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Abstract

Functional Encryption (FE) is a powerful notion of encryption which enables computations
and partial message recovery of encrypted data. In FE, each decryption key is associated with
a function f such that decryption recovers the function evaluation f(m) from an encryption of
m. Informally, security states that a user with access to function keys skf1 , skf2 , . . . (and so on)
can only learn f1(m), f2(m), . . . (and so on) but nothing more about the message. The system is
said to be q-bounded collusion resistant if the security holds as long as an adversary gets access
to at most q = q(λ) decryption keys. In the last decade, numerous works have proposed many
FE constructions from a wide array of algebraic and general cryptographic assumptions, and
proved their security in the bounded collusion model.

However, until very recently, all these works studied bounded collusion resistance in a
static model, where the collusion bound q was a global system parameter. While the static
collusion model led to great research progress in the community, it has many major drawbacks.
Very recently, Agrawal et al. (Crypto 2021) and Garg et al. (Eurocrypt 2022) independently
introduced the dynamic model for bounded collusion resistance, where the collusion bound q
was a fluid parameter that was not globally set but only chosen by each encryptor. The dynamic
collusion model enabled harnessing the many virtues of the static collusion model, while avoiding
its various drawbacks.

In this work, we give a simple and generic approach to upgrade any scheme from the static
collusion model to the dynamic collusion model. Our result captures all existing results in the
dynamic model in the form of a single unified framework, and also gives new results as simple
corollaries with a lot more potential in the future. An interesting artifact of our result is that
it gives a generic way to match existing lower bounds in functional encryption.

1 Introduction

Functional Encryption (FE) [SW05, BSW11] is a powerful generalization of public-key encryp-
tion [DH76] which enables fine-grained access over encrypted data. In such systems, a setup algo-
rithm produces a master public-secret key pair (mpk,msk), where the master public key is made
public and the master secret key is retained by an authority. Using mpk, any user can encrypt
data m to produce a ciphertext ct. On the other hand, the authority can use the master secret
key to generate arbitrarily many partial decryption keys for authorized users, where the decryption
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key skf for a function f enables the key holder to compute the function output f(m) from the
ciphertext encrypting data m while learning nothing else about m. The message space M and
function class F supported depend on the expressiveness of the corresponding cryptosystem. For
example, public-key encryption can be viewed as FE with F containing only the identity function,
and identity-based encryption (IBE) [Sha85, Coc01, BF01] is equivalent to FE where F contains
all point functions. For well over a decade, FE has shown to be a tremendously useful concept with
applications ranging from all aspects of cryptography to theory of computation more generally.

The security for such systems is captured by either an indistinguishability (IND) or simulation
(SIM) based security game between a challenger and an attacker. In the IND-based security
game [BW07, KSW08], the challenger generates the master public key mpk, and sends it to the
attacker. The attacker makes polynomially many key queries, each for a function fi ∈ F , for which
it receives back the corresponding functional key skfi . The attacker also submits two challenge
messages m0,m1 at any point during the game with the restriction that fi(m0) = fi(m1) for
all queried functions f1, . . . , fq. The challenger flips a coin b and returns a challenge ciphertext
ct∗ encrypting mb. For an IND-secure FE scheme, an attacker can correctly guess b only with
probability negligibly close to 1

2 . On the other hand, in the SIM-based security game [BSW11,
O’N10], the attacker submits a single challenge message m, and the challenger flips a coin to decide
whether it generates the keys skf1 , . . . , skfq and ciphertext ct∗ honestly, or it “simulates” them
given only the evaluations f1(m), . . . , fq(m) and nothing more about m. Again, for a SIM-secure
FE scheme, an attacker can not correctly guess with probability negligibly better than 1

2 .

The Collusion Boundary. While SIM-secure FE is more desirable as it closely captures the in-
tuition that an attacker learns at most the function evaluation but nothing more, it is known to run
into strong impossibility results [BSW11, AGVW13]. Agrawal et al. (AGVW) [AGVW13, Corollary
1.2] gave a strong unconditional lower bound where they proved that there does not exist any SIM-
secure FE scheme with ciphertexts of size o(q), where q is the number of colluding users. While
this lower bound does not rule out IND-secure FE schemes with similar parameters, it was shown
soon after, in the works of Ananth and Jain (AJ) [AJ15, AJS15] and Bitansky and Vaikuntanathan
(BV) [BV15], that any IND-secure FE scheme with ciphertexts of size o(q) can be generically boot-
strapped into an FE scheme with optimal parameters where ciphertexts are of size O(log q). And,
these bootstrapping theorems have been the pathway taken over the past several years culminating
in all-powerful obfuscators from nearly standard cryptographic assumptions [JLS21].

These results clearly demarcate what we refer to as “the collusion boundary” for FE schemes.
Simply put, FE schemes with ciphertexts of size Θ(q) define the boundary of feasibility in SIM-
security due to the AGVW lower bound, and the boundary of obfustopia in IND-security as any
improvement leads to obfuscation via the AJ-BV bootstrapping. Since general purpose obfuscation
is known to be an incredibly powerful cryptographic primitive, thus one can not hope to cross this
collusion boundary without relying on highly structured algebraic assumptions.

However, a natural question that has been quite extensively studied is – “how close to this
boundary can we get?” To better understand the significance of this boundary and potentially
answer this question, the notion of bounded collusion resistance in FE has been well investigated.
Although the original motivation behind the bounded collusion model was to use it as a first step
to gain some foothold in designing FE systems, an alternate perspective is that it is a means to
understand existing lower bounds in SIM-security and explore the limits of generic unstructured
assumptions in building IND-secure FE.
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Bounded Collusion Model. Traditionally in the bounded collusion model, the FE system de-
clares a bound q at the setup time, such that all the system parameters grow with q (in addition
to the security parameter λ). And, the security requirement is as before with the restriction that
the attacker is no longer allowed to make more than q key queries, and if the attacker corrupts
more than q keys, then no security is provided. Despite its obvious limitations, the bounded col-
lusion model has been well-studied with the goals of improving efficiency, post-quantum security,
reducing computational assumptions, and supporting more expressive class of functions [DKXY02,
SS10, GLW12, GVW12, AR17, Agr17, ISV+17, AS17, GKW18, CVW+18, AV19, GSW21, Wee21].

In this long line of research in the bounded collusion model, Ananth and Vaikuntanathan [AV19]
made tremendous progress towards answering the question of how close we can get to the collusion
boundary. They proposed a generic black-box compiler that, starting from any IND/SIM-secure
FE scheme with ciphertexts of size poly(q), built an IND/SIM-secure FE scheme with ciphertexts of
size Θ(q). Since the compiler is agnostic to the supported function class F and starting polynomial
poly, this gives a mechanism to bring all existing FE constructions down to the collusion boundary
(irrespective of the model of computation, the supported function class etc).

While at first glance, this seems to fully close the gap between the (linear) collusion boundary
and positive results for FE, unfortunately, this is not the case! Observe that the collusion boundary,
as defined by the AGVW lower bound and AJ-BV bootstrapping theorems, only dictates the
ciphertext size to be Ω(q). That is, the sizes of other FE parameters such as the master key sizes,
functional key sizes are not mandated to be Ω(q), and could be totally independent of the collusion
bound. In other words, the collusion boundary suggests that only the FE encryption phase needs
to grow with the collusion bound q. This left a major gap in our understanding of the bounded
collusion model despite significant progress over the last decade.

Dynamic Collusion Model. Motivated by the above gap, the notion of dynamic collusion
model was introduced in two recent concurrent works by Agrawal et al. [AMVY21] and Garg et
al. [GGLW22]. They referred to the older bounded collusion models as the static collusion model.

In the dynamic collusion model, the setup algorithm no longer takes the collusion bound q as
input, but instead, the encryptor selects the collusion bound q per ciphertext. That is, the setup
and key generation algorithms no longer depend on q, and this lets the encryptor dynamically
decide the maximum number of colluding users against which it desires security. As a consequence,
in the dynamic collusion model, only the size of the ciphertexts grows with q, while everything else
is independent of q. The security requirement is as before but with the relaxed restriction that the
attacker can adaptively choose (i.e., when obtaining the challenge ciphertext instead of declaring at
the beginning of the game) the maximum number of keys it will query for, and the security holds
as long as it corrupts fewer than said number of keys.

With the model in place, both [AMVY21] and [GGLW22] provided FE schemes for circuits in
the dynamic model assuming the minimum and necessary1 assumption of identity-based encryption.
Both the works using nearly similar intermediate tools (multi-party computation protocol in the
client-server framework [AV19]) showed how to encode the collusion bound more efficiently resulting
in carefully designed FE schemes in the dynamic collusion model where only the ciphertext size
grows with q and that too only linearly. Furthermore, [AMVY21] also gave succinct FE schemes
for circuits, and FE schemes for Turing Machines (TMs) and Nondeterministic Logspace (NL) by
leveraging the hardness of learning with errors (LWE) assumption [Reg05].

1See [AMVY21, §7] for more details about minimality of IBE.
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Although these FE schemes for circuits from IBE (almost) close the gap between the lower
bounds suggested by the collusion boundary and the positive results for FE, the constructions are
not fully satisfactory. The main reason is that both the works [AMVY21, GGLW22] require and
perform careful surgery of existing FE schemes secure in the static collusion model to obtain their
results in the dynamic model. As an unfortunate consequence, they were unable to capture all the
research progress made in the static collusion model over the last decade. Therefore, in order to
enjoy the benefits and different security/functionality trade-offs provided bythe numerous existing
FE schemes in the static collusion model, one would need to individually study and try to translate
every FE scheme known in the static collusion model to their dynamic counterpart. Although
it should be possible to upgrade every known static collusion secure FE scheme using the core
technical ideas developed in [AMVY21, GGLW22], this will be very inefficient as this would require
a separate construction for upgrading each construction from the set [DKXY02, SS10, GLW12,
GVW12, AR17, Agr17, ISV+17, AS17, GKW18, CVW+18, AV19, GSW21, Wee21].

In this work, we study the connection between the two collusion models at a finer level, and
inspect how large the gap between the two collusion models really is. Our goal is to derive a generic
mechanism to upgrade any static collusion secure FE scheme into a dynamic collusion secure scheme
without requiring individual careful surgery of each underlying FE scheme.

Our Results and Techniques

The current constructions for FE in the dynamic model [AMVY21, GGLW22] follow a two-step
template. First, they show how to build an intermediate static FE scheme where q is still a global
system parameter, but the running times of the setup and key generation algorithms grows only
poly-logarithmically with the collusion bound q. And, they show a simple generic transformation
to lift such an intermediate static FE scheme with this poly-logarithmic dependence property into a
fully dynamic FE scheme for the same function class, where q is no longer a global system parameter
and only the encryptor selects the collusion bound. The core idea behind such a generic lifting
procedure is the well-known “powers-of-two trick” [GKP+13]. In a few words, the dynamic FE
scheme now sets up λ parallel static FE systems with geometrically increasing collusion bounds from
2, 4, . . . , 2λ. And, encryptor selects exactly one of these systems to encrypt its message depending
upon the desired level of collusion security, whereas the key generator generates individual keys for
all λ of these static FE systems.

Now to instantiate the above template, both works build new static FE schemes for different
function classes with the above desired poly-logarithmic dependence property. While the exact
implementations of Agrawal et al. and Garg et al. differ here, the main idea is identical. They
both rely on the same ingredients of identity-based encryption [Sha85], a special reusable multi-
party computation protocols [AV19], and garbled circuits [Yao82]. The core idea is to rely on a
combination of a load balancing trick from [AV19], delayed encryption trick from [GKW16], and
compression properties of IBE.

The intuition behind the load balancing trick was to visualize the collusion bound as a “load”
on the system, and then distribute the “load” of q colluding users into O(q) buckets, each with a
maximum load of just λ colluding users. Basically, each bucket corresponds to a separate static FE
system with the collusion bound λ. And, the observation is if O(q) of such parallel static FE schemes
(or buckets) can be efficiently represented within a single FE system, then such a compressed FE
system can be used to instantiate the desired static FE scheme with the poly-log dependence
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property via the load balancing trick. With the above intuition, both works [AMVY21, GGLW22]
focussed on building such a static FE scheme which could encode many parallel static FE schemes
more efficiently. At this point, [GGLW22] explicitly introduced a new type of static FE scheme for
distributing the load of colluding users, while [AMVY21] handled it implicitly. Formally, [GGLW22]
introduced a new static FE notion that they referred to as Tagged Functional Encryption (or,
Tagged FE for short).

A tagged FE scheme can be visualized as a compressed version of static FE, similar to how IBE
is a compression of plain PKE, where each ciphertext and function key are associated with a special
identity or ‘tag’ value. On any particular tag, regular bounded functional encryption security holds
even when given oracle access to an unrestricted amount and type of function keys on any other
tag (in addition to the normal collusion-bounded number of keys on the challenge tag). This allows
for a succinct representation of a potentially exponential number of public-secret key pairs into a
short master public-secret key pair.

The final idea in the two works was to open up existing static FE schemes such as [AV19], and
surgically add this property by compressing all the key materials with the help of IBE. Broadly,
both works realized that, at their core, most static FE schemes sampled a large number of public-
secret key pairs for aplain public-key encryption scheme where the number of sampled schemes grew
with the collusion bound q. They noticed that there were two sources of inefficiencies – one, due
to the master public-secret key sizes growing with q; and two, the exponential number of parallel
static FE schemes associated with a distinct tag. And, they further observed that if one replaces
each PKE key pair with a publicly computable identity and its corresponding IBE secret key, then
all the system inefficiencies can be handled efficiently using the separate portions of the identity
space of an IBE scheme. This gives way to a static FE scheme with the desired poly-logarithmic
dependence property, and eventually to a fully dynamic FE scheme by combining all these ideas.

While the above approach led to the first dynamic FE schemes, they required careful surgery of
a select few static FE schemes. Since the static collusion model has already been widely adopted
by the community, and appears to be simpler for developing new constructions, it is very likely
that in the future, new constructions in the bounded collusion model may be provided first in the
static model, and then later upgraded to dynamic model by relying on the surgical ideas similar to
those developed in [GGLW22, AMVY21]. Thus, we are interested in following question –

Can we generically upgrade the security of any functional encryption scheme from the static
collusion model to the dynamic collusion model?

We answer the above question in the affirmative. The main contribution of this paper is to close
the gap between static and dynamic collusion models by providing a simple and generical compiler
to upgrade a static scheme to a dynamic one. Our compiler is unaffected by the underlying model
of computation, the class of functions and messages supported, the parameter growth in terms of
the collusion bound, or any other non-generic property of the underlying static FE scheme. In this
work, we prove the following.

Theorem 1.1 (Informal). There exists an explicit compiler that upgrades any static λ-bounded
collusion resistant functional encryption scheme into a dynamic bounded collusion resistant func-
tional encryption scheme.

This has a fascinating consequence as this shows that all existing static collusion FE schemes be
generically upgraded to be dynamic collusion secure without diving into any of the mechanics of the
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underlying static FE schemes. But even more importantly, it suggests that any future constructions
of a static FE scheme can be combined with our compiler to derive a dynamic FE scheme as a
simple corollary via our main theorem.

Our Compiler. The main technical component of our result is a generic compiler that compresses
an exponential number of static FE schemes into a single tagged FE scheme that can support
an exponential number of tags. We want to highlight that constructing a tagged FE scheme
(generically from a static FE scheme) is sufficient for our compiler, as by relying on the load
balancing trick [AV19] and the powers-of-two technique [GKP+13] we can upgrade a tagged FE
scheme into a dynamic FE scheme as done in [GGLW22]. Thus, in the following technical exposition,
we focus on the showing how to compress N independent instances of a static FE scheme into a
tagged FE scheme where the running time of all algorithms grows only poly-logarithmically with
N . Concretely, we prove the following next:

Theorem 1.2 (Informal). Assuming IBE, for any N, q > 0, there exists an explicit transformation
from a static q-bounded collusion FE scheme to a q-bounded tagged FE scheme with tag space [N ].

To better understand our transformation, let us compare a static FE scheme and a tagged FE
scheme again. As we discussed before, the only difference between a static FE and a tagged FE is the
following. In a regular static FE scheme, each ciphertext ctm and secret key skf is associated with
only a message m and a function f (respectively). While in a tagged FE system, each ciphertext
ctm,tag1 and secret key skm,tag2 is also associated with a tag, tag1 and tag2 (respectively), in addition
to a message m and a function f . Where the decryption correctness in tagged FE changes to the
condition that Dec(skm,tag2 , ctm,tag1) is equal to f(m) iff tag1 = tag2, otherwise it outputs ⊥.

Our main observation is that a tagged FE can quite simply be interpreted as an identity-based
static FE scheme. That is, the relationship behind tagged FE and static FE is analogous to that
between IBE and PKE. Thus, it seems like all we need to do is find a mechanism to embed identities
in both the secret keys and ciphertexts of a tagged FE scheme. At a very high level, a similar
problem was solved in an unrelated context of building registration-based encryption [GHMR18,
GHM+19, GV20]. Although the motivation behind registration-based encryption was to solve
the key-escrow problem, one could very easily visualize it as a mechanism to accumulate a large
number of independently sampled PKE public keys into a short commitment where each public
key is associated with an identity (and, so is the corresponding secret key as well). And, an
encryptor only needs the short commitment to encrypt the message for any particular identity.
Internally, these encryption schemes rely on the beautiful line of working studying non-black-box
IBE constructions from simpler assumptions [DG17b, DG17a].

Thus, it seems very natural to us that these techniques can also be applied to the setting
of static bounded collusion resistant FE as well. Basically, we do not see the usage of PKE in
these prior works [DG17b, DG17a, GHMR18, GHM+19] as an irreplacable component, rather
we view this overall line of work as providing a beautiful mechanism to embed identities in any
type of functional encryption scheme, and not just in plain public-key encryption schemes. While
embedding identities in fully collusion resistant FE schemes does not seem to be useful for any
new applications, we point out that embedding identities is a meaningful operation for bounded
collusion FE schemes. And, in this case, it leads to a simple and generic approach to dynamic FE
systems. We believe that our re-visualization of Döttling-Garg [DG17b, DG17a] garbled-circuit-
based tree compression techniques to encryption schemes beyond public-key encryption will find
many more applications in the future.
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Before moving to a high-level overview of our compiler using the garbled-circuit-based tree com-
pression techniques, we want to highlight the aforementioned re-visualization of replacing public-key
encryption with more expressive forms of encryption is not reliant on the encryption being IND-
secure or SIM-secure. Although in the main body, we stick to simulation-based definitions, the
security proofs work equally well in case we start with an IND-secure static FE scheme. Very
briefly, the reason is the hardwiring-based proof strategy [DG17b, DG17a] only requires simulation
of garbled circuits, and not the underlying encryption system. Next, we describe the main ideas
and structure of our compiler.

From Static to Tagged FE via Garbled Circuits. As described above, we rely on the beau-
tiful tree compression techniques of Döttling-Garg [DG17b, DG17a]. We note that these techniques
are useful in delegating computation to the decryption algorithm via encrypting a sequence of gar-
bled circuits. In this work, we rely on the notion of One-Time Signature with Encryption (OTSE)
introduced in [DGHM18] for building IBE from plain PKE using garbled circuits. Briefly, an OTSE
scheme is a one-time signature scheme that is equipped with an encryption and decryption algo-
rithm, where encryption is performed w.r.t. a verification key and a pair of message bit and index
such that the resulting ciphertext can be decrypted using any signature that where the message
bit matches at the corresponding index position. That is, a ciphertext ct is associated with an
index-bit pair (i, b), and decryption only needs a signature σ on any message x such that xi = b.

Let us start with a simpler goal which is of compressing and embedding N independent in-
stantiations of a (static untagged) functional encryption scheme into a tagged FE scheme where
the parameter sizes grow only poly-logarithmically with N , but the running time of the setup and
key generation algorithms is allowed to grow polynomially with N . The idea is to (independently)
simply sample N fresh key pairs (mpki,mski) for the untagged system during the setup, and create
a short digest for all N public keys by placing each mpki into a leaf node of a Merkle tree and the
root node of the tree will be the short master public key for the compressed/tagged FE system.
Basically, the root value of the Merkle tree serves as a short commitment to the sequence of N
master public keys, and each leaf node can be succinctly opened w.r.t. the root node. To encrypt a
message m for the tagth untagged FE system (i.e., under key mpktag), the encryptor needs to search
the Merkle tree to obtain the corresponding public key from the root node. Since an encryptor can-
not perform this search operation during encryption time, thus it defers it to the decryption phase
by generating a sequence of garbled circuits. The final garbled circuit outputs the encryption of
message m under the correct key mpktag, as the intermediate garbled circuits perform step-by-step
verification of the root-to-leaf path where at each step only one bit of the tag value tag is read
and verified. And, all the garbled wire keys are encrypted using the OTSE scheme such that the
encryptor enforces the final garbled circuit to only be evaluated on mpktag. The key generation
process involves computing the untagged FE decryption key for the function f w.r.t. master key
msktag, and a sequence of signatures such that they enable evaluation of the intermediate garbled
circuits along the appropriate root-to-leaf path. And, for decryption, one needs to decrypt the
encrypted wire keys and evaluate the corresponding garbled circuit alternatively such that the it
finally obtains the wire keys corresponding to the key mpktag, and then create the untagged FE ci-
phertext using the last garbled circuit which is finally decrypted by using the tagged FE decryption
algorithm.

While the above idea is only useful for compression of a polynomial sized sequence of master
public keys, this can be easily extended to compress an exponential number of master keys by
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using a simple lazy sampling technique where the setup algorithm only samples a PRF key, and
uses the PRF key to sample all the untagged FE keys. Thus, the running time does not grow with
the number of underlying FE systems, and consistency of the Merkle tree is ensured by the PRF
key. This concludes a high-level overview of our main compiler, and more details are provided later
in Section 4. By combining this with the simple black-box transformations [GGLW22], we get our
final result of upgrading any static FE scheme to its dynamic FE counterpart.

New Results and Future Impact

As we hinted earlier, our generic compiler not only provides a much simpler approach to all the
dynamic FE constructions in [AMVY21, GGLW22], but it goes above beyond them as it readily
gives new results not captured by them. Very recently, there have new constructions for attribute-
based encryption in static bounded collusion model for TMs from IBE [GSW21] and DFAs from
LWE [Wee21]. Using our compiler, we can immediately upgrade them to get the following new
results as simple corollaries.

Corollary 1.1 (Informal). Assuming the existence of an Identity Based Encryption scheme, there
exists an Attribute Based Encryption scheme for Turing Machines in the dynamic collusion model.

Corollary 1.2 (Informal). Assuming the existence of an Identity Based Encryption scheme and
Learning with Errors assumption, there exists an Attribute Based Encryption scheme for DFA’s in
the dynamic collusion model.

We remark that this already shows the value of our compiler as it gives new results as mere
corollaries. And it also has huge potential in future research in the bounded collusion model, as
this gives the community a simpler target to aim for by showing it will be sufficient to build a static
FE scheme rather than a dynamic FE scheme. Because the latter can be generically obtained by
using our compiler without any further surgical procedures similar to [AMVY21, GGLW22].

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let
Zq denote the ring of integers modulo q. We denote the set of all positive integers upto n as
[n] := {1, . . . , n}. For any finite set S, x ← S denotes a uniformly random element x from the
set S. Similarly, for any distribution D, x ← D denotes an element x drawn from distribution D.
The distribution Dn is used to represent a distribution over vectors of n components, where each
component is drawn independently from the distribution D. Two distributions D1 and D2, param-
eterized by security parameter λ, are said to be computationally indistinguishable, represented by
D1 ≈c D2, if for all PPT adversaries A, |Pr[A(x) = 1 : x← D1]−Pr[A(x) = 1 : x← D2]| ≤ negl(λ).

2.1 Pseudorandom Functions

A pseudorandom function (PRF) is a funcion that takes inputs in domain Dλ , samples a PRF seed
of λ bits and computes an output in the range, Rλ. The evaluation function runs polynomially in
λ and satisfies the following pseudorandomness property.
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Definition 2.1 (Pseudorandomness). A PRF scheme is said to be secure if for every stateful PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, Dλ,Rλ the following
holds:

Pr

APRF(s,·)(rb) = b :

s← {0, 1}λ, b← {0, 1}
x∗ ∈ Dλ ← APRF(s,·)(1λ)
r0 ← Rλ, r1 = PRF(s, x∗)

 ≤ 1

2
+ negl(λ),

where A must not query the challenge input x∗ to the evaluation oracle PRF(s, ·).

2.2 Garbled Circuits

Our definition of garbled circuits [Yao86] is based upon the work of Bellare et al. [BHR12]. Let
{Cn}n be a family of circuits where each circuit in Cn takes n bit inputs. A garbling scheme GC
for circuit family {Cn}n consists of polynomial-time algorithms Garble and Eval with the following
syntax.

• Garble(1λ, C ∈ Cn): The garbling algorithm takes as input the security parameter λ and a
circuit C ∈ Cn. It outputs a garbled circuit C̃, together with 2n wire keys {wi,b}i≤n,b∈{0,1}.

• Eval(C̃, {wi}i≤n): The evaluation algorithm takes as input a garbled circuit C̃ and n wire
keys {wi}i≤n and outputs y ∈ {0, 1}.

Correctness. A garbling scheme GC for circuit family {Cn}n is said to be correct if for all λ, n,
x ∈ {0, 1}n and C ∈ Cn, Eval(C̃, {wi,xi}i≤n) = C(x), where (C̃, {wi,b}i≤n,b∈{0,1})← Garble(1λ, C).

Security. Informally, a garbling scheme is said to be secure if for every circuit C and input x,
the garbled circuit C̃ together with input wires {wi,xi}i≤n corresponding to some input x reveals
only the output of the circuit C(x), and nothing else about the circuit C or input x.

Definition 2.2. A garbling scheme GC = (Garble,Eval) for a class of circuits C = {Cn}n is said
to be a secure garbling scheme if there exists a polynomial-time simulator Sim such that for all n,
C ∈ Cn and x ∈ {0, 1}n, the following distributions are computationally indistinguishable:{

Sim
(

1λ, 1n, 1|C|, C(x)
)}

λ
≈c
{(
C̃, {wi,xi}i≤n

)
:
(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
λ
.

The following corollary follows from the definition.

Corollary 2.1. If GC is a secure garbling scheme for a class of circuits C = {Cn}n, then for all n,
C ∈ Cn and x ∈ {0, 1}n, the following distributions are computationally indistinguishable:{

Sim
(

1λ, 1n, 1|C|
)}

λ
≈c
{
C̃ :

(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
λ
.

While this definition is not as general as the definition in [BHR12], it suffices for our construction.
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2.3 One-Time Signature with Encryption

A One-Time Signature with Encryption (OTSE) scheme, defined by [DG17a], is a one-time signature
scheme with an additional encryption and decryption functionality. An OTSE scheme, consists of
the following five algorithms, (SSetup, SGen, SSign, SEnc, SDec)2.

SSetup(1λ, `)→ pp. The setup algorithm takes as input the security parameter λ and a message
length parameter `. It outputs a public parameter pp.

SGen(pp)→ (vk, sk). Once parameters pp are setup, we can sample a verification and signing key.

SSign(pp, sk, x)→ σ. On input the public parameters, a signing key and a message x ∈ {0, 1}`, we
output a signature σ.

SEnc(pp, (vk, i, b),m)→ ct. On input the public parameters, and a verification key vk, a position
i ∈ [`], a bit b ∈ {0, 1} and a plaintext m, we output a ciphertext ct.

SDec(pp, (vk, σ, x), ct)→ m′. On input the public parameters, a verification key vk, a signature σ,
a message x and ciphertext ct, we output a plaintext m′.

The scheme satisfies the following properties,

Correctness. For all λ ∈ N, ` ∈ N, x ∈ {0, 1}` and plaintext m, if pp← SSetup(1λ, 1`), (vk, sk)←
SGen(pp) and σ ← SSign(pp, sk, x), then,

SDec(pp, (vk, σ, x), SEnc(pp, (vk, i, xi),m)) = m.

Succinctness. For pp ← (1λ, 1`), (vk, sk) ← SGen(pp), it holds that vk is a polynomial function
in λ and independent of `.

Selective Security. For every PPT Adversary A, there exists a negligible function negl such
that for all λ ∈ N, ` ∈ N, the following holds.

Pr

A(pp, vk, σ, ct∗) = b :

pp← SSetup(1λ, `)
x← A(pp)

(vk, sk)← SGen(pp); σ ← SSign(pp, sk, x)
(i,m∗0,m

∗
1)← A(pp, vk, σ); b← {0, 1}

ct∗ ← SEnc(pp, (vk, i, 1− xi),m∗b)

 ≤ 1

2
+ negl(λ),

where the probability depends on the randomness of the different OTSE algorithms. In our proof
we use the multi-message security, wich is implied by a single message security via a standard
hybrid argument. See [DG17a] for details.

3 Functional Encryption: Definitions

In this section, we revisit the notion of functional encrypion (FE) in the bounded setting [SS10,
GVW12]. Recent works of [AMVY21, GGLW22] proposed a collusion bound in the dynamic setting
where the scheme’s setup and key generation algorithms are independent of the collusion bound
and instead, we can specify the collusion bound during encryption. We follow the formal security
definitions from [GGLW22] almost verbatim and describe them below.

2There is no need for a verification algorithm for the signature as one can run the encryption and decryption
algorithm to check validity of the signature.
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3.1 Static Collusion Model

Syntax. Let M = {Mn}n∈N, R = {Rn}n∈N be families of sets, and F = {Fn} a family of
functions, where for all n ∈ N and f ∈ Fn, f :Mn → Rn. We will also assume that for all n ∈ N,
the set Fn contains an empty function εn :Mn → Rn. As in [BSW11], the empty function is used
to capture information that intentionally leaks from the ciphertext.

A bounded functional encryption scheme FE for a family of function classes {Fn}n∈N, message
spaces {Mn}n∈N and collusion bound q(λ) consists of four polynomial-time algorithms (Setup,Enc,
KeyGen,Dec) with the following semantics.

Setup(1λ, 1n, 1q)→ (mpk,msk). The setup algorithm takes as input the security parameter λ, the
functionality index n3 and the collusion bound 1q. It outputs the master public-secret key
pair (mpk,msk).

Enc(mpk,m ∈Mn)→ ct. The encryption algorithm takes as input the master public key mpk and
a message m ∈Mn and outputs a ciphertext ct.

KeyGen(msk, f ∈ Fn)→ skf . The key generation algorithm takes as input the master secret key
msk and a function f ∈ Fn and outputs a function key skf .

Dec(skf , ct)→ Rn. The decryption algorithm takes as input a ciphertext ct and a secret key skf
and outputs a value y ∈ Rn.

Correctness and Efficiency. A functional encryption scheme FE = (Setup,Enc,KeyGen,Dec)
is said to be correct if for all λ, n ∈ N, functions f ∈ Fn, messages m ∈ Mn and (mpk,msk) ←
Setup(1λ, 1n), we have that

Pr [Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1.

And, it is said to be efficient if the running time of the algorithms is a fixed polynomial in the
parameters λ, n and q.

Static bounded collusion security. This is formally captured via the following ‘simulation based’
security definition as follows.

Definition 3.1 (static-bounded-collusion simulation-security). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be statically-bounded-collusion simulation-secure if there
exists a stateful PPT simulator Sim = (S0, S1,S2, S3) such that for every stateful PPT adversary

3One coud additionally consider the setup algorithm to take as input a sequence of functionality indices where the
function class and message space are characterized by all such indices (e.g., having input length and circuit depth as
functionality indices). For ease of notation, we keep a single functionality index in the above definition.
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A, the following distributions are computationally indistinguishable:AKeyGen(msk,·)(ct) :

(1n, 1q)← A(1λ)
(mpk,msk)← Setup(1λ, 1n, 1q)

m← AKeyGen(msk,·)(mpk)
ct← Enc(mpk,m)


λ∈N

≈cAS
Um(·)
3 (st2,·)(ct) :

(mpk, st0)← S0(1
λ, 1n, 1q)

m← AS1(st0,·)(mpk)
(ct, st2)← S2(st1,Π

m)


λ∈N

whenever the following admissibility constraints and properties are satisfied:

– S1 and S3 are stateful in that after each invocation, they updates their states st1 and st3
(respectively) which is carried over to its next invocation.

– Πm contains a list of functions fi queried by A in the pre-challenge phase along with the
their output on the challenge message m. That is, if fi is the i-th function queried by A
to oracle S1 and qpre be the number of queries A makes before outputting m, then Πm =(
(f1, f1(m)), . . . , (fqpre , fqpre(m))

)
.

– Amakes at most q queries combined to the key generation oracles in the corresponding games.

– S3 for each queried function fi, in the post-challenge phase, makes a single query to its
message oracle Um on the same fi itself.

3.2 Dynamic Collusion Model

In a “dynamic” bounded collusion setting, the scheme is no longer tied to a single collusion bound
q fixed a-priori at the system setup, but instead the encryptor could choose the amount of collusion
resilience it wants. Thus, this changes the syntax of the setup and encryption algorithm when
compared to the static setting from above:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and the
functionality index n (in unary). It outputs the master public-secret key pair (mpk,msk).

Enc(mpk,m ∈Mn, 1
q)→ ct. The encryption algorithm takes as input the master public key mpk,

a message m ∈ Mn, and it takes the desired collusion bound q as an input. It outputs a
ciphertext ct.

Efficiency. The runtime and output of Setup,KeyGen is polynomial in λ, n. The runtime and
output of Enc, the runtime of Dec is polynomial in λ, n, q.

Dynamic bounded collusion security. We define a ‘simulation based’ security noion similar to the
static security definition (Definition 3.1).

Definition 3.2 (dynamic-bounded-collusion simulation-security). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be dynamically-bounded-collusion simulation-secure if

12



there exists a stateful PPT simulator Sim such that for every stateful PPT adversary A, the
following distributions are computationally indistinguishable:AKeyGen(msk,·)(ct) :

1n ← A(1λ)
(mpk,msk)← Setup(1λ, 1n)

(m, 1q)← AKeyGen(msk,·)(mpk)
ct← Enc(mpk,m, 1q)


λ∈N

≈cASimUm(·)(·)(ct) :

1n ← A(1λ)
mpk← Sim(1λ, 1n)

(m, 1q)← ASim(·)(mpk)
ct← Sim(Πm, 1q)


λ∈N

whenever the admissibility constraints and properties, as defined in Definition 3.1, are satisfied.

3.3 Tagged Functional Encryption

Next, we recall the notion of tagged FE from [GGLW22]. Tagged FE is simply a collection of
different instances of a functional encryption scheme, where each instance is denoted by a tag ∈
Iz (|Iz| is the total number of FE instances bundled together). A tagged bounded functional
encryption scheme FE for a family of function classes {Fn}n∈N, message spaces {Mn}n∈N and tag
spaces I = {Iz}z∈N consists of four polynomial-time algorithms (Setup,Enc,KeyGen,Dec) with the
following semantics.

Setup(1λ, 1n, 1z, 1q)→ (mpk,msk). In addition to the normal inputs taken by a static-bounded FE
scheme, the setup also takes in a tag space index z, which fixes a tag space Iz.

Enc(mpk, tag ∈ Iz,m ∈Mn)→ ct. The encryption also takes in a tag tag ∈ Iz to bind to the
ciphertext.

KeyGen(msk, tag ∈ Iz, f ∈ Fn)→ sktag,f . The key generation also binds the secret keys to a fixed
tag tag ∈ Iz.

Dec(sktag,f , ct)→ Rn. The decryption algorithm has syntax identical to a non-tagged scheme.

Definition 3.3 (Correctness). We say the scheme is correct if for all λ, n ∈ N, z, q ∈ poly(λ), func-
tions f ∈ Fn, messages m ∈Mn and tag ∈ Iz, we have that for (mpk,msk)← Setup(1λ, 1n, 1z, 1q),
the following holds true,

Pr [Dec(KeyGen(msk, tag, f),Enc(mpk, tag,m)) = f(m)] = 1.

where the probability is taken over the coins of setup, key generation and encryption algorithms.

Definition 3.4 (tagged-static-bounded-collusion simulation-security). For any choice of param-
eters λ, n, q, z ∈ N, consider the following list of stateful oracles S0, S1,S2 where these oracles
simulate the FE setup, key generation, and encryption algorithms respectively, and all three algo-
rithms share and update the same global state of the simulator. Here the attacker interacts with the
execution environment E , and the environment makes queries to the simulator oracles. Formally,
the simulator oracles and the environment are defined below:

13



S0(1
λ, 1n, 1z, 1q) generates the simulated master public key mpk of the system, and initializes the

global state st of the simulator which is used by the next two oracles.

S1(·, ·, ·), upon a call to generate secret key on a function-tag-value tuple (fi, tagi, µi), where the
function value is either µi = ⊥ (signalling that the adversary has not yet made any encryption
query on tag tagi), or (mtagi , tagi) has already been queried for encryption (for some message
mtagi), and µi = fi(m

tagi), the oracle outputs a simulated key skfi,tagi .

S2(·, ·), upon a call to generate ciphertext on a tag-list tuple (tagi,Π
mtagi ), where the list Πmtagi is

a possibly empty list of the form Πmtagi = (f
tagi
1 , f

tagi
1 (mtagi)),

. . . , (f
tagi
qpre , f

tagi
qpre (mtagi)) (that is, contains the list of function-value pairs for which the adver-

sary has already received a secret key for), the oracle outputs a simulated ciphertext cttagi .

ES1,S2(·, ·), receives two types of queries – secret key query and encryption query. Upon a secret key
query on a function-tag pair (fi, tagi), if (mtagi , tagi) has already been queried for encryption
(for some message mtagi) then E queries key oracle S1 on tuple (fi, tagi, µi = fi(m

tagi)),
otherwise it adds (fi, tagi) to the its local state, and queries S1 on tuple (fi, tagi, µi = ⊥).
And, it simply forwards oracle’s simulated key skfi,tagi to the adversary.

Upon a ciphertext query on a message-tag pair (mi, tagi), if the adversary made an encryption
query on the same tag tagi previously, then the query is disallowed (that is, at most one
message query per every unique tag is permitted). Otherwise, it computes a (possibly empty)

list of function-value pairs of the form Πmi =
(

(f
tagi
1 , f

tagi
1 (mtagi)), . . . , (f

tagi
qpre , f

tagi
qpre (mtagi))

)
where (f

tagi
j , tagi) are stored in E ’s local state, and removes all such pairs (f

tagi
j , tagi) from

its local state. E then queries ciphertext oracle S2 on tuple (tagi,Π
mi), and simply forwards

oracle’s simulated ciphertext cttagi to the adversary.

A tagged functional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be tagged-
statically-bounded-collusion simulation-secure if there exists a stateful PPT simulator Sim = (S0, S1,S2)
such that for every stateful admissible PPT adversary A, the following distributions are computa-
tionally indistinguishable:{

AKeyGen(msk,·,·),Enc(mpk,·,·)(mpk) :
(1n, 1q, 1z)← A(1λ)

(mpk,msk)← Setup(1λ, 1n, 1z, 1q)

}
λ∈N

≈c{
AES1,S2 (·,·)(mpk) :

(1n, 1q, 1z)← A(1λ)
mpk← S0(1

λ, 1n, 1z, 1q)

}
λ∈N

where A is an admissible adversary if:

– A makes at most one encryption query per unique tag (that is, if the adversary made an
encryption query on some tag tagi previously, then making another encryption query for the
same tag is disallowed)

– A makes at most q queries combined to the key generation oracles in the above experiments
for all tags tagi such that it also submitted an encryption query for tag tagi.
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4 From Static FE to Tagged FE Generically

Our tagged FE Accumulator is a generic compiler which can be used to combine 2z many instances of
a functional encryption scheme to a tagged functional encryption scheme with tag space Iz = {0, 1}z
(see Section 3.3 for a definition). Our compiler preserves the bound on the number of Keygen queries
that can be made on a single tag, i.e. if we start with a q-bounded functional encryption scheme
where q = poly(λ), we get a q-bounded tagged functional encryption scheme. Additionally, our
compiler can support uniform models of computation.

The construction and security proof are similar to the IBE construction of [DG17a] and builds
on techniques from [DG17b, DG17a, BLSV18, GHMR18]. In the aforementioned list of works,
the delegation trick is done using a variety of primitives – chameleon hash functions, one time
signatures with encryption (OTSE), batch encryption, hash garbling, etc. We build our tagged FE
using the notion of compact One-Time Signature with Encryption (OTSE). IBE implies compact
OTSE [DG17a] and we use the weaker primitive of compact OTSE here to make our transformation
more general. And, indeed OTSE along with public key encryption gives an IBE scheme [DG17a].
Additionally, in [DGHM18], the authors showed how to build compact OTSE from public key
encryption and hash encryption. Thus compact OTSE can be built from a variety of primitives
such as Learning with Errors (LWE), PKE with Learning Parity with Noise (LPN) [DGHM18] or
Computational Diffie-Hellman (CDH) [DG17a].

4.1 Construction

Let BFE = (BFE.Setup,BFE.KeyGen,BFE.Enc,BFE.Dec) be a q-bounded functional encryption
scheme for F = {Fn}n∈N a family of functions and message space M = {0, 1}∗, let OTSE =
(SSetup, SGen,SSign,SEnc,SDec) be a One Time Signature with Encryption scheme. Note that F
can either follow a uniform/non-uniform model of computation and our tagged construction would
hold on the same functionality F . Let PRF be a pseudorandom function with key size λ and can
take in inputs of less than z bits and outputs two pseudorandom strings PRF1 and PRF2 such
that PRF(s ∈ {0, 1}λ, v ∈ {0, 1}≤z) = PRF1(s, v)||PRF2(s, v) where |PRF1(s, v)| is the length of the
randomness used for the SSetup alorithm an |PRF2(s, v)| is the length of the randomness used for
the BFE.Setup algorithm.

We construct a q-bounded tagged functional encryption scheme on tag space Iz = {0, 1}z, which
combines |Iz| many instances of a q-bounded functional encryption scheme.

Setup(1λ, 1n, 1z, 1q).

1. Let ` = poly(λ) be the length of the BFE.mpk when called on security parameter λ. Let
pp← SSetup(1λ, `). 4

2. Let s← {0, 1}λ be the PFF seed.

3. Run (vkε, σε, xε)← NodeGen(pp, ε, s)

4. Output mpk = (pp, vkε),msk = s.

KeyGen(msk = s, tag ∈ {0, 1}z, f ∈ Fn)

4Recall from the succinctness property of OTSE, the length of the verification key |vk| is some polynomial in λ
and independent of `. We assume we can choose the security parameter of BFE.Setup by some polynomial factor such
that ` ≥ 2|vk|.
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LeafGen(pp, v, s, f)

Inputs: OTSE public parameters pp; Leaf Index v ∈ {0, 1}z;
PRF Seed s ∈ {0, 1}λ; Function f ∈ Fn

Output: OTSE verification key vkv; OTSE signature σv;

Public Key of vth instance BFE.mpkv; Secret Key BFE.skf

1. (vkv, skv)← SGen(pp,PRF1(s, v)).

2. (BFE.mpkv,BFE.mskv)← BFE.Setup(1λ;PRF2(s, v)), i.e. compute the vth instance of the base
scheme by running the setup on randomness PRFs(s, v).

3. BFE.skf ← BFE.KeyGen(BFE.mskv, f)

4. σv = SSign(pp, skv,BFE.mpkv)

5. Output (vkv, σv,BFE.mpkv,BFE.skf )

Figure 1: Routine LeafGen

NodeGen(pp, v, s)

Inputs: OTSE public parameters pp; Node Index v ∈ {0, 1}z
′

where z′ < z;

PRF Seed s ∈ {0, 1}λ

Output: OTSE verification key vkv; OTSE signature σv; Auxiliary value xv

1. (vkv, skv) ← SGen(pp,PRF1(s, v)), (vkv||0, skv||0) ← SGen(pp,PRF1(s, v||0)) and
(vkv||1, skv||1)← SGen(pp,PRF1(s, v||1)).

2. xv = vkv||0||vkv||1.

3. σv = SSign(pp, skv, xv).

4. Output (vkv, σv, xv)

Figure 2: Routine NodeGen

Leaf Encryption Circuit T[m](BFE.mpk)

Inputs: Public key of leaf BFE.mpk; Constants: Message m ∈Mn;

Output: Ciphertext ct

1. Compute and output BFE.Enc(BFE.mpk,m).

Figure 3: Circuit T

1. For j ∈ [0, z], let vj denote a prefix of tag, i.e. first j bits of tag. Note that v0 is ε and
vz = tag.

2. For j ∈ [0, z − 1], compute (vkvj , σvj , xvj )← NodeGen(pp, vj , s).

3. Let (vktag, σtag,BFE.mpktag,BFE.sktag,f )← LeafGen(pp, tag, s).
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Garbled Label Encryption Circuit Q[pp, β, `′, e](vk)

Inputs: OTSE verification key vk

Constants: OTSE public parameters pp; Bit β ∈ {0, 1}; Number of circuit

labels `′ ∈ N; Labels of a garbled circuit e = {(Yι,0, Yι,1)}ι∈[`′]
Output: Encrypted Labels, êβ

1. Compute and output {SEnc(pp, (vk, β · `′ + ι, b), Yι,b)}ι∈[`′],b∈{0,1}.

Figure 4: Circuit Q

4. Output
(
{(σvj , xvj )}j∈[0,z−1], σtag,BFE.mpktag,BFE.sktag,f

)
.

Enc(mpk = (pp, vkε), tag ∈ {0, 1}z,m ∈Mn)→ ct.

1. For j ∈ [z], let vj denote the prefix of tag and ` be the length of BFE.mpk.

2. (T̃, eT)← GC.Garble(1λ,T[m]) (Figure 3).

3. Let (Q̃(z), e
(z)
Q )← GC.Garble(1λ,Q[pp, 0, `, eT]) (Figure 4).

4. For j = z − 1, . . . , 0, let `′ be |vkε|,

(a) (Q̃(j), e
(j)
Q ) ← GC.Garble(1λ,Q[pp, tagj+1, `

′, e
(j+1)
Q ]) (note that Q(j+1) consists of la-

bels corresponding to the verification key).

5. Parse e
(0)
Q = {Yι,0, Yι,1}ι∈[`′].

6. Let yι denote the ιth bit of vkε. Let ỹ(0) ← {Yι,yι}ι∈[`′].

7. Output
(
ỹ(0), Q̃(0), . . . , Q̃(z), T̃

)
.

Dec(sktag,f , ct)→ Rn.

1. Parse sktag,f =
(
{(σvj , xvj )}j∈[0,z−1], σtag,BFE.mpktag,BFE.sktag,f

)
.

2. Parse ct =
(
ỹ(0), Q̃(0), . . . , Q̃(z), T̃

)
.

3. Recall, for j ∈ [z], let vj denote the prefix of tag, ` be the length of BFE.mpk and `′ be
length of vk for otse scheme called on λ, `.

4. For j ∈ [0, z − 1]

(a) {ê(j)ι,b }ι∈[`′],b∈{0,1} ← GC.Eval(Q̃(j), ỹ(j)).

(b)
{
ỹ(j+1)} ← {SDec

(
pp,
(
vkvj , σvj , xvj

)
, ê

(j)
ι,(xvj )ι

)}
ι∈[`′]

5. {ê(z)ι,b }ι∈[`],b∈{0,1} ← GC.Eval(Q̃(z), ỹ(z)).

6. Let pkι denote the ιth bit of BFE.mpktag.

7. Let yT = {SDec
(
pp,
(
vktag, σtag,BFE.mpktag

)
, ê

(z)
ι,pkι

)
}ι∈[`].

8. Let ctBFE = Eval(T̃, yT). Output BFE.Dec(BFE.sktag,f , ctBFE).
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4.2 Correctness

We say the scheme is correct if it satisfies Definition 3.3. By correctness of the garbling scheme, we
have that Q̃(0), when run on garbled input ỹ(0) computes Q[pp, 0, `, ·](vkε) and outputs encrypted
labels to Q̃(1). By correctness of the OTSE encryption scheme, we can decrypt the labels correspond-
ing to tag1 to compute ỹ(1). Similarly, iteratively calling the security of the garbled circuit and the
signature scheme, we compute the garbled inputs to circuit T̃ corresponding to BFE.mpktag. Thus
we finally compute ctBFE ← T[m](BFE.mpktag) by the correctness of the garbled circuit algorithm.
Finally, we run,

BFE.Dec(BFE.sktag,f ,BFE.Enc(BFE.mpktag,m)) = f(m),

by the correctness of the tagth instance of BFE scheme.

4.3 Efficiency

The different algorithms Setup,KeyGen run polynomial in λ, z, n, q and this can be seen easily
from the construction. Encryption algorihm runs polynomial in λ, z, n, q and the message m that
is chosen during encryption time. Crucially, we observe here that our tagged FE accumulator
is agnostic to the model of computation of the base BFE scheme. Consider a uniform model of
computation where the encryption algorithm is a family of circuits, different for each input. The
plaintext can be in {0, 1}∗ and the key generation algorithm can take in a TM description. The
description of our algorithm Enc garbles a circuit T which computes the encryption of one instance
of BFE scheme on a hardcoded message m ∈ {0, 1}∗. Since during encrypt, we know the message,
we can hardcode the circuit at m such that the resulting encryption procedure can be described as
a circuit T[m]. Thus if the base scheme BFE can support uniform models of computation, so can
our transformation.

4.4 Security

Theorem 4.1. If PRF is a secure pseudorandom function, GC is a secure garbling scheme, OTSE
is a secure one-time signature with encryption scheme, BFE = (BFE.Setup,BFE.Enc,BFE.KeyGen,
BFE.Dec) is a bounded-collusion simulation-secure FE scheme (as per Definition 3.1), then the above
scheme is a tagged-statically-bounded-collusion simulation-secure FE scheme (as per Definition 3.4).

Proof. Let BFE.Sim = (BFE.S0,BFE.S1,BFE.S2) be the simulators satisfying Definition 3.1. We
will construct simulators Sim = (S0, S1, S2,S3) that share a global state st and use the simulated
routines Figure 5 and Figure 6 that satisfy Definition 3.4 as follows.

S0(1
λ, 1n, 1z, 1q)
Sample pp ← SSetup(1λ, `). Run (vkε, skε, xε) ← Sim.NodeGen(pp, ε, st). Output mpk =
(pp, vkε).

S1(tag, f, µ)

1. For j ∈ [0, z], let vj denote the prefix of tag, i.e. first j bits of tag. Note that v0 is ε and
vz = tag.

2. For j ∈ [0, z − 1], compute (vkvj , σvj , xvj )← Sim.NodeGen(pp, vj , st).

3. Let (vktag, σtag,BFE.mpktag,BFE.sktag,f )← Sim.LeafGen(pp, tag, st, f, µ).
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Sim.LeafGen(pp, v, st, f, µ)

Inputs: OTSE public parameters pp; Leaf Index v ∈ {0, 1}z; Simulator State

st ∈ {0, 1}∗; Function f ∈ Fn; Function Values µ

Output: OTSE verification key vkv; OTSE signature σv; Public Key of vth instance

BFE.mpkv; Secret Key BFE.skf

1. If (v, vkv, skv) does not exist in st, then (vkv, skv)← SGen(pp). Add (v, vkv, skv) to st.

2. Let (BFE.mpkv,BFE
v.st0)← BFE.S0(1λ, 1n, q).

3. If µ = ⊥, run BFE.skf ← BFE.S1(BFEv.st0, f) and update state BFEv.st1 in st. Else, get
BFE.stv2 from st and run BFE.skf ← BFE.Sµ3 (BFEv.st2, f) where µ contains the list of all
previous function evaluations.

4. σv = SSign(pp, skv,BFE.mpkv).

5. Output (vkv, σv,BFE.mpkv,BFE.skf ).

Figure 5: Routine Simulated LeafGen

Sim.NodeGen(pp, v, st)

Inputs: OTSE public parameters pp; Node Index v ∈ {0, 1}z
′

where z′ < z;

Simulator state st ∈ {0, 1}∗

Output: OTSE verification key vkv; OTSE signature σv; Auxiliary value xv

1. If (v, vkv, skv) does not exist in st, then (vkv, skv) ← SGen(pp). Add (v, vkv, skv) to st. Simi-
larly, set/check the parameters in st for v||0 and v||1.

2. Let xv = vkv||0||vkv||1.

3. σv = SSign(pp, skv, xv).

4. Output (vkv, σv, xv).

Figure 6: Routine Simulated NodeGen

Simulated Garbled Label Encryption Circuit Sim.Q[pp, β, `′, y](vk)

Inputs: OTSE verification key vk

Constants: OTSE public parameters pp; Bit β ∈ {0, 1}; Number of circuit labels

`′ ∈ N; Labels of a garbled circuit y = {(Yι)}ι∈[`′]
Output: Encrypted Labels, êβ

1. Compute and output {SEnc(pp, (vk, β · `′ + ι, b), Yι)}ι∈[`′],b∈{0,1}.

Figure 7: Simulation Circuit Sim.Q

4. Output
(
{(σvj , xvj )}j∈[0,z−1], σtag,BFE.mpktag,BFE.sktag,f

)
.

S2(tag
∗,Πmtag∗

)
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1. For j ∈ [z], let vj denote the prefix of tag and ` be the length of BFE.mpk.

2. If BFEtag∗ .st1 is not in st, setup (BFE.mpktag∗ ,BFE
tag∗ .st0) ← BFE.S0(1

λ, 1n, q). Let

BFEtag∗ .st1 = BFEtag∗ .st0. Run ct∗BFE ← BFE.S2(BFE
tag∗ .st1,Π

mtag∗
). Store BFEtag∗ .st2

in st. (Πmtag∗
contains the functions and their evaluations at mtag∗ for the tag tag∗).

3. (T̃, ỹT)← GC.Sim(1λ, 1`, 1|T[0]|, ct∗BFE) (Figure 3)5.

4. For j ∈ [0, z], let vj denote the prefix, i.e. first j bits of tag. If (vj , vkvj , skvj ) does not
exist in st, then (vkvj , skvj )← SGen(pp). Add (vj , vkvj , skvj ) to st.

5. Compute ŷT ← Sim.Q[pp, 0, `, ỹT](vktag∗).

6. Let (Q̃(z), ỹ
(z)
Q )← GC.Sim(1λ, 1`, 1|Q|, ŷT) (Figure 4).

7. For j = z − 1, . . . , 0, let `′ be |vkε|,

(a) Compute ŷ
(j)
Q ← Sim.Q[pp, tagj+1, `

′, ỹ
(j+1)
Q ](vkvj ).

(b) Let (Q̃(j), ỹ
(j)
Q )← GC.Sim(1λ, 1`

′
, 1|Q|, ŷ

(j)
Q ) (Figure 4).

8. Output
(
ỹ(0), Q̃(0), . . . , Q̃(z), T̃

)
.

We will show through a sequence of experiments that the real and simulated games of Theo-
rem 4.1 are computationally indistinguishable. We only note down the steps that are different from
the previous experiment in red, rest of the operations and notations remain the same.

Experiment 0. This is the experiment with adversary A and tagged-statically-bounded-collusion
FE scheme. The experiment is parameterized by λ ∈ N.

{
AKeyGen(msk,·,·),Enc(mpk,·,·)(mpk) :

(1n, 1q, 1z)← A(1λ)
(mpk,msk)← Setup(1λ, 1n, 1z, 1q)

}
λ∈N

• Setup: (1n, 1q, 1z)← A(1λ).

1. Let pp← SSetup(1λ, `) (` is length of BFE.mpk called on securtiy parameter λ, function-
ality index n and collusion bound q).

2. Sample s← {0, 1}λ as PRF seed.

3. Compute (vkε, σε, xε)← NodeGen(pp, ε, s).

4. Set mpk = (pp, vkε), msk = s.

Send mpk to A. A is given access to two oracles, KeyGen and Enc.

• Key Queries: Let A query KeyGen on tag tag ∈ {0, 1}z and function f .

1. For j ∈ [0, z], let vj denote the prefix of tag, i.e. first j bits of tag. Note that v0 is ε and
vz = tag.

5Any hardcoded public message ∈ Mn will work as input to T. Here we set it to 0 for simplicity. In future
simulation algorithms, for notational simplicity we omit the hardcoded values and just mention the size as 1|T| or
1|Q|. Assume that the size can be set appropriately as a polynomial in λ, `, `′.
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2. For j ∈ [0, z − 1], compute (vkvj , σvj , xvj )← NodeGen(pp, vj , s).

3. Let (vktag, σtag,BFE.mpktag,BFE.sktag,f )← LeafGen(pp, tag, s).

4. Output
(
{(σvj , xvj )}j∈[0,z−1], σtag,BFE.mpktag,BFE.sktag,f

)
.

• Ciphertext Queries: Let A query Enc on tag tag∗ ∈ Iz and message mtag∗ ∈Mn.

1. (T̃, eT)← GC.Garble(1λ,T[m]) (Figure 3).

2. Let (Q̃(z), e
(z)
Q )← GC.Garble(1λ,Q[pp, 0, `, eT]) (Figure 4).

3. For j = z − 1, . . . , 0, let `′ be |vkε|,
(a) (Q̃(j), e

(j)
Q ) ← GC.Garble(1λ,Q[pp, tag∗j+1, `

′, e
(j+1)
Q ]) (note that Q(j+1) consists of la-

bels corresponding to the verification key).

4. Parse e
(0)
Q = {Yι,0, Yι,1}ι∈[`′].

5. Let yι denote the ιth bit of vkε. Let ỹ(0) ← {Yι,yι}ι∈[`′].

6. Output
(
ỹ(0), Q̃(0), . . . , Q̃(z), T̃

)
.

• A outputs a bit b.

We’ve included additional notational indexing to help with our hybrids.

Experiment 1. In this experiment, we replace the PRF function with a truly random function.
We additionally describe a routine that partially simulates LeafGen.

PartSim.LeafGen(pp, v, st, f)

Inputs: OTSE public parameters pp; Leaf Index v ∈ {0, 1}z; Simulator State st ∈ {0, 1}∗;
Function f ∈ Fn

Output: OTSE verification key vkv; OTSE signature σv; Public Key of vth instance

BFE.mpkv; Secret Key BFE.skf

1. If (v, vkv, skv) does not exist in st, then (vkv, skv)← SGen(pp). Add (v, vkv, skv) to st.

2. Let (BFE.mpkv,BFE.mskv) ← BFE.Setup(1λ, 1n, q). Store (v,BFE.mpkv,BFE.mskv) in the
state st.

3. BFE.skf ← BFE.KeyGen(BFE.mskv, f)

4. σv = SSign(pp, skv,BFE.mpkv)

5. Output (vkv, σv,BFE.mpkv,BFE.skf )

Figure 8: Routine Partially Simulated LeafGen

• Setup: (1n, 1q, 1z)← A(1λ).
Sample s← {0, 1}λ as PRF seed.
Let st be the global state. Compute (vkε, σε, xε)← Sim.NodeGen(pp, ε, st).

• Key Queries: Let A query KeyGen on tag tag ∈ {0, 1}z and function f .
For j ∈ [0, z − 1], compute (vkvj , σvj , xvj )← Sim.NodeGen(pp, vj , st).
Let (vktag, σtag,BFE.mpktag,BFE.sktag,f )← PartSim.LeafGen(pp, tag, st).
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Experiment 2k. Here k varies from 1 to z. In this experiment, we change how Q̃(k−1) and the
garbled labels ỹ(k−1) are computed by calling the garbled circuit simulator.
Ciphertext Queries: Let A query Enc on tag tag∗ ∈ Iz and message mtag∗ ∈Mn.

• For j = z − 1, . . . , k, let `′ be |vkε|,

1. (Q̃(j), e
(j)
Q ) ← GC.Garble(1λ,Q[pp, tag∗j+1, `

′, e
(j+1)
Q ]) (note that Q(j+1) consists of labels

corresponding to the verification key).

• For j = (k − 1),

1. Compute ê
(j)
Q ← Q[pp, tagj+1, `

′, e
(j+1)
Q ](vkvj ).

2. Let (Q̃(j), ỹ
(j)
Q )← GC.Sim(1λ, 1`

′
, 1|Q|, ê

(j)
Q ).

• For j = (k − 2), . . . , 0,

1. Compute ŷ
(j)
Q ← Sim.Q[pp, tagj+1, `

′, ỹ
(j+1)
Q ](vkvj ).

2. Let (Q̃(j), ỹ
(j)
Q )← GC.Sim(1λ, 1`

′
, 1|Q|, ŷ

(j)
Q ).

Experiment 2k + 1. Here k varies from 1 to z. In this experiment, instead of using Q for

encrypting the labels e
(k)
Q , instead we use Sim.Q to compute ŷ(k−1) and use that inside GC.Sim. In

the Ciphertext Queries phase, we make the following change,
For j = (k − 1),

1. Let e
(j+1)
Q be denoted by the set of labels {(Yι,0, Yι,1)}ι∈[`′]. Let yι be the ιth bit of vkvj+1 . Use

y
(j+1)
Q = {Yι,yι}ι∈[`′] as the labels.

2. Compute ŷ
(j)
Q ← Sim.Q[pp, tagj+1, `

′, y
(j+1)
Q ](vkvj ).

3. Let (Q̃(j),
˜
y
(j)
Q )← GC.Sim(1λ, 1`

′
, 1|Q|, ŷ

(j)
Q ).

Experiment 2z + 2. In this experiment, we change how Q̃(z) and the garbled labels ỹ(z) are
computed by calling the garbled circuit simulator. In the Ciphertext Queries phase, we make
the following change -

Let (Q̃(z), ỹ
(z)
Q )← GC.Sim(1λ, 1`

′
, 1|Q|, eT) and use ỹ

(z)
Q instead of e

(z)
Q inside Sim.Q.

Experiment 2z + 3. In this experiment, instead of using Q for encrypting the labels yT, instead
we use Sim.Q to compute ŷT. In the Ciphertext Queries phase, we make the following change -
Let eT be denoted by the set of labels {(Yι,0, Yι,1)}ι∈`. Let yι be the ιth bit of BFE.mpktag∗ . Use

yT = {Yι,yι}ι∈` as the labels. Compute ŷT ← Sim.Q[pp, 0, `, yT](vktag∗). Additionally, use ŷT

instead of eT as the input to the garble simulator algorithm.

Experiment 2z+ 4. In this experiment, we simulate T using the garbled circuit simulator hard-
coded with the BFE.ct. In the Ciphertext Queries phase, we make the following change -
Let ct∗BFE ← BFE.Enc(BFE.mpktag∗ ,m). Compute (T̃, ỹT) ← GC.Sim(1λ, 1`, 1|T[m]|, ct∗BFE).
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Experiment 2z + 5. In this experiment, we simulate BFE.Enc and BFE.KeyGen to remove all
information about the message m.
In the Key Queries phase, use routine Sim.LeafGen instead of PartSim.LeafGen.
In the Ciphertext Queries phase, change how we sample ct∗BFE and set it as

ct∗BFE ← BFE.S2(BFE
tag∗ .st1,Π

mtag∗
). (Πmtag∗

contains the functions and their evaluations at mtag∗

for the tag tag∗).
Let P iA(λ) be the probability that adversary A outputs 1 on Experiment i run on security

parameter λ.

Lemma 4.1. If PRF is a secure pseudorandom functions, then for every adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, |P0

A(λ)− P1
A(λ)| = negl(λ).

Proof. Suppose there existed an adversary A that distinguishes with some non-negligible probabil-
ity, then we can construct an adversary B that distinguishes between the a truly random function
and a PRF with non-negligible probability. Experiment 0 consists of computation corresponding
to the PRF and Experiment 1 consists of computation corresponding to the truly random function.
Thus we can argue the lemma from PRF security.

Lemma 4.2. If GC is a secure garbling scheme, then for k from 1 to z, for every adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, |P2k−1

A (λ)− P2k
A (λ)| = negl(λ).

Proof. Suppose there existed an adversary A that distinguishes with some non-negligible prob-
ability, then we can construct an adversary B that distinguishes between the garbling security
game with non-negligible probability. Consider the circuit Q̃(k−1). In experiment 2k − 1, we

compute the circuit using the algorithm (Q̃(k−1), e
(k−1)
Q ) ← GC.Garble(1λ,Q[pp, vk, `

′, e
(k)
Q ]). In ex-

periment 2k, we compute the same circuit from a garbled circuit simulator, where we compute

(Q̃(k−1), ỹ
(k−1)
Q )← GC.Sim(1λ, 1`

′
, 1|Q|, ê

(k−1)
Q where the labels ỹ

(k−1)
Q correspond to the labels vkvk−1

.

Observe that in both games, we only proceed with computation on ỹ
(k−1)
Q , specifically in experiment

2k − 1, we compute e
(k−1)
Q and only compute on labels corresponding to vkvk−1

. Thus by garbled

security on Q[pp, vk, `
′, e

(k)
Q ] and input vkvk−1

, the advantage of B is the same as advantage of A.

Lemma 4.3. If OTSE is a secure one time encryption scheme, then for k from 1 to z, for every
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, |P2k

A (λ)−P2k+1
A (λ)| =

negl(λ).

Proof. We can assume that our proof proceeds through a sequence of sub-experiments where we
switch one challenge ciphertext at a time. The loss in the security experiment will be bounded
by the number of queries we can make and thus will be q times the loss between one of the sub-
experiments. Assume that we switch the ciphertext on challenge tag tag∗.

Suppose there existed an adversary A that distinguishes with some non-negligible probability,
then we can construct an adversary B that distinguishes between the OTSE security game with

non-negligible probability. Consider the routines Q[pp, tagk, `
′, e

(k)
Q ](vkvk−1

) and Sim.Q[pp, tagk, `
′,

y
(k)
Q ](vkvk−1

) used to compute ŷ
(k)
Q . Let e

(k)
Q be denoted by the set of labels {(Yι,0, Yι,1)}ι∈[`′]. Let yι

be the ιth bit of vkvk . Let y
(j+1)
Q = {Yι,yι}ι∈[`′] as the labels.

The adversary B functions as follows, it gets the public parameter pp. It then outputs x∗ as
the challenge message as vkvk−1||0||vkvk−1||1. Challenger samples (vkvk−1

, skvk−1
) and sends (vkvk−1

)
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to B. B obtains the signature σ ← SSign(pp, skvk−1
, x∗). It uses σ in keygen procedure as it

does not know skvk−1
. Finally, it outputs i∗ = {tagk`′ + ι}ι∈[`′] as the challenge locations and

sets the multi-message challenge ciphertexts as M∗0 = {Yι,1−yι}ι∈[`′] and M∗1 = {Yι,yι}ι∈[`′]. The
ciphertext set C∗0 = {SEnc(pp, (vkvk−1

, tagk`
′ + ι, 1 − yι), Yι,1−yι)}ι∈[`′]. Consider the ciphertexts

C∗1 = {SEnc(pp, (vkvk−1
, tagk`

′ + ι, 1 − yι), Yι,yι)}ι∈[`′]. Note that when we switch from using Q to
Sim.Q, this is precisely the change, and thus we can rely on selective OTSE security to make our
claim.

Lemma 4.4. If GC is a secure garbling scheme, for every adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, |P2z+1

A (λ)− P2z+2
A (λ)| = negl(λ).

Proof. This is very similar to the proof of Lemma 4.2.

Lemma 4.5. If OTSE is a secure one time encryption scheme, for every adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, |P2z+2

A (λ)− P2z+3
A (λ)| = negl(λ).

Proof. This is very similar to the proof of Lemma 4.3.

Lemma 4.6. If GC is a secure garbling scheme, for every adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, |P2z+3

A (λ)− P2z+4
A (λ)| = negl(λ).

Proof. This is very similar to the proof of Lemma 4.2.

Lemma 4.7. If BFE is a secure bounded-collusion simulation-secure FE scheme scheme, for ev-
ery adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, |P2z+4

A (λ) −
P2z+5
A (λ)| = negl(λ).

Proof. We rely on the security for each instance of the BFE scheme where a keygen or ciphertext
query is made to the tagged scheme. Let q′ be the total number of BFE instances on which we make
any kind of query. We can go through a sequence of q′ sub-experiments where we change each scheme
to it’s simulated counterpart. The formal details are routine, and if the advantage in breaking the
BFE scheme is negl′(λ), then the advantage between the two experiments is atmost q′negl′(λ). Since
q = poly(λ), the winning probability is bounded by a negligible function negl(λ).

5 Main Theorem and New Results

In this section, we give our main theorem that combines our Theorem 4.1 with the black-box
compilers from [GGLW22]. First, we recall the theorem about a black-box transformation from
tagged FE to dynamic FE from [GGLW22].

Theorem 5.1 ([GGLW22, Paraphrased, Theorems 3.1 and 5.1]). If tgfe is a tagged statically λ-
bounded collusion simulation-secure FE scheme (as per Definition 3.4), then there exists a dynamic
bounded collusion simulation-secure FE scheme (as per Definition 3.2). And, the dynamic FE
scheme can be obtained via a black-box transformation from the tagged FE scheme.

Next, by combining the above theorem with Theorem 4.1, we get the following theorem.
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Theorem 5.2. If IBE is a secure IBE scheme and BFE is a λ-bounded collusion simulation-secure
FE scheme (as per Definition 3.1), then there exists a dynamic bounded collusion simulation-secure
FE scheme (as per Definition 3.2). And, the dynamic FE scheme can be obtained via a non-black-
box transformation from the static FE scheme.

We want to point out that although Theorem 4.1 was stated in terms of existence of a PRF,
garbling scheme, and an OTSE scheme, we can replace all of them with IBE as IBE implies all of
them.

Finally, we show that by combining Theorem 5.2 with [GSW21, Wee21], we get the following.

Corollary 5.1. If IBE is a secure IBE scheme, then there exists a dynamic-bounded collusion
simulation-secure ABE scheme for Turing Machines.

Corollary 5.2. If IBE is a secure IBE scheme and Learning with Errors assumption is hard, then
there exists a dynamic-bounded collusion simulation-secure ABE scheme for DFAs in the secret-
key-selective setting.
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