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Abstract

We study communication complexity in computational settings where bad inputs
may exist, but they should be hard to find for any computationally bounded adversary.

We define a model where there is a source of public randomness but the inputs
are chosen by a computationally bounded adversarial participant after seeing the pub-
lic randomness. We show that breaking the known communication lower bounds of
the private coins model in this setting is closely connected to known cryptographic
assumptions. We consider the simultaneous messages model and the interactive com-
munication model and show that for any non trivial predicate (with no redundant rows,
such as equality):

1. Breaking the Ω(
√

n) bound in the simultaneous message case or the Ω(log n)
bound in the interactive communication case, implies the existence of distribu-
tional collision-resistant hash functions (dCRH). This is shown using techniques
from Babai and Kimmel [BK97]. Note that with a CRH the lower bounds can be
broken.

2. There are no protocols of constant communication in this preset randomness
settings (unlike the plain public randomness model).

The other model we study is that of a stateful “free talk”, where participants can
communicate freely before the inputs are chosen and may maintain a state, and the
communication complexity is measured only afterwards. We show that efficient proto-
cols for equality in this model imply secret key-agreement protocols in a constructive
manner. On the other hand, secret key-agreement protocols imply optimal (in terms
of error) protocols for equality.
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1 Introduction
What does a lower bound mean if it is not feasible to find the bad inputs? In other words,
can we bypass it, if we assume that the choice of inputs is done by a process that is com-
putationally limited? In this work we study this issue in the setting of communication
complexity.

The study of communication complexity deals with proving bounds on the amount of
communication that is required to perform certain tasks when the input is separated: two
parties, Alice and Bob, have as inputs x ∈ X and y ∈ Y respectively; how many bits do they
have to send each other (as a function of |X| and |Y |) for computing the value of a function
f(x, y)? An answer for such a question depends, of course, on the exact model details: Do
Alice and Bob have any limitation in the communication? Do they communicate directly or
through a third party? What predicates f are they trying to compute? See Kushilevitz and
Nisan [KN96] and Rao and Yehudayoff [RY20] for background on communication complexity.

There are several models of communication that differ mainly on two properties: whether
the strategy of the participants can be probabilistic and the exact communication settings
(network layout). The participants of those models do not have a bound on their running
time, however, they are required to be correct1 for every input in the space.

When the participants are allowed to be probabilistic there is an important distinction:
whether they share common random bits (public coins) or not (private coins). It is important
to note that the random bits (in both options) and the problem’s inputs (x and y) are
independent. This can be seen as uniform random bits that are chosen after the (worst-case)
input was chosen.

By definition, the private coins model is no stronger than the public coins model and
indeed some tasks can be done in the latter but cannot be done in the former with the same
communication complexity (see later). On the other hand, the private coins model may be
considered more realistic, where there is no independent public random string.

However, both the public and private coins models are known to be ‘better’ than the
deterministic model in the sense that they have more efficient protocols in terms of the
communication complexity: for instance, as proved by Yao, the deterministic communication
complexity of many predicates is Ω(n) (Alice and Bob can do nothing better than just sending
their full inputs), while in the probabilistic world there is quite a lot to be done. Equality is
a prominent example with O(log n) and O(1) algorithms respectively.

We examine another relaxation that can help us: limiting all parties, including the one
who selects the inputs to a computationally bounded world. We will not require that Alice
and Bob be correct for every input in the space, but only to inputs that are chosen by a
computationally bounded adversary. Note that the new definition is by nature relevant only
to probabilistic algorithms.

Considering a polynomially bounded adversary raises the question of whether there are
benefits from different computational hardness assumptions: can we reduce our communi-
cation complexity by assuming that a certain task cannot be performed efficiently? That
is, given that Alice and Bob in our new definition do not have to be correct for every input
in the input space, a computational hardness assumption can be used for proving that no

1For the probabilistic version they are required to succeed with constant high probability.
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efficient adversary can find bad inputs with non-negligible probability.
Back to the relationship between the public and private coins models: we propose a new

model that is, in general, more powerful than the private coins but still realistic. Also, in
contrast to the above mentioned models, our model is computational – the participants’ run-
ning time is bounded by some poly(λ) where λ is the security parameter. In our model, there
is a public random string but there is an additional adversarial participant that chooses the
inputs depending on the public random string, it can be seen as a public random string that
is ‘fixed’ in advance and therefore we called it preset public coins model. See Definition 2.9
for formal specification.

The two communication patterns we consider are:

Simultaneous Messages Model. In the simultaneous messages (SM) model Alice and
Bob are given x and y respectively and should compute some function f but without
communicating with each other. Instead, each one sends a message to a third party (a
referee) who calculates f(x, y) given the messages from Alice and Bob.

Interactive Communication Model. Alice and Bob get their inputs and can communi-
cate with each other without any limitations on the number of rounds.

In both settings, the communication complexity measure is the total length of the messages
sent by Alice and Bob.

Stateful preprocessing communication. The second type of model we consider is where
the communication complexity matters only at some critical period of time. The two parties
can talk freely beforehand. At some point the action starts, they receive their inputs and
need to decide with little communication the result. In the SM model we also consider a
variation that differs by two properties:

Free talk. A protocol with free talk is one where Alice and Bob communicate also before
getting their inputs. The messages during the free talk phase (before the inputs are
chosen) do not count in the communication complexity of the protocol. However the
adversary sees the whole communication and can use it while he chooses the inputs.
Alice and Bob maintain (secret) states afterwards.

Rushing adversary. In our model the inputs are chosen by a computationally bounded
adversary depending on the public random string. A rushing adversary can choose
Bob’s input at the ‘last moment’: He first chooses the input of Alice depending on the
public random string and afterwards chooses the input of Bob depending on both the
public random string and Alice’s message.

1.1 Cryptographic Primitives
We discuss a computationally bounded world. We assume that all parties have limited
resources (especially at runtime). A way to express those limits is by cryptographic primitives
(see the next examples).
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Necessity of Primitives. One of the aims of research in foundations of cryptography
is to find out which cryptographic primitives are essential and sufficient for which tasks.
Similarly, it is valuable to know whether certain primitives on their own cannot help us
achieve a certain goal.

In this paper we prove several implications of the form that the existence of communi-
cation protocols with certain properties entails the existence of certain primitives. In other
words, in order to desgin succinct protocols in those models we must be using somewhere in
the protocol primitives of a certain kind.

1.2 Cryptographic Hash Functions
A hash function is one that maps values from a large domain to a smaller range. One of
the most basic cryptographic objects is a hash function with some hardness property. For
instance, a family of hash functions H, is collision resistant if for a random h ∈R H it is hard
to find two inputs x ̸= y that collide (h(x) = h(y)).

For such a function, for any two inputs that were chosen by a computationally bounded
adversary, we know that w.h.p., h(x) = h(y) =⇒ x = y. This means that the function
preserves some relation between its inputs: The equality predicate is (w.h.p.) preserved also
after the values were compressed by h. Moreover, since the function is collision resistant,
that property holds for any (x, y) chosen by a computationally bounded adversary knowing
h.

This notion can be generalized in several directions:

1. More relaxed hardness requirements can be defined. The weaker the definition the
more hope we have to construct it from minimal assumptions.

2. We can extend the definitions to include random algorithms: functions that get also
random bits and output correct values w.h.p.2

3. We can extend the definitions to hash functions that preserve more properties and not
just the equality predicate.

We discuss the last two points in the section below.

1.3 Adversarially Robust Property-Preserving Hash Functions
Consider a predicate P : U × U → {0, 1} for a universe U = {0, 1}n. Let x, y ∈ U and we
want to compute P (x, y), but we cannot have both x, y on the same machine (say, for some
storage reasons). A natural approach for this issue is using sketching: By using sketches we
get shorter strings and it is easier to get both (sketched) values on the same machine. Of
course, computing P on sketched values may be impossible in terms of information, so we
relax the correctness requirement: the process may fail (compute a wrong value) with at
most a negligible probability3.

2The probability is over the choices of the random bits.
3The probabilities are over the sampling of a hash function among the functions family.
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Hash functions as above, that allow us to compute a predicate given the hashed values,
are called property-preserving hash functions (hereafter PPH). We examine PPH in an ad-
versarial environment, that is, the predicate should be computed correctly w.h.p. also for
values chosen by an adversary. Such hash functions are called adversarially robust PPH.
The more access to the hash function given to the adversary the more robust the PPH is.

The study of adversarially robust property-preserving hash functions was initiated by
Boyle et al. [BLV18]. It can be seen as a special case of the model introduced by Mironov
et al. [MNS11] who initiated the study of the adversarial sketch model (here the participants
also get the input online). That notion is similar to the SM model except for the differences:

1. The allowed error probability in communication complexity is a (small) constant in-
stead of negligible in PPHs.

2. The parties in the SM model are allowed to be randomized.

3. The PPHs model is computational.

Our model bridges some of the gaps and we will show the connection between the models.
Note that the preset public coins SM model is a generalization of the PPHs model in the
sense that the participants are allowed to be randomized. In this regards it is closer to the
model of Mironov et al. [MNS11].

1.4 Secret Key Agreement
A secret key agreement (SKA) is a protocol where two parties with no prior common infor-
mation agree on a secret key. The key has to be secret in the sense that no probabilistic
polynomial time adversary given the full transcript of the communication between Alice and
Bob can compute it with non-negligible probability (more accurately, distinguish it from a
random string). That notion is defined formally in Definition 2.15.

We will show that certain low communication protocols imply the existence of SKA by
showing a construction of SKA from those protocols.

1.5 Our Results
We consider preset public coins communication complexity models and prove that the lower
bounds proved for the private coins model cannot be broken in our computational model
without assuming the existence of distributional CRHs (dCRH is a hash function where uni-
formly random collisions cannot be found by a bounded adversary w.h.p., see Definition 2.13)
It is known that dCRHs exist only if one-way functions exist and there is an oracle separation
between them (i.e. there are no black-box constructions of dCRHs from one-way functions).

A non-trivial predicate is one with no redundant row a columns (see Definition 2.4)

Theorem (informal, see Theorems 3.2 and 3.14). In the preset public coins Simultane-
ous Message model: for any non-trivial predicate, protocols with communication complexity
o(
√

n) imply the existence of dCRHs (in the sense that a dCRH can be constructed from the
protocol).

In the interactive model: The same is true for c(n) = o(log n).
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Table 1: Summary of Implications Results

Information-Theoretic
Lower Bound

Computationally Bounded World:
Breaking The Bound

Possible Using Implies

Stateless SM Ω(
√

n) CRH dCRH
Interactive Ω(log n) CRH dCRH

Stateful
(Rushing Adv) SM Ω(n) SKA For Equality:

SKA*
* Holds only for near optimal protocols.

Consider the free talk model, where two parties communicate and may have a secret
state as a result, before the inputs are chosen based on an eavesdropper adversary who has
access to the communication but not to the secret states. If secret key agreement protocols
exist, then we can get the power of the public coins model: we can construct a protocol for
the equality predicate with error probability bounded by 2−c where c is the communication
complexity.

In the other direction, nearly optimal protocols imply a secret key agreement:

Theorem (informal, see Theorem 5.2). In the stateful free talk model, the existence of a
protocol of complexity c(n) for equality with failure probability bounded by ε ≤ 2−0.7c against
a rushing adversary implies the existence of a secret key agreement protocol.

Our implications results are summarized in Table 1.
On the other hand, regardless of assumptions, constant communication protocols cannot

exist in our model. This is in contrast to the public coins model, where there are protocols
of O(1) communication even in the SM model (e.g. for the equality predicate).

Theorem (informal, see Theorem 4.1). In the interactive communication model, protocols
for any non trivial predicate, of communication complexity O(log log n) bits are not secure
against an adversary with running time poly(n).

1.6 Related Works
Grossman et al. [GHY20] studied a similar notion in the context of error correcting codes.
They studied codes that deal with errors done by a polynomial time process. Grossman et al.
relied on some cryptography assumptions to construct a code better than codes for worst-case
errors. Next, we discuss related works in the context of communication complexity.

1.6.1 Communication Complexity

The study of communication complexity was initiated by Yao [Yao79] who introduced the
SM private coins model and asked what is the complexity of the equality predicate in this
model. The problem was solved by Newman and Szegedy [NS96] who provided the Ω(

√
n)

tight lower bound. It was also solved, using different and simpler techniques, by Babai

7



and Kimmel [BK97]4 using a combinatorial proof, and by Bottesch et al. [BGK15] using
information theory5.

Babai and Kimmel’s result is more general and they actually proved the lower bound
not only to the equality predicate but to any non-redundant predicate (see Definition 2.4).
Moreover, their technique proved to be useful in more models: Ben-Sasson and Maor [BM15]
applied this technique also for the interactive model and proved that for any non redundant
function, any private coins protocol requires communication complexity of at least Ω(log n)
(see proof for the equality predicate in Kushilevitz and Nisan [KN96]).

Although the above mentioned results are in the information-theoretic world (can be
seen as an unbounded adversary), Naor and Rothblum [NR09] introduced and studied a
computational model in order to study online memory checking algorithms: The consecutive
messages model where the public coins are chosen after the adversary chooses x (the input for
Alice). They adapted this technique and showed that breaking the mentioned information-
theoretic Ω(

√
n) lower bound in their computational model is possible if and only if one-way

functions exist. At first glance one can think that their model is very close to our preset
public coins SM model. However, important details differ: For instance, the fact that x
(Alice’s input) does not depend on the public random string.

Harsha et al. [HIKNV04] studied tradeoffs between communication complexity and time
complexity and described Boolean functions with strong communication-runtime tradeoff.

1.6.2 Public Coins vs. Private Coins

In certain ways our model lies between the public and private coins ones. Therefore, it
is worth pointing out the possible gap between them. For the interactive communication
settings, Newman [New91] proved that the gap can be at most O(log n). It is tight, since
the equality predicate can be computed by protocols of O(1) communication in the public
coins model but requires Θ(log n) bits in the private coins model.

In the SM model, as mentioned, the gap may be much larger: the equality predicate
can be computed using O(1) bits in the public coins model, but in the private coins model
Ω(
√

n) bits are required.

1.7 Technical Overview
Babai and Kimmel’s Characterizing Multiset. We will use the technique of Babai
and Kimmel for proving connections between the communication complexity and crypto-
graphic primitives in both models (SM and interactive). They proved that in the SM model,
Alice’s behavior can be characterized by a relatively small multiset of messages. Ben-Sasson
and Maor expanded it for the interactive model and proved that Alice’s behavior can be
characterized by a multiset of deterministic strategies.

We use those observations and show that the adversary can use the characterizing mul-
tisets to find bad inputs for Alice and Bob. That is, we construct a function that for any
x (Alice’s input) generates a characterizing multiset of the behavior of Alice for this x. We

4See in [BK97] also the similar proof of Bourgain and Wigderson.
5Bottesch et al. actually discuss quantum variants of the SM model and give the simpler proof for our

classical case as a warm-up.
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claim that an adversary who can break the security of this function, can find bad inputs for
the protocol. On the other direction, if such a protocol exists it implies the existence of a
certain cryptographic primitive.

2 Preliminaries

2.1 Probability
To measure distance between two distributions we use the total variation distance:

Definition 2.1 (Statistical Distance). Let D1 and D2 be two distributions and D(E) is the
probability of event E under the distribution D.

∆(D1, D2) = max
Event E

|D1(E)−D2(E)|

We use in proofs the following lemma:

Lemma 2.2. Let X1, X2, . . . , Xt be mutually independent random variables where E [Xi] = 0
and |Xi| ≤ 1. Let S = 1

t

∑t
i=1 Xi then

Pr [S > δ] < e−δ2t/2

which is a direct consequence of the Chernoff bound:

Theorem 2.3 (Chernoff Bound [AS08, Theorem A.1.16]). Let X1, X2, . . . , Xt be mutually
independent random variables where E [Xi] = 0 and |Xi| ≤ 1. Let S = ∑t

i=1 Xi then

Pr [S > a] < e−a2/2t

2.2 Model Definition
Let f be a predicate that Alice and bob would like to compute. For a predicate f to be
interesting we may assume that the f has no redundancy:

Definition 2.4 (Non-Redundant Predicate). Predicate f : X×Y → {0, 1} is non-redundant
if there are no two identical rows or two identical columns in the truth matrix. In other words,
∀x1 ̸= x2 : ∃y s.t. f(x1, y) ̸= f(x2, y) and for ∀y1 ̸= y2 as well.

Also, we discuss only predicates where their non-redundancy can be ‘proven’ or found
efficiently:

Definition 2.5 (Efficiently Separable Predicate). Let f : X×Y → {0, 1} be a non-redundant
predicate, then f is efficiently separable if there exists PPTM M that finds the element
promised by Definition 2.4. That is ∀x1 ̸= x2 ∈ X:

Pr
y←M(x1,x2)

[f(x1, y) ̸= f(x2, y)] = 1− negl(n)

and similarly for ∀y1 ̸= y2 ∈ Y as well.
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The only specific predicate we discuss is the equality predicate, EQ(x, y) = 11{x=y}. For
the equality predicate it is easy to see that both Definitions 2.4 and 2.5 hold.

Now, we define the communication layouts:

Definition 2.6 (Interactive Communication Model). Alice and Bob are given x and y re-
spectively and should compute some function f . They may send each other messages without
any limit (but the total number of bits sent is the complexity).

Definition 2.7 (Simultaneous Messages (SM) Model). In the simultaneous messages model,
Alice and Bob are given x and y respectively and should compute some function f without
communicating with each other. Instead, each one sends a message to a third party (a referee)
who calculates f(x, y) given the messages from Alice and Bob.

Following Babai and Kimmel we assume without loss of generality that the referee is
deterministic.

Fact 2.8. In the SM model there exist protocols for the equality predicate of complexity
O(
√

n). The protocols found independently by Ambainis, Babai and Kimmel, Naor and New-
man; see [BK97] for references.

Fact 2.8 is an example of the possible gap between probabilistic and deterministic pro-
tocols in the SM model because the equality predicate is non-redundant and because of the
following well known fact:

Fact. The deterministic communication complexity of any non-redundant predicate is Ω(n).

Now, we are ready to define our model formally, in the above described communication
layouts. Recall that our model is computational. That is, the participants’ running time is
bounded by some poly(λ) for some security parameter λ = poly(n), it’s important especially
for the adversarial participant. That is, any PPTM run time is bounded by poly(λ).

Definition 2.9 (Preset Public Coins). The preset public coins variation is defined by the
following game: let Alice, Bob and the Adversary be PPTMs with running time poly(λ).

1. Public uniform random string rpub is sampled6.

2. The adversary sees rpub and chooses (x, y) ∈ X × Y .

3. Alice and Bob get (x, rpub) and (y, rpub) respectively.

4. Alice and Bob send message(s) (optionally using private coins) in order to compute
some target function.

5. Optionally: More steps that depend on the communication settings. For instance, in
the SM model the referee steps in here.

6Can be generalized to a sample from any known efficient distribution.
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The game should succeed with probability at least 1− ε for every PPTM with running time
poly(λ) adversary Adv:

Pr
rpub

(x,y)←Adv(rpub)
Alice and Bob private coins

[Protocol Fails] ≤ ε

We follow the convention in communication complexity that the error probability is required
to be ε ≤ 1/3.

Remarks. Alice’s and Bob’s algorithms are public and since they don’t have any secret
state or secret input they can be simulated (also by the adversarial participant). It is a core
fact when we are using the technique of Babai and Kimmel in computational settings in the
proofs of Theorems 3.2 and 3.14 and Theorem 4.1.

2.2.1 Free Talk Model

We consider a variation to the SM model where Alice and Bob are allowed to communicate
freely in a preprocessing phase, before the inputs are chosen:

Free talk. Free talk is a ‘free’ communication that Alice and Bob can have before the inputs
are chosen by the adversary. Alice and Bob can generate states (possibly secret) in
the free talk phase. Those states can be used afterward to reduce the communication
complexity.

However, the adversary is also stronger, in two ways:

Free Talk Eavesdropping. The transcript of the free talk phase is known to the adversary
and it may choose the inputs depending also on it.

Rushing. Rushing adversary decides Bob’s input at the ‘last moment’: Rushing adversary
chooses the input of Bob after Alice produces its message. That is, first Alice’s input
is chosen and Alice sends its message, and afterwards, Bob’s input is chosen depending
on Alice’s message and Bob sends its message.

Definition 2.10 (SM Preset Public Coins With Stateful Free Talk and Rushing Adversary).
Let Alice, Bob and the Adversary be PPTMs with running time poly(λ). Consider the
following game:

1. Alice and Bob toss coins and communicate in order to generate their (possibly secret)
states τA and τB respectively.

2. The adversary sees their full communication (but not their internal states τA and τB)
and sets Alice’s input x ∈ X.

3. Alice (that has τA as her internal state) gets x and sends a message mA to the referee.

4. The adversary sees mA and chooses Bob’s input y ∈ Y , optionally depending on mA

and the free talk’s transcript.
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5. Bob (that has τB as his internal state) gets y and sends a message mB to the referee.

6. The referee, as a function of mA and mB, computes the target predicate.

Alice, Bob, and the referee should compute the target predicate successfully with probability
of at least 2/3.

To simplify the analysis we assume in this model, without loss of generality, that Alice
and Bob are probabilistic only in the first step. However, they can toss coins in the first step
and save them in their private states for later use.

2.3 Notation
Messages Space. Denote by MA and MB Alice’s and Bob’s messages spaces. In the inter-

active model we consider Alice’s and Bob’s deterministic strategies, every strategy is
represented by a rooted binary tree of depth c (the total communication): The pro-
tocol begins in the root, each vertex is owned by one party who chooses one of the
children and informs the other party by sending a bit. Finally, the leaves represent the
protocol’s result. We denote the set of deterministic strategies of Alice and Bob by SA

and SB respectively.

Private random string. Denote by rA ∈ RA the private random string of Alice.

Public random string. Denote by rpub ∈ Rpub the public random string in the protocol
(it is given also to the adversary).

Secret State. When Alice and Bob have secret states we denote them by τA and τB re-
spectively.

Participant. In the SM model, for a public random string rpub denote the strategy of Alice
by Arpub : X×RA →MA and Bob by Brpub : X×RB →MB. When the public random
string rpub is clear from the context we may omit the subscript. (When Alice and Bob
have a secret state we denote Alice and Bob as a function that gets a secret state τ
instead of private random string).

Referee. In the SM model denote the referee by a function ρrpub : MA ×MB → {0, 1} for a
public random string rpub or ρ when rpub is clear from the context.

Communication Complexity. Denote the length of the total communication by c =
c(n, λ).

Protocol. We denote the protocol by π, and π(x, y) denotes running the protocol on inputs
x and y.
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2.4 Collision Resistant Hash Functions
A collision resistant hash function (CRH) is a function that any efficient algorithm has at
most a negligible probability of a collision:

Definition 2.11 (CRH). Let a functions familyH be a family of functions that (1) compress
(2) are computable in polynomial time. H is a family of CRHs if for every polynomial p(·)
for every PPTM Adv and large enough λ,

Pr
h∈H

(x,y)←Adv(h)

[x ̸= y ∧ h(x) = h(y)] <
1

p(λ)

Note that, the output of the function cannot be too small with respect to the security
parameter. Otherwise, collisions can be found easily by trying sufficient inputs.

Simon [Sim98] showed that a CRH cannot be built from black-box one-way functions.
Since one-way functions are existential equivalent to a lot of basic cryptographic primitives,
we know that also they cannot be black-box used to construct CRHs. For an example,
see Wee [Wee07] who ruled out constructions for statistically hiding commitments with low
round complexity that are based only on black-box one-way functions.

2.4.1 Distributional Collision Resistant Hash Functions

Distributional collision resistant hash function (dCRH) is a function that it is hard for any
adversary to generate collisions that are close to random collisions. Hence, we first have to
define an ideal collision finder:

Definition 2.12 (Ideal Collision Finder COL). The random function COL gets a description
of a hash function h and outputs (x, x′) s.t. x is uniformly random and x′ is uniformly random
from h−1(x). Note that:

1. The marginal distribution of x and x′ is the same: x and x′ are uniformly random (but
not independent).

2. It is possible that x = x′.

That notion of distributional collision resistance hash functions is due to Dubrov and
Ishai [DI06]. However, Bitansky et al. [BHKY19] deviated from this definition and used a
stronger definition7. Since our results hold also for the stronger definition we will use it:

Definition 2.13 (dCRH). Let a functions family H be a family of functions that (1) com-
press (2) are computable in polynomial time. H is a family of distributional CRHs if there
exists some polynomial p(·) s.t. for every PPTM Adv, and large enough λ,

∆(COL(h),Adv(h)) ≥ 1
p(λ)

where h← H.
7By switching the order of quantifiers, they require one polynomial for any adversary and not that for

any adversary there exists a polynomial. See the comparison in [BHKY19].
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This definition is a generalization of distributional one-way functions8 and hence implies
it. Furthermore, Bitansky et al. showed that dCRHs can be used for applications that
one-way functions aren’t known to achieve (and are black-box separated) [BHKY19].

Although dCRH is much weaker than CRH, as noted by Dubrov and Ishai [DI06], the
black-box separation result of Simon [Sim98] applied also for dCRH: Its collision finder is
the same as COL in our definition (Definition 2.12). Simon proved that relative to COL
one-way functions exist (although (d)CRHs do not).

2.5 Secret Key Agreement
In a secret key agreement protocol two participants who do not have a common secret,
but each one has its own source of randomness, both output a value (the secret). The
participants’ output has to satisfy two properties: it should be the same value for the two
participants (agreement), and it has to be unknown to any efficient observer (secrecy). We
follow the definition of Holenstein [Hol05]:

Definition 2.14 ((α, β)-Secret Bit Agreement (SBA)). An efficient two party protocol with-
out input (aside from the security parameter λ), with one bit output for each participant b
and b′ respectively where b, b′ ∈ {0, 1} is an (α, β)-secret bit agreement if

Pr [b = b′] ≥ 1 + α

2
and for every PPTM Adv with running time bounded by poly(λ)

Pr [Adv(τ) = b | b = b′] ≤ 1− β

2
where τ is the complete transcript of the protocol.

The previous definition is a weaker notion of the usually desirable stronger notion:

Definition 2.15 (Secret Key Agreement). (α, β)-secret bit agreement is a secret key agree-
ment protocol if α = 1− negl(λ) and β = 1− negl(λ).

Holenstein [Hol06] proved when an (α, β)-secret bit agreement can be amplified efficiently
to a secret key agreement:

Theorem 2.16 ([Hol06, Corollary 7.5]). Let efficiently computable functions α(λ), β(λ), be
given such that

1− α

1 + α
< β

Let φ = max(2, 8
log(β(1+α)

1−α )) and γ = 1
log(1+((1−α)/(1+α))φ) , and assume that φ·24γ

α
∈ poly(λ).

If there exists an (α, β)-secret bit agreement protocol for all but finitely many k, then there
exists a computationally secure key agreement.

8Functions where it is hard to sample uniformly from h−1(h(x)) for random x. Such functions are known
to exist if and only if one-way functions exist [IL89]. (in contrast to dCRH).
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Note that a secret key agreement is unlikely to be based (only) on one-way permutations
and collision resistant hash functions in a black-box manner: It is known that any secret
key agreement protocol in the random oracle model9 can be broken using an O(n2) queries
attack [IR89; BM09] and this is tight.

3 Collision Resistance and the Preset Public Coins
model

3.1 CRHs imply succinct protocols
We start by noting that the lower bounds of Ω(

√
λ) in the SM model (Theorem 3.2) and

of Ω(log λ) in the interactive model (Theorem 3.14) shown in Section 3.2 are tight, if one is
using CRHs. See Appendix B.2 for details.

Theorem 3.1. If CRHs exist, then given a family of CRHs {h : {0, 1}n → {0, 1}λ},

In the preset public coins SM model: There exist protocols of complexity O(
√

λ) for
the Equality predicate.

In the preset public coins interactive model: There exist protocols of complexity O(log λ)
for the Equality predicate.

3.2 Succinct Protocols Imply dCRHs
Theorem 3.2. Let ω(

√
λ) ≤ c(n) ≤ o(

√
n). Given a protocol for an efficiently separable

predicate (Definition 2.5) of complexity c(n) in the preset public coins SM model, we can
construct a distributional CRH.

Proof. Our intuition is that after fixing the public random string rpub, the model is similar
to the private coins SM model where the adversary is faced with a problem defined by
the random string. We therefor appearl to Babai and Kimmel’s definitions and techniques.
Furthermore, in Lemma 3.5 we will also repeat the proof of [BK97, Lemma 2.3] with a
different constant and make it constructive.

For each multiset of Alice’s messages and one message from Bob we consider the proba-
bility of acceptance by the referee:
Definition 3.3 (Referee’s Expected Value for a Multiset). For any rpub, for a multiset T of
members from MA and mB ∈MB, let

Q(T, mB) = E
i∈[t]

[ρrpub(T [i], mB)] = 1
t

∑
i∈[t]

ρrpub(T [i], mB)

where t = |T |.
9CRHs exist in this model.
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Now, we show that for every input of Alice x ∈ X, there exists a multiset characterizing
the behavior of Alice on x. In other words, instead of running Alice, we can approximate
the protocol’s result (referee’s output) by a uniform sample from the multiset. Furthermore,
we prove that such a multiset can be found (w.h.p.) by some (relatively few) independent
samples from the distribution defined by Alice (given x).
Definition 3.4 (Characterizing Multiset). For any rpub, a multiset T of elements from MA

characterizes Alice for x ∈ X if ∀mB ∈MB,∣∣∣∣Q(T, mB)−Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]∣∣∣∣ ≤ 0.1

where Q(Tx, mB) is the referee’s expected value for the multiset Tx and Bob’s possible mes-
sage mB ∈MB (Definition 3.3).
Lemma 3.5 (Sample a Characterizing Multiset). For any rpub, for x ∈ X, let r′ = (r1

A, ..., rt
A)

be t independent uniform samples from RA where t = 2·200·ln(2|MB|). Then, for the multiset
Tx = {Arpub(x, ri

A) : i ∈ [t]} it holds that ∀mB ∈MB,

Pr
r′

[∣∣∣∣Q(Tx, mB)−Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]∣∣∣∣ ≤ 0.1
]
≥ 1− 1

2|MB|

(i.e., Tx characterizes Alice for x)

Proof. Let Tx be as defined. ∀i ∈ [t], mB ∈MB,

E
[
ρrpub(Tx[i], mB)

]
= Pr

rA

[
ρrpub(Arpub(x, rA), mB) = 1

]
=⇒ E

[
ρrpub(Tx[i], mB)−Pr

rA

[
ρrpub(Arpub(x, rA), mB) = 1

]]
= 0

where the probability is over the random choice Tx[i]← Arpub(x).
Now, for i ∈ [i], define random variables

η(i) = ρrpub(Tx[i], mB)−Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]
.

Since the members of Tx are independent random variables, we have that all {η(i) : i ∈ [t]}
are independent random variables with expectation 0. Hence, we can use a Chernoff bound
to bound the probability that, for a fixed mB ∈MB,∣∣∣∣∣∣

∑
i∈[t]

η(Tx[i])

∣∣∣∣∣∣ > 0.1 · t.

In other words, the probability that∣∣∣∣Q(Tx, mB)−Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]∣∣∣∣ > 0.1
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is bounded by

Pr
r′

[|
∑
i∈[t]

ρrpub(Tx[i], mB)− E[
∑
i∈[t]

ρrpub(Tx[i], mB)]| > 0.1] < 2e−
(0.1)2·t

2 (Lemma 2.2)

= 2e−
t

200

= 2e−2 ln(2|MB |)

= 2
(

1
2|MB|

)2

<
1

2|MB|2

and by the union bound (over all mB ∈MB),

Pr
r′

[
∃mB s.t.

∣∣∣∣Q(T, mB)−Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]∣∣∣∣ > 0.1
]

< |MB| ·
1

2|MB|2

= 1
2|MB|

We define a hash function by following the process of Lemma 3.5 (running Alice t times
independently):

Construction 3.6 Characterizing Multiset Function
Definition: The function is defined by the public random rpub and t Alice’s random tapes

r1
A, ..., rt

A ∈ RA.

Output: For x ∈ X, the value of the function is the multiset as in Lemma 3.5:

h(x) = The multiset {Arpub(x, ri
A) : i ∈ [t]}

where the multiset is encoded as a sequence Arpub(x, r1
A), . . . , Arpub(x, rt

A), note that
every Alice’s message can be encoded using log |MA| = c bits.

Observation 3.7. For all x ∈ X, the function from Construction 3.6 outputs a multiset
that characterizes x w.p. 1− 1

2|MB |
where the probability is over the uniform random choice

of r1
A, ..., rt

A ∈ RA.
Observation 3.8. The function from Construction 3.6 is compressing: The domain of the
function is of size 2n, but the range is of size at most

(2c)t = 2400c·(c+1)·ln 2 = 2Θ(c2) = 2o(n)
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Next, we prove that any x and x′ which share a characterizing multiset, induce bad inputs
for the protocol (since Alice’s behavior on x and x′ is similar).
Claim 3.9. Let x, x′ ∈ X and y ∈ Y that separates them (Definition 2.4), if there is a
multiset T that is characterizing for both x and x′ then, the sum of the failure probability of
π(x, y) and π(x′, y) is at least 0.8. In other words, at least one of them fails.

Proof. Since T is a characterizing multiset (Definition 3.4) of both x and x′, then ∀mB ∈MB∣∣∣∣Q(T, mB)−Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]∣∣∣∣ ≤ 0.1

and the same for x′. This means

Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]
∈ [Q(T, mB)± 0.1]

and

Pr
rA

[
ρrpub(Arpub(x′, rA), mB) = 1

]
∈ [Q(T, mB)± 0.1] .

Putting it together we get that:∣∣∣∣Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]
−Pr

rA

[
ρrpub(Arpub(x′, rA), mB) = 1

]∣∣∣∣ ≤ 0.2. (1)

Assume without loss of generality that f(x, y) = 0 and f(x′, y) = 1

Pr [π fails on (x, y)] = Pr
rA,rB

[
ρrpub(Arpub(x, rA), Brpub(y, rB)) = 1

]
= E

rA,rB

[
ρrpub(Arpub(x, rA), Brpub(y, rB))

]
= E

rB

[
E
rA

[
ρrpub(Arpub(x, rA), Brpub(y, rB))

]]
≥ E

rB

[
E
rA

[
ρrpub(Arpub(x′, rA), Brpub(y, rB))

]
− 0.2

]
(Equation (1))

= E
rB

[
E
rA

[
ρrpub(Arpub(x′, rA), Brpub(y, rB))

]]
− 0.2

= Pr
rA,rB

[
ρrpub(Arpub(x′, rA), Brpub(y, rB)) = 1

]
− 0.2

= Pr [π succeeds on (x′, y)]− 0.2
= 1−Pr [π fails on (x′, y)]− 0.2
= 0.8−Pr [π fails on (x′, y)]

Hence, the sum of the failure probability of the protocol on (x, y) and the failure probability
of the protocol on (x′, y) is

Pr [π(x, y) fails] + Pr [π(x′, y) fails] ≥ 0.8

However, now we deal with the fact that there exist x’s s.t. the multiset h(x) does not
characterize x (Observation 3.7).
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Lemma 3.10. Let π be an SM protocol of complexity c(n) = o(
√

n) and h(x) be as in
Construction 3.6. If we have an efficient adversary Advcollision that breaks the security of h
as a distributional CRH for some p ∈ poly(λ):

∆ (Advcollision(h), COL(h)) ≤ 1
p(λ)

Then, we can construct an adversary Advπ with running time of the same order as Advcollision
s.t.

Pr [π fails on inputs from Advπ] ≥ 0.4
(

1− 1
p(λ)

)
− negl(λ)

Proof. Advπ’s algorithm is:

Algorithm 3.11 Near Ideal Collision Finder for h to Bad Inputs for Protocol π

1. Construct h(x) using the public random string of π and as in Construction 3.6.

2. x, x′ ← Advcollision(h).

3. Find y ∈ Y which separates x and x′ (promised to be efficient by Definition 2.5).

4. Pass to Alice and Bob (x, y) w.p. 1/2 or (x′, y) w.p. 1/2.

First, we consider COL’s distribution: A pair (x, x′) that was sampled from COL (the
ideal collisions finder, Definition 2.12) will not be usable for Algorithm 3.11 if any of the
following conditions hold:

1. x = x′.

2. h(x) = h(x′) is not characterizing x or x′.

We call a pair (x, x′) a colliding pair if neither of the above two conditions hold. In the
following claims we bound the probability for those bad events.
Claim 3.12. The probability of sampling a pair (x, x) from COL (i.e., x = x′) is negligible.
That is,

Pr
(x,x′)←COL

[x = x′] = negl(n)

Proof. First, consider the number of pairs (x, x′) s.t. x ̸= x′ but h(x) = h(x′). By the
pigeonhole principle there exists a set of x’s of size at least 2n−c2 with the same image. Hence,
there are at least

(
2n−c2

2

)
= Θ((2n−c2)2) many pairs (x, x′) s.t. x ̸= x′ but h(x) = h(x′). On

the other hand, the number of pairs (x, x) is 2n. Hence,

Pr
(x,x′)←COL

[x = x′] = O

(
2n

2n + (2n−o(n))2

)
= negl(λ)

(
c2 = o(n)

)
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Claim 3.13. The probability of sampling from COL a pair (x, x′) s.t. the multiset h(x) does
not characterize x or x′ is negligible.

Proof. Let (x, x′)← COL, recall that the distribution of each element from COL (x and x′)
is uniform (Definition 2.12). For each element in the pair, the probability that the multiset
h(x) does not characterize it is 2−c and by the union bound the claim follows.

By Claims 3.12 and 3.13, a sample from COL is colliding w.p. 1− negl(λ). However, the
distribution of Advcollision is not exactly the same as COL, but

1
p(λ) ≥ ∆(COL,Advcollision)

≥
∣∣∣∣∣ Pr
(x,x′)←Advcollision

[(x, x′) isn’t colliding]− Pr
(x,x′)←COL

[(x, x′) isn’t colliding]
∣∣∣∣∣

and we can conclude that the probability that Algorithm 3.11 does not get a colliding pair
(x, x′) in step 2 is bounded by,

Pr
(x,x′)←Advcollision

[(x, x′) isn’t colliding] ≤ 1
p(λ) + negl(λ)

To conclude: In cases that a colliding pair (x, x′) was found by the adversary. The
adversary chooses at random a pair from (x, y) and (x′, y) (where y separates x and x′, and
can be found efficiently by Definition 2.5). By Claim 3.9,

Pr [π(x, y) fails] + Pr [π(x′, y) fails] ≥ 0.8

and hence the failure probability over the random choice of the pair is at least

Pr
(z,y)←Advπ

π

[π(z, y) fails] ≥ 0.4

Now, put it together with the probability of finding a colliding pair (for h) and we get the
probability that the protocol π fails on inputs from the adversary:

Pr [Advπ finds a colliding (x, x′)] · Pr
(z,y)←Advπ

π

[π(z, y) fails]

≥
(

1− 1
p(λ) − negl(λ)

)
· 4

10

We get that given an adversary for the distributional CRH we can find bad inputs for
the protocol as required for the proof.
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Interactive Protocols
For general (interactive) protocols we can also prove it for a logarithmic bound by the
technique adaptation of Ben-Sasson and Maor [BM15]:

Theorem 3.14. Let Ω(log λ) ≤ c(n) < δε log n, where δε is a constant that depends only
on ε. For an efficiently separable predicate (satisfying Definition 2.5), given a protocol of
complexity c(n) in the preset public coins interactive model, a distributional CRH can be
constructed. (See Appendix A for the calculations of the constant δε).

Proof. Ben-Sasson and Maor studied protocols in the general communication settings and
instead of using a characterizing multiset of messages they use a characterizing multiset of
deterministic strategies. They have a variation of [BK97, Lemma 2.3] that says that there
exists a strategies multiset of size 2O(c) that characterizes the behavior of Alice for x ∈ X.

In the same way that Lemma 3.5 repeated the lemma of Babai and Kimmel with a larger
constant, their lemma can be repeated to show that such a multiset can be sampled w.h.p.
Note, the size of the set of possible strategies |SA| and |SB| is O(22c)
Lemma 3.15. For x ∈ X, let r′ = (r1

A, ..., rt
A) be t independent uniform samples from RA

where t = 2 · 200 · ln(2|MB|). Then, for the multiset Tx = {Arpub(x, ri
A) : i ∈ [t]} it holds that

∀mB ∈ SB,

Pr
r′

[∣∣∣∣Q(Tx, mB)−Pr
rA

[
ρrpub(Arpub(x, rA), mB) = 1

]∣∣∣∣ ≤ 0.1
]
≥ 1− 1

2|SB|

Proof Sketch. As Lemma 3.5, ∀mB ∈ SB:

Pr
r′

[|
∑
i∈[t]

ρrpub(Tx[i], mB)− E[
∑
i∈[t]

ρrpub(Tx[i], mB)]| > 0.1t] < 2e−
(0.1)2·t

2 (Chernoff)

<
1

2|SB|2

and hence that probability that there exists such a bad mB is, by the union bound, less than
1

2|SB |
.

Now, in the same way, Ben-Sasson and Maor observed that the number of possible
strategies is at most 22O(c) and deduced that for any private coins protocol c ≥ δε log n.
Hence if c < δε log n there exist inputs x and x′ with the same characterizing strategies
multiset. Now we can repeat Lemma 3.10 to prove that an adversary Advcollision capable of
sampling ‘near uniform’ collisions can be used to find inputs (x, x′) which make Alice ‘behave
similarly’. Let y ∈ Y be as promised by Definition 2.4, we know that the protocol cannot be
correct for both (x, y) and (x′, y) (recall Claim 3.9). This means the protocol will fail on the
adversarial input w.p. > 1/3.
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3.2.1 A Corollary for PPHs

Corollary 3.16. Without assuming the existence of distributional CRHs one cannot get
better than

√
· compression for a direct-access robust equality PPH, even when extending the

definitions for randomized hash functions.

Proof. Observe that any PPH can be used to solve the same problem in the preset public
coins SM model. Hence, this corollary is simply rephrasing Theorem 3.2 in the terms of
adversarially robust property-preserving hash functions.

Observe that the other direction can be done as well: Every preset public coins SM model
protocol for f(x, y) of c(n) bits ‘induces’ a PPH for f of c(n) · nε bits for some ε > 0. That
is, we can get any preset public coins SM protocol, repeat it nε times to make the error
probability negligible. This protocol is a family of PPHs and its random coins are fixed
when sampling a function from the family.

4 No Ultra Short Interactive Communication
The power of the preset public coins model power lies between the public and the private
coins model. As noted, the public random coins model is strictly more powerful than the
private one: there are protocols of O(1) bits only in this model. We show that in our model
there are no functions with o(log log n) communication:

Theorem 4.1. Let c(n) : N 7→ N be s.t. 23c(n) = O(log n) and let f : X × Y → {0, 1}
be an efficiently separable predicate (satisfying Definition 2.5, i.e., non redundant s.t. can
be proven efficiently). In the preset public coins interactive communication model, if the
adversary has a running time of poly(λ) then, there are no protocols of complexity O(c(n)).
(See Appendix A for tighter constants).

Proof. Assume there is such a protocol in the preset public coins interactive model for some
non-redundant function f of complexity c(n).

In the proof of Theorem 3.14 we adapted Construction 3.6 for interactive protocols. The
constructed hash function has the following properties:

• Random collisions in the function induce (w.h.p.) bad inputs in the protocol (Lemma 3.10).

• The range of the function is of size

|SA|t = |SA|2
2·200 ln(2|SB |)

Those properties are the key points of the adversary described by Algorithm 4.2 that search
for random collisions by a brute force search.
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Algorithm 4.2 Finding Bad Inputs in Ulta-Succinct Protocols
1. Construct a characterizing function h(·) (Construction 3.6).

2. Repeat at most 3 · 223c = poly(λ) times:

(a) Choose x ̸= x′ ∈ X uniformly at random.
(b) If h(x) = h(x′):

i. Find y ∈ Y that separates x and x′ (can be done efficiently as promised by
Definition 2.5).

ii. Output (x, y) w.p. 1/2 or (x′, y) w.p. 1/2

iii. Halt

Let h be a characterizing function of the protocol (Construction 3.6). The proof relies
on the following two claims:
Claim 4.3. There must be a collision in h.

Proof. The range of the characterizing function h(x) is of size (number of possible charac-
terizing sets):

|SA|2
2·200 ln(2|SB |) = 22c·2·200 ln(22c +1) < 223c

Hence, since 23c = O(log n) = o(n) there must be a collision in the function.

Claim 4.4. The adversary described in Algorithm 4.2 finds a collision w.h.p.

Proof. Because the range is small (same order as the running time of the adversary 223c =
poly(λ)), the adversary can find random collisions easily. The probability for a random pair
to collide is at least 1

223c and hence, after 3 · 223c tries, the probability that a collision was
not found is at most:

Pr
x,x′

[h(x) ̸= h(x′)]3·2
23c

≤

(1− 1
223c

)223c3

→ e−3

=⇒ Pr
x,x′

[h(x) ̸= h(x′)]3·2
23c

< 0.05

We get that w.h.p. the adversary finds a collision in the function. However, not every
collision implies bad inputs for the protocol: The construction of the characterizing function
implies that there exist also bad collisions: x and x′ s.t. h(x) = h(x′) but h(x) doesn’t
characterizes x or x′ (recall Observation 3.7). However, in almost all collisions it is not
the case and h(x) characterizes x and x′ (recall Claim 3.13). Now, since the collision that
Algorithm 4.2 finds is completely random we can conclude,

Pr [the adversary will find a colliding pair] ≥ 1− 0.05− 1
|SB|
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and by Claim 3.9

Pr [the protocol will fail] ≥ 1
2 ·

8
10

(
1− 0.05− 1

|SB|

)
>

1
3

5 Secret Key Agreement from Efficient SM Protocols

5.1 Optimal Protocols from SKA
Our first observation is that it is possible to obtain an optimal protocol (in terms of the
error as a function of the communication) for the equality predicate once given a secret
key agreement protocol, following relatively simple principles. The error is 2−c (where c
is the communication complexity after the free talk) plus a negligible factor reflecting the
probability of breaking the secret-key exchange. For completeness, we give full details in
Appendix B.1.

Theorem 5.1. In the stateful preset public coins SM with free talk model: Given a secret key
agreement protocol there is, for any c(n), a protocol for the equality predicate of complexity
c(n), where any adversary can cause an incorrect answer with probability at most 2−c +
negl(n).

5.2 SKA from Near Optimal Protocols
Theorem 5.2. An SM protocol with stateful free talk for the equality predicate of complexity
c(n) = O(log log n) for c(n) larger from some constant, with failure probability ε ≤ 2−0.7c(n)

that is secure against a rushing adversary, implies the existence of secret key-agreement
protocols.

Proof. Assume we have such a protocol π for the equality predicate EQ : {0, 1}n×{0, 1}n →
{0, 1}. We will use π for constructing a secret key-agreement protocol. The idea is to
construct a weak secret bit agreement that can be amplified to a full secret key agreement
(α and β according to Theorem 2.16): The construction is based on the following (α, β)-SBA
protocol:
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Algorithm 5.3 Weak Bit Agreement
1. Alice and Bob communicate and toss coins according to the free talk of protocol π to

generate their secret states τA and τB respectively.

2. Alice selects at random a bit b ∈ {0, 1} and uniformly random inputs x0, x1 ∈ {0, 1}n.

3. Alice evaluates mA = A(xb, τA) (that is, a message of the protocol π for EQ(·, ·)).

4. Alice sends to Bob (mA, x1).

5. Bob evaluates mB = B(x1, τB).

6. Alice outputs b and Bob outputs b′ = ρ(mA, mB).

Lemma 5.4. Algorithm 5.3 is a
(
1− 2−c/2−3, 2−c/2+1

)
-SBA protocol.

Proof. Let c = c(n) and δ = 2c/2. We have to show its agreement and secrecy properties:

Agreement. By the definition of the protocol π:

Pr [b = b′] ≥ 1−
(1

2

)0.7c

≥ 1−
(1

2

)0.5c−2
= 1 + (1− 2−c/2−3)

2 = 1 + α

2

Secrecy. We should show that for every PPTM adversary Advsba

Pr [Advsba(mA, x1) = b | b = b′] ≤ 2− β

2 = 2− 2−c/2+1

2 = 2c/2 − 1
2c/2 = δ − 1

δ

Assume towards contradiction that Pr [Advsba(mA, x1) = b | b = b′] > δ−1
δ

. We show that
given Advsba, we can construct Adveq that finds bad inputs for the protocol π (with proba-
bility higher than ε):
Claim 5.5. Given Advsba with success probability at least δ−1

δ
, we can construct an adversary

Adveq with running time O(23c) = O(δ6) s.t.

Pr [π fails on inputs from Adveq] > 2−0.7c ≥ ε

Proof. The strategy of the adversary Adveq to find bad inputs is:
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Algorithm 5.6 Adveq – Find Bad Inputs Using Advsba

1. Select uniformly at random x ∈ {0, 1}n and set it as Alice’s input.

2. Let Alice’s message (output) be mA ∈MA.

3. Repeat at most 23c times:

(a) Select uniformly at random x′ ∈ {0, 1}n.
(b) If Advsba(x′, mA) = 1:

i. Set Bob’s input to be either y = x w.p. 1/2 or y = x′ w.p. 1/2.
ii. Halt.

Recall that the private states of Alice and Bob are τA and τB (unknown to the adversary).
The success of the adversary Adveq relies on choosing a colliding x′ (i.e., x′ s.t. B(x, τB) =
B(x′, τB)). For any x ∈ {0, 1}n, let px be the probability that a random x′ will collide with
x. I.e.,

px = |{x
′ : B(x′, τB) = B(x, τB)}|

2n
.

Note that Ex [px] ≥ 2−c, since there are at most 2c possible messages for Bob. Suppose that
chosen a colliding x′ in step 3(a) (i.e., B(x′, τB) = B(x, τB)). Then, the adversary Adveq will
identify (with some probability) that this is the case by checking whether Advsba(x′, mA) ?= 1
(step 3(b)).

If not a colliding x′ was chosen, then the adversary Adveq can identify it using Advsba
and retry. That is:

1. In every try: The adversary chooses a random a colliding x′ ∈ {0, 1}n w.p. at least
px · δ−1

δ
.

2. For the i-th try: The probability that the previous x′’s were not colliding but the
adversary identified it, is (

(1− px) · δ − 1
δ

)i−1

.
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This means,

Pr
x′←Adveq

[B(x′, τB) = B(x, τB)] =
δ6−1∑
i=0

Pr [Success in the (i + 1)-th try]

·Pr [The previous i x′’s were not colliding but identified]

≥
δ6−1∑
i=0

px ·
δ − 1

δ

(
(1− px)δ − 1

δ

)i

= px ·
δ − 1

δ
·

1−
(
(1− px) δ−1

δ

)δ6

1− (1− px) δ−1
δ

>
px · δ−1

δ
· 0.99

1− (1− px) δ−1
δ

= 0.99 · px(δ − 1)
δ − (1− px)(δ − 1)

= 0.99 · px(δ − 1)
1 + px(δ − 1) .

To complete the proof we have to show that

0.99 · px(δ − 1)
1 + px(δ − 1) ≥ 2−0.7c

over the random choice of x (step (1)). We consider when

0.99 · px(δ − 1)
1 + px(δ − 1) ≥ px · 20.3c+1 (2)

it is equivalent to

px ≤
0.99(δ − 1)− 20.3c+1

20.3c(δ − 1)

but since 0.99(δ−1)−20.3c+1

20.3c+1(δ−1) = 0.99(2c/2−1)−20.3c+1

20.3c+1(2c/2−1) ≥ 2−0.3c−2 it is sufficient to show that

px < 2−0.3c−2. (3)

Now, we argue that Equation (3) holds for all x. But first we have to prove the following
claim:
Claim 5.7. Let π be a protocol for the equality predicate with stateful free talk. Let τB

be the secret state of Bob, let x, y ∈ {0, 1}n s.t. x ̸= y and B(x, τB) = B(y, τB) then, for
z ∈R {x, y},

Pr
τA,τB

x,y
z∈{x,y}

[π(x, z) fails] = 1
2
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Proof. Since Bob will send the same message for both x and y this means that the output
of the protocol will be the same. Therefore, the failure probability of the protocol in both
cases will sum to 1:

Pr
τA,τB ,x,y

[π(x, y) fails] = Pr
τA,τB ,x,y

[ρ(A(x, τA), B(y, τB)) = 1]

= Pr
τA,τB ,x,y

[ρ(A(x, τA), B(x, τB)) = 1]

= 1− Pr
τA,τB ,x

[ρ(A(x, τA), B(x, τB)) = 0]

= 1− Pr
τA,τB ,x

[π(x, x) fails]

=⇒ Pr
τA,τB ,x,y

[π(x, y) fails] + Pr
τA,τB ,x

[π(x, x) fails] = 1

hence,

Pr
τA,τB

x,y
z∈{x,y}

[π(x, z) fails] = 1
2 · (1) = 1

2 .

Now we can prove that Equation (3) must hold:
Claim 5.8. For all secret states of Bob τB, ∀x ∈ {0, 1}n

px < 2−0.3c−2

Proof. Assume that there exists w ∈ {0, 1}n s.t. pw ≥ 2−0.3c−2. This implies a too high
probability that Bob will send the same message for random inputs (i.e., the probability for
a collision is ‘too high’):

Pr
x,x′

[B(x, τB) = B(x′, τB)] ≥
(
2−0.3c−2

)2

=⇒ Pr
x,x′

z∈{x,x′}

[π(x, z) fails] ≥ 2−0.6c−4 (Claim 5.7)

and for large enough c we get a contradiction since ε = 2−0.7c < 2−0.6c−4.

By Claim 5.8 we get that Equation (2) holds and hence

Pr
y←Adveq

[B(y, τB) = B(x, τB)] > px · 20.3c+1

this means that over the random choice of x:

E
x

[
Pr

y←Adveq
[B(y, τB) = B(x, τB)]

]
> 2−c · 2−0.3c+1 = 2−0.7c+1

and we can conclude by Claim 5.7 that on the inputs (x, y) from Adveq,

Pr [π(x, y) fails] > 2−0.7c+1 · 12 = 2−0.7c
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Claim 5.5 implies the secrecy of Algorithm 5.3 (otherwise, we get a contradiction for the
security of protocol π). This means Algorithm 5.3 is an (1− 2−c/2−3, 2−c/2+1)-SBA.

Finally, we show that Theorem 2.16 can be used:
Claim 5.9. For the functions α(c) = 1 − 2−c/2−3 and β(c) = 2−c/2+1 the conditions in
Theorem 2.16 hold.

Proof. In Theorem 2.16 there are 2 conditions:

1. 1−α
1+α

< β holds since,

1− (1− 2−c/2−3)
1 + (1− 2−c/2−3) = 2−c/2−3

2− 2−c/2−3 = 1
2c/2+4 − 1 <

1
2c/2−1

2. For showing the second condition we use the following fact:

Fact 5.10. For 0 ≤ x ≤ 1,

x ≤ log(1 + x)

Now, we calculate φ:

β · 1 + α

1− α
= 2−c/2+1 · (2c/2+4 − 1) > 24

=⇒ log
(

β · 1 + α

1− α

)
> 4

=⇒ 8
log

(
β · 1+α

1−α

) <
8
4

=⇒ φ = max
2,

8
log

(
β · 1+α

1−α

)
 = 2

and bound γ, (1− α

1 + α

)φ

=
( 1

2c/2+4 − 1

)2
> 2−c−8

=⇒ log
(

1 +
(1− α

1 + α

)φ)
> 2−c−8 (Fact 5.10)

=⇒ γ = 1
log

(
1 +

(
1−α
1+α

)φ) < 2c+8

Hence, the second condition also holds:

φ24γ

α
≤ 2 · 24·2c+8

1− 2−c/2−3 = O
(
24·2log log n+8) = poly(λ)

We conclude, by Claim 5.9 that the SBA of Algorithm 5.3 (Lemma 5.4) can be amplified
efficiently to a secret key agreement protocol.
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6 Conclusions
Role of private randomness. In this paper we introduced a computational model for
communication complexity. However, it can also be seen as a generalization of (deterministic)
property preserving hash functions to probabilistic algorithms. We studied some relations
between the power of private randomness and cryptographic primitives such as collision
resistance. The main open problem left from this point is whether CRHs are equivalent to
preset public coins SM protocols of complexity o(

√
n) and whether we can break that bound

using a primitive weaker than CRHs. Another direction could be to show how to use o(
√

n)
equality protocols in order to get low communication string commitment.

Boyle et al.’s lower bounds. Boyle et al. [BLV18] proved two general lower bounds for
property preserving hash functions using communication complexity10:

1. A lower bound for reconstructing predicates: Boyle et al. proved that for predicates
that can be used for reconstructing the original string there cannot exist (compressing)
property preserving hash functions. This lower bound is also true for our preset public
coins SM model. However, we didn’t necessarily consider reconstructing predicates (for
instance, the equality predicate is not a reconstructing predicate).

2. General lower bound from one-way communication: Boyle et al. proved that any prop-
erty preserving hash function cannot compress better than the one-way communication
complexity11. This lower bound is also true in our model, but it is too loose in our
context since in our model the inputs and the public random string may be depen-
dent (e.g., the equality predicate complexity is O(1) in the one-way communication
complexity model).

Multi CRHs (MCRH). For k ≥ 3, k-multi-collision resistance is where finding a collision
of size k is hard: Any PPTM can find x1, . . . , xk s.t. h(x1) = . . . = h(xk) with at most
negligible probability (for k = 2 it is the regular notion of collision resistance). It is known
that there does not exist a black-box construction of dCRHs using MCRHs12 and since we
showed a construction of dCRHs from protocols with some small communication complexity,
we conclude that MCRHs cannot be used alone in a black-box manner to achieve such small
communication complexity.

Secret key agreement. We showed a tight relationship between secret key agreement
protocols and succinct protocols for the equality predicate in the SM preset public coins
stateful free talk model. On the one hand, SKA can be used for constructing an equality
protocol in this model, and on the other hand, equality protocols with good error in this
model can be used for constructing SKA protocols. The open question is whether the

10See also Hardt and Woodruff [HW13] who proved robustness limitations for linear functions.
11See also Fleischhacker and Simkin [FS21] and Fleischhacker et al. [FLS22] for more such lower bounds.
12Komargodski et al. [KNY18] proved a black-box separation of MCRHs from CRHs. Komargodski and

Yogev [KY18] observed that it also holds for dCRHs since it uses the same collision finder of Simon [Sim98].
However, Komargodski and Yogev showed a non-black-box construction of dCRHs using MCRHs.
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existence of protocols with much worse error probability (e.g., constant error probability for
c which O(log log λ)) also imply SKA.
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A Calculating The Constants for Interactive Commu-
nication Lower Bound

Lemma A.1 ([BM15, Lemma 1]). For every δ, for t = 2
δ2 ln(2|SB|) there exists a character-

izing multiset T of size t s.t. ∀mB ∈MB :∣∣∣∣Q(T, mB)−Pr
rA

[ρ(A(x, rA), mB)]
∣∣∣∣ < δ

By generalizing the proof of Lemma 3.10 we can claim that for x and x′ with the same
characterizing multiset T , ∀mB ∈ SB:

∣∣∣∣Q(T, mB)−Pr
rA

[ρ(A(x, rA), mB)]
∣∣∣∣ < δ∣∣∣∣Q(T, mB)−Pr

rA
[ρ(A(x′, rA), mB)]

∣∣∣∣ < δ

=⇒
∣∣∣∣Pr

rA
[ρ(A(x, rA), mB)]−Pr

rA
[ρ(A(x′, rA), mB)]

∣∣∣∣ < 2δ

=⇒ Pr [π(x, y) fails] + Pr [π(x′, y) fails] > 1− 2δ

=⇒ Pr
z∈{x,x′}

[π(z, y) fails] >
1
2 − δ

The protocol fails on such inputs if
1
2 − δ ≥ ε

⇐⇒ 1
2 − ε ≥ δ

This means,

t ≥ 2
(0.5− ε)2 ln

(
22c
)

= 2c+1 · ln 2
(0.5− ε)2
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and the number of possible multisets is at least

|SA|t ≥
(
22c
) 2c+1·ln 2

(0.5−ε)2

= 22c·2c+1·ln 2/(0.5−ε)2

= 222c+1·ln 2/(0.5−ε)2

The number of characterizing multisets is less than the number of inputs 2n when

2n > |SA|t

⇐⇒ log n > 2c + 1 + log ln 2− log(0.5− ε)2

⇐⇒ log n > 2c + 1 + log ln 2− 2 (log(1− 2ε)− 1)
⇐⇒ log n > 2c + 3 + log ln 2− 2 log(1− 2ε)

⇐⇒ c <
1
2 log n− 3

2 −
1
2 log ln 2 + log(1− 2ε)

We can conclude that in the interactive communication settings, for protocols of complexity
c(n) where

c <
1
2 log n−O(1)

it holds that,

1. Cannot exists in the private coins model [BM15].

2. Cannot exists in the preset public coins model if the adversary has poly
(

2O(22c)
)

running time (Theorem 4.1).

3. If there exists in the preset public coins model then, it can be used to construct a
dCRH (Theorem 3.14).

B Omitted Proofs

B.1 Proof of Theorem 5.1
We will use a family of pairwise independent hash functions:

Definition B.1 (Pairwise Independent Hash). Let K be a set of keys (descriptions of func-
tion). A family of hash functions H = {hk : X → Y : k ∈ K} is pairwise independent if
∀x1 ̸= x2 ∈ X and ∀y1, y2 ∈ Y ,

Pr
k∈K

[hk(x1) = y1 ∧ hk(x2) = y2] = 1
|Y |2
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Fact B.2. There are well known constructions of pairwise independent hash functions fam-
ilies that use O(log |Y |) random bits (i.e., |k| = O(log |Y |)).

We prove Theorem 5.1 by constructing such a protocol using a secret key agreement
protocol and pairwise independent hash functions.

Algorithm B.3 Optimal Equality Predicate Protocol Using a Secret Key Agreement
Let c ∈ N (it will be the communication complexity of the protocol).

1. Free talk: Alice and Bob agree on a secret O(c) bits random string k (i.e., they preform
an SKA protocol).

2. Alice receives her input x ∈ {0, 1}n.

3. Alice maps k to a pairwise independent hash function hk : {0, 1}n → {0, 1}c.

4. Alice sends to the referee hk(x).

5. Bob receives his input y ∈ {0, 1}n.

6. Bob map k to the same function hk.

7. Bob sends to the referee hk(y).

8. The referee checks whether hk(y) ?= hk(x) and outputs it as the result.

Claim. For any c(n), the failure probability of the protocol in Algorithm B.3 is bounded by
2−c + negl(n) while the communication complexity of the protocol (following the free talk) is
c(n).

Proof. If x = y then hk(x) = hk(y) and the protocol will succeed. Let x ̸= y and assume first
that k is completely random and unknown to the adversary. Since the function is pairwise
independent, the value h(y) for y chosen by any adversary will be random in the sense that
∀z ∈ {0, 1}c:

Pr
k

[hk(y) = z | hk(x) = z] = Prk [hk(y) = z ∧ hk(x) = z]
Prk [hk(x) = z]

= Pr
k

[hk(y) = z] (pairwise ind.)

= 2−c

Now, any adversary who can find bad inputs can be used for distinguishing k and a uniformly
random string. But, from the security definition of secret key agreement, any bounded time
adversary cannot distinguish with a non-negligible advantage between k and a uniformly
random string. Hence, we can conclude that the failure probability of the protocol is bounded
by 2−c + negl(n).
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Reducing the Free Talk. We note that in general the free talk can be short: One can
use a pseudorandom generator on a small secret seed or use a method like in Wegman and
Carter [WC79].

Note that any function that has an optimal protocol (in terms of error for the given
communication complexity, i.e. 2−c) in the public coins model can follow a transformation
as described above and result in an optimal protocol in the stateful preset public coins SM
with free talk model.

B.2 Proof of Theorem 3.1
In the SM model, recall that there exists a protocol of complexity O(

√
n) (Fact 2.8), we

apply the protocol on the output of the CRH:

Algorithm B.4 Equality SM Protocol of Complexity O(
√

λ)

1. Alice and Bob sample a common CRH h : {0, 1}n → {0, 1}λ.

2. Alice and Bob apply h and compress their inputs to size λ.

3. Alice and Bob apply on the results h(x) and h(y) the O(
√

n) protocol for input of
length λ.

In the interactive model we apply on the compressed values the public coins protocol of
Rabin and Yao (described in Kushilevitz and Nisan [KN96], see analysis at [BK97]):

Algorithm B.5 Equality Interactive Protocol of Complexity O(log λ)
Let x ∈ [2n] and y ∈ [2n] be Alice’s and Bob’s inputs.

1. Alice and Bob sample a common CRH h : {0, 1}n → {0, 1}λ.

2. Alice chooses a random prime p from the first n2 primes.

3. Alice sends p and x (mod p) (that is, O(log n) bits).

4. Bob checks whether y (mod p) = x (mod p) and outputs the answer as a bit.

The communication complexity of the above protocol is O(log p) = O(log n) as required.
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