Thus, there is a path 𝑃 from 𝑏0 to 𝑏∗ that contains all the blocks of

honest miners that are not naturally 𝑐-forked (see Figure 3).

Now consider any block 𝑏 on 𝑃 . If 𝑏 is on the canonical longest path 𝑃∗, then it is acceptable by definition. Suppose

that 𝑏 is not on 𝑃∗. Let 𝑏1 be the last node on 𝑃 preceding 𝑏 that is on 𝑃∗, and let 𝑏2 be the first node on 𝑃 following 𝑏

that is on 𝑃∗. Let 𝑄 (resp., 𝑄∗
) be the subpath of 𝑃 (resp., 𝑃∗) from 𝑏1 to 𝑏2. If the total number of nodes on 𝑄 and 𝑄∗

,

not counting 𝑏1 and 𝑏2, is less that 𝑁ℓ , then the path 𝑃 ′ that is identical to 𝑃∗ up to 𝑏1, continues from 𝑏1 to 𝑏2 along 𝑃 ,

and then continues along 𝑃∗ again, is an 𝑁ℓ -almost optimal path that contains 𝑏, showing that 𝑏 is acceptable.

It thus suffices to show that there cannot be more than 𝑁ℓ nodes on 𝑄 and 𝑄∗
, not counting 𝑏1 and 𝑏2. Suppose,

by way of contradiction, that there are. Further suppose that 𝑏1 is generated at time 𝑡1 and 𝑏2 in generated at time 𝑡2.

That means that all the blocks on 𝑄 and 𝑄∗
other than 𝑏1 and 𝑏2 are generated in the interval [𝑡1 + 1, 𝑡2 − 1]. Thus, at

least 𝑁ℓ blocks are generated in this interval. Since 𝑃∗ is a longest path, 𝑄∗
must be at least as long as 𝑄 (otherwise

going from 𝑏1 to 𝑏2 along 𝑄 would give a longer path). But by Proposition 1, at least a fraction 1/2 + 𝛿 in the interval

[𝑡1 + 1, 𝑡2 − 1] are generated by honest miners. Since there is at most 𝛿-𝑐 forking loss, it follows that the majority of the

𝑐-colored blocks in this interval are generated by honest miners and are not naturally forked. These blocks must all be

on 𝑄 . Thus, 𝑄 must have a majority of the blocks in this interval, giving us the desired contradiction. □

We next prove that Lcd
satisfies the ledger desiderata (in safe histories) with the Colordag protocol, starting with

consistency.

Proposition 3 (Colordag Ledger Consistency). If (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 < 1/2 then for all

miners 𝑖, 𝑗 and all historiesℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max , if all miners but atmost one are honest inℎ, 𝑡 ≤ 𝑡 ′, and𝑘 ≤ |L(𝐺ℎ (𝑡 )
𝑖

) |−𝑁ℓ ,
then L𝑘 (𝐺

ℎ (𝑡 )
𝑖

) = L𝑘 (𝐺
ℎ (𝑡 ′)
𝑗

).

Proof. Suppose that L𝑘 (𝐺
ℎ (𝑡 ′)
𝑗

) = 𝑏 and 𝑘 ≤ |L(𝐺ℎ (𝑡 )
𝑖

) | − 𝑁ℓ . Let 𝑃∗𝑡 ′ be the canonical longest path in 𝐺
ℎ (𝑡 ′)
𝑗,𝑐

. Let

𝑃𝑡 be its prefix in 𝐺
ℎ (𝑡 )
𝑖,𝑐

and let 𝑃∗𝑡 be the canonical longest path in 𝐺
ℎ (𝑡 )
𝑖,𝑐

(see Figure 4).

Let 𝑏 ′ be the last common block on 𝑃∗𝑡 and 𝑃𝑡 . We claim that 𝑃∗𝑡 and 𝑃𝑡 must be identical up to 𝑏 ′. For if they diverge

before 𝑏 ′, there must be subpaths 𝑄∗
and 𝑄 of 𝑃∗𝑡 and 𝑃𝑡 , respectively, that are disjoint except for their first and last

nodes. Since 𝑃∗𝑡 and 𝑃∗
𝑡 ′ are longest paths, we must have |𝑄∗ | = |𝑄 | (if, for example, |𝑄∗ | > |𝑄 |, then we can find a path

longer that 𝑃∗
𝑡 ′ by replacing the 𝑄 segment by 𝑄∗

). The canonical choice will be the same for 𝑃∗𝑡 and 𝑃∗
𝑡 ′ , providing the

desired contradiction, so the prefixes are the same up to 𝑏 ′.

Let𝐷 = |L(𝐺ℎ (𝑡 )
𝑖

) | (see Figure 5). Since 𝑃∗𝑡 is a longest path in𝐺
ℎ (𝑡 )
𝑖,𝑐

, its length is𝐷 . Suppose, by way of contradiction,

that 𝑏 is not on 𝑃∗𝑡 . Both blocks 𝑏 and 𝑏 ′ are on 𝑃∗
𝑡 ′ , and block 𝑏 cannot precede 𝑏 ′ on its prefix 𝑃𝑡 , otherwise it would be

10



Colordag: An Incentive-Compatible Blockchain

𝑄

𝑄∗

𝑏 ′ 𝑃𝑡

𝑃∗𝑡

𝑃∗
𝑡 ′

Fig. 4. Paths 𝑃𝑡 (and 𝑃∗𝑡′ ) that are identical to 𝑃
∗
𝑡 up to 𝑏′.

𝑔 𝑏 ′′
𝑏 ′

𝑏1 𝑏2𝑏2

𝑏

𝑏3

𝑒∗

𝑏4 𝑏5

𝑏+𝑃𝑡

𝑃∗𝑡

𝑃∗
𝑡 ′

𝑄

𝑄 ′

𝑃†

𝑘 ′ 𝑘

𝑅

𝑅∗ > 𝑁𝐿 𝐷

Fig. 5. Ledgers in𝐺ℎ (𝑡 )
𝑖,𝑐

and𝐺ℎ (𝑡′)
𝑗,𝑐

that are identical except for their suffixes.

on 𝑃∗𝑡 . Thus, 𝑏
′
precedes 𝑏, and we must have 𝑏 ′ = L𝑘′ (𝐺

ℎ (𝑡 )
𝑖

), where 𝑘 ′ < 𝐷 − 𝑁ℓ . Since |L(𝐺ℎ (𝑡 )
𝑖

) | = 𝑑 (𝐺ℎ (𝑡 )
𝑖,𝑐

), it
follows that 𝑑 (𝐺ℎ (𝑡 )

𝑖,𝑐
, 𝑏 ′) < 𝐷 − 𝑁ℓ . (We note for future reference, since it is used in the proof of Proposition 7, that the

contradiction comes from this fact.) It follows that the segment 𝑅∗ of 𝑃∗𝑡 from 𝑏 ′ to the end must have length greater

than 𝑁ℓ . Moreover, if 𝑅 is the segment of 𝑃𝑡 from 𝑏 ′ to the end, then 𝑅 and 𝑅∗ must be disjoint except for their initial

block 𝑏 ′.

We now get a contradiction by considering a path 𝑃† that includes all the honest blocks in 𝐺
ℎ (𝑡 ′)
𝑖,𝑐

that are not

naturally forked. Let 𝑏 ′′ be the last block at or preceding 𝑏 ′ that is honest and not naturally forked. (If 𝑏 ′ is honest

and not naturally forked, then 𝑏 ′′ = 𝑏 ′.) Consider the subpath going from 𝑏 ′′ to 𝑏 ′ followed by 𝑅∗. Call this path 𝑄

(highlighted in Figure 5). 𝑃† must intersect 𝑄 . For if not, there must be at least as many blocks on 𝑄 as there are on

𝑃† generated at or before time 𝑡 (since 𝑃∗𝑡 is the canonical longest path), but none of the blocks on 𝑄 other than 𝑏 ′′ is

an honest block that is not naturally forked. Suppose that 𝑏 ′′ is generated at time 𝑡 ′′. It follows that in the interval

[𝑡 ′′ + 1, 𝑡], fewer honest blocks that are not naturally forked are generated than dishonest blocks, contradicting the

assumption that ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
.

Without loss of generality, suppose that, starting at 𝑏 ′′, 𝑃† intersects with 𝑅∗ after it intersects with 𝑅. (If 𝑃† does

not intersect with 𝑅 at all, we take 𝑅 to be the path it intersects with later. The argument is the same if 𝑃† intersects

with 𝑅 after it intersects with 𝑅∗.) Let 𝑏1, 𝑏2, . . . , 𝑏𝑘 be the blocks on 𝑃† that are also on 𝑅∗, in the order that they appear.

For convenience, we take 𝑏𝑘 = 𝑏∗ (the virtual final block). For each pair 𝑒 , 𝑒 ′ of consecutive blocks in 𝑏1, . . . , 𝑏𝑘 , the

path from 𝑒 to 𝑒 ′ on 𝑄 must be at least as long as the path from 𝑒 to 𝑒 ′ on 𝑃† (if 𝑒 ′ = 𝑏∗, we take the path from 𝑒 to 𝑒 ′

on 𝑃† to be the subpath of 𝑃† starting from 𝑒 and including all the blocks generated at or before time 𝑡 ). It follows that

there are at least as many blocks on 𝑄 that are not on 𝑃† as there are blocks on 𝑃† that are generated after 𝑏 ′′ and at or

before time 𝑡 and are not on 𝑄 . We can repeat this process with 𝑅 to show, roughly speaking, that there are at least

as many blocks on 𝑅 that are not on 𝑃† as there are on 𝑃† that are generated after 𝑏 ′′ and at or before time 𝑡 that are

not on 𝑅. Suppose that 𝑏 ′′ is generated at time 𝑡 ′′. It follows that there are at least as many blocks that are either not

honest or naturally forked generated between time 𝑡 ′′ and 𝑡 as there are honest blocks that are not naturally forked.

This contradicts the assumption that ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
.

11



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

The reason that we said “roughly speaking” above is that this argument does not work in one special case. Suppose

that the final block on 𝑅 that is also on 𝑃† is 𝑒∗. Further suppose that there are blocks on 𝑃† that are generated at or

before time 𝑡 but after 𝑒∗. We cannot conclude that the path from 𝑒∗ to 𝑏∗ on 𝑅 is at least as long as the subpath of 𝑃†

consisting of blocks generated after 𝑒∗ and at or before time 𝑡 , since 𝑅 is not necessarily a longest path up to time 𝑡 .

We deal with this as follows. Let 𝑄 ′
(highlighted in Figure 5) be the segment of 𝑃∗

𝑡 ′ starting at 𝑏
′
and ending with the

first honest block that is not naturally forked that is generated after time 𝑡 . Call this block 𝑏+. Note that 𝑅 is a prefix of

𝑄 ′
. Moreover, the subpath of 𝑄 ′

from 𝑐 to 𝑏+ is indeed at least as long as the subpath of 𝑃
†
𝑡 ′ from 𝑐 to 𝑏+. The upshot of

this argument is that there are more blocks on 𝑄 and 𝑅 (or 𝑄 ′
) that are not on 𝑃† than there are blocks on 𝑃† after 𝑏 ′′

that are generated at or before time 𝑡 (or up to 𝑏+, if we consider 𝑄 ′
). As before, this gives a contradiction to the fact

that ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
.

Therefore, our initial assumption was wrong and we conclude that 𝑏 is on 𝑃∗𝑡 . Therefore, it precedes the last

common block 𝑏 ′ on both 𝑃∗𝑡 and 𝑃∗
𝑡 ′ . Since we have shown the two paths coincide until 𝑏 ′, it follows that L𝑘 (𝐺

ℎ (𝑡 )
𝑖

) =
L𝑘 (𝐺

ℎ (𝑡 ′)
𝑗

). □

Proposition 4 (Colordag ledger growth). If (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 < 1/2, then for all

rounds 𝑡 and 𝑡 ′ such that 𝑡 ′ − 𝑡 ≥ 𝑁ℓ/𝛿𝐶 , if all miners but at most one are honest in ℎ ∈ 𝐻
𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
𝑖

, then

|Lcd (𝐺ℎ (𝑡
′)

𝑖
) | ≥ |Lcd (𝐺ℎ (𝑡 )

𝑖
) | + 1.

Proof. Suppose that ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
. Consider rounds 𝑡 and 𝑡 ′ such that 𝑡 ′− 𝑡 ≥ 2𝑁ℓ/𝛿𝐶 . Since 𝑡 ′− 𝑡 ≥ 2𝑁ℓ/𝛿𝐶

and ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max

𝑖
there are 𝐾 ≥ 2𝑁ℓ blocks of color 𝑐 generated in this interval. Because ℎ is safe, more than

𝐾/2 ≥ 𝑁ℓ of these blocks are honest and not naturally forked. Let 𝑃† be a path that includes all of these blocks. Let

𝑃∗𝑡 denote the canonical longest path of color 𝑐 up to time 𝑡 . Let 𝑏 be the last block on 𝑃∗𝑡 that is on 𝑃†. Let𝑀0 be the

length of 𝑃∗𝑡 up to and including 𝑏. Suppose that there are𝑀 blocks on 𝑃∗𝑡 following 𝑏, and𝑀 ′
blocks on 𝑃† following 𝑏

that are generated before time 𝑡 . Thus, the length of 𝑃∗𝑡 is𝑀0 +𝑀 . Note that𝑀 ≥ 𝑀 ′
(since 𝑃∗𝑡 is a longest path) and

𝑀 +𝑀 ′ < 𝑁ℓ (1)

(otherwise, fewer than half the blocks generated between the time that 𝑏 was generated and 𝑡 are honest and not

naturally forked, despite the fact that at least 𝑁ℓ blocks are generated in that interval). Now the subpath of 𝑃† up to

time 𝑡 ′ has length greater than𝑀0 +𝑀 ′ + 𝐾/2 ≥ 𝑀0 +𝑀 ′ + 𝑁ℓ , so the canonical path up to time 𝑡 ′ must have at least

this length. Thus, for the canonical path up to time 𝑡 ′ we have

|Lcd (𝐺ℎ (𝑡
′)

𝑖
) | ≥ 𝑀0 +𝑀 ′ + 𝑁ℓ

Eq. 1

> 𝑀0 + (𝑀 − 𝑁ℓ ) + 𝑁ℓ = 𝑀 +𝑀0 = |Lcd (𝐺ℎ (𝑡 )
𝑖

) | □

It remains to show that the ledger quality desideratum holds.

Proposition 5 (Colordag ledgerqality). If (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 < 1/2 then for all rounds 𝑡

and 𝑡 ′ such that 𝑡 ′ − 𝑡 ≥ 2𝑁ℓ/𝛿𝐶 , and all ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
𝑖

, at least two of the blocks of color 𝑐 added to L(𝐺ℎ (𝑡
′)

𝑖
) in

the interval [𝑡, 𝑡 ′] are generated by honest miners.

Proof. As we argued in the proof of Proposition 4, since 𝑡 ′ − 𝑡 ≥ 2𝑁ℓ/𝛿𝐶 , there are at least 2𝑁ℓ blocks of color 𝑐 in
the interval (by SH3), so we must have at least 𝑁ℓ blocks that are honest and not naturally forked (by SH1 and SH2).

Let 𝑃∗
𝑡 ′ be the canonical longest path up to time 𝑡 ′ and let 𝑃† be a path that includes all the honest blocks of color 𝑐 that

are not naturally forked up to time 𝑡 ′. Let 𝑏 be the last honest block that is not naturally forked on 𝑃∗
𝑡 ′ that is generated

prior to time 𝑡 (𝑏 is the genesis block if no other honest blocks on 𝑃∗
𝑡 ′ are generated prior to time 𝑡 ). We claim that there

12



Colordag: An Incentive-Compatible Blockchain

𝑏 𝑏 ′
𝑃∗
𝑡 ′

𝑃†

𝑡

2𝑁ℓ/𝛿𝐶

Fig. 6. The situation if 𝑏′ is the only honest block generated after 𝑏.

must be at least two honest blocks that are not naturally forked on 𝑃∗
𝑡 ′ that come after 𝑏. First suppose that there are

none. Then there are at least as many blocks on 𝑃∗
𝑡 ′ that are generated after 𝑏 as there are on 𝑃† that are generated after

𝑏, so, as before, we get a contradiction to the fact that ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max

𝑖
.

Next suppose that there is only one block, say 𝑏 ′, on 𝑃∗
𝑡 ′ that is generated after 𝑏 that is honest and not naturally

forked (see Figure 6). Note that there are more than 𝑁ℓ blocks on 𝑃
†
after 𝑏 and hence more than 𝑁ℓ on 𝑃

∗
𝑡 ′ after 𝑏

(since 𝑃∗
𝑡 ′ is a longest path). Consider the subpath of 𝑃∗

𝑡 ′ strictly between 𝑏 and 𝑏 ′ and the subpath of 𝑃† strictly between

𝑏 and 𝑏 ′. If the total number of blocks on these subpaths is at least 𝑁ℓ , then property SH1 does not hold and we have a

contradiction to ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max

𝑖
. If not, then the total number of blocks on the subpath of 𝑃† strictly after 𝑏 and

the subpath of 𝑃∗
𝑡 ′ strictly after 𝑏 must be at least 𝑁ℓ , so again we get a contradiction to ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max

𝑖
. □

The next proposition essentially shows that Colordag is an Y-sure NE.

Proposition 6. If (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y, 𝛼 < 1/2, ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max , and 𝑡𝑖
2
− 𝑡𝑖

1
> 𝑁ℓ , then 𝑖 does

not benefit by deviating if all other miners are honest, given revenue scheme 𝑟𝑁ℓ

𝑐𝑑
.

Proof. By Proposition 2, all honest blocks are acceptable in ℎ, no matter what 𝑖 does. Obviously 𝑖 can make her own

blocks unacceptable, but this would only affect her own revenue and decrease her utility.

It remains to show that 𝑖 decreases her utility by creating forks. Suppose that 𝑀 blocks generated in ℎ in the

interval [𝑡𝑖
1
, 𝑡𝑖
2
] by miners other than 𝑖 and 𝑀 ′

blocks are generated by 𝑖 . We must have 𝑀 > 𝑀 ′
(SH1). If 𝑖 does not

deviate, then all these blocks are compensated, so 𝑖’s utility is
𝑀′

𝑀+𝑀′ . If 𝑖 deviates, 𝑖 can decrease the utility of the

other miners only by forking blocks (since there is nothing that 𝑖 can do to make a block unacceptable). It is easy to

see that every block of the other miners that is forked by 𝑖 comes at a cost of 𝑖 forking one of his own blocks. Thus,

if 𝑖 deviates so as to fork 𝑀 ′′
blocks, then 𝑖’s utility is

𝑀′−𝑀′′
𝑀+𝑀′−2𝑀′′ . Since 𝑀

′′ ≤ 𝑀 ′ < 𝑀 , simple algebra shows that

𝑀′
𝑀+𝑀′ >

𝑀′−𝑀′′
𝑀+𝑀′−2𝑀′′ , so this deviation results in the deviator losing utility. □

Corollary 1. If (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 < 1/2, then Colordag with this choice of parameters is an

Y-sure NE.

Proof. This is immediate from Proposition 6, since if (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 < 1/2, then
Pr(𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max ) ≥ 1 − Y. □

Finally, we prove that the Colordag revenue scheme satisfies revenue consistency. We begin by showing that once a

block is deep enough, its revenue is set and does not change.

Lemma 2. If (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 < 1/2, then for all miners 𝑖, 𝑗 , all histories ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
𝑖

,

all blocks 𝑏, and all colors 𝑐 , if 𝑑 (𝐺ℎ (𝑡 )
𝑖,𝑐

, 𝑏) ≤ 𝑑 (𝐺ℎ (𝑡 )
𝑖,𝑐

) − 2𝑁ℓ and 𝑡 ≤ 𝑡 ′, then 𝑟 cd𝑁ℓ
(𝐺ℎ (𝑡 )
𝑖

, 𝑏) = 𝑟 cd
𝑁ℓ

(𝐺ℎ (𝑡
′)

𝑗
, 𝑏).

13



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

Proof. As in the proof of Proposition 3, let 𝑃∗
𝑡 ′ be the canonical longest path in 𝐺

ℎ (𝑡 ′)
𝑗,𝑐

, let 𝑃𝑡 be its prefix in 𝐺
ℎ (𝑡 )
𝑖,𝑐

,

let 𝑃∗𝑡 be the canonical longest path in 𝐺
ℎ (𝑡 )
𝑖,𝑐

, and let 𝑏 ′ be the last common block on 𝑃∗𝑡 and 𝑃𝑡 . As in the proof of

Proposition 3, 𝑃∗𝑡 and 𝑃𝑡 are identical up to 𝑏 ′, and we can derive a contradiction if 𝑑 (𝐺ℎ (𝑡 )
𝑖,𝑐

, 𝑏 ′) ≤ 𝑑 (𝐺ℎ (𝑡 )
𝑖,𝑐

) − 𝑁ℓ , so

𝑑 (𝐺ℎ (𝑡 )
𝑖,𝑐

, 𝑏 ′) > 𝑑 (𝐺ℎ (𝑡 )
𝑖,𝑐

) − 𝑁ℓ . (2)

Suppose that 𝑏 is acceptable in𝐺
ℎ (𝑡 )
𝑖

. That means that it is on some 𝑁ℓ -almost optimal path 𝑃 in𝐺
ℎ (𝑡 )
𝑖,𝑐

. Let 𝑏1 be the

first block on 𝑃∗𝑡 that is an ancestor of 𝑏, and let 𝑏2 be the first block on 𝑃
∗
𝑡 that is a descendant of 𝑏. Perhaps 𝑏1 = 𝑏

′
and

perhaps 𝑏2 = 𝑏
∗
(the final block added at the end of the graph). Let 𝑄 be the subpath of 𝑃 from 𝑏1 to 𝑏2, and let 𝑄 ′

be

the subpath of 𝑃∗𝑡 from 𝑏1 to 𝑏2. Since 𝑃 is 𝑁ℓ -almost optimal in𝐺
ℎ (𝑡 )
𝑖

, it must be the case that |𝑄 | + |𝑄 ′ | − 2 < 𝑁ℓ . Since

the depth of 𝑏 is at least 𝑁ℓ less than that of 𝑏 ′ (from the proposition statement and from Equation 2), it follows that 𝑏2

must precede 𝑏 ′. Since 𝑃∗𝑡 and 𝑃𝑡 agree up to 𝑏 ′, this argument also shows that 𝑃∗
𝑡 ′ with 𝑄 instead of 𝑄 ′

between 𝑏1

and 𝑏2 is 𝑁ℓ -almost optimal in 𝐺
ℎ (𝑡 ′)
𝑗,𝑘

, hence that 𝑏 is acceptable in 𝐺
ℎ (𝑡 ′)
𝑗,𝑘

. Just changing the roles of 𝐺
ℎ (𝑡 )
𝑖

and 𝐺
ℎ (𝑡 ′)
𝑗

,

this argument shows that if 𝑏 is acceptable in 𝐺
ℎ (𝑡 ′)
𝑗

, then it is also acceptable in 𝐺
ℎ (𝑡 )
𝑖

.

It is now almost immediate that 𝑏 is not forked by an acceptable block in 𝐺
ℎ (𝑡 )
𝑖

iff it is not forked by an acceptable

block in 𝐺
ℎ (𝑡 ′)
𝑗

.

In conclusion, block 𝑏 is acceptable and not forked by an acceptable block in 𝐺
ℎ (𝑡 )
𝑖

iff it is acceptable and not forked

by an acceptable block in 𝐺
ℎ (𝑡 ′)
𝑗

. That is, by the definition of 𝑟 cd
𝑁ℓ
, it is compensated in 𝐺

ℎ (𝑡 )
𝑖

iff it is compensated

in 𝐺
ℎ (𝑡 ′)
𝑗

. □

The next proposition shows that Colordag satisfies revenue consistency.

Proposition 7 (Colordag Revenue Consistency). If (𝑁𝐶 , 𝑁ℓ , 𝛿, 𝛿𝐶 ,𝑇max) is suitable for Y and 𝛼 < 1/2, then for

all miners 𝑖 and 𝑗 and times 𝑡 , 𝑡 ′, and 𝑡 ′′ such that 𝑡 ′, 𝑡 ′′ > 𝑡 + 4𝑁ℓ𝑁𝐶/(𝛿𝐶 (1 − 𝛿)), if 𝑏 is published at time 𝑡 in

history ℎ ∈ 𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max
𝑖

, then 𝑟 (𝐺ℎ (𝑡
′)

𝑖
, 𝑏) = 𝑟 (𝐺ℎ (𝑡

′′)
𝑗

, 𝑏).

Proof. Suppose that block 𝑏 is published at time 𝑡 and has color 𝑐 . By SH3, within 2𝑁ℓ𝑁𝐶/(𝛿𝐶 (1 − 𝛿)) rounds, at
least 2𝑁ℓ𝑁𝐶/(1−𝛿) blocks of color 𝑐 are generated. By SH1, at least 𝑁ℓ𝑁𝐶/(1−𝛿) are honest. By SH2, a fraction (1−𝛿)
of these are not forked. This means at least 𝑁ℓ𝑁𝐶 blocks are not forked, so the depth of 𝐺𝑐 has increased by at least

𝑁ℓ𝑁𝐶 after 2𝑁ℓ𝑁𝐶/(𝛿𝐶 (1 − 𝛿)) rounds. Now, for any pair of times 𝑡 ′, 𝑡 ′′ > 𝑡 + 4𝑁ℓ𝑁𝐶/(𝛿𝐶𝛿), the depth of the graph is

larger by at least 2𝑁ℓ than 𝑏’s depth, therefore, by Lemma 2, the reward for 𝑏 is the same in both𝐺
ℎ (𝑡 ′)
𝑖

and𝐺
ℎ (𝑡 ′′)
𝑗

. □

6 CONCLUSION

We present Colordag, a protocol that incentivizes correct behavior of PoW blockchain miners up to 50%, and is an Y-sure

equilibrium. That is, unlike previous solutions, the desired behavior is a strict best response in all but a set of histories

of negligible probability. As long as a majority of the participants follow the behavior prescribed by Colordag, the

ledger desiderata, as well as reward consistency, all hold.

We prove the properties of Colordag when playing against an extremely strong adversary, one that knows before

deviating when agents will generate blocks and when messages will arrive. Intuitively, to benefit from a deviation,

a deviator must produce an acceptable path longer than 𝑁ℓ and longer than the honest path. Knowing in advance

that what order messages can arrive in and whether there is forking means that a deviator knows in advance whether

the deviation can succeed. Our analysis shows that, even with this knowledge, a deviation can succeed with only low

probability. Unfortunately, to get such a strong guarantee, we may need the parameters 𝑁𝐶 and 𝑁ℓ to be quite large.

14



Colordag: An Incentive-Compatible Blockchain

If the adversary does not have this information a priori (which, of course, is the case in practice), the parameters can

be significantly smaller than those required to obtain the bounds presented here. Without this a priori knowledge, the

probability that a deviation succeeds drops quickly with 𝑁ℓ . Therefore, the cost of failed attempts grows with 𝑁ℓ , while

their overall benefit drops. An analysis of this kind (cf. [3, 9, 17]) is outside the scope of this paper. But preliminary

experiments suggest that under reasonable assumptions, with this more limited adversary, Colordag can perform well

in practice, with quite reasonable parameter choices. We hope to report on this work in the future.

Acknowledgements. This work was supported by the Israel Science Foundation (grant No. 1641/18), the Federmann

Cyber-Security Center in conjunction with the Israel National Cyber Directorate, and the Technion Hiroshi Fujiwara

Cyber-Security Research Center.

REFERENCES
[1] Adam Back. 2002. Hashcash – A Denial of Service Counter-Measure. http://www.cypherspace.org/hashcash/hashcash.pdf.

[2] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. 2019. Prism: Deconstructing the blockchain to approach physical

limits. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 585–602.
[3] Roi Bar Zur, Ittay Eyal, and Aviv Tamar. 2020. Efficient MDP analysis for selfish-mining in blockchains. In Proceedings of the 2nd ACM Conference on

Advances in Financial Technologies. 113–131.
[4] Vitalik Buterin. 2013. A Next Generation Smart Contract & Decentralized Application Platform. https://www.ethereum.org/pdfs/

EthereumWhitePaper.pdf/, retrieved Feb. 2015.

[5] Reinhard Diestel. 2017. Graph Theory (5th ed.). Springer-Verlag.

[6] Cynthia Dwork and Moni Naor. 1992. Pricing via processing or combatting junk mail. In Proceedings CRYPTO ’92: 12th International Cryptology
Conference. Springer, 139–147.

[7] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not Enough: Bitcoin Mining is Vulnerable. In Financial Cryptography and Data Security.
[8] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone Protocol: Analysis and Applications. In Advances in Cryptology -

EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques. 281–310.
[9] Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramer, Giulia Fanti, and Ari Juels. 2019. SquirRL: Automating Attack Discovery on

Blockchain Incentive Mechanisms with Deep Reinforcement Learning. arXiv:1912.01798 (2019).
[10] Markus Jakobsson and Ari Juels. 1999. Proofs of work and bread pudding protocols. In Secure Information Networks. Springer, 258–272.
[11] Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. 2018. A better method to analyze blockchain consistency. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 729–744.
[12] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive Block Chain Protocols. In Financial Cryptography. Puerto Rico.

[13] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. http://www.bitcoin.org/bitcoin.pdf.

[14] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2015. Stubborn Mining: Generalizing Selfish Mining and Combining with an Eclipse

Attack. IACR Cryptology ePrint Archive 2015 (2015), 796.
[15] Rafael Pass, Lior Seeman, and Abhi Shelat. 2016. Analysis of the blockchain protocol in asynchronous networks. Technical Report. Cryptology ePrint

Archive, Report 2016/454.

[16] Rafael Pass and Elaine Shi. 2017. Fruitchains: A fair blockchain. In Proceedings of the ACM Symposium on Principles of Distributed Computing.
315–324.

[17] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal Selfish Mining Strategies in Bitcoin. In Financial Cryptography and Data
Security.

[18] R. Sedgewick and K. Wayne. 2011. Algorithms (fourth ed.). Addison-Wesley.

[19] Jakub Sliwinski and Roger Wattenhofer. 2019. Blockchains Cannot Rely on Honesty. https://disco.ethz.ch/courses/distsys/lnotes/

rationalblockchainpaper.pdf.

[20] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. 2021. PHANTOM GHOSTDAG: a scalable generalization of Nakamoto consensus. In

Proceedings of the 3rd ACM Conference on Advances in Financial Technologies. 57–70.
[21] Gavin Wood. 2015. Ethereum Yellow Paper. https://web.archive.org/web/20160820211734/http://gavwood.com/Paper.pdf.

[22] H. Yu, Nikolić I., R. Hou, and P. Saxena. 2020. Ohie: Blockchain scaling made simple. In 2020 IEEE Symposium on Security and Privacy (SOSP). 90–105.

15

http://www.cypherspace.org/hashcash/hashcash.pdf
https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
http://www.bitcoin.org/bitcoin.pdf
https://disco.ethz.ch/courses/distsys/lnotes/rational blockchain paper.pdf
https://disco.ethz.ch/courses/distsys/lnotes/rational blockchain paper.pdf
https://web.archive.org/web/20160820211734/http://gavwood.com/Paper.pdf


Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

A SAFE HISTORY PROBABILITY

We prove that a safe history has overwhelming probability.

Proposition 1 (restated). Suppose that for all miners 𝑖 , Pow(𝑖) ≤ 𝛼 < 1/2. Then for all Y > 0, there exists a pos-

itive integer 𝑇 ∗
max such that for all 𝑇max ≥ 𝑇 ∗

max, there exist 𝑁𝐶 , 𝑁ℓ < 𝑇max, 𝛿 ∈ (0, 1/2), and 𝛿𝐶 ∈ (0, 1) such that

Pr(𝐻𝑁𝐶 ,𝑁ℓ ,𝛿,𝛿𝐶 ,𝑇max ) ≥ 1 − Y.

Proof. We show that there exist constraints on 𝑇max, 𝑁𝐶 , 𝑁ℓ , and 𝛿𝐶 such that, if the constraints are satisfied, then

the probability for the set of histories that have property SH1 (resp., SH2; SH3) is at least 1 − Y/3. We then show that

these constraints are satisfiable. The result then follows from the union bound.

We start with SH2. Fix a color 𝑐 , and suppose that there are 𝑁𝐶 colors. The probability that a block 𝑏 has color 𝑐 is

1/𝑁𝐶 . To simplify notation in the rest of this proof, we take 𝛾 = 1/𝑁𝐶 . For 𝑏 to be the earlier of two blocks that are

naturally 𝑐-forked, there must be another block of color 𝑐 that is generated within an interval of less than Δ after 𝑏

is generated. Suppose that 𝑏 is generated in round 𝑟 . The probability that a block 𝑏 generated in round 𝑟 has color 𝑐

is 𝛾 . The probability that none of the blocks generated in rounds 𝑟 + 1, . . . , 𝑟 + Δ − 1 has color 𝑐 is (1 − 𝛾)Δ−1, so the

probability 𝑏 is not naturally 𝑐-forked is at least (1 − 𝛾)Δ−1.
Fix an interval [𝑡 ′

1
, 𝑡 ′
2
]. The probability that that [𝑡 ′

1
, 𝑡 ′
2
] suffers greater than 𝛿-𝑐-forking loss is exactly the probability

that there are fewer than (1 − 𝛿) (𝑡 ′
2
− 𝑡 ′

1
) blocks of some color 𝑐 that are naturally forked by a later block. For a fixed

color 𝑐 , by Hoeffding’s inequality, this probability is at most 𝑒−2(𝑡
′
2
−𝑡 ′

1
) [ (𝑡 ′

2
−𝑡 ′

1
) ( (1−𝛾 )Δ−1−𝛿) ]2

. Since we are interested

only in the case that 𝑡 ′
2
− 𝑡 ′

1
≥ 𝑁ℓ , there are 𝑁𝐶 colors, 𝛾 = 1/𝑁𝐶 and there are at most

(𝑇max

2

)
≤ 𝑇 2

max
possible choices of

𝑡 ′
1
and 𝑡 ′

2
, SH2 holds with probaiblity at least 1 − Y/3 if

𝑁𝐶𝑇
2

max
𝑒
−2𝑁 3

ℓ ( (
𝑁𝐶−1
𝑁𝐶

)Δ−1−𝛿)2
< Y/3. (3)

Equation (3) is thus the constraint that needs to be satisfied for SH2.

For SH3, again, fix a color 𝑐 , and suppose that there are 𝑁𝐶 colors. Then the expected number of blocks of color 𝑐

in an interval [𝑡 ′
1
, 𝑡 ′
2
] is 𝛾 (𝑡 ′

2
− 𝑡 ′

1
), so by Hoeffding’s inequality, the probability of there being fewer than 𝛿𝐶 (𝑡 ′2 − 𝑡

′
1
)

blocks of color 𝑐 in the interval [𝑡 ′
1
, 𝑡 ′
2
] is at most 𝑒−2(𝑡

′
2
−𝑡 ′

1
) [ (𝑡 ′

2
−𝑡 ′

1
) (𝛾−𝛿𝐶 ) ]2

. Much as in the argument for SH2, it follows

that SH3 holds with probability at least 1 − Y/3 if

𝑁𝐶𝑇
2

max
𝑒
−2𝑁 3

ℓ (
1

𝑁𝐶
−𝛿𝐶 )2

< Y/3. (4)

Equation (4) is thus the constraint that needs needs to be satisfied for SH3.

Finally, for SH1, fix𝑀 ≥ 𝑁ℓ , 𝐾 such that 𝑁ℓ ≤ 𝐾 ≤ 𝑀 , a round 𝑡 , an miner 𝑖 , and a color 𝑐 , and let 𝑁𝐶 be the number

of colors and 𝛼𝑖,𝑡,𝑀 be 𝑖’s average power in the interval [𝑡, 𝑡 +𝑀]. Take

𝛿 = (1/2 − 𝛼)/2. (5)

Let H𝑡,𝑀,𝐾,𝑖 consist of all histories where, in the subinterval [𝑡, 𝑡 +𝑀] of [0,𝑇max], there are exactly 𝐾 ≥ 𝑁ℓ blocks of

color 𝑐 , at least a fraction 1/2 − 𝛿 of them are generated by miner 𝑖 . The probability of there being exactly 𝐾 blocks

of color 𝑐 in the interval is

(𝑀
𝐾

)
𝛾𝐾 (1 − 𝛾)𝑀−𝐾

. Applying Hoeffding’s inequality, the probability of being at least 𝛿 + 𝛼
away from the mean 𝛼𝑖,𝑡,𝑀 is 𝑒−2(𝛿+𝛼−𝛼𝑖,𝑡,𝑀 )2𝐾

. It follows that Pr(H𝑡,𝑀,𝐾,𝑖 ) ≤
(𝑀
𝐾

)
𝛾𝐾 (1 − 𝛾)𝑡 ′2−𝐾𝑒−2(𝛿+𝛼−𝛼𝑖,𝑡,𝑀 )2𝐾 .

16



Colordag: An Incentive-Compatible Blockchain

Let H𝑡,𝑀,𝐾 consist of all histories where, in the interval [𝑡, 𝑡 +𝑀], there are exactly 𝐾 ≥ 𝑁ℓ blocks of color 𝑐 , and of

these, greater than 1/2 − 𝛿 were generated by some miner 𝑖 . Thus, H𝑡,𝑀,𝐾 = ∪𝑖H𝑡,𝑀,𝐾,𝑖 , so

Pr(H𝑡,𝑀,𝐾 ) ≤
∑
𝑖

Pr(H𝑡,𝑀,𝐾,𝑖 ) ≤
∑
𝑖

(
𝑀

𝐾

)
𝛾𝐾 (1 − 𝛾)𝑀−𝐾𝑒−2(𝛿+𝛼−𝛼𝑖,𝑡,𝑀 )2𝐾 .

Suppose that

𝑁ℓ ≥ 4/𝛿2 . (6)

Then we show that ∑
𝑖

𝑒−2(𝛿+𝛼−𝛼𝑖,𝑡,𝑀 ))2𝐾 ≤ ⌈1/𝛼⌉𝑒−2𝛿
2𝐾 . (7)

To see this, recall that, by assumption, 𝛼𝑖,𝑡,𝑀 ≤ 𝛼 , and
∑
𝑖 𝛼𝑖,𝑡,𝑀 = 1. Straightforward calculus (details given below)

shows that if 𝛼 ≥ 𝑥 + 𝑧, 𝑧 ≤ 𝑦 ≤ 𝑥 , and 𝑁 > 1/4𝛿2, then

𝑒−2(𝛿+𝛼−𝑥−𝑧)
2𝐾 + 𝑒−2(𝛿+𝛼−𝑦+𝑧)

2𝐾 ≥ 𝑒−2(𝛿+𝛼−𝑥)
2𝐾 + 𝑒−2(𝛿+𝛼−𝑦)

2𝐾 . (8)

That is, if 𝑥 ≥ 𝑦, shifting a little of the weight from 𝑦 to 𝑥 increases the sum. It easily follows from this that the sum

is maximized if we have as many miners as possible with weight 𝛼 , and one miner with whatever weight remains.

Given that the sum of the weights is 1, we will have roughly 1/𝛼 miners with weight 𝛼 . The desired inequality (7) easily

follows. Thus,

Pr(H𝑡,𝑀,𝑘 ) ≤
(
𝑀

𝐾

)
𝛾𝐾 (1 − 𝛾)𝑀−𝐾 ⌈1/𝛼⌉𝑒−2𝛿

2𝐾 .

Here are the details of the calculation for (8): It’s clear that the two sides of the inequality are equal if 𝑧 = 0,

So we want to show that the left-hand side increases as 𝑧 increases. Taking the derivative, it suffices to show that

4(𝛿 + 𝛼 − 𝑥 − 𝑧)𝐾𝑒−2(𝛿+𝛼−𝑥−𝑧)2𝐾 − 4(𝛿 + 𝛼 − 𝑦 + 𝑧)𝐾𝑒−2(𝛿+𝛼−𝑦+𝑧)2𝐾 ≥ 0 if 𝑧 ≥ 0, or equivalently, that 𝑓 (𝑧) =

(𝛿 + 𝛼 − 𝑥 − 𝑧)𝑒−2(𝛿+(𝛼−𝑥−𝑧)2𝐾 − (𝛿 + 𝛼 − 𝑦 + 𝑧)𝑒−2(𝛿+𝛼−𝑦+𝑧)2𝐾 ≥ 0 if 𝑧 ≥ 0. We first consider what happens if 𝑧 = 0.

We must show that (𝛿 + 𝛼 − 𝑥)𝑒−2(𝛿+𝛼−𝑥)2𝐾 ≥ (𝛿 + 𝛼 − 𝑦)𝐾𝑒−2(𝛿+𝛼−𝑦)2𝐾 if 𝑥 ≥ 𝑦. The two sides are equal if 𝑥 = 𝑦.

Taking the derivative with respect to 𝑥 , it suffices to show that −𝑒−2(𝛿+𝛼−𝑥)2𝐾 + 4(𝛿 + 𝛼 − 𝑥)2𝐾𝑒−2(𝛿+𝛼−𝑥)2𝐾 ≥ 0, or

equivalently, that 4(𝛿 + 𝛼 − 𝑥)2𝐾 − 1 ≥ 0. Since 𝐾 ≥ 𝑁ℓ > 1/4𝛿2 by (5) and 𝛿 < 1/4, we have that 𝑓 (0) > 0. Next note

that 𝑓 ′(𝑧) = −𝑒−2(𝛿+𝛼−𝑥−𝑧)2𝐾 +4(𝛿 +𝛼 −𝑥 −𝑧)2𝐾𝑒−2(𝛿+𝛼−𝑥−𝑧)2𝐾 +𝑒−2(𝛿+𝛼−𝑦+𝑧)2𝐾 −4(𝛿 +𝛼 −𝑦 +𝑧)2𝐾𝑒−2(𝛿+𝛼−𝑦+𝑧)2𝐾 .
If 𝐾 > 1/4𝛿2, then 𝑓 ′(𝑧) = [1𝑒

−2(𝛿+𝛼−𝑥−𝑧)2𝐾 − [2𝑒−2( (𝛿+𝛼−𝑦+𝑧)
2𝐾
, where [1 > 0 and [2 < 0. Thus, 𝑓 ′(𝑧) > 0, as

desired.

Note that ∪{𝑡,𝑀,𝐾 : 𝑁ℓ ≤𝐾≤𝑀≤𝑇max, 𝑡 ≤𝑇max−𝑀 }H𝑡,𝑀,𝐾 consists of all histories where there are at least 𝑁ℓ blocks of

color 𝑐 and, of these, at least 1/2 − 𝛿 are generated by some miner 𝑖 .

Pr(∪{𝑡,𝑀,𝐾 : 𝑁ℓ ≤𝐾≤𝑀≤𝑇max, 𝑡 ≤𝑇max−𝑀 }H𝑡,𝑀,𝐾 )
≤ ∑

{𝑀 : 𝑁ℓ ≤𝑀≤𝑇max } (𝑇max −𝑀) ⌈1/𝛼⌉∑{𝐾 : 𝑁ℓ ≤𝐾≤𝑀 }
(𝑀
𝐾

)
𝛾𝐾 (1 − 𝛾)𝑀−𝐾𝑒−2(𝛿/2)

2𝐾

≤ ∑
{𝑀 : 𝑁ℓ ≤𝑀≤𝑇max }𝑇max ⌈1/𝛼⌉𝑒−2(𝛿/2)

2𝑁ℓ
∑
𝐾

(𝑀
𝐾

)
𝛾𝐾 (1 − 𝛾)𝑀−𝐾

≤ 𝑇 2

max
⌈1/𝛼⌉𝑒−2(𝛿/2)2𝑁ℓ .

Since SH1 must holds for all colors 𝑐 , SH1 holds with probability greater than 1 − Y/3 if

𝑁𝐶𝑇
2

max
⌈1/𝛼⌉𝑒−2(𝛿/2)

2𝑁ℓ < Y/3. (9)

To get all of SH1, SH2, and SH3 to hold with probability at least 1 − Y, we must choose 𝑁ℓ , 𝑁𝐶 , 𝑇max, 𝛿 , and 𝛿𝐶 so

that constraints (3), (4), (5), (6), and (9) all hold. Given 𝛼 , (5) determines 𝛿 . We take it to have this value. Recall that

17



Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern

𝛿 < 1/4. Given Δ, we next choose 𝑁𝐶 sufficiently large such that ( 𝑁𝐶−1
𝑁𝐶

)Δ−1 > 1

2
. We then choose 𝛿𝐶 < 1

2𝑁𝐶
. Finally,

for reasons that will become clear shortly, we replace 𝑇max in the equations by 𝑁 2

ℓ
. (We could equally well have used

𝑁𝑘
ℓ
for 𝑘 > 2.) With this replacement and the choices above, we can simplify (3), (4), and (9) to

𝑁𝐶𝑁
4

ℓ
𝑒−2𝑁

3

ℓ /16 < Y/3
𝑁𝐶𝑁

4

ℓ
𝑒−2𝑁

3

ℓ (𝛿𝐶/2)2 < Y/ and
𝑁𝐶𝑁

4

ℓ
⌈1/𝛼⌉𝑒−2(𝛿/2)2𝑁ℓ < Y/3.

(10)

Given 𝑁𝐶 , 𝛿 , 𝛿𝐶 as determined above, we can clearly choose 𝑁 ∗
ℓ
sufficiently large to ensure that these inequalities,

together with (6), hold for all 𝑁ℓ > 𝑁 ∗
ℓ
. Take 𝑇 ∗

max
= (𝑁 ∗

ℓ
)2. It follows that for all 𝑇max ≥ 𝑇 ∗

max
, for

√
𝑇max < 𝑁ℓ < 𝑇max,

all the constraints hold. This completes the proof. □

18


	Abstract
	1 Introduction
	2 Model and Desiderata
	2.1 Model
	2.2 Desiderata

	3 Revenue Scheme and -Sure NE
	3.1 Revenue Scheme
	3.2 -sure NE

	4 Colordag
	5 Analysis
	6 Conclusion
	References
	A Safe History Probability

