
Efficient Proof of RAM Programs from Any Public-Coin

Zero-Knowledge System

Cyprien Delpech de Saint Guilhem Emmanuela Orsini Titouan Tanguy
Michiel Verbauwhede

imec-COSIC, KU Leuven, Belgium

firstname.lastname@kuleuven.be

Abstract

We present the first constant-round and concretely efficient zero-knowledge proof protocol
for RAM programs using any stateless zero-knowledge proof system for Boolean or arithmetic
circuits. Both the communication complexity and the prover and verifier run times asymp-
totically scale linearly in the size of the memory and the run time of the RAM program; we
demonstrate concrete efficiency with performance results of our C++ implementation. At the
core of this work is an arithmetic circuit which verifies the consistency of a list of memory
access tuples in zero-knowledge. Using this circuit, we construct a protocol to realize an ideal
array functionality using a generic stateless and public-coin zero-knowledge functionality. We
prove its UC security and show how it can then be expanded to provide proofs of entire RAM
programs. We also extend the Limbo zero-knowledge protocol (ACM CCS 2021) to UC-realize
the zero-knowledge functionality that our protocol requires. The C++ implementation of our
array access protocol extends that of Limbo and provides interactive proofs with 40 bits of sta-
tistical security with an amortized cost of 0.42ms of prover time and 2.8KB of communication
per memory access, indenpendently of the size of the memory; with multi-threading, this cost
is reduced to 0.12ms and 1.8KB respectively. This performance of our public-coin protocol ap-
proaches that of private-coin protocol BubbleRAM (ACM CCS 2020, 0.15ms and 1.5KB per
access).

1 Introduction

A zero-knowledge (ZK) proof is a fundamental cryptographic tool which proves that a statement
is true without revealing any other information. Since their introduction by Goldwasser, Micali and
Rackoff [GMR85], ZK proofs have had a significant impact on cryptography and been the object
of intense research work due to their theoretical importance and varied applicability.

Many types of ZK proof systems exist, each presenting different trade-offs between several ef-
ficiency measures. While in blockchain applications, the main focus is on succinct proofs of small
statements [GGPR13, Gro16, XZZ+19, Set20], another line of research has focused on prover effi-
ciency [JKO13, AHIV17, KKW18, BCR+19, DIO21, DOT21], while other works have successfully
constructed ZK proof systems for very large statements with good concrete efficiency [WYKW21,
YSWW21, WYX+21, BMRS21].

Unfortunately, these works focus mostly on statements represented as circuits, either Boolean
or arithmetic, which can incur a significant overhead to prove properties of large statements that

1

are more naturally represented as random-access machine (RAM) programs. Many interesting
functions and applications, such as private database search or verification of program execution,
greatly benefit from RAM-based expression where their running time can be sublinear in the data
size.

Several recent works [HMR15, MRS17, BCG+18, HK20, FKL+21, HK21, HYD+21] have initi-
ated the study of ZK proof systems for RAM programs, mainly focusing on the designated-verifier
setting, also known as private-coin setting. Here, we instead turn to the following question:

Can we design a RAM-based ZK proof system with concrete efficiency in the public-coin
setting?

1.1 Contribution

To answer, this work presents the first public-coin, constant-round and constant-overhead , in
both running time and communication complexity, ZK proof system for RAM programs over any
field . Our starting point is the recent works by Franzese et al. [FKL+21] and Bootle et al. [BCG+18]
which propose a different approach to RAM-based ZK protocols compared to previous works.
In particular, they replace the need for a sorting network—used for example in the TinyRAM
framework to avoid the use of oblivious RAM (ORAM) [BCG+13, BCTV14]—by a polynomial-
based permutation check to ensure consistency of memory access.

Public-coin constant-overhead zero-knowledge in the RAM model of computation over any field. Our
protocols take inspiration from the work of Franzese et al. which achieves concretly-efficient linear
communication complexity and running time for both prover and verifier and that of Bootle et
al. which achieves asymptotically superconstant prover computation and sublinear communication
and verifier running time. The core of the construction is a protocol ΠZKArray for private read and
write access that uses a stateful circuit-based ZK functionality which can reactively re-use inputs
for different proofs in the private-coin setting.

First, we modify ΠZKArray to provide stateless ZK proofs. This allows for instantiations with
prover-efficient public-coin systems, like those based on the MPC-in-the-Head framework [IKOS07].
Secondly, we generalize the protocol over any field, binary or prime. Note that both of these
modifications lead to non-trivial changes in ΠZKArray to achieve a final protocol with constant
overhead.

More precisely, to realize a stateless ZK functionality we present a ‘new circuit compilation’
approach which, given a list of array accesses, creates a circuit Ccheck which verifies the list’s
consistency. The final Ccheck circuit is composed only of standard arithmetic gates and can be
given as input to a generic circuit-based ZK functionality FZK. However, since the execution of
Ccheck requires new inputs from the prover to perform the checks on the accesses, we adapt FZK to
accept circuits evaluated on inputs both fresh and stored previously.

When we generalise ΠZKArray to also work with prime fields, the näıve approach of performing
equality and comparison tests leads to a non-constant overhead. To avoid this issue, we describe a
new ZK protocol for equality testing and over a prime field that could be of independent interest;
we also describe a bound-checking protocol reminiscent of the range relation proof of [BCG+18].
These two protocols take advantage of both the new inputs given to Ccheck and of a permutation
check similar to the one of Franzese et al. [FKL+21]—which dates back to [Nef01]. We also extend
this permutation check to handle permutations of tuples, and not only of elements, by using an
inner-product compression technique, similarly to Bootle et al.’s [BCG+18]. This is different to the

2

packing technique used by Franzese et al. which works efficiently for binary fields but is too costly
for prime fields of large characteristic.

Finally, we show how to extend our FZKArray functionality to accept richer circuits and implement
ZK protocols for RAM-based computation. We stress that our construction not only public-coin but
also constant-round, unlike that of Bootle et al. [BCG+18], and can be made fully non-interactive
using standard techniques.

Instantiation with MPC-in-the-Head protocols. We give a concrete instantiation of our general
construction using the MPC-in-the-Head-based ZK protocol, Limbo described by Delpech de Saint
Guilhem et al. [DOT21]. We chose this framework since, among other public-coin systems, it
offers concrete overall efficiency, which makes such schemes competitive even for relatively large
statements. Moreover, they offer linear prover and communication complexity, great flexibility in
the choice of parameters and post-quantum security.

We stress that the choice of Limbo was due to its efficient prover running time, but other proto-
cols such as KKW [KKW18] or Ligero [AHIV17] can also realize our required ZK functionality, with
only minor modifications. Instead of favouring running time, we could improve the communication
complexity of our construction by using Ligero instead which achieves sub-linear communication
and shortest proof size, especially for very large circuits.

Implementation and efficiency results. Finally, we implement our protocols, and compare our results
with related work. Our implementation shows that we can indeed achieve a RAM-based ZK system
with both concrete and asymptotic efficiency in the public-coin setting. We observe that each RAM
access we make is equivalent to proving 24 multiplication gates. In practice, when working over the
prime field GF (261 − 1) we achieve an amortized cost of 0.2ms and 4.1KB for each RAM access.
As far as we know this is the best result to date in the public-coin setting, and is comparable to the
BubbleRAM protocol [HK20] which heavily relies on the private-coin nature of their underlying ZK
protocol. However, more recent ZK proof for RAM programs, also in the setting of a designated
verifier, have already superseded BubbleRAM; most notably its direct successor PrORAM [HK21]
as well as the work by Franzese et al. [FKL+21] that greatly outperforms BubbleRAM in both
communication and running time.

In the light of the rapid development of this line of work, we believe that our construction can be
an important step forward in order to bridge the gap between private and public coin ZK protocols
in the RAM model of computation. The details of our implementation and further comparison
with other works can be found in Section 6.

1.2 Additional Related Work

We mainly compare our results with the work of Franzese et al. [FKL+21], which instantiate
their construction with the VOLE-based ZK protocol QuickSilver [YSWW21], with the advantage
of having a very efficient underlying ZK protocol in the private-coin setting which naturally supports
conversion between Boolean and arithmetic authenticated values with no extra costs, and can rely
on stateful zero-knowledge functionalities.

To the best of our knowledge, all known concretely efficient protocols on ZK for RAM programs
are in the private-coin setting and use different techniques compared to our construction. In
particular, the line of work started with BubbleRAM [HK20, HK21, HYD+21] relies on the use of
garbled circuit ZK protocols, in the JKO-framework [JKO13], and achieves a non-constant overhead
cost per memory access either due the use of ORAM or routing network. The work of Bootle et

3

al. [BCG+18] does not appear to have been implemented, and despite is sublinear asymptotic
performance, is not recommended for implementation by its authors due to large constants in the
big-O notation. We therefore do not take it into account for our performance comparisons.

Concurrently to this work, the Cairo architecture was proposed as a practically efficient, Turing-
complete and STARK-friendly architecture [GPR21]. The high-level approach taken in that work is
similar to ours: the authors propose an architecture which can provide proofs of execution for any
compatible program. However, their work is directed at proof systems based on sets of polynomial
equation constraints and not at systems based on arithmetic circuits. Therefore their architecture
is best applied with STARK-like proof systems which offer very different efficiency balances from
our objective in this work.

1.3 Technical Overview

Our main contribution is an approach tailored to MPC-in-the-Head to check the consistency of
a series of T read or write accesses to an initial array M of size N , using an arithmetic checking
circuit Ccheck over an arbitrary field F. By using specially designed sub-circuits for equality checks,
bound checks and permutation checks, this circuit removes the need for any bit-decomposition,
which is expensive in prime fields, to perform these operations. These sub-circuits are arranged to
verify the consistency of a list L of access tuples which contains both the initial array, encoded as
N tuples, and the accesses performed as T additional tuples.

We denote by [x] wire values in Ccheck that are sensitive and should not be revealed when Ccheck is
proven in zero-knowledge. The initial array M is encoded as a listM = ((i, i,write, [Mi])i∈[N]. Each
access then is encoded as a tuple of the form ([l], t, [op], [d]), where l denotes the index of the memory
being accessed; t is a global timestamp unique to this access, initialized at N ; op ∈ {read,write}
denotes the type of access, which we identify read = 0 ∈ F and write = 1 ∈ F; and d denotes
the value being accessed. Given this, the circuit takes as initial input a list L which contains
the N initial array values, encoded as M, followed by the T access tuples (ordered according to
t ∈ [N + 1, N + T]). The circuit Ccheck verifies the consistency of the accesses by checking that
every read access returns the last value written to the same address.

To do so, following the same approach by Franzese et al., it requires a second list L′ that is a
permutation of the initial list L with the difference that it is sorted first according to the address l,
and then according to the timestamp t. That is, within L′, all accesses to the same address are
grouped together, and then sorted chronologically. Given such a list L′, the circuit checks for the
following criteria:

1. L′ is a permutation of L.

2. Every adjacent pair of access tuple concerns either the same address, or two adjacent ones;
i.e. for ([l′i], [t

′
i], ∗, ∗) and ([l′i+1], [t′i+1], ∗, ∗) in L′, it holds that(

(l′i = l′i+1) ∧ (t′i < t′i+1)
)
∨ (l′i + 1 = l′i+1).

3. All accesses are made to addresses within bounds; i.e. l′N+T = N . (Combined with the
adjacency requirement from the previous step this implies all addresses are bounded by N .)

4. All operations are either reads or writes; i.e. opi ∈ {0, 1} for i ∈ [N + T].

4

5. All read tuples contain the same value as the last one to be written at that address; this is
checked pair-wise by evaluating

(l′i + 1 = l′i+1) ∨ (d′i = d′i+1) ∨ (opi+1 = write).

The differences with the check performed by the protocol of Franzese et al. are three fold. First,
all of our checking circuit is arithmetic whereas only criteria 1, i.e. the permutation check, is
performed with an arithmetic circuit in [FKL+21]. Second, we do not pack our values ahead of
the permutation check as this would require operations over F4 which would be too big for fields of
high prime characteristic; instead we use an inner-product compression technique to reduce this to
the one-dimensional case. Finally, we do not check that the first access at every address is a write
operation since this is enforced by the structure of M within L; and we also additionally check
that opi is a bit which is not necessary in [FKL+21] as they work with fields of characteristic 2.

In order to evaluate these consistency criteria, we present three arithmetic sub-circuits, EqCheck,
BdCheck and PermCheck, which respectively verify equality, upper and lower bounds, and permu-
tation of sensitive values while preserving zero-knowledge. A detailed description of these circuits
is given in Section 3. As outlined above, only the equivalent of PermCheck is computed as an
arithmetic circuit by Franzese et al. These three circuits are designed using standard arithmetic
operations (addition, multiplication and equality check against a public constant) and also contain
the following additional commands.

- Input: this command allows the prover to give additional inputs to Ccheck, such as the per-
muted version of an array. We include it in the description of the sub-circuits to highlight that
some additional inputs are required at certain points. As the prover is free to input arbitrary
values, those inputs, which must satisfy certain properties, must then also be checked.

- Rand: this command produces one or more uniformly random elements of F. It represents
randomness needed for statistical verification of properties (such as polynomial equality).
Looking ahead, such randomness must be produced only after the inputs of the circuits have
been committed to so that they cannot be selected such that verification incorrectly succeeds
with non-negligible probability.

Organization. After preliminaries on zero-knowledge and commitment functionalities, MPC-in-
the-Head protocols and RAM-based computation in Section 2, Section 3 presents and analyzes our
three sub-circuits and the final Ccheck circuit. Section 4 then presents our ΠZKArray protocol and
the functionalities that it uses and realizes; it also presents how these can be extended to realize
ZK proofs of RAM programs. Section 5 presents a generalization of the Limbo protocol for the
UC framework and shows that is realizes the FZKin functionality required by the ΠZKArray protocol.
Finally, Section 6 discusses our C++ implementation and the results that we obtained.

2 Preliminaries

We use bold letters to denote vectors and matrices, e.g., a, B; the operator ∗ denotes the inner
product of two vectors. We denote by [d] the set of integers {1, . . . , d}, and by [e, d] the set of
integers {e, . . . , d} with 1 < e < d. The notation 〈·〉 stands for secret-shared values, and 〈·〉i is used
for the share held by party Pi; the notation [·] denotes sensitive data that should not be publicly
revealed.

5

2.1 Zero-Knowledge and Commitment Functionalities

Functionality FZK

The functionality runs with a prover P, a verifier V and an adversary S.
It is parametrized by type = {Boolean,Arithmetic}

Proof: On input (sid,Prove,P,V, C, type, x) from the prover, compute y = C(x), send (Prove, C) to V
and S and store (C, y).

Verify: On receiving (sid,Verify, C, type) from V, query S; if S returns fail, or if (C, y) has not been
stored, send (sid, C, 0) to V. Otherwise, send (sid, C, y) to V.

Figure 1: Ideal functionality for circuit-based ZK proofs

The protocols presented in this work are proven secure in the Universal Composability frame-
work of Canetti [Can01]. We recall that given an NP relation R, with corresponding language L,
for all valid instance x ∈ L there exists a string w (witness) such that R(x,w) = 1; and for all
invalid instance x 6∈ R, then R(x,w) = 0 for all strings w.

In a zero-knowledge proof, a prover P will prove to a verifier V that some NP statement x is
true, using a valid witness w without leaking any additional information other than the veracity of
the statement. A standard circuit-based zero-knowledge functionality is given in Figure 1, where
C is an arithmetic or Boolean circuit such that Cx(w) = 1 ⇐⇒ R(x,w) = 1.

Functionality FCommit

FCommit interacts with a sender P, a receiver V and an adversary S.
Let M be the space of valid messages.

Commit: Upon receiving (sid,Commit,m) from P, where m ∈ M, store (sid,m) and send
(sid,Committed, [m]) to P, V and S.

Open: Upon receiving (sid,Open, [m]) from P and V, where (sid,m) was previously stored, send
(sid,Open,m) to V.

Figure 2: Functionality FCommit for commitment

Figure 2 also presents the commitment functionality FCommit which returns handles to the
committed values so that they can be selectively opened.

2.2 MPC-in-the-Head

In [IKOS07], Ishai, Kushilevitz, Ostrovsky and Sahai introduced the MPC-in-the-Head frame-
work to build zero-knowledge proofs for NP-relations from secure multiparty computation. Let
P be a prover and V a verifier with common input the statement x, and P’s private input the
witness w; and let f be the function which checks if w is a valid witness, i.e. fx(w) = R(x,w). At
a high level, an MPC-in-the-Head protocol will work as follows: the prover emulates “in its head”
an MPC protocol between n parties that computes f , i.e. P generates a sharing 〈w〉 of the witness
and distributes the corresponding shares as private inputs to the parties, and then simulates the
evaluation of f(〈w〉) = R(x, 〈w〉) by choosing uniformly random coins ri for each party Pi, i ∈ [n].

6

This emulation yields one transcript of the protocol execution per party. After this “MPC eval-
uation”, P and V can interact to reveal a subset of transcripts, which the verifier can check for
consistency. If the consistency check succeeds, then the verifier will be convinced that the prover
knows w. Intuitively, the privacy of the MPC protocol ensures that this procedure does not leak
any information about the witness if not too many transcripts are revealed.

Limbo. In our work we consider Limbo, an efficient instantiation of the MPC-in-the-Head frame-
work which was described by Delpech de Saint Guilhem et al. [DOT21] and achieves good concrete
prover performance, including for medium-large circuits.

Recall that Limbo is constructed from a client-server ρ-round MPC protocol Πf , for a function
f as described above, between a sender client PS , computation servers P1, . . . , Pn, and a receiver
client PR. The authors present a zero-knowledge interactive oracle proof (ZK-IOP) protocol for
arithmetic or Boolean circuit satisfiability based in part on a multiplication-checking MPC protocol,
MultCheck, provided in [DOT21, Section 4.2].

The client-server MPC protocol used by the ZK-IOP protocol can be divided in the following
two phases. First, the sender client PS sends the inputs of the circuit to the servers, together with
the outputs of every multiplication gate; using these, the servers perform a local computation of
the circuit with secret-shared values. In the second phase, the servers use MultCheck to verify that
PS sent correct multiplication gate outputs. To do so, they first package the multiplication tuples1

into randomised inner-product tuples using a public random-coin functionality. These inner-product
tuples are then compressed repeatedly, again using a public random-coin functionality, until a single
tuple of low dimension is left to be verified. This is done by PR who receives every secret share of
the tuple from the servers and can output 0 or 1 based on its correctness. To amplify the soundness
this basic protocol needs to be repeated a certain number of times. In the paper, the authors show
an improvement to this näıve approach.

Theorem 1 ([DOT21]) If δ is the probability that MultCheck fails, i.e., an incorrect triple re-
mains undetected, the basic version of Limbo, with τ repetitions, is a (honest-verifier) ZK-IOP with
soundness error

ε = (1/n+ (1− 1/n) · δ)τ .

2.3 RAM-based Computation

We follow the RAM-based computation model described by Gordon et al. [GKK+12]. We
focus on RAM program for computing a function f(x,M), where x is a small, possibly public,
input, and M is a large dataset, which can be viewed as stored in a memory array M1, . . . ,MN ,
and accessed through read or write instructions. More formally, a RAM program is defined by a
“next instruction” circuit Π which, given its current state state and a value d (that will always be
equal to the last-read element), outputs the next instruction and an updated state state′. Thus,
if M is an array of N entries, each ν bits long, we can view an execution of a RAM program
proceeding as follows. First, set state = start and d = 0ν , and secondly, until termination, compute
(op, l, d′, state′) = Π(state, d) and update state = state′. Then: (1) if op = stop, terminate with
output d′; (2) if op = read (and d′ = ⊥), set d = Ml; (3) if op = write, set Ml = d′ and d = d′.

1A multiplication tuple is a tuple (x, y, z) which is correct if x · y = z, or incorrect otherwise. Here the goal of the
servers is to verify that the z values given by PS form correct tuples.

7

The space complexity of a RAM program on initial inputs x,M is the maximum number of
entries used by the memory array M during the course of the execution. The time complexity is
the number of instructions issued in the execution as described above.

In this work we focus on public-coin ZK proofs for RAM programs Π representing an NP relation
R(x,M), where R and x are public and M is a large private dataset (which acts as a witness for
x). In Figure 3 we describe an ideal functionality for RAM-based ZK proof, and in Section 4.3 we
give a protocol realizing it.

Functionality FZK-RAM

Prove: On input (sid,Prove,Π, type, N,M) from P, compute y = Π(M). Send (Prove,Π) to V and S
and store (Π, y).

Verify: On input (sid,Verify,Π, type) from V, query S; if S returns fail, or if (Π, y) has not been stored,
send (sid,Π, 0) to V. Otherwise, send (sid,Π, y) to V.

Figure 3: Ideal functionality for RAM-based ZK proofs

3 Arithmetic Circuit for ZK Verification of Array Access

In this section we construct an arithmetic circuit Ccheck (over a binary or prime field F) which
verifies the consistency of a series of T read or write accesses to an initial array M of size N .

We denote by [x] wire values in Ccheck that are sensitive and should not be revealed when Ccheck

is proven in zero-knowledge. Each entry in the initial array is of the form (i, i,write, [Mi]) for i ∈ [N],
where M = (M1, . . . ,MN) is an arbitrary initial state. Contrary to Franzese et al. [FKL+21], here
our circuit assumes that the each of the first N tuples of the list L contains a hard-coded write
operation (with unknown data values); this implies that our circuit does not need to verify that
the first access to an index is always a write operation.

3.1 Constant Overhead Equality Check

Our first sub-circuit verifies the equality of two hidden values without leaking the result; this
allows the equality bit to continue to be used as a hidden value within Ccheck. To obtain the result
of the equality test within a hidden value, the EqCheck sub-circuit shown in Circuit 1 makes use
of an auxiliary value r which, when x 6= y, is set to (x− y)−1 such that b = (x− y) · r = 1. When
x = y, b = (x − y) · r = 0 for any r. The circuit then returns 1 − b so that 1 is output in case of
equality.

Since this r requires a precise value, it must be input into the circuit using the Input command.
However, this allows for dishonest behaviour, so the circuit must also check that: 1. r is non-zero
and 2. the final result b is indeed a bit (if r was non-zero but also not equal to (x − y)−1 when
x 6= y, then b would not be a bit). To perform the first check, EqCheck requires r−1 to be input
so that r · r−1 can be verified to equal 1. For the second check, (1 − b) · b is tested to be equal 0,
which implies b ∈ {0, 1}.

Zero-knowledge. If correct, both r·r−1 and (1−b)·b always evaluate to the same value, independently
of r or b, so they can be safely checked against a constant (1 or 0) without leaking information.

8

Circuit 1 EqCheck([x], [y])

1: Input [r] =

{
([x]− [y])−1 if x 6= y

random non-zero if x = y

2: Input [r−1]
3: Check that [r] · [r−1] is equal to 1; if not, set circuit output to 0.
4: [b]← ([x]− [y]) · [r]
5: Check that (1− [b]) · [b] is equal to 0; if not, set circuit output to 0.
6: return 1− [b]

Soundness. Both checks are deterministic, therefore if r and r−1 are incorrectly input, either of
these will fail and Ccheck will output 0 with probability 1.

Cost. This circuit requires a constant number of Input, multiplication and constant checks (resp. 2,
3 and 2) to evaluate the equality bit of two values.

3.2 Permutation Check

Our second sub-circuit probabilistically checks that two arrays of S (tuples of) field elements are
permutations of one another without revealing either the content of the arrays or the permutation
that links them. We first describe the procedure in the one- and multi-dimensional case before
formally presenting the PermCheck sub-circuit.

3.2.1 Checking a one-dimensional permutation

We first present the checking procedure in the one-dimen-sional case, as described in [BCG+18].
Let [A] =

[
[a1] · · · [aS]

]
and [B] =

[
[b1] · · · [bS]

]
be two arrays in FS ; to show that there exists

a secret permutation π such that B = π(A), we use the fact that polynomials are identical under
permutation of the roots [Gro09, Nef01]. In other words, we define two polynomials PA, PB ∈ F[x]
such that their zeros are exactly the elements of the respective arrays:

[PA(x)] =

S∏
i=1

(x− [ai]) and [PB(x)] =

S∏
i=1

(x− [bi]).

If the arrays are indeed permutations of one another, then the polynomials are defined identically
and it holds that PA = PB. We check this probabilistically using the Schwartz–Zippel Lemma.

1: Receive public random challenge r ∈ F.
2: Compute r − [ai] and r − [bi] for i ∈ [S].
3: Compute the values [PA(r)] =

∏S
i=1(r − [ai]) and [PB(r)] similarly.

4: Check that PA(r)− PB(r) is equal to 0.

Given that PA and PB are both of degree S, the Schwartz–Zippel Lemma states that, if PA 6= PB,
then the check in Step 4 will incorrectly pass with probability at most S/|F|.

3.2.2 Checking a multi-dimensional permutation

In our application, as the two lists L and L′ contain tuples of 4 elements we instead need
to consider matrices. However, the following analysis can be generalized to matrices of higher

9

dimension. Let [A] =
[
[a1] · · · [aS]

]
and [B] =

[
[b1] · · · [bS]

]
be matrices in F4×S ; we wish to

prove that the columns of B are a permutation of the columns of A, i.e. there exists a permutation
π such that APπ = B, where Pπ is the matrix permutation associated to π.

To do so, we reduce the question to the one-dimensional case using randomized inner products.
First, a random challenge s ∈ F4 is sampled. Then, A is compressed to a one-dimensional array a by
setting (a)i = ai = s∗ai, for i ∈ [S], where ∗ denotes the inner product of two vectors. Similarly, B
is compressed to b using the same s. (Using the same challenge s for all columns of both matrices is
necessary since the permutation must remain secret.) Now, the procedure for the one-dimensional
case presented above can be used to check that b is a permutation of a.

To show that this procedure correctly checks that the columns of B are a permutation of the
columns of A, we show that any difference is preserved by the randomized inner product except
with some probability.

Lemma 1 Given two matrices A,B as above, if there does not exist a column permutation ma-
trix Pπ such that APπ = B then the sets {a1, . . . , aS} and {b1, . . . , bS} are different except with
probability at most 4/|F| over the random choice of s ∈ F4.

Proof We can consider the linear map fa−b(s), defined by the matrix D = (A−B)T ∈ FM×4. If
A and B are correctly generated, D = 0 and the condition fD(s) = 0 holds ∀s ∈ F4.
If the adversary cheated, i.e., D 6= 0, we can have the following different cases:

- If only one row is incorrect, then rank D = 1 and the rank-nullity theorem tells us dim(ker
fD) = 3. This means that the probability that s ∈ kerfD is |F3|/|F4| = 1/|F|.

- If two rows are incorrect, then rank D ≤ 2. If it is 1, then we are in the same situation as
before, otherwise dim(ker fD) = 2 and the probability that s ∈ kerfD is |F2|/|F4| = 1/|F2|.

- If three rows are incorrect, then rank D ≤ 3, hence either we are in one of the situations
described above or dim(ker fD) = 1 and the probability that s ∈ kerfD is |F|/|F4| = 1/|F3|.

- If we have more than 3 incorrect rows and rank D = 4, then fD is injective and kerfD = {0}.
Hence, the probability of passing the test is 1/|F4|.

Therefore the overall probability of passing the test is given 1/|F|+1/|F2|+1/|F|3 +1/|F|4 ≤ 4/|F|.
� This approach is similar to the one of Bootle et al. [BCG+18] which uses an inner product with
a vector of powers (1, z, z2, . . .) for random value z.

3.2.3 Constructing the circuit

We now present the PermCheck sub-circuit in Circuit 2. This takes ν ∈ N as parameter to
indicate the row-dimension of the arrays L and L′; if ν = 4 then we use the multi-dimensional check
described above and sample a random vector s ∈ Fν . Then, the circuit performs the Schwartz–
Zippel test by requiring a random r ∈ F, evaluating the polynomials PA and PB on r and checking
that they are equal, i.e. that their difference is 0.

Zero-knowledge. The only revealed information is that PA(r) − PB(r) is equal to 0; however, this
is always the case when [L′] is a permutation of [L], therefore no information is leaked.

10

Circuit 2 PermCheck(ν ∈ {1, 4}, [L], [L′])
1: if ν = 4 then
2: s← Rand(Fν)

3: for i ∈ [S] do
4: if ν = 1 then
5: [ai]← [L[i]] and [bi]← [L′[i]]
6: else
7: [ai]← s ∗ [L[i]] and [bi]← s ∗ [L′[i]]
8: r ← Rand(F)
9: [PA(r)]←

∏S
i=1(r − [ai]) and [PB(r)]←

∏S
i=1(r − [bi])

10: Check that [PA(r)]− [PB(r)] is equal to 0; if not, set circuit output to 0.

Soundness. When ν = 1, the one-dimensional case is sufficient to show that PermCheck incorrectly
passes with probability at most S/|F|. When ν = 4, Lemma 1 gives us that, if L′ is not a per-
mutation of L, {ai} and {bi} will be different except with probability at most 4/|F|. If the sets
are different, the one-dimensional case then again implies that the last check will incorrectly pass
with probability at most S/|F|. Therefore, when ν = 4, the probability that PermCheck incorrectly
passes is at most

Pr
s

[{ai} = {bi}] + Pr
s

[{ai} 6= {bi}] · Pr
r

[PA(r) = PB(r)]

≤ 4

|F|
+

(
1− 4

|F|

)
S

|F|
≤ S + 4

|F|
.

Cost. When ν = 1, this circuit requires one Input command, one Rand command, 2(S − 1)
multiplications gates and one constant equality check. When ν = 4, it requires an additional ν
Rand commands as well as 2νS multiplications to compute the inner products.

3.3 Amortized Constant Overhead Bound Test

Circuit 3 BdCheck({[xi]}T1 , B1, B2)

1: Arrange initial array [L] = [B1, B1 + 1, . . . , B2, [x1], [x2], . . . , [xT]] of size S = B2 −B1 + 1 + T .
2: Input[L′] containing entries of L sorted from lowest to highest.
3: PermCheck([L], [L′]) . Sets the circuit output to 0 if it fails.
4: for i ∈ [S − 1] do
5: [αi]← EqCheck([L′[i]], [L′[i+ 1]])
6: [βi]← [L′[i+ 1]]− [L′[i]]
7: Check that [αi] + [βi] is equal to 1; if not, set circuit output to 0.

8: Check that [L′[1]] = B1 and that [L′[S]] = B2; if not set circuit output to 0.

Our third sub-circuit BdCheck, shown in Circuit 3, verifies in zero-knowledge that a set {[xi]}
of T values are all contained within specified public bounds B1 and B2.

To do so, it first creates an array L of all values from B1 to B2, both included, and then appends
all T values to be checked, forming an array of size S = B2−B1 + 1 + T . Using Input commands,

11

it then requires an array [L′] of same size S which is expected to be an ordered permutation of L.
(Even though the values B1, . . . , B2 were not hidden in L, all of the values of L′ must now remain
hidden so that no information is leaked about {[xi]}.) By verifying that the first entry of L′ is equal
to B1 and the last entry of L′ is equal to B2, the circuit verifies that B1 ≤ xi ≤ B2 for all i ∈ [T].

As in the circuit for equality checking, the Input commands allow for dishonest behaviour so
several properties of L′ must additionally be checked. First, BdCheck calls PermCheck to verify
that L′ is indeed a permutation of L and therefore that no value has been modified.

Second, the circuit checks that successive entries in L′ are either equal to each other or differ
by exactly 1. In a correctly input L′, this is always the case as every value [xi] should be equal to
one value between B1 and B2.

It does so by first computing αi = EqCheck(L′[i],L′[i+ 1]) and then βi = L′[i+ 1]−L′[i]. Note
that if L′[i+1] = L′[i], then αi+βi = 1+0 = 1, if instead L′[i+1] = L′[i]+1 then αi+βi = 0+1 = 1.
If however L′[i+ 1] 6∈ {L′[i],L′[i] + 1}, then αi + βi 6= 1 and therefore checking for this equality is
sufficient to complete this second check.

Finally, BdCheck verifies that L′[1] = B1 and that L′[S] = B2. This, combined with the second
check, implies that B1 ≤ xi ≤ B2 for all i ∈ [T].

Zero-knowledge. First, PermCheck guarantees zero-knowledge of [L′] during the first check. Next, if
[L′] was input correctly, then [αi]+[βi] should always equal 1 and therefore no information is leaked
by checking this. Finally, given that B1 and B2 are public values and included in [L], checking the
first and last entry of [L′] does not reveal any information on any [xi] if [L′] was input correctly.

Soundness. The checks on [αi] + [βi] and the first and last entries of [L′] are all deterministic, so
BdCheck makes Ccheck output 0 with probability 1 if any of these fail. PermCheck is probabilistic
in nature, however, so BdCheck has the same soundness error overall, i.e. S/|F| since L is one-
dimensional here.

Cost. This circuit amortizes the cost of checking whether B1 ≤ x ≤ B2 by checking T values at
the same time. This requires S calls to Input, one PermCheck call, S − 1 EqCheck calls and S + 2
constant equality checks.

3.4 Putting everything together

We now present the complete Ccheck circuit which verifies the consistency of accesses, held as
tuples ([l], t, [op], [d]) within the list L. Recall that it does so by requiring a second list L′ to be an
ordering of L and by verifying that (1) L′ is a permutation of L; (2) L′ is correctly ordered, first
according to l and then according to t for entries concerning the same address; (3) all addresses
are within bounds; (4) all operations are either reads or writes; and (5) all read tuples contain the
same value as the last one written to the same address.

Checking (1) and (3). The first is done by calling PermCheck(4, [L], [L′]) and the second is done by
checking that [l′N+T] = N .

Checking (2). Here we check equalities, which is done using EqCheck, but also the inequalities
t′i < t′i+1, in the case where l′i = l′i+1. Since the ti values are public within L, and we know that L′
is a permutation of L, it holds that 1 ≤ [t′i] ≤ N + T for all i ∈ [N + T]. Letting [τi] = [ti+1]− [ti],
we see that 0 < [τi] =⇒ [ti] < [ti+1]. Therefore, calling BdCheck([τi], 1, N + T − 1) would allow
to test this (setting 1 as the lower bound ensures the strict inequality; setting N + T − 1 as the
upper bound ensures all values of τi are included). However, if successive tuples access different

12

addresses, then successive values of t are not ordered in this way; e.g. with the tuples (1, 2, ∗, ∗)
and (2, 1, ∗, ∗). Therefore calculating τi in this manner does not yield the correct check.

To fix this, we include only the τi values for accesses to the same address, i.e. those for which the
equality l′i = l′i+1 holds. Setting [αi] ← EqCheck([l′i], [l

′
i+1]), we can instead let [τi] ← [αi]([t

′
i+1] −

[t′i]) + (1 − [αi]). The first summand includes [t′i+1] − [t′i] when the equality holds, and nullifies
it otherwise, and the second summand ensures τi > 0 when the equality does not hold. Now,
BdCheck({τi}, 1, N +T − 1) will pass exactly when the t values are correctly ordered within groups
of accesses to the same address l.

To finally check the ordering of the addresses, similarly to the BdCheck circuit, verifying that
[l′i+1] = [l′i] + 1 when [l′i+1] 6= [l′i] + 1 does not require a second EqCheck. Instead we compute
[λi]← [l′i+1]− [l′i] and check that [αi] + [λi] is equal to 1. If [l′i+1] 6∈ {[l′i], [l′i] + 1}, this will not pass.

Checking (4). For every i ∈ [N + T], as [op′i] should be a bit, representing either read or write, we
check that (1− [op′i])[op

′
i] = 0.

Checking (5). We check that adjacent tuples contain either (a) different addresses, (b) equal memory
values, or (c) a write operation. As [αi] already contains the equality bit of the two addresses, and
(2) checked that addresses either are equal or differ by one, then 1 − [αi] is exactly the truth
value required for (a). For (b) we set [βi] ← EqCheck([d′i], [d

′
i+1]). Finally for (c), [op′i+1] is its

own equality bit with respect to the write operation. To evaluate (a) ∨ (b) ∨ (c), we then compute
¬(¬(a) ∧ ¬(b) ∧ ¬(c)):

[γi]← 1− [αi] · (1− [βi]) · (1− [op′i+1]),

and check that [γi] is equal to 1 for every i ∈ [N + T − 1].

Circuit 4 Ccheck([L])

1: Assume initial array is of the form

[L] = [(1, 1,write, [M1]), . . . , (N,N,write, [MN]), . . .

. . . ([`N+1], N + 1, [opN+1], [dN+1]), . . . , ([`N+T], N + T, [opN+T], [dN+T])]

2: Input[L′] containing entries of L sorted first by ` then by t.
3: PermCheck(4, [L], [L′])
4: for i ∈ [N + T − 1] do
5: Set [αi]← EqCheck([`′i], [`

′
i+1])

6: Set [λi]← [`′i+1]− [`′i]
7: Set [τi]← [αi] · ([t′i+1]− [t′i]) + (1− [αi])
8: Check that [αi] + [λi] is equal to 1; if not, set circuit output to 0.
9: Check that (1− [op′i]) · [op′i] is equal to 0; if not, set circuit output to 0.

10: [βi]← EqCheck([d′i], [d
′
i+1])

11: Set [γi]← 1− [αi] · (1− [βi]) · (1− [op′i+1])
12: Check [γi] is equal to 1; if not, set circuit output to 0.

13: BdCheck({[τi]}}N+T−1
i=1 , 1, N + T − 1)

14: Check [`′N+T] is equal to N ; if not, set circuit output to 0.
15: If circuit output was not set to 0 at any point, output 1.

13

The Ccheck circuit. The final circuit is presented in Circuit 4; it performs checks (1) through (5)
as described above and, if the output was never set to 0 by a failed constant check, then it outputs
1 to signify that all accesses contained in L are consistent with the initial memory and one another.

Correctness. We first note that, if all Input gates are given correctly, then the Ccheck circuit will
always output 1, independently of the output of the Rand gates.

Zero-knowledge. The zero-knowledge properties of the EqCheck, PermCheck and BdCheck sub-
circuits was argued in previous sections. As for the Ccheck circuit, the check of step 8 is always
equal to 1 if L′ was input correctly, and so is the check of step 12, therefore no information is leaked
by either. Similarly, [op′i] should always be a bit, so step 9 also does not leak information. Finally,
N is already publicly contained in L as the address of the last tuple, so step 14 does not reveal
information either if L′ was input correctly.

Soundness. PermCheck is the only non-deterministic check performed in the circuit, at steps 3
and 13 (within BdCheck). We therefore have the following.

Lemma 2 If [L] or [L′] is incorrectly input at step 2 of Ccheck and step 2 of BdCheck respectively,
then Ccheck will output 0 with probability at most 3(N + T)2/|F|2.

Proof The first check is a permutation of tuples of 4 elements, therefore the analysis of PermCheck
gives us that it can fail (i.e. not output 0 even though [L′] is not a permutation of [L]) with
probability at most (N + T + 4)/|F|. The second check, within BdCheck, uses the one-dimensional
permutation check and can therefore fail with probability at most 2(N + T − 1)/|F|.

The output of Ccheck can only be 1 if neither check succeeds in catching the incorrect input.
Since they concern different input values, and are performed with independent randomness, the
probability that both fail is exactly the product of the probabilities that each fail, which is less
than 3(N + T)2/|F|2 (assuming N + T ≥ 6). �

Cost. Since PermCheck and BdCheck are called outside of the for loop, the execution of Ccheck costs
O(N + T) standard arithmetic operations with O(N + T) additional inputs.

4 Zero-Knowledge Proof of Array Access

The standard (stateless) zero-knowledge proof functionality for Boolean or arithmetic circuits,
described in Figure 1 is only suitable for deterministic circuits. As described in Section 3, our
Ccheck circuit makes use of Rand gates to probabilistically verify the consistency of the access list.
To ensure soundness, this requires that the verification randomness be generated only after the
inputs have been committed to, as otherwise the prover could use the randomness to commit to
incorrect inputs which would nonetheless satisfy the checks.

In this section, we first introduce an “input” extension of the FZK functionality which then
accepts circuits to be evaluated both on stored and fresh input values. Alongside, we also present
the version of FZKArray that our initial protocol realizes and discuss the differences with the version
of Franzese et al. Then we present ΠZKArray, our zero-knowledge protocol for private read/write
array access, which realizes our FZKArray using the extended zero-knowledge functionality, and prove
its security in the UC framework. Finally, we discuss how our FZKArray and ΠZKArray can both be
extended to provide stateless proofs for richer circuits that include both arithmetic operations and
array accesses.

14

Functionality FZKin

The functionality runs with a prover P, a verifier V and an adversary S.
It is parametrized by type = {Boolean,Arithmetic}.

Init: On input (sid, Init, type,L) from P, if no previous initialization command has been given, and if
L matches type, store type and L and send (sid, Initialized,P) to V and S. Otherwise, ignore this
command.

Input: On input (sid, Input, v) from P, append v to L if the type of v matches type and send (sid, Input)
to V. If Init has not been given, or if Prove has already been given, ignore this command instead.

Prove: Receive (sid,Prove,P,V, C, x) from the prover. If Init has not been given, if the type of C or
x does not match type, or if (C, ∗) is already stored, ignore this command. Otherwise, compute
y = C(L, x), send (Prove, C) to S and V, and store (C, y).

Verify: On input (sid,Verify, C) from V, query S. If S sends fail, or if (C, y) is not stored, send (sid, C, 0)
to V. Otherwise, send (sid, C, y) to V.

Figure 4: Ideal functionality for circuit-based ZK proof with separate input command.

4.1 FZKin and FZKArray Functionalities

Figure 4 describes the FZKin functionality for (stateless) zero-knowledge proof of Boolean or
arithmetic circuit with a separate Input command. This functionality must be initialized once
with sid and type ∈ {Boolean,Arithmetic}. Since the aim is to allow for inputs to be given ahead
of the Prove command, the initialization also accepts a list L of values, whose type must match
type, which the functionality then stores. Afterwards, the Input command may be called several
times to append values v to the initial list L; the verifier V is informed of each of these calls.

The Prove command may then be called once, during which P specifies the circuit C and any
additional input x. The functionality then evaluates C jointly on L and x, stores the result, and
informs S and V.

Finally, the verifier may call the Verify command, specifying the circuit C; this ensures that
P and V agree on the circuit that should be proven. If C(L, x) has not been proven by P, or if S
decides to interrupt, then FZKin informs V of the failure and stops. Otherwise, it sends (sid, C, 1)
to V and stops.

Figure 5 presents a stateless version of the FZKArray functionality. As opposed to the stateful
one presented by Franzese et al. [FKL+21], this functionality does not extend FZKin, and therefore
does not have a Prove command for arbitrary circuits, but only provides commands to initialize
and access a memory array in zero-knowledge and also check the consistency of the accesses that
were made. We discuss the extension of our FZKArray functionality with a Prove command in
Section 4.3.

4.2 ZKArray Protocol

We provide a protocol for private read/write array access, which first allows the prover P to
commit to an array of values, and then to read or write values from or to the committed data
structure in such a way that the verifier V does not learn the address being accessed, nor the
operation being performed or the value being written.

Our protocol ΠZKArray, described in Figure 6, makes use of Ccheck presented in Section 3 to

15

Functionality FZKArray

The functionality runs with P,V and an adversary S.
Parameters: The functionality is parametrized by a flag f ∈ {0, 1}, the size N of the array, and an
upper bound T on the number of memory accesses.

Init: On input (sid, Init, type,M,N, T) from P, if no previous initialization command has been given,
and if the entries of M match type, store type and M ; send (sid, Initialized, type,P, N, T) to V and
S. Set f = 1. Otherwise, ignore this command.

Access: On input (sid,Access, l, op, d) from P, if l ≥ N set f = 0, otherwise:

- if op = Read: if Ml 6= d then set f = 0;

- if op = Write: set Ml = d.

In all cases, send (sid,Access) to V and S.

Check: Upon receiving (sid,Check, T) from V, query S. If S sends fail, return (sid, 0) to V; otherwise,
when S sends Deliver, if f = 0 then send (sid, 0) to V, otherwise send (sid, 1) and halt.

Figure 5: Functionality for stateless ZK proof for private read/write array access

Protocol ΠZKArray

Parameters: N is the size of the array, and T an upper bound on the number of accesses.

Init: On input a memory array M with contents M1, . . . ,MN , and a type, P creates a list M =
[(1, 1,write,M1), . . . , (N,N,write,MN)], initializes a counter t = N and creates two empty lists
L,AuxIn. It then sends (sid, Init, type,M) to FZKin.

Access: On input (l, op, d), P increments t and appends (l, t, op, d) to L.

Check: P and V perform the following steps:

1. P parses Ccheck(M||L) and for each Input(x) command it appends x to AuxIn.

2. P sends (sid, Input,L||AuxIn) to FZKin which then sends (sid, Input) to V.

3. V sends ri to P for each Rand command in Ccheck.

4. P sends (sid,Prove,P,V, C{ri}check, ∅) to FZKin.

5. V sends (sid,Verify, C
{ri}
check) to FZK. It returns whatever FZKin returns and stops.

Figure 6: Protocol realizing FZKArray in the FZKin-hybrid model.

realize FZKArray. At Init, the prover receives the initial memory array M = [M1, . . . ,MN]. From
it, it creates a list of initial access tuples M[i] = (i, i,write,Mi) which enforces that every address
is written to according to the entry in the array and that the first N memory accesses are write
operations. After initializing the access counter at t = N , ready to be incremented, and creat-
ing an empty list L to contain the future accesses, P commits to the initial memory by sending
(sid, Init, type,M) to FZKin. Afterwards, for each Access operation and its corresponding (`, op, d)
input, P increments t and appends (`, t, op, d) to the list L.

When T access operations have been completed, the Check procedure begins. First, P parses
Ccheck for Input gates and computes the required value for each, appending it to AuxIn each time.
Note that no such auxiliary input within Ccheck is dependent on the output of a Rand gate, therefore

16

all values can be computed by P before receving the outputs for the Rand gates. After parsing all
Input gates, P commits to these values by sending (sid, Input,L||AuxIn) to FZKin.

The verifier receives confirmation of the commitment from the functionality and proceeds to
sampling a random value ri for each Rand within Ccheck before sending all of them to P.

Now, both P and V can replace the output of the Rand gates by the values sampled above to

specify the circuit to a deterministic one, which we label C
{ri}
check. Finally, it is this circuit, without

additional input, that P proves with FZKin and that V asks to verify.

Theorem 2 Protocol ΠZKArray securely realizes FZKArray in the FZKin-hybrid model with statistical
error at most 3(N + T)2/|F|2.

Proof We describe a simulator S interacting with P and V and internally simulating the FZKin

functionality. Figure 7 presents S when P is honest; Figure 8 presents the case when P is malicious.

Simulator S for honest prover

S simulates FZKin honestly internally, and P as follows:

Init: Upon receiving (sid, Initialized, type,P, N, T) from FZKArray, set Mi = 0 for i ∈ [N], generate M
from M = (Mi)i as in ΠZKArray, initialize t = N and L,AuxIn = ∅, and send (sid, Init, type,M) to
FZKin.

Access: Upon receiving (sid,Access) from FZKArray, increment t, set l = 1, op = Read and d = 0 and
append (l, t, op, d) to L.

After all T access tuples were sent, if V is honest, send (sid,Check, T) to FZKArray.

Check: When queried by FZKArray on whether to deliver, simulate the checking protocol as follows.

1. Parse Ccheck(M||L), honestly compute each Input gate and append to AuxIn.

2. Send (sid, Input,L||AuxIn) to FZKin.

3. Receive {ri} from A if V is malicious; otherwise generate {ri} honestly and add them to
transcript visible by A.

4. Send (sid,Prove,P,V, C{ri}check, ∅) to FZKin, which then sends (Prove, C
{ri}
check) to A.

5. If V is honest, send (sid,Verify, C
{ri}
check) to FZKin.

6. If A instructs FZKin to fail, then send fail to FZKArray. Otherwise, send Deliver to FZKArray.

Figure 7: Simulator for an honest prover for ΠZKArray in the FZKin-hybrid model.

Honest prover. If V is also honest, then S in Figure 7 generates dummy values as inputs for P and
samples the {ri} values honestly. Because (1) nothing is sent to V directly, (2) FZKin guarantees
the zero-knowledge proof of Ccheck, and (3) Ccheck does not leak information along the checks that
it performs, then the transcript seen by A is indistinguishable from a real execution of ΠZKArray.

If V is malicious, then the only degree of freedom that the adversary A possesses in ΠZKArray

is to sample the ri values according to a different distribution. However, the correctness of Ccheck

ensures that, with honest behaviour from P, the output is always 1, independently of the ri values,
therefore the output of FZKArray is identically distributed.

Malicious prover. In Figure 8, S receives the inputs of P∗ via FZKin and forwards them to FZKArray

17

Simulator S for malicious prover

S processes queries to FZKin as follows:

Init: Upon receiving (sid, Init, type,M) from P∗, extract M = (M1, . . . ,MN) from M and send
(sid, Init, type,M,N, T) to FZKArray. Then send (sid, Initialized,P) to V and A.

Access: Upon receiving (sid, Input,L) from P∗, extract the first T access tuples (l, t, op, d), for t ∈
[N + 1, T], from L and, for each tuple, send (sid,Access, l, op, d) to FZKArray. Then send (sid, Input)
to V.

After all T access tuples were sent, if V is honest, send (sid,Check, T) to FZKArray.

Check: When queried by FZKArray on whether to deliver, simulate the rest of the checking protocol as
follows.

1. If V is honest, generate {ri} honestly and send them A.

2. Upon receiving (sid,Prove,P,V, C{ri}check, ∅) from P∗, process it honestly and send (P, C{ri}check)
to A if y = 1.

3. If V is honest, send (sid,Verify, C
{ri}
check) to FZKin.

4. If A instructs FZKin to fail, then send fail to FZKArray. Otherwise, send Deliver to FZKArray.

Figure 8: Simulator for malicious prover for ΠZKArray in the FZKin-hybrid model.

appropriately, both for the initial memory and the T access tuples. If P∗ cheated for any of these,
then FZKArray will set f = 0 internally.
S instructs FZKArray to fail only when A instructs FZKin to do so, therefore the output given to

V by FZKArray will be identically distributed to a real execution except when the probabilistic check
of Ccheck incorrectly outputs 1. By Lemma 2, this happens with probability at most 3(N+T)2/|F|2.
�

4.3 Realizing FZK-RAM

Here we show how to extend FZKArray to be able to describe a protocol for RAM-based compu-
tation and implement the ideal functionality FZK-RAM given in Figure 3.

To accept richer circuits, constructed from both arithmetic or Boolean operations and array
accesses, we modify our functionality and protocol as follows.

Functionality. To extend our FZKArray with a Prove(C) command, we merge the Access com-
mands into the computation of C. That is, when given (C, x) from Prove and M from Init, the
extended funtionality Fex

ZKArray computes C(M,x) and, every time an Access is encountered within
C, it queries P to input (l, op, d) as the access operation.

The corresponding Verify command then supersedes Check and performs the following opera-
tions. As Check, it first of all verifies that all the accesses given by P are consistent with the initial
M and with each other. Additionally, it also verifies that the accesses given by P are consistent
with C; i.e. that P provided the correct l, op and d that C instructed to perform at that moment.
Finally, as for FZKin, it stores the result y = C(M,x) in order to validate, or not, the successful
computation of C.

18

Protocol. To extend ΠZKArray to handle richer circuits, we expand the circuit that P submits to

FZKin. Namely, P constructs the same list L of access tuples and, in addition to C
{ri}
check, also proves

(1) the arithmetic or Boolean circuits which output the tuples that C is expecting and (2) C as
a whole, simplified to a purely arithmetic or Boolean circuit by using the tuples in L as constant
wire values.

Realizing FZK-RAM in the Fex
ZKArray-hybrid model. Given the command (sid,Prove,P,V,Π, type, N,M),

P first executes Π until termination to calculate the number T of accesses required; it then sends
(sid, Init, type,M,N, T) to FZKArray. It then sends (sid,Prove,P,V, CΠ, ∅) to Fex

ZKArray where CΠ is
the circuit built as a succession of next-instruction circuits Π(state, d) interleaved with Access

instructions.

5 Realizing FZKin with Limbo

In this section, we show how the ZK proof system Limbo [DOT21] can be generalized to securely
realize FZKin in the FCommit-hybrid model.

Handling Init and Input commands. Recall that the MPC protocol used by Limbo is divided into
two phases; a first where PS sends the inputs of the circuit and the outputs of the multiplication
gates to the computation servers, and a second where servers, using FRand and helped by PS ,
execute the MultCheck protocol and send the output to PR.

To realize FZKin, we let the Limbo prover P perform the following before beginning the first
phase. When the Init command is given, P commits to L as the beginning of the input, and waits.
For every Input command given afterwards, P commits to v and appends it to L and waits further.
When the Prove command is given, P appends x to L and considers this final L as the input to
the circuit C given by Prove.

Equality with constant checks. We note that the Limbo ZK-IOP system handles addition gates for
free and uses the MultCheck protocol to handle multiplication gates. Since the Ccheck of Section 3
also makes use of equality checks against contants, we quickly present how Limbo handles such
circuit elements. In the general case, to check that [x] is equal to a constant c, the Limbo protocol
can add the multiplication tuple (1, [x], c) to the list of tuples to check. Since 1 and c are constants
here, no help is required from PS which implies that no extra communication is required.

In the specific case that the result of a multiplication is checked against a constant, i.e. verifying
that [x] · [y] = c, then the tuple ([x], [y], c) can be added to the list. This also implies no extra
communication since the result of the multiplication is a public value and does not need to be given
by PS . This is useful for checking bits, for example, where it must be verified that [1− b] · [b] is
equal to 0.

UC Security in the FCommit-Hybrid Model. In Figure 9 we present the LimboUC protocol, the
generalized version of Limbo described above which we also rephrase for the UC framework. For
the detailed description of the protocol and the relevant definitions, we refer the reader to [DOT21].

Theorem 3 Protocol LimboUC presented in Figure 9 UC-realizes FZKin in the FCommit-hybrid model,
for semi-honest verifiers with perfect secrecy and for malicious provers with statistical error:

ε =
1

n
+ δ

(
1− 1

n

)
,

19

Protocol LimboUC

Parameters: a ρ-phase MPC protocol in the client/server model which computes arithmetic or Boolean
circuits and is (PR, n− 1)-private and (PS , 0)-robust.

Init: On input (sid, Init, type,L), P prepares to run the MPC protocol in its head. It samples rS and
{ri}i∈[n] and, as the sender client PS , uses these to secret-share 〈L〉 accross the different servers
Pi. It then sends (sid,Commit, 〈L〉i) to FCommit.

Input: On input (sid, Input, v), P continues to act as PS by appending v to L, secret-sharing 〈v〉, and
sending (sid,Commit, 〈v〉i) to FCommit.

Prove: On input (sid,Prove,P,V, C, w), P appends w to L, secret-shares 〈w〉 and invokes PS on input
(L; rS) and each Pi on input (〈L〉i, 〈w〉i; ri). This computes the views (view1

1, . . . , view
1
n) of the

servers in phase 1 with which P sends (sid,Commit, view1
i) to FCommit. Then, for j ∈ [2, ρ],

- V sends a random challenge Rj−1 to P.

- P continues the protocol: it invokes PS and each Pi on input Rj−1 which computes the

views (viewj1, . . . , view
j
n). P then sends (sid,Commit, viewji) to FCommit.

Verify: After commiting to the last view of the servers, the following takes place.

- V sends a final random challenge Rρ to P.

- P invokes PS and each Pi on input Rρ; this computes the final view viewR which P sends
to V.

- V outputs (sid, C, 0) if PR rejects the execution; otherwise, V samples a subset V ⊂ [n] of
server views that it wishes to check and sends V to P.

- Together, P and V open the commitments within FCommit for all the views specified by V .

- V outputs (sid, C, 0) if the server views are inconsistent with each other or with viewR;
otherwise, V outputs (sid, C, 1).

Figure 9: The generalized version of Limbo, presented for the UC framework.

where δ is the (PS , 0)-robustness error of the MPC protocol.

Proof For semi-honest verifiers, the security of LimboUC follows from the (PR, n − 1)-privacy of
the MPC protocol. Since the simulator internally emulates FCommit, it can generate dummy values
of behalf of the honest prover, of whose inputs it has no knowledge, and simulate the openings
according to the privacy simulator for the MPC protocol.

For malicious provers, the security of LimboUC follows from the same argument as Limbo’s [DOT21,
Theorem 3.4]. Indeed, the addition of FCommit and the separation of the commitments to the inputs
of C do not increase the cheating strategies for P. Therefore, V outputs 0 exactly when FZKin would,
except with the same proability as Limbo: ε = 1

n + δ
(
1− 1

n

)
, where δ is the (PS , 0)-robustness

error of the MPC protocol taken over the random challenges sent by V. �
As described in [DOT21, Section 3.3], the soundness error can be further reduced by increasing

the number of MPC instances computed in parallel. The same can be applied here to give a reduced
soundness error

ετ =
1

nτ
+ δ

(
1− 1

nτ

)
.

20

Non-Interactive Proof. As our ΠZKArray protocol is entirely stateless and uses only public random-
ness, it can be compiled to a non-interactive (NI) proof in the FZKin-hybrid model according to the
Fiat–Shamir transform.

Furthermore, the Limbo protocol for FZKin can itself be compiled to an NI proof with the same
methodology. However, due to its high number of interaction rounds between the prover and the
verifier, the soundness analysis of the resulting protocol is non-trivial [DOT21, Section 6].

Similarly, our generalized LimboUC protocol can be transformed to an NI proof where each
call to FCommit is replaced by calls to a random oracle that generates randomness in place of V.
Combined with an NI version of ΠZKArray, the random oracle would then generate the randomness
for the Rand gates on behalf of V between the Input and Prove calls to FZKin. We leave the exact
soundness analysis and parameter generation to further work.

6 Implementation Results

We implemented our protocol in C++, using a slightly modified version of Limbo as described
in Figure 9. We first added support for arbitrary fields on top of the implementation for binary
fields of [DOT21]; and we then built on the Bristol Format of circuits by adding Access gates.

The circuit is represented as a text file which specifies the size of the memory that will be needed,
as well as the number of input wires, output wires and hardcoded wires. For each hardcoded wire,
the file also specify their value. Finally, the file also consists of a list of gates in topological order
where each gate is specified as the operation that it performs and the wires it operates on.

We start by parsing the circuit in order to propagate hardcoded wires. For example, an addition
of two hardcoded wires is also an harcoded wire. Then, we transform every Access gate into a set
of new input wires which will define the lists L and L′. Once the whole circuit has been analyzed,
we build Ccheck following the procedure described in Circuit 4 using the newly defined wires. At
this point, we have a circuit composed only of standard arithmetic gates which Limbo can evaluate.

As an additional improvement with respect to the original code, we also support Rand gates.
These gates are implicitly used in our protocol every time the Verifier needs to send a challenge
to the Prover in the PermCheck circuit. However, if the need arises for a specific use case, our
implementation can handle such Rand gates within the circuit itself, thus giving more freedom for
future implementation of statisitcal check in the spirit of PermCheck.

Finally we also propose a multi-threaded implementation, where each repetition of the proof is
run on its own thread. As for the original Limbo, this trivial parallelization does not allow us to
divide the running time by the number of threads, because there are some places where threads
have to join; but it nonetheless gives a significant improvement.

6.1 Performance

All the benchmarks were done on a desktop computer with an Intel i9-9900 (3.1GHz) CPU
and 128GB of RAM. We only provide proving times and proof size; and do not take into account
communication time between parties.

In all cases, we show the running time of our implementation using F = GF (261 − 1) averaged
over 20 runs for varying RAM sizes.

In Figure 10 we show figures for the initialization phase of the array for three parameter sets
to emphasize potential trade-off between running time and proof size as well as the benefit of

21

multi-threading; all sets provide statistical security of 40 bits for interactive proofs. In the case
of multi-threading, we chose to run with 8 parties and 14 repetitions because we had 14 threads
available on our CPU.

We observe that the initialization phase of the array costs an amortized 22 Mult gates per
memory slot. Subsequent accesses, with sensitive operation and memory location cost an amortized
24 Mult gates per access. In terms of concrete performance, when focusing on better runtime for a
single thread, each access amounts to roughly 0.4ms and 1.8KB. For the multi-threaded case, each
access costs 0.12ms and 1.8KB.

In Table 1 we summarize our comparison with other work. We compare our results to Franzese
et al. [FKL+21], noting that their performance is measured for proofs using rings of 32-bit integers,
whereas our implementation uses GF (261 − 1) which is 30 bits larger. On a single thread, using
parameters optimizing for running time, we are about 40 times slower with proof sizes 60 times
bigger; if we instead trade-off running time for better proof size, we are about 110 times slower
with proof sizes 30 times bigger.

We also compare our work to the BubbleRAM and the more recent PrORAM protocols [HK20,
HK21], both are tailored specifically for private-coin protocols in the prime field setting. For a
RAM size of 218 elements in GF (240 − 87) BubbleRAM (resp. PrORAM) achieves an amortized
access time of 0.15ms (resp. 0.01ms) and communication size of 1.5KB (resp. 0.4KB). Therefore,
while providing memory elements that are 21 bits larger (about 1.5x), our protocol is only 3 times
slower with 1.2 times bigger proof size than BubbleRAM and 40 times slower with 5 times bigger
proof size than PrORAM. In light of these comparisons, we emphasize that MPCitH protocols are
designed to be public-coin and are therefore inherently slower and with bigger proof sizes than
protocols that can take advantage of private coins.

Finally we remark that MPCitH protocols can be significantly speed up using a multi-threaded
implementation. If hardware allows, we can run each repetition of the proof on a separate thread.
We show here that with 14 threads we can match the running time of BubbleRAM with a proof
size only 1.2 times bigger.

24 27 210 213 216 219

10−2

10−1

100

101

102

Initial RAM size

P
ro

ve
r

ti
m

e
(s

)

Prover time

(64, 7, 1)

(4, 21, 1)

(8, 14, 14)

24 27 210 213 216 219

10−1

100

101

102

103

Initial RAM size

P
ro

of
si

ze
(M

B
)

Proof size

(64, 7, 1)

(4, 21, 1)

(8, 14, 14)

Figure 10: Prover time and proof size in the interactive case for initialization of different sizes of
RAM. We specify (#parties, #repetitions, #threads).

1Access Time and Access Size are considered for a RAM of size 218 elements.

22

Scheme Algebraic Structure Asymptotic Complexity Access Time (ms) Access Size (KB)

BubbleRAM [HK20]1 GF (240 − 87) O(log2(N)) 0.15 1.5

PrORAM [HK21]1 GF (240 − 87) O(log(N)) 0.01 0.4

Franzese et al. [FKL+21] Z232 O(1) 0.01 0.031

Ours (64, 7, 1) GF (261 − 1) O(1) 1.11 0.920

Ours (4, 21, 1) GF (261 − 1) O(1) 0.42 2.82

Ours (8, 14, 1) GF (261 − 1) O(1) 0.44 1.82

Ours (8, 14, 14) GF (261 − 1) O(1) 0.12 1.82

Table 1: Comparison of our protocol with previous work in the designated-verifier setting. For our
scheme we specify (#parties, #repetitions, #threads).

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the
Defense Advanced Research Projects Agency (DARPA) under contract No. HR001120C0085, and
by CyberSecurity Research Flanders with reference number VR20192203. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the ERC, DARPA, the US Government or Cyber Security Research
Flanders. The U.S. Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 90–108. Springer, Heidelberg, August 2013.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.
Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume
11272 of LNCS, pages 595–626. Springer, Heidelberg, December 2018.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yu-
val Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 103–128. Springer, Heidelberg, May 2019.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon

23

Jung, editors, USENIX Security 2014, pages 781–796. USENIX Association, August
2014.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for arithmetic circuits with nested disjunctions. In Advances
in Cryptology, Crypto 2021, 2021. https://eprint.iacr.org/2020/1410.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and
its applications, 2021.

[DOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo:
Efficient zero-knowledge mpcith-based arguments, 2021. https://ia.cr/2021/215.

[FKL+21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and
Chenkai Weng. Constant-overhead zero-knowledge for ram programs. Cryptology
ePrint Archive, Report 2021/979, 2021. https://ia.cr/2021/979.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 2012, pages 513–524. ACM Press, October 2012.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th ACM STOC, pages 291–304.
ACM Press, May 1985.

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a turing-complete stark-
friendly cpu architecture. Cryptology ePrint Archive, Report 2021/1063, 2021. https:
//ia.cr/2021/1063.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 192–208. Springer, Heidelberg,
August 2009.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666
of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[HK20] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge processor with Bub-
bleRAM. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 2055–2074. ACM Press, November 2020.

24

https://eprint.iacr.org/2020/1410
https://ia.cr/2021/215
https://ia.cr/2021/979
https://ia.cr/2021/1063
https://ia.cr/2021/1063

[HK21] David Heath and Vladimir Kolesnikov. Proram: Fast o(log n) private coin zk oram.
Cryptology ePrint Archive, Report 2021/587, 2021. https://eprint.iacr.org/

2021/587.

[HMR15] Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. Efficient zero-knowledge proofs
of non-algebraic statements with sublinear amortized cost. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 150–169. Springer, Heidelberg, August 2015.

[HYD+21] David Heath, Yibin Yang, David Devecsery, Vladimir Kolesnikov, and Marco
Guarnieri. Zero-knowledge for everything and everyone: Fast zk processor with cached
oram for ansi c programs. IEEE Symp. on Security and Privacy, 2021.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th
ACM STOC, pages 21–30. ACM Press, June 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966.
ACM Press, November 2013.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero
knowledge with applications to post-quantum signatures. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–
537. ACM Press, October 2018.

[MRS17] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. Sublinear zero-knowledge
arguments for RAM programs. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 501–531. Springer,
Heidelberg, April / May 2017.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 116–125. ACM Press,
November 2001.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 704–737. Springer, Heidelberg, August 2020.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits,
2021.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
Efficient conversions for zero-knowledge proofs with applications to machine learning,
2021.

25

https://eprint.iacr.org/2021/587
https://eprint.iacr.org/2021/587

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, vol-
ume 11694 of LNCS, pages 733–764. Springer, Heidelberg, August 2019.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over any field. In ACM
Conf. on Computer and Communication Security (CCS). ACM, 2021.

26

	Introduction
	Contribution
	Additional Related Work
	Technical Overview

	Preliminaries
	Zero-Knowledge and Commitment Functionalities
	MPC-in-the-Head
	RAM-based Computation

	Arithmetic Circuit for ZK Verification of Array Access
	Constant Overhead Equality Check
	Permutation Check
	Checking a one-dimensional permutation
	Checking a multi-dimensional permutation
	Constructing the circuit

	Amortized Constant Overhead Bound Test
	Putting everything together

	Zero-Knowledge Proof of Array Access
	FZKin and FZKArray Functionalities
	ZKArray Protocol
	Realizing FZK RAM

	Realizing FZKin with Limbo
	Implementation Results
	Performance

