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Abstract—Most blockchain-based cryptocurrencies suffer from
a heavily limited transaction throughput, which is a barrier to
their growing adoption. Payment channel networks (PCNs) are
one of the most promising solutions to this problem. PCNs reduce
the on-chain load of transactions and increase the throughput
by processing many payments off-chain. In fact, any two users
connected via a path of payment channels (i.e., joint addresses
between the two channel end-points) can perform payments and
the underlying blockchain is used only when there is a dispute
between users. Unfortunately, payments in PCNs can only be
conducted securely along a path, which prevents the design of
many interesting applications. Moreover, the most widely used
implementation, the Lightning Network in Bitcoin, suffers from
a collateral lock time linear in the path length, it is affected by
security issues, and it relies on specific scripting features called
Hash Timelock Contracts that restricts its applicability.

In this work, we present Thora, the first Bitcoin-compatible
off-chain protocol that enables atomic multi-channel updates
across generic topologies beyond paths. Thora allows payments
through distinct PCNs sharing the same blockchain and enables
new applications such as secure and trustless crowdfunding,
mass payments, and channel rebalancing in off-chain ways. Our
construction requires only constant collateral and no specific
scripting functionalities other than digital signatures and time-
locks, thereby being applicable to a wider range of blockchains.
We formally define security and privacy in the Universal Com-
posability framework and show that our cryptographic protocol
is a realization thereof. In our performance evaluation we show
that our construction requires constant collateral, is independent
of the number of channels, and has only a moderate off-chain
communication as well as computation overhead.

I. INTRODUCTION

Permissionless cryptocurrencies such as Bitcoin [20] use
consensus mechanisms to verify transactions in a decentralized
way and record them in a public and distributed ledger, often
a blockchain. This approach inherently has scalability issues,
resulting in a low transaction throughput and a long confirma-
tion latency. These limitations prevent cryptocurrencies from
meeting the growing user demands, especially when we com-
pare them with the usability of centralized payment networks,
like Visa, which handles tens of thousands of transactions per
second and confirms transactions usually within seconds.

Off-chain protocols constitute one of the most promising
solutions to tackle the scalability issue. Instead of recording
every transaction on the public ledger, users exchange and
keep their transactions off-chain and use the ledger only as a
fallback when there are disputes in order to keep their funds.

One of the most promising off-chain protocols are Payment
Channels (PCs) which are deployed at scale in cryptocur-
rencies such as Bitcoin and Ethereum [21, 18]. Intuitively, a
channel is a shared address that allows two parties to maintain
and update a private ledger through off-chain transactions.
In a bit more detail, looking at Bitcoin’s unspent transaction
output (UTXO) model, users first open a PC by locking some
coins in a 2-of-2 multi-signature output. Then, they can update
the balance in the PC arbitrarily many times by exchanging
signed transactions. Each of the users can close the PC by
publishing the last state on-chain. This allows them to perform
many transactions while burdening the ledger with only two
transactions.

A. HTLC-based PCNs and their limitations

Payment channel networks (PCNs) like the Lightning Net-
work (LN) [21] and Raiden [22] generalize this approach,
by allowing two users to pay each other as long as they are
connected by a path of channels with enough capacity. Such
a payment in a PCN, also called a multi-hop payment (MHP),
requires updating each channel on the path. The challenge here
is to ensure atomicity, i.e., either all channels are updated
consistently or none, such that no user is at risk of losing
money. In the most popular PCN, i.e. the Lightning Net-
work, atomicity is achieved through Hash Timelock Contracts
(HTLCs) [21], which make the payments on each channel on
the path conditioned on revealing the preimage of a certain
hash. The receiver has to reveal that preimage in order to
receive the money and then all intermediaries from right to
left are incentivized to update their left channel in order to
claim the money of the payment. An example of a payment
using HTLCs is shown in Figure 1.

HTLC-based PCNs, however, have the following fundamen-
tal drawbacks:
Collateral All parties on the path have to lock the payment
amount α up to a period of locktime. The payment amount
multiplied by the locktime is also called collateral. In addition,
parties can impose fees for the service of forwarding payments.
In the case of HTLCs, each party has to lock a collateral that
is linear in the size of the path n, i.e., Θ(α · n · δ), where δ
is a security parameter defining the time by which users have
to react in case of misbehavior from others (in Lightning, δ is
one day).
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Due to the linear collateral, the effects of griefing at-
tacks [11] on HTLC-based PCNs are particularly severe. In a
griefing attack, a malicious user starts a multi-hop payment to
itself with the intent to block coins owned by intermediaries.
The attacker manages to lock up α coins in n − 1 honest
channels. The fact that the lock duration is also linear in the
path length amplifies the effects of this attack further. The
malicious user subsequently lets the payment fail to limit the
overall network throughput or to lock coins of specific users.
Weak atomicity Lightning guarantees only a weak form
of atomicity, that is, only the two adjecent channels of an
honest node are updated consistenlty. In particular, Lightning
is vulnerable to the wormhole attack [17], where two colluding
malicious users can skip honest users in the phase where they
reveal the preimage. This does not lead to a loss in funds for
the honest users, but the malicious users can steal the fees
originally intended for the honest users.
Path restriction Since HTLC-based PCN protocols rely on
an incentive based forwarding of a preimage via a path to
ensure that honest users do not lose funds, these protocols
are limited to payments over a path of channels. This rules
out other topologies reflecting relevant financial applications
(e.g., crowd-funding can be seen as a star topology where all
nodes update their channel with the beneficiary).
Value privacy In Lightning, intermediaries implicitly learn
the paid amount, as the value has to be the same (except for
some fee) over all channels within the path to ensure atomicity
of the protocol.

A B C D
2.HTLC(A,B,y,α,3) 3.HTLC(B,C,y,α,2) 4.HTLC(C,D,y,α,1)

5.x6.x7.x

1. y := H(x)

Figure 1: An example of a payment in LN from A to D for a
value α using HTLC contracts. An HTLC contract denoted by
HTLC(Alice, Bob, x, y, t), shows the following conditions:
(i) If timeout t expires, Alice gets back the locked x coins. (ii)
If Bob reveals a value r, such that H(r) = y, before timeout
t, Alice pays x coins to Bob.

B. Related work

Recently, various protocols have been designed to overcome
the aforementioned issues, but they all fall short of some
property, as summarized in Table I.

Anonymous Multi-Hop Locks (AMHL) prevent the worm-
hole attack by dispensing from HTLCs in favor of adaptor
signatures, a mechanism in which the secret is somewhat
embedded in the randomness of the signature and revealed
once that signature is published, but they still suffer from linear
collateral and only support path-based payments.

The Atomic Multi-Channel Updates (AMCU) protocol [11]
attempts to achieve payments with constant collateral and
also to support more generic applications than path-formed
payments. Unfortunately, AMCU is not secure: It is vulnerable

to channel closure attacks [12], where users honestly updating
their channels can be victim of double-spending attacks, which
can lead to a loss of funds for honest users.

Blitz [2] is a recently proposed payment protocol for multi-
hop payments, which in contrast to Lightning requires only
one round of communication through the path with constant
collateral. However, Blitz supports only path-based payments.

Sprites [19] is the only secure protocol supporting atomic
multi-channel updates with constant collateral. In fact, the
paper addresses only path-based payments, but we conjecture
that the protocol could in principle be modified so as to support
arbitrary topologies and also to hide the paid amount. Unfor-
tunately, Sprites inherently requires Turing-complete scripting,
which makes it inapplicable to blockchain technologies with
limited scripting capabilities, such as Bitcoin itself. A Turing
complete scripting language provides more expressiveness, but
it also enlarges the trusted computing base, opens the door to
programming bugs, and makes computations more expensive
(e.g., in terms of gas fees in Ethereum).

Hence, it is both a foundational and practically relevant
question whether or not atomic multi-channel updates with
constant collateral are possible at all in blockchains with
limited scripting languages like Bitcoin. Indeed, it was con-
jectured in [19] that they are not.

C. Our contribution

In this paper, we show that the aforementioned conjecture
is incorrect. In particular,
• We introduce Thora, the first secure Bitcoin-compatible

protocol for atomic, multi-channel updates with constant
collateral. Thora only requires signatures and timelocks, and
it is thus compatible with a number of cryptocurrencies, such
as Bitcoin, Stellar, and Ripple. In addition, Thora supports
payments over channels with arbitrary topologies, thereby
enabling a variety of interesting applications. Finally, per-
haps surprisingly, Thora achieves value privacy, i.e., the
channel owners can synchronize their payments without
necessarily disclosing the individual payment amounts.

• We formally model our protocol in the Global Universal
Composability (GUC) framework [9], analyzing its security
and privacy properties. For this, we define an ideal func-
tionality which captures the security and privacy notions of
interest and prove that Thora constitutes a GUC-realization
thereof.

• We conduct a complexity analysis and performance evalua-
tion, demonstrating the practicality of Thora.

• We instantiate Thora in the context of several applica-
tions that go beyond simple path-formed payments, such
as mass payments, channel rebalancing algorithms, and
crowd-funding, thereby exemplifying the class of off-chain
applications enabled by Thora.

II. BACKGROUND

In this section, we provide an overview on the background
and the notations used throughout the paper. For more details,
we refer the reader to [2, 4, 16].
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Atomicity Path restriction Smart contract pp Collateral Value privacy
Lightning Network [21] No Yes No Linear application leak

AMHL [17] Yes Yes No Linear application leak
AMCU [11] No No No Constant No

Payment Trees [12] Yes Yes No Logarithmic No
Blitz [2] Yes Yes No Constant application leak

Sprites [19] Yes No Yes Constant Yes
Thora Yes No No Constant Yes

Table I: Comparing different payment methods: Lightning Network, Anonymous Multi-Hop Locks (AMHL), Sprites, Payment
Trees, Atomic Multi-Channel Updates(AMCU), Blitz, and our construction. Studied features are: atomicity property, path
restriction, need for Turing-complete smart contracts, size of per party collateral, and value privacy. For the latter, note that
there are constructions that do not inherently leak the value transferred in individual channels, but they can only be used for
applications (i.e., payments) that require the same value in all channels.

A. UTXO based transactions

We assume the underlying blockchain to be based on the
unspent transaction output (UTXO) model, like Bitcoin. In
this model, coins, or the units of currency, exist in out-
puts of transactions. We represent each output as a tuple
θ := (cash,φ) where θ.cash is the output value, and θ.φ is
the condition required to spend the output. We encode the
condition in the scripting language used by the underlying
cryptocurrency. The notation OneSig(U) denotes the condition
that a digital signature w.r.t. U ’s public key is required for
spending an output. If multiple signatures are required, we
write MultiSig(U1,U2, ...,Un).

Users can transfer the ownership of outputs via transactions.
A transaction spends a non-empty list of unspent outputs
(transaction inputs) and maps them to a list of new unspent
outputs (transaction outputs). Formally a transaction is de-
noted as a tuple tx := (id, input, output). tx.id ∈ {0, 1}∗
is the identifier, set to be the hash of inputs and outputs,
tx.id = H(tx.input, tx.output), where H is modeled as a
random oracle. tx.input denotes the list of identifiers of the
inputs and tx.output denotes the list of new outputs. Also
we define another notation tx := (id, input, output, witness)
or for convenience also tx = (tx, witness) to denote a full
transaction. tx.witness consists of witnesses for the spending
conditions of the transaction’s inputs. Only valid transactions
can be recorded on the public ledger L (the blockchain). A
transaction is considered valid if (i) its inputs are not spent
by other transactions in L (ii) the sum of its outputs is not
greater than the sum of inputs (iii) the transaction provides
valid witnesses fulfilling the spending conditions of every
input. In practice, transactions are not recorded on the ledger
and published immediately, but only after the participants in
the distributed consensus accept it. We use ∆ to denote the
upper bound on the time it takes for a valid transaction to be
published and accepted to L.

Using the scripting language, we can encode more complex
conditions on transaction outputs than simple ownerships. To
have a better visualization, we use transaction charts. In these
charts, we represent transactions as rounded rectangles and
inputs as incoming arrows. Boxes inside transactions represent
outputs; the values in these boxes determine the amounts of
coins stored in the outputs. Outgoing arrows from an output

are used to encode the condition under which said output can
be spent. In particular, below an arrow, we identify who can
spend an output by listing one or more public keys. A valid
transaction must contain signatures that verify under these
public keys. Above the arrow, we write additional conditions
that are required for spending the output. These conditions
can be any script supported by the scripting language of the
underlying blockchain, but in this work, we only use time-
locks. For denoting relative time-locks, we write RelTime(t)
or +t, which means that the output can be spent only if at least
t rounds have passed since the transaction holding this output
was accepted on L. For denoting absolute time-locks, we use
AbsTime(t) or ≥ t, which means that the output can be spent
only if the round t has already passed. If an output condition
is a disjunction of several conditions, i.e., φ = φ1∨φ2 · · ·∨φn
we draw a diamond in the output box and put each condition
φi below/above its own arrow. For the conjunction of several
conditions, we write φ = φ1 ∧ φ2. . . ∧ φn. We illustrate an
example of our transaction charts in Figure 2.

tx

tx′

x1

x2 x2

A
pkA

pkB , pkA

+ t1

≥ t2

φ1

φ2 ∧ φ3

Figure 2: The left transaction tx has two outputs, one of value
x1 that can be spent by A, with a transaction signed w.r.t. pkA,
but only if at least t1 rounds passed since tx is accepted on
the blockchain. The other output of value x2 can be spent by a
transaction signed w.r.t. pkA and pkB at or after round t2. The
right transaction tx′ has one input, which is the second output
of tx containing x2 coins, and has only one output, which is
of value x2 and can be spent by a transaction whose witness
satisfies the output condition φ1 ∨ (φ2 ∧ φ3). The inputs of tx
are not shown.

B. Payment channels

Using payment channels, two users can perform an arbitrary
number of payments off-chain by publishing only two trans-
actions on the ledger, one for funding and one for closing.
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Through the funding transaction txf , users jointly lock up some
coins in a shared multi-signature output, thereby opening a
new channel. To avoid having their funds locked, the two
users exchange signed transactions spending from txf , and
assigning new balances for users, before posting txf on-chain.
Users can perform payments by exchanging new transactions
that reassign their balances. These transactions holding the
balances are called states of the channel. When the two users
are done, they can close the channel by posting the last state
to the ledger.

For readability, we omit the implementation details and
instead use payment channels in a black-box manner, using
the following abstraction: Both users have the same transaction
txstate, which holds the outputs representing the last state of
the channel. Furthermore, we assume that the users can only
publish the last txstate on the ledger. In practice there is a
punishment mechanism in place, which gives the total channel
capacity to the honest party in case a malicious party publishes
an old state. We refer the reader to [4, 16, 17] for more details.

We denote payment channels as γ := (id, users, cash, st),
where γ.id ∈ {0, 1}∗ is the unique identifier of the chan-
nel, γ.users ∈ P2 contains addresses of two involved par-
ties (out of the set of all parties P), γ.cash ∈ R≥0 is
the total number of coins in the channel, and γ.st :=
(output1, output2, ..., outputn) is the last state of the channel
and contains a list of outputs. The balance of both users can be
inferred from the current state γ.st, and γ.balance(P ) returns
the amount of coins owned by P for P ∈ γ.users. We define
a channel skeleton γ for a channel γ, as γ := (γ.id; γ.users).
Moreover, in the context of our multi-channel updates proto-
col, based on the direction of the payment in each channel
γ, we define one of the involving parties as sender, which is
denoted by γ.sender ∈ γ.users, and one as receiver which is
denoted by γ.receiver ∈ γ.users.

C. Payment channel networks

A payment channel network (PCN) [16] is a graph consist-
ing of vertices, representing the users, and edges, representing
the channels between pairs of users. PCNs enable payments
between any two users connected through a path of open
payment channels. This is called a multi-hop payment. Assume
user U0 wants to pay user Un, but there is no direct payment
channel between them. Instead, U0 has an open payment chan-
nel γ0 with U1, U1 has an open payment channel γ1 with U2

and so on, until the receiver Un. An MHP allows transferring
coins from U0 to Un through intermediaries {Ui}i∈[1,n−1]

atomically in a secure way, which means that no honest user
is at the risk of losing money.

HTLC. The Lightning Network (LN) [21] achieves atomicity
by using a technique called Hash Timelock Contract (HTLC).
This contract can be executed by two parties sharing an open
payment channel, e.g., Alice and Bob. First, Alice locks some
of her coins in an output that is spendable if one of the
following conditions is fulfilled. (i) If a specified timeout t
expires, Alice gets her money back. (ii) If Bob presents a pre-

image rA for a certain hash value H(rA) chosen by Alice,
Bob gets the money.

An MHP in LN concatenates several HTLCs aiming for
an atomic payment. In a nutshell, suppose again there is a
sender U0 who wants to pay α coins to a receiver Un through
some intermediaries {Ui}i∈[1,n−1]. The payment receiver Un
chooses a random value r and sends y = H(r) to the sender.
Then the sender sets up an HTLC with U1 by creating a new
state with three outputs (output0, output1, output2) where
output0 contains α coins, output1 contains U0’s balance
minus α, and output2 contains U1’s balance. The HTLC
specifies that output0 can be spent by U0 if timeout n · T is
expired, or by U1, if she knows a value x such that H(x) = y.
Then U1 sets up an HTLC with U2 in a similar manner using
the same hash y but a different time, (n − 1) · T . This step
is repeated until the receiver is reached, with a timeout of T .
We call this process the setup phase. Thereafter, the receiver
can reveal r and claim α coins from the left neighbor. Using
r, Un−1 can claim α coins from Un−2 and so on, in a second
phase, which is called open phase. In this way, all payments
can be performed atomically through the path.

Note that in the open phase, each pair of parties can either
agree to update their channel to a new state off-chain, where
finally Un has α coins more, or otherwise the receiver can
publish the state and a transaction with witness r on-chain.
The timelocks of the HTLCs are staggered, i.e., they increase
from right to left, because we need to give enough time to an
intermediary party to claim her money from the left neighbor,
when her right neighbor reveals r and spends the output of
the corresponding HTLC. LN payments thus require (i) two
rounds of pairwise, sequential communication from sender to
receiver and (ii) a linear collateral lock time in terms of the
path length. This opens the door to denial-of-service attacks,
also called griefing attacks [11] in the literature. Another attack
that threatens the security of the HTLC-based protocols is the
wormhole attack [17]. This attack allows two colluding users
to exclude honest intermediaries from the payment and steal
their fees.

Blitz. Blitz [2] recently improved on that by requiring
only one round of communication through the path, and a
constant collateral lock time, while guaranteeing security in
the presence of malicious intermediaries. In this protocol, the
sender creates a unique transaction Enable Refund, which
is denoted by txer. This transaction acts as a global event
and makes the refunds atomic, following a pay-unless-revoke
paradigm. On a high level, each party Ui for i ∈ [0,n − 1],
creates an output of α that is spendable in two ways: (i) Ui+1

can claim it after some specific time T , or (ii) Ui can refund
the coins if txer is on the ledger before that time T . If all
channels are updated from sender to receiver in this way, the
receiver sends a confirmation to the sender and the payment
is considered successful. Otherwise, if any update fails, the
sender posts txer before time T to the ledger to trigger all
refunds.

Note that in LN, payments in the pessimistic case are
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performed sequentially. In Blitz, instead, in the case of failure,
all refunds can be performed in parallel whenever txer appears
on the ledger. Because of that, the collateral lock time in Blitz
for each party is constant, thereby greatly reducing the effects
of a griefing attack against Blitz compared to protocols with
a linear collateral lock time.

III. SOLUTION OVERVIEW

In this work, we go beyond the path restriction of the exist-
ing PCN constructions. We propose a protocol that enables
atomic multi-channel updates across networks of channels
with arbitrary topologies in a secure way. The networks
may contain multiple senders and receivers, and they do
not necessarily need to be connected. Among others, this
feature allows us to virtually connect distinct PCNs sharing the
same blockchain for specific payments. We start by informally
presenting the security and privacy goals we aim to achieve
and then give a high level explanation of our construction.

A. Security and privacy goals

In this work, we consider two security and privacy notations
of interest which are informally defined as follows along with
the adversary model we consider. For formal definitions, we
refer the reader to Appendix D.
(S1) Atomicity. A multi-channel updates protocol achieves
atomicity against rational adversaries, if for all channels with
at least one honest user either all or none of the updates
are successful. Note that this notion only makes sense for an
adversary model where in each channel (i) at least one user is
honest and (ii) a potential adversary behaves rationally. Two
malicious users can always, e.g., post an old channel state,
breaking atomicity, while an irrational corrupted user can do
so at the cost of losing her funds.
(P1) Strong value privacy. We say that a multi-channel
updates protocol achieves value privacy if in the optimistic
case (i.e., when the protocol is executed completely offline),
for each channel, no party except for the channel owners
can determine the payment value. Note that this property
is stronger than value privacy as defined in AMCU [16].
In AMCU, each channel’s payment value is known to all
parties involved in the protocol, and the privacy of values are
preserved only against parties not involved the protocol.
Assumptions. We assume that there is a secure and authenti-
cated channel between each protocol participant. This can be
realized in practice by establishing TLS channels.

B. Key idea

The approach we follow to construct our protocol is reminis-
cent of the pay-unless-revoke paradigm adopted in Blitz [2],
but it proceeds the other way around and it should thus be
seen as a revoke-unless-pay paradigm, as discussed below.
In particular, for each channel, we aim to design an update
contract that simultaneously allows the receiver to claim her
coins if all payments are successful and allows the sender to
refund her coins if at least one channel fails to perform the
payment. We propose our solution in an incremental way. First,

we start with a high-level overview of the approach. Then, we
discuss the challenges and possible solutions, until reaching
the final protocol.

Let {γi}i∈[1,n] be the set of involved payment channels. For
each channel γi, based on the payment direction, we define
one party as the sender, denoted by γi.sender, and one as the
receiver, denoted by γi.receiver. We call the payment value
for this channel αi. As a high-level abstraction, γi.sender
splits αi coins from her balance in the channel’s current state,
and generates a new output. This output can be spent by the
receiver if all payments are successful, or can be refunded
to the sender if at least one payment fails. In other words,
we need to overcome two challenges. First, the design should
be such that if a sender refunds her coins, then all other
senders can also do that. Second, if the payment in a channel
is successful or a receiver is able to claim her coins, then
payments in all other channels are forced, and senders cannot
refund.

For the first challenge, we make all refunds possible only if
a timeout T expires, so after this time, all senders can refund
their coins if the coins have not been spent by the receivers. In
other way, we give a time T to all users to finalize payments
in their channels. If the payment in a channel has not been
finalized until this time, the sender can use a refund transaction
and get back her coins. T is a protocol parameter, independent
of the number of channels, and the same for all channels.

For the second challenge, we make payments atomic using a
global event. For each channel, the sender updates the channel
and creates a payment transaction, which transfers coins to
the receiver only after a global event occurs before time T .
When all channels are updated correctly, senders are expected
to finalize their channels, transferring coins to their receiver
neighbor. In this case, if at least one receiver does not receive
coins, the global event will be triggered before time T , and
all payment transactions will become valid. Then, receivers
can claim their cash. This global event is the appearance of
a specific transaction on the ledger, which we call Enable
Payment transaction, and denote it by txep. This transaction is
similar to Enable Refund transaction in the Blitz protocol, but
the logic is reversed. Instead of refunds, we make payments
dependent to a global event.

Update contract. For easing the presentation, let us assume
first that there is a trusted user, who creates txep and is
responsible for posting it to the ledger. txep contains outputs to
all receivers, which is the key to achieve atomicity. We discuss
the structure of the update contract below, which makes both
the payment and the refund available to the channel owners. In
more detail, for each channel γi, the sender γi.sender creates
three transactions: txstate, txr, and txp. txstate is a new state
transaction, where αi coins from the sender are put in a
contract which can be spent by the other two transactions.
Transaction txr refunds back the αi coins to the sender if a
timeout T expires. Transaction txp has inputs from txep and
txstate and transfers the coins to the receiver, if txep is on
the ledger before time T . The design of these transactions is
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shown in Figure 3. The sender sends txstate and the signed
txp to the receiver, who verifies the messages and updates the
channel to the new state txstate together with the sender. In
the case of success, the receiver sends an endorsement to the
trusted user.

txstate

txep

txp

txr

αi

xSi − αi

xRi

ε

...

...

αi

αi + ε

Si

Si

Ri

Ri

pkSi

pkRi

pkRi

pkSi

pkSi
, pkRi

≥ T

+∆

+ tc + ∆

pkSi

pkRi

Figure 3: Update contract for the channel γi between two
neighboring users γi.sender and γi.receiver with the new state
txstate. xSi is the amount that Si = γi.sender owns and xRi

is the amount that Ri = γi.receiver owns in the state before
txstate.

Atomic payments. If the trusted user receives endorsements
from all receivers, she informs all parties to finalize their
channels and to transfer coins to receivers safely. There are
two error cases. (i) The trusted user does not receive the
endorsement from every receiver. In this case, no party will
get a message from the trusted user to finalize the channel, so
all channels are safe, and after time T they can be restored to
the initial state based on refund transactions. (ii) If a sender
gets the finalize message from the trusted user but does not
finalize her channel, the corresponding receiver informs the
trusted user to put txep on-chain before time T in order to
force all payments.

At this point, our goal is to eliminate the trusted user
assumption. Indeed, if we elected one of the parties for
creating and publishing txep, that party might act maliciously
and break atomicity. For instance, by not posting txep to the
ledger when some senders do not finalize their channel, or
by posting txep when some channels have been updated with
txstate and some not, payments would no longer be atomic.
Our strategy is thus to enable all receivers to publish txep,
but only after every channel updated already to txstate. For
this, each receiver creates her own txep. Each txep has an
input conditioned on the public keys of the creator and of
all senders, and it has outputs to all receivers. An example of
this transaction is shown in Figure 4.

All receivers send their txep to all other parties, and this time
each sender creates one txp per txep. Then, for each channel,
the sender and the receiver jointly update the channel using
txstate as we discussed earlier. If no error occurs, the receiver
sends a first endorsement to all parties instead of the trusted
user. Each sender waits until receiving all endorsements to

make sure that all channels are updated using txstate. After
that, the sender sends her signature to each txep to the creator.
Eventually, when all receivers get complete signatures to their
txep, they send their second endorsement and the senders
are safe to start finalizing channels and transfer coins to the
receivers, because all channels have been updated with txstate.
If some transfer fails, the receivers can post txep on the ledger
and force all payments.

We argue that atomicity holds as follows, keeping in mind
our adversary model. An honest sender will only update
the channel with her receiver neighbor, if she receives the
second endorsement from all receivers, which means that
every receiver is able to force payments via txep. Similarly,
honest receivers will only give their second endorsement if
they received all the signatures from txep. This means that if
a malicious user does not send her signature or endorsement
to any or some of the users, this will not break atomicity but
potentially only prevent updates from taking place or force the
updates via some txep. Moreover, if a malicious receiver sends
either endorsement prematurely, she will only potentially lose
money without side effect to other channels, i.e., in her channel
the sender may keep her money, but the other channels are
unaffected. Finally, malicious users are rational, which means
they will either refund their money or claim the money from
a forced update, if possible.

...

ε

ε

ε

n.ε

pkRi
, pkS1

, pkS2
, ..., pkSn

txin
i

txep
i

pkR1

pkRn

pkR2

+ tc + ∆

+ tc + ∆

+ tc + ∆

Figure 4: Transaction txep
i created by receiver Ri for a payment

with n channels, where the set of all senders is {Sj}j∈[1,n] and
the set of all receivers is {Rj}j∈[1,n]. This transaction enables
all payments and spends the output of transaction txin

i .

Timelocks. txp should be valid until time T , and txr should
be valid after that time. The latter can easily be handled
by using an absolute timelock of T , which is supported by
the underlying scripting language of most cryptocurrencies,
including Bitcoin. However, we do not have access to scripting
functionalities to define outputs that are valid before time T .

We can solve this problem by applying relative timelocks. In
particular, we add a relative timelock of ∆ for the transaction
txp, where ∆ is the blockchain delay. According to this
timelock, if txstate appears on the ledger after time T , users
have enough time to post txr before the relative timelock of
txp expires. In other words, txr is always accepted over txp,
in the case that both are published after time T . On the other
hand, if txstate appears before time T −∆, users have enough
time to post txp and force the payment.

One other issue we should consider is the unfair advantage
of a receiver who closes her channel in advance and puts her
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txep on the ledger just before time T − ∆. In this case, the
receiver can post txp and force the payment in her channel,
but other receivers, who have not closed their channels, do
not have enough time to react to txep. To prevent this issue
and give enough time to all users to close their channels and
post txp to the ledger, we add a relative time of tc + ∆ to
the outputs of txep, where tc is an upper bound on the time
a user needs to close a channel (Figure 3). For preventing a
race condition in a specific corner case, we refer the reader to
Appendix B.
Protocol overview. To wrap up, our protocol proceeds in four
main phases, as described below and visualized in Figure 5.

1) Pre-Setup: Each receiver creates her own txep, and sends
it to all other parties. Each txep, in addition to the creator’s
signature, requires signatures from all senders, and has
one output for each receiver.

2) Setup: The senders create txstate and txr, and also one
txp per txep. They send txstate and all txp to their receiver
neighbor. Also, they include their signatures for every txp

in the message to their receiver neighbor. This ensures
that receivers can post txp on the ledger regardless of
which txep is posted in the end. Eventually, the receivers
verify the messages and send their first endorsement to
all parties.

3) Confirmation: When a sender gets all such endorse-
ments, she is sure that all channels have been updated
by txstate. Then, the sender signs each txep and sends it
to the corresponding receiver. When a receiver gets the
signatures from all senders, she is able to post her txep

on the ledger, so she sends sends a second endorsement
to all parties.

4) Finalizing: When the senders get the second endorsement
from all receivers, they know that all receivers are able
to put their txep on the ledger, so they can start updating
their channels safely. When one update fails and the
corresponding receiver does not get the coins, she checks
if a txep is on the ledger or else posts her own txep. Either
way, she claims her coins via some txp.

Fast payments. Similar to the Lightning Network, in the
case that all users are honest, updates can be carried out
almost instantaneously, i.e., the channels are updated as soon
as the second endorsements are received from receivers. When
the senders are ensured that each receiver has all signatures
required for spending her txep, they can safely update their
channels and pay coins to their right neighbors. We emphasize
that enabling fast payments is the main reason for flipping the
paradigm from pay-unless-revoke (txer) to revoke-unless-pay
(txep). Notice that if there are multiple transactions txer there is
no way to safely start these updates: If a malicious sender posts
a transaction txer after such an update, other honest channels
can refund, while this channel performed the payment.
Honest update. The update contract and the corresponding
transactions txstate, txr, and txp are exchanged between two
parties sharing a channel to guarantee that honest users do
not lose their coins and atomicity holds during the protocol

1. Pre-Setup message

2. Setup message
3. 1st Endorsement

4. Confirmation message

5. 2nd Endorsement

6. Post txep

sender

Blockchain

set of all senders set of all receivers receiver

Figure 5: For each channel, first, the receiver sends her own
txep to all other parties (the Pre-Setup message). The sender
creates txstate and one txp for each txep, then sends all these
transactions to the receiver (Setup message). After verifying
the message, the receiver sends her first endorsement to all
other parties. When the sender gets all endorsements, she
sends her signature to each txep to its creator (Confirmation
message). After getting all signatures and verifying them, the
receiver sends the second endorsement to all other parties.
Finally, when the receiver has enough signatures as her txep

witnesses, and the payment is not received, she will post her
txep to the ledger.

execution. However, when one of the two channel owners is
able to convince the other one that she is able to force the
payment (or refund) by posting txp (or txr) to the ledger, the
two parties can update the channel honestly to a state on which
both agree. In other words, when both parties of a channel are
honest, no on-chain transaction is required.

IV. CONSTRUCTION

A. Building blocks

Digital signatures. A digital signature scheme consists of
three algorithms: KeyGen, Sign, Vrfy.
(sk, pk)← KeyGen(1λ) is a PPT algorithm, taking the security
parameter 1λ as input and returning a public key pk and the
corresponding secret key sk.
σ ← Sign(sk,m) is a PPT algorithm, taking a secret key sk
and a message m as inputs and returning a signature σ.
{0, 1} ← Vrfy(σ,m, pk) is a DPT algorithm, taking signature
σ, a message m, and a public key pk as inputs, and returning
1 if σ is a valid signature on message m and created by the
secret key corresponding to pk. Otherwise it returns 0.
Ledger and payment channels. In this work, we use a
ledger and a PCN as black-boxes. The ledger keeps a record of
balances of users and all transactions. The PCN supports the
operations open, close, and update. For simplicity, we assume
the payment channels involved in the multi-channel updates
protocol to be already open. We assume that ledger and PCN
expose the following API to the users:
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• getBalance(U ): Returns the sum of all coins in the UTXOs
owned by user U on the ledger.

• splitCoins(U , v,φ): Aggregates all UTXOs owned by U and
returns a transaction with an output containing v coins,
which is conditioned on φ. If the balance of U is greater
than v, the rest is sent to an address controlled by U . If
the balance of U is less than v, the procedure returns ⊥.

• publishTx(tx): Appends the transaction tx to the ledger after
at most ∆ rounds, if witnesses are valid, inputs exist and
are unspent, and the sum of coins in their outputs is less
than or equal to the sum of coins in the inputs.

• updateChannel(γ, txstate): Initiates an update in the channel
γ to the state defined by txstate, when called by a user ∈
γ.users. The update is performed after at most tu rounds.
Upon the termination, the procedure returns UPDATE-OK
in the case of success, and UPDATE-FAIL in the case
of failure to both users.

• closeChannel(γ): Closes the channel γ when called by a
user ∈ γ.users. The latest state γ.st appears on the ledger
after at most tc rounds.

B. Protocol description

Let U := {(γi,αi)}i∈[1,n] be the set of all updates, where
{γi}i∈[1,n] denotes the involved payment channels and αi
denotes the payments value through the channel γi. Let dealer
be the trigger party, S := {γi.sender}i∈[1,n] the set of all
senders, and R := {γi.receiver}i∈[1,n] the set of all receivers.
S and R are known to all parties. A simplified version of
the Thora protocol and the used macros are shown below. We
refer the reader to Appendix C5 for a full description of the
protocol. The main phases of the protocol are as follows.

Initialization. First, we make sure that all parties are aware
of every channel who is participating in the update, then the
protocol starts from the Pre-Setup phase.

Pre-Setup. Each user γi.receiver creates txin
i , which has an

output conditioned on the public keys of γi.receiver and all
senders in S. The value of the output is n · ε, where ε is
the smallest possible amount of cash. Creating txin

i is done
by calling the procedure GenTxIn. Then, γi.receiver calls
GenTxEp, which takes txin

i and R as inputs, and returns a
transaction txep

i with outputs to all users in R, each containing
ε coins. γi.receiver sends txep

i to all users. The structure of txin
i

and txep
i can be viewed in Figure 4.

Setup. γi.sender, upon receiving {txep
j }j∈[1,n] from all re-

ceivers, verifies the correctness of these transactions. Then,
γi.sender creates txstate

i , txr
i, and {txp

i,j}j∈[1,n]. txstate
i splits

αi coins from the sender’s current balance in γ.st, which is
spendable by payment or refund transactions. txr

i returns the
coins back to γi.sender only if the time T elapses. txp

i,j has
an input from txep

j and sends the split coins to γi.receiver.
The sender creates txstate

i by the procedure GenState, txr
i by

the procedure GenRef, and txp
i,j by the procedure GenPay.

γi.sender sends txstate
i and all signed txp

i,j to the receiver
neighbor. We refer the reader to Figure 3 for the structure
of these transactions. γi.receiver checks the correctness of the

transactions and signatures, then sends the first endorsement
to all parties.
Confirmation. When a sender γi.sender gets first endorse-
ments from all parties in R, it updates γi using txstate

i .
If the update is performed successfully, γi.sender sends a
signature on each txep

j to the receiver γj .receiver. Each receiver
γi.receiver waits for all signatures on txep

i and then sends
the second endorsement to all parties if γi has been updated
successfully.
Finalizing. Upon receiving the second endorsements from all
parties in R, a sender can safely update the channel to its final
state with the receiver neighbor. When updating a channel fails
in this phase, and no txep is on the ledger, the receiver can
post her txep and force the payment.
Respond. This phase is executed in every round by all users.
Each sender γi.sender checks whether the current round is
greater than T , γi has been closed, and at least one txep

is on the ledger. If so, γi.sender posts txr
i to the ledger

before γi.receiver force the payment by posting a payment
transaction. On the other side, each receiver γi.receiver checks
whether one txep

j has appeared on the ledger. If so, she closes
the channel γi. After the appearance of txstate

i on the ledger,
she posts txp

i,j to the ledger and force the payment through
the channel γi.

The Thora multi-channel updates protocol

• Let dealer be a selected user as the trigger party, T the upper
bound on the time we expect the updates to be performed, and
∆ the blockchain delay.

• Let U := {(γi,αi)}i∈[1,n] be the set of all ongoing updates.
Each αi is known only for parties in γi.users.

Initialization
dealer

1) Send message (init, {γi}i∈[1,n]) to all parties in
{γi.sender}i∈[1,n] ∪ {γi.receiver}i∈[1,n].

All parties upon receiving (init, {γi}i∈[1,n]) from dealer

1) Verify the channels set. If decision is not participating in the
protocol, return abort.

2) Set S := {γi.sender}i∈[1,n] , R := {γi.receiver}i∈[1,n], and
P := S ∪R.

3) Go to the Pre-Setup phase.
Pre-Setup

γi.receiver

1) Set txin
i := GenTxIn(γi.receiver, {γk}k∈[1,n]).

2) Set txep
i := GenTxEp( {γk}k∈[1,n], txin

i ).
3) Send txep

i to all parties in R∪ S.

All users upon receiving {txep
j }j∈[1,n] from all parties in R

1) For all j ∈ [1,n], If CheckTxEp(txep
j ,γj .receiver,

{γk}k∈[1,n]) = ⊥, return abort.
2) Go to the Setup phase.

Setup

γi.sender

1) Set txstate
i = GenState(αi, T , γi).

2) Set txr
i = GenRef(txstate

i , γi.sender).
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3) For all j ∈ [1,n], let θi,j be the output of txep
j

which corresponds to γi.receiver, then create txp
i,j :=

GenPay(txstate
i , γi.receiver, θi,j) and the corresponding sig-

nature σγi.sender(tx
p
i,j).

4) Send (txstate
i , {txp

i,j ,σγi.sender(tx
p
i,j))}j∈[1,n]) to γi.receiver.

γi.receiver upon receiving

(txstate
i , {(txp

i,j ,σγi.sender(tx
p
i,j))}j∈[1,n]) from γi.sender

1) If txstate
i 6= GenState(αi, T , γi), return abort.

2) If any signature σγi.sender(tx
p
i,j) is not correct, return abort.

3) For all j ∈ [1,n], let θi,j be the output of txep
j owned by

γi.receiver. if txp
i,j 6= GenPay(txstate

i , γi.receiver, θi,j), return
abort.

4) Send message (setup-oki) to all parties in P .

All users upon receiving { (setup-okj }j∈[1,n])

from all parties in R

1) Go to the Confirmation phase.
Confirmation

γi.sender

1) updateChannel(γi, tx
state
i ).

2) If time tu has expired and the message (UPDATE-OK) has not
been returned, return abort.

3) For all j ∈ [1,n], send σ(txep
j ) to γj .receiver.

γi.receiver upon receiving {σ(txep
i )}j∈[1,n]) from all parties in S

1) If (UPDATE-OK) has been returned and for all
j ∈ [1,n], σ(txep

j ) is a valid signatures, send message
(confirmation-oki) to all parties in P , otherwise return
abort.

All users upon receiving { (confirmation-okj }j∈[1,n])

from all parties in R

1) Go to the Finalizing phase.
Finalizing

γi.sender

1) Set txtrans
i = GenTrans(αi, γi).

2) updateChannel(γi, tx
trans
i ).

γi.receiver

1) If the message (UPDATE-OK) has not been received for the
final transfer, and no txep is on the ledger, before time T −
tc−3∆, combine received signatures from senders for txep

i with
own signature inside σ(txep

i ) and calls publishTx(txep
i ,σ(txep

i )).
Respond(Executed in every round τx)

γi.receiver

1) If τx < T − tc − 2∆ and at least one txep is on-chain,
closeChannel(γi).

2) After txstate
i is accepted on the blockchain within at most tc

rounds, wait ∆ rounds. Let σ(txp
i ) be a signature using the

secret key skγi.receiver in addition to received signature from
γi.sender for txp

i . publishTx(txp
i ,σ(txp

i )).

γi.sender

1) If τx > T , γi is closed and txstate
i and at least one txep is on

the ledger, but not txp
i , publishTx(txr

i,σγi.sender(tx
r
i)).

Subprocedures used in the multi-channel updates protocol

GenTxIn(R, {γk}k∈[1,n]):
1) n := |{γk}k∈[1,n]|
2) φ := MultiSig(R, γ1.sender, γ2.sender, ..., γn.sender).
3) Return txin := splitCoins(R,n · ε,φ).

GenTxEp({γk}k∈[1,n], txin):

1) n := |{γk}k∈[1,n]|
2) If txin.output[0].cash ≤ n · ε, return ⊥.
3) outputList := ∅.
4) For each Ri := γi.receiver for all i ∈ [1,n]:
• outputList = outputList ∪ (ε,OneSig(Ri) ∧
RelTime(tc + ∆))

5) id := H(txin.output[0], outputList).
6) Return txep := (id, txin.output[0], outputList).

CheckTxEp(txep, R,{γk}k∈[1,n]):

1) n := |{γk}k∈[1,n]|
2) If txep.input.cash ≤ n · ε or txep.input.φ 6=

MultiSig(R, γ1.sender, γ2.sender, ..., γn.sender), return
⊥.

3) If |txep.output| 6= n, return ⊥.
4) For all outputs (cash,φ) ∈ txep.output if cash 6= ε or

φ 6= (OneSig(x),RelTime(tc + ∆)), where x is one of the
receivers, return ⊥.

5) Return >.

GenState(α, T , γ):

1) Let θ′ := γ.st be the current state of channel γ and con-
tains two outputs θ′s = (xs,OneSig(γ.sender)) and θ′r =
(xr,OneSig(γ.receiver)).

2) If xs < α return ⊥.
3) Return θ := (θ0, θ1, θ2) such that:
• θ0 := (α, (OneSig(γ.sender) ∧ AbsTime(T )) ∨

(MultiSig(γ.sender, γ.receiver) ∧ RelTime(tc + ∆)))
• θ1 := (xs − α,OneSig(γ.sender))
• θ2 := (xr,OneSig(γ.receiver))

GenRef(txstate, γi.sender):

1) Return a transaction txr such that txr.input := txstate.output[0]
and txr.output := (txstate.output[0].cash,OneSig(γi.sender).

GenPay(txstate, γ.receiver, θ):

1) Return a transaction txp such that txp.input :=
(txstate.output[0], θ) and txp.output :=
(txstate.output[0].cash + θ.cash,OneSig(γ.receiver).

GenTrans(α, γ):

1) Let θ′ := γ.st = (θ′0, θ′1, θ′2) be the current state of channel γ.
2) Return θ := (θ0, θ1) such that:
• θ0 := (θ′1.cash,OneSig(γ.sender))
• θ1 := (θ′2.cash + α,OneSig(γ.receiver))

V. SECURITY ANALYSIS

A. Security model

We model the security of our multi-channel updates protocol
in the synchronous setting and global universal composability
(GUC) framework [9]. Our security model is similar to the
one adopted in prior work [4, 2, 10]. In particular, the global
ledger L is modeled by the functionality Gledger, which is
parameterized by a signature scheme Σ and a blockchain
delay ∆. We model the notion of communication by the ideal
functionality FGDC and the time by Gclock. Moreover, we
define an ideal functionality Fchannel, which provides open,
update, and close operations for payment channels.
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The formal security analysis is detailed in Appendix C.
In this section, we briefly present a high-level overview of
the security model. First, we provide an ideal functional-
ity Fupdate, which describes an ideal multi-channel updates
protocol with atomicity and strong value privacy properties.
Fupdate is parameterized by a blockchain delay ∆ and a time
T , which determine an upper bound on the expected time for
a successful Thora payment. The ideal functionality describes
input/output behaviors of the payment protocol users, and their
impacts on the global ledger.

We then describe the Thora protocol Π formally, and show
that Π GUC-realizes Fupdate. Intuitively, this means that we
design a simulator X , which translates any attack on the
protocol Π on the ideal functionality Fupdate. We then show
that no PPT environment can distinguish between interacting
with the real world and interacting with the ideal world. Thus,
Π provides both atomicity and strong value privacy. This is
stated by Theorem 1 and formally proven in Appendix C.

Theorem 1. For any ∆,T ∈ N, the protocol Π GUC-realizes
the ideal functionality Fupdate.

B. Informal security analysis

Here we informally argue why Thora achieves atomicity
and strong value privacy as defined in Section III-A.

Atomicity. We want to prove that if at least one of the
involved channels is updated successfully and the coins are
sent from the sender to the receiver, then all updates in other
channels are forced as well. In other words, all receivers can
post txp to the ledger. Furthermore, if one of the senders
publishes txr and refunds her coins, all other senders can do
that. Assume that for some i ∈ [1,n] channel γi is updated and
αi coins are transferred from γi.sender to γi.receiver. There
are two possible cases as follows.

1) γi.sender has finalized updating the channel γi, and sent
αi coins to γi.receiver. We can infer that γi.sender has
received confirmation-ok from all receivers, so each
receiver is able to put a txep on-chain. If the final update of
a channel fails, the corresponding receiver posts her txep

to the ledger and then publishes the payment transaction.
2) γi.receiver has posted one payment transaction txp

i,j to
the ledger for some j ∈ [1,n]. This means that txep

j

is on the ledger, so all other receivers can publish their
corresponding payment transactions and force the update
in their channel. Note that txep

j contains outputs to all
receivers. Otherwise, at least one receiver would not send
message setup-ok to the senders, and honest senders
never send their signatures to txep

j , and γi.receiver cannot
post txep

j to the ledger.

If no transaction txep is put on the ledger, and no channel
is updated honestly to carry out the payment, all senders of
channels that have passed the Setup phase can simply put txr

on the ledger after time T and refund their coins. In other
words, if one sender refunds her coins by publishing txr, we
know that the timeout T has expired, and no txep has been

posted on the ledger. Thus, other senders can also put their
txr on the ledger and refund their coins.

Strong value privacy. For an optimistic execution of the
protocol, the value of payment αi through each channel γi
is only known to the sender and the receiver of this channel,
where both of them are honest. αi is used only in txstate

i , txr
i,

and {txp
i,j}j∈[1,n]. These transactions are exchanged between

γi.sender and γi.receiver through secure and authenticated
channels, and they are not visible to an adversary unless they
are posted to the ledger in the case of a dispute.

VI. EVALUATION

In this section, we analyze the performance of our con-
struction. We conducted an asymptotic analysis to determine
the number of transactions required on-chain and off-chain.
We also built an implementation to evaluate the size of these
transactions and to check the compatibility of the construction
with Bitcoin’s scripting functionalities. The implementation is
open-source, and the code is publicly available [24]. Let n
be the number of payment channels to be updated, which
means that there are n possibly non-distinct senders and n
possibly non-distinct receivers, and m ∈ [0,n] be the number
of channels in which parties do not agree to update off-chain,
and therefore on-chain transactions are required to settle the
dispute.

Number and size of transactions. The (worst-case) on-chain
overhead of Thora is linear, requiring 2m+1 transactions to be
posted on-chain. In Thora, users are required to store a linear
number of off-chain transactions per channel (which results in
a quadratic number of total off-chain transactions). While the
on-chain overhead the same for other schemes, the off-chain
overhead is only constant per channel (or linear in total), see
Table II. We argue that this is a reasonable price to pay for
supporting arbitrary topologies, as (i) this increase does not
incur any on-chain fees and (ii) the size is small enough in
practice to be easily handled even on mobile devices, as we
show now.

The transaction txep is 141n + 160 bytes large since it
requires an output and a signature for each channel. Making
use of Taproot’s aggregated Schnorr signatures [23], one can
reduce the size of this transaction, which would be at most
38n + 256 bytes.1 This is achieved by eliminating n public
keys (32 bytes) and signatures (70-72 bytes) from the redeem
script in txep. Instead, add one Schnorr public key (32 bytes),
which is the aggregation of public keys of one receiver and n
senders, and one Schnorr signature (64 bytes).

Moreover, each channel requires n transactions txp (501
bytes each), one transaction txr (272 bytes), an input transac-
tion to txep (224 bytes), a channel update of size 380 bytes
for initiating the update and another one of size 337 bytes
for finalizing the update. For the whole protocol execution,
this leads to an off-chain storage overhead of 539n + 1469
bytes per channel as we plot in Figure 6. For example, even

1Taproot transactions make use of the SegWit format which introduces more
efficiency in terms of size.
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when updating n = 100 channels, the off-chain transaction
overhead is only around 55KB per channel, or around 5.5MB
are exchanged in total.

Collateral. Because the success of the update depends on the
global event txep, Thora manages a constant collateral lock
time. For the payment protocols LN [21] and AMHL [17]
this collateral is linear in the number of channels, as they
require a growing timelock for each channel to propagate
the preimage required for unlocking. In PT [12], the time is
logarithmic due to the underlying tree-based structure. Finally,
Blitz [2], Sprites [19], and AMCU [11] achieve also constant
collateral, at the price of various security, expressiveness, and
compatibility trade-offs (cf. Tables I and II).

Computational overhead. Computationally, the protocol
needs to create and verify transactions (mostly string oper-
ations) and handle signatures. In particular, the computational
overhead is dominated by computing and verifying signatures.
Each sender needs to sign up to 2n + 2 transactions, more
specifically the channel update transaction txstate, one force
refund transaction txr which they need only in case of dispute,
n force payment transactions txp for their receiver neighbors,
and n transactions txep, one for each receiver. Each receiver
signs up to n + 2 transactions, i.e., the channel update
transaction txstate, one force payment transaction txp which
they need only in case of dispute, and their own transaction
txep. In our implementation, the time required for creating and
verifying one signature is about 30ms on average.

On-chain comparison with LN and Blitz. In Table III,
we compare the on-chain costs of Thora with LN and Blitz,
the two state-of-the-art solutions for path-based payments.
We assume that Thora is used to conduct such a payment
and focus on the on-chain load on the blockchain together
with the associated fees, which we calculate using the current
price of Bitcoin in USD [6] and the current average fee
per bytes [7] (February 2022). When all parties are honest,
both protocols are executed completely off-chain, and no
transaction is required to appear on the ledger, thus here we
are interested in the case where parties need to force either
the payment or the refund.

Thora and Blitz have similar message costs, just the cost
for the payment and refund transactions are inverted, which
corresponds to the fact that one adopts the pay-unless-revoke
paradigm and the other one the revoke-unless-pay paradigm.
The size of the channel state transaction holding the update
contract (370 bytes) is the same in all three constructions,
due to our usage of P2SH addresses. The size of the payment
transaction in LN is 451 bytes, the size of the refund is 302
bytes. The main difference between the on-chain overhead of
these two protocols is txep in Thora. In the case of forced
payments, in addition to one txp per channel, also one txep

in total has to be posted to the ledger to enable payments in
all channels. This overhead is present in the Blitz refund case.
Aside from this, the on-chain fees of Thora are +/ − 6% of
the fees of LN.

Collateral # tx (on-chain) # tx (off-chain)
LN [21] Θ(n) Θ(n) Θ(n)

AMHL [17] Θ(n) Θ(n) Θ(n)
AMCU [11] Θ(1) Θ(n) Θ(n)

PT [12] Θ(logn) Θ(n) Θ(n)
Blitz [2] Θ(1) Θ(n) Θ(n)

Sprites [19] Θ(1) Θ(n) Θ(n)
Thora Θ(1) Θ(n) Θ(n2)

Table II: Asymptotic comparison of current solutions, with n
being the number of channels.
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Figure 6: Per-channel off-chain storage overhead for varying
number of synchronized channels.

VII. APPLICATIONS

Most of the existing PCN solutions only support payments
from one sender to one receiver with a path of open channels
between them. This limitation prevents the design of applica-
tions with multiple senders or multiple receivers, which might
require to perform payments through two or more distinct
PCNs sharing the same blockchain in an atomic way. These
limitations can be overcome with Thora. Here, we provide
some examples beyond simple path-formed payments.
Mass payments. Mass payments can be used by entities
that need to perform a high volume of payments. Sup-
pose that a single entity S wants to pay multiple recipi-
ents R1,R2, ...,Rn simultaneously, with corresponding values
α1,α2, ...,αn. Here, atomicity can be highly desirable as it
guarantees that either all payments are performed correctly
or the sender refunds them back. For simplicity, we assume
that S has a direct channel γi to each receiver Ri. The
sender S can use Thora with the input of the update set
U := {(γ1,α1), (γ2,α2), ..., (γn,αn)} to perform a mass
payment in an atomic and off-chain way. Going one step
further, the sender does not need to be directly connected
to all receivers, but instead can set up updates via some
intermediaries.
Rebalancing. In a bidirectional channel, when payments
in one direction are highly frequent, the channel becomes
skewed and is reduced to a unidirectional channel. Users
can close the channel and create a new channel with fresh
balances, but for that, they need to post some transactions
to the blockchain. As an alternative solution, when there is
a path of channels between the two users, they can leverage
a payment through the path to refund the depleted channel.
However, as the length of the path grows, refunding becomes
more expensive in terms of fees and collateral [11, 14].
Moreover, in some cases, rebalancing is performed through
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Overhead LN (Bytes || USD) Blitz (Bytes || USD) Thora (Bytes || USD)
Payment transaction 821m || 1.50m 642m || 1.17m 871m || 1.59m
Refund transaction 672m || 1.23m 871m || 1.59m 642m || 1.17m

Cost of enforcing pay/refund 0 257 + 35n || 0.47 + 0.06n 256 + 36n || 0.47 + 0.06n

Table III: On-chain overhead and cost comparison of LN, Blitz and Thora. n is the number of channels and m ∈ [0,n] is the
number of disputed channels.
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Figure 7: An example of rebalancing with 4 users and 5
channels. Each user holds the same coins after the rebalancing
as before, but distribution of coins through channels is changed
in order to refund depleted channels. In this case, rebalancing
can not be conducted using a single path-formed payment.

more complex topologies, and a single path payment does not
suffice. For instance, consider the example shown in Figure 7.
In this example, users hold the same amount of coins after
the payments as before, but the distribution of coins in the
channels is changed. We can perform rebalancing in this
case by initiating Thora with the input of the update set
{(γ1, 3), (γ2, 3), (γ3, 7), (γ4, 4), (γ5, 4)}. The set of senders
and receivers are defined based on the direction of the payment
in each channel.

Crowdfunding. This application is similar to mass payments,
but reversed. We have multiple senders S0,S1, ...,Sn that want
to fund one single receiver R in an atomic way. In such a case,
each sender Si may want to pay αi coins to the receiver only
when there is a guarantee that all other senders will pay their
funds in the same way. Analogous to previous cases, we can
use Thora to perform trustless and off-chain crowdfunding by
including all involved channels and corresponding payments
values in the updates set.

VIII. DISCUSSION

Enhancing privacy. In the case of a dispute when one txep

appears on the ledger, users can decide to perform honest
updates (Section III) and to post no transaction to the ledger.
In this way, they can still preserve the privacy of payment
values and save the cost of transaction fees. However, because
txep includes outputs to all receivers, receivers’ identities are
revealed publicly when txep is posted.

To enhance privacy, we can use stealth addresses [25]. On a
high level, instead of existing addresses, receivers can generate
fresh addresses for other receivers, and create txep using new
addresses. Thus, if any txep is posted to the ledger, and two

users of a channel decide to update the channel honestly,
identities will stay private from external adversaries outside of
the protocol. For more details on stealth addresses, we refer
the reader to Appendix A.

Accountability. Thora guarantees strong value privacy for
off-chain payments. However, in some applications, users may
have an interest in accounting payments instead of privacy.
For instance, in the crowdfunding application, suppose that
all senders have planned to fund the receiver entity with an
identical value. Here, the users want to be sure all updates
are consistent with the agreed payment value. In this case, the
senders can use signed versions of txstate and the set of txp

as receipts and prove their correct behavior.

Improving communication and computation
overheads. One of the drawback of Thora is the parties have
to broadcast some messages, e.g., txep or signatures, to every
single channel. This leads to a quadratic number of messages.
By making use of a dealer, which all parties send these
messages to and who aggregates the signatures and combines
all transactions txep, one could asymptotically reduce the
number of messages from quadratic to linear. Note that also
the size of the transactions is reduced in practice, since only
the aggregated signature is sent instead of every single one.
However, asymptotically, the message sizes remain quadratic,
because txep has a linear number of outputs and there is one
for every channel. Since this optimization comes at the cost
of additional synchronization, we refrained from adding it to
the protocol and instead only discuss it here.

IX. CONCLUSION

In this work, we presented Thora, the first Bitcoin-
compatible multi-channel updates protocol that guarantees
atomicity of payments without restrictions on the channel
topology. Moreover, Thora enables channel owners to keep
their payment value private.

We defined an ideal functionality to model the security and
privacy notations of interest, and showed that Thora is a secure
realization thereof within the Global Universal Composability
framework. Further, we evaluated the performance and showed
the round complexity is constant and independent of the
number of channels. Our construction does not require Turing-
complete smart contracts and can be implemented on top of
any blockchain that supports time-locks and signatures in its
scripting language.

An interesting direction of future work is exploring the
possibility to extend Thora to achieve a threshold atomicity
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property in generic channel networks. For instance a k-
threshold atomicity holds, if at least k channels are updated
successfully or else, all channels are reverted to the initial state.
This extension can further widen the range of practical appli-
cations of Thora payments. Other venues of future research
are interoperability, exploring how to refine Thora in order
to support atomic channel updates over different blockchains,
and optimizing Thora in terms of storage and communication
for more specific network topologies.
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APPENDIX

A. Stealth addresses

The stealth addresses scheme allows us to derive one-
time and fresh public keys in a digital signature scheme
for a specific user. Here, we briefly describe a basic dual-
key stealth addresses protocol (DKSAP). Assume that G is
a base point of an elliptic curve, in which the difficulty of
the elliptic curve discrete logarithm problem (ECDLP) [15]
holds. Moreover, assume that there is a user (say Alice)
with two pairs of private/public keys (a,A), (b,B) such that
A = a ·G and B = b ·G. We want to derive fresh public keys
for Alice. A DKSAP is a tuple of two algorithms DKSAP
:= (GenPk, GenSk) defined as follows.
• (P ,R)← GenPk(A,B): A PPT algorithm takes two Alice’s

public keys A,B as inputs and returns a fresh public key
for Alice P along with an additional value R, which is
required for deriving the secret key for P . For that, a random
r ←$ [0, l − 1] is sampled uniformly, where l is the prime
order of the underlying elliptic curve. Then, P is computed
as P := H(r ·A) ·G+B, H is a hash function modelled as
a random oracle. Moreover, R is computed as R := r ·G.

• p← GenSk(a, b,P ,R): A DPT algorithm takes two Alice’s
secret keys a, b and P ,R generated by GenPk algorithm as
inputs and returns the secret key corresponding to P . For
that p is computed as p := H(a ·R) + b.
Correctness of algorithms follows directly: p · G = (H(a ·

R) + b) ·G = H(a · r ·G) ·G+ b ·G = H(r ·A) ·G+B = P .
In [25] it is argued that the new address P is unlikable for a
spectator, even when observing R.

B. Race condition

When a receiver posts txep, it will appear in the ledger after
at most ∆ rounds. According to Section III, we put a timelock
of tc + ∆ on outputs of a txep to give enough time to users to
close their channels and post txp. Thus, for a rational receiver,
the latest possible time to publish txep is T − 3∆ − tc, such
that it is accepted at T − 2∆ − tc and the timelock of the
outputs runs out at T −∆. This ensures that the payment txp

has precedence over the refund txr.
However, if a receiver posts txep after T−3∆−tc and before

T −2∆− tc, the timelock on the outputs of txep could run out
just before T , at which point the refunds txr become possible.
Now, there is a potential race between the payments and the
refunds. In particular, there is a chance that one receiver can
post txp just before T , and in a another channel, a sender might
post a refund. Of course, the receiver puts mainly herself and
possibly other malicious receivers at risk, since other channels

with honest receivers will have already either updated honestly
or posted their txep before T − 3∆ − tc. However, honest
senders could be negatively affected by this.

Therefore, we can prevent this irrational race condition
of receivers by changing the spending condition of txin.
In more detail, each receiver R sets the condition of her
txin as follows: (MultiSig(R,S1,S2, ...,Sn)∧RelTime(∆))∨
(AbsTime(T − 3∆− tc)), where Si is the sender of channel
γi. According to the new condition, the receiver is forced to
post txep before T − 5∆ − tc, because otherwise, any party,
e.g., also miners, can spend txin and prevent forced payments.
This mechanism is similar to the one adopted in Blitz [2].

C. UC modeling

In this section, we formalize our construction in the global
UC framework (GUC) [9], which is an extension of the
standard UC framework [8] that allows for a global setup.
We use this global step for modelling the ledger. Through this
section, first, we provide some preliminaries. Then, we define
an ideal functionality for the multi-channel updates protocol.
Our model follows closely the model in [4, 2, 3].

1) Preliminaries, communication model and threat model:
In the real world, a protocol Π is executed by a set of parties P
and in the presence of an adversary A. A security parameter
λ ∈ N and an auxiliary input z ∈ {0, 1}∗ are given to the
adversary as inputs. We consider a static corruption model,
which means that A can corrupt any party Pi ∈ P at the
beginning of the protocol execution. A controls corrupted
parties and learns their internal states. All parties in P and
A take their input from a special entity called environment
E , which represents everything external to the protocol. This
entity observes all output messages from participants. We
assume that the communication network is synchronous, and
the protocol execution takes place in rounds. The global
ideal functionality Gclock [13] represents a global clock that
proceeds to the next round if all honest parties indicate that
they are ready to do so. Every entity always knows the current
round. Communications between parties in P are through
authenticated channels with guaranteed delivery after exactly
one round. If a party P sends a message to party Q in round
t, then Q receives that message in the beginning of round
t + 1 and knows that P has sent the message. We model
authenticated channels by an ideal functionality FGDC [10].
The adversary can read and reorder the messages sent in
the same round, but can not modify or delay messages.
Communications involving A, E or the simulator X and every
computation that a party executes locally take zero rounds.

2) Ledger and channels: We model a UTXO based
blockchain in the ideal functionality Gledger. We denote the
blockchain delay as ∆, and the blockchain’s signature scheme
by Σ. Gledger communicates with a fixed set of parties P .

Initially, the environment E chooses a key pair (skP , pkP )
for each P ∈ P and registers it to the ledger by sending
(sid,register, pkP ) to Gledger. Also, E sets the initial
state of L, which is a publicly accessible set of all published
transactions. A party P ∈ P can post a transaction tx via
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message (sid,POST, tx) to Gledger. The transaction will be
added to the ledger after at most ∆ rounds, if it is valid. The
exact number of delay rounds is chosen by the adversary. In
this work, we consider a simplified model for the underlying
blockchain and assume that the set of users is fixed instead of
allowing them to join or leave dynamically. For a more precise
model, we refer the reader to works [5]. We define an ideal
functionality Fchannel [1], which is built on top of Gledger
and provides open, update, and close procedures related to
payment channels. We assume that closing a channel takes
at most tc rounds and updating a channel takes at most tu
rounds. For simplicity, we assume that channels involved in the
multi-channel updates protocol have already been registered
and opened with the ledger functionality.

The complete API of Fchannel and Gledger are shown below.
We hide the calls to Gclock and FGDC in our notation. Instead
of explicitly calling these functionalities, we write msg

t
↪−→ X

to denote sending message msg to party X in round t and also
msg

t←−↩ X to denote receiving message msg from party X in
round t.

Interface of Gledger(∆, Σ) [4, 2]

This functionality keeps a record of the public keys of parties.
Also, all transactions that are posted (and accepted, see below)
are stored in the publicly accessible set L containing tuples of all
accepted transactions .

Parameters:
∆: upper bound on the number of rounds it takes a

valid transaction to be published on L
Σ: a digital signature scheme

API:
Messages from E via a dummy user P ∈ P:

• (sid,REGISTER, pkP )
τ←−↩ P :

This function adds an entry (pkP ,P ) to PKI consisting of the
public key pkP and the user P , if it does not already exist.

• (sid,POST, tx)
τ←−↩ P :

This function checks if tx is a valid transaction and if yes,
accepts it on L after at most ∆ rounds.

Interface of Fchannel(T , k) [4, 2]

Parameters:
T : upper bound on the maximum number of con-

secutive off-chain communication rounds between
channel users

k: number of ways the channel state can be published
on the ledger

API:
Messages from E via a dummy user P :

• (sid,CREATE, γ, tidP )
τ←−↩ P :

Let γ be the attribute tuple (γ.id, γ.users, γ.cash, γ.st), where
γ.id ∈ {0, 1}∗ is the identifier of the channel, γ.users ⊂ P are
the users of the channel (and P ∈ γ.users), γ.cash ∈ R≥0 is
the total money in the channel and γ.st is the initial state of the
channel. tidP defines P ’s input for the funding transaction of
the channel. When invoked, this function asks γ.otherParty to
create a new channel.

• (sid,UPDATE, id, ~θ)
τ←−↩ P :

Let γ be the channel where γ.id = id. When invoked by
P ∈ γ.users and both parties agree, the channel γ (if it exists)
is updated to the new state ~θ. If the parties disagree or at least
one party is dishonest, the update can fail or the channel can be
forcefully closed to either the old or the new state. Regardless

of the outcome, we say that tu is the upper bound that an update

takes. In the successful case, (sid,UPDATED, id, ~θ)
≤τ+tu
↪−−−−→

γ.users is output.
• (sid,CLOSE, id)

τ←−↩ P :
Will close the channel γ, where γ.id = id, either peacefully or
forcefully. After at most tc in round ≤ τ + tc, a transaction tx
with the current state γ.st as output (tx.output := γ.st) appears
on L (the public ledger of Gledger).

3) The UC-security definition: Closely following [2, 3],
we define Π as a hybrid protocol that accesses to ideal
functionality Fprelim consisting of FGDC , Gledger, Fchannel,
and Gclock. In the beginning, the environment E supplies inputs
to the parties in P and the adversary A with a security
parameter λ and auxiliary input z. We denote the output that E
observes as the ensemble EXECFprelim

Π,A,E (λ, z). ΦFupdate
denotes

the ideal protocol of the ideal functionality Fupdate, where
the dummy users simply forward their input to Fupdate. With
access to functionalities Fprelim, we denote the output of this
idealized protocol as EXECFprelim

ΦFupdate
,X ,E(λ, z).

If a protocol Π GUC-realizes an ideal functionality Fupdate,
then any attack that is possible on the real world protocol Π
can be carried out against the ideal protocol ΦFupdate

and vice
versa.

Definition 1. A protocol Π GUC-realizes an ideal function-
ality Fupdate, w.r.t. Fprelim, if for every adversary A there
exists a simulator X such that for any z ∈ {0, 1}∗ and λ ∈ N,
we have

EXEC
Fprelim

Π,A,E (λ, z) ≈c EXEC
Fprelim

ΦFupdate
,X ,E(λ, z) (1)

where ≈c denotes computational indistinguishability.

4) Ideal functionality: Here, we define our the ideal func-
tionality Fupdate. This functionality can output an ERROR
message, e.g., when a transaction does not appear on the ledger
as it should. When Fupdate outputs ERROR, any guarantees are
lost. Hence, we are only interested in protocols that realize
Fupdate and never output an ERROR. The subprocedures used
in Fupdate, Π, and X follow the same logic as the macros
defined in Section IV-B.

Note that in Fupdate and Π, for better readability, we
use the set P to store all parties, the set S to store all
senders, and the set R to store all receivers. We know that
two different channels may have a common user. Thus, for
handling duplicated identifiers in the aforementioned sets, we
implicitly assign different identifiers for users of different
channels. Consequently, the size of each set is equal to the
number of channels.

Ideal Functionality Fupdate(∆,T )

Parameters:
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∆ : Upper bound on the time it takes a transaction to
appear on L.

T : Upper bound on the time expected for successful
payments.

Local variables:
idSet : A set of tuples containing pairs of ids and channels

(pid, γi) to avoid duplicated channels.

Γ : A set of tuples
(pid, γi, tx

state
i , txr

i, {txp
i,j , θi,j}j∈[1,n]) that

for each payment id pid and channel γi, store
the state transaction txstate

i , refund transaction
txr
i and a set of tuples for payment transactions

(txp
i,j , θi,j) where θi,j is the output of txep

j used
in txp

i,j .

Ψ : A map, storing for a given pid a copy of all txep

in a set {txep
j }j∈[1,n].

tu : Time required to perform a ledger channel update
honestly.

tc : Time it takes at most to close a channel.

Start (executed in the beginning in round tstart)

Send (sid,start)
tstart
↪−−→ X and upon

(sid,start-ok, tu, tc)
tstart←−−↩ X set tu and tc accordingly.

Initialization

Let τ be the current round, and S,R, and P be initially empty sets.

1) If (sid,pid,CHANNELS-SET, {γi}i∈[1,n])
τ←−↩ dealer where

the dealer is honest, do the following.

a) Send (sid,pid,send-init, {γj}j∈[1,n], dealer)
τ
↪−→ X .

b) For all honest Pi ∈ {γi.sender}i∈[1,n] ∪
{γi.receiver}i∈[1,n], send

(sid,pid,INIT-CHECK, {γj}j∈[1,n])
τ+1
↪−−→ Pi.

2) Upon each message (sid,pid,send-check, {γi}i∈[1,n],Pi)
τ+1←−−↩ X , send (sid,pid,INIT-CHECK, {γj}j∈[1,n])

τ+1
↪−−→

Pi.
3) Upon (sid,pid,INIT-CHECKED, {γj}j∈[1,n])

τ+1←−−↩ Pi for
each honest Pi, do following.

a) Send (sid,pid,send-init-ok, {γj}j∈[1,n],Pi)
τ+1
↪−−→

X .
b) If this is the first INIT-CHECKED message from an honest

party, for each γi the tuple (pid, γi) /∈ idSet, set idSet =
idSet ∪ {(pid, γi)}, add γi.sender to S and P , and add
γi.receiver to R and P .

4) If there is an honest Pi ∈ P , where the message
(sid,pid,INIT-CHECKED, {γj}j∈[1,n])

τ+1←−−↩ Pi is not
received, go idle.

5) If there is an honest Pi ∈ P and a corrupted Pj ∈ P , where
the message (sid,pid,init-acc,Pi,Pj)

τ+2←−−↩ X is not
received, remove Pi from P and S or R.

6) Go to the Pre-Setup phase, and pass the set of channels with
the receiver in P to the next phase.

Pre-Setup

Let τ be the current round.
1) For each channels γi do following.

a) Let txin
i := GenTxIn(γi.receiver, {γk}k∈[1,n]).

b) Let txep
i := GenTxEp( {γk}k∈[1,n], txin

i ), and add txep
i to

Ψ(pid)
c) If γi.receiver is corrupted, send

(sid,pid,presetup-req, γi, tx
ep
i )

τ
↪−→ X .

d) Else if γi.receiver is honest, for all corrupted Pj ∈ P send
(sid,pid,send-presetup, txep

i , γi.receiver,Pj)
τ
↪−→

X .
2) If there is an honest Pi ∈ P and a corrupted Pj ∈ R, where

the message (sid,pid,presetup-acc,Pi,Pj)
τ+1←−−↩ X is

not received, remove Pi from P and S or R.
3) Go to the Setup phase, and pass the set of channels with at

least one user in P to the next phase.

Setup

Let τ be the current round.
1) For each channel γi if both γi.sender and γi.receiver are

honest, do the following.

a) If γi.sender ∈ P , send (sid,pid,REQ-VALUE, γi)
τ
↪−→

γi.sender.
b) Upon (sid,pid,VALUE, γi,αi)

τ←−↩ γi.sender, continue.
Otherwise skip the steps (c) to (g).

c) Let txstate
i := GenState(αi, T , γi), and txr

i :=
GenRef(txstate

i , γi.sender).
d) For all j ∈ [1,n], let θi,j be the output of txep

j which cor-
responds to γi.receiver, then create txp

i,j = GenPay(txstate
i ,

γi.receiver, θi,j).
e) If γi.receiver ∈ P , send (sid,pid,REQ-VALUE, γi)

τ+1
↪−−→ γi.receiver.

f) Upon (sid,pid,VALUE, γi,αi)
τ+1←−−↩ γi.receiver, con-

tinue. Otherwise skip the step (g).
g) For all corrupted Pj ∈ P send

(sid,pid,send-setup-ok, γi.receiver,Pj)
τ+1
↪−−→

X .
2) Else If γi.sender is corrupted and γi.receiver is honest, do the

following.
a) If (sid,pid,setup-acc, γi, tx

state
i , {txp

i,j}}j∈[1,n])
τ+1←−−↩ X , set αi := txstate

i .output[0].cash. Otherwise, skip
the steps (b) to (d).

b) If γi.receiver ∈ P , send (sid,pid,REQ-VALUE, γi)
τ+1
↪−−→ γi.receiver.

c) Upon (sid,pid,VALUE, γi,αi)
τ+1←−−↩ γi.receiver with a

same αi as the step(b) and txstate
i = GenState(αi, T ,

γi), continue. Otherwise skip the step (e).
d) For all corrupted Pj ∈ P send

(sid,pid,send-setup-ok,Pi,Pj)
τ+1
↪−−→ X .

3) Else If γi.sender is honest and γi.receiver is corrupted, do the
following.

a) If γi.sender ∈ P , send (sid,pid,REQ-VALUE, γi)
τ
↪−→

γi.sender.
b) Upon (sid,pid,VALUE, γi,αi)

τ←−↩ γi.sender, continue.
Otherwise skip the steps (c) to (e).

c) Let txstate
i := GenState(αi, T , γi), and txr

i :=
GenRef(txstate

i , γi.sender).
d) For all j ∈ [1,n], let θi,j be the output of txep

j which cor-
responds to γi.receiver, then create txp

i,j = GenPay(txstate
i ,

γi.receiver, θi,j).
e) Send (sid,pid,send-setup, γi, tx

state
i ,

{(txp
i,j ,σγi.sender(tx

p
i,j))}j∈[1,n])

τ+1
↪−−→ X .

4) If there is an honest receiver Pi ∈ R, where the message
(sid,pid,VALUE, γi,αi)

τ+1←−−↩ Pi is not received, go idle.
5) If there is an honest Pi ∈ P and a corrupted Pj ∈ R, where the

message (sid,pid,setup-finalized,Pi,Pj)
τ+1←−−↩ X is

not received, remove Pi from P and S or R.
6) Go to the Confirmation phase. Pass the set of channels with at

least one user in P to the next phase.
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Confirmation

- Let τ be the current round.
1) For each honest sender γi.sender ∈ S, do the following.

a) Send (ssidC ,UPDATE, γi.id, txstate
i .output)

τ
↪−→

Fchannel.
b) If not (ssidC ,UPDATED, γi.id, txstate

i .output)
τ+tu←−−−↩

Fchannel, skip the step (c).
c) For each corrupted γj .receiver ∈ R, send

(sid,pid,send-sig, γi.sender, γj .receiver, tx
ep
j )

τ+tu
↪−−−→ X .

2) For each honest receiver γi.receiver ∈ R, if (i)
(sid,pid,confirmation-acc, γi.receiver, γj .sender)
τ+tu+1
←−−−−−↩ X is received for all corrupted γj .sender ∈ S, and
(ii) (ssidC ,UPDATED, γi.id, txstate

i .output)
τ+tu←−−−↩ Fchannel

is received on behalf of γi.receiver, do the following.

a) Send (sid,pid,OPENED, γi)
τ+tu+1
↪−−−−−→ γi.receiver

b) For all corrupted Pj ∈ P ,
(sid,pid,send-confirmation-ok, γi.receiver,Pj)
τ+tu
↪−−−→ X .

3) If there is an honest receiver γi.receiver, where
(sid,pid,confirmation-acc, γi.receiver, γj .sender)
τ+tu+1
←−−−−−↩ X is not received for at least one corrupted
γj .sender ∈ S, or (ssidC ,UPDATED, γi.id, txstate

i .output)
τ+tu←−−−↩ Fchannel is not received on behalf of γi.receiver, go

idle.
4) If there is an honest Pi ∈ P and a corrupted Pj ∈ R, where the

message (sid,pid,confirmation-finalized,Pi,Pj)
τ+tu+1
←−−−−−↩ X is not received, remove Pi from P and S or R.

5) Send (sid,pid,agg-sig, {txep
j }j∈[1,n],S)

τ+tu+1
↪−−−−−→ X .

6) Go to the Finalizing phase. Pass the set of channels with at
least one user in P to the next phase.

Finalizing

- Let τ be the current round.
1) For each channel γi, let txtrans

i := GenTrans(αi, γi).
2) For each honest sender γi.sender, send

(ssidC ,UPDATE, γi.id, txtrans
i .output)

τ
↪−→ Fchannel.

3) For each channels γi, If γi.receiver is honest, do the following.

a) If not (ssidC ,UPDATED, γi.id, txtrans
i .output)

τ+tu←−−−↩
Fchannel, send (sid,pid,post-txep, γi, tx

ep
i )

τ+tu
↪−−−→

X .
b) Send

(sid,pid,FINALIZED, γi)
τ+tu
↪−−−→ γi.receiver.

Respond (executed at the end of every round)

Let t be the starting round. For every element
(pid, γi, tx

state
i , txr

i, {txp
i,j , θi,j}j∈[1,n]) ∈ Γ, if

γi.st = txstate
i .output, and one txep

j ∈ Ψ(pid) is on L,
do the Pay step as follows.
Pay: If γi.receiver is honest and t < T−tc−2∆ do the following.

1) (ssidC ,CLOSE, γi.id)
t
↪−→ Fchannel

2) At time t + tc, if a transaction tx with tx.output =
γi.st appears on L, Wait for ∆ rounds and send

(sid,pid,post-pay, γi, tx
p
i,j)

t′<T−∆
↪−−−−−→ X .

3) At time t′′ < T , if a transaction tx′ appears on L
with tx′.input = [θi,j , tx.output[0]] and tx′.output =
[(tx.output[0].cash + θi,j .cash,OneSig(γi.receiver))],

send (sid,pid,PAID)
t′′

↪−→ γi.receiver. Otherwise return
ERROR to all parties.

Force-Refund: Else, if a transaction tx with tx.output = γi.st
is on-chain and tx.output[0] is unspent, t ≥ T , and γi.sender is
honest, do the following.

1) Send (sid,pid,post-refund, γi, tx
r
i)

t
↪−→ X

2) If transaction tx′ with tx′.input = [tx.output[0]] and
tx′.output = (tx.output[0].cash,OneSig(γi.sender))
appears on the L in round t1 < t + ∆, send
(sid,pid,FORCE-REFUND)

t1
↪−→ γi.sender. Otherwise,

return ERROR to all parties.

5) Protocol: In this section, we present the formal protocol
Π. For simplicity, we assume that users involved in the
payment do not use (e.g., update, close) the channels involved
in the payment. The protocol is similar to what is presented
in Figure 5, but extended with payment ids and UC formalism.
We add the environment E and model communication in
rounds. The protocol is divided into six phases. In Initial-
ization, a user dealer receives the ongoing updates from E
and sends them to every user to check whether all participants
agree with that. In Pre-Setup, each receiver generates txep and
sends it to all parties. In Setup, senders generate and send
txstate, txp, and txr to their neighbors. Receivers verify the
messages and inform all parties when everything is OK. In
Confirmation, senders update their channels, and then send
their signature to each txep to the corresponding receivers.
When a receiver gets all signatures, sends an endorsement
to all parties. In Finalizing, the senders after receiving all
endorsements update their channel to the final state. If a
receiver does not get UPDATED from Fchannel, puts txep on-
chain. In Respond users will react to txep being published and,
either force payments or refunds.

Protocol Π

Local variables:
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pidSet : A set storing every payment id pid that a
user has participated in, to prevent duplicates.

paySet : A map storing for a given pid a tuple
({γi}i∈[1,n], S, R) where U is the set of
containing channels and payment values, S
is the set of all senders and R is the set of
all receivers.

local : A map storing for a given pid a copy of all
txep in a set {txep

j }j∈[1,n].

left : For each sender γi.sender, a map storing for
a given pid a tuple (γi, tx

state
i , txr

i) which
contains the channel γi and corresponding
state and refund transactions.

right : For each receiver γi.receiver, a map
storing for a given pid a tuple
(γi, tx

state
i , {(txp

i,j ,σγi.sender(tx
p
i,j), θi,j)}j∈[1,n])

which contains a channel and corresponding
state transaction and the set of payment
transactions. Along with each txp

i,j , a
signature from the sender of the channel and
the input of this transaction that comes from
txep
j are saved.

sigSet : For each receiver γi.receiver, a map, storing
for a given pid the signatures for txep

i of all
senders {σγi.sender(tx

ep
i )}j∈[1,n].

Initialization

- Let τ be the current round.

dealer upon (sid,pid,CHANNELS-SET, {γi}i∈[1,n])
τ←−↩ E

1) For all parties Pi in {γi.sender}i∈[1,n] ∪ {γi.receiver}i∈[1,n],
send (sid,pid,init, {γi}i∈[1,n])

τ
↪−→ Pi.

Each γi.sender and γi.receiver

upon (sid,pid,init, {γj}j∈[1,n])
τ+1←−−↩ dealer

1) If pid ∈ pidSet, abort. Add pid to pidSet, and let S, R and
P be initially empty sets.

2) Send (sid,pid,INIT-CHECK, {γj}j∈[1,n])
τ+1
↪−−→ E .

3) If (sid,pid,INIT-CHECKED, {γj}j∈[1,n])
τ+1←−−↩ E , for each

channel γj add γj .sender to S and γj .receiver to R. Then
set paySet(pid) := ({γj}j∈[1,n],S,R) and P := R ∪ S.
Otherwise abort.

4) Send (sid,pid,init-ok)
τ+1
↪−−→ Pi to all Pi ∈ P .

5) If (sid,pid,init-ok)
τ+2←−−↩ Pi from all parties in P , go to

the Pre-Setup phase. Otherwise abort.

Pre-Setup

- Let τ be the current round.
γi.receiver

1) Let txin
i := GenTxIn(γi.receiver, {γk}k∈[1,n]).

2) Let txep
i := GenTxEp({γk}k∈[1,n], txin

i ).
3) Send (sid,pid,pre-setup, txep

i )
τ
↪−→ Pi for all Pi ∈ P .

All users upon

(sid,pid,pre-setup, txep
i )

τ+1←−−↩ γi.receiver for all i ∈ [1,n]

1) For all j ∈ [1,n], if CheckTxEp(txep
j ,γj .receiver,

{γk}k∈[1,n]) = ⊥, abort. otherwise set local(pid) =
{txep

j }j∈[1,n] and go to the Setup phase.

Setup

- Let τ be the current round.
γi.sender

1) Send (sid,pid,REQ-VALUE, γi)
τ
↪−→ E . If this message is

replied by
(sid,pid,VALUE, γi,αi)

τ←−↩ E , continue. Otherwise go idle.
2) Let txstate

i := GenState(αi, T , γi).
3) Let txr

i := GenRef(txstate
i , γi.sender).

4) For all j ∈ [1,n], let θi,j be the output of txep
j which

corresponds to γi.receiver, then create txp
i,j := GenPay(txstate

i ,
γi.receiver, θi,j).

5) Set left(pid) := (γi, tx
state
i , txr

i, {txp
i,j}j∈[1,n]).

6) Generate the set {σγi.sender(tx
p
i,j)}j∈[1,n].

7) Send
(sid,pid,setup, γi, tx

state
i , {(txp

i,j ,σγi.sender(tx
p
i,j))}j∈[1,n])

τ
↪−→ γi.receiver.

γi.receiver upon (sid,pid,setup, γi, tx
state
i

, {(txp
i,j ,σγi.sender(tx

p
i,j))}j∈[1,n])

τ+1←−−↩ γi.sender

1) Send (sid,pid,REQ-VALUE, γi)
τ+1
↪−−→ E . If this message is

replied by
(sid,pid,VALUE, γi,αi)

τ+1←−−↩ E , continue. Otherwise go
idle.

2) If txstate
i 6= GenState(αi, T , γi), abort.

3) For each element in {(txp
i,j ,σγi.sender(tx

p
i,j))}j∈[1,n], If

σγi.sender(tx
p
i,j) is not a correct signature, abort.

4) For all j ∈ [1,n], let θi,j be the output of txep
j which corre-

sponds to γi.receiver. If txp
i,j 6= GenPay(txstate

i , γi.receiver,
θi,j), abort.

5) Set right(pid) = (γi, tx
state
i ,

{txp
i,j ,σγi.sender(tx

p
i,j , θi,j)}j∈[1,n])

6) Send (sid,pid,setup-ok)
τ+1
↪−−→ Pi for all Pi ∈ P .

All users

1) If (sid,pid,setup-ok)
τ+2←−−↩ Pi for all Pi ∈ R, go to the

Confirmation phase. Otherwise abort.

Confirmation

- Let τ be the current round.
γi.sender

1) Send (ssidC ,UPDATE, γi.id, txstate
i .output)

τ
↪−→ Fchannel.

2) If (ssidC ,UPDATED, γi.id, txstate
i .output)

τ+tu←−−−↩ Fchannel,
for all j ∈ [1,n], create signature σγi.sender(tx

ep
j ) and

send (sid,pid,confirmation,σγi.sender(tx
ep
j ))

τ+tu
↪−−−→

γj .receiver.

γi.receiver upon (sid,pid,confirmation,σγj .sender(tx
ep
i ))

τ+tu+1
←−−−−−↩ γj .sender for all j ∈ [1,n]

1) If (ssidC ,UPDATED, γi.id, txstate
i .output)

τ+tu←−−−↩ Fchannel,
send (sid,pid,OPENED, γi)

τ+tu+1
↪−−−−−→ E . Otherwise abort.

2) If for all j ∈ [1,n], σγj .sender(tx
ep
i ) are valid signatures,

let sigSet := {(σγj .sender(tx
ep
i ))}j∈[1,n]. Otherwise abort.

3) Send (sid,pid,confirmation-ok)
τ+tu+1
↪−−−−−→ Pi for all

Pi ∈ P .
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All users

1) If (sid,pid,confirmation-ok)
τ+tu+2
←−−−−−↩ Pi for all Pi ∈

R, go to the Finalizing phase. Otherwise abort.

Finalizing

- Let τ be the starting round.

γi.sender

1) Let txtrans
i := GenTrans(αi, γi).

2) Send (ssidC ,UPDATE, γi.id, txtrans
i .output)

τ
↪−→ Fchannel.

γi.receiver

1) If not (ssidC ,UPDATED, γi.id, txtrans
i .output)

τ+tu←−−−↩
Fchannel, sign txep

i and add the signature to sigSet. Send
(ssidL,POST, (txep

i , sigSet))
τ+tu
↪−−−→ Gledger .

2) Send (sid,pid,FINALIZED, γi)
τ+tu
↪−−−→ E .

Respond

Let t be the current round. Do the following:

γi.receiver at the end of every round t

1) For every pid in right.keyList(),
let (γi, tx

state
i , {txp

i,j ,σγi.sender(tx
p
i,j , θi,j)}j∈[1,n]) :=

right(pid)
and let {txep

j }j∈[1,n] := local(pid).
2) If t < T − tc − 2∆, one txep

j is on the ledger L, and γi.st =
txstate
i .output, do the following:

a) Send (ssidC ,CLOSE, γi.id)
t
↪−→ Fchannel.

b) If a transaction tx with tx.output = txstate
i .output is on L

in round t+ tc, wait ∆ rounds.
c) Sign txp

i,j and set txp
i,j :=

(txp
i,j , {σγi.receiver(tx

p
i,j),σγi.sender(tx

p
i,j)}).

d) Send (ssidL,POST, txp
i,j)

t+tc+∆
↪−−−−−→ Gledger .

e) When txp
i,j appears on L in round t1 < T , send

(sid,pid,PAID, γi)
t1
↪−→ E

γi.sender at the end of every round t

1) For every pid in left.keyList(), let
(γi, tx

state
i , txr

i, {txp
i,j}j∈[1,n]) := left(pid).

2) If t > T and a transaction tx with tx.output = txstate
i is on

the ledger L, but not any transaction in {txp
i,j}j∈[1,n], do the

following:
a) Sign txr

i and set txr
i := (txr

i,σγi.sender(tx
r
i)).

b) Send (ssidL,POST, txr
i)

t
↪−→ Gledger .

c) When txr
i appears on L in round t1 < t + ∆, send

(sid,pid,FORCE-REFUND, γi)
t1
↪−→ E

6) Proof: In this section, we present the simulator and
formal proof that our multi-channel updates protocol Ap-
pendix C5 UC-realizes the ideal functionality Fupdate Ap-
pendix C4.

Simulator

Local variables:

enableSig : A map, sorting for a given (pid, txep
i ) the

set of signatures {σγj .sender(tx
ep
i )} from all

senders.

paySig : A map, sorting for a given (pid, txp
i,j) the

signature σγi.sender(tx
p
i,j).

Start phase

• Upon (sid,start)
tstart←−−↩ Fupdate, Send

(sid,start-ok, tu, tc)
tstart
↪−−→ Fupdate and go to the

Initialization phase.

Initialization phase

• Upon (sid,pid,send-init, {γj}j∈[1,n], dealer)
τ←−↩

Fupdate, for all corrupted Pi ∈ {γi.sender}i∈[1,n] ∪
{γi.receiver}i∈[1,n], send (sid,pid,init, {γi}i∈[1,n])

τ
↪−→ Pi

on behalf of dealer.
• If the trigger party dealer is corrupted, upon

(sid,pid,init, {γi}i∈[1,n])
τ←−↩ dealer

on behalf on each honest party Pi, send
(sid,pid,send-check, {γi}i∈[1,n],Pi)

τ
↪−→ Fupdate.

• Upon (sid,pid,send-init-ok, {γj}j∈[1,n],Pi)
τ
↪−→ X , for

all corrupted Pj ∈ {γi.sender}i∈[1,n] ∪ {γi.receiver}i∈[1,n],
send (sid,pid,init-ok)

τ
↪−→ Pj on behalf of Pi.

• Upon (sid,pid,init-ok)
τ+2←−−↩ Pj on behalf of

Pi, where Pi is honest and Pj is corrupted, send
(sid,pid,init-acc,Pi,Pj)

τ+2
↪−−→ Fupdate.

Pre-Setup phase

• Upon (sid,pid,presetup-req, γi, tx
ep
x )

τ←−↩ Fupdate where
γi.receiver is a corrupted party, do the following.

1) Upon (sid,pid,pre-setup, txep
i )

τ+1←−−↩ γj .receiver
of behalf of Pi, where γi.receiver is corrupted,
and Pi is honest, check if txep

i = txep
x , send

(sid,pid,presetup-acc,Pi, γj .receiver)
τ+1
↪−−→

Fupdate.
• Upon (sid,pid,send-presetup, txep

i , γi.receiver,Pj)
τ←−↩

Fupdate, where γi.receiver is honest and Pj is corrupted, send
(sid,pid,pre-setup, txep

i )
τ←−↩ Pj on behalf of γi.receiver.

Setup phase

• Upon, (sid,pid,send-setup-ok,Pi,Pj)
τ←−↩

Fupdate, where Pi is honest and Pj is corrupted, send
(sid,pid,setup-ok)

τ
↪−→ Pj on behalf of Pi.

• Upon (sid,pid,setup, γi, tx
state
i ,

{(txp
i,j ,σγi.sender(tx

p
i,j))}j∈[1,n])

τ+1←−−↩ γi.sender, where
γi.sender is corrupted, do the following.
1) Check if any signature σγi.sender(tx

p
i,j) is not valid, abort.

2) For all j ∈ [1,n], let θi,j be the output of txep
j which corre-

sponds to γi.receiver. If txp
i,j 6= GenPay(txstate

i , γi.receiver,
θi,j), abort.

3) Add the signature for each txp
i,j to paySig(pid, txp

i,j).
4) Send (sid,pid,setup-acc, γi, tx

state
i , {txp

i,j}}j∈[1,n])
τ+1
↪−−→ Fupdate.

• Upon (sid,pid,send-setup, txstate
i , {txp

i,j}j∈[1,n], γi)
τ←−↩

Fupdate where γi.sender is honest but γi.receiver is corrupted,
do the following.
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1) sign each txp
i,j on behalf of γi.sender and add it to

paySig(pid, txp
i,j).

2) send (sid,pid,setup, γi, tx
state
i ,

{(txp
i,j ,σγi.sender(tx

p
i,j))}j∈[1,n])

τ
↪−→ γi.receiver on behalf of

γi.sender.

• Upon (sid,pid,setup-ok)
τ+1←−−↩ γj .receiver on behalf

of Pi, where Pi is honest and γj .receiver is corrupted,
send (sid,pid,setup-finalized,Pi, γj .receiver)

τ+1
↪−−→

Fupdate
Confirmation phase

• Upon (sid,pid,send-sig, γi.sender, γj .receiver, tx
ep
j )

τ←−↩
Fupdate, where γi.sender is honest but γj .receiver is
corrupted, sign txep

j on behalf of γi.sender and send
(sid,pid,confirmation,σγi.sender(tx

ep
j ))

τ
↪−→ γj .receiver.

• Upon (sid,pid,confirmation,σγj .sender(tx
ep
i ))

τ←−↩ γj .sender is received on behalf of γi.receiver,
where γi.receiver is honest and γj .sender is
corrupted, check if all signatures are valid, send
(sid,pid,confirmation-acc, γi.receiver, γj .sender)
τ
↪−→ Fupdate.

• Upon, (sid,pid,send-confirmation-ok,Pi,Pj)
τ←−↩

Fupdate, where Pi is honest and Pj is corrupted, send
(sid,pid,confirmation-ok)

τ+1
↪−−→ Pj on behalf of Pi.

• Upon (sid,pid,confirmation-ok)
τ←−↩

γj .receiver is received on behalf of an honest
party Pi, where γj .receiver is corrupted, send
(sid,pid,confirmation-finalized,Pi, γi.receiver)
τ
↪−→ Fupdate.

• Upon (sid,pid,agg-sig, {txep
j }j∈[1,n],S)

τ←−↩ X , for each
txep
j , sign the transaction on behalf of all honest Pi ∈ S and

add σPi(tx
ep
j ) to enableSig(pid, txep

j )

Finalizing phase

• Upon (sid,pid,post-txep, γi, tx
ep
i )

τ←−↩ Fupdate where
γi.receiver is a honest:

1) Sign txep
i on behalf of γi.receiver and add the signature to

enableSig(pid, txep
i )

2) Set txep
i := (txep

i , enableSig(pid, txep
i )).

3) Send (ssidL,POST, txep
i )

τ
↪−→ Gledger .

Respond phase

• Upon (sid,pid,post-pay, γi, tx
p
i,j)

τ←−↩ Fupdate, where
γi.receiver is honest:

1) Sign txp
i,j on behalf of γi.receiver and add the signature to

paySig(pid, txp
i,j).

2) Set txp
i,j := (txp

i,j , paySig(pid, txp
i,j).

3) Send (ssidL,POST, txp
i,j)

τ+tc
↪−−−→ Gledger .

• Upon (sid,pid,post-refund, γi, tx
r
i)

τ←−↩ Fupdate where
γi.sender is honest:

1) Sign txr
i on behalf of γi.sender and set txr

i :=
(txr

i,σγi.sender(tx
r
i).

2) Send (ssidL,POST, txr
i)

τ+tc
↪−−−→ Gledger .

Now, we show that in the view of the environment E , a
transcript resulted from interactions between the simulator X
and the ideal functionality Fupdate is indistinguishable from
a transcript resulted from a execution of the protocol Π in the
presence of the adversary A. Formally, we want to show that
EXECΠ,A,E and EXECFupdate,X ,E are indistinguishable.

Our protocol Π and ideal functionality Fupdate both are
executed in six phases: Initialization, Pre-Setup, Setup, Con-
firmation, Finalize, and Respond. For each phase separately,
we show how the ideal world and the real world are indistin-
guishable for the environment.

In our description, we write m[τ ] to denote that message
m is observed at round τ . In other meaning, τ is the
receiving round for message m (not the round it is sent).
Moreover, sometimes we interact with ideal functionalities
such as Fchannel and Gledger. These functionalities in turn
interact with either the environment E or other parties, who
are possibly under adversarial, either by sending messages or
additional impacts on publicly observable variables, i.e., the
ledger L. To capture this, we define obsSet(m,F , τ) as the
set of all observable messages which are triggered by calling
F with message m in round τ .

Lemma 1. The initialization phase of protocol Π GUC-
emulates the initialization phase of the functionality Fupdate.

Proof. Let τ be the starting round. Note that in the real world
environment controls A, and therefore, all corrupted parties.
For better readability we define following messages that are
used for Initialization phase in Fupdate and Π.
• m0 := (sid,pid,INIT-CHECK, {γi}i∈[1,n])
• m1 := (sid,pid,INIT-CHECKED, {γj}j∈[1,n])
• m2 := (sid,pid,CHANNELS-SET, {γi}i∈[1,n])
• m3 := (sid,pid,init, {γi}i∈[1,n])
• m4 := (sid,pid,init-ok)
• m5 := (sid,pid,send-init, {γj}j∈[1,n], dealer)
• m6 := (sid,pid,send-check, {γi}i∈[1,n],Pi)
• m7 := (sid,pid,send-init-ok, {γj}j∈[1,n],Pi)
• m8 := (sid,pid,init-acc,Pi,Pj)

For each participant Pi, we compare messages that E
receives from this party and the trigger party dealer in the ideal
world and the real world. The types of the messages depends
on corruption cases for Pi and dealer. Note that messages
from corrupted parties to E are not considered, because the
environment is commuincating with itself, which is trivially
the same in the ideal and the real world.
Case 1: Pi honest, dealer honest
Real world: E receives m3 from dealer in round τ + 1 on
behalf of all corrupted parties. Moreover, E receives m0 from
Pi, which contains the set of all channels in round τ + 1. If
Pi gets m1 from E in the response, then E receives m4 from
Pi on behalf of all corrupted parties in round τ + 2.
EXECΠ,A,E := {m3[τ + 1],m0[τ + 1],m4[τ + 2]}

Ideal world: Fupdate sends m5 to the simulator, which in
turn, X sends m3 on behalf on dealer to all corrupted parties in
round τ . Moreover, Fupdate sends m0 on behalf of Pi to E in
round τ . Upon this message is replied by m1 from E , Fupdate
sends m7 to the simulator. After receiving this message, X
sends m4 to all corrupted parties on behalf of Pi in round
τ + 1, which is received by E .
EXECFupdate,X ,E := {m3[τ + 1],m0[τ + 1],m4[τ + 2]}

Case 2: Pi honest, dealer corrupted
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Real world: Because dealer is corrupted, we do not need to
consider messages from dealer to E . Other received message
are similar to the previous case.
EXECΠ,A,E := {m0[τ + 1],m4[τ + 2]}

Ideal world: No longer X is required to send m3 on behalf
of dealer to E . Simulation of the behavior of Pi is done same
as the previous case.
EXECFupdate,X ,E := {m0[τ + 1],m4[τ + 2]}

Case 3: Pi corrupted, dealer honest
Real world: We do not to consider messages sent from Pi.
E receives m3 From dealer on behalf of all corrupted parties.
EXECΠ,A,E := {m3[τ + 1]}

Ideal world: Fupdate sends m5 to the simulator, which in
turn, X sends m3 to all corrupted parties who are under the
control of E .
EXECFupdate,X ,E := {m3[τ + 1]}

Lemma 2. The pre-setup phase of protocol Π GUC-emulates
the pre-setup phase of the functionality Fupdate.

Proof. Again we compare observed messages by E in the
ideal world and the real world. Let τ be the starting round,
and consider the following definitions for all messages that
are used for Pre-Setup phase in Fupdate and Π.
• m9 := (sid,pid,pre-setup, txep

i )
• m10 := (sid,pid,presetup-req, γi, txep

i )
• m11 := (sid,pid,send-presetup, txep

i , γi.receiver,Pj)
• m12 := (sid,pid,presetup-acc,Pi,Pj)

In this phase, for each channel γi, E receives message only
from γi.receiver, so we should consider only one case. The
case that γi.receiver is honest.

Real world: γi.receiver creates txin
i and txep

i and sends m9

to all other parties, so this message is received by E on behalf
of all corrupted parties in round τ + 1.
EXECΠ,A,E := {m9[τ + 1]}

Ideal world: Fupdate first creates txin
i and txep

i transactions
for each channel γi. Then, Fupdate sends m11 to the simulator
for all corrupted parties Pj . When X receives this massage,
sends m9 to the all corrupted parties on behalf of γi.receiver.
The messages are received by E in round τ + 1.
EXECFupdate,X ,E := {m9[τ + 1]}

Lemma 3. The setup phase of protocol Π GUC-emulates the
setup phase of the functionality Fupdate.

Proof. Again we compare observed messages by E in the
ideal world and the real world. Let τ be the starting round,
and consider the following definitions for all messages that
are used for Setup phase in Fupdate and Π.
• m13 := (sid,pid,REQ-VALUE, γi)
• m14 := (sid,pid,VALUE, γi,αi)
• m15 := (sid,pid,setup, γi, txstate

i ,
{(txp

i,j ,σγi.sender(txp
i,j))}j∈[1,n])

• m16 := (sid,pid,setup-ok)
• m17 := (sid,pid,send-setup, γi, txstate

i ,
{(txp

i,j ,σγi.sender(txp
i,j))}j∈[1,n])

• m18 := (sid,pid,setup-acc, γi, txstate
i , {txp

i,j}}j∈[1,n])
• m19 := (sid,pid,send-setup-ok, γi.receiver,Pj)
• m20 := (sid,pid,setup-finalized,Pi,Pj)

In this phase, for each channel γi, both the sender and the
receiver have interactions with the environment. We need to
consider different corruption cases for these parties except the
case that both of them are corrupted.
Case 1: γi.sender honest, γi.receiver honest
Real world: γi.sender sends m13 to E in round τ . Upon this
message is replied by m14, γi.sender generates txstate

i , txr
i,

and the set {txp
i,j}j∈[1,n]. Then she sends m15 to γi.receiver.

When γi.receiver gets this message, first asks E about the
payment value via message m13 in round τ + 1. Upon this
message is replied by m14, γi.receiver checks validity of the
transactions inside received m15, and then sends m16 to all
other parties, which is received by E on behalf of corrupted
parties in round τ+2. Note that two m13 messages are received
by E in different rounds. One from the sender and one from
the receiver.
EXECΠ,A,E := {m13[τ ],m13[τ + 1],m16[τ + 2]}

Ideal world: Fupdate sends m13 to E on behalf of γi.sender
in round τ . After receiving the response m14, Fupdate creates
txstate
i , txr

i, and the set {txp
i,j}j∈[1,n]. Again, Fupdate sends

m13 to E this time on behalf of γi.receiver in round τ+1. After
receiving the response, Fupdate sends m19 to the simulator,
which in turn, X sends m16 to all corrupted parties, which is
received in round τ + 2.
EXECFupdate,X ,E := {m13[τ ],m13[τ + 1],m16[τ + 2]}

Case 2: γi.sender honest, γi.receiver corrupted
Real world: In this case, we only consider messages that are
sent from the sender. Similar to the previous case, γi.sender
sends m13 to E in round τ , and waits for the response
m14. Then she generates txstate

i , txr
i, and the set {txp

i,j}j∈[1,n]

and sends m15 to γi.receiver. This time the message m15 is
observed by E in round τ+1. because the receiver is corrupted.
EXECΠ,A,E := {m13[τ ],m15[τ + 1]}

Ideal world: Similar to the previous case, Fupdate sends
m13 to E on behalf of γi.sender in round τ . After receiving
the response m14, Fupdate creates txstate

i , txr
i, and the set

{txp
i,j}j∈[1,n]. This time Fupdate sends m17 to the simulator,

which in turn, X sends m15 to the corrupted receiver in round
τ .
EXECFupdate,X ,E := {m13[τ ],m15[τ + 1]}

Case 3: γi.sender corrupted, γi.receiver honest
Real world: In this case, we only consider messages that
are sent from the receiver. At first, When γi.receiver gets m15

message from the sender, sends m13 to E to get the payment
value in round τ + 1. Then, this party after receiving the
response from E , checks the validity of the transactions inside
m15. Finally, she sends m16 to all other parties, which received
by E on behalf of corrupted parties in round τ + 2.
EXECΠ,A,E := {m13[τ + 1],m16[τ + 2]}

Ideal world: X gets transactions txstate
i , and the set

{(txp
i,j ,σγi.sender(txp

i,j))}j∈[1,n] from A and sends them to
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Fupdate via m18 if they are correct. Fupdate sends m13 to E
this time on behalf of γi.receiver in round τ+1. If this message
is reponsed by E with m14, Fupdate checks correctness of
txstate
i received from the simulator. Fupdate sends m19 to the

simulator, which in turn, X sends m16 to all corrupted parties
in round τ + 1.
EXECFupdate,X ,E := {m13[τ + 1],m16[τ + 2]}

Lemma 4. The confirmation phase of protocol Π GUC-
emulates the confirmation phase of the functionality Fupdate.

Proof. Again we compare observed messages by E in the
ideal world and the real world. Let τ be the starting round,
and consider the following definitions for all messages that
are used for Confirmation phase in Fupdate and Π.
• m21 := (ssidC ,UPDATE, γi.id, txstate

i .output)
• m22 := (ssidC ,UPDATED, γi.id, txstate

i .output)
• m23 := (sid,pid,confirmation,σγi.sender(txep

j ))
• m24 := (sid,pid,OPENED, γi)
• m25 := (sid,pid,confirmation-ok)
• m26 := (sid,pid,send-sig, γi.sender, γj .receiver, txep

j )
• m27 := (sid,pid,confirmation-acc, γi.receiver, γj .sender)
• m28 := (sid,pid,send-confirmation-ok, γi.receiver,Pj)
• m29 := (sid,pid,confirmation-finalized,Pi,Pj)
• m30 := (sid,pid,agg-sig, {txep

j }j∈[1,n],S)
For each channel γi, both the sender and the receiver

send messages to E . We need to consider different corruption
cases for these parties except the case that both of them are
corrupted.
Case 1: γi.sender honest, γi.receiver honest
Real world: γi.sender sends m21 to Fchannel in round τ to
update the state of γi using txstate

i . If the update is executed
correctly, γi.sender sends m23 to each receiver. This message
is received by E in behalf of each corrupted receiver in round
τ+tu+1. Again, if the update is executed correctly, γi.receiver
waits until receiving signatures to txep

i from all senders. Then,
she sends m24 to E in round τ+tu+1. Also, after verifying all
signatures, she sends m25 messages to all parties, which are
received by E on behalf of corrupted parties in round τ+tu+2.
EXECΠ,A,E := {m23[τ + tu + 1],m24[τ + tu + 1],m25[τ +

tu + 2]} ∪ obsSet(m21,Fchannel, τ)}
Ideal world: Fupdate sends m21 massage to Fchannel. If the
update is executed correctly, Fupdate via message m26, asks
X to generate a signature to each txep

j on behalf of γi.sender
and sends it to the corresponding receiver if the receiver is
corrupted. This is done via message m23 which is received by
E in round τ + tu + 1 . Moreover, Fupdate sends m24 to E
in round τ + tu + 1 and m28 to the simulator, which in turn,
X sends m25 on behalf of γi.receiver to all corrupted parties,
which is received by E in round τ + tu + 2.
EXECFupdate,X ,E := {m23[τ + tu + 1],m24[τ + tu +

1],m25[τ + tu + 2]} ∪ obsSet(m21,Fchannel, τ)}
Case 2: γi.sender honest, γi.receiver corrupted
Real world: In this case, we only consider messages that
are sent from the sender. γi.sender sends m21 to Fchannel in
round τ . If the update is executed correctly, she sends m23 to

each receiver. This message is received by E in behalf of each
corrupted receiver in round τ + tu + 1.
EXECΠ,A,E := {m23[τ+tu+1]}∪obsSet(m21,Fchannel, τ)

Ideal world: Again, Fupdate sends m21 massage to Fchannel
and if the update is executed correctly, Fupdate sends m26 to
X to generate a signature to each txep

j on behalf of γi.sender.
Then X sends it to the corresponding receiver if she is
corrupted via message m23 in round τ + tu.
EXECFupdate,X ,E := {m23[τ + tu + 1]} ∪

obsSet(m21,Fchannel, τ)

Case 3: γi.sender corrupted, γi.receiver honest
Real world: In this case, we only consider messages that
are sent from the receiver. If the update is executed correctly,
γi.receiver verifies received signatures to txep

i from all senders,
sends m24 to E in round τ + tu + 1, and sends m25 messages
to all parties in round τ + tu + 2.
EXECΠ,A,E := {m24[τ + tu + 1],m25[τ + tu + 2]}

Ideal world: X receives signatures form a corrupted sender.
If the signature is valid X sends m27 to Fupdate. If the update
has already executed correctly, then Fupdate sends m24 to E
in round τ + tu + 1. Moreover, sends m28 to the simulator,
which in turn, X sends m25 on behalf of γi.receiver to all
corrupted parties in round τ + tu + 1.
EXECFupdate,X ,E := {m24[τ + tu + 1],m25[τ + tu + 2]}

Lemma 5. The finalizing phase of protocol Π GUC-emulates
the finalizing phase of the functionality Fupdate.

Proof. Again we compare observed messages by E in the
ideal world and the real world. Let τ be the starting round,
and consider the following definitions for all messages that
are used for Confirmation phase in Fupdate and Π.
• m31 := (ssidC ,UPDATE, γi.id, txtrans

i .output)
• m32 := (ssidC ,UPDATED, γi.id, txtrans

i .output)
• m33 := (ssidL,POST, (txep

i , sigSet))
• m34 := (sid,pid,FINALIZED, γi)
• m35 := (sid,pid,post-texp, γi, txep

i )
For each channel γi, both the sender and the receiver

send messages to E . We need to consider different corruption
cases for these parties except the case that both of them are
corrupted.

Case 1: γi.sender honest, γi.receiver honest
Real world: γi.sender generates txin

i , which transfers αi coins
from the sender to the receiver. Then, sends m31 to Fchannel in
round τ . If the update fails, the receiver sends m33 to Gledger
in round τ+ tu and post txep

i to the ledger. Finally, γi.receiver
sends m34 to E in round τ + tu.
EXECΠ,A,E := {m34[τ + tu]}∪ obsSet(m31,Fchannel, τ)∪

obsSet(m33,Gledger, τ + tu)

Ideal world: Fupdate generates txin
i and updates the channel

γi via sending m31 to Fchannel in round τ . After the update
execution, Fupdate sends m34 to E in round τ + tu and on
behalf of the receiver. If the update fails, Fupdate sends m35

to X and asks it to post txep
i on the ledger via message m33

to Gledger in round τ + tu on behalf of γi.receiver.

22



EXECFupdate,X ,E := {m34[τ + tu]} ∪
obsSet(m31,Fchannel, τ) ∪ obsSet(m33,Gledger, τ + tu)

Case 2: γi.sender honest, γi.receiver corrupted
Real world: In this case, we ignore messages that are sent
directly from the receiver to E . γi.sender generates txin

i , and
sends m33 to Fchannel to update the channel.
EXECΠ,A,E := obsSet(m33,Fchannel, τ)

Ideal world: Fupdate generates txin
i and updates the channel

γi via sending m33 to Fchannel in round τ .
EXECFupdate,X ,E := obsSet(m33,Fchannel, τ)

Case 3: γi.sender corrupted, γi.receiver honest
Real world: In this case, we only consider messages that are
sent from the receiver. γi.receiver waits until time τ + tu. If
message m32 is received in this round, the final transfer has
been performed, so γi.receiver sends m34 to E . If m32 is not
received and the update fails, sends m33 to Gledger in round
τ + tu.
EXECΠ,A,E := {m34[τ+tu]}∪obsSet(m33,Gledger, τ+tu)

Ideal world: Fupdate waits until receiving m32 from
Fchannel. If this happens, the update is executed and Fupdate
sends m34 to E on behalf of the receiver in round τ + tu.
Otherwise, Fupdate sends m35 to X and asks it to send m33

to Gledger on behalf of the receiver.
EXECFupdate,X ,E := {m34[τ + tu]} ∪

obsSet(m33,Gledger, τ + tu)

Lemma 6. The respond phase of protocol Π GUC-emulates
the respond phase of the functionality Fupdate.

Proof. Again we compare observed messages by E in the
ideal world and the real world. Let τ be the starting round,
and consider the following definitions for all messages that
are used for Confirmation phase in Fupdate and Π.
• m36 := (ssidC ,CLOSE, γi.id)
• m37 := (ssidL,POST, txp

i,j)
• m38 := (sid,pid,PAID, γi)
• m39 := (ssidL,POST, txr

i)
• m40 := (sid,pid,FORCE-REFUND, γi)
• m41 := (sid,pid,post-pay, γi, txp

i,j)
• m42 := (sid,pid,post-refund, γi, txr

i)
For each channel γi, both the sender and the receiver send

messages to E independently. We consider cases that the
parties are honest.

Case 1: γi.receiver honest, Pay
Real world: In every round, γi.receiver checks whether one
of transactions in {txep

j }j∈[1,n] is observed on the ledger and
τ < T − tc−2∆. If so, she closes the channel γi via message
m36 to Fchannel. When the channel become closed and txstate

i

is found on the ledger, γi.receiver waits time ∆, and then, post
transaction txp

i,j , which forces the payment. This is done by
sending m37 to Gledger. The receiver finally sends m38 to E
in round τ + tc + 2∆
EXECΠ,A,E := {m38[τ + tc + 2∆]} ∪

obsSet(m36,Fchannel, τ) ∪ obsSet(m37,Gledger, τ + tc + ∆)

Ideal world: In every round, Fupdate checks if one of
transactions in {txep

j }j∈[1,n] is observed on the ledger and
τ < T − tc− 2∆, sends m36 to Fchannel to close the channel
γi. After a successful closure, Fupdate after a time ∆, send
m41 to the simulator. The X aggregates signatures required for
spending txp

i,j and sends m37 to Gledger. When this transaction
appears on the ledger, Fupdate sends m38 to E .
EXECFupdate,X ,E := {m38[τ + tc + 2∆]} ∪

obsSet(m36,Fchannel, τ) ∪ obsSet(m37,Gledger, τ + tc + ∆)

Case 2: γi.sender honest, Revoke
Real world: In every round, when τ is larger than T and
channel γi has been closed, but not any payment transaction
txp
i,j is on the ledger, γi.sender signs txr

i and post it on the
ledger via message m39 to Gledger. After observing txr

i on the
ledger, γi.sender sends m40 to E .
EXECΠ,A,E := {m40[τ + ∆]} ∪ obsSet(m39,Gledger, τ)

Ideal world: In every round, when τ is larger than T
and channel γi has been closed, Fupdate sends m42 to the
simulator, which in turn, X sign txr

i on behalf of γi.sender
and sends m39 to Gledger. When txr

i is observed on the ledger,
Fupdate sends m40 to E again on behalf of γi.sender.
EXECFupdate,X ,E := {m40[τ+∆]}∪obsSet(m39,Gledger, τ)

Theorem 2. For ideal functionalities Fchannel, Gclock, FGDC ,
and Gledger and for any T , ∆ ∈ N, the protocol Π GUC-
emulates the the functionality Fupdate.

This theorem follows directly from Lemmas 1 to 6.

D. Discussion on security and privacy

In Section III-A we introduced the security and privacy
goals of interest, atomicity and strong value privacy. In Sec-
tion V-B we informally showed that the security and pri-
vacy goals are achieved by our construction. Further, in Ap-
pendix C4 we defined an ideal functionality Fupdate for
multi-channel updates, and then we proved that the Thora
protocol GUC-emulates the ideal functionality. In this section,
formalize our security and privacy properties and then prove
that Fupdate fulfills them.

1) Atomicity: For our multi-channel updates, let U :=
{(γi,αi)}i∈[1,n] be the set of updates. Each tuple (γi,αi)
contains a channel γi, which is going to be updated and a value
αi, which determines the payment value through that channel.
For each channel γi, we define possible outcomes. We define
γi as successful, if αi coins have been transferred from the
sender to the receiver. In other words, γi.balance(γi.sender)
has been decreased by αi and γi.balance(γi.receiver) has been
increased by αi at the end of the protocol execution. We define
γi as reverted, if at the end of the protocol execution the
channel balance is the same as before the start of the protocol
execution. We define γi as compensated, if there is an honest
node that receives the total channel balance via the channel
punishment mechanism. For every other outcome, we say a
channel is invalid.

Now, we define a security game AtomA,Π as follows.
The adversary A selects a set of n channels {γ1, γ2, ..., γn},
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chooses the corrupted users from the users of these channels,
selects dealer and sends these values to the challenger. The
challenger sets sid and pid to two random identifiers. With
these parameters, the challenger starts simulating Thora from
the Initialization phase on the input of the channels set for
the given dealer. Behavior of honest parties can be simulated
directly by the challenger, and every time that a corrupted
party needs to be contacted, the challenger sends the query
to A, and waits for the corresponding answer. A can respond
correctly, wrongly, not at all, manipulate the ledger by posting
(valid) transactions, try updating channels, etc.

After the protocol simulation terminates, we say that A wins
if one of the following cases holds after the execution.

1) There exists two channel γi, γj with only two honest
channel users, such that one channel update was success-
ful and one channel update was reverted.

2) Let {γ} be the set of channels with one honest node
and one corrupted node, which are not (i) γ.sender is
honest and channel is reverted, not (ii) γ.receiver is
honest and channel is successful, not (iii) compensated.
The outcome of all the channels has to be the same
x ∈ {successful, reverted} and the same as the outcome
x ∈ {successful, reverted} of any channel with only
honest nodes.

3) There exists any channel γi without two corrupted nodes
such that γi is invalid or channel γj with two honest users
such that γj is compensated.

Definition 2. We say that a multi-channel updates protocol
achieves atomicity if for every PPT adversary A, the adversary
wins the AtomA,Π game with negligible probability.

Theorem 3. The multi-channel updates functionality Fupdate
achieves atomicity property defined in Definition 3.

Proof. Assume that there is an adversary A that can win the
game AtomA,Π, which implies that at least one of the three
conditions (1), (2) or (3) from the game definitions holds.

If (1) holds, this means that there exist two honest chan-
nels where one was successful and one was reverted. This
contradicts the ideal functionality description, which moves to
the finalize phase for all honest channels or none of them.
Similarly, should either a txep appear on the ledger before T
ends. Due to the second statement and the fact that γi.sender
is honest, we have two possible scenarios. First, Fupdate has
created txtrans

i in the Finalizing phase, and has updated the
channel γi using txtrans

i successfully. Second, at least one txep
k

and txp
i,k are on the ledger. In any other cases, Fupdate would

wait until time T and refund coins to γi.sender using txr
i. So

also for (2) the contrary holds. The ideal functionality will
monitor behavior of corrupted parties. If the diverge from the
execution of an honest channel, the ideal functionality will
ensure that these channels are compensated or put them in a
state that is beneficial to the honest parties. Finally, for (3),
as we previously described the only possible outcomes the
ideal functionality allows for channels with at least one honest

nodes, this cannot hold. It follows, that such an adversary does
not exist.

2) Strong value privacy: For a protocol Π and an adversary
A, we define another game VPriv to capture the strong
value privacy property. A selects dealer, and chooses a set
of n channels {γ1, γ2, ..., γn}, where for each channel γi both
γi.receiver and γi.sender are honest or semi-honest parties.
In other words, corrupted parties involved in the protocol
do not deviate from the protocol during the execution. The
goal A is to guess the payment values regarding the channels
with both honest senders and honest receivers. A has access
to messages sent from honest parties to corrupted ones and
publicly auditable parameters, like transactions posted to the
ledger.
A sends the set of channels to the challenger. The challenger

sets sid and pid to two random identifiers. Then, the
challenger starts simulating Thora from the Initialization phase
on the input of the channels set for the given dealer. We
assume that messages honest parties receive from E about the
payment values (REQ-VALUE messages) are not leaked to any
other parties. Moreover, we assume the values E sends to the
receiver and the sender of a single channel are the same.

By the end of the protocol simulation, A sends the set
{α′i1 ,α′i2 , ...,α′ik} to the challenger, each α′ij is the guess of
A for the payment value in channel γij where both the sender
and the receiver are honest. We say that A wins the game if
there is at least one j ∈ [1, k] such that α′ij = αij .

Definition 3. We say that a multi-channel updates protocol
achieves strong value privacy if for every PPT adversary
A, the adversary wins the VPrivA,Π game with negligible
probability.

Theorem 4. The multi-channel updates functionality Fupdate
achieves the strong value privacy property.

Proof. We assume that k is negligible with regard to the size
of the domain which payment values can be chosen from.
Thus, without any leaked information about payment values,
the probability of the adversary winning the game is negligible.

Suppose that there is an adversary A that can win the game
VPrivA,Π with a non-negligible probability. It means that
there is a payment value αij , where A is able to extract
some information about the value and guess α′ij , such that
α′ij = αij . The only ways to get information about αij are the
messages Fupdate sends to corrupted parties and transactions
that are posted to the ledger.
αij is encoded only in four types of transactions. txstate

ij
,

{txp
ij ,k}k∈[1,n], txr

ij
, and txtrans

ij
. γij .sender is honest so all

these transactions are created by Fupdate. txr
ij

and txtrans
ij

are never sent to other parties inside exchanged messages.
Moreover, because γij .receiver is honest, Fupdate will not sent
txstate
ij

, txp
ij ,k neither to γij .receiver nor other parties.

On the other hand, since all parties are honest or semi-
honest and do not deviate from the protocol, we expect the
final update using transaction txtrans

ij
to be executed success-

fully for all channels, and no txep is required to be posted on
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the ledger. Therefore, in the respond phase, txstate
ij

, txp
ij ,k, or

txr
ij

are not required to be posted on the ledger, and A has no
way to observe these transactions.
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