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Abstract. We evaluate eight implementations of provable secure side-
channel masking schemes that were published in top-tier academic venues
such as Eurocrypt, Asiacrypt, CHES and SAC. Specifically, we eval-
uate the side-channel attack resistance of eight open-source and first-
order side-channel protected AES-128 software implementations on the
Cortex-M4 platform. Using a T-test based leakage assessment we demon-
strate that all implementations produce first-order leakage with as little
as 10,000 traces. Additionally, we demonstrate that all except for two In-
ner Product Masking based implementations are vulnerable to a straight-
forward correlation power analysis attack. We provide an assembly level
analysis showing potential sources of leakage for two implementations.
Some of the studied implementations were provided for benchmarking
purposes. We demonstrate several flaws in the benchmarking procedures
and question the usefulness of the reported performance numbers in
the face of the implementations’ poor side-channel resistance. This work
serves as a reminder that practical evaluations cannot be omitted in the
context of side-channel analysis.

Keywords: Side-Channel Analysis, Leakage Assessment, Masking in
Software

1 Introduction

Cryptographic primitives are designed to thwart cryptanalytic attacks such as
differential and linear cryptanalysis. Even though these cryptographic primitives
are deemed theoretically and cryptanalytically secure, their real-world implemen-
tations can still be vulnerable to attack. Side-channel attacks are one example of
such implementation attacks. The field of Side-Channel Analysis (SCA) studies
how unintentional side-channel leakage, produced by a cryptographic primitive
implemented on a specific platform, can be used to extract secret information
(e.g. the cryptographic key). To mount such a side-channel attack one typically
executes the cryptographic operations several times while acquiring side-channel
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information. Side-channel information can come in many shapes and forms and
can, for example, be acquired by passively monitoring execution time, power
consumption and electromagnetic (EM) emanations.

SCA research was instigated by Kocher et al. through their seminal work
on Differential Power Analys (DPA) in 1999 [19]. Here the attacker exploits the
dependency between the secret data being processed on the device and its power
consumption. To mitigate these SCA attacks an implementer generally tries to
break the relation between the power consumption and the secret data being
handled by the device. A common technique to achieve this is the use of mask-
ing [6, 14]. In a masked implementation the relation is broken by splitting up
the sensitive intermediates in multiple random shares. Each of these shares is
constructed such that on their own they are uncorrelated to the sensitive data.
Depending on the masking scheme the implementation is given a security order.
A masked implementation is said to be dth-order secure if the implementation
can withstand an attack exploiting up to d shares. Since the introduction of DPA
different flavors of masking schemes have been proposed to counter SCA attacks.
Masking schemes require randomness and the introduction of the shares comes
with a large computational overhead especially when going to higher orders.
The goal of many published schemes is therefore to minimize the randomness
requirement and the execution time without compromising on security. Another
aspect is to prove masking schemes secure in more realistic models. Many of
the proposed schemes however focus on improving the timing and randomness
requirement while neglecting to evaluate the practical side-channel security of
their implementation. However, it has been shown many times that it is not
easy to effectively protect an implementation with masking [3, 9]. The estimated
execution-time overheads lose their meaning if benchmarking is not performed
rigorously. If the benchmarked implementation does not provide the claimed
side-channel resistance it becomes impossible to judge the additional overhead
involved in resolving the leakage. Said differently, there is no point in compar-
ing the performance of two insecure implementations for which the additional
overhead to secure them is unknown.

1.1 Contributions

In this paper we benchmark and evaluate the side-channel resistance of mul-
tiple software masked AES implementations published in a wide range of aca-
demic venues including Eurocrypt, Asiacrypt, CHES and SAC. The evaluated
implementations are listed in Table 1. The evaluations and benchmarks are per-
formed on the same ARM Cortex-M4 target platform. The implementations
were evaluated for their side-channel security using test vector leakage assess-
ment (TVLA) [13] and correlation power analysis (CPA) [5]. During our leak-
age assessment all of the evaluated implementations showed TVLA leakage and
nearly all of them could be broken with a straightforward CPA attack in our
security evaluation. Additionally, all schemes were benchmarked using multiple
configurations of the platform’s clock tree. Our analysis reveals several discrep-
ancies between cycle counts measured by us and the cycle counts reported by
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the authors. To reduce the risk of benchmarking mistakes and guarantee the
relevance of the proposed implementation we propose a set of recommendations
which should be followed when publishing side-channel secure software imple-
mentations.

1.2 Related work

In the academic literature a multitude of masking schemes and implementations
have been proposed. We collected AES implementations for multiple of these
masking schemes. An overview of the schemes for which we found an implemen-
tation either online or by contacting the authors can be seen in Table 1. These
implementations will be the center of this work. These schemes were selected
purely on the basis of a software implementation being available which could be
ported to our target platform. All these schemes implement side-channel counter-
measures which are solely based on masking. Implementations containing other
countermeasures such as random delays or shuffling of the intermediates (e.g. the
side-channel protected ANSSI implementation [4]) were not considered in this
work.

Table 1. An overview of the evaluated implementations. Note that implementations
for [24, 8, 10] are provided as part of [10].

Paper title Published venue Reference
Provably Secure Higher-Order Masking of AES CHES 2010 [24]
Higher order masking of look-up tables Eurocrypt 2014 [8]
All the AES You Need on Cortex-M3 and M4 SAC 2016 [25]
Consolidating Inner Product Masking Asiacrypt 2017 [2]
First-Order Masking with Only Two Random Bits CCS-TIS 2019 [15]
Side-channel Masking with Pseudo-Random Generator Eurocrypt 2020 [10]
Detecting faults in inner product masking scheme JCEN 2020 [7]
Fixslicing AES-like Ciphers TCHES 2021 [1]

Masking aims at removing the dependency between the intermediate val-
ues and the secret key. This is achieved by splitting up the intermediate values
into random shares. The number of shares determines the security order of the
scheme. Ideally if one has d+1 shares an attacker needs to exploit leakage of
d+1 shares in order to mount a successful attack. In their work [3] Balasch et
al. showed how, if one does not pay close attention when implementing a the-
oretically secure masking scheme, a reduction in the security order can occur.
This is because the leakage models on which the masking schemes are based
assume independent leakage of the intermediate values. However, in software
implementations the independent leakage assumption is often broken by transi-
tion based leakage. This for instance occurs when values stored in registers are
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overwritten leading to a recombination of the shares. The occurrence of transi-
tion based leakage can often be attributed to overwriting a register in the register
file, but there are also other micro-architectural leakage mechanisms present in
microcontrollers as was shown by McCann et al. [20].

Balasch et al. propose to increase the security order to compensate for these
micro-architectural transition based leakages [3]. Alternatively, the masking scheme
can be carefully implemented taking all potential sources of leakage into account.
Such side-channel leakage simulators require meticulously engineered leakage
models specific for each target platform. McCann et al. introduced ELMO [20],
a leakage simulator with a specifically engineered leakage model for the Cortex-
M0. This work was later extended by Shelton et al., which proposed Rosita [26]
a tool that patches the underlying assembly instructions based on a target spe-
cific leakage model to reduce the side-channel leakage. Tools such as Elmo [20],
Rosita [26] and CoCo [12] demonstrate that relatively basic microcontrollers have
multiple hidden leakage sources that can be difficult to discover and compensate
for.

The implementations evaluated in this work cover a wide variety of underly-
ing masking schemes most of which are proven to be secure under the d-probing
model introduced by Ishai-Sahai-Wagner [17]. In [24] the authors propose a
generic higher-order boolean masking scheme for AES. The proposed scheme al-
lows to construct masked implementations with an arbitrary security order. The
software implementation for this scheme was provided by Coron et al. and served
as a baseline to compare to their proposed schemes [10]. In [10] the authors also
use boolean masking based on the ISW scheme. However, their main goal is to
try and reduce the number of true random bits required by the scheme by using a
combination of true and pseudo random number generators. The repository im-
plementing [24] and [10] also contains implementations for the masking schemes
introduced in [8]. Here a generalized table based masking scheme is proposed
which can be extended to any security order. All the previous implementations
were implemented in C in a straightforward and byte-oriented manner.

Schwabe and Stoffelen provide a highly optimized bitsliced AES-128 im-
plementation protected with first-order boolean masking using Trichina AND
gates [25]. Their optimised assembly implementation targets ARM Cortex-M3
and Cortex-M4 based microcontrollers. In [15] Gross et al. implement a first
order boolean masking scheme. Their design includes a novel masked AND gate
which allows for the reuse of randomness, reducing the number of true random
bits required to two. Gross et al. provide a highly optimized assembly implemen-
tation for the ARM Cortex-M4 platform. Adomnicai and Peyrin further reduce
the cycle count of this implementation by optimising the linear operations using
a fixed-slicing construction [1]. The fixed-slicing implementation is based on the
implementation provided in [15] and uses the same S-Box.

In addition to boolean masking based implementations we also evaluate two
Inner Product Masking (IPM) based implementations. Out of all publications
listed in Table 1 only the IPM work by Balasch et al. includes a practical side-
channel evaluation [2]. The second IPM based implementation combines IPM
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with a fault attack countermeasure [7]. In this work we will only evaluate the side-
channel resistance of the implementation. The implementation of [7] is publicly
available and is written in C.

All the implementations evaluated in this work (see Table 1) were used as
provided by the authors, without performing any modifications to the code be-
sides adding GPIO triggers and cycle counters. The analysis performed on the
collected traces is straightforward and straightforward to replicate using open-
source side-channel toolboxes such as the ChipWhisperer project [21] or eShard’s
SCAred [11].

Note that most implementations are provided by the authors of the underly-
ing masking scheme. Therefore, we assume that the respective authors verified
the adherence of their implementation to their proposed masking scheme. Bench-
marking results based on a flawed implementation would be meaningless and a
thorough security evaluation requires auditing the code. Additionally, we note
that some authors provide a disclaimer stating that the practical side-channel
security of the provided implementation was not evaluated and that the imple-
mentation is provided for the purpose of benchmarking. However, throughout
this work we will provide several examples of flawed benchmark results and argue
that such results do not provide a realistic estimate for the additional overhead
required to secure the implementation.

Finally, for one implementation the authors state in their paper: "We also
provide [...] a masked implementation that is secure against first-order power
analysis attacks" [25].

2 Side-Channel Analysis

This section covers SCA of open-source first order protected AES implementa-
tions. We start by detailing the used measurement setup followed by leakage
assessment and CPA for each implementation.

2.1 Measurement setup

All of the studied implementations are compiled for, and executed on the same
STM32F415 (Cortex-M4) microcontroller, with the Cortex-M4 being the tar-
get platform for most of the studied implementations. Each implementation is
compiled using the same toolchain 1, compiler optimizations were mimicked from
makefiles provided by the respective authors. Consequently, most C based imple-
mentations were compiled using -O3, except for the IPM based implementations
that were compiled using -O1. These compiler optimizations can have an im-
pact on the side-channel security of the implementations, but also impact the
benchmarking results discussed in Sect. 3. It is thus important to evaluate both
the side-channel security and the performance of an implementation using the

1 arm-none-eabi toolchain release 8-2019-q3
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same compiler flags. As later discussed in Sect. 3, the execution time of a side-
channel protected implementation may be meaningless if the implementation
leaks side-channel information.

Additionally, each implementation is evaluated using the same clock tree con-
figuration using an 8 MHz external clock and 24 MHz core operating frequency.

For the acquisition setup we used a NewAE CW308 UFO board in combina-
tion with a STM32F415 target board, a Mini-Circuits ZFL-1000LN+ amplifier
and a Tektronix DPO7254C oscilloscope. All measurements were acquired using
a sample rate of 200 MS/s with the oscilloscope’s internal 20 MHz lowpass filter
enabled. The oscilloscope’s vertical range was adjusted for each implementation
to minimize quantization noise. Similar results are likely achievable using the low
cost and open-source ChipWhisperer-Lite side-channel evaluation board [22].

2.2 Leakage assessment

We performed a fixed vs random TVLA for each of the evaluated implemen-
tations [13]. Each implementation was evaluated using the same fixed key, the
same fixed plaintext was used for the fixed set during each evaluation. We used
the fixed key and plaintext values suggested in [13].

We limit the scope of this evaluation to first order protected implementa-
tions as not all of the evaluated works include higher order implementations.
Furthermore, Balasch et al. demonstrated that a straightforward implementa-
tion of an n-th order protected implementation protects against n − 1 order
attacks [3]. While higher order software implementations are less likely to leak
in the first order they are likely to exhibit multivariate leakage at an order lower
than intended by the design. Given that some of the higher order implementa-
tions require many millions of CPU cycles the evaluation would quickly become
impractical.

Figure 1 shows the TVLA results using 10,000 measurements for each im-
plementation. The TVLA based leakage assessment provides a high degree of
confidence that these first-order masked implementations do in fact produce
first-order leakage on the target platform (Cortex-M4) using the measurement
setup documented in Sect. 2.1. At this point in the evaluation it is clear that the
evaluated implementations do not live up to their claims. However, while TVLA
based leakage assessment is a useful tool it does not allow us to compare the
side-channel security of these implementations or to draw conclusions on how
straightforward it would be to extract the secret key.

Note that the implementation provided as part of [2] (Consolidating Inner
Product Masking) was deemed to be leakage free up to 1M traces. We consider
determining the exact reason for this discrepancy out of scope as too many
variables are unknown and beyond our control. Note that when compared to [2]
we are using a different lab environment, physical side-channel, measurement
setup and compiler version. Put differently, the only similarities between our
leakage assessments are the used C source code and the use of a Cortex-M4
based microcontroller as evaluation target.
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Fig. 1. TVLA results for the evaluated software implementations. The topmost plot
contains the results for an unprotected bitsliced implementation. All other plots contain
results for first order protected software implementations, yet exhibit clear first order
leakage. This is evident from the T-statistic surpassing the ±4.5 boundary marked by
black horizontal lines. Note that big peaks towards the start and end in the T-statistic
trace likely correspond to input and output leakage respectively.
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2.3 CPA attack results

The most straightforward attack on unprotected software AES implementations
is a CPA attack in which the leakage model is assumed to be the Hamming
weight (HW) of the first round S-Box output or last round S-box input.

A first-order protected implementation should not be susceptible to such
a first-order attack. However, as demonstrated in Sect. 2.2, these first-order
protected implementations leak first-order information. Therefore, it makes sense
for us to try and mount a first-order attack using the classical S-box output as
the target intermediate. This type of unprofiled attack would arguably be the
first thing any attacker would try, making it the bare minimum side-channel
attack to protect from.

To evaluate the studied implementations we mounted first-order CPA attacks
targeting both the first round S-box output and the last round S-box input. For
the byte-oriented implementations (those provided by [10], [7], [2]) we target
the first key byte. Among the evaluated implementations there are also several
bitsliced implementations for which the attack strategy needs to be slightly mod-
ified. The bitsliced implementations process two AES-block simultaneously. In
the bitsliced representation each 32-bit state register contains one bit of each
of the state bytes from each block. Unprotected bitsliced implementations can
often be attacked by targeting a single state bit. Nevertheless, the nature of
these implementations results in more algorithmic noise as a single bit (out of
32) is being targeted. The implementations provided in [25] and [15] assume the
use of AES in counter mode, therefore we also use the implementation provided
in [1] as a counter mode implementation. Because of the use of counter mode we
are limited to attacking a single bit in the first round. However, when carrying
out an attack on the last round we can target two bits (one bit from each block
being processed).

Figure 2 provides the results for each CPA attack. Even though we were able
to attack most implementations with relative ease it is important to note that
this does not mean that the underlying masking scheme is flawed. Neither does it
show that one masking scheme is more secure than another. It does demonstrate
that a straightforward software implementation of a theoretically secure masking
scheme is unlikely to live up to its expectations in the real world.

These results demonstrate that the correct key byte can be recovered for six
out of eight masked implementations using a first-order attack. Notably only
the implementations where inner product masking is applied cannot be attacked
with a classical CPA attack. This is probably due to mechanism behind the
accidental unmasking. In Sect. 2.4 we discuss one potential leakage source for
some of the implementations.

CPA elaboration per implementation Figure 2 contains a few interesting
and/or surprising results. Unsurprising is the fact that an unprotected, yet bit-
sliced implementation can be attacked with ease (topmost plot). This result is
included as a reference. The protected bitsliced implementations require slightly
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Fig. 2. CPA results for the evaluated software implementations. The plots show the
evolution of the correlation coefficient (Y-axis) versus the number of traces (X-axis)
used for the attack. The correlation coefficient for the correct key guess is shown in
black.
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more traces to result in a successful attack, but the exact same attack strategy
applied for the unprotected implementation can be used.

Note that the attack on the bitsliced AES implementation from [25] (second
row) was only successful (using at most 20,000 traces) while attacking the last
round. This is most likely the result of transition based leakage occurring at
the S-Box input as will be explained in Sect. 2.4. Additionally it is interesting
to note that fixsliced implementations, which are based on the implementations
masked with two random bits, require significantly more traces to recover the
key. This may indicate that the original implementation provided in [15] contains
an additional implementation mistake in the linear layers.

Interestingly, the SecMultFLR implementation provided by Coron et al. ap-
pears to not provide any side-channel protection in the first round (Fig. 2, 7th

row). Figure 3 shows that the lack of side-channel protection can be partially
attributed to the use of compiler optimizations.

Fig. 3. CPA results when targeting the first round of the SecMultFlr implementation
with (left) and without (right) compiler optimizations enabled.

Finally, neither of the IPM-based implementations appear to be vulnerable
to the classical CPA attack up to 20,000 traces. This is likely because acciden-
tal recombinations of the shares, resulting in transition based leakage, do not
directly reveal secret information in the IPM scheme. Note that both of these
implementations are written in C and were compiled with optimizations. This
shows that masking schemes implemented in software which do not suffer from
security order reduction by transitional leakage are less prone to implementation
mistakes and therefore an interesting field of study for future research.

2.4 Root cause analysis

From Fig. 2 it is clear that it is often easier to attack the last round S-box input
compared to the first round S-box output. To investigate why this is the case
we performed a manual root cause analysis for the boolean masked bitsliced
AES implementation and the bitsliced AES implementation masked using two
random bits.

In order to speed up our analysis we employed an emulator to pinpoint the
different instructions which could potentially lead to a successful attack. We
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emulated the leakage of register updates with both the Hamming weight and
Hamming distance leakage model. In practice there are more subtle sources of
leakage present in these microcontrollers which are not covered by our emulation
of the leakage through register updates. McCann et al. [20] for example showed
that a microcontroller can leak through recombinations between pipeline stages
of buffer registers in the arithmetic logic unit (ALU). Leakage free emulated
traces therefore do not guarantee a leakage free implementation but they are
a good starting point. In our case the simple model proved to be sufficient to
find a cause of leakage in both the boolean masked bitsliced AES implemen-
tation and the bitsliced AES implementation masked using two random bits.
The fixsliced AES uses exactly the same S-box implementation as the bitsliced
AES implementation masked using two random bits and therefore has the same
implementation flaw.

Unsurprisingly the Hamming weight model did not show any leaking instruc-
tions. Leakage in the Hamming weight model would only occur if an instruction
operated directly on an unmasked piece of data or under a biased randomness
distribution, indicating a severe flaw in the masking scheme. In the Hamming
distance model however multiple unintentional unmaskings were discovered for
both the boolean masked implementation and the bitsliced AES implementa-
tion masked using two random bits. These leakages are a common flaw in first
order boolean masked software implementations and occur when a register con-
taining one share is overwritten by the other share leading to an unintentional
recombination of the shares.

Listing 1.1 shows the part of the S-box code containing the unintended un-
masking for the boolean masked bitsliced implementation. The Listing was taken
from the public Github repository of the implementation [28]. The unintentional
unmasking happens at line 1502 in the aes_128_ctr_bs_masked.s file. The in-
termediate S-box value y3 stored in register r9 (line 1482) gets overwritten by
the previously calculated y3m, which was stored on the stack. Since it is a two
share implementation the recombination of two shares will result in an unmask-
ing of the data. The leakage resulting from the register overwrite is written out
in full in Equation (1)-(3) where y3p is the unmasked intermediate S-box value.

HW
[
r9⊕ [sp+ 120]

]
(1)

HW
[
y3m ⊕ y3

]
(2)

HW
[
y3p

]
(3)

Listing 1.2 shows the critical assembly instructions on line 1471 resulting
in the observed leakage in the bitsliced AES implementation masked using two
random bits. In this case the unmasking is more subtle in nature and one has
to calculate back to the initial masking of the plaintext (i0,P ) and key (k0,p) to
demonstrate the accidental unmasking. The full backtracing of the unmasking
is given by Equations (4)-(8).
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1481 eor r11, r7, r11 //Exec y8 = x0 ^ x5; into r11
1482 eor r9, r6, r11 //Exec y3 = y5 ∧ y8; into r9
1483 eor r2, r7, r2 //Exec y9 = x0 ^ x3; into r2
1484 str r11, [sp, #100 ] //Store r11/y8 on stack
1485 str r8, [sp, #96 ] //Store r8/y10 on stack
1486 str.w r5, [sp, #92 ] //Store r5/y20 on stack
1487 eor r11, r5, r2 //Exec y11 = y20 ^ y9; into r11
1488 eor r8, r8, r11 //Exec y17 = y10 ^ y11; into r8
1489 eor r0, r0, r11 //Exec y16 = t0 ^ y11; into r0
1490 str r8, [sp, #88 ] //Store r8/y17 on stack
1491 eor r5, r4, r11 //Exec y7 = x7 ^ y11; into r5
1492 ldr r8, [sp, #1496] //Exec t2 = rand() % 2; into r8
1493 str r9, [sp, #84 ] //Store r9/y3 on stack
1494 eor r10, r10, r8 //Exec u1 = u0 ^ t2; into r10
1495 eor r1, r10, r1 //Exec u3 = u1 ^ u2; into r1
1496 eor r3, r1, r3 //Exec u5 = u3 ^ u4; into r3
1497 eor r3, r3, r14 //Exec t2m = u5 ^ u6; into r3
1498 and r1, r9, r12 //Exec u0 = y3 & y6; into r1
1499 ldr r10, [sp, #112 ] //Load y6m into r10
1500 str r12, [sp, #80 ] //Store r12/y6 on stack
1501 and r14, r9, r10 //Exec u2 = y3 & y6m; into r14
1502 ldr r9, [sp, #120 ] //Load y3m into r9
1503 and r12, r9, r12 //Exec u4 = y3m & y6; into r12

Listing 1.1. Assembly snippet of All the AES You Need
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1457 orr r0, r12, r14 //Exec M1ORM2 = MASK1 | MASK2 into r0
1458 eor r2, r7, r9 //Exec y14 = i4 ^ i2 into r2
1459 str.w r0, [sp, #112] //Store r0/M1ORM2 on stack
1460 eor r0, r4, r10 //Exec y13 = i7 ^ i1 into r0
1461 eor r1, r0, r14 //Exec hy13 = y13 ^ MASK2 into r1
1462 eor r3, r4, r7 //Exec y9 = i7 ^ i4 into r3
1463 str.w r3, [sp, #108] //Store r3/y9 on stack
1464 eor r3, r3, r14 //Exec hy9 = y9 ^ MASK2 into r3
1465 str.w r1, [sp, #104] //Store r1/hy13 on stack
1466 eor r1, r4, r9 //Exec y8 = i7 ^ i2 into r1
1467 eor r6, r5, r6 //Exec t0 = i6 ∧ i5 into r6
1468 str.w r3, [sp, #100] //Store r3/hy9 on stack
1469 eor r3, r6, r11 //Exec y1 = t0 ∧ i0 into r3
1470 str.w r6, [sp, #96 ] //Store r6/t0 on stack
1471 eor r6, r3, r14 //Exec hy1 = y1 ∧ MASK2 into r6
1472 eor r7, r6, r7 //Exec y4 = hy1 ^ i4 into r7

Listing 1.2. Assembly snippet of First-Order Masking with Only Two Random Bits

In both implementations the unintentional unmasking occurs towards the
start of the S-Box computation. This observation explains why the CPA attack
targeting the last round S-box input is more successful.

HW
[
(r6)⊕ (r3⊕ r14)

]
(4)

HW
[
(t0)⊕ (t0 ⊕ i0,M ⊕M2)

]
(5)

HW
[
i0,M ⊕M2

]
(6)

HW
[
(i0,P ⊕M2⊕ k0,P ⊕M1⊕M2⊕M1⊕M2)⊕M2

]
(7)

HW
[
i0,P ⊕ k0,P

]
(8)

3 Benchmarking

While some authors did provide a disclaimer stating that the side-channel secu-
rity of their implementations was not practically verified they also state that the
masked implementation is provided for benchmarking purposes. Nevertheless,
during the side-channel evaluation of the different implementations we noticed
several discrepancies between observed and reported cycle counts.

In this section we provide a comparison between measured and reported cycle
counts for all implementations and analyse a few discrepancies. Additionally, we
provide insight into how seemingly small configuration changes can have a big
impact on the cycle count, a metric often optimised for in the academic literature.

All execution time measurements were taken using the same STM32F415
Cortex-M4 microcontroller that was used during the side-channel evaluation
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and the same toolchain. As the evaluated implementations aim to be side-channel
resistant we disabled both the data and instruction cache. Leaving these enabled
might result in unintentional leakage, especially at higher CPU frequencies. With
caches disabled the number of flash wait cycles will have a significant impact
on the execution time. The number of flash wait cycles indicates the latency
between requesting data from flash and the data arriving in the registers of the
microcontroller. We provide measurements at clock frequencies of 24 MHz and
168 MHz to demonstrate the effect of flash wait cycles on the reported cycle
count. The used platform does not require any additional flash wait cycles at
24 MHz, but requires an additional 5 wait cycles at 168 MHz. Implementations
suffering from more pipeline stalls will thus be penalized in their cycle counts
when the clock frequency is increased.

The internal random number generator was always clocked at 48 MHz, its
maximal operating frequency. We measured the cycle count for each implemen-
tation using the Data Watchpoint and Trace (DWT) unit. As in the side-channel
evaluation, all software implementations were compiled using the flags provided
by the respective authors. Specifically, this means that most C implementations
are compiled using -O3 with the exception of the IPM implementation provided
by Balash et al. which is compiled using -O1 [2].

To compare the benchmarking results we used the same implementation pa-
rameters (e.g. number of shares) as those that were used by the respective au-
thors, in some cases these parameters differ from those used during side-channel
evaluation. The resulting cycle counts can be found in Table 2. Note that these
cycle counts correspond to the execution of a single call to the implemented
primitive. For most of the implementations this corresponds to one block of
AES-128. However, for the bitsliced implementations (i.e. [25], [1], [15]) these
cycle counts correspond to the encryption of two AES-128 blocks. Additionally,
note that this table reports the number of random words collected, this num-
ber does not necessarily correspond to the number of random bytes used in the
implementation.

The authors of each implementation report execution times or cycle counts
in their respective publications, but the used evaluation platforms vary. We omit
reported cycle counts in Table 2 if the used platforms cannot be directly com-
pared. For example Rivain and Prouff provided cycle counts on a 8051-based
platform in their original work and report 271k cycles for their three share as-
sembly implementation [24]. It is not clear how the randomness was generated
in, or provided to, this implementation. Nevertheless, Coron et al. provide their
own implementation of the scheme proposed in [24] as a baseline for comparison
in [10] and report a cycle count of 20.6M cycles for the three share variant. The
implementations provided in [10] were benchmarked using an emulated Cortex-
M3 running at 44 MHz, it is not clear which emulator was used exactly. Results
from emulator based benchmarks are included in Table 2 and marked with an
asterisk (*). We used the implementation provided in [10] during our bench-
marks as the target platform closely matches ours. In Sect. 3.1 we demonstrate
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the near 76 fold increase in reported cycle-count can be largely attributed to the
unrealistically low throughput TRNG used during the emulation process.

Similarly, the difference in measured and reported cycle count for the masked
and bitsliced implementation provided in [25] is too big to be attributed to a
small configuration or platform difference. The difference is probably due to
a misconfiguration of the random number generator (RNG) during the bench-
marking of the implementation. This issue will be explained in more detail in
Sect. 3.1.

Table 2. Measured and reported cycle counts for the evaluated implementations.

Implementation
cycles

(measured/reported)
randomness

(RNG/PRNG) clock frequency

[25] 17.5k/14.8k 328/- 24 MHz
62.8k/- 328/- 168 MHz

[15] 6.8k/6.8k 2/- 24 MHz
9.5k/- 2/- 168 MHz

[1] 6.2k/6k 2/- 24 MHz
8.9k/- 2/- 168 MHz

[24] (n=3) 651k/20.6M* 2880/- 24 MHz
834k/- 2880/- 168 MHz

[8] (n=3, randomized table) 9.099M/- 164,160/- 24 MHz
13.639M/- 164,160/- 168 MHz

[8] (n=3, randomized table word
including common shares)

2.091M/- 34,032/- 24 MHz
3.195M/- 34,032/- 168 MHz

[10]
(n=3, multiple PRG, secmultFLR)

3.608M/12M* 52/5120 24 MHz
4.576M/- 52/5120 168 MHz

[2] 819k/- 1632/- 24 MHz
1.272M/- 1632/- 168 MHz

[7] (n=2, k=1) 1.650M/- 2432/- 24 MHz
2.283M/- 2432/- 168 MHz

3.1 Randomness generation

Certain members of the STM32F4 family of microcontrollers have an internal
TRNG. According to the public documentation the TRNG is based on multiple
ring oscillators, the outputs of which are summed and used as the seed for a
Linear Feedback Shift Register (LFSR) [27]. The seeded LFSR is clocked by a
dedicated clock to generate 32-bit random words. The reference manual states
that a new 32-bit random word is generated every 40 periods of the dedicated
TRNG clock which operates at maximum 48 MHz. In addition to being inde-
pendent of the main system clock, the TRNG will not operate correctly under
certain clock tree configurations.

For the remainder of this discussion we assume that the TRNG is clocked at
48 MHz independent of the system clock. As the TRNG operates independently
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from the main clock the number of CPU clock cycles required to generate a
random word can vary. When the operating frequency of the microcontroller is
set to 24 MHz (i.e. half of the TRNG clock) it should take 20 MCU cycles to get
a new random word. An increase in the CPU clock frequency will thus result in
more CPU clock cycles to generate a random word.

This effect can be observed in Table 3, using a simple assembly loop we
get a new random word every 21 CPU cycles, the same code will have to be
executed more often at a higher operating frequency resulting in more CPU
cycles to obtain a random word. Additionally, Table 3 provides an overview of
the number of cycles required to generate a random word on different platforms
running at multiple CPU clock frequencies.

Interestingly, Schwabe and Stoffelen report that their bitsliced and masked
AES implementation takes 7422.6 cycles per block, of which 2132.5 cycles are
used to collect the required randomness [25]. As the reported cycle counts are
per block we can double them to obtain the number of cycles required for one
call to their AES implementation which computes two blocks in parallel. Each
call requires 328 words of randomness which, according to the reported numbers,
requires 4265 cycles to collect. Looking back at Table 3 we would expect this
process to take 6888 (328 ∗ 21) cycles at the used 24 MHz CPU clock. Schwabe
and Stoffelen made their git repository publicly available, allowing us to track
down the issue that caused this cycle count discrepancy. Two recent commits
(910d446 and 56abc40) slightly modified the clock tree configuration and the
assembly code responsible for collecting randomness. Before those commits the
TRNG could not operate as expected resulting in the the randomness collec-
tion loop simply reading the TRNG status register and data register 328 times
without actually obtaining random data. This admittedly easy to make mis-
take resulted in an overestimation of the TRNG throughput and the use of all
zero masks, effectively resulting in an unmasked implementation. Nevertheless,
it is commendable that five years after the initial commit the authors are still
maintaining their repository and fixing issues.

Coron et al. used an emulator to estimate the cycle count of their imple-
mentations on a 44 MHz ARM-Cortex M3 processor [10]. The exact processor
or emulator is not mentioned, but the authors report that one 32-bit random
word is generated every 6000 CPU cycles. We are not challenging the numbers
reported by their emulator, but it is important to use realistic numbers when
comparing the use of a TRNG to that of a software PRNG in terms of cy-
cle counts. As mentioned earlier, the STM32F4 TRNG produces a new random
word every 40 clock cycles at 48 MHz. Similarly, the Microchip SAM D5x micro-
controllers produce a new random word every 84 clock cycles over a wide range
of clock frequencies (up to 120 MHz) [16]. This would mean that the TRNG
used in [10] is 150 times slower compared to the TRNG used in the STM32F4
microcontrollers or 71 times slower compared to the SAM D5x microcontrollers.

As can be seen from Table 3 the XorShift PRNG used by Coron et al. does
produce more random bits per cycle and scales better when the clock frequency
on the STM32F4 is increased. Nevertheless, the use of unrealistic TRNG per-
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formance estimates results in an overestimation in the performance gained from
using a software PRNG. In the extreme case these unrealistic performance es-
timates resulted in implementations which are more efficient (in terms of cycle
count) on paper, but in fact less efficient in practice. For example, in [10] the
authors claim that their three share implementation with multiple PRGs (sec-
multFLR) requires roughly half the number of cycles compared to the their
reference implementation of [24]. From Table 2 it is clear that in practice their
provided implementation requires roughly seven times more cycles compared to
the reference implementation.

Table 3. Randomness generation cycle counts for different platforms and CPU clock
frequencies.

platform function word length cycles clock frequency

STM32F415
Cortex-M4

polling opencm3 32 bit 27 24 MHz
32 bit 147 168 MHz

polling assembly 32 bit 21 24 MHz
32 bit 147 168 MHz

PRNG XorShift 96 64 bit 39 24 MHz
64 bit 63 168 MHz

LPC55S69
Cortex-M33 polling assembly 32 bit 104 25 MHz

32 bit 361 150 MHz
SAM D5x
Cortex-M4 according to datasheet 32 bit 84 24 MHz

32 bit 84 140 MHz

3.2 Benchmarking: discussion and conclusion

Cycle counts or execution time are popular metrics to optimise for in software im-
plementations. New masking schemes and implementations often serve the pur-
pose of outperforming previous work in such metrics, regardless of the real-world
side-channel security. Unfortunately, results reported in the academic literature
are often not directly comparable to other works or in certain cases impossible
to reproduce. The need for a detailed description of the benchmarking setup is
also evidenced when compiling the same implementation using different compiler
versions. For example, compiling the RP implementation provided in [10] with
toolchain version 7-2018-q2 results in an implementation that requires roughly
50k cycles more. In general, the masking community would benefit from a unified
benchmarking process. Successful deployments of such processes were demon-
strated by Kannwischer et al. as part of the PQM4 project [18] and by Renner
et al. as part of the NIST Lightweight cryptography competition [23].

Table 2 demonstrates the necessity of using realistic platforms, realistic mi-
crocontroller configurations and providing detailed descriptions of the bench-
marking setup. This is also evident by comparing the measured cycle counts
when the clock frequency of the used platform is increased.
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The use of a hardware TRNG peripheral adds another dimension to the
benchmarking process. The implementer can carefully interleave the collection
of randomness with other useful instructions instead of polling the TRNG status
register in a blocking manner, this comes at a cost of increased implementation
complexity. Similarly, some implementations waste randomness by discarding
three out of four bytes produced by the TRNG. Alternatively, if cycle-count is
the metric to be optimised we can also simply reduce the CPU clock frequency.
Specifically, for the STM32F415, we would be able to reduce the CPU clock
frequency to 4 MHz while keeping the TRNG peripheral clocked at 48 MHz.
As shown in Table 3, reducing the main CPU clock results in a trivial and
meaningless reduction of the cycle count.

From this discussion it should be clear that benchmarking results depend on
many factors, straightforward cycle-count comparisons without a detailed de-
scription can thus be considered meaningless. Furthermore, benchmark results
for masked implementations that do not provide the claimed security level may
not be meaningful, as securing the implementation will require additional un-
predictable overhead.

4 Discussion and conclusions

In this work we benchmark and evaluate the side-channel security of multiple
masked software AES implementations based on a variety of masking schemes.
Only two of the evaluated implementations namely [7] and [2] seem to live up
to their promises. All other implementations were not side-channel secure in
the claimed security order, or reported skewed benchmarking results in their
respective publications.

This comes to show that a thorough side-channel evaluation is required when
implementing a masking scheme. The side-channel evaluation will reveal po-
tential implementation mistakes like a wrongly configured TRNG or dramatic
over estimations of the TRNG overhead. Additionally, it will highlight micro-
architectural leakage mechanisms present in the evaluation platform which are
not captured by most theoretical leakage models. Compensating for these unex-
pected leakage sources can introduce a significant overhead. Madura et al. [26]
report an overhead of up to 60% when rewriting a straightforward implementa-
tion to be free of T-Test leakage on the Cortex-M0 platform.

Most of the analysed works did not contain strong claims regarding the secu-
rity of their implementations, but do offer security proofs for the used masking
scheme. In those cases the provided implementations are used for benchmarks
and comparisons with related work. We question the relevance of benchmarking
results which do not take into account the additional unpredictable overhead
required to secure the implementation.

Our work was enabled through the availability of the evaluated implemen-
tations, we want to commend the respective authors. Similar works without
published implementations undoubtedly suffer from the same issues. Unfortu-
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nately, the absence of the implementations makes it impossible for anyone to
evaluate and improve them.

In general, published implementations of masking schemes would benefit from
a more rigorous approach to benchmarking and side-channel evaluation. There-
fore, we provide a set of guidelines to be used when publishing a new side-channel
secure implementation.

4.1 Recommendations

In this section we lay out some recommendations that can be used as a checklist
for side-channel evaluations and benchmarks of masked software implementa-
tions. While many of these recommendations may appear obvious to an expe-
rienced practitioner they seem to be rarely applied in academic literature, as
evidenced by this work.

– Describe the side-channel setup in detail: oscilloscope settings, filters,
measurement method, probe location etc. In other words, provide all of the
required information for someone to reproduce your setup. Commercially
available and easily reproducible measurement setups exist (e.g. ChipWhisperer
and accompanying target boards).

– Perform a convincing side-channel leakage assessment: An assess-
ment should consist of two parts. First, the soundness of the side-channel
measurement setup should be demonstrated by for instance performing TVLA
with the masking randomness (TRNG/PRNG) disabled or by checking the
Signal to Noise Ratio (SNR) of a known intermediate variable’s leakage.
Secondly TVLA should be performed with the countermeasures enabled.
Perform a second evaluation with different fixed inputs if no leakage was
detected [13] and provide the used fixed inputs.
Note that leakage assessment is not meant to replace provable security but
rather to complement it.

– List the randomness requirement of the masking scheme. Carefully
indicate the number of bytes used for masking and the total number of
random bytes acquired in the implementation.

– Benchmark the randomness sources used by the implementation sep-
arately. This allows to establish a trade-off between the use of TRNG and
PRNG.

– Use a realistic benchmarking platform. Emulators are very useful tools,
but as with any tool it has to be used correctly. The use of a real-world
platform will provide more realistic results. Use a widely available platform
for evaluation.

– Provide all relevant platform settings: clock setup, configuration of the
caching mechanisms, flash wait cycles, TRNG clock frequency, etc.

– Document the toolchain and compiler settings used during the devel-
opment and evaluation of the implementation.

Note that many of these recommendations can be easily addressed by pro-
viding a public implementation.
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