
Backward-Leak Uni-Directional Updatable
Encryption from (Homomorphic) Public Key

Encryption

Yao Jiang Galteland⋆ ID and Jiaxin Pan⋆⋆ ID

Norwegian University of Science and Technology, Norway
{yao.jiang, jiaxin.pan}@ntnu.no

Abstract. The understanding of directionality for updatable encryp-
tion (UE) schemes is important, but not yet completed in the litera-
ture. We show that security in the backward-leak uni-directional key
updates setting is equivalent to the no-directional one. Combining with
the work of Jiang (ASIACRYPT 2020) and Nishimaki (PKC 2022), it
is showed that the backward-leak notion is the strongest one among
all known key update notions and more relevant in practice. We pro-
pose two novel generic constructions of UE schemes that are secure in
the backward-leak uni-directional key update setting from public key
encryption (PKE) schemes: the first one requires a key and message ho-
momorphic PKE scheme and the second one requires a bootstrappable
PKE scheme. These PKE can be constructed based on standard assump-
tions (such as the Decisional Diffie-Hellman and Learning With Errors
assumptions).

Keywords: Updatable Encryption · Public Key Encryption · Backward-
leak Uni-Directional Key Update · No-Directional Key Update · Stan-
dard Assumption

1 Introduction

To mitigate key compromise over time, a data subject wishes to periodically
update her outsourced data on a data host. The outsourced data is expected to
be refreshed from the old key to the new key without changing the underlying
message. During this process, it is also reasonable to expect that no information
of plaintexts are leaked while updating.

Updatable encryption (UE) schemes [2, 3, 4, 6, 10, 11, 13, 15] are a special
kind of encryption schemes that allow the data host to update ciphertexts with
the help of a data subject generated updating material, namely update token.

⋆ Her work has been co-funded by the IKTPLUSS program of the Research Council
of Norway under the scope of and as part of the outcome from the research project
Reinforcing the Health Data Infrastructure in Mobility and Assurance through Data
Democratization (Health Democratization, 2019 - 2024, project number 288856

⋆⋆ His work is supported by the Research Council of Norway under Project No. 324235.

https://orcid.org/0000-0002-3083-5055
https://orcid.org/0000-0002-7459-6850

Update tokens can rotate ciphertexts or keys, which makes UE schemes partic-
ularly interesting for outsourced data storage. However, leaked tokens together
with key corruption an adversary may break confidentiality of the future or past
epoch by upgrading or downgrading keys or ciphertexts, which is captured by
the directionality of UE schemes. The study of UE mainly focuses on the security
notions and efficient constructions. Directionality for UE schemes is important
to study since it plays a central role in influencing the security result. The chal-
lenge is that there are two types of ciphertext update settings and four types of
key update settings in the literature, and a combination of these settings results
in eight different types of update settings for UE schemes to analyze.

Directionality of Ciphertext Updates. If an update token can only update a
ciphertext under a key in the past to a ciphertext under a new key without
changing the encrypted message, it is in the forward direction, then we call that
such a UE scheme has uni-directional ciphertext updates; and if an update token
can additionally update a ciphertext to another ciphertext under a key in the
past, we call such a UE scheme with bi-directional ciphertext updates.

Directionality of Key Updates. Secret key leakage is a serious security threat to
encryption. For instance, there is no security guarantee for standard encryption
schemes if their secret keys are leaked. However, for UE schemes, the update
token offers a potential to preserve confidentiality, since the update token allows
us to update a secret key and the corresponding ciphertexts. Realizing this fully
is very challenging and requires careful treatments, since the update token may
also leak information about the key.

Directionality of key update is used to capture which information adversaries
can learn about the secret keys given the update token. Roughly speaking, there
are four key update settings given by the literature [8, 11, 13]. For a precise
description, let e be an epoch, namely, the index of a time period. In the forward-
leak uni-directional key update setting1 [11], given a key ke and an update token
∆e+1 adversaries can only learn a key ke+1 in the forward direction. Similarly, in
the backward-leak uni-directional key update setting [13], adversaries can only
learn a key ke in the backward direction, given ke+1 and ∆e+1. If both forward-
leak and backward-leak are satisfied in a setting, then it is called bi-directional
key update. In contrary, if an update token leaks nothing about any secret key,
then this setting is called no-directional key update [8].

Security Implications among Different Key Update Settings. Security of a UE
scheme is defined with respect to the aforementioned key update settings. Roughly
speaking, UE security guarantees confidentiality if the trivial win conditions are
not triggered. The trivial win conditions are defined differently in each key up-
date setting, and more information leaked about keys leads to more trivial win

1 This was called uni-directional key updates in [11], but here we follow the more
precise terminology of Nishimaki [13] and call it forward-leak uni-directional key
updates.

2

No-directional Key Update Bi-directional Key Update

Backward-leak Key Update Forward-leak Key Update

[8]

[8]

\

[13]

[8]new Sec. 4

Fig. 1: Security implications among different key update settings assuming uni-
directional ciphertext updates. X → Y means that security in the X setting
implies that in the Y setting, and X −̸→ Y means that security in the X setting
does not imply that in the Y setting, and X ↔ Y = (X → Y) ∧ (Y → X).
Contribution in this paper is marked with a double arrow ‘⇔’.

conditions in the confidentiality game for UE schemes. With more trivial win
conditions, it seems harder for an adversary to win the confidentiality, since it
is easier for it to trigger the trivial win conditions. Thus, intuitively, a setting
with less key leakage seems to give stronger security.

This intuition partially holds true, according to the work of Jiang [8] and
Nishimaki [13]. More precisely, in [8] it has been showed that security in the
no-directional setting is strictly stronger than that in the bi-directional setting,
and security in the bi-directional key update setting is equivalent to that in
the forward-leak setting. To further complete the work of Jiang, Nishimaki [13]
proposed the backward-leak uni-directional setting and showed that UE schemes
in prior works [4, 8, 11] are secure in the bi-directional setting but insecure in the
backward-leak uni-directional setting. Here we consider that an update token
can only update a ciphertext in the forward direction, since if the ciphertext
updates are bi-directional then all four settings are equivalent as shown in [8].
The implications among these four key update settings are shown figuratively in
Figure 1.

To sum up the discussions above, it is currently unclear that the relation be-
tween the no-directional and backward-leak uni-directional key update settings,
although they both are stronger than the bi-directional and forward-leak setting.

Our Goal: UE schemes with Strong Security from Weak Assumptions. We aim
at constructing UE schemes with strong security from weak assumptions. In
achieving our goal, we first need to decide which notion is the strongest among
the above four settings. Jumping ahead, our first contribution is proving the
no-directional and backward-leak settings are equivalent. Given our equivalence
result, we claim it is more desirable to construct a UE scheme that is secure in
the backward-leak uni-directional key update setting for the following reasons.

Firstly, UE schemes secure in the backward-leak setting are technically more
promising to construct based on weak assumptions, since the existing UE scheme
[13] with no-directional key updates are based on strong assumptions. Namely,
the scheme in [13] requires a rather strong and impractical primitive, indistin-
guishability obfuscation.

3

Secondly, although there is a backward-leak UE scheme based on the Learn-
ing With Errors (LWE) assumption proposed by Nishimaki [13], it is unknown
whether backward-leak UE schemes can be constructed from a wider class of
weak assumptions, for instance, the Diffie-Hellman assumption without pair-
ings. We are particularly interested in constructing UE schemes generically from
public-key encryption (PKE), since this not only is theoretically interesting, but
also can give us UE schemes from rather weak assumptions. Recently, Alamati,
Montgomery, and Patranabis [1] have proved that ciphertext-independent UE
implies PKE, but the implication in the other direction is unknown.

Finally, we stress that the backward-leak setting is relevant for practice, as
discussed in [13]. In practice, the purpose of updating our keys is mostly because
the current key and those in the past may be leaked. In such a scenario, UE
schemes in the backward-leak uni-directional key update setting are required,
since they can provide confidentiality in an epoch, even though all previous keys
and tokens are corrupted. Moreover, backward-leak UE schemes remain secure
even if the data host forgets to delete older keys and tokens, while this is not the
case for forward-leak UE schemes, since with the older keys an adversary can
learn the keys in the future.

1.1 Our Contributions

Intuition behind security definitions. Our first contribution is providing an intu-
itive understanding of trivial win conditions, firewalls, directionality and security
notions. Explanations of all these topics exists in [3, 4, 8, 10, 11, 13], however,
we aim to provide a simple description to show the relations among these defini-
tions. We consider two classes of UE schemes (discussed in Section 3.2 and 3.3):
the first class of UE schemes have update settings such that keys cannot upgrade
and ciphertexts cannot downgrade, the second class of UE schemes have update
settings where keys and ciphertexts both can leak information in the forward
direction. We observe that the first class of UE schemes (including UE schemes
with backward-leak uni-directional key updates and no-directional key updates)
can achieve the strongest confidentiality notion (with post-compromise security).
Thus, it is only necessary to analyze two classes of UE schemes, and these two
classes of UE schemes matches with the equivalence result in the literature [8, 13]
and our work. That is, the eight variants of confidentiality notions can be seen
as only two classes of confidentiality notions. We will show that notions in the
same class are equivalent and one class is strictly stronger that the other.

Equivalence result. Our second contribution is proving that security in the
backward-leak uni-directional key update and uni-directional ciphertext update
setting is equivalent to that in the no-directional key update and uni-directional
ciphertext update setting. All our UE schemes have uni-directional ciphertext
updates, and for simplicity, we do not mention it explicitly in the remaining of
this section. This means that UE schemes with no-directional key updates do not
provide stronger security than UE schemes with backward-leak uni-directional

4

key update. Our result suggests that constructing UE schemes with backward-
leak uni-directional key update is equivalent to constructing UE schemes with
no-directional key update.

Generic Constructions of UE from PKE. Our third contribution is constructing
two generic constructions of UE schemes with backward-leak uni-directional key
update from PKE schemes. Our constructions require additional properties of
the underlying PKE schemes. Our first construction requires key and message
homomorphism for PKE schemes. Such PKE schemes can be instantiated under
the Decisional Diffie-Hellman (using the ElGamal encryption) and LWE (using
the Regev encryption [14]) assumptions. Combining with our equivalence result,
the aforementioned two schemes provide us with the first no-directional secure
UE schemes without pairings in the Diffie-Hellman setting and based on a post-
quantum assumption, respectively. We note that the uni-directional schemes
from FHE or IO or lattice trapdoors [13] usually do not have this increased
key-size or ciphertext-size. But without these assumptions and technique, uni-
directional schemes relying on standard assumptions (namely, ours and the work
in [12]) are constructed with growing key and cipehrtextext. It remains an open
problem to construct uni-directional schemes relying on standard assumptions
where the key and cipehrtextext size keeps the same.

Our second generic construction uses a bootstrappable PKE [7] that can be
implemented using the LWE assumption, which again gives us a post-quantum
UE scheme with security in the no-directional key update setting.

Of independent interest, we propose a generic construction of bi-directional
UE scheme from a key homomorphic PKE scheme. Our generic construction
abstracts the constructions of RISE [11] and LWEUE [8]. We stress that our
notion of key homomorphic PKE is inspired by the key homomorphic PRF of
Boneh et al. [3] but different to theirs. More precisely, our key homomorphic
property is defined with respect to a public key and a secret key, while theirs is
with respect to two secret keys.

Technical Overview. Here we provide a brief technical overview of our generic
backward-leak UE constructions from PKEs. The full descriptions of our schemes
can be found in Sections 5.3 and 6. The update token plays an important role
in a UE scheme, and therefore we mostly focus on it in the following.

In our first construction, its key contains a pair of secret and public keys
from the PKE scheme. The update token contains the difference between the old
and new secret keys. In addition, the token includes an independently generated
public key, which will play a central role for the confidentiality in the next epoch.
To update a ciphertext, we have two steps: Firstly, by the key homomorphic
property of the PKE, the difference between the old and new secret keys can
be used to modify the ciphertext under the old key to one under the new key.
Secondly, we randomize this ciphertext so that it is indistinguishable to a freshly
generated ciphertext under the new key. In doing this, we use the aforementioned
independent public key to encrypt a randomness to homomorphically randomize
the ciphertext, since our PKE is further message homomorphic. In the security

5

proof, we can show that message is hidden by the randomness and confidentiality
in the new epoch is preserved.

In our second construction, the update token is an encryption of the old secret
key under the new public key. This token will not reveal any information about
the new secret key even with the knowledge of the old secret key. To update a
ciphertext, we evaluate the decryption circuit on the encryption of the old key
(that is the token) and the encryption of the old ciphertext. The bootstrapping
property states that this output is statistically close to a fresh ciphertext under
the new key.

Concurrent Work. We note a recent work from Miao, Patranabis, and Watson
[12] which has a construction of backward-leak uni-directional UE similar to
ours, while our work contains a formal proof about the equivalence between
backward-leak and no-directional UE.

1.2 More Discussion

Ciphertext-Dependent v.s. Ciphertext-Independent. We call an updatable en-
cryption scheme is ciphertext-dependent [2, 3, 5, 6] if the token generation pro-
cess depends on the old ciphertext. If the token generation process is indepen-
dent of the ciphertext to be updated, then the UE scheme is called ciphertext-
independent [4, 8, 10, 11, 13, 15]. A ciphertext-independent UE scheme is usually
more efficient in terms of bandwidth cost, and, thus, we focus on such schemes
in this paper.

Deterministic Update. The update algorithm in UE schemes can be deterministic
or randomized. UE schemes with randomized update algorithm provide stronger
security, in which the updated ciphertext can be in the same distribution of a
fresh encryption. However, the work of Klooß et al. [10] shows that such UE
schemes with randomized update cannot achieve ciphertext integrity and secu-
rity against chosen-cipertext attacks (CCA), but replayable CCA security. For
instance, SHINE [4] and E&M [10] are UE schemes with deterministic update
that have ciphertext integrity and CCA security. Klooß et al.’s result also means
that our constructions cannot be CCA secure, but it is promising to make it
RCCA secure. We leave constructing this as an open problem.

Security Notions. Boneh et al. [3] presented the first security notion for UE
schemes. After that, the works in [4, 8, 10, 11] proposed more realistic security
notion by providing more capability to an adversary. For instance, it can adap-
tively corrupt epoch keys or update tokens at any point within the security game.
Jiang [8] first discussed the directionality of security notions and showed that
security notions with forward-leak uni- and bi-directional updates are equivalent
in the current state-of-the-art UE security notion of Boyd et al. [4]. In addition,
Jiang [8] proved that confidentiality notions with no-directional key updates are
strictly stronger than uni- and bi-directional update variants of the correspond-
ing notions. Nishimaki [13] defined a new type of key update, backward-leak uni-
directional key update, which is not covered in the work of [8]. We will prove the

6

relation between the backward-leak uni-directional key update variant of a con-
fidentiality notion with other update variants of the same confidentiality notion.
We will show that confidentiality notions with backward-leak uni-directional key
update is equivalent to no-directional key updates variants of the correspond-
ing notions. Which means the backward-leak uni-directional key update variant
of notions are the strongest notions. Slamanig and Striecks [15] introduced a
stronger model for UE schemes, where they consider an “expiry epoch”, eexp. If
a ciphertext is updated to an epoch e, where e ≥ eexp and eexp is this ciphertext’s
expiry epoch, then this ciphertext can no longer be decryptable. Their model
allows the adversary knows “all”2 tokens. Forward security is guaranteed if the
key updates are at most in the forward-direction and leaked keys are in epochs
after the expiry epoch of a ciphertext. Post compromise security is guaranteed
if the key updates are at most in the backward-direction. Realizing such strong
security strictly requires no-directional UE schemes where keys must not be up-
datable in any direction. Note that Jiang’s equivalence theorem [8] holds in the
setting where there is no expiry date for ciphertexts, i.e., eexp =∞. We consider
the case for eexp = ∞ in this paper. We do not compare the efficiency of our
construction with the UE construction in [15], due to schemes are in different
UE models.

2 Preliminaries

In this section we describe the notation used in this paper and present the nec-
essary background material of updatable encryption. Due to space limitations,
we provide the preliminaries for public key encryption in App. A.

2.1 Notations

In this paper, λ denotes the security parameter and negl denotes a negligible

function. For distributions X and Y , X
s
≈ Y means X is statistically indistin-

guishable from Y .

2.2 Updatable Encryption and Confidentiality Notions

Updatable encryption (UE) schemes [3, 4, 10, 11] are a special kind of encryption
schemes with an additional functionality where ciphertexts under one key can
be transferred to ciphertexts under another key by an update token.

Definition 1 (UE). An updatable encryption scheme UE is parameterized by
a tuple of algorithms (Setup,Next,Enc,Dec,Upd) that operates over epochs such
that

– The setup algorithm Setup(λ) takes a security parameter λ as input, and
outputs an initial epoch key k1.

2 except for some end epoch eend, if eexp ≤ eend.

7

– The next algorithm Next(ke) takes an epoch key ke as input, and outputs a
new key ke+1 and an update token ∆e+1, the update token can be used to
update ciphertexts from epoch e to e+ 1.

– The encryption algorithm Enc(ke,m) takes an epoch key ke and a message
m as input, and outputs a ciphertext ce.

– The decryption algorithm Dec(ke, ce) takes an epoch key ke and a ciphertext
ce as input, and outputs a message m.

– The update algorithm Upd(∆e+1, ce) takes an update token ∆e+1 and a ci-
phertext ce as input, and outputs an updated ciphertext ce+1.

UE is correct if for any message m, any k1 ← Setup(λ), any (kj , ∆j) ←
Next(kj−1) for j = 2, ..., e, and any ci ← Enc(ki,m) with i ∈ {1, ..., e}, we have
m = Dec(ke, ce) where cj ← Upd(∆j , cj−1) for j = i+ 1, ..., e.

Security notions for UE schemes include confidentiality and integrity. We do
not consider integrity notions in this paper, see the paper by Jiang [8] for details.
We review the confidentiality notion for UE schemes in Definition 2 and extend
the six variants of security notions for UE schemes given by [8], in which the
backward-leak uni-directional key update [13] variants are not included.

The confidentiality game is played between a challenger and an adversary, the
adversary aims to distinguish a fresh encryption from an updated ciphertext. It
is allowed for the adversary to adaptively corrupt keys and tokens, if any trivial
win condition is triggered during the game the adversary will always lose. We
will provide technical and high level understanding of trivial win conditions in
Section 2.3 and 3.

Definition 2 ([4, 8]). Let UE = (Setup,Next,Enc,Dec,Upd) be an updatable
encryption scheme. Then the (kk, cc)-xxIND-UE-atk advantage, for kk ∈ {no, f-uni,
b-uni, bi}, cc ∈ {uni, bi}, xx ∈ {det, rand} and atk ∈ {CPA,CCA}, of an adversary
A against UE is defined as

Adv
(kk,cc)-xxIND-UE-atk
UE, A (λ) =∣∣∣Pr[Exp

(kk,cc)-xxIND-UE-atk-1
UE, A = 1]−Pr[Exp

(kk,cc)-xxIND-UE-atk-0
UE, A = 1]

∣∣∣,
where the experiment Exp

(kk,cc)-xxIND-UE-atk-b
UE, A is given in Fig. 2.

2.3 Leakage Sets and Trivial Win Conditions

In this section, we review the definition of leakage sets and trivial win discus-
sions [4, 8, 10, 11], the leaked information can be used to help an adversary
trivially win the confidentiality game.

Trivial Win via Key and Ciphertext Leakage. If an adversary knows both
the key and the challenge-equal ciphertext in the same epoch period e, then the
adversary can use this key to decrypt the challenge-equal ciphertext and obtain

8

ExpxxIND-UE-atk-b
UE, A :

do Setup; phase← 0
b′ ← Aoracles(λ)

if
(
(K∗

kk ∩ C∗kk,cc ̸= ∅) or
(
xx=det and

(ẽ∈T ∗
kk or O.Upd(c̄) is queried)

))
then

twf ← 1
if twf = 1 then
b′ $←− {0, 1}

return b′

Setup(λ)

k1
$←− Setup(λ)

∆1 ←⊥; e, c, twf ← 0
L, L̃, C,K, T ← ∅

O.Enc(m) :
c← c + 1

ce
$←− Enc(ke,m)

L←L∪{(c, ce, e;m)}
return ce

O.Dec(c) :
m′ or ⊥ ← Dec(ke, c)

if
(
(xx = det and (c, e) ∈ L̃∗

kk,cc) or

(xx = rand and (m′, e) ∈ Q̃∗
kk,cc)

)
then

twf ← 1
return m′ or ⊥

O.Next() :
(∆e+1, ke+1)←Next(ke)
if phase = 1 then
c̃e+1 ← Upd(∆e+1, c̃e)

e← e+ 1

O.Upd(ce−1) :
if (j, ce−1, e− 1;m) /∈ L then
return ⊥

ce ← Upd(∆e, ce−1)
L ← L ∪ {(j, ce, e;m)}
return ce

O.Corr(inp, ê) :
if ê > e then
return ⊥

if inp = key then
K ← K ∪ {ê}
return kê

if inp = token then
T ← T ∪ {ê}
return ∆ê

O.Chall(m̄, c̄) :
if phase = 1 then
return ⊥

phase← 1; ẽ← e
if (·, c̄, ẽ− 1; ·) /∈ L then
return ⊥

if b = 0 then
c̃ẽ ← Enc(kẽ, m̄)

else
c̃ẽ ← Upd(∆ẽ, c̄)
C ← C ∪ {ẽ}
L̃ ← L̃ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ

O.UpdC̃ :
if phase ̸= 1 then
return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

Fig. 2: The confidentiality experiment Exp
(kk,cc)-xxIND-UE-atk-b
UE, A for updatable en-

cryption scheme UE and adversary A, for kk ∈ {no, f-uni, b-uni, bi}, cc ∈ {uni, bi},
xx ∈ {det, rand} and atk ∈ {CPA, CCA}. The flag phase tracks whether or not A
has queried the O.Chall oracle, ẽ denotes the epoch in which the O.Chall oracle
happens, and twf tracks if the trivial win conditions are triggered. Oracles an
adversary can query are O.Enc, O.Next, O.Upd, O.Corr, O.Chall and O.UpdC̃ if
atk = CPA. If atk = CCA, O.Dec is included in the oracles. Leakage sets C,K, T ,
K∗

kk, T ∗
kk, C∗kk,cc, L̃∗

kk,cc, Q̃∗
kk,cc are discussed in Section 2.3.

9

the underlying plaintext to win the confidentiality game. We use leakage sets to
identify if this trivial win condition (“K∗ ∩ C∗ ̸= ∅”) is triggered.

Leakage sets [8, 10, 11] are defined to track epochs in which the adversary
knows a key, a token, or learned a version of challenge ciphertext. The direct
leakage sets K, T , C are describe as follows. Furthermore, K∗, T ∗ and C∗ are
defined as the extended sets of K, T and C to track the indirect leakage.

– K: Set of epochs in which the adversary corrupted the key (from O.Corr).
– T : Set of epochs in which the adversary corrupted the token (from O.Corr).
– C: Set of epochs in which the adversary learned a challenge-equal ciphertext3

(from O.Chall or O.UpdC̃).

Key Leakage. The size of the key leakage set K∗ can be influenced by the key
update direction of UE schemes. In the no-directional key update setting [8], the
adversary does not have more information about keys except for set K. In the
forward-leak uni-directional key update setting, if the adversary knows a key ke
and an update token ∆e+1 then it can infer the next key ke+1. In the backward-
leak [13] uni-directional key update setting, if the adversary knows a key ke+1

and an update token ∆e+1 then it can infer the previous key ke.
The notations f-uni and b-uni denote forward-leak uni and backward-leak

uni, resp.. In the kk-directional key update setting, for kk ∈ {no, f-uni, b-uni, bi},
denote the set K∗

kk as the extended set of corrupted key epochs. We compute
these sets as follows, where the boxed part is only computed for kk ∈ {b-uni, bi},
the gray boxed part is only computed for kk ∈ {f-uni, bi}

K∗
kk ← {e ∈ {0, ..., l}|CorrK(e) = true}
true← CorrK(e) ⇐⇒

(e ∈ K) ∨ CorrK(e+1) ∧ e+1 ∈ T ∨ CorrK (e-1) ∧ e ∈ T . (1)

Token Leakage. The adversary directly learns all corrupted tokens, it can also
compute a token from two consecutive epoch keys. We follow the assumption
(an update token can be computed via two consecutive epoch keys) in the page
7 of [9], this assumption is essential to formulate the known knowledge to the
adversary. Hence, for kk ∈ {no, f-uni, b-uni, bi}, denote T ∗

kk as the extended set of
corrupted token epochs.

T ∗
kk ← {e ∈ {0, ..., l}|(e ∈ T) ∨ (e ∈ K∗

kk ∧ e-1 ∈ K∗
kk)}. (2)

Challenge-Equal Ciphertext Leakage. The adversary learned all versions of chal-
lenge ciphertexts in epochs in C. Additionally, the adversary can compute challenge-
equal ciphertexts via tokens. In the uni-directional ciphertext update setting, the
adversary can upgrade ciphertexts. In the bi-directional ciphertext update set-
ting, the adversary can additionally downgrade ciphertexts.

3 A challenge-equal ciphertext is either a challenge ciphertext or an updated ciphertext
of the challenge ciphertext.

10

For kk ∈ {no, f-uni, b-uni, bi} and cc ∈ {uni, bi}, denote the set C∗kk,cc as the
extended set of challenge-equal epochs. We compute these sets as follows, where
the boxed part is only computed for cc = bi.

C∗kk,cc ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true← ChallEq(e) ⇐⇒

(e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗
kk) ∨ ChallEq(e+1) ∧ e+1 ∈ T ∗

kk . (3)

Trivial Win due to Deterministic Update. In a confidentiality game with
deterministic update setting. If the adversary knows the updated version (by
either knowing the update token ∆ẽ or asking for an update oracle O.Upd on
c̄) of the challenge input ciphertext c̄, it can compare the updated ciphertext
with the challenge ciphertext to win the confidentiality game. This trivial win
condition is “ ẽ∈T ∗ or O.Upd(c̄) is queried”.

Trivial Wins via Decryption. If the adversary submits a challenge-equal
ciphertext to the decryption oracle, it can trivially win the confidentiality game
by comparing the challenge plaintexts with the decryption output. Hence, the
adversary is not allowed to ask for a decryption oracle on such ciphertexts.
We use the following sets to track challenge ciphertexts, challenge plaintexts
and their updated versions that can be known to the adversary. These sets can
be used to identify the above trivial win condition. More precisely, “ (c, e) ∈
L̃∗” is a trivial win condition that is checked by the decryption oracle in the
detIND-UE-CCA game, “ (m′, e) ∈ Q̃∗” is a trivial win condition that is checked
by the decryption oracle in the randIND-UE-CCA game.

– L̃∗: Set of challenge-equal ciphertexts (c̃e, e). The adversary learned these ci-
phertexts from O.Chall or O.UpdC̃, or derived these ciphertexts from tokens.

– Q̃∗: Set of challenge plaintexts {(m̄, e), (m̄1, e)}, where (m̄, c̄) is the input of
challenge queryO.Chall and m̄1 is the underlying message of c̄. The adversary
learned or was able to compute a challenge-equal ciphertext in epoch e with
the underlying message m̄ or m̄1.

3 Intuitions behind Security Definitions.

In this section, we propose some high level intuitions behind the security notions
for UE. We aim to clarify the relations among trivial win conditions, directional-
ity and security results. If a UE scheme potentially leaks more information (which
can be influenced by directionality), then there exists more vulnerabilities (triv-
ial win conditions) for such scheme. Forward security in prior work of UE are
achieved under the limitation that no trivial win condition is triggered, namely,
there may exist some token after the challenge epoch cannot be corrupted. In
our work, we define a relaxed version of forward security that, after the chal-
lenge epoch, any keys and tokens can be corrupted and the confidentiality of

11

the challenge epoch remains. Similarly, we discussed post-compromise security.
In the end, we provide some observations about what types of UE schemes can
achieve forward or post-compromise security.

3.1 Intuition of Trivial Wins Conditions

The more information that get leaked in a confidentiality game the more chances
the adversary gains to win that game, and trivial win conditions are defined to
exclude such winning conditions. Generally speaking, the more update directions
a UE scheme has the more information the adversary can infer. That is, the
directionality of the update setting influences how much information gets leaked.

Trivial win conditions can be seen as a way of limiting the adversary’s attack-
ing power and this can be used to compare two notions, where two notions for
UE schemes are equivalent if they have the same winning probability. Consider
a modified confidentiality game where the adversary is not allowed to perform
certain actions that will trigger trivial win conditions. If such action happens,
the game aborts. The winning probability of the original confidentiality game
is the same as this modified confidentiality game. In other words, trivial win
conditions are equivalent to an attacking model. Such attacking model defines
the restriction to the adversary, for example, the adaptive corruption ability is
restricted by not triggering the trivial win conditions. Only when the adversary’s
attack actions does not trigger the trivial win conditions it is possible to win the
game. Informally, a security notion for a system can be seen as stronger if the
system remains secure even if the adversary has more attacking ability.

Combining this with the discussion above, we see that the more update di-
rection a UE scheme has the more key and ciphertext leakage there will be and
more trivial win conditions to evaluate. This means that the adversary will be
limited more in such a confidentiality game. From a security point of view, the
less attacking ability the adversary has the weaker we can regard a security
notion.

3.2 Intuition of Firewalls

The observation of firewalls was introduced in the work of Lehmann and Tack-
mann [11], Klooß et al. [10] provided an extended description of this key insu-
lation technique, and Boyd et al. [4] formally defined it as firewall technique.
Furthermore, Nishimaki [13] proposed a relaxed firewall, where the token on the
left side of the insulated region (∆fwl) can be corrupted. In any security game,
if the adversary never triggers the trivial win conditions, a cryptographic sepa-
ration (firewalls) exists, for a detailed discussion of the existence of firewalls see
[4, 10, 11, 13].

Definition 3 (Firewalls [4, 10, 11]). An insulated region with firewalls fwl
and fwr is a consecutive sequence of epochs (fwl, . . . , fwr) for which:

– no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;

12

– the tokens ∆fwl and ∆fwr+1 are not corrupted (if they exist);
– all tokens (∆fwl+1, . . . ,∆fwr) are corrupted (if any exist).

Definition 4 (Relaxed Firewalls [13]). A relaxed insulated region with re-
laxed firewalls fwl and fwr is a consecutive sequence of epochs (fwl, . . . , fwr) for
which:

– no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;
– the token ∆fwr+1 is not corrupted (if it exists);
– all tokens (∆fwl+1, . . . ,∆fwr) are corrupted (if any exist).

The firewall technique is used when proving the security for UE schemes, it
provides a method of describing a cryptographic separation, which is required
in the epoch based model to simulate where keys and ciphertexts are known or
unknown to the adversary. Firewalls, and relaxed firewalls, define a “safe” or
insulated region for keys, where no key within the region can be inferred from
keys outside of this region. We can regard the tokens ∆fwl and ∆fwr+1 as the
left and right firewalls, the cryptographic separation is created when these two
tokens are unknown to the adversary. In some UE settings, the token ∆fwl can
be corrupted and the cryptographic separation still holds, which means that the
insulated region can be relaxed even without the left firewall.

The relaxed insulated region is suitable for analyzing security for UE schemes
with update settings such that keys cannot upgrade and ciphertexts cannot
downgrade, namely ciphertext and key will not leak information in the same
direction. In UE schemes with uni-directional ciphertext update setting and key
update settings without forward-leak direction, we have that the token ∆fwl can-
not upgrade early epoch keys to learn keys inside the insulated region, it cannot
downgrade challenge-equal ciphertexts to learn early challenge-equal ciphertexts
outside of the insulated region as well. Hence, keys and ciphertexts inside and
outside of the insulated region are separated even when ∆fwl is known to the
adversary, the insulated region can be relaxed to allow the token ∆fwl to be
corrupted.

The (original) insulated region is suitable for analyze UE schemes with up-
date settings such that keys and ciphertexts can both leak information in the
forward direction, namely ciphertext and key will leak information in the same
direction. In UE schemes with ciphertext and key update settings that both have
at least forward-leak direction, we have that the token ∆fwl can upgrade early
corrupted keys to learn keys inside the insulated region. For these UE schemes
we have that the token ∆fwr can upgrade challenge-equal ciphertexts to an epoch
outside the insulated region where the adversary knows a corrupted key. Hence,
both tokens ∆fwl and ∆fwr+1 are required to be unknown to the adversary to
make a cryptographic separation.

3.3 Forward Security and Post-Compromise Security

Forward and post-compromise security for UE schemes were discussed by Lehmann
and Tackmann [11]. However, all confidentiality games in their work are re-
stricted by not triggering trivial win conditions, which means there exists a

13

cryptographic separation between the leaked key region and the “safe” region
(see the discussion of cryptographic separation in Section 3.2). That is, there
exists two tokens one before and one after the epoch where the adversary aims
to break the confidentiality such that these tokens cannot be corrupted.

We consider the standard definitions for forward and post-compromise secu-
rity, in which we do not have the restrictions of tokens which cannot be corrupted.
We say a UE scheme have

– forward security if the confidentiality in early epochs are not broken even if
an adversary compromises keys and tokens in some later epochs.

– post-compromise security if the confidentiality in later epochs are not broken
even if an adversary compromises keys and tokens in some early epochs.

We observe that only some specific UE schemes can achieve post-compromise
security. No UE scheme can achieve forward security.

The first class of UE schemes, discussed in Section 3.2, have update settings
such that keys cannot upgrade and ciphertexts cannot downgrade. Since the
ciphertext update is forward direction, an adversary can upgrade challenge-equal
ciphertexts by the help of tokens to an epoch where the adversary knows a key
to break the confidentiality in early epochs. Therefore, such UE schemes cannot
achieve forward security. However, an adversary compromises keys and tokens in
some early epochs cannot learn keys to break the confidentiality in later epochs.
Additionally, the adversary cannot downgrade a challenge-equal ciphertext to
an early epoch where the adversary knows a key to break the confidentiality in
later epochs. Hence, such UE schemes can have post-compromise security.

The second class of UE schemes, discussed in Section 3.2, have update settings
where keys and ciphertexts both can leak information in the forward direction.
An adversary can infer keys by tokens in the forward direction to break the
confidentiality in later epochs, therefore, such UE schemes cannot achieve post-
compromise security. Moreover, since the ciphertext update is forward direction,
similar to the discussion in above paragraph, such UE schemes cannot achieve
forward security either.

The above discussion matches with the equivalence results of confidentiality
notions (see Section 4). It implies that the first class of UE schemes (including UE
schemes with backward-leak uni-directional key updates and no-directional key
updates) can achieve the strongest confidentiality notion (with post-compromise
security).

3.4 Directionality for UE schemes and Confidentiality Notions

We specify that directionality for UE schemes and directionality for confidential-
ity notions are two different concepts. The update directionality for UE schemes
was defined to measure how much keys and ciphertexts are leaked because of
update tokens. However, such leakage can be the whole information leakage or
just partial information leakage. The partial leakage is not captured in the direc-
tionality for UE schemes, there is no definition for partial information leakage.

14

Under current definitions, we consider update direction for UE schemes to be
without partial information leakage. However, partial information leakage may
be used to break the confidentiality. An adversary may be able to decrypt ci-
phertexts where it only knows partial information about the corresponding key.
Such partial information leakage is considered in the security notion and it can
be seen as equivalent to the whole information leakage. For example, suppose
tokens in a UE scheme can be used to infer partial key information in both up-
date direction, such UE schemes are considered as a no-directional key update
UE scheme. However, if an adversary can use this partially leaked key to break
confidentiality, then such UE scheme is not secure in the no-directional update
variant of confidentiality, it can at most be secure in the bi-directional update
variant of confidentiality. Overall, UE schemes with one kind of update setting
do not immediately have the same update direction variant of security.

A specific update variant of security notion is suitable for examining UE
schemes with the same update setting. But we stress that our security definitions
are not restricted to UE schemes with some particular update setting, such UE
schemes are simply insecure in a less updating (or leakage) variant of notion.

4 Relations among Confidentiality Notions

In the work of [9], Jiang showed that all variants of the same integrity notions are
equivalent, hence, we do not consider integrity notions in this work and focus on
discussing the relations among confidentiality notions in this section. We prove
that the backward-leak uni- and no directional key update variant of the same
confidentiality notion are equivalent. As a result, UE schemes with backward-
leak uni-directional key updates is as strong as UE schemes with no directional
key update. It implies that we can construct a less hard (backward-leak uni-
directional key updates) UE scheme to achieve the same security result.

4.1 Equivalence for Trivial Win Conditions

We prove four equivalence of the trivial win conditions. The proofs of these
equivalence lemmas follow the proof strategy in [8], and they are provided in
App. B. The trivial win conditions considered in this section are checked in a
confidentiality game. In conclusion, if the trivial win conditions in the backward-
leak uni-directional key update setting are triggered then the same trivial win
conditions in the no directional key update setting would be triggered. We will
use these trivial win equivalences to prove the relation in Theorem 1.

Lemma 1 (Equivalence for Trivial Win Condition “ K∗ ∩ C∗ ̸= ∅”). For
any sets K, T , C ⊆ {0, ..., l}, we have K∗

b-uni∩C∗b-uni,uni ̸= ∅ ⇐⇒ K∗
no∩C∗no,uni ̸= ∅.

Lemma 2 (Equivalence for Trivial Win Condition “ ẽ∈T ∗ or O.Upd(c̄)
is queried”). For any K, T , C. Suppose K∗

kk∩C∗kk,cc = ∅, where kk ∈ {b-uni, no},
cc = uni, then

ẽ∈T ∗
no or O.Upd(c̄) is queried ⇐⇒ ẽ∈T ∗

b-uni or O.Upd(c̄) is queried.

15

Lemma 3 (Equivalence for Trivial Win Condition “ (c, e) ∈ L̃∗”). For
any sets K, T , C ⊆ {0, ..., e}. Suppose K∗

b-uni ∩ C∗b-uni,uni = ∅, then

(c, e) ∈ L̃∗
b-uni,uni ⇐⇒ (c, e) ∈ L̃∗

no,uni.

Lemma 4 (Equivalence for Trivial Win Condition “ (m′, e) ∈ Q̃∗”). For
any sets K, T , C ⊆ {0, ..., e}. K∗

b-uni ∩ C∗b-uni,uni = ∅, then (m′, e) ∈ Q̃∗
b-uni,uni ⇐⇒

(m′, e) ∈ Q̃∗
no,uni.

4.2 Relations among Confidentiality Notions

Jiang [9] showed that the bi-directional key update and the forward-leak uni-
directional key update variants of the same confidentiality notions are equivalent,
and confidentiality in the no-directional key update is strictly stronger than
that in the above mentioned two key update settings. However, the relation
between the backward-leak uni-directional key update and the no-directional key
update variants of the same confidentiality notion is missing in the previous work.
We complete the relations among the eight variants of the same confidentiality
notion, they are described as in Fig. 3. This is proven via Theorem 1, given
below, and results in [9].

Recall discussions in Section 3.2 and 3.3, where we consider update settings in
{(b-uni, uni), (no, uni)} are in one class and the rest update settings are in another
class. Intuitive observation shows notions in the same class are equivalent and
the prior class is strictly stronger than the latter. Interestingly, the result showed
in Fig. 3 matches with this intuition and provides a rigorous proof.

(b-uni, uni)-notion (no, uni)-notion (kk, cc)-notion
Theorem 1 *

\

*

Fig. 3: Relations among the eight variants of the same confidentiality
notion, where notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}, kk ∈ {no, b-uni, f-uni, bi} and cc ∈ {uni, bi}, the notation
of (kk, cc) are except for values in {(b-uni, uni), (no, uni)}. Results in work of [9]
are marked with ∗.

In Theorem 1, we compare two types of UE notions: the no-directional key
update setting and the backward-leak uni-directional setting. To illustrate the
intuition for our equivalence between these two settings we have two scenarios:
the first is where the adversary has corrupted a key located in an epoch earlier
that the challenge epoch, and the second is where the adversary has corrupted
a key located in an epoch later that the challenge epoch. In the first scenario,
the adversary cannot update the key even if she had all update token because in
both update settings forward key update is impossible. Similarly, the challenge
ciphertext cannot be downgraded. Thus, in the first scenario, both update set-
tings are equivalent. For the second scenario, we have that the adversary will

16

win the game in both update settings if she has access to enough tokens, be-
cause now the key can either be downgraded, using the tokens, or the challenge
ciphertext can be upgraded, using the same tokens. So, in the second scenario,
both update settings are equivalent.

Theorem 1. Let UE = (Setup,Next,Enc,Dec,Upd) be an updatable encryp-
tion scheme and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}. For any (b-uni, uni)-notion adversary A against UE, there
exists a (no, uni)-notion adversary B1 against UE such that

Adv
(b-uni,uni)-notion
UE, A (λ) = Adv

(no,uni)-notion
UE, B1

(λ).

Proof. The proof follows the same method as the proof of Theorem 3.1 in [9]. We
construct a reduction B1 running the (no, uni)-notion experiment which will sim-
ulate the responses of queries made by the (b-uni, uni)-notion adversary A. The
reduction will send all queries received from A to its (no, uni)-notion challenger,
and forwarding the responses to A. Eventually, the reduction receives a guess
from A and forwards it to its own challenger. In the end, the (no, uni)-notion
challenger evaluates whether or not the reduction wins, if a trivial win condi-
tion was triggered the reduction is considered as losing the game. This final win
evaluation will be passed to the adversary A.

By the equivalences of trivial win conditions in Section 4.1 (Lemma 1 to 4), if
A does not trigger the trivial win conditions in the (b-uni, uni)-notion game, then
the reduction will not trigger the trivial win conditions in the (no, uni)-notion
game either. If A triggers the trivial win conditions in the (b-uni, uni)-notion
game, then the reduction will also trigger the trivial win conditions in the
(no, uni)-notion game. Therefore, the reduction perfectly simulates the responses

to adversary A. And we have Adv
(no,uni)-notion
UE, B1

(λ) = Adv
(b-uni,uni)-notion
UE, A (λ).

5 UE from Key Homomorphic PKE

We use key homomorphic PKE schemes to construct UE schemes in this section.
The idea of key homomorphic by Boneh et al. [3] inspired this construction idea.
Our key homomorphic is more general than the key homomorphic construction
presented by Boneh et al. [3], where we can rotate information based on a public
value and a secret value instead of two secret values.

5.1 Key Homomorphic PKE

We define key homomorphic PKE in this section, which will be used to build
updatable encryption schemes in the later two sections.

Definition 5 (Key Homomorphic PKE). We say public key encryption
PKE = (KG,Enc,Dec) is key homomorphic if:

17

1. there exists an efficiently computable secret key to public key algorithm [·] :
SK −→ PK such that for any (sk, pk) ← KG(λ), the following two pairs of
distributions are statistically close:

(sk, [sk])
s
≈ (sk, pk). (4)

{(sk1 ⊗ sk2, [sk1 ⊗ sk2]) | sk1, sk2
$←− SK}

s
≈ {(sk, [sk]) | sk $←− SK}. (5)

where ⊗ is an operation (which can be addition, multiplication, etc.) over
the secret key space.

2. there exists an efficiently computable key homomorphic to key algorithm de-
fined as:
KHK : SK × PK −→ PK takes a secret key and a public key as input and
outputs a public key, such that for any secret key sk2 ∈ SK and public key
pk1 ∈ PK, the following two distributions are statistically close:

KHK(sk2, pk1)
s
≈ [sk1 ⊗ sk2], (6)

where sk1 is the secret key of pk1.
3. there exists an efficiently commutable key homomorphic to ciphertext algo-

rithm KHC, defined as:
KHC : SK × CS −→ CS takes a secret value and a ciphertext as input and
outputs a ciphertext, such that for any keys (sk1, pk1) ← KG, secret value

sk2
$←− SK, and any message m, the following two distributions are statisti-

cally close:

(c,KHC(sk2, c))
s
≈ (c,Enc([sk1 ⊗ sk2],m)), (7)

where c = Enc(pk1,m).

Remark 1. Equation (4) guarantees that we can compute a public key from a
secret key. Equation (5) makes sure the distribution generated from the homo-
morphism of keys is statistically close to the original key distribution. Equa-
tion (6) allows us to compute a new public key from a secret key (assume sk2)
and an old public key (assume pk1 = [sk1]), the underlying secret key of the
newly generated public key matches the output of the homomorphic operation
applied to the input secret keys (sk1 and sk2). It is essential for our security
proof of Theorem 2. We need an algorithm to simulate new public keys from
the corresponding old public keys and some secret values. In the proof of Theo-
rem 2, when we use a reduction to simulate the game to an adversary within the
firewall, the reduction has no knowledge of any secret keys, but it can simulate
public keys with KHK from its own challenge public key and simulated secrets
(cf. Fig. 11). Without these simulated public keys, the reduction cannot simu-
late valid ciphertexts within the firewall region. Additionally, we require the two
distributions to be statistically close to make sure any adversary cannot distin-
guish simulated public keys from the real ones. All the PKE considered here

18

satisfy this property. This statistical property is crucial, since the correctness of
our scheme requires Equation (7) to hold statistically. This, in turn, requires the
two public keys are statistically indistinguishable, since otherwise Equation (7)
cannot hold for an unbounded adversary. Equation (7) enables us to compute a
new ciphertext from one public key to another public key without changing the
underlying message.

Examples of key homomorphic public key encryption schemes are ElGamal
encryption and LWE-based PKE (for some parameter choice) schemes. The se-
curity of such PKE schemes are based on DDH and LWE problems, resp..

– ElGamal encryption: Let G be a cyclic group of order q with generator g.
For any secret key x ∈ Zq, the corresponding public key is [x] = gx. Given
any public value [y] and any secret value x, we can compute KHK(x, [y]) =
[y]x = gxy = [x⊗ y]. Here, ⊗ is multiplication of integers and function KHK
is computed as KHK(x, y) = yx. For any ciphertext c = ([rx], [r] ·m), any

(y, [y])
$←− KG and a random value r′

$←− Z∗
q , note that [xy] = KHK(y, [x]) =

[x]y, then KHC(y, c) = (cy1 · [xy]r
′
, [r′] · c2) = ([(r + r′)xy], [r + r′] ·m) is a

ciphertext encrypted under public key [xy] with the same underlying message
m of the original ciphertext c.

– Lattice based PKE: Denote [s] = as+ e, then we can compute KHK(s, [t]) =

[s]+[t]
s
≈ [s⊗t], the right side public key has a bigger error. Here, ⊗ is group

addition. For any ciphertext c = (ar, [s]r+e′+m) and any (t, [t])
$←− KG, note

that [s⊗ t]
s
≈ [s] + [t], then KHC(t, c) = (c1 + ar′, c2 + c1t+ [s⊗ t]r′ + e′′)

s
≈

(a(r + r′), [s ⊗ t](r + r′) + (e′ + e′′) + m) is a ciphertext encrypted under
public key [s⊗ t].

5.2 Bi-Directional UE from Key Homomorphic PKE

We construct a UE scheme PKEUE, which is constructed from a key homomor-
phic PKE scheme PKE, the construction is described in Fig. 4. Note that the
next key pair (ske+1, pke+1) is statistically close to a real key pair generated
from PKE.KG(λ) by Equation (4) and (5). Note that RISE [11] and LWEUE [8]
are constructed by this method, they are built from ElGamal encryption and
LWE-based PKE.

Correctness. The correctness of PKEUE follows from the correctness of PKE. It is
sufficient to prove that the updated ciphertext is a valid ciphertext which keeps
the same underlying message as the original ciphertext. Since PKE is key homo-

morphic (see Definition 5), we have that ce+1 = PKE.KHC(∆e+1, ce)
s
≈

Equation (7)

PKE.Enc([ske ⊗∆e+1],m)=PKE.Enc(pke+1,m).

Next, we prove that the UE scheme constructed above satisfies the weaker
variant of rand-IND-UE security, namely the (bi, bi)-rand-IND-UE security.

19

Setup(λ) :
(sk1, pk1)← PKE.KG(λ)
return (sk1, pk1)

Next(ske) :
(∆e+1, [∆e+1])← PKE.KG(λ)
ske+1 ← ske ⊗∆e+1

pke+1 ← [ske+1]
return ∆e+1, (ske+1, pke+1)

Enc(pke,m) :
ce ← PKE.Enc(pke,m)
return ce

Dec(ske, ce) :

m′ ← PKE.Dec(ske, ce)
return m′

Upd(∆e+1, ce) :
ce+1 ← PKE.KHC(∆e+1, ce)
return ce+1

Fig. 4: PKEUE = (Setup,Next,Enc,Dec,Upd) is a UE scheme constructed from a
key homomorphic PKE PKE.

Theorem 2. Let PKEUE be the updatable encryption scheme described in Fig. 4.
For any (bi, bi)-rand-IND-UE adversary A against PKEUE, there exists an IND-CPA
adversary B2 against PKE such that

Adv
(bi,bi)-randIND-UE-CPA
PKEUE, A (λ) ≤ l3 ·AdvIND-CPA

PKE,B2
+ negl(λ),

where l is the upper bound on the last epoch.

Proof. In this proof, we use three steps to reach our desired goal. In the first
step, we play a hybrid game over epochs, where the reduction constructs one
hybrid for each epoch. In hybrid i, to the left of epoch i the game returns an
updated ciphertext as the challenge output, to the right of epoch i it gives an
encryption of the challenge input message as output. Therefore, we can move the
(bi, bi)-randIND-UE-CPA game from left to right across the epoch space. In the
second step, we apply the firewall technique [4, 10, 11] (recall the discussion in
Section 3.2) so that we can construct a reduction (in step 3) playing the IND-CPA
game by simulating the hybrid game to the adversary. Due to space limitations,
the detailed security proof is shown in App. C.

5.3 Uni-Directional UE from Key and Message Homomorphic PKE

In this section, we construct a UE scheme with backward-leak uni-directional
key update, which is called UNIUE. The UNIUE scheme is built from a key and
message homomorphic PKE scheme. Recall that key homomorphic PKE is de-
fined in Definition 5. The message homomorphic PKE is defined as the standard
homomorphic encryption, we name it message homomorphic to distinguish two
types of homomorphism (key homomorphism and message homomorphism) in
this paper.

Definition 6 (Message Homomorphic PKE). We say public key encryption
PKE = (KG,Enc,Dec) is message homomorphic if for any message m1,m2 ∈M
and any public key pk, Enc(pk,m1)⊗ Enc(pk,m2) = Enc(pk,m1⊕m2), where ⊗
is an operation over the ciphertext space and ⊕ is an operation over the message
space.

20

Notation. For a vector A = (a1, ..., an), we define [A] = ([a1], ..., [an]). For
vectors A,B and function f , we define f(A,B) = (f(a1, b1), ..., f(an, bn)).

Constructing Uni-Directional UE. We construct a backward-leak uni-directional
key update and uni-directional ciphertext update UE scheme UNIUE from a
key and message homomorphic PKE scheme. The construction is described in
Fig. 5. The idea of this construction is that only the public value pke+1,e+1 is
included in the update token ∆e+1, secret key ske+1,e+1 is not included, in other
words, no information of this secret key can be revealed from the token. We
can deploy this key pair to protect the confidentiality in the new epoch. The
detailed construction is shown in Fig. 5. When epoch period turns into the next
epoch period, the new epoch key will increase one key element. That is, epoch
key ke has e pairs of secret key and public key, epoch key ke+1 has e+1 pairs of
secret key and public key. To update a ciphertext, we use the difference of ske

and ske+1 (except for the last element) to move encryption of random elements
from epoch e to epoch e + 1. Due to PKE is message homomorphic, we can
perform a re-randomization to refresh the underlying random values. Then, we
add an encryption of a new random value, which is encrypted under pke+1,e+1,
into the updated ciphertext. This new random value can be used to hide the
message. Note that if we do not include this additional randomness, the above
construction is bi-directional.

Correctness. It is sufficient to prove that the updpated ciphertext is a ciphertext
in epoch e+1, with underlying message m. We compute the updpated ciphertext

as follows. c1 = PKE.KHC(∆sk
e+1, ce,1)

s
≈

Equation (7)
PKE.Enc([ske ⊗ ∆sk

e+1],Re)

and ce+1,1 ← (c1, 0) + PKE.Enc(pke+1,R) = PKE.Enc(pke+1, (Re, 0) +R). De-
note Re+1 = (re+1,1, ..., re+1,e+1) = (Re, 0)+R, due to the randomness of R we
know Re+1 is a random vector. Furthermore, ce+1,2 ← ce,2 ⊕ r1 ⊕ · · · ⊕ re+1 =
re+1,1 ⊕ · · · ⊕ re+1,e+1 ⊕m. Therefore, the updated ciphertext ce+1 is a valid ci-
phertext in epoch e+1. Note that we consider epoch bounded UE, which implies
that the noise in lattice-based constructions will not grow too large.

Backward-Leak Uni-Directional Key Updates. Any new key ske+1 has a random
key element ske+1,e+1 which is independent from the update token ∆e+1 and
the previous key ske, hence, any adversary cannot upgrade keys.

Uni-Directional Ciphertext Updates. If there exists an adversary A which can
infer a valid previous ciphertext ce from token ∆e+1 and ciphertext ce+1. Then
we claim that A can use this ability to win the IND$-CPA game for PKE. Initially,
A receives a public key pke+1,e+1 from its IND$-CPA challenger. A generates a

secret key ske and a token ∆sk
e+1 as algorithms of UNIUE specify. A computes

the public key pke+1 and token ∆e+1 by embedding the public key pke+1,e+1.
Suppose A asks for a challenge query with input re+1,e+1, it gets the challenge
ciphertext c̃. Then A uses re+1,e+1 and c̃ to create a ciphertext in epoch e + 1,
say c̃e+1. A can move the ciphertext c̃e+1 to a ciphertext c̃e by the token ∆e+1

21

Setup(λ) :
(sk1,1, pk1,1)← PKE.KG(λ)
return (sk1,1, pk1,1)

Next(ske) :
parse ske = (ske,1, ..., ske,e)
for i ∈ {1, ..., e} do
(∆i, [∆i])← PKE.KG(λ)
ske+1,i ← ske,i ⊗∆i

pke+1,i ← [ske+1,i]
(ske+1,e+1, pke+1,e+1)← PKE.KG(λ)
ske+1 ← (ske+1,1, ..., ske+1,e+1)
pke+1 ← (pke+1,1, ..., pke+1,e+1)

∆sk
e+1 ← (∆1, ...,∆e)

∆e+1 ← (∆sk
e+1, pke+1,e+1)

return ∆e+1, (ske+1,pke+1)

Enc(pke,m) :

Re
$←−Me×1

parse Re = (re,1, ..., re,e)
ce,1 ← PKE.Enc(pke,Re)
ce,2 ← re,1 ⊕ · · · ⊕ re,e ⊕m
return ce = (ce,1, ce,2)

Dec(ske, ce) :
parse ce = (ce,1, ce,2)
Re ← PKE.Dec(ske, ce,1)
parse Re = (re,1, ..., re,e)
m′ ← ce,2 ⊕−1 (re,1 ⊕ · · · ⊕ re,e)
return m′

Upd(∆e+1, ce) :

parse ∆e+1 = (∆sk
e+1, pke+1)

parse ce = (ce,1, ce,2)

R
$←−M(e+1)×1

c1 ← PKE.KHC(∆sk
e+1, ce,1)

ce+1,1 ← (c1, 0) + PKE.Enc(pke+1,R)
parse R = (r1, ..., re+1)
ce+1,2 ← ce,2 ⊕ r1 ⊕ · · · ⊕ re+1

ce+1 ← (ce+1,1, ce+1,2)
return ce+1

Fig. 5: UNIUE = (Setup,Next,Enc,Dec,Upd) is a UE scheme built from a key
and message homomorphic PKE scheme PKE. ⊕ is an operation on the message
space and assume its inverse operation exists.

and then decrypt c̃e by the secret key ske. Eventually, A compares the message
with the message used when it creates c̃e+1. If they are the same then A guesses
it received a real encryption from its IND$-CPA challenger, otherwise, it guesses
it received a random ciphertext from its IND$-CPA challenger. The advantage
of A winning the IND$-CPA game is equal to the probability of A successfully
downgrades the ciphertext ce+1 to a ciphertext ce by the token ∆e+1.

Next, we prove that the UE scheme constructed in Fig. 5 satisfies the stronger
variant of rand-IND-UE security, namely the (b-uni, uni)-rand-IND-UE security.

Theorem 3. Let UNIUE be the updatable encryption scheme described in Fig. 5.
For any (b-uni, uni)-rand-IND-UE adversary A against UNIUE, there exists an
IND$-CPA adversary B3 against PKE such that

Adv
(b-uni,uni)-randIND-UE-CPA
UNIUE, A (λ) ≤ 2l2 ·AdvIND$-CPA

PKE,B3
+ negl(λ),

where l is the upper bound on the last epoch.

Remark 2. The difference between proving a UE scheme is (b-uni, uni)-rand-IND-UE
secure and (bi, bi)-rand-IND-UE secure are trivial win conditions, and how the
reduction runs the simulation.

Consider the backward-leak uni-directional key updates variant of a confiden-
tiality notion, there will exist a the relaxed insulated region (recall the discussion

22

in Section 3.2). Assume ẽ is the challenge epoch, where key in this epoch should
not be corrupted. Hence, there exists an epoch after ẽ, say fwr, such that keys
in epoch {ẽ, ..., fwr} and token in epoch fwr + 1 are not corrupted, in addition,
tokens in epoch {ẽ + 1, ..., fwr} are corrupted. By Definition 4, we know that
epoch region {ẽ, ..., fwr} is a relaxed insulated region. Tokens and keys before
ẽ can be corrupted, which will not trigger the trivial win condition. Because
knowing any token and any key before epoch ẽ will not break the confidentiality
in epoch ẽ, the key element skẽ,ẽ in skẽ is an independent and random value
compared to all previous update tokens and keys, hence, ciphertexts in epoch ẽ
are random looking without the knowledge of the key element skẽ,ẽ.

Proof. The proof is similar to the proof in Theorem 2. We construct hybrid
games and apply the firewall technique on relaxed insulated regions.

Step 1. In the initial hybrid games, we move challenges from real to random
over epochs. We construct a sequence of hybrid games H1, ..., Hl. For b ∈ {0, 1},
experiment Hb

i is defined as follows, if the adversary asks for a challenge-equal
ciphertext by the O.Chall query or a O.UpdC̃ query, with challenge input (m̄, c̄),
in epoch j:

– if j ≤ i, for b = 1 return an updated ciphertext of c̄, for b = 0 return (an
updated ciphertext which is updated from) an encrypted ciphertext of m̄.

– if j > i, return a random ciphertext.

ThusH1
l isExp

(b-uni,uni)-randIND-UE-CPA-1
UNIUE, A , i.e. all challenge responses are challenge-

equal ciphertexts of Upd(c̄). And H0
l is Exp

(b-uni,uni)-randIND-UE-CPA-0
UNIUE, A , i.e. all chal-

lenge responses are challenge-equal ciphertexts of Enc(m̄). Notice that H0
0 = H1

0 ,
in which all challenge ciphertexts are random ciphertexts. We have

Adv
(b-uni,uni)-randIND-UE-CPA
UNIUE, A =

∣∣Pr[H1
l = 1]−Pr[H0

l = 1]
∣∣

≤
l∑

i=1

|Pr[H1
i = 1]−Pr[H1

i−1 = 1]|

+

l∑
i=1

|Pr[H0
i = 1]−Pr[H0

i−1 = 1]|.

Step 2. We define a new game Gi that is the same as game Hi, except for the

game randomly picks a number fwr
$←− {0, ..., l}. If the adversary corrupts a key

in the sequence of epochs (i, ..., fwr) or a token in epoch fwr+1, the game aborts.
This loss is upper bounded by l.

Then we have |Pr[Hb
i = 1]−Pr[Hb

i−1 = 1]| ≤ l|Pr[Gbi = 1]−Pr[Gbi−1 = 1]|.

Step 3. In this step, we prove that |Pr[Gbi = 1]−Pr[Gbi−1 = 1]| = AdvIND$-CPA
PKE,B3

+

negl(λ). Assume Ai is an adversary attempting to distinguish Gbi from Gbi−1. We

23

For b ∈ {0, 1} B3 plays
IND$-CPA game by running Ai :
receive pk
do Setup
b′ ← Aoracles

i (λ)
if ABORT occurred or C∗ ∩ K∗ ̸= ∅
or i > fwr then

b′ $←− {0, 1}
return b′

Setup(λ)
∆1 ←⊥; e← 1; phase, twf ← 0;
L, L̃, C,K, T ← ∅
fwr

$←− {0, ..., l}
(sk1,1, pk1,1)← PKE.KG(λ)
for j ∈ {2, ..., i-1} do
∆j , (skj ,pkj)← UNIUE.Next(skj-1)

for j ∈ {i, ..., fwr} do
parse pkj-1 = (pkj-1,1, ..., pkj-1,j-1)
for t ∈ {1, ..., j-1} do
(∆t, ·)← PKE.KG(λ)
pkj,t ← KHK(∆t, pkj-1,t)
if j = i then
pki,i ← pk

else
(·, pkj,j)← PKE.KG(λ)

∆sk
j ← (∆1, ...,∆j-1)

pkj = (pkj,1, ..., pkj,j)
for j = fwr+1 do
for t ∈ {1, ..., fwr+1} do
(skfwr+1,t, pkfwr+1,t)← PKE.KG(λ)

skfwr+1 = (skfwr+1,1, ..., skfwr+1,fwr+1)
pkfwr+1 = (pkfwr+1,1, ..., pkfwr+1,fwr+1)

for j ∈ {fwr+2, ..., l} do
∆j , (skj ,pkj)← UNIUE.Next(skj-1)

O.Enc(m) :
ce ← UNIUE.Enc(pke,m)
L ← L ∪ {(·, ce, e;m)}
return ce

O.Next :
e← e+1

O.Upd(ce-1) :
if (·, ce-1, e-1;m) ̸∈ L then
return ⊥

ce ← UNIUE.Enc(pke,m)
L ← L ∪ {(·, ce, e;m)}
return ce

O.Corr(inp, ê) :
if (inp = key and ê ∈ {i, ..., fwr})
or (inp = token and ê = fwr+1) then
ABORT

else
do as O.Corr(inp, ê) specifies

O.Chall(m̄0, c̄) :
if phase = 1 then
return ⊥

phase← 1; ẽ← e
if (·, c̄, ẽ-1; m̄1) ̸∈L then
return ⊥

for j ∈ {1, ..., i-1} do
c̃j ← UNIUE.Enc(pkj ,mb)

for j = i do

ri
$←−M

Send ri to the IND$-CPA challenger,
get c̃β
parse p̃ki = (pki,1, ..., pki,i−1)

⊺

(c̃′i,1, ci,2)← UNIUE.Enc(p̃ki,mb)
c̃i,1 ← (c̃′i,1, c̃β)
c̃i,2 ← ci,2 ⊕ ri
c̃i ← (c̃i,1, c̃i,2)

for j ∈ {i+1, ..., l} do
c̃j

$←− CS
C ← C ∪ {j}
L̃ ← L̃ ∪ {(c̃j , j)}

return c̃ẽ

O.UpdC̃ :
if phase ̸= 1 then
return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

Fig. 6: Reduction B3 for proof of Theorem 3.

24

construct a reduction B3, detailed in Fig. 6, playing the IND$-CPA game by
simulating the responses to adversary Ai.

Initially, the reduction guesses a number fwr. If Ai corrupts ki, ...,kfwr, or
∆fwr+1 the reduction aborts the game.

A summary of the technical simulations are as follows.

– In the setup phrase, B3 generates all keys and tokens, except for ki, ...,kfwr,
∆fwr+1, as follows.
• The key pairs and tokens outside of the relaxed insulated regions are
generated as in Gi.

• The public keys within relaxed firewalls are generated by embedding
public key pk to the i-th term of pki, where pk is the public key received
from its IND$-CPA game.

– To simulate non-challenge ciphertexts: B3 uses public keys to simulate en-
crypted ciphertexts and updated ciphertexts.

– To simulate challenge-equal ciphertexts in an epoch that is:
• j < i: B3 uses public keys to simulate encryption and updating.
• j = i: B3 embeds the challenge ciphertext c̃ received from its IND$-CPA

challenger to the challenge-equal ciphertext in epoch i. More precisely,
suppose B3 receives a challenge query O.Chall with input (m̄0, c̄) in chal-
lenge epoch ẽ, where the underlying message of c̄ is m̄1. B3 sends a ran-
dom value ri to its IND$-CPA challenger and obtains c̃β . B3 embeds c̃β
to the i-th term of the challenge ciphertext and uses ri and mb to com-
pute the last term of the challenge ciphertext. Afterwards, B3 returns c̃i
to the adversary A. Again, by Equation (7), B3 perfectly simulate the
challenge ciphertexts in game Gi−1+β except for a negligible probability
negl(λ).

• j > i: B3 outputs random ciphertext as challenge ciphertext.

Eventually, B3 receives the output bit from Ai and if Ai guesses it is playing
Gi (suppose it represents the guess response of Ai is 1), then B3 guesses it
received a real encryption and sends 1 to its IND$-CPA challenger. Otherwise,
sends 0 to its IND$-CPA challenger. We have |Pr[Gbi = 1] − Pr[Gbi−1 = 1]| =
AdvIND$-CPA

PKE + negl(λ).

6 UE from Bootstrappable PKE

Bootstrappability can be used to refresh ciphertexts without revealing the un-
derlying message, which implies updatable encryption.

Definition 7 (Bootstrappable PKE). We say a public key encryption BPKE =
(KG,Enc,Dec) is bootstrappable if it can evaluate its own decryption circuit D.
More precisely, there exists a re-encryption algorithm Recrypt that takes a public
key, the decryption circuit D, an encryption of a secret key and a ciphertext as in-
put and outputs a new ciphertext, such that for any keys (sk1, pk1), (sk2, pk2)←
KG(λ) and any message m, the following two distributions are statistically close:

(c,Recrypt(pk2, D,Enc(pk2, sk1), c))
s
≈ (c,Enc(pk2,m)), (8)

25

where c = Enc(pk1,m).

Note that bootstrappable PKE is simpler than a FHE scheme. Most FHE
scheme requires bootstrappability, while only bootstrappability is not enough
for FHE. Gentry [7, Chapter 4] constructed a re-encryption algorithm Recrypt
(see Fig. 7), which allows us to update a ciphertext under pk1 to a ciphertext
under pk2.

Recrypt(pk2, D, ⟨sk1,j⟩, c1) :
c1,j

$←− BPKE.Enc(pk2, c1,j)
c2 ← BPKE.Evaluate(pk2, D, ⟨⟨sk1,j⟩, ⟨c1,j⟩⟩)
return c2

Fig. 7: Recrypt algorithm. For any key pairs (sk1, pk1), (sk2, pk2) ← KG(λ). Let
sk1,j be the j-th bit of sk1 and sk1,j = Enc(pk2, sk1,j). For any plaintextm ∈M,
let c1 = Enc(pk1,m), and c1,j denote the j-th bit of c1. The output c2 is an
encryption of Dec(sk1, c1) = m under pk2.

The Recrypt algorithm can be used to update ciphertext, where the update
token is the encryption of the current secret key ske under the next public
key pke+1. We construct an updatable encryption scheme BPKEUE from BPKE,
which is shown in Fig. 8.

Setup(λ) :
(sk1, pk1)← BPKE.KG(λ)
return (sk1, pk1)

Next(ske) :
(ske+1, pke+1)← BPKE.KG(λ)
∆e+1 ← BPKE.Enc(pke+1, ske)
return ∆e+1, (ske+1, pke+1)

Enc(pke,m) :
ce ← BPKE.Enc(pke,m)
return ce

Dec(ske, ce) :

m′ ← BPKE.Dec(ske, ce)
return m′

Upd(∆e+1, ce) :
ce+1 ← BPKE.Recrypt(pke+1, D,∆e+1, ce)
return ce+1

Fig. 8: BPKEUE = (Setup,Next,Enc,Dec,Upd) is a UE scheme constructed from
a bootstrappable PKE scheme BPKE.

Correctness. The correctness of encrypting then decrypting follows the correct-
ness of the underlying PKE scheme. The correctness of encrypting then updat-
ing then decrypting is because of the bootstrappability of BPKE scheme, the
re-encrypted ciphertext is a new ciphertext encrypted under the new public key
with the same message. Note that we consider epoch bounded UE, which implies
that the noise will not grow too large.

26

Backward-Leak Uni-Directional Key Updates. We can see the earlier key ske
and token ∆e+1 as a plaintext and the corresponding ciphertext under public
key pke+1. Hence, any adversary can not obtain the secret key ske+1.

Uni-Directional Ciphertext Updates. If there exists an adversary which can infer
a valid previous ciphertext ce from token ∆e+1 and ciphertext ce+1. Then we
claim that the adversary can use this ability to win the IND-CPA game for BPKE.
Initially, the adversary receives a public key pke+1 from its IND-CPA challenger.
The adversary generates a secret key ske and computes the token ∆e+1 by the
knowledge of the public key pke+1 and the secret key ske. Then the adversary
can move the challenge ciphertext c̃e+1 (encrypted under pke+1) to a ciphertext
c̃e by the token ∆e+1. Note that c̃e+1 and c̃e have the same underlying message.
Therefore, the adversary can decrypt c̃e by ske and then compare the output
with the challenge messages to win the IND-CPA game.

Remark 3. Nishimaki [13] observed that if the update token ∆e+1 is generated
by the old secret key ske and the new public key pke+1, such UE schemes may
have backward-leak uni-directional key updates. The reason is that it will be
difficult to break the confidentiality in epoch e + 1 with only the knowledge of
pke+1, ∆e+1 and ske, no information about ske+1 is revealed.

We observed that such UE schemes may have uni-directional ciphertext up-
dates as well. The proof idea is similar to the proof of BPKEUE has uni-directional
ciphertext updates. We claim that if such UE schemes do not have uni-directional
ciphertext updates, then any adversary can break the confidentiality of such UE
schemes without the knowledge of any epoch key. If an adversary aims to attack
the confidentiality in epoch e + 1, it can generate a new secret key in epoch e.
Then the adversary computes the token ∆e+1 by the generated secret key ske
and the public key pke+1. It can move ciphertexts from epoch e + 1 to epoch e
by token ∆e+1 and then decrypt it by ske to win the confidentiality in epoch
e+ 1.

Next, we prove that the UE scheme constructed in Fig. 8 is secure under the
(b-uni, uni)-rand-IND-UE notion.

Theorem 4. Let BPKEUE be the UE scheme described in Fig. 8. For any (b-uni,
uni)-rand-IND-UE adversary A against BPKEUE, there exists an IND-CPA adver-
sary B4 against BPKE such that

Adv
(b-uni,uni)-randIND-UE-CPA
BPKEUE, A (λ) ≤ 2l3 ·AdvIND-CPA

BPKE,B4
+ negl(l),

where l is the upper bound on the last epoch.

Before proving the above theorem, we prove a lemma first. In the IND game,
any adversary can only ask for tokens and encryption oracles.

Lemma 5. Let BPKEUE be the UE scheme described in Fig. 8. For any IND
adversary A against BPKEUE, there exists an IND-CPA adversary B5 against
BPKE such that

AdvIND
BPKEUE, A(λ) ≤ 2l ·AdvIND-CPA

BPKE,B5
,

27

where l is the upper bound on the last epoch.

Proof (of Lemma 5). The proof is similar to the proof of Theorem 4.2.3 in [7].
We use a hybrid games to move tokens from real to random. In hybrid i, the
last l − i tokens are random from the real keys. More precisely, for i ∈ {1, ..., l}
let Gi be a game that is identical to the IND game against BPKEUE, except for
all j > i:

(sk′j , pk
′
j)

$←− KG(λ), ∆j
$←− Enc(pkj , sk

′
j−1).

Note that the last l − i tokens are not related to the real keys.
We have that Gl is the IND game and the advantage of any adversary winning

G0 is upper bounded by l ·AdvIND-CPA
BPKE . Next, we claim that for any i ∈ {1, ..., l},

|Pr[Gi = 1]−Pr[Gi−1 = 1]| = AdvIND-CPA
BPKE .

Suppose A is an adversary aiming to distinguish Gi from Gi−1. We construct
a reduction B5 playing the IND-CPA game (against BPKE) and simulating the
response to A. Initially, B5 receives a public key pk from its IND-CPA challenger.
B5 generates key pairs as in Gi except for it embeds pk to pki. It generates a

random key pair (sk′i−1, pk
′
i−1)

$←− KG(λ), sets (m0,m1) = (sk′i−1, ski−1) and

sends (m0,m1) to its challenger. The challenger flips a coin β
$←− {0, 1} and

returns the encryption of mβ . B5 sets the received challenge ciphertext as ∆i.
Note that B5 perfectly simulates public keys and tokens in Gi−1+β to A. When

A asks for a challenge query on (m̄0, m̄1), B5 flips a coin b
$←− {0, 1} and sends

the encryptions of m̄b to A. Eventually, A submit a guess, if A guesses it is Gi
then B5 returns 1 to its challenger, otherwise, B5 returns 0.

Since B5 perfectly simulate Gi−1+β to A. The probability of A is able to

distinguish which game it is playing is equal to AdvIND-CPA
BPKE,B5

.

Proof (of Theorem 4). We use firewall technique and construct a sequence of
hybrid games to move challenges from left to right over the relaxed insulated
regions. Define game Gi as (b-uni, uni)-randIND-UE-CPA game, except for

– The game randomly choose a number fwr
$←− {0, ..., l}. If fwr is not the i-th

right firewall, returns a random bit for b′. This loss is upper bounded by l.
– To the left side of epoch fwr, the game returns a ciphertext with respect to

c̄, to the right side of epoch fwr returns a encryption of m̄.

If fwr is guessed correct, then G0 is Exp
(b-uni,uni)-randIND-UE-CPA-0
BPKEUE and Gl is

Exp
(b-uni,uni)-randIND-UE-CPA-1
BPKEUE . So we can bound the (b-uni, uni)-randIND-UE-CPA

advantage by the advantage of distinguishing G0 and Gl.

Adv
(b-uni,uni)-randIND-UE-CPA
BPKEUE, A (λ) ≤

l∑
i=1

|Pr[Gi = 1]−Pr[Gi−1 = 1]|,

Notice that if Gi−1 and Gi have the same right firewall fwr, then they are
the same game, hence, we assume Gi−1 and Gi have different right firewall. Sup-
pose Ai is an adversary attempting to distinguish Gi−1 from Gi. For all queries

28

concerning epochs outside of the i-th relaxed insulated region ({i,..., fwr}) the
responses will be equal in either game, We construct a reduction B4 playing the
IND game (within the epoch region {i, ..., fwr}) for BPKEUE and will simulate
the responses of queries made by Ai. Initially, the reduction guesses a num-
bers fwr. If Ai corrupts ki, ..., kfwr, or ∆fwr+1 the reduction aborts the game. A
summary of the technical simulations are as follows.

– In the setup phrase, B4 generates all keys and tokens, except for ki, ..., kfwr,
∆fwr+1, as follows.
• The key pairs and tokens outside of the relaxed insulated regions are
generated as in Gi.

• The public key within firewalls are generated by embedding public keys
(pki, ..., pkfwr) and tokens (∆i+1, ..., ∆fwr), which are received from the
IND challenger.

– To simulate non-challenge ciphertexts: B4 uses public keys to simulate en-
crypted ciphertexts and updated ciphertexts. Due to updated ciphertext is
statistically close to the fresh encryption of the same underlying message,
the adversary notice this change with negligible probability.

– To simulate challenge-equal ciphertexts in an epoch that is:
• j < i or j > fwr: B4 uses public keys to simulate encryption and updat-
ing.

• j ∈ {i, ..., fwr}: B4 sends (m̄0, m̄1) to its IND challenger and forwards
the response to Ai, where m̄1 is the underlying message of c̄.

Eventually, Ai sends a guess. If Ai guesses it is playing Gi−1 then B4 guesses
0 to its IND challenger. Otherwise, B4 sends 1 to its IND challenger. Note that
B4 perfectly simulates Gi−1 to Ai when its challenger encrypts m̄0 and perfectly
simulates Gi to Ai when its challenger encrypts m̄1.

Adv
(b-uni,uni)-randIND-UE-CPA
BPKEUE, Ai

(λ) ≤ l2 ·AdvIND
BPKEUE,B4

+ negl(l),

Combing the result of Lemma 5, we have the desired result.

Acknowledgements. We thank the anonymous reviewers of Eurocrypt 2022,
Crypto 2022, and PKC 2023 for their useful comments. We also thank Christoph
Striecks and Daniel Slamanig for their valuable suggestions to improve the pre-
vious version of our paper.

References

1. Alamati, N., Montgomery, H., Patranabis, S.: Symmetric primitives with struc-
tured secrets. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 11692, pp. 650–679. Springer (2019)

2. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security in
updatable encryption schemes. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
Lecture Notes in Computer Science, vol. 12493, pp. 559–589. Springer (2020)

29

3. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
prfs and their applications. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I. Lecture Notes in Computer Science,
vol. 8042, pp. 410–428. Springer (2013)

4. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable en-
cryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. Lecture Notes
in Computer Science, vol. 12170, pp. 464–493. Springer (2020)

5. Chen, L., Li, Y., Tang, Q.: CCA updatable encryption against malicious re-
encryption attacks. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASI-
ACRYPT 2020 - 26th International Conference on the Theory and Application
of Cryptology and Information Security, Daejeon, South Korea, December 7-11,
2020, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12493, pp.
590–620. Springer (2020)

6. Everspaugh, A., Paterson, K.G., Ristenpart, T., Scott, S.: Key rotation for au-
thenticated encryption. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 10403, pp. 98–129. Springer (2017)

7. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford, CA,
USA (2009)

8. Jiang, Y.: The direction of updatable encryption does not matter much. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020. Lecture Notes in Computer Science, vol.
12493, pp. 529–558. Springer (2020)

9. Jiang, Y.: The direction of updatable encryption does not matter much. Cryptology
ePrint Archive, Report 2020/622 (2020), https://ia.cr/2020/622

10. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: EUROCRYPT 2019. LNCS, vol. 11476, pp. 68–99. Springer
(2019)

11. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise secu-
rity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. Lecture Notes in
Computer Science, vol. 10822, pp. 685–716. Springer (2018)

12. Miao, P., Patranabis, S., Watson, G.: Unidirectional updatable encryption and
proxy re-encryption from ddh or lwe. Cryptology ePrint Archive, Report 2022/311
(2022), https://ia.cr/2022/311

13. Nishimaki, R.: The direction of updatable encryption does matter. Cryptology
ePrint Archive, Report 2021/221 (2021), https://ia.cr/2021/221

14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. pp.
84–93. ACM (2005)

15. Slamanig, D., Striecks, C.: Puncture ’em all: Stronger updatable encryption with
no-directional key updates. IACR Cryptol. ePrint Arch. p. 268 (2021), https:
//eprint.iacr.org/2021/268

30

https://ia.cr/2020/622
https://ia.cr/2022/311
https://ia.cr/2021/221
https://eprint.iacr.org/2021/268
https://eprint.iacr.org/2021/268

Supplementary Material

A Public Key Encryption

We define public key encryption (PKE) and describe two variants (left or right
and real or random) of indistinguishability under chosen-plaintext attack (IND-CPA
and IND$-CPA) for PKE. Note that IND$-CPA implies IND-CPA.

Definition 8 (PKE). A public key encryption scheme PKE consists of three
PPT algorithms (KG,Enc,Dec) such that

– The key generation algorithm KG(λ) takes a security parameter λ as input,
and outputs a secret and public key pair (sk, pk).

– The encryption algorithm Enc(pk,m) takes a public key pk and a message
m as input, and outputs a ciphertext c.

– The decryption algorithm Dec(sk, c) takes a secret key sk and a ciphertext c
as input, and outputs a message m.

PKE is correct if for any (sk, pk) ← KG(λ) and any message m, we have
m = Dec(sk,Enc(pk,m)).

Definition 9 (The IND-CPA Notion for PKE). Let PKE = (KG,Enc,Dec)
be a public key encryption scheme. The IND-CPA advantage of any adversary A
against PKE is

AdvIND-CPA
PKE, A (λ) =

∣∣∣Pr[ExpIND-CPA-1
PKE, A = 1]− Pr[ExpIND-CPA-0

PKE, A = 1]
∣∣∣ ,

where the experiment ExpIND-CPA-b
PKE, A is given in Figure 9.

Definition 10 (The IND$-CPA Notion for PKE). Let PKE = (KG,Enc,Dec)
be a public key encryption scheme. The IND$-CPA advantage of any adversary
A against PKE is

AdvIND$-CPA
PKE, A (λ) =

∣∣∣Pr[ExpIND$-CPA-1
PKE, A = 1]− Pr[ExpIND$-CPA-0

PKE, A = 1]
∣∣∣ ,

where the experiment ExpIND$-CPA-b
PKE, A is given in Figure 10.

ExpIND-CPA-b
PKE, A :

(sk, pk)← KG(λ)
(m0,m1, state)← A(pk)
cb ← Enc(pk,mb)
b′ ← A(state, cb)
return b′

Fig. 9: The experiment ExpIND-CPA-b
PKE, A

for a PKE scheme PKE.

ExpIND$-CPA-b
PKE, A :

(sk, pk)← KG(λ)
(m, state)← A(pk)
if b = 1 then
c1 ← Enc(pk,m)

else
c0

$←− CS
b′ ← A(state, cb)
return b′

Fig. 10: The experiment ExpIND$-CPA-b
PKE, A

for a PKE scheme PKE.

31

B Security Proof of Lemmas

B.1 Proof of Lemma 1.

Proof. For any K, T , C, we compute K∗
b-uni,K∗

no, C∗b-uni,uni and C∗no,uni using Equa-
tions (1, 3).

Note that K∗
no = K ⊆ K∗

b-uni and C∗no,uni ⊆ C∗b-uni,uni, so K∗
no ∩ C∗no,uni ⊆ K∗

b-uni ∩
C∗b-uni,uni. It suffices to prove

K∗
b-uni ∩ C∗b-uni,uni ̸= ∅ =⇒ K∗

no ∩ C∗no,uni ̸= ∅.

Suppose e ∈ K∗
b-uni ∩ C∗b-uni,uni.

We first prove either e ∈ C∗no,uni or K∗
no∩C∗no,uni ̸= ∅. If e ̸∈ C∗no,uni, then we have

c̃e is a ciphertext inferred from an earlier challenge-equal ciphertext (assume in
epoch e1), i.e. e1 ∈ C and {e1 + 1, ..., e} ⊆ T ∗

b-uni. Furthermore, any adversary
cannot update ciphertext c̃e1 to c̃e in the no directional key update setting,
which implies that there exists an epoch e2 ∈ {e1 + 1, ..., e} such that e2 ̸∈ T ∗

no.
Suppose e2 is the closest such epoch to e1, therefore, {e1 + 1, ..., e2 − 1} ⊆ T ∗

no.
Since, e2 ∈ T ∗

b-uni which is inferred from keys in epochs e2 − 1 and e2, that is,
e2 − 1, e2 ∈ K∗

b-uni. We know that any key cannot be inferred from previous key
in the backward-leak uni-directional key update setting, hence e2 − 1 ∈ K. As a
result, the adversary can update c̃e1 to c̃e2−1 and we have e2−1 ∈ K∗

no∩C∗no,uni ̸= ∅.
From now on, we consider e ∈ C∗no,uni.

Next, we prove if e ∈ C∗no,uni then K∗
no ∩ C∗no,uni ̸= ∅. If e ∈ K ∩ C∗no,uni, then

we have K∗
no ∩ C∗no,uni = K ∩ C∗no,uni ̸= ∅. Suppose e ∈ C∗no,uni \ K, by Equation (1),

there exists an epoch e3 > e such that e3 ∈ K and all tokens ∆e+1, ..., ∆e3({e+
1, ..., e3} ⊆ T) are known to the adversary. Hence, the adversary can update
the challenge-equal ciphertext c̃e from epoch e to epoch e3 to know c̃e3 even in
the no directional key update setting. Which means e3 ∈ K ∩ C∗no,uni, we have
K∗

no ∩ C∗no,uni ̸= ∅.

B.2 Proof of Lemma 2.

Proof. The event “O.Upd(c̄) is queried” is independent of the key and ciphertext
updates, so this trivial win condition is either triggered or not triggered in all
variants of a security notion. It is sufficient to show that if the challenge token is
known to the adversary in the backward-leak uni-directional key update setting,
then it is also known to the adversary in the no-directional key update setting.

We know that the challenge epoch ẽ ∈ C, so ẽ ̸∈ K∗
kk for any kk-key updates,

where kk ∈ {b-uni, no}. Since the adversary does not know the key kẽ, which
is needed to infer the update token ∆ẽ, so token ∆ẽ cannot be inferred by the
adversary. Therefore, ẽ ∈ T ∗

kk if and only if ẽ ∈ T . Hence ẽ ∈ T ⇐⇒ ẽ∈T ∗
no ⇐⇒

ẽ∈T ∗
b-uni.

32

B.3 Proof of Lemma 3.

Proof. We have (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗. Note that C∗no,uni ⊆ C∗b-uni,uni. It suffices
to prove

e ∈ C∗b-uni,uni =⇒ e ∈ C∗no,uni.

Suppose e ̸∈ C, otherwise, we have done the proof. Since e ∈ C∗b-uni,uni and
K∗

b-uni ∩ C∗b-uni,uni = ∅, so e ̸∈ K∗
b-uni and therefore e ̸∈ K. As a result, token ∆e

is known to the adversary, which is used to infer c̃e. Since the adversary does
not know the key ke, which is needed to infer the update token ∆e, so token
∆e cannot be inferred by the adversary, i.e. e ∈ T . If e− 1 ̸∈ C, then we repeat
the same discussion as above and have that e − 1 ∈ C∗b-uni,uni, e − 1 ̸∈ K∗

b-uni
and e − 1 ∈ T . Iteratively, we know that there exists an epoch before e, say
e4, such that e4 ∈ C and e4 + 1, ..., e ∈ T . Hence, the adversary can update the
challenge-equal ciphertext c̃e4 from epoch e4 to epoch e to know c̃e, i.e. e ∈ C∗no,uni.

B.4 Proof of Lemma 4.

Proof. The proof is similar to the proof of Lemma 3. We use the property that
(m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗.

C Security Proof of Theorem 2

We prove Theorem 2 by three steps.

Step 1. We construct a sequence of hybrid games H1, ..., Hl. For b ∈ {0, 1},
experiment Hb

i is defined as follows, if the adversary asks for a challenge-equal
ciphertext by the O.Chall query or a O.UpdC̃ query, with challenge input (m̄, c̄),
in epoch j:

– if j < i, return an updated ciphertext of c̄,
– if j > i, return (an updated ciphertext which is updated from) an encrypted

ciphertext of m̄.
– if j = i, for b = 1 return an updated ciphertext of c̄, for b = 0 return (an

updated ciphertext which is updated from) an encrypted ciphertext of m̄.

ThusH1
l isExp

(bi,bi)-randIND-UE-CPA-1
PKEUE,A , i.e. all challenge responses are challenge-

equal ciphertexts of Upd(c̄). AndH0
1 is Exp

(bi,bi)-randIND-UE-CPA-0
PKEUE,A , i.e. all challenge

responses are challenge-equal ciphertexts of Enc(m̄). Notice that H0
i+1 = H1

i . We
have

Adv
(bi,bi)-randIND-UE-CPA
PKEUE, A (λ) =

∣∣Pr[H1
l = 1]−Pr[H0

1 = 1]
∣∣

=|
l∑

i=1

(Pr[H1
i = 1]−Pr[H0

i = 1])|

≤
l∑

i=1

|Pr[H1
i = 1]−Pr[H0

i = 1]|.

33

Step 2. In hybrid game Hi, let A′
i be an adversary trying to distinguish H0

i from
H1

i . For all queries concerning epochs other than i the responses will be equal in
either game, so we assume that A′

i asks for a challenge-equal ciphertext in epoch
i. Therefore, in the bi-directional variant of confidentiality notion there exist two
epochs (denote fwl, fwr) around the epoch i such that no key in the sequence of
epochs (fwl, ..., fwr) and no token in epochs fwl and fwr + 1 are corrupted.

Define a new game Gi that is the same as game Hi, except for the game

randomly picks two numbers fwl, fwr
$←− {1, ..., l}. If the adversary corrupts a

key in the sequence of epochs (fwl, ..., fwr) or a token in epochs fwl and fwr+ 1,
the game aborts. This loss is upper bounded by l2. Then we have

|Pr[H1
i = 1]−Pr[H0

i = 1]| ≤ l2|Pr[G1i = 1]−Pr[G0i = 1]|.

Step 3. In this step, we prove that |Pr[G1i = 1] − Pr[G0i = 1]| = AdvIND-CPA
PKE .

Assume Ai is an adversary trying to distinguish G1i from G0i . We construct a
reduction B2, detailed in Fig. 11, that is playing the IND-CPA game and will
simulate the responses of queries made by adversary Ai in Gi.

Initially, the reduction guesses two numbers fwl, fwr. IfAi corrupts kfwl, ..., kfwr,
∆fwl, or ∆fwr+1 the reduction aborts the game. A summary of the technical sim-
ulations are as follows.

– In the setup phrase, B2 generates all keys and tokens, except for kfwl, ..., kfwr,
∆fwl, ∆fwr+1, as follows.

• The key pairs outside of firewalls are generated as running PKE.KG (λ).
• The public key within firewalls are generated as follows, pkfwl ← pk,
pkj+1 ← KHK(∆j+1, pkj), where pk is the public key received from its
IND-CPA challenger and j ∈ {fwl, ..., fwr − 1}.

Equation (4), (5) and (6) makes sure the simulated key pairs (sk1, pk1), ...,
(skl, pkl) are statistically close to the same key distributions in the game Gi.
Hence, the adversary notices this change with negligible probability.

– To simulate non-challenge ciphertexts: B2 uses public keys to simulate en-
crypted ciphertexts and updated ciphertexts. By Equation (7), we have that
the distribution of updated ciphertexts is statistically close to the distri-
bution of fresh encryption. Hence, B2 perfectly simulate the non-challenge
ciphertexts in game Gi except for a negligible probability negl(λ).

– To simulate challenge-equal ciphertexts in an epoch that is:

• j ̸= i: B2 uses public keys to simulate encryption and updating.
• j = i: B2 embeds the challenge ciphertext c̃ received from its IND-CPA

challenger to the challenge-equal ciphertext in epoch i. More precisely,
suppose B2 receives a challenge query O.Chall with input (m̄0, c̄) in chal-
lenge epoch ẽ, where the underlying message of c̄ is m̄1. B2 sends (m̄0, m̄1)
to its IND-CPA challenger and obtains c̃. B2 updates c̃ from epoch fwl to i
and returns c̃i to the adversary A. Again, by Equation (7), B2 perfectly
simulate the challenge ciphertexts in game Gi except for a negligible
probability negl(λ).

34

B2 plays IND-CPA game by running Ai :
receive pk
do Setup
b′ ← Aoracles

i (λ)
if ABORT occurred or C∗ ∩ K∗ ̸= ∅
or i /∈ {fwl, ..., fwr} then
b′ $←− {0, 1}

return b′

Setup(λ)
∆1 ←⊥; e← 1; phase, twf ← 0;
L, L̃, C,K, T ← ∅
fwl, fwr

$←− {0, ..., l}
pkfwl ← pk
for j ∈ {fwl+1, ..., fwr} do
∆j

$←− SK
pkj ← PKE.KHK(∆j , pkj-1)

for j∈{1, ..., fwl-1}∪{fwr+1, ..., l} do
(skj , pkj)

$←− PKE.KG(λ)

O.Enc(m) :
ce ← PKE.Enc(pke,m)
L ← L ∪ {(·, ce, e;m)}
return ce

O.Next :
e← e+1

O.Upd(ce-1) :
if (·, ce-1, e-1;m) ̸∈ L then
return ⊥

ce ← PKE.Enc(pke,m)
L ← L ∪ {(·, ce, e;m)}
return ce

O.Corr(inp, ê) :
if (inp=key and ê∈{fwl, ..., fwr}) or
(inp= token and ê∈{fwl, fwr+1}) then
ABORT

else
do as O.Corr(inp, ê) specifies

O.Chall(m̄0, c̄) :
if phase = 1 then
return ⊥

phase← 1; ẽ← e
if (·, c̄, ẽ-1; m̄1) ̸∈L then
return ⊥

send (m̄0, m̄1) to the IND-CPA
challenger, get c̃fwl

for j ∈ {fwl+1, ..., i} do
c̃j ← PKE.KHC(∆j , c̃j-1)
C ← C ∪ {i}
L̃ ← L̃ ∪ {(c̃i, i)}
for j ∈ {1, ..., i-1} do
c̃j ← PKE.Enc(pkj , m̄1)
C ← C ∪ {j}
L̃ ← L̃ ∪ {(c̃j , j)}

for j ∈ {i+1, ..., l} do
c̃j ← PKE.Enc(pkj , m̄0)
C ← C ∪ {j}
L̃ ← L̃ ∪ {(c̃j , j)}

return c̃ẽ

O.UpdC̃ :
if phase ̸= 1 then
return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

Fig. 11: Reduction B2 for proof of Theorem 2.

35

Eventually, B2 receives the output bit from Ai and forward it to its IND-CPA
challenger. Note that B2 perfectly simulates the responses of queries made by
adversary Ai in game Gi except for a negligible probability negl(λ). We have
|Pr[G1i = 1]−Pr[G0i = 1]| = AdvIND-CPA

PKE + negl(λ).

36

	 Backward-Leak Uni-Directional Updatable Encryption from (Homomorphic) Public Key Encryption

