
Batch-OT with Optimal Rate

Zvika Brakerski1, Pedro Branco2, Nico Döttling3, and Sihang Pu3

1Weizmann Institute of Science
2IT, IST University of Lisbon

3Helmholtz Center for Information Security (CISPA)

Abstract

We show that it is possible to perform n independent copies of 1-out-of-2 oblivious transfer in two
messages, where the communication complexity of the receiver and sender (each) is n(1 + o(1)) for
sufficiently large n. Note that this matches the information-theoretic lower bound. Prior to this work,
this was only achievable by using the heavy machinery of rate-1 fully homomorphic encryption (Rate-1
FHE, Brakerski et al., TCC 2019).

To achieve rate-1 both on the receiver’s and sender’s end, we use the LPN assumption, with slightly
sub-constant noise rate 1/mε for any ε > 0 together with either the DDH, QR or LWE assumptions.
In terms of efficiency, our protocols only rely on linear homomorphism, as opposed to the FHE-based
solution which inherently requires an expensive “bootstrapping” operation. We believe that in terms of
efficiency we compare favorably to existing batch-OT protocols, while achieving superior communication
complexity. We show similar results for Oblivious Linear Evaluation (OLE).

For our DDH-based solution we develop a new technique that may be of independent interest. We
show that it is possible to “emulate” the binary group Z2 (or any other small-order group) inside a
prime-order group Zp in a function-private manner. That is, Z2 operations are mapped to Zp operations
such that the outcome of the latter do not reveal additional information beyond the Z2 outcome. Our
encoding technique uses the discrete Gaussian distribution, which to our knowledge was not done before
in the context of DDH.

1 Introduction

Oblivious Transfer (OT) [Rab05, EGL82] is one of the most basic cryptographic primitives. In the simple
1-out-of-2 OT, a receiver holds a bit b ∈ {0, 1} and a sender holds two bits x0, x1. In the end of the protocol,
the receiver should learn xb, but nothing about x1−b, and the sender should learn nothing about the value of
b. In most applications, one OT is not enough and one is required to perform many OT operations in parallel.
We let n denote the number of parallel executions. Various techniques have been developed to address this
task of batch-OT [IKNP03, BCG+19b, BCG+19a]. For the most part, they involve a preprocessing “offline”
phase where the parties generate random OT correlations.1 Given such correlations, executing the OT
protocol in the so-called “online phase” is computationally very simple. This approach is very useful for
purposes of computational efficiency, since the offline phase can be carried out even before the actual inputs
of the computation are known. However, in terms of communication complexity, there is an inherent cost,
even just in the online phase, of n receiver bits and 2n sender bits. In contrast, the insecure implementation
only requires n bits to be sent from each party in a two-message protocol: the receiver sends its input, and
the sender returns all of the appropriate xb values. As always in cryptography, we wish to understand what

1That is, a protocol in which the receiver obtains b, xb and the sender obtains x0, x1, where b, x0, x1 are all (pseudo-)randomly
sampled.

1

is the “cost of privacy”, namely can we approach the information theoretic minimum without losing privacy.
Note that we can only hope to achieve this for a sufficiently large n, due to the security parameter overhead.2

In prior work, Döttling et al. [DGI+19] showed that if the same receiver bit is used for multiple OT
instances, then the sender’s response can be compressed to n(1 +o(1)), achieving an optimal amortized rate.
This was shown under a variety of computational assumptions: Decisional Diffie-Hellman (DDH), Quadratic
Residuosity (QR), or Learning with Errors (LWE). It was also shown by Brakerski et al. [BDGM19] and
by Gentry and Halevi [GH19] that fully homomorphic encryption (FHE) can achieve optimal communi-
cation complexity, which in particular implies that under the LWE assumption, optimal rate batch-OT is
achievable. However, the FHE-based protocol inherently requires the use of a computationally exorbitant
“bootstrapping” mechanism in order to compress the receiver’s message.

1.1 Our Contribution

We show that optimal-rate3 batch-OT can be achieved from various computational assumptions, and without
giving up on computational efficiency. In particular, we require the LPN assumption with a small-inverse-
polynomial noise4, in addition to one of the assumptions DDH, QR or LWE. In terms of computational cost,
our protocol does not require heavy operations such as bootstrapping and relies on linear homomorphism
only. We believe that in terms of overall cost it compares favorably even with random-OT based methods.
All of our results are in the semi-honest (honest-but-curious) setting.

We further extend our results to the task of Oblivious Linear Evaluation (OLE) [IPS09, CDI+19, GNN17,
BDM22], where the sender holds a linear function over a ring and the receiver holds an input for the function,
and we wish for the receiver to learn the output on its input and nothing more, and the sender learns nothing
as usual. OLE has been shown to be useful in various settings [GMW19, CDI+19].

Our techniques rely mostly on linear homomorphism, namely on the ability to evaluate linear functions
on encrypted data (see Section 2 below). Notably, we require a linearly homomorphic scheme over Z2 (more
generally Zq for OLE) where the evaluation is function-private. Namely, the output ciphertext should not
reveal any information about the linear function that was evaluated. This was not known to be achievable
from DDH prior to this work, and we introduce a new technique that we believe may be of independent
interest. The reason for this is that DDH works “natively” over the group Zp where p is a super-polynomially
large prime. Furthermore, we only have access to the Zp elements in the exponent of a group generator g.
Indeed, one can encode 0 → g0, 1 → g1, and linear Z2 homomorphism will follow in the sense that after
applying a linear function in the exponent, we obtain gx, where x (mod 2) is the desired Z2 output. This
creates two obstacles: first we need to be able to efficiently map gx → x, which means that x must come
from a polynomially-bounded domain, and second that recovering x reveals more information than just x
(mod 2). We develop a new method to resolve this issue using discrete Gaussian variables. A technique that
was used in the context of the LWE assumption but to the best of our knowledge not for DDH. We view this
as an additional contribution of this work, which may find additional applications. In particular we show
that it can be used to enhance the key-dependent-message security properties of the well-known encryption
scheme [BHHO08].

For more details on all of our contributions, see the technical overview in Section 2.

1.2 Related Work

The communication complexity of OT has been extensively studied throughout the decades. Here we present
a brief overlook of previous works.

2In more detail, since 2-message OT implies a public-key encryption scheme, the messages must have length that relates to
the security parameter of the underlying computation assumption. This is the case even for single-bit OT.

3Achieving optimal rate (or any rate above 1/2) seems to involve a “phase-transition” and should be viewed as more than
a “constant factor” improvement. For example, OT beyond this threshold implies the existence of lossy trapdoor functions
(see discussion in [DGI+19], Section 6.3). Therefore one could expect such a protocol to inherently be heavier on public-key
operations.

4This is still a regime where LPN alone is not known to imply public-key encryption.

2

OT from Pseudorandom Correlations. A recent line of research studies the feasibility of efficiently
extending OTs in a silent manner [BCG+19b, BCG+19a]. In these works, a setup phase is performed
to distributed some shares between the parties. These shares can later be expanded into random OT
correlations. In the most efficient scheme [BCG+19a] the setup phase can be performed in just two rounds
assuming just a pseudorandom generator and an OT scheme. Using this scheme for performing the setup
together with the standard transformations form random OT to chosen-input OT, [BCG+19a] shows that n
independent instances of OT for s-bit strings can be performed with communication complexity (2s+ 1)n+
o(n). For bit OT, this yields a communication complexity 3n+ o(n) bits.

Download rate-1 OT. We say that an OT protocol has download rate 1 if the rate of the sender’s
message is asymptotically close to 1. OT protocols with download rate 1 were presented in [DGI+19,
GHO20, CGH+21].However, these protocols do not achieve upload rate 1, that is, the rate of the receiver’s
message is far from being 1. Moreover, it is not clear how we can extend these protocols to achieve upload
rate 1.

Using rate-1 FHE. As mentioned before, optimal-rate OT can be achieved using the recent scheme for
rate-1 fully homomorphic encryption (FHE) of [BDGM19, GH19] together with (semi-honest) circuit-privacy
techniques for FHE (e.g. [BdMW16]). However this can only be instantiated using LWE.

Laconic OT. Laconic OT [CDG+17, QWW18, GVW20, ABD+21] is a flavor of two-round OT where the
first message sent by the receiver is sublinear (ideally polylogarithmically) in the size of its input. However,
by a simple information-theoretical argument, the sender’s message has size at least as large as the size of
the sender’s input. Note that, if this is not the case, then we would have an OT protocol with asymptotically
better communication than an insecure OT protocol.

2 Technical Overview

2.1 Oblivious Transfer from Homomorphic Encryption

Our starting point is a textbook construction of oblivous transfer from simple homomorphic encryption
schemes, such as ElGamal. For a cryptographic group G = 〈g〉 of prime order p, recall that an ElGamal

public key is of the form pk = (g, h = gx) ∈ G2, where x
$←− Zp is the secret key. Ciphertexts are of the form

c = (c1, c2) = (gr, hr ·gb), where r
$←− Zp is uniformly random and b ∈ {0, 1} is the encrypted message. Given

such a ciphertext c, the public key pk and two bits m0,m1 ∈ {0, 1}, anyone can homomorphically compute a
new ciphertext c′ which is distributed identically to a fresh encryption of mb, by homomorphically evaluating
the linear function f(x) = (1− x) ·m0 + x ·m1 = (m1 −m0) · x+m0 on the ciphertext c and rerandomizing
the resulting ciphertext. Note that if b ∈ {0, 1} is a bit, then it holds that f(b) = mb. This homomorphic
evaluation can be achieved by computing

c′1 ← gr
∗
· cm1−m0

1

c′2 ← hr
∗
· cm1−m0

2 · gm0 ,

where r∗
$←− Zp is chosen uniformly random. Note that it holds that

c′1 = gr
∗+r·(m1−m0)

c′2 = hr
∗+r·(m1−m0) · g(m1−m0)·b+m0 = hr

∗+r·(m1−m0) · gmb .

Since r∗
$←− Zp is chosen uniformly random, it holds that r′ = r∗ + r · (m1 −m0) is distributed uniformly

random and we can conclude that c′ = (c′1, c
′
2) is distributed identical to a fresh encryption of mb. Since

3

c′ does not reveal more than the function value f(b) = mb, we call the above homomorphic evaluation
procedure function private.

This immediately implies an OT protocol: An OT-receiver holding a choice-bit b ∈ {0, 1} generates a pair
(pk, sk) of ElGamal public and secret keys, encrypts the bit b under pk and sends the resulting ciphertext
to the OT-sender. The OT-sender, holding messages m0,m1, homomorphically computes a ciphertext c′

encrypting mb and sends c′ back to the OT-receiver, who decrypts c′ to mb. Security against semi-honest
senders follows from the IND-CPA security of ElGamal, whereas security against semi-honest receivers follows
from the function privacy property established above.

2.2 Download-Rate Optimal String OT

While the above OT protocol is simple and efficient, it suffers from a very poor communication rate. While
the receiver’s message encrypts just a single bit, he needs to send 4 group elements, whereas the sender sends
2 group elements, each of size poly(λ).

Döttling et al. [DGI+19] proposed a compression technique for batched ElGamal ciphertexts based on the
share-conversion technique of [BGI16]. A batched ElGamal ciphertext is of the form c = (c0, c1, . . . , c`) =
(gr, hr1 · gb1 , . . . , hr` · gb`), where pk = (g, h1, . . . , h`) is the corresponding public key and sk = (s1, . . . , s`)
with hi = gsi is the secret key. The compression technique of [DGI+19] keeps c0 compresses each of the
c1, . . . , c` into just a single bit. The idea is instead of sending each ci ∈ G (for i ≥ 1) in full, to first compute
the distance d to the next pseudorandom break-point in G, and then only send its parity d mod 2. The
break points P ⊆ G are the set of all points h ∈ G satisfying PRFK(h) = 0t, where PRF : G → {0, 1}t
is a pseudorandom function with a range of size 2t = poly(λ). Thus, the distance d = d(ci) of a group
element ci to the nearest break point is the smallest non-negative d such that ci · gd ∈ P. Given that neither
ci nor ci · g−1 is a breakpoint, we can recover the bit bi from c0 = gr, β=d(ci) mod 2 and the secret key
component si. It was shown in [BBD+20] that for a given ciphertext c = (c0, c1, . . . , c`), the PRF-key K
can be (efficiently) chosen such that all ci are good, in the sense that neither ci nor ci · g−1 is a breakpoint.
This ensures that a receiver can recover the b1, . . . , b` from c′ = (K, c0, β1, . . . , β`), where βi = d(ci) mod 2.
Since all the βi are bits, such a compressed ciphertext only has additive size-overhead consisting of K, c0.
For a sufficiently large `, this fixed overhead becomes insignificant and the ciphertext rate approaches 1.

The compressed batched ElGamal we’ve outlined leads to a batch bit-oblivious transfer protocol with
download-rate 1 : The receiver generates a key-pair pk, sk for batched ElGamal, and encrypts his choice-bits
b1, . . . , b` into

c1 = Encpk(b1, 0, . . . , 0), . . . , c` = Encpk(0, . . . , 0, b`),

i.e. c(i) encrypts a vector which is bi in index i and 0 everywhere else. The OT-receiver now sends
pk, c1, . . . , c` to the OT-sender, whose input are messages (m1,0,m1,1), . . . , (m`,0,m`,1). Using circuit private
homomorphic evaluation, the sender computes ciphertexts c′1, . . . , c

′
` encrypting (m1,b1 , 0, . . . , 0), . . . , (0, . . . , 0,m`,b`).

Homomorphically computing the sum of the ciphertexts c′1, . . . , c
′
`, we obtain a ciphertext c′ encrypting

(m1,b1 , . . . ,m`,b`). Finally, compressing c′ with the compression technique outlined above we obtain a com-
pressed ciphertext c̄ = (K, c0, β1, . . . , β`) which the OT-sender sends back to the OT-receiver, who can
decrypt (m1,b1 , . . . ,m`,b`).

Note that the size of the sender’s message c̄ in this batch OT-protocol is poly(λ) + `, which means that
the amortized communication cost per bit-OT approaches 1 bit, and is therefore asymptotically optimal.
Even in terms of concrete complexity this seems hard to beat, as the only additional information sent by the
sender are the PRF key K and the ciphertext header c0.

However, in terms of the upload rate, i.e. in terms of the size of the receiver’s message, this protocol
performs poorly. Specifically, to encrypt ` bits b1, . . . , b`, the receiver needs to send ciphertexts c1, . . . , c` of
total size `2 · poly(λ), which has a worse dependence on ` than just repeating the simple protocol from the
last paragraph ` times.

Clearly, we need a mechanism to compress the receiver’s message. Applying the same ElGamal com-
pression technique as for the sender’s message quickly runs into problems: Once an ElGamal ciphertext is
compressed, the scheme loses its homomorphic capabilities, i.e. we cannot perform any further homomorphic

4

operations on compressed ciphertexts and currently we don’t know if it is possible to publicly decompress
such ciphertexts into “regular” ElGamal ciphertexts.

2.3 Our Approach: Recrypting the Receiver’s Message

Instead, our approach will be to encrypt the receiver’s message under a different encryption scheme, specif-
ically one which achieves ciphertext rate approaching 1 but at the same time can be decrypted by the
homomorphic capabilities of batched ElGamal. Specifically, the decryption procedure of this encryption
scheme should be a linear function in the secret key. We can get an encryption scheme which almost fulfills
these requirements from the Learning Parity with Noise (LPN) assumption. The LPN assumption states

that for a random m × n matrix A
$←− Zm×n2 , a random vector s

$←− Zn2 and a ρ-Bernoulli distributed 5

e ∈ Zm2 , it holds that
(A,As + e) ≈c (A,u),

where u
$←− Zm2 is chosen uniformly at random. This gives rise to the following simple symmetric-key

encryption scheme with approximate correctness: Assume that A is a fixed public parameter, the secret key is

a uniformly random s
$←− Zn2 . To encrypt a message m ∈ Zm2 , we compute a ciphertext d← As+e+m, where

e ∈ Zm2 is chosen via a ρ-Bernoulli distribution. To decrypt such a ciphertext, we compute m′ ← d−A · s.
Note that this scheme is only approximately correct in the sense that it holds that m′ = m + e, i.e. in

most coordinates m′ is identical to m, but only in few coordinates m′ and m differ. Furthermore, one-time
security of this encryption scheme follows from the LPN assumption.

The high level strategy to use this symmetric key encryption scheme is now as follows: Assume the matrix
A ∈ Zm×n2 is known to both the sender and the receiver. In the actual protocol this matrix will be chosen
by the receiver, and the communication cost of sending A will be amortized by reusing A many times.

The OT-receiver chooses a symmetric key s
$←− Zn2 uniformly at random and encrypts his vector of choice

bits b = (b1, . . . , b`) to d = As + e + b (where again, e ∈ Z`2 is ρ-Bernoulli distributed). Furthermore, the
receiver will encrypt the LPN secret under ElGamal, i.e. he encrypts s to c = Enc(pk, s). For the moment,
assume that s is encrypted bit-wise with standard ElGamal rather than batched ElGamal. The OT-receiver
now sends the ElGamal public key pk and the ciphertexts c and d to the OT-sender.

Now, given these values, the sender can homomorphically decrypt the d into ElGamal, effectively key-
switching from the ciphertext d into an ElGamal ciphertext. Concretely: The sender homomorphically
evaluates the linear function f(x) = d −Ax on the ElGamal ciphertext c = Enc(pk, s). This produces an
ElGamal encryption c′ encrypting f(s) = d −As = b + e = b′. In other words, the OT-sender has now
obtained an ElGamal encryption of a vector b′ which agrees with b in most locations.

The high-level idea is now to let the OT-sender use this ciphertext c′ as the encryption of the receiver’s
choice bits and proceed as in the ElGamal-based OT-protocol above. If we were to naively use c′ in this
way, the receiver would obtain the correct output mi,bi in locations where b and b′ agree, but would get the
wrong output mi,1−bi in locations where b and b′ disagree. While there certainly are applications in which
a small amount of faulty locations are tolerable, in general this leads to insecure protocols.

There is, however, another issue with this approach. In this paragraph we have implicitly assumed that
ElGamal is homomorphic for linear functions modulo 2. However, since the group we implement ElGamal
over is of large prime order p, when we evaluate linear functions such as f(x) = d −Ax over a ciphertext
encrypting a s ∈ {0, 1}n, the result of this evaluation is not reduced modulo 2, and the resulting ciphertext
in fact encrypts f(s) as an integer. This does not cause major problems in terms of correctness, as this
integer will still be small (at most of size m), and hence decryption will still be efficient.

However, this does cause major problems in terms of sender-privacy, as we can only guarantee sender
privacy for receiver messages that are guaranteed to encrypt a bit b ∈ {0, 1}.

For now, we will bypass this problem by relying on a homomorphic encryption scheme which is in fact
homomorphic over Z2 (rather than Zp), offers function privacy for linear functions modulo 2 and is compatible

5i.e. every component of ei of e is independently 0 with probability 1− ρ and 1 with probability ρ

5

with ciphertext compression. Such an encryption can in fact be constructed from the Quadratic Residuosity
assumption [DGI+19].

Another small issue we haven’t addressed here is that the compression mechanisms for the sender and
the receiver are somewhat orthogonal, in the sense that the sender’s message is compressed by compressing
a batched ElGamal ciphertext (which generally does not allow homomorphic evaluation across different
components), whereas the receiver’s compression strategy requires the homomorphic evaluation of linear
functions with multiple (i.e. vector-valued) inputs. In the main body (Section 7) we will show a tradeoff
which allows to reconcile these requirements, leading to a batch OT protocol with overall rate 1.

We will first discuss how to deal with the issue of errors in the key-switched ciphertext, and then return
to the issue of implementing our approach with ElGamal instead of QR-based encryption.

2.4 Dealing with LPN Errors

To deal with the LPN errors in the key-switched ciphertext c′, we will pursue the following high-level
strategy: The sender will introduce an additional masking on the receiver’s output, which can only be
removed in error-free locations. This masking effectively erases the receiver’s output in locations in which
the receiver’s output is corrupted.

To communicate the correct outputs in the locations with errors, the parties will rely on an additional
protocol which is run in parallel. Given that the number of errors is sufficiently small, the communication
cost of this additional protocol will be insubstantial and not affect the overall asymptotic rate.

We will first address the problem of erasing the receiver’s output in corrupted locations. First observe
that the receiver knows the locations with errors (i.e. the support of the error vector e). Assume that the
LPN error vector e has a fixed hamming weight t ≈ ρm, and note that hardness of fixed-weight LPN follows
routinely from the hardness of Bernoulli LPN6. A t-puncturable pseudorandom function [BGI14, BCG+19b]
is a pseudorandom function [GGM84] which supports punctured keys. That is, given a PRF key K and t
inputs x1, . . . , xt, we can efficiently compute a punctured key K ′ of size t · poly(λ) which allows to evaluate
the PRF on all inputs except x1, . . . , xt. Furthermore, the key K ′ does not reveal the function values at
x1, . . . , xt, i.e. PRF(K,x1), . . . ,PRF(K,xt) are pseudorandom given the punctured key K ′.

The approach to erase the receiver’s outputs in erroneous locations is now as follows. The sender chooses
a PRF key K and masks both mi,0 and mi,1 with PRF(K, i), i.e. instead of using (mi,0,mi,1) as OT-inputs,
he uses m′i,0 = mi,0 ⊕ PRF(K, i) and m′i,1 = mi,1 ⊕ PRF(K, i). Assuming that the sender can somehow
communicate a punctured key K ′ which is punctured at the locations i1, . . . , it of the errors (i.e. eij = 1 and
e is 0 everywhere else), the receiver will be able to remove the mask from error-free locations by computing
mi,bi = m′i,bi ⊕ PRF(K ′, i). In the erroneous locations however, mi,1−bi will be hidden from the view of the
receiver as PRF(K, i) is pseudorandom even given the punctured key K ′.

How can we communicate the punctured key K ′ to the receiver with small communication cost in such a
way that the sender does not learn the error-locations i1, . . . , it? This could be achieved generically by relying
on the punctured PRF construction of [BGI14] and transferring keys using a sublinear private information
retrieval (PIR) scheme [CGKS95, DGI+19]. However, recently [BCG+19b] provided a protocol to achieve
this task very efficiently via a two round protocol communicating only tpoly(λ) bits. In the main body
(Section 6), we will refer to this primitive as co-PIR, since effectively it allows to communicate a large
pseudorandom database to a receiver except in a few locations chosen by the receiver.

Finally, to communicate the correct outputs to the receiver in the locations with errors, we will in fact
rely on a two-message PIR scheme with polylogarithmic communication. Such schemes are known e.g. from
LWE [BV11] and were recently constructed from a wide variety of assumptions [DGI+19], such as DDH and
QR. The idea is as follows: For each error location ij the receiver sends an additional OT message OT1(bij)
using an off-the-shelf low-rate OT protocol (e.g. the basic ElGamal based protocol sketched above), as well
as a PIR message PIR1(ij). The sender speculatively completes this OT protocol for each index i (since the
index ij is not known to the sender), collects his OT responses in a database of size `, runs the PIR sender
algorithm on this database, and sends the response back to the receiver. The receiver will now be able to

6See e.g. [Döt15, BCG+19b]

6

recover the correct OT2 message via PIR, complete the OT and recover mij ,bij
. We remark that for this

protocol to be secure against semi-honest senders, we need a PIR protocol with sender privacy. However,
e.g. the protocols provided in [DGI+19] readily have this feature.

Carefully putting all these components together, we obtain a batch bit-OT protocol with rate-1, for both
the sender and the receiver.

2.5 Emulating Small Subgroups

We now return to the issue that ElGamal does not provide function privacy for linear functions modulo 2.
Recall that the issue essentially boils down to the fact that the plaintext space of ElGamal is natively Zp,
and when we encode messages in the least significant bits, i.e. encoding a bit b as gb, then for all practical
purposes homomorphic evaluations of linear functions with {0, 1} coefficients are over Z2, i.e. the resulting
ciphertext encodes the result of the function evaluation without reduction modulo 2.

From an algebraic perspective, this problem is rooted in the fact that since p is prime, Zp has no non-
trivial subgroup, i.e. it just does not support modular reductions with respect to anything else than p.

To approach this problem, we will take inspiration from the domain of lattice cryptography [Reg05].
There, messages are typically encoded in the high order bits of group elements, i.e. to encode b in Zp, we
would like to encoded it as b · p2 . However, since p is odd, first have to round p

2 to the nearest integer in
order to get a proper Zp element, i.e. we encode b via b ·

⌈
p
2

⌉
. If we could encode b with respect to p

2 /∈ Zp,
we would get a subgroup of order 2, i.e. for bits b, b′ ∈ {0, 1} it holds that(

b · p
2

+ b′ · p
2

)
mod p = (b+ b′ mod 2) · p

2
.

However, once we round p
2 to the next integer, we get essentially the same problem as before: If we perform

group operations on b
⌈
p
2

⌉
and b′

⌈
p
2

⌉
, then the rounding errors start to accumulate information about b and

b′ which is cannot be obtained from b+ b′ mod 2. Specifically

b
⌈p

2

⌉
+ b′

⌈p
2

⌉
mod p = b

(
p

2
+

1

2

)
+ b′

(
p

2
+

1

2

)
mod p

= (b+ b′ mod 2)
p

2
+ (b+ b′)

1

2
mod p.

Thus, now the least significant bit of b
⌈
p
2

⌉
+ b′

⌈
p
2

⌉
mod p e.g. leaks if b = b′ = 1, something which cannot

be learned from b+ b′ mod 2.
Consequently, at first glance the idea of encoding a bit b in the “high-order” bits of a Zp element seems

ineffective. However, the lattice toolkit still has more to offer. In particular, in the context of sampling
discrete gaussians from lattices, Peikert [Pei10] considered a technique called randomized rounding. The
basic idea is, given a a real number r ∈ R to not always round to the same value e.g. dre, but to sample
a an integer z close to r. In [Pei10], this distribution is a discrete gaussian Z on Z centered at r, i.e. the
expectation of Z is r. Such a discrete gaussian is parametrized by a gaussian parameter σ, which essentially
controlls the standard deviation of the discrete gaussian. We denote Z by drcσ.

Now, given any two r, r′ ∈ R and σ1, σ2 > ω(
√

log(λ)) (more generally the smoothing parameter of Z),
Peikert [Pei10] shows that

drcσ1 + dr′cσ2 ≈s dr + r′c√
σ2
1+σ2

2

.

In other words, while drcσ1 + dr′cσ2 and dr + r′c√
σ2
1+σ2

2

are note the same, they are statistically close.

This means that anything that can be learned from drcσ1
+ dr′cσ2

could have as well been learned from
dr+ r′c√

σ2
1+σ2

2

! While this comes at the expense of an increase “error” term with parameter
√
σ2

1 + σ2
2 , this

additive error is very small (of size approx σ) controlling the growth of this error term can be handled by
standard techniques.

7

Returning to our goal of emulating small subgroups in Zp, our approach follows almost instantly: Instead

of encoding a bit b ∈ Z2 as b ·
⌈
p
2

⌉
, we will encode it as

⌈
b · p2

⌋
σ

(for a σ > ω(
√

log(λ))). For b, b′ ∈ {0, 1}
this ensures that ⌈

b · p
2

⌋
σ

+
⌈
b′ · p

2

⌋
σ

mod p ≈s
⌈
(b+ b′ mod 2) · p

2

⌋
√

2σ
mod p.

Thus, we have ensured that
⌈
b · p2

⌋
σ

+
⌈
b′ · p2

⌋
σ

mod p does not leak more information than b+ b′ mod 2.

Function-Private Evaluation for ElGamal We will now briefly discuss how this idea leads to a modulo
2 function private homomorphic evaluation procedure for ElGamal. Say we have two ElGamal ciphertexts
c1 = (gr1 , hr1 · gb1) and c2 = (gr2 , hr2 · gb2) for a public key pk = (g, h) and we want to homomorphically
evaluate the function f(x1, x2) = a1x1 + a2x2 mod 2 (for a1, a2 ∈ {0, 1}) on this pair of ciphertexts. In the
first step, we randomly encode the function f as

f ′(x1, x2) = x1 ·
⌈
a1
p

2

⌋
σ

+ (1− x1) · d0cσ + x2 ·
⌈
a2
p

2

⌋
σ

+ (1− x2) · d0cσ ,

noting that this is still a linear function (chosen from a distribution). Homomorphically evaluating f ′ on the
ciphertexts c,c2 we obtain a ciphertext c′ encrypting

f ′(b1, b1) = b1 ·
⌈
a1
p

2

⌋
σ

+ (1− b1) · d0cσ + b1 ·
⌈
a2
p

2

⌋
σ

+ (1− b1) · d0cσ

=
⌈
b1a1

p

2

⌋
σ

+
⌈
b1a2

p

2

⌋
σ

≈s
⌈
(b1a1 + b1a2 mod 2)

p

2

⌋
√

2σ
.

In other words, this ciphertext could have been simulated knowing only the function result f(b1, b1) =
b1a1 + b1a2 mod 2, establishing that this homomorphic evaluation procedure is function private.

One aspect to note is that while the messages b1, b1 are encoded in c1, c2 in the “low-order-bits” via gb1

and gb2 , the function result f(b1, b2) encrypted in c′ is encoded in the high order bits, i.e. it is encoded as
≈ gf(b1,b2) p2 . This makes it necessary to change the decryption procedure: Let c′ = (c′1, c

′
2) and s be the

secret key. To decrypt c′ we compute f = c′2 · (c′1)−s ≈s gdf(s1,s2)· p2 c, we test if f is close to g0 = 1 or
gdp/2e. This recovers f(s1, s2), as the error introduced by the rounding operation is of size at most poly(λ)
via standard gaussian tail bounds.

Finally, we remark this this “high-order-bit” encoding is still compatible with ElGamal ciphertext com-
pression, i.e. we can still compress homomorphically evaluated batch ElGamal ciphertexts down asymp-
totically optimal size, using a slightly different compression mechanism. This mechanism is discussed in
Section 5. We expect this technique to have additional applications. As one immediate application, it al-
lows to upgrade the key-dependent message secure encryption scheme of Boneh et al. [BHHO08] to support
arbitrary linear functions modulo 2.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this work, λ denotes the security
parameter. By negl(λ), we denote a negligible function in λ, that is, a function that vanishes faster than any
inverse polynomial in λ. Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we denote by
y ← A(x) the output y after running A on input x. If S is a (finite) set, we denote by x←$S the experiment
of sampling uniformly at random an element x from S. If D is a distribution over S, we denote by x←$D
the element x sampled from S according to D. We denote by S[i] the i-th element of S (where the elements
are ordered by ascending order except when explicitly stated otherwise)

For two probability distributions X,Y , we use the notation X ≈s Y to state that the distributions are
statistically indistinguishable.

8

For two vectors u,v ∈ Fn over a finite field F, we denote by u� v their component-wise multiplication.
We denote by Supp(u) the support of u, that is, the set of indices where u is different from 0.7 For S ⊆ [n],
uS denotes the vector (ui)i∈S . Finally, uT denotes the transpose of u and hw(u) denotes the hamming
weight of u (that is, the number of coordinates of u different from 0).

3.1 UC Security

In terms of security, we work in the standard UC-framework [Can01]. Let F be a functionality, π a protocol
that implements F and E be a environment, an entity that oversees the execution of the protocol in both
the real and the ideal worlds. Let IDEALF,Sim,E be a random variable that represents the output of E after
the execution of F with adversary Sim. Similarly, let REALπ,A,E be a random variable that represents the
output of E after the execution of π with adversary A.

In this work, we only consider semi-honest adversaries.

Definition 1. A protocol π implements F if for every PPT adversary A there is a PPT simulator Sim
such that for all PPT environments E, the distributions IDEALF,Sim,E and REALπ,A,E are computationally
indistinguishable.

3.2 Learning Parity with Noise

The LPN assumption is closely related to the problem of decoding a random linear code. Informally, it states
that it is hard to find a solution for a noisy system of linear equations over Z2.

Definition 2 (LPN assumption). Let n,m, t ∈ N such that n ∈ poly(λ) and let χm,t be uniform distribution
over the set of error vectors of size m and hamming weight t. The Learning Parity with Noise (LPN)
assumption LPN(n,m, ρ) holds if for any PPT adversary A we have that∣∣∣∣∣∣Pr

1← A(A, sA + e) :
A←$ {0, 1}n×m

s←$ {0, 1}n
e←$χm,t

− Pr

[
1← A(A,y) :

A←$ {0, 1}n×m
y←$ {0, 1}m

]∣∣∣∣∣∣ ≤ negl(λ)

where ρ = m/t (ρ is called the noise rate).

In this work, we assume that the noise rate ρ is m1−ε for any constant ε > 0. The LPN assumption is
believed to be hard for that noise rate (see e.g. [BCG+19a] and references therein).

LPN over larger fields. Following [BCG+19a, JLS21], we define the LPN assumption over larger fields
Zq where q > 2 is a prime number. In the following, let χm,t,q be the uniform distribution over {v ∈ Zmq :
hw(v) = t}. In other words, χm,t,q is the uniform distribution over the set of vectors in Zq which have m− t
null-coordinates.

Definition 3 (LPN over larger fields assumption). Let n,m, t, q ∈ N such that n ∈ poly(λ) and q is a prime
number, and let χm,t,q be as above. The LPN over larger fields assumption LPN(n,m, ρ, q) holds if for any
PPT adversary A we have that∣∣∣∣∣∣Pr

1← A(A, sA + e) :
A←$Zn×mq

s←$Znq
e←$χm,t,q

− Pr

[
1← A(A,y) :

A←$Zn×mq

y←$Zmq

]∣∣∣∣∣∣ ≤ negl(λ)

where ρ = m/t.

7If there is only one index different from zero, Supp(u) denotes this index.

9

3.3 Cryptographic Primitives

We now present several cryptographic primitives that will be needed in our constructions. Namely, we
present the definitions of puncturable PRFs, private information retrieval and oblivious transfer.

3.3.1 Puncturable Pseudorandom Functions

A pseudorandom function (PRF) is a pair of functions KeyGen,Eval where Eval : K × {0, 1}α → {0, 1}β
(for some α, β = poly(λ)) is computed by a deterministic polynomial time algorithm: On input (K,x) ∈
K×{0, 1}α the algorithm outputs Eval(K,x) = y ∈ {0, 1}β . In terms of security, the value y is pseudorandom.

Puncturable pseudorandom functions (PPRFs) [BW13, KPTZ13, BGI14] are a special case of PRFs
where a punctured key allows one to evaluate the PRF at all points except one.

Definition 4 (Puncturable PRF). Let α = α(λ) and β = β(λ) be two polynomials. A puncturable PRF
(PPRF) scheme PPRFα,β = PPRF is composed by the following algorithms:

• KeyGen(1λ) takes as input a security parameter λ. It outputs a key K.

• Eval(K,x) takes as input a key K and x ∈ {0, 1}α. It outputs y ∈ {0, 1}β.

• Punct(K, S) takes as input a key K and a subset S ⊆ {0, 1}α. It outputs a punctured key KS.

• EvalPunct(KS ,x) takes as input a punctured key KS and x ∈ {0, 1}α. It outputs y ∈ {0, 1}β.

Definition 5 (Correctness). A PPRF scheme PPRF is said to be correct if for all λ ∈ N, for all S ⊆ ({0, 1}α)
t

(for t = poly(λ)), all x /∈ S we have that

Pr

[
Eval(K,x) = EvalPunct(KS ,x) :

K← KeyGen(1λ)
KS ← Punct(K, S)

]
= 1.

Definition 6 (Pseudorandomness). A PPRF scheme PPRF is said to be pseudorandom at punctured points
if for all λ ∈ N, all PPT adversaries A = (A1,A2) we have that∣∣∣∣∣∣∣∣

Pr

[
1← A2(KS , S, T, aux) :

(S, aux)← A1(1λ); K← KeyGen(1λ)
KS ← Punct(K, S); T ← Eval(K, S)

]
−

Pr

[
1← A2(KS , S, T, aux) :

(S, aux)← A1(1λ); K← KeyGen(1λ)
KS ← Punct(K, S); T ←$ {0, 1}β|S|

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

PPRFs can be built solely based on any length-doubly pseudorandom generators (PRG)8 via (a variant
of) the tree-based construction of [GGM86]. Throughout this work, we call the term GGM-PPRF to this
scheme and denote it by PPRFGGM.

3.3.2 Private Information Retrieval

Private Information Retrieval (PIR) schemes[CGKS95] allow a user to retrieve the i-th bit of an n-bit
database, without revealing to the database holder the value of i. Besides, we require an additional privacy
property in our schemes: sender privacy (or data privacy)[DMO00].

Definition 7 (PIR). A private information retrieval (PIR) scheme PIR is composed by the following algo-
rithms:

• Query(n, i) takes as input an index i ∈ [n]. It outputs a query q and a state sti.

• Send(DB, q) takes as input a database DB ∈ {0, 1}n and a message q. It outputs a response r.

• Retrieve(r, sti) takes as input a response r and a state sti. It retrieves the entry DBi.

8Which in turn, can be based on LWE, DDH or QR assumptions.

10

Definition 8 (Correctness). A PIR scheme PIR is said to be correct if for any n ∈ N, DB ∈ {0, 1}n and
i ∈ [n], we have that

Pr

[
DBi = Retrieve(sti, r) :

(sti, q)← Query(n, i)
r← Send(DB, q)

]
= 1.

Definition 9 (User privacy). A PIR scheme PIR is said to be user private if for any PPT adversary A, any
n, λ ∈ N, DB ∈ {0, 1}n and i, j ∈ [n], we have that∣∣∣∣ Pr[1← A(1λ, DB, qi) : (sti, qi)← Query(n, i)]−

Pr[1← A(1λ, DB, qj) : (stj, qj)← Query(n, j)]

∣∣∣∣ ≤ negl(λ).

Definition 10 (Sender privacy). A PIR scheme PIR is said to be sender private if for any λ ∈ N, any
n = poly(λ), any i ∈ [n] and any two databases DBx, DBy ∈ {0, 1}n such that DBxi = DByi we have that
for all PPT adversaries A∣∣∣∣∣∣∣∣

Pr

[
1← A(1λ, i, n, sti, ri) :

(sti, qi)← Query(n, i)
ri ← Send(DBx, qi)

]
−

Pr

[
1← A(1λ, i, n, sti, ri) :

(sti, qi)← Query(n, i)
ri ← Send(DBy, qi)

]
∣∣∣∣∣∣∣∣ ≤ negl(λ).

Black-box constructions for PIR exist LWE, DDH or QR assumptions [DGI+19].

3.3.3 Distributed GGM-PPRF Correlation

Let PPRFGGM = (KeyGen,Eval,Puncture,EvalPunct) be the GGM-PPRF scheme based on [GGM86]. The
distributed GGM-PPRF correlation functionality [BCG+19a] considers two parties: A receiver with input
α ∈ {0, 1}` and a sender with input β ∈ Fpr and a GGM-PPRF key K. The functionality outputs a punctured
key Kα and a hardwired value β − PPRF.Eval(K, α) to the receiver. We now present the formal definition of
the functionality.

Distributed GGM-PPRF correlation functionality. The functionality FPPRF-GGM is parametrized
by integers `, p, r ∈ N. Moreover, let PPRFGGM = (KeyGen,Eval,Puncture,EvalPunct) be the GGM PPRF
scheme with input space {0, 1}` and output space Fpr . The functionality works as follows:

• Receiver phase. R sends α to FPPRF-GGM where α ∈ {0, 1}`.

• Sender phase. S sends (β,K) to FPPRF-GGM where β ∈ Fpr and K ← PPRF.KeyGen(1λ). FPPRF-GGM

sends Kα ← PPRF.Puncture(K, α) and γ ← β − PPRF.Eval(K, α) to R.

A protocol that implements the functionality FPPRF-GGM is presented in [BCG+19a]. The protocol uses
a pseudorandom generator (PRG) and an oblivious transfer (OT)9 protocol in a black-box way. More-
over, security is proven against semi-honest adversaries. Finally, the protocol presented runs in two rounds
(assuming that the OT runs in two rounds) and achieves communication complexity of poly(λ, `).

For convenience, we will denote such a protocol by PPRF-GGM = (PPRF-GGM.R1,PPRF-GGM.S,PPRF-GGM.R2)
where:

• PPRF-GGM.R1(α) receives as input α ∈ {0, 1}`. It outputs a message pprf-ggm1 and a state st.

• PPRF-GGM.S(β,K, pprf-ggm1) receives as input β ∈ Fpr , a key K← PPRF.KeyGen(1λ) and a message
pprf-ggm1. It outputs pprf-ggm2.

• PPRF-GGM.R2(st, pprf-ggm2) receives as input a state st and a message pprf-ggm2. It outputs a punc-
tured key Kα and a value γ ∈ Fpr .

Using the two-round OT scheme of [PVW08], we can obtain a black-box construction for distributed
GGM-PPRF correlation scheme under the LWE, DDH or QR assumptions.

9The OT protocol is not required to have overall rate 1.

11

3.3.4 Two-message Oblivious Transfer

In this work, we consider the two-message oblivious transfer (OT) with overall (almost) optimal rate; where
the sender has input (m0,m1) ∈ {0, 1}2 and receiver a choice bit b ∈ {0, 1}. At the end, the receiver learns
the bit mb and nothing else; the sender learns nothing about b. We define the OT in plain model as follows.

Definition 11 (Two-message OT). A two-message OT protocol between a sender and a receiver can be
defined as a tuple of three PPT algorithms OT = (OTR,OTS,OTD). Let λ be the security parameter and
k = poly(λ). The receiver computes (ot1, st) ← OTR(1λ,b) with his input b = (b1, . . . , bk) ∈ {0, 1}k
and sends ot1 to the sender. The sender computes ot2 ← OTS(1λ, ot1, (m0,m1)) where (m0,m1) =
((m0,1, . . . ,m0,k)(m1,1, . . . ,m1,k) ∈ ({0, 1}k)2 and sends to the receiver ot2. At the end, the receiver de-
codes the message to get mb = (mb1,1, . . . ,mbk,k)← OTD(ot2, st).

In terms of security, OT should implement the following functionality.

OT functionality. The functionality FOT is parametrized by a integer k = poly(λ) and works as follows:

• Receiver phase. R sends b to FOT where b ∈ {0, 1}k.

• Sender phase. S sends (m0,m1) to FOT where m0,m1 ∈ {0, 1}k. FOT sends {mbi,i}i∈[k] to R.

3.4 Lattices and Gaussians

We now review some basic notions of lattices and gaussian distributions.
Let B ∈ Rk×n be a matrix. We denote the lattice generated by B by Λ = Λ(B) = {xB : x ∈ Zk}.10 The

dual lattice Λ∗ of a lattice Λ is defined by Λ∗ = {x ∈ Rn : ∀y ∈ Λ,x · y ∈ Z}. It holds that (Λ∗)∗ = Λ. The
orthogonal lattice Λ⊥q is defined by {y ∈ Znq : AyT = 0 mod q}.

Let ρs(x) be probability distribution of the Gaussian distribution over Rn with parameter s and centered
in 0. We define the discrete Gaussian distribution DS,s over S and with parameter s by the probability
distribution ρs(x)/ρ(S) for all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the least real σ > 0 such that ρ1/σ(Λ∗\{0}) ≤ ε
[MR04].

Lemma 1 ([Ban93]). For all α ∈ R, ‖x‖ ≤ α
√
n for x←$Dn

Z,α, except with negligible probability in n.

We will make use of the following convolution property of discrete gaussians.

Lemma 2 ([GMPW20], Corollary 4.8). Let Λ1,Λ2 ⊆ Rn be lattices, let σ1, σ2 > 0 be such that 1/
√

1/σ2
1 + 1/σ2

2 >
ηε(Λ1 ∩ Λ2) for some ε = negl(λ). Then it holds for all a,b ∈ Rn that DΛ1+a,σ1

+ DΛ2+b,σ2
is statistically

close to D
Λ1+Λ2+a+b,

√
σ2
1+σ2

2

.

We just need the following simple corollary of Lemma 2, which can be obtained by setting Λ1 = Λ2 = Z.

Corollary 1. Let σ1, σ2, σ3 =
√
σ2

1 + σ2
2 be such that σ1σ2/σ3 > ηε(Z) for a negligible ε and let a, b ∈ Z.

Then DZ+a,σ1
+DZ+b,σ2

and DZ+a+b,σ3
are statistically close.

Gadget matrix. For given parameters n, q ∈ Z, let g be the vector
(
1, 2, 22, . . . , 2dlog qe−1

)
and G = g⊗In

where In is the identity matrix of size n. The matrix G is usually called the gadget matrix [MP12].
Moreover, let Ḡn =

∑
i Gi ∈ Zn×dlog qe where Gi is the matrix which is zero everywhere but its i-th row

is g.
The function g−1 : Zq → Zm, where m = dlog qe, receives a value v ∈ Zq and outputs its binary

decomposition. Note that g · g−1(v) = v mod q. Following [BdMW16], we define g−1
rnd to be the function

that, on input v ∈ Zq, outputs x←$DΛ⊥q (g)+g−1(v),r, where r = Õ(1). It holds that g · g−1
rnd(v) = v mod q.

10The matrix B is called a basis of Λ(B).

12

4 Compression-friendly Subgroup Emulation via Gaussian Round-
ing

We will now provide our new subgroup emulation technique. We first define the gaussian rounding function-
ality.

Definition 12. Let σ > 0. For any x ∈ R, the gaussian rounding dxcσ is a random variable supported on
Z defined by

dxcσ = x+DZ−x,σ.

In other words, dxcσ is a discrete gaussian centered on x ∈ R but supported on Z.
We will use the following convolution lemma which provides a simulation property for gaussian rounding.

Lemma 3. Let ε > 0 be bounded by a sufficiently small constant and let σ1, σ2 ≥ ηε(Z). Then it holds for
all x, y ∈ R that

dxcσ1
+ dycσ2

≈s dx+ yc√
σ2
1+σ2

2

.

It immediately follows from Lemma 3 that it holds for every integer p ≥ 2 that

dxcσ1
+ dycσ2

mod p ≈s dx+ yc√
σ2
1+σ2

2

mod p.

Proof. The lemma follows routinely from Corollary 1, by definition of d·cσ it holds that

dxcσ1
+ dycσ2

= x+ y +DZ−x,σ1 +DZ−y,σ2

≈s x+ y +DZ−x−y,σ3

= dx+ ycσ3
.

Lemma 4. Let p > q ≥ 2 be integers with q ≤ 2k, and let σ > ηε(Z) for a negligible ε. Let f : Znq → Zq be

given by f(x1, . . . , xn) =
∑n
i=1 aixi + c for a1, . . . , an, c ∈ Zq. Define the randomized function f̂ : {0, 1}nk →

Znp via

f̂(x1,1, . . . , xn,k) =

n∑
i=1

k∑
j=1

(
xi,j ·

⌈
2j · p

q
ai

⌋
σ

+ (1− xi,j) d0cσ

)
+

⌈
p

q
c

⌋
σ

.

Then it holds for all x1,1, . . . , xn,k ∈ {0, 1} that

f̂(x1,1, . . . , xn,k) ≈s

pq · f
 k∑
j=1

x1,j2
j , . . . ,

k∑
j=1

xn,j2
j

√

2nk+1σ

.

13

Proof. It holds routinely that

f̂(x1,1, . . . , xn,k) =

n∑
i=1

k∑
j=1

(
xi,j ·

⌈
2j · p

q
ai

⌋
σ

+ (1− xi,j) d0cσ

)
+

⌈
p

q
c

⌋
σ

≈s
n∑
i=1

k∑
j=1

⌈
xi,j2

j · p
q
ai

⌋
√

2σ

+

⌈
p

q
c

⌋
σ

(1)

≈s

n∑
i=1

k∑
j=1

xi,j2
j · p
q
ai +

p

q
c

√

2nk+1σ

(2)

=

pq ·
 n∑
i=1

ai

 k∑
j=1

xi,j2
j

+ c

√

2nk+1σ

=

pq · f
 k∑
j=1

x1,j2
j , . . . ,

k∑
j=1

xn,j2
j

√

2nk+1σ

,

where in equations (1) and (2) we have used Lemma 3.

5 Rate-1 Circuit-Private Linearly Homomorphic Encryption

In this section we define circuit-private LHE and present constructions based on LWE, DDH or QR. All
constructions achieve rate 1.

Definition 13. A (packed) linearly homomorphic encryption (LHE) scheme LHE over a finite group G is
composed by a tuple of algorithms (Keygen,Enc,Eval,Shrink,DecShrink) such that:

• KeyGen(1λ, k) takes as input a security parameter λ and k ∈ N. It outputs a pair of public and secret
keys (pk, sk).

• Enc(pk,m = (m1, . . . ,mk)) takes as input a public key pk and a message m = (m1, . . . ,mk) ∈ Gk. It
outputs a ciphertext ct.

• Eval(pk, f, (ct1, . . . , ct`)) takes as input a public key pk, a linear function f : (Gk)` → Gk and `
ciphertexts (ct1, . . . , ct`). It outputs a new ciphertext c̃t.

• Shrink(pk, ct) takes as input a public key pk and a ciphertext ct. It outputs a new shrunken ciphertext
ct′.

• DecShrink(sk, ct) takes as input a secret key sk and a shrunken ciphertext ct. It outputs a message m.

For simplicity, we define the algorithm Eval&Shrink(pk, f, (ct1 . . . , ct`)) which outputs a ciphertext c̃t and
is defined as

Eval&Shrink(pk, f, (ct1 . . . , ct`)) = Shrink(pk,Eval(pk, f, (ct1, . . . , ct`)))

for any linear function f .
We require the following properties from a (circuit-private) packed LHE: Correctness, semantic security,

compactness and circuit-privacy.

Definition 14 (Correctness). A packed LHE scheme LHE is said to be correct if for any ` ∈ N, any messages
m1, . . . ,m` and any linear function f : (Gk)` → Gk we have that

Pr

m̃← DecShrink(sk, c̃t) :
(pk, sk)← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [`]
c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ct`))

 = 1

14

where m̃← f(m1, . . . ,m`).

Definition 15 (Semantic Security). A packed LHE scheme LHE is said to be semantically secure if for all
λ ∈ N, all k = poly(λ) and all adversaries A = (A0,A1) we have that∣∣∣∣∣∣∣∣Pr

b← A1(st, ct) :

(pk, sk)← KeyGen(1λ, k)
(m0,m1, st)← A0(pk)

b←$ {0, 1}
ct← Enc(pk,mb)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

Definition 16 (Compactness). We require that a packed LHE scheme LHE has the following compactness
properties:

• For (pk, sk)← KeyGen(1λ, k), the size of the public key |pk| is bounded by k · poly(n).

• For any linear function f : (Gk)` → Gk and any (m1, . . . ,m`) ∈ (Gk)` we have that

lim
λ→∞

inf
|f(m1, . . . ,m`)|

|Eval&Shrink(pk, , f, (ct1 . . . , ct`))|
→ 1

for sufficiently large k, where (pk, sk)← KeyGen(1λ, k) and cti ← Enc(pk,mi) for i ∈ [`]. In this case,
we say that the scheme has rate 1.

We also need that the packed LHE scheme fulfills circuit privacy (in the semi-honest case).

Definition 17 (Circuit Privacy). A packed LHE scheme LHE is said to be circuit-private if for all messages
(m1, . . . ,m`) ∈ (Gk)` and all linear functions f : (Gk)` → Gk, there exists a simulator Sim such that for all
adversaries A we have that∣∣∣∣∣∣∣∣∣∣

Pr

1← A(pk, sk, c̃t) :
(pk, sk)← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [`]
c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ct`))

−
Pr

[
1← A(pk, sk, c̃t) :

(pk, sk)← KeyGen(1λ, k)
c̃t← Sim(pk, m̃)

]
∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where m̃← f(m1, . . . ,m`).

In other words, since Sim does not use f to compute c̃t, no information about it is leaked from c̃t (apart
from what is trivially leaked by f).

Encryption of matrices. Above, we defined LHE that supports encryption of vectors m ∈ Gk. We can
easily extend the definition to support encryption of matrices M ∈ Gk×α for any α = poly(λ): Given a
public key pk, an encryption Enc(pk,M) of M is defined as

Enc(pk,M) =

 | |
Enc

(
pk,m(1)

)
. . . Enc

(
pk,m(α)

)
| |

where m(i) is the i-th column of M.

5.1 Construction from LWE

Before sketching the scheme, we present the LWE assumption [Reg05].

Definition 18 (Learning with Errors). Let n, q ∈ Z. The LWE assumption holds if for any PPT adversary
A

|Pr [1← A(A, sA + e)]− Pr [1← A(A,u)]| ≤ negl(λ)

for all m = poly(n), where A←$Zn×mq , s←$Znq , e←$Dm
Z,σ and u←$Zmq .

When we consider σ = ζq ≥ 2
√
n, the LWE problem is at least as hard as solving the approximate

shortest independent vector problem to within a factor of Õ(n/ζ) [Reg05].

15

5.1.1 Shrinking ciphertexts

The work of [BDGM19] shows how to shrink LWE-based ciphertexts of the form (Ar,b1r+dq/2cm1, . . . ,bkr+
dq/2cmk) (where A←$Zn×m, bi are LWE samples and r is a short vector). The resulting shrunken ci-
pherthext is composed by (Ar, b1, . . . , bk) where b1, . . . , bk ∈ {0, 1} and thus the rate tends to 1 when we
consider large k.

Before presenting the result of [BDGM19], we first need to define relaxed correctness for a standard LHE
(as in [BDGM19]). A standard LHE is an LHE where the algorithms Shrink and DecShrink are replaced by
a decryption algorithm m← Dec(sk, ct), and it is not required to have rate 1.

Definition 19 (Relaxed correctness). Let LHE = (KeyGen,Enc,Eval,Dec) be a (standard) LHE. We say that
LHE is correct with B-noise if

Tm + e← Dec(sk,Eval(pk, f, (Enc(pk,m1), . . . ,Enc(pk,m`)))

where T is an encoding matrix and ‖e‖ ≤ B.

Lemma 5 ([BDGM19]). Let LHE = (KeyGen,Enc,Eval,Dec) be a (standard) LHE that is correct with B-
noise. Additionally, assume that the ciphertexts of the scheme are of the form (c1, c2), secret key is of the
form S ∈ Zk×nq and noisy decryption works by computing c2 − Sc1. If q > 4kB then there exist a correct
shrinking algorithm (ShrinkLWE,DecShrinkLWE) for the packed LWE-based LHE scheme.

5.1.2 Circuit-private LHE from LWE.

We now present the circuit-private LHE from LWE. The scheme is a hybrid between the packed Regev PKE
[GPV08] and GSW PKE [GSW13], together with the circuit-privacy technique of [BdMW16].

We present a scheme supporting plaintext space {0, 1}k. We later briefly explain how we can extend the
scheme to any q = poly(λ).

We will need the following ingredients: Let (ShrinkLWE,DecShrinkLWE) be the pair of algorithms from
Lemma 5. Let σ, α, β, q,m, n, t, k be polynomials in λ. Let g−1

rnd be the (randomized) function defined in

Section 3 that receives v ∈ Zp as input and outputs x←$DΛ⊥q (g)+g−1(v),γ for some γ = Õ(1). As defined in
Section 3, let Gi be the matrix with k rows which is zero everywhere except for the i-th row which is equal
to g = (1, 2, 22, . . . , 2t), and let Ḡj be the matrix with j rows and where every row is equal to g.

KeyGen(1λ, k) :

• Sample A←$Zn×mq , S←$Zk×nq and E←$Dk×m
Z,σ . Compute B = SA + E.

• Output pk = (A,B) and sk = S.

Enc(pk,m = (m1, . . . ,mk) ∈ {0, 1}k) :

• Parse pk as (A,B).

• Sample R←$Dm×t
Z,α . Compute C1 = AR and C2 = BR +

∑k
i=1miGi.

• Output ct = (C1,C2).

Eval(pk, f, (ct1, . . . , ct`))

• Parse pk as , f as f(x1, . . . ,x`) =
∑`
i=1 aixi + b, where a = (a1, . . . , a`) ∈ Z`2, b ∈ {0, 1}k and

cti as (C1,i,C2,i).

• Compute

c1 =
∑̀
j=1

C1,j · g−1
rnd

(q
2
aj

)T
+
(
Ḡn −C1,j

)
g−1
rnd(0)T + AyTj

16

and

c2 =
∑̀
j=1

(
C2,j · g−1

rnd

(q
2
aj

)T
+
(
Ḡk −C2,j

)
· g−1

rnd(0)T + ByTj

)
+
q

2
b

where yj ←$Dm
Z,β .

• Output c̃t = (c1, c2).

Shrink(pk, ct) : Output c̃t← ShrinkLWE(pk, ct).

DecShrink(sk, ct) : Output m← DecShrinkLWE(sk, ct).

We now analyze the construction presented above. We start by showing that the scheme is correct.

Lemma 6 (Correctness). Let q = 2q′ > 4k (2αγt+ β) `σm
√
k for some q′ ∈ Z. Then the scheme presented

above is correct.

Proof. Let (pk, sk) ← KeyGen(1λ, k) and cti = (C1,i,C2,i) ← Enc(pk,mi) be well-formed ciphertexts for all
i ∈ [`]. We have to show that

m̃← DecShrink(sk,Shrink(pk,Eval(pk, f, (ct1, . . . , ct`))))

where m̃ =
∑`
j=1 ajmj + b← f(m1, . . . ,m`).

Let (c1, c2)← Eval(pk, f, (ct1, . . . , ct`)). A routine calculation shows that

c1 = A

∑̀
j=1

Rj

(
g−1
rnd

(q
2
aj

)
− g−1

rnd(0)
)T

+ yTj

and

c2 = B

∑̀
j=1

Rj

(
g−1
rnd

(q
2
aj

)
− g−1

rnd(0)
)T

+ yTj

+
q

2

∑̀
j=1

ajmj + b

where the last equality holds because 2|q.

We first show that the scheme meets the conditions of Lemma 5. After computing c2 − Sc1 we obtain

q

2

∑̀
j=1

ajmj + b

+ E

∑̀
j=1

Rj

(
g−1
rnd

(q
2
aj

)
− g−1

rnd(0)
)T

+ yTj

 .

Let e′ = E
(∑`

j=1 Rj

(
g−1
rnd

(
q
2aj
)
− g−1

rnd(0)
)T

+ yTj

)
. By Lemma 1, each row of Rj has norm at most

α
√
t, the vectors g−1

rnd

(
q
2aj
)
,g−1

rnd(0) have norm at most γ
√
t, yj has norm at most β

√
m and each row of E

has norm at most σ
√
m. Hence

‖e′‖ ≤ (2αγt+ β) `σm
√
k.

Since q > 4k (2αγt+ β) `σm
√
k then we are in the conditions of Lemma 5. Thus, we conclude that

m̃← DecShrink(sk,Shrink(pk, (c1, c2)))

where m̃ =
∑`
j=1 ajmj + b← f(m1, . . . ,m`) and the scheme is correct.

Semantic security can be established by relying on the smoothing lemma together with the LWE assump-
tion [Reg05, MR04].

Lemma 7 (Semantic security). Assume that the LWE assumption holds for σ = ζq ≥ 2
√
n for some ζ ∈ R

and m = poly((n+ k) log q). Also, let α ≥ ω(
√

logm). Then the scheme is semantically secure.

17

Proof (Sketch). In the first hybrid, we replace the public key (A,B) by (A,U) for a uniformly chosen U
and this change goes unnoticed by the LWE assumption. Next, we can use the smoothing lemma [Reg05,
MR04, GPV08] to replace (A,U,AR,UR) by (A,U,V1,V2) where V1,V2 are uniformly chosen. Finally,
we can conclude that the encrypted message is statistically hidden and the result follows.

Before presenting the proof that the scheme is circuit private, we present a lemma that we will need.

Lemma 8 ([BdMW16, AR16]). For any a ∈ Zq and any matrix E ∈ Zk×m, let r = Θ̃(maxi‖ei‖
√
λ) (where

ei are the rows of E). Then
E · g−1

rnd(a)T + yT ≈s fT

where y←$Dk
Z,r f ←$Dk

Z,r′ and r′ = r

√
1 + maxi‖ei‖2.

Lemma 9 (Circuit-privacy). Let β = Θ̃(α
√

2λt). Then the scheme presented above is circuit private.

Proof. To prove circuit-private, we show how we can simulate evaluated ciphertexts. We first present the
simulator Sim(pk, m̃):

Sim(pk, m̃) :

• Sample r̄←$Dm
Z,µ. Compute c1 = Ar̄T and c2 = Br̄T + q

2m̃ where µ = β

√
`
(

1 +
(
α
√
t
)2)

and

m̃ = f(m1, . . . ,mt).

• Output c̃t← ShrinkLWE(pk, (c1, c2)).

We now prove that the simulated ciphertext is indistinguishable from a evaluated ciphertext.
First, note that evaluated ciphertexts are of the form

c1 =
∑̀
j=1

C1,j · g−1
rnd

(q
2
aj

)T
−
(
Ḡn −C1,j

)
· g−1

rnd(0)T + AyTj

and

c2 =
∑̀
j=1

(
C2,j · g−1

rnd

(q
2
aj

)T
+
(
Ḡk −C2,j

)
· g−1

rnd(0)T + ByTj

)
+
q

2
b.

Writing in matrix form, each term of the sum is of the form(
C1,j

C2,j

)
g−1
rnd

(q
2
aj

)T
+

((
Ḡn

Ḡk

)
−
(

C1,j

C2,j

))
g−1
rnd(0)T +

(
A
B

)
yTj

=

(
ARj

BRj +
∑k
i=1mj,iGi

)
g−1
rnd

(q
2
a
)T

+

((
Ḡn

Ḡk

)
−
(

ARj

BRj +
∑k
i=1mj,iGi

))
g−1
rnd(0)T +

(
A
B

)
yTj

=

(
A
B

)(
Rj · g−1

rnd

(q
2
a
)T
−Rj · g−1

rnd(0)T + yTj

)
+

(
0

aj ·mj

)
where mj = (mj,1, . . . ,mj,t).

It follows that (
A
B

)(
Rj · g−1

rnd

(q
2
a
)T
−Rj · g−1

rnd(0)T + yTj

)
≈s
(

A
B

)((
Rj · g−1

rnd

(q
2
a
)T

+ yTj,1

)
+
(
−Rj · g−1

rnd(0)T + yTj,2
))

≈s
(

A
B

)(
r′1,j + r′2,j

)
≈s
(

A
B

)
r′Tj

18

for yj,b←$DZ,β/
√

2, r′j,1, r
′
j,2←$Dm

Z,r′/
√

2
and r′j ←$Dm

Z,r′ where r′ = β

√
1 +

(
α
√
t
)2

. The first and the last

steps follow from the fact that the sum of two independent discrete gaussians is statistically close to a discrete
gaussian (that is, yj ≈s yj,1 + yj,2 and r′j ≈s r′j,1 + r′j,2). The second step follows from Lemma 8.

Hence,(
A
B

)(
Rj · g−1

rnd

(q
2
a
)T
−Rj · g−1

rnd(0)T + yTj

)
+

(
0

aj ·mj

)
≈s
(

A
B

)
r′Tj +

(
0

aj ·mj

)
.

From this, we conclude that(
c1

c2

)
=
∑̀
j=1

(
C1,j · g−1

rnd

(
q
2aj
)T − (Ḡn −C1,j

)
g−1
rnd(0)T + AyTj

C2,j · g−1
rnd

(
q
2aj
)T

+
(
Ḡk −C2,j

)
g−1
rnd(0)T + ByTj

)
+

(
0
q
2b

)

≈s
∑̀
j=1

(
A
B

)
r′Tj +

(
0

q
2

(∑`
j=1 ajmj + b

))

≈s
(

A
B

)
r̄T +

(
0

q
2 · f(m1, . . . ,mt)

)

where r̄←$Dm
Z,µ. The last step follows from the fact that the sum of ` independent discrete gaussians with

parameter r′ (where r′ = β

√
1 +

(
α
√
t
)2

) is statistically indistinguishable from a discrete gaussian with

parameter
√
`r′.

Ciphertext rate. It is easy to see that the rate of the ciphertext tends to 1 for large enough k by relying
on Lemma 5. It is also easy to see that the size of the public key pk = (A,B = SA + E) ∈ Zn×mq ×Zk×mq is
bounded by k · poly(λ).

Larger plaintext space. In the construction presented above, the plaintext space is Zk2 . The construction
can be extended to support plaintext space Zkp for any p = poly(λ) by choosing the LWE modulus q of the
form q = pp′ where p, p′ are co-prime, and encoding the encrypted message by q/p.

5.2 Construction from DDH

In the following, let G be a (prime-order) group generator, that is, G is an algorithm that takes as an input
a security parameter 1λ and outputs (G, p, g), where G is the description of a multiplicative cyclic group, p
is the order of the group which is always a prime number unless differently specified, and g is a generator of
the group. In the following we state the decisional version of the Diffie-Hellman (DDH) assumption.

Definition 20 (Decisional Diffie-Hellman Assumption). Let (G, p, g)←$G(1λ). We say that the DDH as-
sumption holds (with respect to G) if for any PPT adversary A∣∣Pr[1← A((G, p, g), (ga, gb, gab))]− Pr[1← A((G, p, g), (ga, gb, gc))]

∣∣ ≤ negl(λ)

where a, b, c←$Zp.

5.2.1 Shrinking ciphertexts.

We first present how we can shrink DDH-based ciphertexts to achieve rate 1. The shrinking mechanism
presented below is a modification of the one presented in [BBD+20] (which is itself based on previous works
[BGI16, DGI+19]).

19

Let (G, p, g)←$G(1λ) and k ∈ Z. Consider an El Gamal public key of the form pk = (g, (h1, . . . , hk) =
(g, (gx1 , . . . , gxk)) ∈ Gk+1 for x1, . . . , xk←$Zp (here, x = (x1, . . . , xk) is the secret key). Consider the
following modified El Gamal encryption algorithm where a ciphertext for m = (m1, . . . ,mk) ∈ {0, 1}k is of
the form ct = (c1, (c2,1, . . . , c2,k)) ∈ Gk+1 where c1 = gr and c2,i = hri g

dmi(p/2)cσ . 11 We now show how to
compress ciphertexts of this form.

We will need the following ingredients: Let B, T ∈ poly(λ) and PRF = (KeyGen,Eval) be a PRF that
maps g ∈ G to {0, 1}τ for some τ ∈ Z. We also define the function LEq< : G2 → {0, 1} which receives
two group elements g0, g1 and outputs 1 if g0 < g1 and 0 otherwise, for some order relation < (e.g. the
lexicographic order).

ShrinkDDH(pk, ct) :

• Parse pk = (g, (h1, . . . , hk)) and ct = (c1, (c2,1, . . . , c2,k)). Let w = gbp/2c.

• Sample a PRF key K←$ PRF.KeyGen(1λ) such that the following conditions are simultaneously
satisfied:

1. For every i ∈ [k] and j ∈ {−B, . . . , B} we have that

PRF.Eval(K, c2,i · gj) 6= 0 and PRF.Eval(K, c2,i · w · gj) 6= 0.

2. For all i ∈ [k] there exists ` ∈ {B + 1, . . . , T} such that

PRF.Eval(K, c2,i · g`) = 0 and PRF.Eval(K, c2,i · w · g`) = 0.

• For every i ∈ [k], let δ0,i, δ1,i > 0 be the smallest integer such that

PRF.Eval(K, c2,i · gδ0,i) = 0 and PRF.Eval(K, c2,i · w · gδ1,i) = 0.

Let α0,i = c2,i · gδ0,i and α1,i = c2,i · w · gδ1,i . If LEq<(α0,i, α1,i) = 0, then set bi = 0. Else, set
bi = 1.

• Output c̄t = (c1,K, (b1, . . . , bk)).

DecShrinkDDH(sk, c̄t) :

• Parse sk = x = (x1, . . . , xk) and c̄t = (c1,K, (b1, . . . bk)). Let w = gbp/2c.

• For every i ∈ [k], compute β0,i = cxi1 and β1,i = cxi1 · w.

• For every i ∈ [k], find the smallest integers γ0,i, γ1,i > 0 such that

PRF.Eval(K, β0,i · gγ0,i) = 0 and PRF.Eval(K, β1,i · gγ1,i) = 0.

Let ᾱ0,i = β0,i · gγ0,i and ᾱ1,i = β1,i · gγ1,i . If LEq<(ᾱ0,i, ᾱ1,i) = bi, set mi = 0. Else, set mi = 1.

• Output m = (m1, . . . ,mk).

Lemma 10 (Correctness). Let B = poly(λ) be such that B > λσ+1. Then the shrinking procedure presented
above is correct.

Proof. We have to show that m← DecShrinkDDH(sk,Shrink(pk, ct)) for ct = (c1, (c2,1, . . . , c2,k)) where c1 = gr

and c2,i = hri g
dmi(p/2)cσ for i ∈ [k].

For that, we will first show that

(ᾱ0,i = α0,i ∧ ᾱ1,i = α1,i)
∨

(ᾱ0,i = α1,i ∧ ᾱ1,i = α0,i)
.

11Note that d·cσ is defined in section 4.

20

We have that α0,i 6= α1,i.
The first observation is that 0 ∈ {z0 − (B − 1), . . . , z0 + (B − 1)} where z0 = d0cσ except with negligible

probability. This is because B > λσ + 1 and |z0| < λσ except with negligible probability.12 Thus 0 ∈
{z0 −B, . . . , z0 +B}

Likewise, p/2 ∈
[
zp/2 − (B − 1), zp/2 + (B − 1)

]
where zp/2 = dp/2cσ and thus bp/2c ∈ {zp/2−B, . . . , zp/2+

B}.
We divide the proof in two cases: Either mi = 0 or mi = 1. We start by analyzing the case where mi = 0.

Case mi = 0. Assume that mi = 0. We first note that ᾱ0,i = β0,i · gγ0,i = cxi1 · gγ0,i = hri · gγ0,i , and
α0,i = hri · gz0,i+δ0,i where z0,i = dmi(p/2)cσ = d0cσ.We prove that ᾱ0,i = α0,i. To prove this, it is enough
to show that γ0,i = z0,i + δ0,i. Observe that, if this is not the case, then one of the two cases must be true:

(i) γ0,i < dmi(p/2)cσ + δ0,i = d0cσ + δ0,i: If this happens then one of the three cases must hold:

(a) γ0,i < z0,i − B: This case cannot hold since 0 ∈ {z0,i − B, . . . , z0,i + B} (except with negligible
probability) and γ0,i ≥ 0. This implies that γ0,i ≥ z0,i −B, except with negligible probability.

(b) z0,i −B ≤ γ0,i ≤ z0,i +B: This case cannot hold since it violates condition 1.

(c) z0,i + B < γ0,i < z0,i + δ0,i: This case violates condition 2 since δ0,i > B is the smallest integer
that fulfills PRF.Eval(K, hri · gz0,i+δ0,i).

(ii) γ0,i > z0,i + δ0,i: This case cannot happen as γ0,i is the smallest integer (greater than 0) such that
PRF.Eval(K,hri · gγ0,i) = 0.

Showing that, if mi = 0, then ᾱ1,i = α1,i follows an identical reasoning. We conclude that, if mi = 0,
then ᾱ0,i = α0,i ∧ ᾱ1,i = α1,i.

Case mi = 1. Now assume that mi = 1. In this case, we show that ᾱ1,i = α0,i and ᾱ0,i = α1,i.
First, note that ᾱ1,i = hri · gbp/2c+γ1,i and α0,i = hri · gzp/2,i+δ0,i where zp/2,i = dmi(p/2)cσ = dp/2cσ. We

prove that ᾱ1,i = α0,i. To show this, we have to prove that bp/2c+ γ1,i = zp/2,i + δ0,i. Assume that this is
not true, then one of the two cases must happen:

(i) bp/2c+ γ1,i < zp/2,i + δ0,i: If this is the case, then one of the three cases must happen:

(a) bp/2c + γ1,i < zp/2,i − B: This case cannot happen because bp/2c ∈ {zp/2,i − B, . . . , zp/2,i + B}
except with negligible probability and γ1,i > 0.

(b) zp/2,i − B < bp/2c + γ1,i < zp/2,i + B: This case violates 1 since for any value j ∈ {zp/2,i −
B, . . . , zp/2,i +B}, we have that PRF.Eval(K, hri · gzp/2,i · gj) 6= 0.

(c) zp/2,i + B < bp/2c+ γ1,i < zp/2,i + δ0,i: This case is also impossible since, by condition 2, δ0,i is

the smallest integer (greater than 0) such that PRF.Eval(K, hri · gzp/2,i · gδ0,i) = 0.

(ii) bp/2c+ γ1,i > zp/2,i + δ0,i: Assume that this is the case. Then γ1,i is not the smallest integer greater

than 0 such that PRF.Eval(K, hri g
bp/2c+γ1,i) = 0.

If mi = 1, showing that ᾱ0,i = α1,i follows an identical reasoning as above.

12Recall that for a gaussian random variable X centered on 0 and with parameter σ, the probability that |X| > λσ is negligible
in λ.

21

Wrapping up. We proved that if mi = 0 then α0,i = ᾱ0,i and α1,i = ᾱ1,i. On the other hand, if mi = 1,
then α0,i = ᾱ1,i and α1,i = ᾱ0,i. Thus, if the encrypted value is mi = 0

bi = LEq<(α0,i, α1,i) = LEq<(ᾱ0,i, ᾱ1,i)

and the value output by DecShrinkDDH is 0. Else if mi = 0

bi = LEq<(α0,i, α1,i) 6= LEq<(ᾱ0,i, ᾱ1,i)

and the value output by DecShrinkDDH is 1.

Lemma 11 (Runtime). Let PRF be a PRF, τ = log(8Bk) and T = 2τλ loge(k) + B(1 + 4k). Then, the
shrinking algorithm ShrinkDDH described above terminates in polynomial time, except with negligible proba-
bility.

Proof. The analysis of the runtime follows the same reasoning as the analysis of the runtime of the shrinking
procedure from [BBD+20].

We have to show that the algorithm ShrinkDDH is able to find a PRF key K that fulfills both conditions
in expected polynomial time, since all other subroutines run in polynomial time. Here, we treat PRF.Eval
as a truly random function. The same analysis is true for the case where PRF.Eval is a PRF except with
negligible probability.

We first lower-bound the probability that a certain PRF key K← PRF.KeyGen(1λ) satisfies condition 1.
That is,

Pr

∀i ∈ [k],∀j ∈ {−B, . . . , B},
PRF.Eval(K, c2,i · gj) 6= 0

∧
PRF.Eval(K, c2,i · w · gj) 6= 0

 ≥ (1− 1

2τ

)4Bk

≥ 1− 4Bk

2τ

= 1− 1

2
=

1

2
.

Here, the first inequality comes from the fact that the outputs of PRF.Eval(K, ·) are uniform and independent
over {0, 1}τ and the second inequality is simply Bernoulli’s inequality.

We now upper-bound the probability that condition 2 is not met given that condition 1 happens. Let S
be the set of PRF keys for which condition 1 is satisfied. Then

Pr

∃i ∈ [k]∀j ∈ {B + 1, . . . , T} :
PRF.Eval(K, c2,i · gj) 6= 0

∨
PRF.Eval(K, c2,i · w · gj) 6= 0

∣∣∣∣∣∣K ∈ S

≤
k∑
i=1

Pr

∀j ∈ {B + 1, . . . , T} :
PRF.Eval(K, c2,i · gj) 6= 0

∨
PRF.Eval(K, c2,i · w · gj) 6= 0

∣∣∣∣∣∣K ∈ S

≤
k∑
i=1

(
1− 1

2τ

)T−B−4Bk

≤
k∑
i=1

e−(T−B−4Bk)/2τ =

k∑
i=1

e−λ loge(k) = e−λ.

Here, the first inequality is a simple consequence of the union bound and the second inequality follows from
observing that K fixes PRF.Eval(K, ·) on at most 4Bk points.

We conclude that, after λ iterations of the protocol, the probability that all the keys do not fulfill both
conditions is negligible in λ.

22

Ciphertext rate. After applying ShrinkDDH we obtain a ciphertext composed by c̃t = (c1,K, (b1, . . . , bk)) ∈
G×K × {0, 1}k. Hence,

|c̃t|
|m|

=
|c1|+ |K|+ |(b1, . . . , bk)|

k
=

2λ+ k

k
= 1 +

2λ

k

which tends to 1 for large enough k.

5.2.2 Function-private LHE from DDH.

We now present our circuit-private LHE over Z2 based on DDH.

KeyGen(1λ, k) :

• (G, p, g)←$G(1λ)

• Sample x1, . . . , xk←$Zp. Compute hi = gxi .

• Output pk = (G, p, g, h1, . . . , hk) and sk = x = (x1, . . . , xk).

Enc(pk,m = (m1, . . . ,mk)) :

• Parse pk as (G, p, g, h1, . . . , hk).

• Sample r←$Zp. Compute c1 = gr and c2,i = hri g
mi for i ∈ [k].

• Output ct = (c1, (c2,1, . . . , c2,k)).

Eval(pk, f, (ct1, . . . , ct`))

• Parse pk as (G, p, g, h1, . . . , hk), f as f(x1, . . . ,x`) =
∑`
i=1 aixi + b for a = (a1, . . . , a`) ∈ Z`2 and

b ∈ Zk2 and cti as (c1,i, c2,i) where c2,i = (c2,1,i, . . . , c2,k,i)) for i ∈ [`].

• Compute c̄t = (c̄1, (c̄2,1, . . . , c̄2,1)) where

c̄1 =
∏̀
i=1

(
c
dai p2 cσ
1,i · (g · c−1

1,i)
d0cσ

)
· gt

and

c̄2 =
⊙̀
i=1

(
c
dai p2 cσ
2,i � (g · c−1

2,i)
d0cσ

)
�
(
gdb1

p
2 cσ , . . . , gdbk

p
2 cσ
)
� (ht1, . . . , h

t
k).

for t←$Zp and where � denotes the component-wise multiplication.

• Output c̄t.

Shrink(pk, ct) : Output c̄t← ShrinkDDH(pk, ct).

DecShrink(sk, ct) : Output m← DecShrinkDDH(sk, c̄t).

Correctness and expected polynomial runtime of the LHE described above is guaranteed by Lemma 10
and Lemma 11 by setting B > λ(σ(

√
2`+1)). Semantic security of the scheme can be established by a simple

reduction to the DDH assumption in a similar way as in many previous works (the reduction is similar to
the one that proves that El Gamal is semantically secure). It is also easy to see that the scheme has rate-1
for large enough k.

We now show that the scheme is circuit private. Essentially, circuit privacy can be established by resorting
to Lemma 4.

Lemma 12 (Circuit-privacy). The scheme presented above is circuit private.

23

Proof. We need to show that we can simulate evaluated ciphertexts. We first present the simulator that
receives m̃← f(m1, . . . ,m`).

Sim(pk, m̃)

• Sample t←$Zq and αi =
⌈
m̃i

p
2

⌋
√

2`+1σ
.

• Compute c̃t = (c̃1, (c̃2,1, . . . , c̃2,1)) where c̃1 = gt and c̃2,i = htig
αi . Output ct′ ← ShrinkDDH(pk, c̃t).

We now show that simulated ciphertexts are statistically indistinguishable from the ones output by Eval.
Let cti = (gri , (hri1 g

m1,i , . . . , hrik g
mk,i). The output of Eval is (c̃1, (c̃2,1, . . . , c̃2,k)) where

c̃1 = g
∑`
i(ridai p2 cσ−rid0cσ)+t

and
c̃2,j = h

∑`
i(ridai p2 cσ−rid0cσ)+t · g

∑`
i(mj,idai p2 cσ+(1−mj,i)d0cσ)+dbi p2 cσ .

By Lemma 4 we have that∑̀
i=1

(
mj,i

⌈
ai
p

2

⌋
σ

+ (1−mj,i) d0cσ
)

+
⌈
bi
p

2

⌋
σ
≈s
⌈
m̃j

p

2

⌋
√

2`+1σ

where m̃j is the j-th coordinate of f(m1, . . . ,m`). Hence,

g
∑`
i=1(mj,idai p2 cσ+(1−mj,i)d0cσ)+dbi p2 cσ ≈s gd

f(m1,...,m`)
p
2 c√2`+1σ .

Moreover, since t←$Zp then
(gz+t, hz+t) ≈s (gt, ht)

for any z ∈ Zp. We conclude that

(c̃1, (c̃2,1, . . . , c̃2,k)) ≈s (gt, (ht1g
α1 , . . . , htkg

αk)

where αi =
⌈
m̃i

p
2

⌋
√

2`+1σ
.

Larger plaintext space. As in the LWE case, in the construction presented above, the plaintext space
is Zk2 . Both the shrinking algorithm and the function-private LHE schemes can be extended to support
plaintext space Zkq where q = poly(λ) and q = 2ν for some ν ∈ Z (the constrain of q being a power of 2 comes
from Lemma 4)

5.3 Construction from QR

The scheme presented in this section is the packed version of the scheme from [BG10] together with the
shrinking technique from [DGI+19].

In the following, let N is a Blum integer if N = p · q for some primes p and q such that p (mod 4) =
q (mod 4) = 3. Moreover, we say p and q are safe primes if p = 2p′ + 1 and q = 2q′ + 1 for some prime
numbers p′, q′. We denote by JN the multiplicative group of the elements in Z∗N with Jacobi symbol +1 and
by QRN the multiplicative group of quadratic residues modulo N with generator g. Note that QRN is a

subgroup of JN and they have order ϕ(N)
4 and ϕ(N)

2 , respectively, where ϕ(·) is Euler’s totient function. It
is useful to write JN ' H × QRN , where H is the multiplicative group (±1, ·) of order 2. Note that if N

is a Blum integer then gcd
(

2, ϕ(N)
4

)
= 1 and −1 ∈ JN \ QRN . We recall the quadratic residuosity (QR)

assumption [GM82].

Definition 21 (Quadratic Residuosity Assumption). Let N be a uniformly sampled Blum integer and let
QRN be the multiplicative group of quadratic residues modulo N with generator g. We say the QR assumption
holds with respect to QRN if for any PPT adversary A

|Pr[1← A(N, g, a)]− Pr[1← A(N, g, (−1) · a)]| ≤ negl(λ)

where a←$QRN .

24

5.3.1 Shrinking ciphertexts.

We recall the shrinking mechanism of [DGI+19]. Let a (packed) ciphertext ct = (gr, (−1)b1hr1, . . . , (−1)bkhrk) =
(c1, c2,1, . . . , c2,k) and let < be an order over JN (e.g., the lexicographic order). The shrinking mechanism of
[DGI+19] simply outputs 0 if c2,i < −c2,i and outputs 1 otherwise.

Lemma 13 ([DGI+19]). There exists a correct shrinking procedure ShrinkQR,DecShrinkQR for the packed
QR-based PKE.

5.3.2 Circuit-private LHE from QR.

We now present the scheme which is essentially the same as the one from [BG10] together with the shrinking
technique of Lemma 13.

In the following, let (ShrinkQR,DecShrinkQR) be the pair of algorithms from Lemma 13.

KeyGen(1λ, k) :

• Choose two safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′, q′ are primes and compute N = pq.
Choose a generator g of QRN .

• Sample s←$Zkφ(N)/2 and compute h = gs.

• Output pk = (N, g,h) and sk = s.

Enc(pk,m = (m1, . . . ,mk)) :

• Parse pk as (N, g,h = (h1, . . . , hk)).

• Sample r←$Z(N−1)/2. Compute c1 = gr and c2,i = (−1)mihri for i ∈ [k].

• Output ct = (c1, c2 = (c2,1, . . . , c2,k)).

Eval(pk, f, (ct1, . . . , ct`))

• Parse pk as (N, g,h = (h1, . . . , hk)), f as f(x1, . . . ,x`) =
∑`
j=1 ajxj + b, where a1, . . . , a` ∈ Z2,

b ∈ Zk2 and ctj as (c1,j , c2,j = (c2,1,j , . . . , c2,k,j)).

• Compute c̃t = (c̃1, c̃2 = (c̃2,1, . . . , c̃2,k)) where c̃1 = gt
∏`
j=1 c

aj
1,j and c̃2,i = hti · (−1)bi ·

∏`
j=1 c

aj
2,i,j

where t←$Z(N−1)/2. Output c̃t.

Shrink(pk, ct) : Output c̃t← ShrinkQR(pk, ct).

DecShrink(sk, ct) : Output m← DecShrinkQR(sk, ct).

It is easy to see that correctness and compactness holds due to Lemma 13. Semantic security also follows
easily from the QR assumption.

To see that the scheme is circuit private, note that g(
∑
j rjaj)+t ≈s gt for a uniformly chosen t←$Z(N−1)/2

(this holds since the uniform distribution over Z(N−1)/2 is statistically indistinguishable from the uniform

distribution over Zφ(N)/2). Similarly, we have that h
(
∑
j raj)+t

i ≈s hti. Thus,(
g(

∑
j rjaj)+t, (−1)f(m)h(

∑
j rjaj)+t

)
≈s
(
gt, (−1)f(m)ht

)
and, thus, the distributions of an evaluated ciphertext and a fresh ciphertext are statistically indistinguish-
able.

25

6 Co-Private Information Retrieval

In this section, we present a new cryptographic primitive that we call co-PIR. In a co-PIR scheme, a receiver
(with input a set of indices S) and a sender (with no input) interact such that, at the end, the sender obtains
a string y ∈ Zmq and receiver obtains y−S (all positions of y except for the indices in S).

In terms of security, we require that the sender learns nothing about S, whereas the string yS looks
pseudorandom to the receiver. In terms of efficiency, we require that the total communication of the protocol
scales only with |S|poly(λ)polylog(m) (that is, it scales only poly-logarithmically with m). We present a
construction for Co-PIR from the distributed GGM-PPRF correlation (as shown in [BCG+19a]) in Appendix
E.1 of the full version paper; We also present another construction with black-box usage of PPRF and PIR
in Appendix E.2 of the full version paper.

6.1 Definition

We start by defining Co-PIR and present its security properties.

Definition 22 (Co-PIR). A (two-round) Co-PIR scheme CoPIR over Zq is parametrized by an integer m
where m = poly[λ], and is composed by a tuple of algorithms (Query,Send,Retrieve) such that

• Query(1λ, S) takes as input a set of indices S ⊆ [m]. It outputs a message copir1 and a private state
st.

• Send(copir1) takes as input a first message copir1. It outputs a second message copir2 and a string
y ∈ Zmq .

• Dec(copir2, st) takes as input a second message copir2 and a state st. It outputs a string ỹ ∈ Zmq .

Definition 23 (Correctness). A Co-PIR scheme CoPIR is said to be correct if for any m = poly(λ) and
S ⊆ [m] we have that

Pr

y[m]\S = ỹ[m]\S :
(copir1, st)← Query(1λ, S)
(copir2,y)← Send(copir1)
ỹ← Retrieve(copir2, st)

 = 1.

In other words, the strings y and ỹ match for every coordinate i ∈ [m] \ S.

In terms of security, we require two properties: receiver security and sender security.

Definition 24 (Receiver security). A Co-PIR scheme CoPIR is said to be receiver secure if for all m =
poly(λ), any subsets S1, S2 ⊆ [m] we have that for any adversary A∣∣∣∣ Pr

[
1← A(k, copir1) : (copir1, st)← Query(1λ, S1)

]
−

Pr
[
1← A(k, copir1) : (copir1, st)← Query(1λ, S2)

] ∣∣∣∣ ≤ negl(λ).

Definition 25 (Sender security). A Co-PIR scheme CoPIR is said to be sender secure if for any m = poly(λ),
any subset S ⊆ [m] we have that for all adversaries A∣∣∣∣∣∣∣∣∣∣

Pr

[
1← A(k, st, copir2,yS) :

(copir1, st)← Query(1λ, S)
(copir2,y)← Send(copir1,x)

]
−

Pr

1← A(k, st, copir2,y
′
S) :

(copir1, st)← Query(1λ, S)
(copir2,y)← Send(copir1,x)

y′S ←$Z|S|q

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Definition 26 (Compactness). A Co-PIR scheme CoPIR is said to be compact if |copir1|, |copir2| = |S| ·
polylog(m) · poly(λ) for any S ⊆ [m] where (copir1, st) ← Query(1λ, S) and (copir2,y) ← Send(copir1). In
other words, the communication complexity depends only poly-logarithmically in m.

26

6.2 Co-PIR from Distributed GGM-PPRF Correlation

We now present a scheme for Co-PIR from the distributed GGM-PPRF correlation which is proposed by
Boyle et al. [BCG+19a]. For the sake of simplicity we present the scheme for q = 2. Let PPRFGGM =
(KeyGen,Eval,Punct,EvalPunct) be a GGM puncturable PRF which maps from [m] to {0, 1} and let PPRF-GGM =
(R1,S,R2) be a distributed GGM-PPRF correlation scheme.

Query(1λ, S) :

• Parse S = {a1, . . . , at} ⊆ [m]t where t = |S|.
• For j ∈ [t] compute (pprf-ggm1,j , statej)← PPRF-GGM.R1(āj).

• Output copir1 = {pprf-ggm1,j}j∈[t] and st = {statej}j∈[t].

Send(copir1) :

• Parse copir1 = {pprf-ggm1,j}j∈[t].

• For j ∈ [t] compute Kj ← PPRFGGM.KeyGen(1λ) and zj ← PPRFGGM.Eval(Kj , ∗).
• For j ∈ [t] compute pprf-ggm2,j ← PPRF-GGM.S(0,Kj , pprf-ggm1).

• Output copir2 = {pprf-ggm2,j}j∈[t] and y =
∑t
i=1 zj

Dec(copir2, st) :

• Parse copir2 = {pprf-ggm2,j}j∈[t] and st = {statej}j∈[t].

• For j ∈ [t] compute K̄j ← PPRF-GGM.R2(statej , pprf-ggm2,j).

• For i ∈ [m] \ S, set ỹi =
∑t
i=1 PPRFGGM.EvalPunct(K̄j , i). For i ∈ S, set ỹi = 0. Output

ỹ = (ỹ1 . . . , ỹm).

We now analyze the scheme presented above starting with correctness.

Lemma 14 (Correctness). Assume that PPRF-GGM and PPRF are correct. Then the scheme presented
above is correct

Proof. We have to prove that ỹ[m]\S = y[m]\S . Let y = (y1, . . . , ym) ∈ {0, 1}m. Note that yi =
∑t
j=1 PPRF.Eval(Kj , i).

First, by the correctness of the underlying distributed GGM-PPRF correlation scheme, K̄j ← PPRF.Punct(aj)
for all j ∈ [t] and aj ∈ S. Also,

ỹi =

t∑
j=1

PPRFGGM.EvalPunct(K̄j , i)

for all i ∈ [m] \ S. By the correctness of the PPRF, PPRFGGM.EvalPunct(K̄j , i) = PPRFGGM.EvalPunct(Kj , i)
for all i ∈ [m] \ S. Then ỹi = yi for all i ∈ [m] \ S.

Lemma 15 (Receiver security). Assume that PPRF-GGM implements FPPRF-GGM. Then the scheme pre-
sented above is receiver secure.

The proof follows directly from the receiver security of PPRF-GGM.

Lemma 16 (Sender security). Assume that PPRF-GGM implements FPPRF-GGM and PPRF is a pseudorandom
PPRF. Then the scheme presented above is sender secure.

Proof. Let SimPPRF-GGM be the simulator of PPRF-GGM for sender security. The proof of security follows
the following sequence of hybrids.

Hybrid H0. This is the real protocol.

27

For all j ∈ [t] consider the following sub-hybrids.

Hybrid H1,j. In this hybrid, we replace pprf-ggm2,j by the message generated by SimPPRF-GGM. Indistin-
guishability of hybrids follows from the sender security of PPRF-GGM.

Hybrid H2,j. In this hybrid, we replace PRFGGM.Eval(Kj , aj) by a uniform bit uj ←$ {0, 1}. Indistinguisha-
bility of hybrids follows from the pseudorandomness of PPRF.

Hybrid H3,j. In this hybrid, we replace yaj by vj ←$ {0, 1}. Statistical indistinguishability follows because

yaj =

t∑
i=1

PPRFGGM.Eval(Ki, aj) =

t∑
i=1,i6=j

PPRFGGM.Eval(Ki, aj) + uj ≈s vj .

Finally, note that in hybrid H3,t the string yS is uniformly random to the receiver and we conclude the
proof

Compactness. To conclude, we analyze compactness of the scheme. Assuming that the distributed GGM-
PPRF correlation scheme has polynomial communication complexity in |aj | = logm and in λ, and |S| = t,
we conclude that the receiver’s and the sender’s message are of size t · poly(λ) · polylog(m).

Extending to Co-PIR over any Zq. The scheme can be easily extended to any q by taking a PPRF
that maps x ∈ [m] to Zq. It is easy to see that the resulting scheme has total communication complexity of
t · poly(λ) · polylog(m, q).

Hardness assumptions for Co-PIR. Since the distributed GGM-PPRF correlation scheme and the
GGM-PPRF can be based on LWE, DDH or QR assumptions (using only black-box techniques), then the
Co-PIR scheme presented above can also be based on these assumptions. Moreover, the resulting scheme
uses only black-box techniques.

6.3 Co-PIR from PPRF and PIR

The construction for Co-PIR from Section 6 uses a distributed GGM-PPRF correlation scheme which can be
built from a GGM-PPRF and an OT. In this section we present a construction for Co-PIR from any PPRF
(not necessarily the GGM-PPRF) and a PIR in a black-box way.

6.3.1 The Protocol

For the sake of simplicity we present the scheme for q = 2.
For our Co-PIR construction, we will need the following ingredients: Let PIR = (Query,Send,Retrieve)

be a PIR scheme with poly-logarithmic communication complexity and sender privacy and let PPRF =
(KeyGen,Eval,Punct,EvalPunct) be a puncturable PRF which maps from [m] to {0, 1}. We use the notation
PPRF.Eval(K, ∗) to denote the vector (PPRF.Eval(K, 1), . . . ,PPRF.Eval(K,m)) ∈ {0, 1}m.

Query(1λ, S) :

• Parse S = {a1, . . . , at} where t = |S|.
• For j ∈ [t] compute (qj , statej)← PIR.Query(aj).

• Output copir1 = {qj}j∈[t] and st = {statej}j∈[t].

Send(copir1) :

• Parse copir1 = {qj}j∈[t].

28

• For j ∈ [t] compute Kj ← PPRF.KeyGen(1λ) and zj ← PPRF.Eval(Kj , ∗).
• For i ∈ [j] and ` ∈ [m], set K̇j,` ← PPRF.Punct(Kj , `).

• For j ∈ [t] set DBj = (K̇j,1, . . . , K̇j,m). Compute rj ← PIR.Send(DBj , qj).

• Output copir2 = {rj}j∈[t] and y =
∑t
i=1 zj

Dec(copir2, st) :

• Parse copir2 = {rj}j∈[t] and st = {statej}j∈[t].

• For j ∈ [t] compute K̄j ← PIR.Retrieve(rj , statej).

• For i ∈ [k] \ S, set ỹi =
∑t
i=1 PPRF.EvalPunct(K̄j , i). For i ∈ S, set ỹi = 0. Output ỹ =

(ỹ1 . . . , ỹm).

6.3.2 Analysis

We now analyze the scheme presented above starting with correctness.

Lemma 17 (Correctness). Assume that PIR and PPRF are correct. Then the scheme presented above is
correct

Proof. We have to prove that ỹ[k]\S = y[k]\S . Let y = (y1, . . . , ym) ∈ {0, 1}m. Note that yi =
∑t
j=1 PPRF.Eval(Kj , i).

First, by the correctness of the underlying PIR scheme, K̄j = K̇j,aj for all j ∈ [t] and aj ∈ S. Also,

ỹi =

t∑
j=1

PPRF.EvalPunct(K̄j , i) =

t∑
i=1

PPRF.EvalPunct(K̇j,aj , i)

for all i ∈ [k] \ S. By the correctness of the PPRF, PPRF.EvalPunct(K̇j,aj , i) = PPRF.EvalPunct(Kj , i) for all
i ∈ [k] \ S. Then ỹi = yi for all i ∈ [k] \ S.

Lemma 18 (Receiver security). Assume that PIR is user secure. Then the scheme presented above is receiver
secure.

The proof follows from a simple reduction from the receiver security of CoPIR to user security of PIR.

Lemma 19 (Sender security). Assume that PIR is sender secure and PPRF is a pseudorandom PPRF. Then
the scheme presented above is sender secure.

Proof. The proof of security follows the following sequence of hybrids.

Hybrid H0. This is the real protocol.

For all j ∈ [t] consider the following sub-hybrids.

Hybrid H1,j. In this hybrid, we replace DBj by DBj which is 0 everywhere but its aj-th coordinate is
equal to DBj,aj . Indistinguishability of hybrids follows from the sender security of PIR.

Hybrid H2,j. In this hybrid, we replace PRF.Eval(Kj , aj) by a uniform bit uj ←$ {0, 1}. Indistinguishability
of hybrids follows from the pseudorandomness of PPRF.

Hybrid H3,j. In this hybrid, we replace yaj by vj ←$ {0, 1}. Statistical indistinguishability follows because

yaj =

t∑
i=1

PPRF.Eval(Ki, aj) =

t∑
i=1,i6=j

PPRF.Eval(Ki, aj) + uj ≈s vj .

Finally, note that in hybrid H3,t the string yS is uniformly random to the receiver and we conclude the
proof

29

Compactness. To conclude, we analyze compactness of the scheme. Assuming that the PIR scheme has
poly-logarithmic communication complexity and |S| = t, we conclude that the receiver’s and the sender’s
message are of size t · poly(λ) · polylog(m).

7 Oblivious Transfer with Overall Rate 1

We will now provide our construction of an oblivious transfer protocol with overall rate 1.

Ingredients. We will make use of the following ingredients.

• A packed linearly homomorphic encryption scheme LHE = (KeyGen,Enc, Eval,Shrink,DecShrink) with
plaintext space {0, 1}` and a post homomorphism shrinking procedure Shrink which converts ciphertexts
into a rate 1 representation.13

• The binary LPN(n,m, ρ) problem with dimension n = poly(n), m = n · ` · poly(n) samples and slightly
sub-constant noise-rate ρ = m1−ε.

• A 2-round PIR scheme PIR = (Query,Send,Retrieve) with poly-logarithmic communication complexity
and sender privacy.

• A 2-round Co-PIR scheme CoPIR = (Query,Send,Retrieve) over Z2 parametrized by m.

Additional Notation. Furthermore, to declutter notation we define the following embedding functions.

RowMatrix(`, n,v1, . . . ,v`): Takes row-vectors v1, . . . ,v` ∈ {0, 1}n and outputs a matrix

V =

— v1 —
...

— v` —

 ,

i.e. for every i ∈ [`] the i-th row of V is the row-vector vi.

SingleRowMatrix(`, n, i,v): Takes a row-vector v ∈ {0, 1}n and outputs a matrix

V =

0 . . . 0
...

...
0 . . . 0
— v —
0 . . . 0
...

...
0 . . . 0

,

i.e. the i-th row of V is v, but V is 0 everywhere else.

Diag(n,v): Takes a vector v = (v1, . . . , vn) ∈ {0, 1}n and outputs a matrix

D =

v1 0
. . .

0 vn

 ,

i.e. D ∈ {0, 1}n×n is a diagonal matrix with the components of v on its diagonal.

13Recall that we use the notation Eval&Shrink to denote the composition of algorithms Eval and Shrink.

30

We observe the following:

• For any v1, . . . ,v` ∈ {0, 1}n it holds that

RowMatrix(`, n,v1, . . . ,v`) =
∑̀
i=1

SingleRowMatrix(`, n, i,vi).

• For x,y ∈ {0, 1}n it holds that
x · Diag(n,y) = x� y,

where � denotes component-wise multiplication.

7.1 The Protocol

The protocol OT = (OTR,OTS,OTD) is given as follows.

OTR(b ∈ {0, 1}m`) :

• Parse b = (b1, . . . ,b`), where the bi ∈ {0, 1}m are blocks of size m.

• Choose A←$ {0, 1}n×m uniformly at random and compute a pair of public and secret key (pk, sk)←
LHE.KeyGen(1λ, `).

• For all i ∈ [`], choose si←$ {0, 1}n, and ei←$χm,t, compute ci ← siA + ei + bi, and set
Si ← SingleRowMatrix(`, n, i, si). Compute a matrix-ciphertext cti ← LHE.Enc(pk,Si).

• For all i ∈ [`] set Ji = Supp(ei) to be the support of ei. Compute (copir1,i, sti)← CoPIR.Query(Ji).

Additionally, for j ∈ [t] compute (qi,j , ŝti,j) = PIR.Query(Ji[j]).

• Output ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[`], {qi,j}i∈[`],j∈[t]

)
and st = (sk, {sti, Ji}i∈[`], {ŝti,j}i∈[`],j∈[t]]).

OTS((m0,m1) ∈ ({0, 1}m`)2, ot1) :

• Parse m0 = (m0,1, . . . ,m0,`) and m1 = (m1,1, . . . ,m1,`), where each mb,i = (mb,i,1, . . . ,mb,i,m) ∈
{0, 1}m. Parse ot1 =

(
pk,A, {cti, ci, copir1,i}i∈[`], {qi,j}i∈[`],j∈[t]

)
.

• For i ∈ [`] (yi, copir2,i)← CoPIR.Send(copir1,i) where yi = (yi,1, . . . , yi,m). Set zi = m0,i + yi.

• Set Z = RowMatrix(`,m, z1, . . . , z`).

• For all i ∈ [`] set Ci = SingleRowMatrix(`,m, i, ci) and Di = Diag(m,m1,i −m0,i).

• Define the Z2-linear function f : ({0, 1}`×n)` → {0, 1}`×m via

f(X1, . . . ,X`) =

(∑̀
i=1

(−XiA + Ci) ·Di

)
+ Z.

• Compute c̃t← LHE.Eval&Shrink(pk, f, ct1, . . . , ct`).

• For i ∈ [`] set DBi = (yi,1 +(m1,i,1−m0,i,1), . . . , yi,m+(m1,i,m−m0,i,m)). For all j ∈ [t] compute
ri,j ← PIR.Send(DBi, qi,j).

• Output ot2 =
(
c̃t, {copir2,i}i∈[`], {ri,j}i∈[`],j∈[t]

)
.

OTD(ot2, st):

• Parse ot2 =
(
c̃t, {copir2,i}i∈[`], {ri,j}i∈[`],j∈[t]

)
and st = (sk, {sti, Ji}i∈[`], {ŝti,j}i∈[`],j∈[t]]).

• For all i ∈ [`] compute ỹi = (ỹi,1, . . . , ỹi,m)← CoPIR.Retrieve(copir2,i, sti).

• For i ∈ [`] and j ∈ [t] compute z̃i,j ← PIR.Retrieve(ri,j , ŝti,j).

31

• For i ∈ [`] set zi = (zi,1, . . . , zi,m) where

zi,l =

{
z̃i,j if l = Ji[j]

ỹi,` otherwise
.

• Set Z = RowMatrix(`,m, z1, . . . , z`).

• Compute W̃← LHE.DecShrink(sk, c̃t) and W = W̃ − Z.

• Let w1, . . . ,w` be the rows of W. Output w = (w1‖ . . . ‖w`) ∈ {0, 1}m`.

Correctness. We will first show that OT is correct, given that LHE, CoPIR and PIR are correct.

Theorem 1. Assume that LHE, CoPIR and PIR are correct. Then the scheme presented above is correct.

Proof. First note that by linear-homomorphic correctness of LHE it holds that

W̃ = LHE.DecShrink(sk, LHE.Eval&Shrink(pk, f, LHE.Enc(pk,S1), . . . , LHE.Enc(pk,S`))

= f(S1, . . . ,S`)

=

(
k∑
i=1

(−SiA + Ci) ·Di

)
+ Z

Let w̃i be the i-th row of W̃. It holds by definition Si, Ci and Zi that

w̃i = (−siA + ci)Di + zi

= (−siA + siAi + ei + bi)Di + m0,i + yi

= bi � (m1,i −m0,i) + m0,i + ei � (m1,i −m0,i) + yi.

where yi = (yi,1, . . . , yi,m) is part of the output of CoPIR.Send.
Let Ji be the support of ei and let ỹi = (ỹi,1, . . . , ỹi,m)← CoPIR.Retrieve(copir2,i, sti). By the correctness

of the Co-PIR scheme CoPIR we have that ỹi,j = yi,j for all j /∈ Ji. On the other hand, by the correctness
of the PIR scheme PIR it holds that

z̃i,j = yi,j + (m1,i,j −m0,i,j)

for all j ∈ Ji. Consequently, we have that

zi,j =

{
yi,j + (m1,i,j −m0,i,j) if l = Ji[j]

yi,j otherwise
.

In other words, the term (m1,i,j −m0,i,j) only appears in the coordinates where ei is equal to one. Then, it
holds that

zi = ei � (m1,i −m0,i) + yi.

We conclude that
w = w̃i − zi = bi � (m1,i −m0,i) + m0,i.

Since w = (w1‖ . . . ‖w`) it follows that

w = b� (m1 −m0) + m0,

i.e. OT is correct.

32

Communication complexity. We will now analyze the communication complexity of OT and show which
choice of parameters leads to an overall rate approaching 1.

The bit-size of the message ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[`], {qi,j}i∈[`],j∈[t]

)
can be bounded as follows.

• |pk| = ` · poly(λ)

• |A| = n ·m

• |{cti}i∈[`]| = `2 · n · poly(λ)

• |{ci}i∈[`]| = ` ·m

• |{copir1,i}i∈[`]| = ` · t · polylog(m) · poly(λ)

• |{qi,j}i∈[`],j∈[t]| = ` · t · polylog(m) · poly(λ).

Consequently, the overall upload-rate ρup can be bounded by

ρup =
|pk|+ |A|+ |(cti)i∈[`]|+ |(ci)i∈[`]|+ |{copir1,i}i∈[`]|+ |(qi,j)i∈[`],j∈[t]|

`m

≤ 1 +
poly(λ)

m
+
n

`
+
` · n · poly(λ)

m
+
t · polylog(m) · poly(λ)

m

≤ 1 +
n

`
+
` · n · poly(λ)

m
+
t · polylog(m) · poly(λ)

m
.

We get an overall upload rate of ρup = 1+O(1/λ) by choosing ` = λ ·n and m = n2 ·poly(λ) for a sufficiently
large poly(λ) depending on ε (where t = m1−ε).

The bit-size of the message ot2 =
(
c̃t, {copir2,i}i∈[`], {ri,j}i∈[`],j∈[t]

)
can be bounded as follows.

• |c̃t| = `m(1 + ρLHE), where 1 + ρLHE is the ciphertext rate of LHE.

• |{copir2,i}i∈[`]| = ` · t · polylog(m) · poly(λ)

• |{ri,j}i∈[`],j∈[t]| = ` · t · polylog(m) · poly(λ)

Thus, the download-rate ρdown can be bounded by

ρdown =
|c̃t|+ |{copir2,i}i∈[`]|+ |{ri,j}i∈[`],j∈[t]|

`m
≤ 1 + ρLHE +

` · t · polylog(m) · poly(λ)

m
.

By the above choice of m this comes down to ρdown ≤ 1 + ρLHE +O(1/λ).

7.2 Security

Receiver Security We now focus on the security of the scheme. We start by proving that the scheme is
secure against semi-honest senders.

Theorem 2. Assume that LHE is a semantic secure LHE scheme, PIR is a user-private PIR scheme, CoPIR
is a receiver secure Co-PIR scheme and that the LPN(n,m, ρ) assumption holds for ρ = m1−ε for ε > 0.
Then the scheme presented in Section 7.1 is receiver secure against semi-honest adversaries.

Recall that the receiver’s message is composed by LHE ciphertexts, LPN samples, Co-PIR and PIR first
messages. In a nutshell, receiver security follows from the fact that the ciphertexts hide the LPN secret, the
LPN samples hide the receiver’s input b and finally the Co-PIR and PIR first messages hide the indices Ji.

Proof. We first present the simulator for a semi-honest sender. The simulator Sim receives the sender’s input
and sends it to the ideal functionality. Then it simulates the receiver as follows:

33

Sim(1λ):

• Choose A←$ {0, 1}n×m and compute (pk, sk)← LHE.KeyGen(1λ, `).

• For all i ∈ [`], choose ci←$ {0, 1}m and compute cti ← LHE.Enc(pk,0).

• For all i ∈ [`], let Ji ⊂ [m] be a random subset of size t. Compute copir1,i ← CoPIR(Ji).

Additionally, for j ∈ [t] compute (qi,j , ŝti,j) = PIR.Query(ai,j) where ai,j ←$ [m].

• Output ot1 =
(
pk,A, {cti, ci, copir}i∈[`], {qi,j}i∈[`],j∈[t]

)
.

We now show that the ideal-world and real-world executions are indistinguishable. The proof follows
from the following sequence of hybrids.

Hybrid H0. This hybrid is the real experiment.

For i ∈ [`], consider the following sub-hybrids.

Hybrid H1,i. Let H1,0 = H0. This hybrid is identical to the previous one, except that the receiver computes
cti ← LHE.Enc(pk,0).

Indistinguishability of hybrids H1,i−1 and H1,i are indistinguishable, for i = 1, . . . , ` and where H1,0 =
H0. follows from the semantic security of LHE.

Hybrid H2,i. Let H2,0 = H1,`. This hybrid is identical to the previous one, except that the receiver
computes (copir1,i, sti) = CoPIR.Query(J ′i [j]) where J ′i is a uniformly subset of [m] of size t.

Indistinguishability of hybrids H2,i−1 and H2,i, for i = 1, . . . , ` and where H2,0 = H1,`, follows directly
from the receiver security of the underlying CoPIR.

Let φ : [`t]→ [`]× [t] be a bijective function. For i′ ∈ [`t] consider the following hybrids.

Hybrid H3,i′ . Let H3,0 = H2,`. Let φ(i′) = (i, j). This hybrid is identical to the previous one, except that
the receiver computes (qi,j , ŝti,j) = PIR.Query(ai,j) where ai,j ←$ [m].

Indistinguishability of hybrids H3,i−1 and H3,i, for i = 1, . . . , `t and where H3,0 = H2,`, follows directly
from the receiver security of the underlying PIR.

Finally for i ∈ [`] consider the following sub-hybrids.

Hybrid H4,i. LetH4,0 = H3,`t. This hybrid is identical to the previous one, except that the receiver samples
ci←$ {0, 1}m.

Indistinguishability of hybrids H4,i−1 and H4,i, for i = 1, . . . , ` and where H4,0 = H3,`t, follows directly
from the LPN assumption.

Finally, note that hybrid H4,` is identical to the ideal-world execution. This concludes the proof of
receiver security.

Sender Security

Theorem 3. Assume that LHE is a statistically function-private LHE scheme, PIR is a sender-private PIR
scheme and CoPIR is a sender-private Co-PIR scheme. Then the scheme presented in Section 7.1 is sender
secure.

Proof. We begin by presenting the simulator Sim against a semi-honest receiver. Recall that, in the semi-
honest case, the simulator has access to the receiver’s internal state. The simulator sends b = (b1, . . . , bm`)
to the ideal functionality and receives m̃ = (m̃1, . . . , m̃m`).

Sim(1λ, m̃ ∈ {0, 1}m`, e ∈ {0, 1}m`, ot1) :

34

• Parse ot1 =
(
pk,A, {cti, ci, copir}i∈[`], {qi,j}i∈[`],j∈[t]

)
.

• It sets mbi,i = m̃i and m1−bi,i = 0. Finally, it sets m0 = (m0,1, . . . ,m0,m`) and m1 =
(m1,1, . . . ,m1,m`).

• For i ∈ [`], let Ji = Supp(ei) := {Ji[1], . . . , Ji[t]}. Compute (copir2,i,yi)← CoPIR(copir1,i) where
yi = (yi,1, . . . , yi,m).

• For i ∈ [`] and j ∈ [t], choose y′i,Ji[j]←$ {0, 1} restricted to yi,Ji[j] = y′i,Ji[j]−(m1,i,Ji[j]−m0,i,Ji[j]).

Set DBi,j = (0, . . . , y′i,Ji[j], . . . , 0). Compute ri,j ← PIR.Send(DBi,j , qi,j).

• Compute c̃t← LHE.Sim(pk,w∗) where w∗ := (w∗1, . . . ,w
∗
m) and w∗i = bi�(m1,i−m0,i)+m0,i+z′i.

Here, z′i = (zi,1, . . . , zi,m) such that

z′i,j′ =

{
y′i,j if j′ = Ji[j]

yi,j′ otherwise

• Output ot2 =
(
c̃t, {copir2,i}i∈[`], {ri,j}i∈[`],j∈[t]

)
.

We will establish security via the following sequence of hybrids to show that the ideal-world experiment
and the real-world one are indistinguishable.

Hybrid H0. This is the real experiment.

For i′ ∈ [`t] consider the following sub-hybrid. Let φ : [`t]→ [`]× [t].

Hybrid H1,i′ . Let H1,0 = H0. Let φ(i′) = (i, j). This hybrid is identical to the previous one except that
we set DBi,j = (0, . . . , yi,Ji[j] − (m1,i,Ji[j] −m0,i,Ji[j]), . . . , 0), i.e, DBi,j is set to 0 everywhere except
for position Ji[j] where it assumes the value yi,Ji[j] − (m1,i,Ji[j] −m0,i,Ji[j]) as in the previous hybrid.

Additionally, we compute ri,j ← PIR.Send(DBi,j , qi,j).

Indistinguishability of hybrids H1,i′−1 and H1,i′ follows from the sender security of PIR.

For i ∈ [`] consider the following hybrid.

Hybrid H2,i. Let H2,0 = H1,`t. This hybrid is identical to the previous one except that for all j ∈ [t],
choose y′i,Ji[j] ← {0, 1} such that yi,Ji[j] = y′i,Ji[j] − (m1,i,Ji[j] −m0,i,Ji[j]).

Indistinguishability of hybrids H2,i−1 and H2,i follows from the sender security of CoPIR.

Note that, in this hybrid DBi,j is of the form

DBi,j = (0, . . . , y′i,Ji[j], . . . , 0).

Furthermore, note that we can write zi as zi = z′i − e � (m1,i −m0,i), where z′i = (z′i,1, . . . , z
′
i,m) is

defined by

z′i,j′ =

{
y′i,j if j′ = Ji[j]

ỹi,j′ otherwise

where ỹi,j = yi,j for j /∈ Ji by the correctness of CoPIR.

Finally, consider the remaining sub-hybrids.

Hybrid H3. In this hybrid we compute ct as follows: Set W∗ ← f(S1, . . . ,S`) and compute ct← LHE.Sim(pk,W∗),
where LHE.Sim is the function-privacy simulator for LHE. Statistical indistinguishability between H2,`

and H3 follows from the statistical function privacy of LHE.

35

Hybrid H4. In this hybrid, we compute W∗ = (w∗1, . . . ,w
∗
m) via

w∗i = bi � (m1,i −m0,i) + m0,i + z′i.

Finally, note that

W∗ = f(S1, . . . ,S`)

=

(
k∑
i=1

(−SiA + Ci) ·Di

)
+ Z.

Let w∗i be the i-th row of W∗. It holds by definition Si, Ci and Zi that

w∗i = (−siA + ci)Di + zi

= (−siA + siAi + ei + bi)Di + m0,i + zi

= bi � (m1,i −m0,i) + m0,i + ei � (m1,i −m0,i) + zi

= bi � (m1,i −m0,i) + m0,i + ei � (m1,i −m0,i) + (z′i − ei � (m1,i −m0,i))

= bi � (m1,i −m0,i) + m0,i + z′i

Consequently, H4 is identical to the ideal experiment.

Hardness assumptions for optimal-rate OT. When we instantiate the LHE with one of the schemes
from Section 5, the Co-PIR with the construction from Section 6 and the PIR with a known black-box
construction based on LWE, DDH or QR [DGI+19], we obtain the following corollary

Corollary 1. Assuming the LWE, DDH or QR assumptions together with the LPN(n,m, ρ), there is a
black-box construction for optimal-rate OT.

8 Oblivious Matrix-Vector Product and Oblivious Linear Evalua-
tion with Overall Rate 1

In this section we show how we can extend the techniques from the previous section to build protocols for
OMV and OLE that achieve optimal rate.

8.1 OMV Protocol

We start by presenting a secure protocol for oblivious matrix-vector product (OMV). In an OMV functionality
there is a sender, with input a matrix M ∈ Zm×mq and a vector v ∈ Zmq , and a receiver with input b ∈ Zmq .
In the end, the receiver gets the value bM + v but learns nothing about M and v whereas the sender learns
nothing about b.

We start by defining the functionality:

OMV functionality. The functionality FOMV is parametrized by integers m = poly(λ) and q and works
as follows:

• Receiver phase. R sends b to FOMV where b ∈ Zmq .

• Sender phase. S sends (M,v) to FOMV where M ∈ Zm×mq and v ∈ {0, 1}m. FOMV sends bM+v ∈ Zmq
to R.

Below, we present a protocol for OMV that supports a sublinear number of multiplications in the size of
the matrix. That is, all columns and rows of the matrix M should have bounded (sublinear in m) hamming
weight.14

14Recall that hamming weight is used to count non-zero elements.

36

8.1.1 The Protocol

We start by presenting the ingredients that we need for our OMV protocol.

Ingredients. Let q = poly(λ). We will need the following ingredients.

• A packed linearly homomorphic encryption scheme LHE = (KeyGen,Enc,Eval,Shrink,DecShrink) with
plaintext space Z`q and a post-homomorphism shrinking procedure Shrink which converts ciphertexts
into a rate 1 representation.

• The binary LPN(n,m, ρ, q) problem with dimension n = poly(n), m = n ·` ·poly(n) samples and slightly
sub-constant noise-rate ρ = m1−ε.

• A 2-round PIR scheme PIR = (Query,Send,Retrieve) with poly-logarithmic communication complexity
and sender privacy.

• A 2-round Co-PIR scheme CoPIR = (Query,Send,Retrieve) over Zq parametrized by m(q − 1).

We define the hamming weight of a matrix D ∈ Zm×mq to be the value hw(D) = maxi{hw(di)}, hw(d(i))}
for all i ∈ [m], where di and d(i) are the i-th row and column of D respectively. In addition to the notation
presented in Section 7, we present the following algorithm:

AffineDecomp(D ∈ Zm×mq) : Takes a matrix D such that hw(D) ≤ µ for all i ∈ [m]. It outputs T1, . . . ,Tµ ∈
Zm×mq such that hw(Ti) ≤ 1 for all i ∈ [µ] and D = T1 + · · ·+ Tµ.

Protocol. The protocol OMV = (OMVR,OMVS,OMVD) is presented below.

OMVR(b ∈ Zm`q) :

• Parse b = (b1, . . . ,b`), where the bi ∈ Zmq are blocks of size m.

• Choose A←$Zn×mq uniformly at random and compute a pair of public and secret key (pk, sk)←
LHE.KeyGen(1λ, `).

• For all i ∈ [`], choose si←$Znq , and ei←$χm,t,q, compute ci ← siA + ei + bi, and set Si ←
SingleRowMatrix(`, n, i, si). Compute a matrix-ciphertext cti ← LHE.Enc(pk,Si).

• For all i ∈ [`] set Ji = Supp(ei) to be the support of ei.

• For all i ∈ [`] and k ∈ [µ] compute (copir1,i,k, sti,k) ← CoPIR.Query(Ji). Additionally, for all

j ∈ [t] compute (qi,k,j , ŝti,k,j) = PIR.Query((q − 1)(Ji[j]− 1) + ei,Ji[j]).

• Output omv1 =
(
pk,A, {cti, ci}i∈[`], {copir1,i,k}i∈[`],k∈[µ], {qi,k,j}i∈[`],k∈[µ],j∈[t]

)
and st =

(
sk, {Ji}i∈[`], {sti,k}i∈[`],k∈[µ], {ŝti,k,j}i∈[`],k∈[µ],j∈[t]]

)
.

OMVS((D,v) ∈ Zm×m`q × Zm`q , omv1) :

• Parse D = (D1, . . . ,D`) and v = (v1, . . . ,v`). If hw(D) > µ abort the protocol. Parse omv1 =(
pk,A, {cti, ci}i∈[`], {copir1,i,k}i∈[`],k∈[µ], {qi,k,j}i∈[`],k∈[µ],j∈[t]

)
.

• For i ∈ [`] and k ∈ [µ] (yi,k, copir2,i,k)← CoPIR.Send(copir1,i,k) where yi,k = (yi,k,1, . . . , yi,k,m).

• For all i ∈ [`] set zi = vi +
∑µ
k=1 yi,k.

• Set Z = RowMatrix(`,m, z1, . . . , z`).

• For all i ∈ [`] set Ci = SingleRowMatrix(`,m, i, ci).

• Define the Zq-linear function f : (Z`×nq)` → Z`×mq via

f(X1, . . . ,X`) =

(∑̀
i=1

(−XiA + Ci) ·Di

)
+ Z.

37

• Compute c̃t← LHE.Eval&Shrink(pk, f, ct1, . . . , ct`).

• For all ∈ [`], set (Ti,1, . . . ,Ti,µ) ← AffineDecomp(Di). Moreover, for all k ∈ [µ] and all l ∈ [m],
let ti,k,l be the only non-zero element in the l-th row of Ti,k. If its l-th row is a zero vector, set
ti,k,l = 0.

• For all i ∈ [`] and k ∈ [µ] set

DBi,k = (yi,k,1 + ti,k,1, yi,k,1 + 2 · ti,k,1, . . . , yi,k,1 + (q − 1) · ti,k,1, . . . , yi,k,m + (q − 1) · ti,k,m),

where DBi,k is a (q − 1)m-sized vector. For all j ∈ [t] compute ri,k,j ← PIR.Send(DBi,k, qi,k,j).

• Output omv2 =
(
c̃t, {copir2,i,k}i∈[`],k∈[µ], {ri,k,j}i∈[`],k∈[µ],j∈[t]

)
.

OMVD(omv2, st):

• Parse omv2 =
(
c̃t, {copir2,i,k}i∈[`],k∈[µ], {ri,k,j}i∈[`],k∈[µ],j∈[t]

)
and st =

(
sk, {Ji}i∈[`], {sti,k}i∈[`],k∈[µ], {ŝti,k,j}i∈[`],k∈[µ],j∈[t]]

)
.

• For all i ∈ [`] and k ∈ [µ] compute ỹi,k = (ỹi,k,1, . . . , ỹi,k,m)← CoPIR.Retrieve(copir2,i,k, sti,k).

• For i ∈ [`], k ∈ [µ] and j ∈ [t] compute z̃i,k,j ← PIR.Retrieve(ri,k,j , ŝti,k,j).

• For all i ∈ [`] and k ∈ [µ] set zi,k = (zi,k,1, . . . , zi,k,m) where

zi,k,l =

{
z̃i,k,j if l = Ji[j]

ỹi,k,l otherwise
.

• For all i ∈ [`] set zi =
∑µ
k=1 zi,k.

• Set Z = RowMatrix(`,m, z1, . . . , z`).

• Compute W̃← LHE.DecShrink(sk, c̃t) and W = W̃ − Z.

• Let w1, . . . ,w` be the rows of W. Output w = (w1‖ . . . ‖w`) ∈ Zm`q .

Correctness. We first show that the scheme presented above is correct.

Theorem 4 (Correctness). Assume that LHE, CoPIR and PIR are correct. Then the scheme presented above
is correct.

The proof follows the same reasoning as the proof of Theorem 1.

Communication complexity. We now analyze the communication complexity of OMV and show which
choice of parameters leads to an overall rate approaching 1.

The bit-size of the message omv1 =
(
pk,A, {cti, ci}i∈[`], {copir1,i,k}i∈[`],k∈[µ], {qi,k,j}i∈[`],k∈[µ],j∈[t]

)
can

be bounded as follows:

• q = poly(λ)

• |pk| = ` · poly(λ)

• |A| = n ·m · log q

• |{cti}i∈[`]| = `2 · n · poly(λ)

• |{ci}i∈[`]| = ` ·m · log q

• |{copir1,i,k}i∈[`]| = µ · ` · t · polylog(m, q) · poly(λ)

• |{qi,k,j}i∈[`],j∈[t]| = q · µ · ` · t · polylog(m) · poly(λ).

38

Thus, the overall upload-rate ρup can be bounded by

ρup ≤ 1 +
n log q

`
+
` · n · poly(λ)

m
+
µ · t · polylog(m) · poly(λ)

m
.

We get an overall upload rate of ρup = 1 +O(1/λ) by choosing ` = λ ·n log q, µ = m1−ζ (for some ζ > 0 such
that ζ + ε > 1) and m = n2 · log q · poly(λ) for a sufficiently large poly(λ) depending on ε (where t = m1−ε).

The bit-size of the message omv2 =
(
c̃t, {copir2,i,k}i∈[`],k∈[µ], {ri,k,j}i∈[`],k∈[µ],j∈[t]

)
can be bounded as

follows:

• q = poly(λ)

• |c̃t| = `m(1 + ρLHE), where 1 + ρLHE is the ciphertext rate of LHE

• |{copir2,i,k}i∈[`]| = µ · ` · t · polylog(m) · poly(λ)

• |{ri,k,j}i∈[`],j∈[t]| = q · µ · ` · t · polylog(m) · poly(λ).

Thus, the download-rate ρdown can be bounded by

ρdown ≤ 1 + ρLHE +
µ · ` · t · polylog(m) · poly(λ)

m
.

By the above choice of m and µ this comes down to ρdown ≤ 1 + ρLHE +O(1/λ).

Security. Finally, we state the result that guarantees security of the scheme.

Theorem 5 (Security). The scheme presented above is:

• Receiver secure if LHE is a semantic secure LHE scheme, PIR is a user-private PIR scheme, CoPIR
is a receiver secure Co-PIR scheme and that the LPN(n,m, ρ, q) assumption holds for ρ = m1−ε for
ε > 0.

• Sender secure if LHE is a statistically function-private LHE scheme, PIR is a sender-private PIR scheme
and CoPIR is a sender-private Co-PIR scheme.

The proof of the theorem follows the same reasoning as the proof of Theorem 2 and Theorem 3.
Again, instantiating the ingredients used in OMV with the constructions from this work, we obtain the

following corollary.

Corollary 2. There exists a black-box construction for OMV over Zq assuming:

• LWE and LPN(n,m, ρ, q) for q = poly(λ)

• DDH and LPN(n,m, ρ, q) for q = 2µ = poly(λ).

8.2 OLE Protocol

An oblivious linear evaluation (OLE) is a protocol between a sender, with input an affine function f , and a
receiver, with input a point b. It allows for the receiver to obliviously learn f(b). We now show how we can
obtain an OLE using the OMV protocol presented in Section 8.1.

We start by defining the functionality:

OLE functionality. The functionality FOLE is parametrized by integers k = poly(λ) and q and works as
follows:

• Receiver phase. R sends b to FOLE where b ∈ Zkq .

• Sender phase. S sends (u0,u1) to FOLE where u0,u1 ∈ Zkq . FOLE sends b� u0 + u1 ∈ Zkq to R.

39

8.2.1 Protocol for Small Fields

We briefly sketch how we can construct an OLE scheme over Zq where q = poly(λ). The protocol follows as
a particular case of the protocol of Section 8.1. We give a brief overview of the scheme below.

Let Using the notation of Section 8.1, let b = (b1, . . . ,b`) ∈ Zm`q be the receiver’s input and let (u0 =

(u0,1, . . . ,u0,`),u1 = (u1,1, . . . ,u1,`)) ∈ (Zm`q)2 be the sender’s input. To achieve OLE, the sender constructs
the matrices Di = Diag(m,u0,i) and sets vi = u1,i for all i ∈ [`]. Then they run the OMV protocol where
the receiver inputs b and the sender inputs D = (D1, . . . ,D`) and v = (v1, . . . ,v`). It is easy to see that
the output of the receiver is y = (y1, . . . ,y`) where

yi = biDi + vi = bi � u0,i + u1,i

be the correctness of the OMV protocol.
Moreover, hw(Di) = 1 ≤ m1−ζ for some ζ > 0 such that ζ + ε > 1. Thus the resulting protocol achieves

overall rate 1. Finally, in terms of hardness assumptions, the OLE protocol inherits the same security.

8.2.2 Extending OLE to Larger Rings

Following [DGI+19], we briefly explain how we can achieve OLE over larger rings (which can potentially
have super-polynomial size in λ).

OLE over ZN = Zq1 × · · · × Zqδ . Let N =
∏δ
i=1 qi be an integer (which might be superpolynomial in λ)

such that for all i ∈ [δ] qi = poly(λ) are different prime numbers. Then, via the Chinese Remainder Theorem,
ZN is isomorphic to Zq1 × · · · × Zqδ . Thus, performing an OLE over ZN boils down to performing δ OLEs
over each one of the smaller fields Zqi . It is easy to see that, if each OLE over Zqi has overall rate 1, then
the resulting OLE over ZN also achieves overall rate 1.

OLE over extension fields. We now show how these techniques can be adapted to perform OLE over
an extension field Fqk of order qk for a prime q. Here, we rely on the fact that multiplication over Fqk can
be expressed as a linear function over the field Zq. That is, suppose that an element x ∈ Fqk is of the form
x = x1 + x2α + · · · + xkα

k−1 where each xi ∈ Zq and α is a symbol. Then, for elements a,x ∈ Fqk the
product

xa = f1,a(x) + f2,a(x)α+ · · ·+ fk,a(x)αk−1

where each fi,a is a Zq-linear function which depends solely on a.
Given this, we briefly describe how we can perform several OLEs over Fqk while preserving overall rate

1. The receiver has input b = (b1, . . . ,bt) ∈ Ftqk such that kt = m` and k|m (using the same notation as

in Section 8.1). It parses each bi as a k-dimensional vectors b̄i ∈ Zkq . Then, it organizes all t vectors bi in
blocks ci ∈ Zmq of size m. It inputs c = (c1, . . . , c`) into the OMV protocol.

The sender, with input u,v ∈ Fqk rearranges u,v in the same way as the receiver and obtains w =
(w1, . . . ,w`), z = (z1, . . . , z`) respectively. Then, for each wi = (wi,1, . . . ,wi,m/k), it computes the functions
fj,wi,r for each j ∈ [k], i ∈ [`] and r ∈ [m/k]. Let fj,wi,r be the vector composed by the coefficients of fj,wi,r .
The sender computes the matrices

D̄i,r =

 | |
f1,wi,r . . . fk,wi,r
| |

and then sets

Di =

D̄i,1

. . .

D̄i,m/k

 .

40

It inputs D = (D1, . . . ,D`) and z into the OMV protocol.
It is easy to see that the receiver’s output will be b�u+v where � denotes component-wise multiplication

over Fqk . Moreover, hw(Di) = k. By choosing k such that k ≤ µ = m1−ζ we achieve a protocol with overall
rate 1. In particular, we can set the parameters such that k = λ and we achieve an OLE over the field Fqλ
of exponential size.

Acknowledgment

Zvika Brakerski is supported by the Israel Science Foundation (Grant No. 3426/21), and by the European
Union Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and via
Project PROMETHEUS (Grant 780701).

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through the grant PD/BD/135181/2017.
This work is supported by Security and Quantum Information Group of Instituto de Telecomunicações, by
the Fundação para a Ciência e a Tecnologia (FCT) through national funds, by FEDER, COMPETE 2020,
and by Regional Operational Program of Lisbon, under UIDB/50008/2020.

Nico Döttling and Sihang Pu were supported by the Helmholtz Association within the project “Trust-
worthy Federated Data Analytics” (TFDA) (funding number ZT-I- OO1 4).

References

[ABD+21] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Sihang
Pu. Laconic private set intersection and applications. In Kobbi Nissim and Brent Waters,
editors, Theory of Cryptography, pages 94–125, Cham, 2021. Springer International Publishing.

[AR16] Divesh Aggarwal and Oded Regev. A note on discrete gaussian combinations of lattice vectors.
Chicago Journal of Theoretical Computer Science, 2016(7), June 2016.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Math-
ematische Annalen, 296(4):625–636, 1993.

[BBD+20] Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Constant
ciphertext-rate non-committing encryption from standard assumptions. In TCC 2020: 18th
Theory of Cryptography Conference, Part I, Lecture Notes in Computer Science, pages 58–87.
Springer, Heidelberg, Germany, March 2020.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019: 26th Conference on Computer and Communications Security, pages 291–308. ACM Press,
November 11–15, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III, volume
11694 of Lecture Notes in Computer Science, pages 489–518, Santa Barbara, CA, USA, Au-
gust 18–22, 2019. Springer, Heidelberg, Germany.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of
Lecture Notes in Computer Science, pages 407–437, Nuremberg, Germany, December 1–5, 2019.
Springer, Heidelberg, Germany.

41

[BDM22] Pedro Branco, Nico Döttling, and Paulo Mateus. Two-round oblivious linear evaluation from
learning with errors. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-
Key Cryptography – PKC 2022, pages 379–408, Cham, 2022. Springer International Publishing.

[BdMW16] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE circuit privacy al-
most for free. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages 62–89,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 1–20, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference on Theory and
Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science, pages
501–519, Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure compu-
tation under DDH. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
– CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science, pages 509–539,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryp-
tion from decision Diffie-Hellman. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 108–125, Santa
Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of Computer
Science, pages 97–106, Palm Springs, CA, USA, October 22–25, 2011. IEEE Computer Society
Press.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part II,
volume 8270 of Lecture Notes in Computer Science, pages 280–300, Bengalore, India, Decem-
ber 1–5, 2013. Springer, Heidelberg, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, NV,
USA, October 14–17, 2001. IEEE Computer Society Press.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Poly-
chroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lec-
ture Notes in Computer Science, pages 33–65, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostro-
vsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III,
volume 11694 of Lecture Notes in Computer Science, pages 462–488, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Heidelberg, Germany.

42

[CGH+21] Melissa Chase, Sanjam Garg, Mohammad Hajiabadi, Jialin Li, and Peihan Miao. Amortizing
rate-1 ot and applications to pir and psi. In Kobbi Nissim and Brent Waters, editors, Theory
of Cryptography, pages 126–156, Cham, 2021. Springer International Publishing.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information re-
trieval. In 36th Annual Symposium on Foundations of Computer Science, pages 41–50, Milwau-
kee, Wisconsin, October 23–25, 1995. IEEE Computer Society Press.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes
in Computer Science, pages 3–32, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[DMO00] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database private information
retrieval implies oblivious transfer. In Bart Preneel, editor, Advances in Cryptology – EU-
ROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 122–138, Bruges,
Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.

[Döt15] Nico Döttling. Low noise LPN: KDM secure public key encryption and sample amplification.
In Jonathan Katz, editor, PKC 2015: 18th International Conference on Theory and Practice of
Public Key Cryptography, volume 9020 of Lecture Notes in Computer Science, pages 604–626,
Gaithersburg, MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing con-
tracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptol-
ogy – CRYPTO’82, pages 205–210, Santa Barbara, CA, USA, 1982. Plenum Press, New York,
USA.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of
random functions. In G. R. Blakley and David Chaum, editors, Advances in Cryptology –
CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages 276–288, Santa Barbara,
CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, August 1986.

[GH19] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume
11892 of Lecture Notes in Computer Science, pages 438–464, Nuremberg, Germany, December 1–
5, 2019. Springer, Heidelberg, Germany.

[GHO20] Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky. Efficient range-trapdoor functions
and applications: Rate-1 OT and more. In TCC 2020: 18th Theory of Cryptography Conference,
Part I, Lecture Notes in Computer Science, pages 88–116. Springer, Heidelberg, Germany, March
2020.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In 14th Annual ACM Symposium on Theory of Computing,
pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM Press.

[GMPW20] Nicholas Genise, Daniele Micciancio, Chris Peikert, and Michael Walter. Improved discrete
gaussian and subgaussian analysis for lattice cryptography. In PKC 2020: 23rd International
Conference on Theory and Practice of Public Key Cryptography, Part I, Lecture Notes in Com-
puter Science, pages 623–651. Springer, Heidelberg, Germany, 2020.

43

[GMW19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game, or a com-
pleteness theorem for protocols with honest majority. In Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 307–328. 2019.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious linear
function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Com-
puter Science, pages 629–659, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,
Germany.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual
ACM Symposium on Theory of Computing, pages 197–206, Victoria, BC, Canada, May 17–20,
2008. ACM Press.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

[GVW20] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. New constructions of hinting PRGs,
OWFs with encryption, and more. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology – CRYPTO 2020, Part I, Lecture Notes in Computer Science, pages
527–558, Santa Barbara, CA, USA, August 16–20, 2020. Springer, Heidelberg, Germany.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers ef-
ficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no
honest majority. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Confer-
ence, volume 5444 of Lecture Notes in Computer Science, pages 294–314. Springer, Heidelberg,
Germany, March 15–17, 2009.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2021, page 60–73, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013: 20th Conference on Computer and Communications
Security, pages 669–684, Berlin, Germany, November 4–8, 2013. ACM Press.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718, Cambridge,
UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In 45th Annual Symposium on Foundations of Computer Science, pages 372–381,
Rome, Italy, October 17–19, 2004. IEEE Computer Society Press.

44

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 80–97, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Heidelberg, Germany.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications.
In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of Computer Science, pages
859–870, Paris, France, October 7–9, 2018. IEEE Computer Society Press.

[Rab05] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch.,
2005(187), 2005.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

45

	Introduction
	Our Contribution
	Related Work

	Technical Overview
	Oblivious Transfer from Homomorphic Encryption
	Download-Rate Optimal String OT
	Our Approach: Recrypting the Receiver's Message
	Dealing with LPN Errors
	Emulating Small Subgroups

	Preliminaries
	UC Security
	Learning Parity with Noise
	Cryptographic Primitives
	Puncturable Pseudorandom Functions
	Private Information Retrieval
	Distributed GGM-PPRF Correlation
	Two-message Oblivious Transfer

	Lattices and Gaussians

	Compression-friendly Subgroup Emulation via Gaussian Rounding
	Rate-1 Circuit-Private Linearly Homomorphic Encryption
	Construction from LWE
	Shrinking ciphertexts
	Circuit-private LHE from LWE.

	Construction from DDH
	Shrinking ciphertexts.
	Function-private LHE from DDH.

	Construction from QR
	Shrinking ciphertexts.
	Circuit-private LHE from QR.

	Co-Private Information Retrieval
	Definition
	Co-PIR from Distributed GGM-PPRF Correlation
	Co-PIR from PPRF and PIR
	The Protocol
	Analysis

	Oblivious Transfer with Overall Rate 1
	The Protocol
	Security

	Oblivious Matrix-Vector Product and Oblivious Linear Evaluation with Overall Rate 1
	OMV Protocol
	The Protocol

	OLE Protocol
	Protocol for Small Fields
	Extending OLE to Larger Rings

