Rolling up lattice cryptography primes

Daniel R. L. Brown

March 3, 2022

Abstract

Lattice cryptography uses fixed primes. Kolmogorov's descriptional complexity of the primes might interest the numerically curious.

| 59509 | 4812289 |
| :--- | :--- | :--- |
| 58653 | 53701 |
| 63677 | 531277 |
| 53701 | 533329 |
| 59761 | 58653 |
| 58821 | 58821 |
| 63857 | 581013 |
| 64953 | 586343 |
| 581013 | 59509 |
| 531277 | 59761 |
| 533329 | 63677 |
| 744591 | 63857 |
| 684621 | 637177 |
| 785167 | 64953 |
| 586343 | 684621 |
| 637177 | 744591 |
| 787879 | 785167 |
| 4812289 | 787879 |
| 808380417 | 808380417 |

Table 1: Word lengths of roll programs found for lattice cryptography primes
The roll programming language was introduced (in IACR eprint 2020/074) to help measure the descriptional complexity of fixed primes from elliptic
curve cryptography, partially addressing a concern about rigged primes. The analogous concern for lattice primes seems far smaller.

Ad hoc code golfing methods were used to find these roll programs. Existence of shorter roll programs (for each number) should be expected (for example, the program for 5167 uses no other tricks than choosing base three for a radix expansion).

	653 subs 650 in +3 650 subs 130 in $* 5$ 130 subs 26 in $* 5$ 26 subs 25 in +1 25 subs 5 in $* 5$ 5 subs 1 in $* 5$ $* 5$ roll +5 up 0 1 subs in +2 0 subs in +1 +5 subs +3 in +2 +3 subs +2 in +1 +2 subs +1 in +1	677 subs 675 in +2 675 subs 135 in $* 5$ 135 subs 27 in $* 5$ 27 subs 9 in $* 3$ 9 subs 3 in $* 3$ 3 subs 1in $* 3$soll +5 up 0 $* 5$ roll +3 up 0 $* 3$ rol 1 subs in +2 0 subs in +1 +5 subs +3 in +2 +3 subs +2 in +1 +2 subs +1 in +1
$\begin{aligned} & 701 \text { subs } 700 \text { in }+1 \\ & 700 \text { subs } 70 \text { in } * 10 \\ & 70 \text { subs } 7 \text { in } * 10 \\ & * 10 \text { roll }+10 \text { up } 0 \\ & 7 \text { subs } 4 \text { in }+3 \\ & 4 \text { subs in }+5 \\ & 0 \text { subs in }+1 \\ & +10 \text { subs }+5 \text { in }+5 \\ & +5 \text { subs }+3 \text { in }+2 \\ & +3 \text { subs }+2 \text { in }+1 \\ & +2 \text { subs }+1 \text { in }+1 \end{aligned}$	761 subs 756 in +5 56 subs 126 in$+6$	

857 subs 856 in +1 856 subs 107 in *8 107 subs 104 in +3 104 subs 13 in *8 13 subs 10 in +3 10 subs 2 in +8 $* 8$ roll +8 up 0 2 subs in +3 0 subs in +1 +8 subs +4 in +4 +4 subs +2 in +2 +3 subs +2 in +1 +2 subs +1 in +1	953 subs 952 in +1 952 subs 119 in $* 8$ 119 subs 112 in +7 112 subs 14 in $* 8$ 14 subs 7 in +7 7 subs 0 in +7 $* 8$ roll +8 up 0 0 subs in +1 +8 subs +4 in +4 +7 subs +4 in +3 +4 subs +2 in +2 +3 subs +2 in +1 +2 subs +1 in +1	$\begin{aligned} & 1013 \text { subs } 1012 \text { in }+1 \\ & 1012 \text { subs } 1008 \text { in }+4 \\ & 1008 \text { subs } 84 \text { in } * 12 \\ & 84 \text { subs } 7 \text { in } * 12 \\ & * 12 \text { roll }+12 \text { up } 0 \\ & 7 \text { subs } 3 \text { in }+4 \\ & 3 \text { subs in }+4 \\ & 0 \text { subs in }+1 \\ & +12 \text { subs }+4 \text { in +8 } \\ & +8 \text { subs }+4 \text { in }+4 \\ & +4 \text { subs }+2 \text { in }+2 \\ & +2 \text { subs }+1 \text { in }+1 \end{aligned}$
```1277 subs 1275 in +2 1275 subs 51 in *25 51 subs 50 in +1 50 subs 2 in *25 *25 subs *5 in *5 *5 roll +5 up 0 2 subs in +3 0 subs in +1 +5 subs +3 in +2 +3 subs +2 in +1 +2 subs +1 in +1```	$\begin{aligned} & 3329 \text { subs } 3328 \text { in }+1 \\ & 3328 \text { subs } 13 \text { in } * 256 \\ & * 256 \text { subs } * 16 \text { in } * 16 \\ & * 16 \text { subs } * 4 \text { in } * 4 \\ & 13 \text { subs } 12 \text { in }+1 \\ & 12 \text { subs } 3 \text { in } * 4 \\ & 3 \text { subs in }+4 \\ & * 4 \text { roll }+4 \text { up } 0 \\ & +4 \text { subs }+2 \text { in }+2 \\ & +2 \text { subs }+1 \text { in }+1 \\ & 0 \text { subs in }+1 \end{aligned}$	$\|$4591 subs 4576 in +15   4576 subs 143 in $* 32$   143 subs 128 in +15   128 subs 4 in $* 32$   4 subs 0 in +4   $* 32$ roll +32 up 0   0 subs in +1   +32 subs +16 in +16   +16 subs +8 in +8   +15 subs +8 in +7   +8 subs +4 in +4   +7 subs +6 in +1   +6   subs +4 in +2   +4   subs +2 in +2   +2 subs +1 in +1



```
8380417 subs 2^23-2^13 in +1
2^23-2^13 subs 13 2^10-1 in 2^*
2^10-1 subs 10 in 2^-1
2^-1 roll *2+1 up 0
2^* roll *2 up *1
*2+1 subs *2 in +1
*1 roll +1 up 0
13 subs 11 in +2
11 subs 10 in +1
10 subs 5 in *2
*2 roll +2 up 0
5 subs 4 in +1
4 subs 2 in +2
2 subs 0 in +2
+2 subs +1 in +1
0 subs in +1
```

