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Abstract—Hardware obfuscation by redundancy addition is
a well-known countermeasure against reverse engineering. For
FPGA designs, such a technique can be implemented with a
small overhead, however, its effectiveness is heavily dependent
on the stealthiness of the redundant elements. Since there are
powerful tools for combinational redundancy removal, opting for
sequential redundancy is believed to result in stronger obfusca-
tion. However, in this paper, we demonstrate that it is possible
to identify sequential redundancy in obfuscated SRAM FPGA
designs by ensuring the full controllability of each instantiated
look-up table input via iterative bitstream modification. The
presented algorithm works directly on bitstream and does not
require the possession of a flattened netlist. The feasibility of our
approach is verified on the example of an obfuscated SNOW 3G
design implemented in a Xilinx 7-series FPGA.

Index Terms—Obfuscation, hardware opaque predicate,
SRAM FPGA, bitstream modification, reverse engineering.

I. INTRODUCTION

With the growth in popularity of Field-Programmable Gate
Arrays (FPGAs) for the implementation of cryptographic algo-
rithms and Artificial Intelligence (AI) acceleration, a number
of FPGA-specific security challenges arise. For instance, it
has been demonstrated that bitstream modification attacks
make it possible to recover the secret key from FPGA
implementations of cryptographic algorithms [1]–[9]. In the
future, when AI algorithms become a natural part of many
systems, the extraction of neural network models from FPGA
bitstreams by reverse engineering might also pose a serious
threat. Thus, developing defense mechanisms against FPGA
bitstream reverse engineering and bitstream modification, as
well as testing their resilience against potential weaknesses, is
critical.

A popular countermeasure against SRAM FPGA bitstream
reverse engineering and bitstream modification is design ob-
fuscation. Obfuscation attempts to transform a design into
a functionally equivalent, but structurally different represen-
tation which is more difficult to understand. Obfuscation
can be applied at different levels of abstraction [8], [10]–
[14]. Typically obfuscation involves some kind of redundancy
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addition. Since there are powerful Automatic Test Pattern
Generation (ATPG), Binary Decision Diagram (BDD), and
Satisfiability checking (SAT)-based tools for combinational
redundancy identification and removal, opting for sequential
redundancy, such as the hardware opaque predicates [15], [16]
is thought to result in stronger obfuscation.

A simple example of a hardware opaque predicate is an
n-stage Linear Feedback Shift Register (LFSR) with an n-
input OR gate taking inputs from all LFSR stages [15]. If
the LFSR is initialized to any non-zero state, the output of
the OR is always 1 since any subsequent LFSR state contains
at least one 1 value. However, a drawback of this approach
is that LFSRs can be found relatively easy [4]. More stealthy
hardware opaque predicates based on counters and Finite State
Machines (FSM) were presented in [16]. To the best of our
knowledge, no methods for identifying such constructions are
known at present, especially if a netlist is not available.

Our Contribution: In this paper, we demonstrate that, by
assuring the full controllability of each input of each in-
stantiated Look-Up Table (LUT) in an FPGA design via
iterative LUT modification, we can defeat obfuscation based
on hardware opaque predicates regardless of how stealthy they
are (unless functional duplication is employed to mask the
effect of undetectable faults they create). The key idea is
to not search for the hardware opaque predicate itself, but
rather for the LUT inputs that behave as undetectable stuck-
at faults during the execution of the algorithm under attack.
The presented method employs bitstream reverse engineering
to determine the logic functions implemented by LUTs and
the wires connected to the LUT inputs. This is an advantage
over approaches that require a netlist. We demonstrate the
feasibility of our approach on the example of an obfuscated
SNOW 3G design implemented in a Xilinx 7-series FPGA.

Paper Organization: The rest of the paper is organized as
follows. Section II presents background information necessary
for understanding the paper. Section III reviews previous work.
Section IV describes the proposed deobfuscation method. In
Section V, the presented method is applied to an obfuscated
SNOW 3G design. Section VI concludes the paper and dis-
cusses open problems.



II. BACKGROUND

This section presents background information on FPGAs.

A. Bitstream representation of FPGA basic building blocks

An FPGA fabric is a mesh of Configurable Logic Blocks
(CLBs) implementing user-defined logic that is connected
through routing channels that pass through programmable
switch boxes. By defining both, the functionality of the
logic elements and their interconnections, a physical circuit
is created on this mesh. In this subsection, we describe the
basics of logic and routing in Xilinx 7 series FPGAs and their
representation in the bitstream.

1) Look-Up Tables: In SRAM FPGAs, CLBs typically
consist of k-input LUTs. In Xilinx 7 series FPGAs, k = 6,
thus a LUT can implement a Boolean function of up to 6
variables. Regardless of the actual number of inputs the LUT’s
function depends on, its truth table appears in the bitstream
as a 64-bit vector, called initialization vector, partitioned into
four 16-bit words which are placed on a fixed distance from
each other. Each bit of the truth table represents the output
value of the LUT for a specific input assignment. If some of
the LUT inputs are not used, they are treated as don’t cares in
the truth table and their value is by default fixed to constant-1
from the synthesis tool.

2) Programmable Interconnect Points: The routing in FP-
GAs is performed through Programmable Interconnect Points
(PIPs). A PIP is a connection between two points: a source
and a destination PIP junction.

Activating or deactivating a PIP in the bitstream results in
creating or removing the connection between the correspond-
ing source and destination PIP junctions. Each FPGA board
has a predefined set of PIPs that dictates the possible ways
that PIP junctions can be connected to each other. In other
words, two PIP junctions cannot be connected unless there is
a PIP that allows this connection.

In Xilinx 7 series FPGAs, there are two types of PIPs: PIPs
that appear in the bitstream and PIPs that do not. Following
the terminology of project Xray [17], we call PIPs that do not
appear in the bitstream fake and PIPs that do appear regular.

Table I lists the format of the three PIP junction types from
the project Xray database [17] which are relevant for this
paper.

B. Architecture of Xilinx 7 series FPGA

The fabric of Xilinx 7 series FPGAs is a grid of tiles
uniquely identified by their X and Y coordinates. There are
different types of tiles. In the presented method, we use
interconnect tiles (INT tiles) and configurable logic block tiles
(CLB tiles).

The INT tiles are responsible for the majority of routing.
An INT tile is a large switchbox consisting of a set of
PIP junctions. A CLB tile has a small switchbox connected
horizontally to an INT tile on one side and to two blocks called
slices (which are also contained in the CLB tile) on the other
side. If a CLB tile is on the right side of its corresponding

TABLE I
PIP JUNCTION FORMATS

PIP junction formats

PJ1 CLB < x1 > < x2 > < x3 >

PJ2 CLB < x1 > IMUX < x4 >

PJ3 IMUX < x5 >< x4 >

Parameter Values

x1 : CLB identifier:

LL for a CLB with two sliceLs

M for a CLB with one sliceL and one sliceM

x2 : Vertical Slice identifier:

L for an top slice

LL for a bottom slice when x1 =LL

M for a bottom slice when x1 =LM

x3 : LUT input identifier in Slice:

A1 . . . A6

B1 . . . B6

C1 . . . C6

D1 . . . D6

x4 : LUT input identifier in CLB:

positive integer in range [0, 47]

x5 : Positional CLB identifier:

null for right interconnect tiles

L for left interconnect tiles

INT tile, then they are both labeled as right. Otherwise, they
are labeled as left.

Each slice contains four LUTs, eight flip flops (FFs), a
fast carry logic unit, and multiplexers (MUXes) to control the
internal routing. The slices are positioned vertically inside a
CLB, thus they are usually referred to as top and bottom slices.
Slices are also categorized as SliceM or SliceL depending on
whether they contain conventional LUTs (SliceL) or special
LUTs that can be also configured into a 32-bit shift register
or a distributed LUT-based RAM (SliceM).

III. PREVIOUS WORK

This section describes previous work on FPGA design
obfuscation and related attacks.

Logic locking is one of the most popular approaches for
protecting intellectual property. It is based on embedding into
a design a secret key that needs to be supplied for the design
to function correctly [11]–[14]. A comprehensive overview
of logic locking techniques can be found in [18]. In FPGA,
the overhead related to key embedding can be minimized by
employing unused LUT inputs, referred to as dark silicon [11].
The term occupancy describes the percentage of actually used
LUT inputs in a design. The occupancy of FPGA designs can
be quite low, e.g. an average occupancy of 30% is reported
in [11] for nine benchmark designs. Therefore, finding unused
LUT inputs to embed the key is typically not a problem.

In its essence, the utilization of unused LUT inputs is
equivalent to injecting undetectable stuck-at faults, which do
not cause incorrect output values for any input assignment
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Fig. 1. Visualisation of PIPs connected to LUT inputs.

during the execution of the protected algorithm. A simple
way to create an undetectable stuck-at fault is to set a net
to constant-0 or constant-1 by connecting the net to GND or
VCC, respectively, and changing the corresponding part of the
LUT’s truth table [8]. However, such constants are easy to find
if the interconnect bitstream format is known [19]. A constant
can also be created using a combinational logic circuit with
redundancy, e.g. x + x for the constant-1 or x · x for the
constant-0, or a sequential circuit such as an LFSR [15], a
counter, or an FSM [16]. In software obfuscation, a function
providing a constant Boolean output regardless of the input
is called opaque predicate, hence the name hardware opaque
predicate used in [15], [16].

In combinational circuits, undetectable stuck-at faults can
be identified using ATPG [20]–[22], SAT [23]–[29] and fault-
independent methods [30]–[32]. ATPG and SAT algorithms
can guarantee the detection of all undetectable stuck-at faults,
but their worst-case time complexity is exponential. Fault-
independent methods cannot always find all undetectable
faults, but they have the advantage of polynomial worst-case
time complexity. SAT-based attacks in particular have drawn a
lot of attention, with many methodologies presented to resist
them [33]–[36] and also many to enhance them [23]–[29].

Another type of redundancy that can be used for obfuscation
is functional duplication which occurs when different sub-
circuits implement the same function. The functional duplica-
tion in combinational circuits can be identified using SAT [37],
BDD sweeping [38] and structural hashing [39]. Both, SAT
and BDD sweeping, guarantee detection of all functional
duplications, but they have an exponential worst-case time
complexity. Structural hashing can identify structurally iso-
morphic equivalent sub-circuits in linear time. For this reason,
obfuscation methods using functional duplication typically
implement duplicated blocks in a diverse manner [13].

IV. DEOBFUSCATION ALGORITHM

In this section we present the new deobfuscation algorithm
FINDOBFUSCATED(). Its pseudo-code is shown as Algo-
rithm 1.

FINDOBFUSCATED() takes as input a bitstream, B, and
returns a list of potential deobfuscated LUT candidates. Some

Algorithm 1 An algorithm for finding obfuscated LUTs.
Name: FINDOBFUSCATED(B)
Input: Bitstream B
Output: Set of deobfuscated LUT candidates

1: S = ∅;M = ∅;
2: P = PIP EXTRACT(B); /*P := ((p1,1, . . . , p1,k1

), . . . ,
(pn,1, . . . , pn,kn

)), where pi,j is the PIP associated with
the jth input of LUT li, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}*/

3: L = LUT EXTRACT(B); /*L := ((l1, c1), . . . , (ln, cn)),
where ci is the coordinate of LUT li in B, i ∈ {1, . . . , n}*/

4: CLEAN(L,P)
5: for each i ∈ {1, . . . , n} do
6: for each j ∈ {1, . . . , ki} do
7: for each α ∈ {0, 1} do
8: B∗ = REPLACE (B, li, ci, j, α); /*Replaces LUT li

at coordinate ci by a LUT lαi in which the jth input
is stuck-at-α*/

9: Upload B∗ to the FPGA
10: if B∗ generates the same output as B then
11: if (lαi , ci, j, α) ̸∈ S then
12: S = S ∪ (lαi , ci, j, α);
13: else
14: S = S − (lαi , ci, j, α);
15: end if
16: end if
17: end for
18: end for
19: end for
20: Count the number of occurrences of each LUT l in S,

N(l)
21: for each l in S such that N(l) > 1 do
22: for each subset J ⊆ {j1, . . . , jN(l)} of size |J | > 1 do
23: B∗ = REPLACE (B, l, c, J,A);
24: Upload B∗ to the FPGA
25: if B∗ generates the same output as B then
26: M = M ∪ (lA, c, J,A);
27: end if
28: end for
29: end for
30: return S ∪ M

of the candidates may be non-obfuscated LUTs in reality, i.e.
false positives are possible.

First, a list of all active PIPs connected to instantiated LUT
inputs is extracted from the bitstream. This list is represented
by a vector P = ((p1,1, . . . , p1,k1

), . . . , (pn,1, . . . , pn,kn
)),

where pi,j is the PIP associated with jth input of the LUT
li, for i ∈ {1, . . . , n}, j ∈ {1, . . . , k}.

Each input of a LUT is connected to a PIP junction of type
PJ1 in the CLB’s switchbox (see Fig. 1). This PIP junction
forms a fake PIP with a PIP junction of type PJ2, which in
turn is connected to a PIP junction of type PJ3 located in
the corresponding INT tile switchbox. If the input is not used,
then PJ3 forms a fake PIP with PIP junction V CC WIRE
(constant-1). If the input is used, then PJ3 forms a regular



PIP with one out of 25 possible PIP junctions in the INT tile
switchbox. So, if the bitstream contains an activated PIP with
the destination PJ3, the corresponding LUT input is used
somewhere in the design.

Next, a list containing the truth tables of all instantiated
LUTs with their coordinates in the bitstream is extracted. This
list is represented by a vector L = ((l1, c1), . . . , (ln, cn)),
where ci is the coordinate of LUT li in B, i ∈ {1, . . . , n}.

At step 5, the procedure CLEAN is called with P and
L as arguments to remove possible don’t-cares in the LUT
function truth table. Obfuscation techniques such as [8] use
these don’t-cares to camouflage LUT’s truth table without
adding any new input to the LUT and so does the water-
marking scheme presented in [40]. Since there is a one-to-one
mapping between LUT inputs and PIPs involving PJ3, the
sub-vectors (pi,1, . . . , pi,ki

) of P provide information about ki
input variables on which the function of the LUT li actually
depends. Leveraging that, CLEAN updates the truth table of
every LUT in L accordingly. Note that, in a non-obfuscated
bitstream, this step would be unnecessary since this is how
vendor tools format LUT truth tables by default.

At steps 6-20, for each LUT li ∈ L and each of its
instantiated inputs j ∈ {1, . . . , ki}, the truth table of li in B is
modified to a truth table in which the jth variable is stuck-at-α.
This is done by replacing f |xj=α = f |xj=α where f |xj=α

denotes a subfunction of the function f(x1, . . . , xk) of the
LUT li in which xj = α and α is the Boolean complement
(NOT) of α. The modification is done directly in the bitstream.

The resulting modified bitstream B∗ is uploaded to the
FPGA to compare its output sequence to the one of the original
bitstream B. If the sequences are the same and li with the jth
input fixed to α is not yet in the list of candidates, S, then li
is added to S along with its coordinate ci, input j and stuck-at
fault value α. If li with the jth input fixed to α is already in
S, it is removed from S. In this way, the full controllability
of each single instantiated LUT input is assured.

Since ki ≤ 6 for any i ∈ {1, . . . , n}, the computational
complexity of steps 6-20 is O(2nk(t1 + t2)), where t1 is the
time to upload B∗ into the FPGA (step 10) and t2 is the time
required to upload and observe the output of B∗ in order to
check its equivalence with B (step 11). Although the worse
case complexity of equivalence checking is exponential in the
number of primary inputs of the design implemented by B,
we found that cryptographic algorithms are quite sensitive to
changes. In our SNOW 3G case study, observing 20 output
words (640 keystream bits) was enough to get a list that
contained all obfuscated LUTs in the design.

At steps 21-30, we repeat the process for multiple stuck-at
faults at instantiated inputs of each LUT in S. First, the number
of occurrences of each LUT l in S , N(l), in counted. Since
4-tuples representing the same LUT with different instantiated
inputs appear in S in order, the counting can be performed in
O(|S|) time by recording the number of LUTs with the same
coordinate c in S.

Let {α1, . . . , αN(l)} be a set of constants assigned to the
inputs {j1, . . . , jN(l)} of a LUT l in S. At steps 22-30, for
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Fig. 2. SNOW 3G block diagram.

each l in S and each subset J of the set {j1, . . . , jN(l)} of
size greater than 1, the truth table of l in B is modified to
a truth table in which all inputs in the subset J are stuck-
at the corresponding constants in the subset A of the set
{α1, . . . , αN(l)}. As in the single stuck-at fault case, the
modification is done directly in the bitstream.

The resulting modified bitstream B∗ is uploaded to the
FPGA and executed to compare its output sequence to the
one of B. If the sequences are the same, then l is added to
the set M along with its coordinate c, inputs J and multiple
stuck-at fault values A.

Since N(l) ≤ 6 for any l, the computational complexity of
steps 22-30 is O(n2k(t1 + t2)).

The algorithm terminates by returning the union of S ∪ M.

V. CASE STUDY: SNOW 3G STREAM CIPHER

In this section, we demonstrate the feasibility of
FINDOBFUSCATED() algorithm in the example of SNOW
3G stream cipher implemented in a Xilinx 7-series FPGA
(XC7A35T-2CPG236). In the experiments, we used a VHDL
implementation of SNOW 3G given to us by the authors of
SNOW 3G.

A. SNOW 3G design description

SNOW 3G is the backbone of the 3GPP confidentiality
and integrity algorithms UEA1 and UIA2. It is also used in
4G LTE and NG 5G standards. SNOW 3G is resistant to
classical cryptanalysis [41]–[45], however physical attacks on
its implementations through cache timing side-channels [46],
electromagnetic inference analysis [47], transient fault injec-
tion [48], and bitstream modification [7] have been reported.

SNOW 3G is a word-oriented binary additive stream ci-
pher [49] which takes as input a 128-bit Initialization Vector
(IV) and a 128-bit secret key and produces a pseudorandom
sequence called keystream. Each keystream element is a 32-bit
word. The encryption/decryption is performed by combining
the keystream with plaintext/ciphertext.

Fig. 2 shows a block diagram of SNOW 3G. The cipher
consists of a 16-stage LFSR and a non-linear FSM. SNOW
3G has two modes of operation - initialization and keystream
generation. In the initialization mode, marked by a dashed line



in Fig. 2, the LFSR is loaded with a combination of the key
and IV, the FSM is loaded with an all-0 state, and the cipher
is clocked for 32 cycles without producing any output. After
that, the cipher enters the keystream generation mode, marked
by a solid line in Fig. 2, in which one keystream word is
generated at each clock cycle.

B. Obfuscated SNOW 3G implementation

We created a protected implementation of SNOW 3G in
which the part sensitive to fault injections - the FSM output -
is obfuscated using an FSM-based hardware opaque predicate.

The Boolean expression realizing the SNOW 3G FSM’s
output is complemented with a redundant input, opq as
(S15 +R1)⊕ (R2 ⊙ opq). The input opq comes from a state
register of another FSM which always has a high value when
the SNOW 3G FSM output is evaluated during the execution
of the algorithm.

It was shown in [7] that a stuck-at-0 fault injected at the
FSM output during the initialization can be exploited to extract
the secret key. This is because, in this case, the LFSR state
after the initialization depends entirely on the characteristic
polynomial of the LFSR. Thus, by analysing the keystream, it
is possible to reverse the LFSR to its initial state and recover
the key-IV combination used to initialize it.

However, if the logic implementing the FSM output is
obfuscated as we described above, the attack presented in [7]
fails because it cannot find LUTs implementing the SNOW
3G’s FSM output function in the bitstream (since SNOW 3G
is word-oriented, the FSM output is 32-bit).

C. Deobfuscating SNOW 3G

We developed a software package implementing
FINDOBFUSCATED() algorithm. The package uses the
project Xray [17] to reverse engineer the bitstream format,
python scripts to automate the processing of the PIP and
LUT lists extracted from the bitstream, and tcl scripts for
automating the upload of the bitstreams into the FPGA.

We used the package to deobfuscate the protected imple-
mentation of SNOW 3G described in the previous section.
The size of the LUT list L recovered by reverse engineering
at step 2 of FINDOBFUSCATED() was n = 3, 107 (the number
of LUTs reported by Vivado is n = 3, 053). The size of the
PIP list P recovered by reverse engineering at step 3 was∑n

i=1(n · ki) = 12, 533 (compare to 6n = 18, 642). It takes
24 seconds to compute both lists.

The modified bitstreams B∗ created at steps 5-8 were
uploaded to the FPGA one by one at step 9. It takes t1+ t2 =
6.3 sec on average to upload one bitstream into the FPGA, to
generate 20 keystream words (640 bits) of B∗ and to verify
the equivalence of the keystreams of B∗ and B.

The set of deobfuscated LUT candidates returned
FINDOBFUSCATED() contained all LUTs implementing
SNOW 3G FSM output because redundant inputs of these
LUTs behave as undetectable stuck-at faults during the ex-
ecution of SNOW 3G. Since all points of interest for fault

injection are discovered, after deobfuscation it becomes possi-
ble to extract the secret key of SNOW 3G through a bitstream
modification attack [7].

Note that the hardware opaque predicate we considered is
just an example. It’s stealthiness was not considered because it
can be replaced by any other, more stealthy, opaque predicate.
This is because the hardware opaque predicate stealthiness
does not affect the success rate of FINDOBFUSCATED() since
it does not search for the hardware opaque predicate itself, but
for the LUT inputs that behave as undetectable stuck-at faults
during the execution of the algorithm.

VI. CONCLUSION

We presented a new method for sequential redundancy
identification based on ensuring the full controllability of
each instantiated LUT input in a design via iterative LUT
modification at bitstream level. It is important to stress that
real attackers are not concerned with the sophistication of
the method they use. They can try anything, as long as it
delivers results within a reasonable time. We implemented the
presented algorithm in a software package and demonstrated
its feasibility on the example of SNOW 3G stream cipher.
Further work is required to evaluate it more thoroughly.

By providing a novel methodology for testing the resistance
of obfuscation strategies, our findings are expected to con-
tribute to the assurance of FPGA design security.

The presented method might not be able to deobfuscate con-
structions involving triple modular redundancy [13] or other
types of functional duplication which mask the effect of faults.
Thus, creating new low-overhead obfuscation techniques based
on such constructions is interesting future work.
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