
Private Set Intersection from Pseudorandom Correlation
Generators

Dung Bui1 and Geoffroy Couteau2

1 IRIF, Université de Paris
bui@irif.fr

2 CNRS, IRIF, Université de Paris
couteau@irif.fr

Abstract. Pseudorandom correlation generators (PCG) allow two parties to generate long
correlated pseudorandom strings with minimal communication. Since secure computation ap-
plications typically benefit from such protocols, we explore the use of PCG to improve private
set intersection (PSI) protocols. We obtain two main results.
In our first result, we construct a new highly optimized semi-honest PSI. Our protocol builds
upon the protocol of (Kolesnikov et al., CCS 2016), and significantly improves it using multiple
optimizations, including a new oblivious pseudorandom function (built from a PCG for the
subfield-VOLE correlation), and a new technique to handle a generalized variant of Cuckoo
hashing tailored to our setting. For sets with elements of size ℓ bits with ℓ ≤ 70, our protocol
outperforms all known PSI protocols, by as much as 42% when ℓ = 32 and with n = 220

items (compared to the best known protocol of (Rindal and Schoppmann, Eurocrypt 2021),
enhanced with recent improvements). For these parameters, the communication of our protocol
is extremely small: only 129n bits of total communication.
In our second result, we use a PCG for a new correlation, called the subfield ring-OLE corre-
lation. We construct a new protocol with attracting features: competitive communication with
the state of the art, fully malicious security in the standard model (no random oracle or tailored
assumptions on hash functions). To our knowledge, our protocol outperforms by a large margin
all previous protocols in the standard model, and is competitive even with ROM-based proto-
cols. Furthermore, our protocol leads to a batch non-interactive PSI, where (after a one-time
short interaction) a client can broadcast a single compact encoding of its dataset, and compute
its intersection with the datasets of multiple servers after receiving a single message from each
server.

1 Introduction

Private Set Intersection (PSI) is a cryptographic primitive that allows parties to jointly compute the
set of all common elements between their datasets, without leaking any value outside of the inter-
section. It is a special case of secure multi-party computation (MPC). PSI enjoys a wide array of
real-life applications; it is perhaps the most actively researched concrete functionality in secure com-
putation, and has been the target of a tremendous number of works, see [PSZ14,PSSZ15,KKRT16,
RR17,KRTW19,PSWW18,PRTY19,PRTY20,CM20,RS21,GPR+21,RT21] and references therein for
a sample. As a consequence of this intense research effort, modern PSI protocols now achieve impres-
sive efficiency features, communicating only a few hundred bits per database items, and processing
millions of items in seconds.

Paradigms for PSI. Many approaches to PSI have been designed over the year. While some early
proposals relied on generic secure computation methods [HEK12], the most efficient solutions to date
rely on specialized techniques. While this fails to capture all proposals, the most prominent modern
PSI protocols can be categorized in four groups.

Key exchange-based. Early PSI protocols relied on techniques based on the Diffie-Hellman key-
exchange [Mea86, HFH99], and were extended to the malicious setting in [DKT10, JL10]. While
these protocols have relatively low communication, the need to compute multiple exponentiations
for each item gives them relatively poor performances. Nevertheless, recent improvements to these
old protocols [RT21] show that this approach can be somewhat competitive for very small sets, when
communication is a very scarce resource.

bui@irif.fr
couteau@irif.fr

2 Dung Bui and Geoffroy Couteau

Cuckoo hashing-based. Cuckoo hashing [PR04] is an efficient hashing technique where items are hashed
into a linear number of bins while guaranteeing that no bin will contain more than one item. For most
of the past decades, the top-performing PSI protocols [PSZ14,PSSZ15,KKRT16,HV17,RR17,CLR17,
OOS17,PSWW18,PSZ18] relied on Cuckoo hashing techniques, usually combined with fast oblivious
transfer extension [IKNP03]. While the more recent OKVS-based protocols now outperform Cuckoo-
hashing-based (CH-based) protocols, the protocol of [KKRT16] remains among the most competitive
PSI protocols.

OKVS-based. Starting with the work of [PRTY19], a new approach to PSI has been design, which
relies on a carefully chosen encoding of the datasets with oblivious data structures. The first protocols
required expensive polynomial interpolation [PRTY19, CM20], but a more efficient data structure
called PaXoS was introduced in [PRTY20], which significantly changed the state of affairs, and led
to the most efficient PSI protocol known to date [RS21]. The required data structures have been
recently abstracted out in [GPR+21] under the name oblivious key-value stores (OKVS), and the work
introduced significant improvements in the efficiency and security guarantees of OKVS constructions.
As a consequence, a combination of [RS21] with the latest OKVS of [GPR+21] leads to a very low-
communication PSI protocol (for mid to large databases), still with a very good concrete efficiency.

Polynomial manipulation. Eventually, starting with the work of [FNP04], several protocols have
been designed that represent the datasets as polynomials over finite fields, and compute set opera-
tions through operations on these polynomials. Notable works include [KS05,DMRY09,HN10,Haz15,
FHNP16,GS19,GN19]. While these protocols are usually much slower than those based on Cuckoo
hashing or OKVS, they offer some advantages, such as realizing stronger functionalities (like threshold
private set intersection [GS19]) and providing security in the standard model (in contrast, the most
efficient OKVS- or CH-based protocols require the random oracle model, or some ad hoc family of
correlation-robustness assumptions).

Improving PSI with pseudorandom correlation generators. Pseudorandom correlation gen-
erators (PCG) have been introduced in the works of [BCG+17, BCGI18, BCG+19b] and have been
the subject of a long and fruitful line of work [BCG+17, BCGI18, BCG+19b, BCG+19a, SGRR19,
BCG+20b, BCG+20a, YWL+20, CRR21, WYKW21]. At a high level, a PCG allows two party to
securely stretch long pseudorandom correlated strings from short, correlated seeds. Securely sharing
correlated random strings is a crucial component in most modern secure computation protocols, which
operate in the preprocessing model; PCG allows to realize this functionality with almost no commu-
nication. Among their many applications, PCGs allow to construct silent oblivious transfer extension
protocols [BCG+19a], which can realize (pseudorandom) OT extension with minimal (logarithmic)
communication.

Since the top-performing PSI protocols rely on efficient OT extension, using PCG-based techniques
to improve their efficiency is a natural idea. And indeed, this was done recently for OKVS-based PSI
in [RS21], leading to the most efficient PSI protocol known to date.

To give a single datapoint, computing the intersection between two databases of size n = 220 with
the protocol of [RS21] communicates as little as 426n bits in total. In addition, some of the tools used
in [RS21] have been significantly improved since: replacing their OKVS (which is the PaXoS OKVS
of [PRTY20]) by the more recent 3H-GCT OKVS of [GPR+21], and replacing their PCG (which is
the one from [WYKW21]) by the recent PCG of [CRR21], the cost goes down to an impressive 247n
bits of total communication. In comparison, even the insecure approach of exchanging the hashes of
all items in the databases already requires 160n bits of communication. OKVS-based PSI protocols
are now firmly established as the leading paradigm in the field, and the use of PCGs to reduce their
communication overhead even more seems to further widen the gap with the other paradigms.

1.1 Our Contributions

We thoroughly investigate how pseudorandom correlation generators can improve the design of PSI
protocols, in several of the previous paradigms. We obtain two main contributions.

PSI from Pseudorandom Correlation Generators 3

Beating OKVS PSI with CH PSI, or “KKRT strikes back”. We uncover a crucial distinc-
tion between CH-based and OKVS-based PSI protocols, which had never been pointed out to our
knowledge. At a high level, Cuckoo hashing-based protocols possess a feature that makes them con-
siderably more “PCG-friendly” than OKVS-based PSI. While the work of [RS21] demonstrated that
PCGs can significantly reduce the communication of OKVS-based PSI protocol,3 we show that their
effect on Cuckoo hashing-based protocols is much deeper. Indeed, we show how a careful use of PCGs
in KKRT [KKRT16], the leading Cuckoo hashing-based protocol, does not only significantly reduce
its communication overhead: it also makes the communication complexity entirely independent of the
computational security parameter (a feature that no previous protocol ever enjoyed to our knowledge).
This in turns opens the door to several optimizations, including well-known optimizations (the use
of permutation-based hashing to further reduce communication, which was previously incompatible
with KKRT) and new techniques (including a significant generalization of KKRT which enables the
use of a new variant of Cuckoo hashing to reduce the communication even further). Along the way, we
notice an error in the security analysis of KKRT. Fixing the error requires introducing a new notion
of correlation-robustness, which we do in the context of our construction. Our new notion allows in
particular to repair the analysis of the KKRT protocol.

As a result, our first contribution shakes the dominant position of OKVS-based PSI protocols.
To give a datapoint, for n = 220, the KKRT protocol communicates 1008n bits. We reduce this
communication to 283n bits in the general case (a 72% reduction). For the common case of databases
with small entries, we achieve even more impressive reductions: for example, with 64-bit entries, our
protocol communicates 252n bits, and with 32-bit entries, it communicates only 189n bits (a 82%
reduction compared to KKRT). This means that for databases with entries smaller than 64 bits, the
Cuckoo hashing approach becomes more efficient than OKVS-based PSI, even when using all of the
latest optimizations on the latter. None of these communication improvements come at the cost of
computation: the computation overhead is actually reduced by more than 33% compared to KKRT.

In many concrete scenario, one might be fine with a lower statistical security parameter: a statis-
tical failure probability of 2−30, for example, might be deemed perfectly acceptable. Because our new
construction depends solely on this parameter (and not on the computational security parameter),
reducing λ from 40 to 30 makes our protocol stand out even more compared to the state of the art.
For example, for inputs of length ℓ = 32 and λ = 30, the protocol of [RS21] (enhanced with recent
advances in VOLE and OKVS) has communication 237n at n = 220, while our protocol communicates
169n bits. Furthermore, a technique of [TLP+17] can be used to reduce the size of the last message
(intuitively, the trick is to sort the values in increasing order, and then send the differences between
consecutive values; these differences are ≈ log n bits shorter than the values themselves on average).
This trick applies to both the protocol of [RS21] and ours, but its effect on our protocol is twice larger
(because we send twice more values in the last round). The price to pay is quite mild (sorting a list
of 2n values). Concretely, with λ = 30 and using this technique in both [RS21] and our protocol, our
approach achieves lower communications already for ℓ ≤ 77 bits. We provide further datapoints and
comparisons to the state of the art on Table 1.

Efficient PSI in the standard model. In our second contribution, we design a new “polynomial-
based” PSI protocol, following the high level structure of previous works [KS05, GS19, GN19]. To
this end, we introduce the notion of PCG for the subfield ring-OLE correlation, and show how a
simple variant of the recent PCG for ring-OLE of [BCG+20b] leads to efficient instantiations of this
primitive. Then, we describe a new PSI protocol built on top of this PCG, which enjoys a number of
very interesting features.

Security features. Our PSI protocol is in the standard model: unlike our first protocol, it does not re-
quire the random oracle model, or any tailor-made correlation-robustness assumptions. We rely solely
on the (relatively well-established) ring-LPN assumption over polynomial rings with irreducible poly-
nomials. To our knowledge, our protocol is the first standard model protocol which offers competitive
performances compared to protocols using the random oracle heuristic or tailored assumptions. Fur-
thermore, our PSI protocol enjoys full malicious security (for both parties) almost for free. This stems

3 More precisely, [RS21] focused on using PCGs to improve the protocol of [PRTY20], which uses PaXoS;
the work of [GPR+21] observed that the technique actually works with any OKVS.

4 Dung Bui and Geoffroy Couteau

Table 1. Comparison of the communication cost of several PSI protocols in the
semi-honest model, for various choices of the database size n (we assume that both
parties have a database of the same size) and statistical security parameter λ.
ℓ denote the bit-length of the inputs in the database; we set the computational
security parameter κ to 128.

n = 214 n = 216 n = 220 n = 224

Statistical security parameter λ = 40

[KKRT16] 972n 984n 1008n 1032n

[PRTY19] low* 505n 509n 513n 517n

[PRTY19] fast* 588n 603n 619n 635n
[CM20] 682n 678n 694n 702n
[PRTY20] 1258n 1208n 1268n 1302n
[RS21] 2038n 914n 426n 398n

[RS21] enhanced** 271n 249n 247n 254n
Ours (ℓ = 64) 275n 253n 252n 259n
Ours (ℓ = 48) 244n 222n 221n 229n
Ours (ℓ = 32) 212n 190n 189n 196n

Statistical security parameter λ = 30

[RS21] enhanced** 261n 239n 237n 244n
Ours (ℓ = 64) 255n 233n 232n 239n
Ours (ℓ = 48) 224n 202n 201n 209n
Ours (ℓ = 32) 192n 170n 169n 176n

Statistical security parameter λ = 30, using the technique of [TLP+17]

[RS21] enhanced** 247n 223n 217n 220n
Ours (ℓ = 64) 227n 201n 191n 191n
Ours (ℓ = 48) 196n 170n 161n 161n
Ours (ℓ = 32) 166n 138n 129n 128n

* PRTY19 has two variants, SpOT-low (lowest communication, higher compu-
tation) and SpOT-fast (higher communication, better computation). Both use
expensive polynomial interpolation and require significantly more computation
compared to all other protocols in this table.

** Using the 3H-GCT OKVS of [GPR+21] instead of PaXoS, and the VOLE
of [CRR21] instead of the one from [WYKW21].

from the use of PCGs, which allows to confine the “price” of achieving malicious security to the dis-
tributed seed generation only, which has logarithmic communication and computation (in the set size
n).

Efficiency features. Our PSI protocol enjoys a very low communication, considerably lower than
all previous PSI protocols in the standard model which we are aware of (excluding iO- or FHE-
based protocol, which can have very low communication but very poor concrete efficiency). In fact,
communication-wise, our PSI protocol is even competitive with the best ROM-based PSI protocols.
Concretely, for sets of size n with ℓ-bit entries, our protocol communicates (2ℓ+3λ+6 log n) ·n+o(n)
bits. To give a single datapoint, for ℓ = 32 and n = 220, we estimate the total communication to
be 334n bits. This is only mildly larger than the best maliciously secure protocol [RS21], which
communicates 257n bits in the same setting, with comparable computation (it also uses polynomial
interpolation), but without standard model security.

Note that our second protocol shares with our first protocol the (previously never achieved) feature
of having a communication independent of κ. Our protocol requires more computation compared to
the best ROM-based protocols, due to its use of polynomial interpolation. However, it still allows for
very fast PSI computation (we estimate a few seconds to compute the intersection between databases
of size 220, on one core of a standard laptop). Concretely, the protocol requires only

– a single degree-n polynomial interpolation, one FFT over a polynomial ring with degree-2n poly-
nomials, and 3 multiplications of degree-n polynomials for the receiver, and

PSI from Pseudorandom Correlation Generators 5

– a single degree-n polynomial interpolation, one FFT as above, 2 multiplications of degree-n poly-
nomials, and a single n-multipoint polynomial evaluation for the sender.

Furthermore, both polynomial interpolations only have to be performed over a field F, of size
|F| ≈ 2ℓ where ℓ is the bit size of the set items (e.g. 32 or 64 bits), and the multipoint evaluation
is over a field of size λ + 2 log n bits. This stand in stark contrasts with previous state of the art
protocols [PRTY19] that relied on polynomial interpolation (on top of using the ROM), where the
interpolations and multipoint evaluations had to be performed over a very large field F of size |F| ≈
2400. By using a cyclotomic ring, the FFTs and polynomial multiplications are much faster than the
interpolations.

Batch non-interactive PSI. On top of these security and efficiency features, the structure of our
protocol allows to obtain a powerful interaction pattern: it leads to a batch non-interactive PSI, where
after a short interaction with each server, a client C with set X can broadcast a single encoding of
their database, and receive afterwards at anytime a single message from each server Si with set Xi,
from which they can decode X ∩Xi.

In essence, we build upon the fact that the PCG for subfield ring-OLE correlations is programmable,
which means that we can enforce that a target party will receive the same pseudorandom string
accross executions with many different parties. Concretely, we achieve the following form of batch
non-interactive PSI between a client C with database X and multiple servers Si with datasets Xi

(all of size n):

1. In a preprocessing phase, C interacts with each of the servers, using O(log n) communication and
computation in each interaction, in a small constant number of rounds.

2. Then, C performs a single Õ(n) cost local computation, and broadcasts a single 2ℓn-size encoding
EX of X.

3. Each server Si can, at any time, send a single message Mi = m(Xi, EX), of length 3(λ+2 log n)n,
using Õ(n) computation.

4. Eventually, given X and Mi, the client C can run a Õ(n) cost decoding procedure and recover
X ∩Xi, without further interaction.

When the number of servers becomes large, our batch PSI protocol can lead to very strong savings
for the client compared to executing a PSI protocol individually with each server, and provide a
solution competitive even with the best ROM-based PSI protocols. Furthermore, in this setting, the
amortized communication (per PSI instance) is reduced to (2ℓ/NS + 3λ + 6 log n) · n + o(n), where
NS denotes the number of servers.

2 Technical Overview

We focus in this technical overview on our first contribution; the second contribution is conceptually
simpler (using mostly standard linear algebra lemmas) and the exposition in Section 5.1 should be
easy to follow.

2.1 The KKRT protocol

Let us provide a high level overview of KKRT. At a high level, it combines Cuckoo hashing with
a batch related-key oblivious pseudorandom function (BaRK-OPRF). A BaRK-OPRF is a protocol
between a receiver, Alice, and a sender, Bob, where Alice has inputs (x1, · · · , xn). Bob receives one
global key ∆ and n local keys (K1, · · · ,Kn), and Alice learns (F∆,K1(x1), · · · , F∆,Kn(xn)). In KKRT,
the BaRK-OPRF has the following structure: F∆,Ki

(xi) = H(i,Ki ⊕ (∆ ∧ Enc(xi))), where

– H is a hash function, modeled as a random oracle (or satisfying a tailor-made Hamming correlation
robustness assumption),

– Enc is the encoding procedure of a suitable good error-correcting code,
– ∆ ∧ Enc(xi) denotes the bitwise AND of ∆ and Enc(xi).

6 Dung Bui and Geoffroy Couteau

The intuition underlying the security is that for any value x ̸= xi, Enc(x) and Enc(xi) differ
on many positions (because the code has high minimum distance), hence Ki ⊕∆ ∧ Enc(x) contains
a lot of entropy, even given Ki ⊕ ∆ ∧ Enc(xi). Under a suitable assumption on the hash function,
H(Ki ⊕∆ ∧ Enc(x)) therefore looks random even given F∆,Ki(xi), for any x ̸= xi. Note that to turn
this intuition into a proof, the authors of KKRT introduced a formal notion of Hamming correlation
robustness. However, their definition has a flaw which makes it impossible to instantiate (there is a
simple attack on any instantiation, even with a random oracle). When analyzing the security of our
variant, we will provide a (more involved) corrected notion of correlation robustness, and formally
prove that it is satisfied by a random oracle.

The above construction can be instantiated quite efficiency using the IKNP oblivious transfer
extension [IKNP03]. It does not, however, directly imply a PSI protocol: since the keys Ki are distinct
for each input, it can only help comparing items in the same position. To obtain a PSI protocol, KKRT
uses hashing to map the datasets to bins, and reduce the intersection computation to a bin-by-bin
comparison. With a naive hashing strategy, this would lead to a maximum of log n/ log log n items
per bin (for datasets of size n), which would still induce a significant overhead (since all pairs of items
of Alice and Bob in the same bin must be compared).

To achieve better efficiency, the authors use Cuckoo hashing with a stash. In Cuckoo hashing, the
items are mapped into c · n bins (where c > 1 is usually a small constant) using d hash functions
(h1, · · · , hd), such that each item x is mapped to the bin number hi(x) for some i ≤ d, and every
bin contains at most a single item. The insertion follows a simple greedy procedure: x is inserted
at the h1(x) location, and if an item y was already present, it is evicted and re-inserted at its next
“authorized” location, h2(y), possibly evicting an item in turn. The process continues until insertion
succeeds, or some threshold number of items have been evicted. If an item fails to be inserted, it is
added to a special stack, called the stash.

Using Cuckoo hashing, Alice maps her dataset X to a length-cn vector (x1, · · · , xcn) (possibly
adding dummy items in bins that remained empty), and runs the BaRK-OPRF protocol with Bob,
obtaining (F∆,Ki

(xi))i≤cn. Then, Bob maps his own dataset Y to the c·n bins, this time using all hash
functions h1, · · · , hd (that is, every y ∈ Y is mapped to the bins (h1(y), · · · , hd(y))), and computes
F∆,Ki(y) for all items y in the i-th bin, for i = 1 to c ·n. In the end, Bob randomly shuffles and sends
to Alice all these PRF evaluations. Alice computes the intersection with her own PRF evaluations,
and learns X ∩ Y .

KKRT also showed how to handle the items for which insertion failed (which are stored in the
stash). However, the work of [PSZ18] heuristically analyzed the failure probability of generalized
Cuckoo hashing with k ≥ 2 hash functions, using large scale simulations and extrapolations. Based
on their extrapolations, they determined that using as little as 3 hash functions and N = 1.3 · n
bins suffices to guarantee a statistical failure probability below 2−40 (i.e., a stash size s = 0 with
probability at least 1− 2−40) for large enough set sizes (around n = 220).

Cost of KKRT. Using the heuristic parameters of [PSZ18] to get rid of the stash, the communication
of KKRT consists in executing a BaRK-OPRF on c·n inputs, and sending dn = 3n hashes. The BaRK-
OPRF requires around 6κn bits of communication, where κ is a computational security parameter
(typically, κ = 128). The factor 6 overhead mainly comes from the fact that ∆∧Enc(x) must retain ≈ κ
bits of entropy, hence a large-ish value of ∆ is required. Sending the 3n hashes costs 3 · (λ+2 log n) ·n
bits of communication, where λ is a statistical security parameter (typically, λ = 40 is the most
common choice). Indeed, the hash outputs can be truncated to λ+2 log n bits while maintaining the
probability of collisions between the hashes of any pair (x, y) ∈ X×Y of distinct elements below 2−λ.
For n = 220, this leads to the claimed 1008n bits of overall communication.

2.2 Pseudorandom Correlation Generators

In our new protocol, we will reuse the KKRT template, but replace the BaRK-OPRF with a subfield-
VOLE-based construction. Doing so enables several new optimizations of the scheme, which we de-
scribe afterwards. We start by recalling the notion of pseudorandom correlation generator, and that
of subfield vector OLE. A pseudorandom correlation generator is a pair of algorithm (Gen,Expand),
where Gen distributes a pair of small seeds (s0, s1), and Expand(i, si) stretches a seed into a long
pseudorandom string. Informally, a PCG for a target correlation satisfies two properties:

PSI from Pseudorandom Correlation Generators 7

– Correctness. Given (s0, s1) ←r Gen(1κ), the pair (x0, x1) = ((Expand(0, s0),Expand(1, s1)) is
indistinguishable from a random sample from the target correlation.

– Security. Given s0, the string x1 = Expand(1, s1) is indistinguishable from a uniformly random
string sampled conditioned on satisfying the right correlation with Expand(0, s0). The converse
property holds as well.

In addition, a PCG should satisfy some shortness conditions: the seeds (s0, s1) should be significantly
smaller than a sample from the target correlation.

A subfield vector oblivious linear evaluation generator (sVOLE generator) is a PCG for the
following two-party correlation: Alice gets a pair of random vectors (u,v), and Bob gets a ran-
dom scalar ∆ and the vector w = ∆ · u + v, where v,w ∈ Fn for some field F, ∆ ∈ F, and
u ∈ (F′)n, where F′ is a subfield of F. Efficient PCGs for the sVOLE correlation have been designed
in [BCG+19b,BCG+19a,CRR21], with seed sizes logarithmic in n, and the latest protocol of [CRR21]
achieve extremely impressive efficiency features (around 300ms to generate an sVOLE correlation of
length 107 on one core of a standard laptop; using this sVOLE to achieve OT extension results in
a protocol using 37% less computation and ∼ 1300× less communication than the standard IKNP
protocol).

In the following, we will sometimes slightly abuse the notion of PCG, and use formulations such
as “Alice and Bob use a PCG protocol”. What this means is the following: Alice and Bob use some
dedicated two-party computation protocol to distributively and securely generate seeds (s0, s1) ←r

Gen(1κ), such that Alice gets s0 and Bob gets s1; then, Alice and Bob locally expand these seeds
into a pseudorandom instance of the target correlation. Efficient protocols for distributing PCG seeds
have been introduced in [BCG+19a], and typically have communication linear in the seed length –
that is, logarithmic in n.

2.3 A New sVOLE-Based BaRK-OPRF

Subfield-VOLE leads to a simple and natural construction of BaRK-OPRF. Let ℓ be the bitlength of
Alice’s inputs, and let x = (x1, · · · , xn) be the inputs of Alice, viewed as elements of F2ℓ . We assume
for simplicity that ℓ divides κ, the computational security parameter. Alice and Bob use an sVOLE
protocol (e.g. [CRR21]) over the field F2κ , with subfield F2ℓ ; let (u,v) be the output of Alice, and
(∆,w) be the output of Bob. Recall that w = ∆ · u+ v. Alice sends z = x− u to Bob, who defines
the BaRK-OPRF keys to be ∆ and (K1, · · · ,Kn) = ∆ ·z+w. The BaRK-OPRF is defined as follows:
F∆,Ki(y) = H(i,Ki − ∆ · y) (all operations are over F2κ). Eventually, Alice outputs (H(i, vi))i≤n.
Observe that

H(i, vi) = H(i, wi −∆ui) = H(i,Ki −∆(zi + ui))

= H(i,Ki −∆ · xi) = F∆,Ki(xi).

Compared to the KKRT BaRK-OPRF, this construction has two significant advantages:

– Because it uses sVOLE, the bitwise AND is now replaced by a field multiplication. In particular,
this means that we do not need anymore to use error-correcting codes, and that y ·∆ retains the
entire entropy of ∆. In other words, it suffices for ∆ to be κ-bit long to achieve κ bits of security
for the construction (in contrast, KKRT had to use around 5κ bits). We prove this formally
by reducing security to the (standard) correlation robustness of H, and by analyzing the exact
security guarantees when modeling H as a random oracle.

– Perhaps most importantly, the use of subfield VOLE allows us to completely decorrelate the size
of u from that of ∆, something which can fundamentally not be achieved with the INKP OT
extension. Concretely, this means that u only needs to mask the input vector x of Alice. If x ∈ Fn

2ℓ ,
then so do u and z: the communication now depends solely on the input size.

In total, our BaRK-OPRF communicates ℓ · n bits, plus the cost of distributing the seeds for the
sVOLE generator. Using the protocol of [BCG+19a] to distribute the seeds4 adds a (2 log n + 9) · tκ
overhead, where t is a computational security parameter for the underlying LPN assumption, which
is slightly smaller than κ (for example, according to Table 1 of [BCG+19a], t = 118 suffices to get
4 This protocol uses a length-t reverse VOLE protocol as a blackbox, which we instantiate with the construc-

tion of [ADI+17].

8 Dung Bui and Geoffroy Couteau

128 bits of security for the underlying LPN assumption, when n = 220). This cost is logarithmic in
n, hence its effect on the overall communication vanishes for large enough n. Concretely, for n = 220,
this amounts to a total communication of (ℓ + 0.7) · n bits (where the seed distribution contributes
only 0.7n).

2.4 Combining the New OPRF with Permutation-Based Hashing

Plugging our new BaRK-OPRF into KKRT, and using the same parameters for Cuckoo hashing,
leads to a protocol with total communication (1.3 · ℓ+ 3 · (λ+ 2 log n))n+ o(n) bits (where the o(n)
terms capture the costs of distributing the PCG seeds). Concretely, for n = 220 and ℓ = 32 (resp.
64), this already brings the cost down, from 1008n bits to 282n bits (resp. 324n bits). However, this
can be further improved using the well-established notion of permutation-based hashing [PSSZ15].
Concretely, storing a full ℓ-bit item x in the i-th bin induces some redundancy, since being in the i-th
bins already implies that hj(x) = i for some j ∈ {1, 2, 3}. Building upon this observation, the work
of [PSSZ15] devised a more efficient hashing strategy, where an item x is written as xL||xR, where
xL is log(1.3n)-bit long. The item x is inserted by mapping xR to the bin xL ⊕ f(xR), where f is a
k-wise independent hash function, for some large enough k. This guarantees that no collision occurs,
because if two items x, x′ end up mapping the same value to the same bin, this means that xR = x′

R

and xL ⊕ f(xR) = x′
L ⊕ f ′(x′

R), hence x = x′. When multiple hash functions are used, as in Cuckoo
hashing, the index of the hash function must be appended to xR.

While permutation-based hashing is a well-known optimization, it does not provide any commu-
nication savings for KKRT (nor for any of the OKVS-based PSI protocols). In our protocol, however,
it further reduces the communication to (1.3 · (ℓ − log(1.3n) + 1) + 3 · (λ + 2 log n))n + o(n) bits,
which gives 275n bits for n = 220 and 32-bit items, or 317n bits for 64-bit items. In itself, this is a
really small communication improvement. However, it has an important consequence: it implies that
the Alice-to-Bob communication is now completely dominated by the Bob-to-Alice communication.
Concretely, this means that we can easily afford to use a much higher number of bins (which is 1.3n
currently) if it can allow us to reduce the number of hash functions (which is 3). This brings us to
our last optimization.

2.5 Packing Multiple Items per Bin

In this last optimization, our goal is to reduce the number of hash functions used in the Cuckoo hashing
protocol, from 3 to 2, by increasing the number of bins to compensate. Unfortunately, this does not
work directly: when the number of hash functions is as low as 2, it becomes essentially infeasible to
guarantee a 2−40 probability of failure, for any reasonable number of bins. This is to be expected
given the theoretical failure probability in this setting and the heuristic experiments of [PSZ18]; we
further confirmed this using simulations. While one could get away with using a reasonably small
stash (s = 2 or 3 appears to suffice in our experiments), the cost of handling the stash is high, and
nullifies all communication benefits of using two hash functions in the first place.

Generalized Cuckoo Hashing. instead, we use a different approach: we add one degree of freedom
to the Cuckoo hashing parameters, by allowing bins to contain multiple items. This generalization
of Cuckoo hashing is not new: it has been studied in details in several works [DW07,Pan05,W+17],
because it comes with a much nicer cache-friendliness than standard Cuckoo hashing (using Cuckoo
hashing with d hash functions requires d random memory accesses, which incurs cache misses with
high probability; in contrast, allowing up to d items in a given bin only requires retrieving d values
from the same memory location, hence increasing the bin load to reduce the number of hash functions
is typically a worthwhile tradeoff).

In (d, k)-Cuckoo hashing, n items are mapped to (1 + ε) · n bins using k hash functions, and each
bin is allowed to contain up to d items (standard Cuckoo hashing is (1, 2)-Cuckoo hashing, and the
usual PSI variant is (1, 3)-Cuckoo hashing). Allowing more items per bins significantly improves the
efficiency; for example, (3, 2)-Cuckoo hashing is known to perform strictly better than (1, 3)-Cuckoo
hashing in terms of occupancy (i.e., the total number of slots N = d · (1 + ε) · n which must be used
to guarantee a o(1) failure probability). Based on existing analysis of this variant [W+17], it seems
reasonable to expect that (3, 2)-Cuckoo hashing already achieves a strictly smaller failure probability
compared to (1, 3)-Cuckoo hashing, with a smaller number of bins.

PSI from Pseudorandom Correlation Generators 9

As in previous Cuckoo hashing schemes, however, proving good concrete bounds is out of reach of
current methods. Instead, following the established methodology of [PSZ18], we relied on extensive
computer simulations on small values of n (from 256 to 2048) to select parameters, and extrapolated
from these results parameters for larger values of n. More precisely, we ran 107 experiments with (3, 2)-
Cuckoo hashing for n ∈ {28, 29, 210} (we also experimented with 211, but with a smaller number of
experiments) with c ·n bins for various values of c. Even for a value as low as c = 0.65 and values of n
as low as 29, our experiments never reported any insertion failure, indicating that the empirical failure
probability should already be way below 2−20. Since the theoretical failure probability is known to
scale as O(1/nδ) for some constant δ with reasonably small constant factors, we extrapolate that for
large enough values of n, e.g. n ≥ 218, the failure probability should be well below 2−40.

2.6 A Membership BaRK-OPRF

There remains a non-trivial task: to use this improved Cuckoo hashing variant, we need a protocol
to handle Cuckoo hashing with up to d items per bins. Intuitively, denoting xi = (x

(1)
i , · · · , x(d)

i) the
d entries of the bin i, we want to construct a new kind of membership OPRF, where Bob obtains
F∆,Ki

(y) and Alice obtains the set F∆,Ki
(xi) = {F∆,Ki

(x
(j)
i)}j≤d. This implies that F∆,Ki

(y) ∈
F∆,Ki

(xi) if and only if y is equal to any entry of xi, and F∆,Ki
(y) looks pseudorandom to Alice

otherwise.
Going back to the BaRK-OPRF, recall that for a bin i where Alice placed xi and Bob placed

yi, Alice computes H(i, vi) and Bob computes H(i,Ki − ∆yi) = H(i,∆ · (xi − yi) + vi). Here, we
view the xi − yi term as Pxi(yi), where Pxi = X − xi is a degree-1 polynomial with root xi. This
view suggests a natural generalization of this approach, where the Pxi

polynomials are replaced by
higher degree polynomials. Define Pxi

to be the polynomial
∏d

j=1(X − x
(j)
i), and let (cj,i)0≤j≤d−1

denote its coefficients: Pxi
(X) = Xd +

∑d−1
j=0 cj,i ·Xj . Our new membership BaRK-OPRF is a direct

generalization of the BaRK-OPRF from Section 2.3, which we sketch below.

Our construction. Let m be the bitlength of Alice’s inputs inside the bins, and let (x1, · · · ,xN)
be the inputs of Alice in each of the N bins, where the inputs in each bin are viewed as length-d
vectors of elements of F2m . We assume for simplicity that m divides κ, the computational security
parameter. Alice and Bob use d sVOLE protocol (e.g. [CRR21]) over the field F2κ , with subfield F2m ,
with the same value ∆.5 Let (uj,vj)j≤d be the outputs of Alice, and (∆, (wj)j≤d) be the output of
Bob. Recall that wj = ∆ · uj + vj.

For each xi, let (c0,i, · · · , cd−1,i) be the coefficients of the polynomial Pxi
(omitting the coefficient

of Xd, which is always 1). Let cj denote the vector (cj,i)i≤N for j = 0 to d − 1. Alice sends zj =
cj − uj for j = 0 to d − 1 to Bob, who defines the membership BaRK-OPRF keys to be ∆ and
Ki = (kj,i)0≤j≤d−1 = (∆ ·zj,i+wj,i)0≤j≤d−1 for i = 1 to N . Define the following degree-d polynomial
P∆,Ki

over Fq: P∆,Ki
(X) = ∆ · Xd +

∑d−1
j=0 kj,i · Xj . The OPRF is defined as follows: F∆,Ki

(y) =
H(i, P∆,Ki

(y)) (all operations are over F2κ). Eventually, for each bin i, Alice sets her d tuple of outputs
to be F∆,Ki

(xi) = {H(i,
∑d−1

j=0 vj,i · (x
(k)
i)j}k≤d. Observe that, since kj,i = ∆zj,i + wj,i = ∆cj,i + vj,i

for all i, j, we have

H(i, P∆,Ki(y)) = H

i,∆ ·

yd +

d−1∑
j=0

cj,iy
j

+

d−1∑
j=0

vj,iy
j


= H

i,∆ · Pxi
(y) +

d−1∑
j=0

vj,iy
j

 .

Therefore, if there exists k ∈ {1, · · · , d} such that y = x
(k)
i , we have Pxi

(y) = 0, and H(i, P∆,Ki
(y)) =

H(i,
∑d−1

j=0 vj,i · (x
(k)
i)j) ∈ F∆,Ki

(xi). On the other hand, whenever Pxi
(y) ̸= 0, then the ∆ · Pxi

(y)
term in the hash makes the output pseudorandom from the viewpoint of Alice, under the correlation
robustness of the hash function.
5 Note that all known sVOLE protocols allow Bob to choose the value of ∆, hence Bob can enforce the use

of the same ∆ across all instances.

10 Dung Bui and Geoffroy Couteau

2.7 Tying up Loose Ends

Using the new construction from the previous Section, together with (2, 3)-Cuckoo hashing, leads to
a total communication of (0.65 · 3(ℓ− log(0.65n)+1)+2 · (λ+2 log n))n+ o(n) bits (using N = 0.65n
bins, with up to 3 items per bin, which we heuristically estimate to fail with probability at most 2−40).
For n = 220 and 32 bits items, this gives 188n bits of communication, a very significant reduction
compared to the 275n achieved without this last optimization. We mention a few remaining details:

– In the construction of membership BaRK-OPRF, Alice and Bob need to invoke d = 3 length-N
sVOLE. In fact, it suffices to invoke a single length-3N sVOLE, and to cut the output in three equal
length parts, to obtain the necessary correlation. This means that the concrete cost of distributing
the sVOLE seeds remains that of generating a single sVOLE (e.g. ≈ 0.7n bits for n = 220).

– In the above, we overlooked an important subtlety: a bin can possibly contain less than d items.
In KKRT, this was handled by adding dummy items to empty bins; however, due to our use
of permutation-based hashing, we must be careful that dummy items will not collide with some
of Bob’s inputs; doing so incurs some communication overhead. We use instead a more efficient
approach: we let Alice also hide the degree-d term of the polynomial defined for each bin. This
way, a bin can possibly correspond to a polynomial of degree less than d (viewed as a degree-
d polynomial with some zero coefficients) without leaking the actual degree to Bob. With this
modification, Alice must now send d + 1 uj’s to Bob instead of d. However, observing that the
leading coefficient can only be either 0 or 1, the vector ud need not be over F2m : it can be over
F2 instead. This reduces the communication overhead of sending the uj’s from (d + 1)m · N to
(dm+1) ·N , at the (mild) cost of having now to perform two different sVOLE instance, a length-
3N sVOLE where the subfield is F2m , and a length-N sVOLE where it is F2 (hence, for n = 220,
the sVOLE seed distribution overhead now becomes 1.4n bits).

3 Preliminaries

Notation. Throughout the paper we use the following notations: we let κ, λ denote the computational
and statistical security parameters, respectively. We write [m] to denote a set {1, 2, . . . ,m}. We
typically write Fq to denote a field with and arbitrary subfield Fp, where p is a prime power and
q = pr. We use Rp = Fp[x]/F(x) for the ring over the field Fp where F (x) is some polynomial, and
also denote Rq = Fpt [x]/F(x). For a vector x we define by xi its i-th coordinate. Given distribution
ensembles {Xn}, {Yn}, we write Xn ≈ Yn to denote that Xn is computationally indistinguishable to
Yn.

PSI functionality. A private set intersection (PSI) protocol allows two parties to compute the
intersection of their input sets while concealing all other information. We typically denote by n the
input set sizes. For completeness, the ideal functionalities for PSI (in the semi-honest and in the
malicious settings) are given in Appendix A of the Supplementary Material.

Learning parity with noise. Our protocols are built on top of pseudorandom correlation generators
(PCGs). State of the art constructions of PCGs rely on various flavors of the learning parity with noise
(LPN) assumption. Since we make a black-bow use of PCGs, our work will be essentially oblivious
to the underlying assumptions. However, for the sake of completeness, we recall the assumptions
which we build upon in Appendix A of the Supplementary Material. We note that, for our second
contribution, we build upon the PCG of [BCG+20b]. The latter uses a relatively new flavor of the
ring-LPN assumption, over a polynomial ring where the polynomial splits completely; however, in
this work, we do not need this new flavor, and instead rely solely on the (relatively well-established)
standard ring-LPN assumption over a polynomial ring with an irreducible polynomial.

Pseudorandom correlation generators (PCG). Pseudorandom correlations generators have been
introduced in a recent line of work [BCGI18,BCG+19b,BCG+19a]. A PCG allows to compress long cor-
relations into short, correlated seeds that can later be locally expanded into pseudorandom instances
of the target correlation. Slightly more formally, a PCG for a target correlation C (which samples

PSI from Pseudorandom Correlation Generators 11

pairs of long correlated strings (y0, y1)) is a pair (Gen,Expand) of algorithms such that Gen(1λ) out-
puts a pair of short, correlated keys (k0, k1) and Expand(σ, kσ) outputs a long string ỹσ. Correctness
states that (ỹ0, ỹ1) are indistinguishable from a random sample from C, while security states that
given k1−σ, ỹσ looks like a random sample from C conditioned on satisfying the target correlation
with Expand(1− σ, k1−σ), for σ = 0, 1.

A PCG does not in itself provide a protocol to efficiently generate long pseudorandom correlations.
To get the latter, one must combine a PCG with a distributed key generation protocol, which allows
two parties to obliviously run Gen(1λ) such that each party gets one of the keys. Fortunately, for
most PCGs of interest (and in particular, for all PCGs we use in this work), there exists very efficient
low-communication distributed setup protocols [BCG+19a, BCG+20b]. Combining a PCG with a
distributed setup protocols allows to securely instantiate (with low communication) functionalities
that distribute instances of the target correlation. In this work, we will directly rely in a black-box
way on such functionalities, and use known protocols to instantiate them. We now expand on the two
main functionalities we use in this work.

Subfield Vector-OLE. We described the subfield vector-OLE correlation in the technical overview
(see Section 2.2). We represent on Figure 1 the ideal functionality that distributes a subfield VOLE
correlation. In our concrete instantiations, we will instantiate this functionality using the efficient
protocol of [BCG+19a]. The latter provides a general template which can be instantiated under
various flavors of the LPN assumption, and provides a conservative choice under LPN for quasi-cyclic
choice. A variant of LPN that leads to a considerably more efficient protocol, when plugged in the
template of [BCG+19a], was recently put forth in the work [CRR21] (we note that our communications
estimate are oblivious to the underlying variant: only the computational costs depends on the LPN
flavor).

PARAMETERS:

– 2 parties, a sender and receiver.
– A finite field Fq where q = pr, p is a power of prime, r an integer.
– An integer n, the size of the output vector.

FUNCTIONALITY:

– The sender gets 2 random vectors u ∈ Fn
p ,v ∈ Fn

q .
– The receiver receives ∆ ∈ Fq and a vector w such that w = ∆u+ v ∈ Fn

q .

Fig. 1. Ideal functionality Fsvole of length n on the field Fq over the subfield Fp

4 Fast Cuckoo Hashing-Based PSI from Subfield-VOLE

4.1 Correlation Robustness

The security of our OPRF construction reduces to an appropriate correlation robustess assumption,
which we state below. Correlation robustness was first introduced in [IKNP03], and later generalized
in [KKRT16,PRTY19,KK13,CM20] to a form of Hamming correlation robustness.

Our notion of correlation robustness differs from that of KKRT on two aspects. First, because all
operations are done over a finite field, we do not need Hamming correlation robustness; our notion is
much closer in spirit to the original notion of IKNP. Second, our variant fixes a mistake in the notion
used in KKRT: the notion of correlation robustness which they define is vacuous, in that there cannot
exist any hash function for which it holds. Technically, this is because the notion must include some
appropriate condition to prevent collisions between the hash function inputs, which are missing from
the KKRT definition. Stating this condition formally is somewhat tedious if we want to avoid a very
large security loss, because we need to specify a notion of collisions happening “with respect to the
same index” which is tailored to its use in the OPRF construction. We elaborate on the mistake in

12 Dung Bui and Geoffroy Couteau

KKRT in Appendix B, and note that the KKRT notion can nevertheless be fixed (and their proof of
security adapted) using a Hamming variant of our (more cumbersome) notion below.

Definition 1 ((κ, n, k,Fp,Fpr)-Correlation robustness.). Let κ be a security parameter, p be a
prime power, q = pr ≈ O(2κ), n = poly(κ), k = o(κ), and H be a hash function: {0, 1}∗ × Fq →
{0, 1}v. Then H is a (κ, n, k,Fp,Fpr)-correlation robust if for every (k1, · · · , kn) ∈ {1, · · · , k}n, any
vectors u1,u2, . . . ,un where ui ∈ (Fp\{0})ki , and any vectors v1,v2, . . . ,vn where vi ∈ Fki

pr has
pairwise distinct entries, the following distribution, induced by the random sampling of ∆ ← Fq,
is pseudorandom (i.e., the advantage of any adversary in distinguishing the distribution from the
uniform distribution is negligible in κ):

H(1, v1,1 −∆u1,1), · · · ,H(1, v1,k1
−∆u1,k1

)

H(2, v2,1 −∆u2,1), · · · ,H(2, v2,k2
−∆u2,k2

)

...
H(n, vn,1 −∆un,1), · · · ,H(n, vn,kn −∆un,kn)

4.2 Random Oracle Model Analysis

Definition 1 is relatively complex, and it might not be obvious at first sight why it is a plausible
assumption. Nevertheless, we show that it holds unconditionally if H is modeled as a random oracle.

Game 0. For convenience, we reformulate the definition in the form of a game between a Q-query
adversary A and a challenger. The game proceeds as follows:

1. A chooses vectors u1,u2, . . . ,un where ui ∈ (Fp\{0})ki , and vectors v1,v2, . . . ,vn where the
vi ∈ Fki

pr have pairwise distinct entries, and submits these sequences to the challenger.
2. The challenger samples randomly ∆←r Fq then defines a sequence of strings zi,j = (i, vi,j −∆ui,j)i≤n,j≤ki

∈
Fq and tosses a coin b←r {0, 1}.
– If b = 0, the challenger sends to A all strings H(z1,1), . . . ,H(zn,kn).
– If b = 1, the challenger samples

∑n
i=1 ki uniformly random v-bit strings, and sends them to

A.
3. Let w1,1, . . . , wn,kn denote the sequence received by A. Then, A outputs a bit b′. He wins if b = b′.

The advantage of A is defined by:

Adv(A,H) = Pr(A wins)− 1/2 = ϵ

The adversary can make up to Q queries to the random oracle at any point during the game.

Game 1. In this game, we add the following check to the original game: in step 2, if there exists
an index i such that vi,j1 −∆ui,j1 = vi,j2 −∆ui,j2 for two distinct indices j1, j2 ≤ ki, we abort the
game. Let E denote this event. Since ∆ is sampled uniformly at random from Fq after receiving the
vectors ui and vi, and since ki ≤ k for every i, using a straightforward union bound, E happens with
probability at most k2n/2κ.

Now, let us analyze the probability that A wins the game, conditioned on ¬E. Because the game
did not abort, we know that the strings zi,j are all distinct (zi,j is always different from zi′,j for
i′ ̸= i by definition, and the condition guarantees that no collision occurs between zi,j ’s for the same
i). This means that both when b = 0 and when b = 1, the values vi,j are sampled uniformly and
independently at random. Let L denote the list of queries of A. We have:

Pr
[
A wins|¬E

]
= Pr

[
A wins | ∃i ∈ [n], j ∈ [ki] , zi,j ∈ L

]
· Pr
[
∃i, j : zi,j ∈ L

]
+ Pr

[
A wins | ∄i ∈ [n], j ∈ [ki] , zi,j ∈ L

]
· Pr
[
∄i, j : zi,j ∈ L

]
≤ 1 ·

∑
i≤n

∑
j≤ki

Pr
[
zi,j ∈ L

]
+

1

2
· 1

≤ 1

2
+
∑
i≤n

∑
j≤ki

∑
ℓ≤Q

Pr
[
zi,j = qℓ

]
=

1

2
+

nkQ

2κ
,

PSI from Pseudorandom Correlation Generators 13

where the last equality holds because the condition zi,j = qℓ, implies ∆ = (vi,j − qℓ)/ui,j , hence
Pr[zi,j = qℓ] can be bounded by 1/2κ.

Putting everything together, we have

Adv(A,H) ≤ nk2

2κ
+

nkQ

2κ
=

nk(Q+ k)

2κ
,

which concludes the proof.

4.3 A new membership BaRK-OPRF

An OPRF [FIPR05] is a two-party protocol that, given a key k from the sender and an input element
x from the receiver, computes and outputs Fk(x) to the receiver. The sender obtains no output and
learns no information about x while the receiver learns no information about k.

In this section, we present a new variant of OPRF called membership batch, related-key OPRF
(mBaRK-OPRF). The purpose behind the construction of mBaRK-OPRF is to handle the case when
a general cuckoo hashing has more than one item per bin, namely d items. Our mBaRK-OPRF allows
the sender to hold a set of keys (K1,K2, . . . ,Kn) such that each key is assigned with a tuple of d
input elements of the receiver and then the receiver learns a relaxed PRF output on each element in
this tuple corresponding with the same key. More formally, denoting xi = (x

(1)
i , · · · , x(d)

i) consisting
of d entries, the sender gets F∆,Ki(y) and the receiver obtains a set {F∆,Ki(x

(j)
i)}j∈[1,d] such that

F∆,Ki(y) ∈ {F∆,Ki(x
(j)
i)}j∈[1,d] if and only if y is equal to any entry of xi, and F∆,Ki(y) looks

pseudorandom to the sender otherwise.
Our mBaRK-OPRF can be considered as optimization of the KKRT BaRK-OPRF, and its func-

tionality is shown on Figure 2. A PRF F is called a relaxed PRF if there is another function F̃
such that F (K,x) can be efficiently computed from F̃ (K,x), but pseudorandomness on other points
holds even when given relaxed evaluations on several points. mBaRK-OPRF generates a batch of
n = N · d instances PRF F with N related keys where each key is corresponding with a tuple of d
input elements, allows the receiver learns a relaxed PRF output on each input.

PARAMETERS:

– The functionality is parameterized by a relaxed PRF F .
– F is a finite field. There are 2 parties, a sender (with no input) and a receiver with input set

X = {x1, x2, . . . , xn} ∈ Fn where n = N · d; d,N are integers.

FUNCTIONALITY:

– Sample uniformly in random a sequence (∆;K1,K2, . . . ,KN) of related keys for F and give it
to the sender.

– For each i ∈ [1, N], give {F̃∆,Ki(xj)}(i−1)d+1≤j≤id to the receiver.

Fig. 2. Ideal Functionality Fmoprf of batch, related-key mBaRK-OPRF

Main construction. Our mBaRK-OPRF is constructed from a PCG primitive, subfield VOLE. Our
construction ΠOPRF is detailed on Figure 3 and realizes the Fmoprf functionality from Figure 2 in the
semi-honest setting. We make use of a correlation robust hash function H : {0, 1}∗ × Fq 7→ {0, 1}v.
Assume that the receiver inputs the set of n = N · d elements: X = {x1, x2, . . . , xNd} and all of these
elements are in Fp. This input sets can be divided into N tuples xi of d elements such that the tuple
xi includes d elements {x(i−1)d+1, x(i−1)d+2, . . . , xid} for i ∈ [1, N].

First, the sender and the receiver invoke the Fsvole protocol of dimension N · d, with their roles
reversed, to get a random sVOLE correlation. Specifically, the receiver learns a pair of vectors (u,v)
where u ∈ FNd

p , v ∈ FNd
q , the sender gets ∆ ∈ Fq and w := ∆ · u+ v. We have that, for all i ∈ [1, n]:

vi = wi −∆ · ui ∈ Fq

14 Dung Bui and Geoffroy Couteau

At a high level, for each tuple input xi of the receiver, the goal is that on any input, the sender can
compute the value of a random polynomial associated with xi without leaking information. This can
be done by hiding the coefficients of this polynomial with the output vector u of Fsvole. Consider the
tuple xi consisting of d elements {x(i−1)d+1, x(i−1)d+2, . . . , xid}, and write its associated polynomial
as

Pxi
(X) =

d∏
j=1

(X − x(i−1)d+j) = Xd +

d∑
j=1

c(i−1)d+j ·Xj−1

where c(i−1)d+j ∈ Fp for i ∈ [1, N], j ∈ [1, d]. Now, the receiver defines c := (c1, c2, . . . , cNd), and
then sends to the sender a vector z := c− u ∈ FNd

p . Above, the u(i−1)d+j mask for the coefficient of
degree j − 1 of (the polynomial associated) xi where i ∈ [1, N], j ∈ [1, d]. Indeed, since all positions
in u are distributed uniformly at random in the subfield Fp, the vector z is a uniformly random over
FNd
p from the viewpoint of the sender For i ∈ [1, N], the receiver defines the relaxed PRF output(
i , xi , {v(i−1)d+k}1≤k≤d

)
. Then the PRF output on each input of the receiver is computed as

F
(
Ki, x(i−1)d+j

)
= H

(
i ,

d∑
k=1

v(i−1)d+k · xk−1
(i−1)d+j

)

for i ∈ [1, N] , j ∈ [1, d]. On the other hand, after receiving the vector z, for i ∈ [1, N], the sender
defines the vector k := w +∆ · z and the set of keys

(
i , ∆ , {k(i−1)d+j}1≤j≤d

)
. As a consequence,

for any input y ∈ Fp, its PRF output is computed as:

F (Ki, y) = H

i , ∆ · yd +
d∑

j=1

k(i−1)d+j · yj−1


for i ∈ [1, N].

Correctness. Let’s consider each related-key Ki (i ∈ [1, N]). Since z := c − u and w := ∆ · u + v,
for any i ∈ [1, N], j ∈ [1, d], we have

∆ · yd +
d∑

j=1

k(i−1)d+j · yj−1

= ∆ · yd +
d∑

j=1

(
w(i−1)d+j +∆ · z(i−1)d+j

)
· yj−1

= ∆ · yd +
d∑

j=1

(
∆ · u(i−1)d+j + v(i−1)d+j +∆ · c(i−1)d+j −∆ · u(i−1)d+j

)
· yj−1

= ∆ · yd +
d∑

j=1

(
v(i−1)d+j +∆ · c(i−1)d+j

)
· yj−1

= ∆ ·

yd +

d∑
j=1

c(i−1)d+j · yj−1

+

d∑
j=1

v(i−1)d+j · yj−1

= ∆ · Pxi
(y) +

d∑
j=1

v(i−1)d+j · yj−1.

Then, y = x and x ∈ xi ⇐⇒ Pxi
(y) = 0.

=⇒ F (Ki, y) = H

i ,

d∑
j=1

v(i−1)d+j · yj−1

 = F (Ki, x) ,

which concludes the proof of correctness.

PSI from Pseudorandom Correlation Generators 15

PARAMETERS:

– Given Fp ⊆ Fq (q = pr), (κ, n, k,Fp,Fpr)-Correlation robustness: H : {0, 1}∗ × Fq → {0, 1}v.
– The sender has no input and the receiver inputs a set X = {x1, x2, . . . , xn} ⊆ Fn

p where
n = N · d, N, d are integers.

PROTOCOL:

1. The sender and the receiver invoke to the Fsvole of dimension N · d in the Fq over the Fp with
the inverse role. The receiver gets two random vectors u ∈ Fn

p ,v ∈ Fn
q and the sender receives

∆ ∈ Fq, w := ∆u+ v ∈ Fn
q .

2. The receiver divides its input set as N tuples such that the tuple xi consisting of d elements
{x(i−1)d+1, x(i−1)d+2, . . . , xid} for i ∈ [1, N]. The receiver then determines the associated poly-
nomial for each tuple xi as

Pxi(X) =

d∏
j=1

(X − x(i−1)d+j) = Xd +

d∑
j=1

c(i−1)d+j ·Xj−1

where c(i−1)d+j ∈ Fp for i ∈ [1, N], j ∈ [1, d].
3. Now, the receiver defines c := (c1, c2, . . . , cNd), and then sends to the sender a vector

z := c− u ∈ FNd
p

4. For i ∈ [1, N], the receiver outputs the relaxed PRF output(
i , xi , {v(i−1)d+k}1≤k≤d

)
then computes the PRF value as

F
(
Ki, x(i−1)d+j

)
= H

(
i ,

d∑
k=1

v(i−1)d+k · xk−1
(i−1)d+j

)

for i ∈ [1, N] , j ∈ [1, d].
5. The sender defines the vector k := w +∆ · z and for i ∈ [1, N] the set of keys(

i , ∆ , {k(i−1)d+j}1≤j≤d

)
The sender computes the PRF output on a given input y ∈ Fp by below formula

F (Ki, y) = H

(
i , ∆ · yd +

d∑
j=1

k(i−1)d+j · yj−1

)

for i ∈ [1, N].

Fig. 3. Our batch mBaRK-OPRF Πmoprf based on subVOLE

16 Dung Bui and Geoffroy Couteau

4.4 The security of relaxed PRF

The set of keys generated by the ideal functionality of mBaRK-OPRF (figure 2) parametrized with our
new PRF are the common key K := ∆ ∈ Fq, and the set of related-keys Ki :=

(
i , ∆ , {k(i−1)d+j}1≤j≤d

)
,

for i = 1 to N . The receiver in our mBaRK-OPRF is allowed to learn F̃ (Ki, x
(j)
i) for j = 1 to d,

defined as

F̃ (Ki, y) :=
(
i , (k(i−1)d+j −∆ · c(i−1)d+j)j≤d

)
=
(
i , (v(i−1)d+j)j≤d

)
,

where the c(i−1)d+j are the coefficients of Pxi
. Then, the receiver can compute χi(x) =

∑d
j=1 v(i−1)d+j ·

xj−1 from F̃ (Ki, x) and set F (Ki, x) = H(i,∆ · Pxi
(x) + χi(x)), where H : {0, 1}∗ × Fq → {0, 1}v is a

correlation robust hash function over the subfield Fp ⊆ Fq.

We now formulate the security of relaxed PRF. The definition is imported from KKRT and adapted
to our mBaRK-OPRF.

Definition 2. Let F be a relaxed PRF with output length v. F has m-related-key PRF security if
the advantage of any PPT adversary in the following game is negligible:

1. The adversary chooses strings {x1, x2, . . . , xn} ⊂ Fn
p consisting of N tuple xi = (x(i−1)d+1, x(i−1)d+2, . . . , xid),

and m pairs (j1, y1), (j2, y2), . . . , (jm, ym) where yi /∈ xji .
2. The challenger picks PRF keys (K;K1,K2, . . . ,KN) and b←r {0, 1}.

– If b = 0, the challenger outputs F̃ (Ki, x(i−1)d+j) for i ∈ [1, N] , j ∈ [1, d], and {F (Kji , yi)}i∈[1,m].
– If b = 1, the challenger chooses z1, . . . , zm ← {0, 1}v and outputs the relaxed evaluations

F̃ (Ki, x(i−1)d+j) for i ∈ [1, N], j ∈ [1, d], and {zi}i∈[1,m].
3. The adversary outputs a bit b0; its advantage is Pr[b = b0]− 1/2.

Lemma 3. Let H be a (κ,m, k,Fp,Fpr)-correlation robust hash function (section 1). Then, our re-
laxed PRF is m-related-key secure.

Proof. First, we claim that the adversary learns no information about ∆ from the outputs of F̃ on a
chosen input set. Indeed, if x ∈ xi then Pxi

(x) = 0. Using the equation established in our proof of
correctness, we have:

F̃ (Ki, x) =
(
i , (v(i−1)d+j)j≤d

)
for all x ∈ xi,

which are independent of ∆. For any input (ji, yi) the adversary knows Pxji
(yi) ∈ Fp, and

∑d
j=1 v(ji−1)d+j ·

yi
j−1 ∈ Fq. Notice that yi /∈ xji then Pxji

(yi) ̸= 0. Therefore, the pseudorandomness of the m PRF
outputs follows directly from the (κ,m, k,Fp,Fpr)-correlation robustness of H.

Theorem 4. The protocol Πmoprf (Figure 3) instantiated with an (κ,m, k,Fp,Fpr)-correlation robust
hash function, securely realizes the ideal functionality of Fmoprf against a semi-honest adversary in
the Fsvole hybrid model.

Proof. Corrupted sender. The simulator Sim interacts with the sender as follows:

1. Sim queries Fmoprf on behalf of the sender, and receives the set of keys for i ∈ [1, N](
i , ∆ , {k(i−1)d+j}1≤j≤d

)
.

Sim aborts if ∆ = 0; this happens with probability at most 1/2κ.
2. Sim simulates Fsvole using the value ∆ received from Fmoprf , and a uniformly random vector w.
3. Sim defines the vector k := {k1, k2, . . . , kn} and sets z := ∆−1 · (k−w) (recall that ∆ ̸= 0).
4. On behalf of the receiver, Sim sends the vector z to the sender. This simulation is statistically

indistinguishable from the real execution.

Corrupted receiver. The sender does not send anything to the receiver. Sim simply calls Fmoprf on
behalf of the receiver, and receives the relaxed evaluations F̃ (Ki, x) = (i, (v(i−1)d+j)j≤d) for i = 1 to
N and x ∈ xi. Sim emulates the role of Fsvole by picking a uniformly random vector u, and setting v
using the v(i−1)d+j values from the relaxed PRF evaluations. This concludes the proof.

PSI from Pseudorandom Correlation Generators 17

4.5 A semi-honest PSI based on subfield VOLE

A variant of mBaRK-OPRF. We propose a variant of our mBaRK-OPRF to deal with the case
when the size of each tuple input is not necessarily equal to d. This means that the receiver now can
divide the input set to N tuples xi and each tuple has less than or equal to d elements. Meanwhile,
the sender is not allowed to learn about how many exactly items are in each tuple. This functionality
can be obtained from our mBaRK-OPRF plus a small extra cost, i.e, a subfield VOLE of length N
over the subfield F2.

The idea is as follows. The receiver’s input set has N tuples xi = {xi,1, xi,2, . . . , xi,j1} for i ∈ [1, N]
and ji ≤ d. The polynomial associated to each tuple {xi}i≤N will be expressed as a polynomial of
degree d

Pxi
(X) =

ji∏
j=1

(X − xi,j) =

d+1∑
j=j1+1

ci,j ·Xj−1 +Xji +

ji∑
j=1

ci,j ·Xj−1

where ci,j ∈ Fp for j ∈ [1, ji] and ci,j = 0 for j ∈ [ji + 1, d+ 1].
As a result, the set of the coefficients of Pxi

(X) = (ci,1, ci,2, . . . , ci,d+1}. We remark that, compared
to the associated polynomial in our original mBaRK-OPRF which has a constant coefficient of degree
d of 1, in our variant version this coefficient will equal 0 or 1 since the degree of Pxi

(X) is less than
or equal to d. So, it requires (d + 1) masks for this polynomial instead of d, but the mask for the
coefficient of degree d just needs to be in F2. For each tuple, we require an additional value ui ∈ F2,
so in total we need an additional subfield VOLE of length N over the subfield F2.

More formally, the sender and receiver invoke a subfield VOLE of length N · d over the subfield
Fp as before (all the notations in figure 3 are reused), and additionally invoke another subfield VOLE
instance over the subfield F2 of length N with an inverse role, while the receiver gets u′ ∈ FN

2 ,
and v′ ∈ FN

q the sender holds ∆ ∈ Fq (∆ is the same for each time invoking subfield VOLE) and
w′ := ∆ · u′ + v′. The receiver sends to the sender a vector z, and z′ defined as

z ∈ FN.d
p , z′ ∈ FN

2

where z(i−1)d+j := ci,j − u(i−1)d+j , z
′
i := ci,d+1 − u′

i for i ∈ [1, N] , j ∈ [1, d].

The receiver outputs are computed

F (Ki, xi,j) = H

(
i , v′i · xd

i,j +

d∑
k=1

v(i−1)d+k · xk−1
i,j

)

for i ∈ [1, N] , j ∈ [1, ji]. On the other hand, after receiving the vector z , z′, the sender defines their
PRF values as:

F (Ki, y) = H

i , (w′
i +∆ · z′i) · yd +

d∑
j=1

k(i−1)d+j · yj−1


for i ∈ [1, N].

Main construction of a new PSI. The sender and the receiver have two input sets X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Assume that all of these elements have the bit-length
ℓ. Our PSI protocol is described on Figure 4; it builds upon the protocol of [KKRT16].

In our protocol, the receiver first uses a (d, k)-cuckoo hashing to map his input set Y to a table
with N bins, using k hash functions such that each element is assigned to exactly one bin and
each bin contains at most d elements. The k hash functions in (d, k)-generalized Cuckoo hashing are
constructed using the permutation-based hashing scheme of [PSSZ15] to reduce the bit-length of the
values stored in a bin from ℓ to ℓ− log n. Depending on the size of n, we use one of two approaches to
handle the bins which are not full (the threshold was chosen empirically to optimize communication).

– If n ≥ 220, the variant of our mBaRK-OPRF (using an additional subfield VOLE over F2) is used;
for such sizes, the concrete cost of implementing the additional sVOLE vanishes. Notice that each
bin is considered as a tuple consisting of less than or equal d elements.

18 Dung Bui and Geoffroy Couteau

– Otherwise, when n < 220, the receiver adds dummy items of length ℓ − log n to bins such that
each bin contains exactly d items. To avoid collisions between the dummy items and the elements
in the same bin of the sender, we pad an extra bit to all items in the following way: i||x||b where
i is the index of hash function corresponding with the stored value x while b = 1 if x is a dummy
item added and b = 0 otherwise.

In both cases, the receiver gets the set of n OPRF values while the sender learns the set of N related-
key Ki. The sender uses k hash functions to determine which bins its elements are assigned, i.e, the
possible corresponding keys of each element, and then computes PRF values (depending on the size
n to formulate the input element for PRF). In total, the sender computes k · n PRF evaluations and
sends them (randomly shuffled) to the receiver, who compares it with his OPRF outputs, and outputs
the intersection set. To reduce the computational cost in this step, the sender can send separately
each set Hi (i ∈ [1, k]) which contains the PRF outputs of each x ∈ X with the related key Khi(x).
Then for each element, the receiver only needs to search for one set (among k sets Hi) of n items
instead of k · n.

PARAMETERS:

– A field Fq with subfield Fp ⊆ Fq.
– The sender and the receiver have respectively input set X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn},

all with elements of bit-length ℓ.
– k hash functions h1, h2, . . . , hk : {0, 1}∗ → [N] where N · d > n and d = O(1) (see Section 4.6).
– A (d, k)-generalized Cuckoo hashing (GCH) scheme mapping n items to N bins.

PROTOCOL:

1. The receiver uses (d, k)-Cuckoo hashing with k hash functions to map the elements in Y to the table B
consisting of N bins, where each bin has d empty slots.
Denote the element assigned to the position j ∈ [1, ji] of bin i ∈ [1, N] as xi,j and its stored value as
B[i][j] then GCH(xi,j) := B[i][j], where ji is the number of values stored in bin i.

2. Depending on the size of n, there are two alternatives:
(a) n ≥ 220, the sender and receiver invoke our variant of Πmoprf where the receiver uses the input set

YB = {r1,1, r1,2, . . . , r1,j1 ; r2,1, . . . , r2,j2 ; . . . , rN,1, . . . , rN,jN } defined as follows:
– The tuple of ji elements {ri,1, ri,2, . . . , ri,ji} in bin i.
– ri,j = (t ∥ B[i][j]) for i ∈ [1, N], j ≤ ji, and t ∈ [1, k] such that ht(xi,j) = i

(b) n < 220, the sender and receiver directly invoke the Πmoprf where the receiver uses the input set
YB = {r1,1, r1,2, . . . , r1,d; r2,1, . . . , r2,d; . . . , rN,1, . . . , rN,d} defined as follows:
– The tuple of d elements {ri,1, ri,2, . . . , ri,d} in bin i.
– ri,j = (t ∥ B[i][j] ∥ 1) for i ∈ [1, N], j ≤ ji and t ∈ [1, k] such that ht(xi,j) = i.
– ri,j = (t ∥ dummy value ∥ 0) for i ∈ [1, N] , ji < i ≤ d and t←r [1, k].

3. The receiver obtains n instances OPRF :

Y ′ = {PRF(Ki , ri,j) | i ∈ [1, N] , j ≤ ji}

4. The sender uses the k hash functions to map the n element in X to the N bins (each element x mapped
to each of the k bins given by the ht(x)). Let x′ denote the value stored when mapping x at ht(x).

5. The sender computes the sets of k · n PRF outputs:
(a) For n ≥ 220: Ht =

{
PRF(Kbt,x , t ∥ x′) | x ∈ X

}
for t ∈ [1, k]

(b) For n < 220: Ht =
{
PRF(Kbt,x , t ∥ x′ ∥ 1) | x ∈ X

}
for t ∈ [1, k]

Then the sender randomly permutes and sends each set to the sender.
6. The receiver finds the intersection:

– if y ∈ Y is mapped to the position j of bin i by function ht then check whether PRF(ki, ri,j) ∈ Ht

(ri,j is defined depending on n).
– The sender outputs the intersection set.

Fig. 4. Our new semi-honest PSI protocol

PSI from Pseudorandom Correlation Generators 19

4.6 Parameters

In this section, we discuss concrete parameters used in our new PSI semi-honest protocol. We use a
computational security parameter κ = 128 and a statistical security parameter λ = 40. The protocol
contains several parameters:

– The parameters of th generalized Cuckoo hashing scheme.
– The size of subfield Fp and field Fq.
– The correlation robust hash function H output length v, e.g, the output length of PRF realized

by the mBaRK-OPRF.

The length of OPRF output. We require that no collision occurs among PRF outputs for cor-
rectness. Setting the output domain of PRF would be {0, 1}v where v = λ + 2 log2(n) guarantees a
2−λ bound on the collision probability among the two size-n sets. Furthermore, communicating the
hashes can be reduced to communicating only ≈ λ+ log n bits per hash, using a heuristic technique
of [TLP+17] that directly leads to an optimization of our PSI protocol.

The size of Fp and Fq in mBaRK-OPRF. Assume that the bit-length of all elements in the input
sets of the sender and the receiver is ℓ bits. After using permutation-based hashing, each element is
mapped to a bin with a stored value in this bin, the bit-length reduces from ℓ to ℓ− log n. The input
set of mBaRK-OPRF in PSI protocol constructs from stored values concatenating with some extra
bits. Then the bit-length of an input element of mBaRK-OPRF is computed as ℓ− log n+1 if n ≥ 220

or ℓ− log n+ 2 otherwise, i.e, the size of q = 2ℓ−logn+1 or q = 2ℓ−logn+2 respectively.

Generalized Cuckoo hashing. We use a (d, k)-general cuckoo hashing scheme without stash. The
parameters are chosen such that the failure probability is 2−λ. When d = 1, k = 3 these parameters are
identical with KKRT except for the number of bins increases slightly to N = 1.3n which is a trade-off
to obtain no stash. Even with the higher number of bins, our PSI protocol significantly outperforms
KKRT. To minimize the overall communication, we set k = 2 to reduce the cost of sending k ·n PRF
outputs. We used a Python script to simulate randomly assigning n values to N = c · n bins using
(d, 2)-Cuckoo hashing, for several values of d and c, and for n = 29, 210, 211, 212. For a value of c as
low as 0.65, we never observed any insertion failure over 107 trials for each values of n (for n = 212,
we could only do 106 trials), when using d = 3 items per bins. For d = 2, the failure probability
became noticeable already for c ≈ 1. Based on known theoretical analysis of (d, k)-Cuckoo hashing,
the failure probability is known to scale inverse polynomially with n. Therefore, we expect that for
reasonably large values of n (e.g. n ≥ 218), our parameters should guarantee a failure probability
significantly below 2−40.

5 Standard Model Malicious PSI from Subfield-Ring-OLE

In this section, we describe a new PSI protocol, which builds upon a (simple variant of) a pseudoran-
dom correlation generator for the ring-OLE correlation [BCG+20b]. Our protocol enjoys a number of
important features: it is in the standard model, achieves malicious security at essentially no cost, has
low communication (competitive even with the best maliciously secure PSI protocols in the random
oracle model), and reasonable computation (albeit superlinear in n). Furthermore, our protocol can
achieve even smaller communication and computation in scenarios where the parties are guaranteed
that the set intersection will be large. Our protocol can also be generalized to a powerful notion of
batch non-interactive PSI, where (after a small logarithmic-cost preprocessing step with each server)
a client can broadcast a single encoding of his database, and then obtain the intersection with any
of the server databases at any time after receiving a single message from this server. We believe that
this functionality itself is of independent interest.

Overview. We rely on the functionality, given on Figure 8, that generates a subfield ring-OLE
correlation, over a rings Rp = Fp[x]/F(x),Rq = Fpt [x]/F(x) where q = pr for some r, and F (X) is
some polynomial of degree 2n+ 1 (more generally, when the two parties have sets of different size n

20 Dung Bui and Geoffroy Couteau

and m, F will be of degree n+m+1). Our protocol makes a single black-box call to this functionality.
Consider two parties, a receiver and a sender, where the receiver has a set A = {a1, a2, . . . , an} ∈ Fn

p

and the sender has a set B = {b1, b2, . . . , bn} ∈ Fn
p . Define pA :=

∑n
i=1(x − ai) ∈ Rp and pB :=∑n

i=1(x − bi) ∈ Rp. Let I := A ∩ B denote the target output. The protocol computes the common
roots of pA and pB ,i.e., gcd(pA, pB). To do so, the parties will call the functionality of Figure 8. By
carefully revealing some combinations of their output correlation and their input polynomials, the
parties achieve the following:

– The sender holds two uniformly random polynomials r0A(x), r
0
B(x) of degree n over the ring Rq;

– The receiver gets the polynomial S(x) = pA(x) · r0A(x) + pB(x) · r0B(x).

Using Lemmas 10 and 11, S(x) can be factored as gcd(pA(X), pB(X) · U(x), where with high prob-
ability, U(X) has no common root with pA(X). The receiver will then compute S(ai) for all ai ∈ A
(using fast polynomial interpolation) and output {ai ∈ A : S(ai) = 0}.

5.1 A Malicious PSI from Subfield Ring-OLE

The functionality Fsole is represented on Figure 8. Let F be an irreducible polynomial of degree
2n+ 1. The receiver and the sender invoke Fsole over Rq with subring Rp ⊆ Rq. The sender receives
a pair of uniformly random polynomials (rA, r

′
B) ∈ R2

q, each of degree 2n; let us rewrite rA as
rA = r0A + r1A · Xn ∈ Rq where r0A, r

1
A are of degree at most n. The receiver receives a pair of

polynomials, denoted (a′, sA), of degree 2n such that a′ ∈ Rp and sA = a′ · rA + r′B ∈ Rq. Similarly,
we rewrite a′ as a′ = a′0 + a′1 ·Xn ∈ Rp, where a′0 is a random polynomial of degree at most n over
the subring Rp. Let us consider the polynomial sA without reduction to F (X) then

sA = a′ · rA + r′B = r′B + (a′0 + a′1 ·Xn) ·
(
r0A + r1A ·Xn

)
=
(
r′B + a′0 · r0A

)
+
(
a′0 · r1A.Xn + a′1 · r0A ·Xn + a′1 · r1A ·X2n

)
= s0A +

(
a′0 · r1A ·Xn + a′1 · r0A ·Xn + a′1 · r1A ·X2n

)
∈ Fq[X]

The receiver computes tA := pA−a′0 ∈ Rp and sends (tA, a′1) to the sender. Afterwards, the sender
samples a random polynomial r0B of degree n over the ring Rq, and computes s = pB · r0B ∈ Rq of
degree 2n. Then, the sender sets

s′B ← a′1 · r0A ·Xn mod F (X) sB ← tA · r0A + s− r′B − s′B ,

and sends (sB , r1A) to the receiver. Now, the receiver computes s′A = a′0 ·r1A.Xn+a′1 ·r1A ·x2n mod F (x)
and defines:

U = sA + sB − s′A = (a′ · rA + r′B mod F (X)) + tA · r0A + s− r′B − s′B − s′A

=
(
r′B + a′0 · r0A

)
+
(
a′0 · r1A ·Xn + a′1 · r0A ·Xn + a′1 · r1A ·X2n mod F (X)

)
+ tA · r0A + s− r′B −

(
a′1 · r0A ·Xn mod F (X)

)
−
(
a′0 · r1A ·Xn + a′1 · r1A ·X2n mod F (X)

)
= a′0 · r0A + tA · r0A + s = a′0 · r0A + (pA − a′0) · r0A + pB · r0B
= pA · r0A + pB · r0B ∈ Rq

where r0A, r0B are uniformly distributed degree-n polynomials over the ring Rq The set of all common
roots of pA and pB can be deduced from the polynomial U . Indeed, by Lemma 10 and Lemma 11:

x ∈ A ∩B ⇐⇒ pA(x) = 0 ∧ pB(x) = 0⇐⇒ pA(x) = 0 ∧ U(x) = 0.

Theorem 5. Our PSI protocol (figure 5.1) securely realizes the ideal functionality FmPSI (figure 7)
with statistical security against malicious adversaries in the Fsole hybrid model.

The proof of Theorem 5 appears in Section 5.3.

PSI from Pseudorandom Correlation Generators 21

Efficiency. The main computational cost comes from the computation of fast polynomial interpola-
tion, and multiplications between degree-2n polynomials (as well as a fast multipoint evaluation for
the receiver). Regarding communication, the total communication boils down to

– A subfield ring-OLE, which can be implemented with o(n) communication [BCG+20b];
– Two polynomials of degree n in Fp[X], one polynomial of degree n and one polynomial of degree

2n over Fq[X].

In total, this amounts to n · (2 log p + 3 log q) + o(n) bits of communication. Here, the size of the
subfield Fp depends only on the bitsize ℓ of the items in the sets A and B, hence we can set log p = ℓ.
As we will see in the analysis, log q must be set to log q ≈ λ+2 log n to guarantee λ bits of statistical
security. This leads to a total communication of n · (2ℓ+ 3λ+ 6 log n) + o(n) bits.

The o(n) term above captures the cost of distributing the PCG seeds of the subfield ring-OLE.
Using the maliciously secure seed distribution protocol of [BCG+20b], for n = 220 this amounts to a
bit less than 4MB of communications, i.e. about 30n bits of communication. For larger values of n,
the cost grows logarithmically in n and this term quickly becomes dominated by the other terms.

PARAMETERS:

– Two rings Rp = Fp[x]/F(x) ⊆ Rq = Fpt [x]/F(x), where F (x) has degree 2n+ 1.
– the receiver and the sender have respective input set A = {a1, a2, . . . , an} ⊂ Rp and B =
{b1, b2, . . . , bn} ⊂ Rp.

– A subfield ring-OLE in the ring Rq over the subring Rp.

PROTOCOL:

1. The receiver and the sender encode their inputs to pA =
∑n

i=1(X − ai), pB =
∑n

i=1(X − bi)
respectively.

2. The receiver and the sender invoke Fsole protocol as a receiver and a sender to generate a
subfield ring-OLE over Rp,Rq. The sender receives two random polynomial (rA, r′B) of degree
2n while the receiver gets a pair of polynomials (a′, sA) of degree 2n such that a′ ∈ Rp and
sA = a′ · rA + r′B .

3. The receiver decomposes a′ as a′ = a′
0 + a′

1 · Xn and sends a′
1 to the sender. Similarly, the

sender decomposes rA as r0A + r1A ·Xn and sends r1A to the receiver.
4. The receiver sends tA = pA − a′

0 ∈ Rp to the sender.
5. After receiving tA, the sender picks randomly a polynomial r0B ∈ Rq of degree n, computes

s = r0B · pB , s′B = a′
1.r

0
A ·Xn mod F (X) and sB = tA · r0A + s− r′B − s′B , and sends sB to the

receiver.
6. The receiver compute s′A = a′

0 · r1A ·Xn + a′
1 · r1A ·X2n mod F (x) and defines the polynomial

U = sA + sB − s′A. Finally, the receiver outputs the set I = {x ∈ A | U(x) = 0}.

Fig. 5. Malicious PSI protocol based on OLE

5.2 A Batch Non-Interactive PSI

An important feature of the PCG of [BCG+20b] is that it is programmable: when executing the seed
distribution protocol, the receiver can ensure that her output (a′, sA) remains identical across many
instances of the protocol with different parties. This powerful feature implies that, after a logarithmic-
cost preprocessing phase where the client (playing the role of the receiver, with input set X) sets up
PCG seeds with each of servers (playing the roles of multiple senders , each with input set Xi), the
receiver can broadcast the pair (tA = pA−a′0, a′1) to everyone (it depends solely on a′ and her encoded
set pA), which communicates 2n log p ≈ 2ℓn bits. This message can be seen as a public encoding of
her dataset. Observe that it is almost optimally compact: it is only twice larger than the set of the
receiver. Furthermore, the receiver can publish this encoding at any time, even before interacting
with any server. Afterwards, any server that executed the distributed seed protocol with the receiver
can send a single message (r1A, sB) to the receiver, of length 3n log q ≈ 3(λ + 2 log n)n, from which
the receiver can locally recover X ∩Xi. To our knowledge, this batch non-interactive communication

22 Dung Bui and Geoffroy Couteau

pattern was never achieved by any prior proposal; we believe that it can make our protocol appealing
in numerous realistic scenarios.

5.3 Proof of Security

In this section, we prove Theorem, restated below:

Theorem 6. Our PSI protocol (figure 5.1) securely realizes the ideal functionality FmPSI (figure 7)
with security against malicious adversaries in the Fsole hybrid model.

Proof. Correctness. We show that the protocol is correct with a probability of at least 1 − n2/q.
Let us consider the polynomial U = pA · r0A + pB · r0B , where the polynomials r0A, r0B of degree n
are distributed uniformly at random over the ring Rq and pA, pB ∈ R2

p of degree n are encoding
polynomials of the input sets of the sender and the receiver respectively. The protocol is correct iff
I = {x ∈ A | U(x) = 0} = A∩B. Let denote C be the set of all roots of the polynomial U(x). We show
that all the common roots of the polynomials pA and pB are the same as those of the polynomials
PA and U . Assume that x is an element in the set A ∩B then:

x ∈ A ∩B =⇒ pA(x) = 0 ∧ pB(x) = 0

=⇒ U(x) = pA(x) · r0A(x) + pB(x) · r0B(x) = 0

hence A∩B ⊆ A∩C. Moreover, by Lemma 10, the probability that pA and r0B share a common root
(i.e. gcd(pA, r0B) ̸= 1) is at most n2/q. Then,

x ∈ A ∩ C =⇒ pA(x) = 0 ∧ U(x) = 0

=⇒ pB(x) · r0B(x) = U(x)− pA(x) · r0A(x) = 0

=⇒ pB(x) = 0 (since gcd(pA, r0B) = 1 w.h.p).

Therefore A∩C ⊆ A∩B. Finally we get A∩B = A∩C i.e the sender outputs correctly the intersection
of their inputs.
Security. We prove security through a sequence of hybrids. We first demonstrate a core property.
Given any set S, we denote by pS ∈ Rp the polynomial whose set of roots is S. We have:

U = pA · r0A + pB · r0B = pA∩B ·
(
pA\B · r0A + pB\A · r0B

)
.

pA\B , pB\A ∈ R2
p are two polynomial of degree at most n and gcd(pA\B , pB\A) = 1. By Lemma 11, the

polynomial pA\B ·r0A+pB\A ·r0B is a uniformly random polynomial of degree at most 2n. Therefore, U
conceals all information about pA\B and pB\A. This show perfect security against a corrupted sender
in the Fsole-hybrid model. More formally:

Security against a corrupted receiver. We first sketch the main idea of simulator.

– Sim plays the role of Fsole. When A queries Fsole, Sim waits for A to send a′, sA then Sim computes
a′0, a

′
1 such that a′ := a′0 + a′1 ·Xn.

– As the sender, Sim generates randomly a polynomial r1A ∈ Rq of degree n and sends it to A.
– After receiving tA = pA − a′0 from A, Sim extracts pA.
– Sim defines the set A = {x ∈ Fp | pA(x) = 0} and sends A to the ideal functionality of FmPSI and

gets the set A ∩B.
– Assume that |A ∩B| = k ≤ n, Sim defines the polynomials:

m(x) :=

{
k∑

i=1

(x− xi) | xi ∈ A ∩B

}

n(x) :=

{
n−k∑
i=1

(x− xi) | xi ← Fq

}
U(x) := m(x) · n(x)

PSI from Pseudorandom Correlation Generators 23

– Since Sim knows a′0, a
′
1, r

1
A then Sim can computes s′A = a′0 · r1A ·Xn + a′1 · r1A ·X2n mod F (X).

– On behalf of the sender, Sim computes and sends to A the polynomial sB = U − sA + s′A.

We prove that the simulated protocol is indistinguishable from an honest execution through a sequence
of hybrids:

– Hybrid 1: Same as the real protocol interaction, except that Sim plays the role of Fsole. When A
queries Fsole, Sim waits for A to send a′, sA where a′ ∈ Rp, sA ∈ Rq are two random polynomials
of degree 2n and finds a′0, a

′
1 ∈ R2

p such that a′ = a′0 + a′1 · Xn. This hybrid has the same
distribution as the honest protocol.

– Hybrid 2: Same as Hybrid 1 except that Sim in this hybrid samples himself r1A ∈ Rq of degree n.
Since r1A is distributed uniformly at random in the view of A, this hybrid is distributed identically
to the previous hybrid.

– Hybrid 3: Same as Hybrid 2, but when A sends tA = pA − a′0, Sim extracts pA = tA + a′0, defines
the set Ã = {x ∈ Fp | pA(x) = 0}, and sends it to the ideal functionality FmPSI to get Ĩ = Ã ∩B.

– Hybrid 4: Observe that

U = sA + sB − s′A = pA · r0A + pB · r0B
= pA∩B ·

(
pA\B · r0A + pB\A · r0B

)
.

Assume that |Ĩ| = |Ã ∩B| = k ≤ n. Sim in this hybrid defines the polynomials:

m(x) :=

{
k∑

i=1

(x− xi) | xi ∈ Ĩ

}

n(x) :=

{
n−k∑
i=1

(x− xi) | xi ← Fq

}
U(x) := m(x) · n(x).

Since pA\B · r0A + pB\A · r0B is uniformly random by Lemma 11, this hybrid is perfectly indistin-
guishable from the previous hybrid.

– Hybrid 5: Same as Hybrid 4 except Sim computes sB = U + s′A − sA and on behalf of the sender
sends it to A. Since sB is random in the view of A, this is distributed exactly as in the previous
hybrid. In this hybrid, Sim aborts if there exists a element y ∈ B \ Ã where U(y) = 0. We rewrite

U = pÃ∩B ·
(
pÃ\B · r

0
A + pB\Ã · r

0
B

)
Therefore,

{x ∈ Fq | U(x) = 0} = {x ∈ Ĩ} ∪ {x ∈ Fq | pÃ\B · r
0
A + pB\Ã · r

0
B}.

We show that Sim aborts with negligible probability.
• Case 1: y ∈ Ĩ: since we know that y ∈ B \ Ã, this cannot happen.
• Case 2: y ∈ {x ∈ Fq | pÃ\B .r

0
A + pB\Ã · r0B}. Since y ∈ B \ Ã ⇔ y ∈ B \ Ã ⇔ pB\Ã =

0 ∧ pÃ\B(y) ̸= 0, we have

0 = pÃ\B(y) · r
0
A(y) + pB\Ã(y) · r

0
B(y) = pÃ\B(y).r

0
A(y)

⇔ r0A(y) = 0 ∧ pB\Ã(y) = 0

=⇒ gcd(pB\Ã, r
0
A) ̸= 1

where r0A ∈ Rq is a polynomial of degree n and is distributed uniformly at random.
By Lemma 10 the probability of gcd(pB\Ã, r

0
A) ̸= 1 is at most n2/q. Setting q = λ+2 log n suffices

to bound the abortion probability by 1/2λ. Conditioned on not aborting, this hybrid is distributed
perfectly as the previous hybrid; hence, no adversary can distinguish between this hybrid and the
previous one with probability more than 2−λ.

24 Dung Bui and Geoffroy Couteau

Security against a corrupt sender. We first sketch the main ideal of the simulator.

– Sim plays the role of Fsole. When A queries Fsole, Sim waits for A to send (rA, r
′
B) and extracts

r0A, r
1
A such that r0A + r1A ·Xn.

– Sim simulates the polynomials a′1, tA and receives sB from A. Then Sim computes the polynomial
s′B = a′1 · r0A ·Xn mod F (x) and obtains s = sB + r′B + s′B − tA · r0A.

– Sim defines the set
B̃ = {x ∈ Fp | s(x) = 0}

Since s = pB · r0B and by Lemma 10, gcd(r0B , pA) = 1 with probability at least 1 − n2/q. This
leads to A ∩B = A ∩ B̃ with high probability.

– Sim sends B̃ to the ideal functionality of FmPSI.

The proof proceeds through a sequence of hybrids:

– Hybrid 1: Same as the real protocol interaction, except Sim plays the role of Fsole. When A
queries Fsole, Sim waits for A to send (rA, r

′
B) and finds r0A, r

1
A ∈ R2

q of degree at most 2n such
that r0A + r1A ·Xn.

– Hybrid 2: Same as Hybrid 1 but instead of extracting a′1 from the sender’s output from Fsole and
tA := pA − a′0, Sim in this hybrid samples two uniformly random polynomials a′1, tA of degree n
over Rp and sends them to A. In the view of A, a′1, tA are random so this hybrid has an identical
distribution as the previous hybrid.

– Hybrid 3: When A sends sB to the honest receiver, from a′1, tA, r
0
A, r

1
A Sim computes s := sB +

r′B + s′B − tA · r0A. This hybrid is indistinguishable from the real protocol interaction.
– Hybrid 4: Same as Hybrid 3, except we can rewrite the polynomial s ∈ Rq as

s = sB + r′B + s′B − tA · r0A = r0B · pB

This leads to pB(x) = 0 ⇒ s(x) = 0. Hence, Sim defines the set B̃ = {x ∈ Fp | s(x) = 0}.
Simulation in this hybrid fails if the honest receiver holds an x ∈ A where s(x) = 0 ∧ pB(x) ̸= 0.
It is sufficient to show that the probability of this negligible. Indeed,

{x ∈ A | s(x) = 0 ∧ pB(x) ̸= 0} ⇔ {x ∈ A | rB(x) = 0}
⇔ {x ∈ Fp | pA(x) = 0 ∧ rB(x) = 0}.

As before, by Lemma 10 the probability of gcd(pA, rB) ̸= 1 is bounded by 1/2λ when q =
λ+ 2 log n.

– Hybrid 5: Same as hybrid 4, but we change the way for computing the honest receiver’s output
as the set A ∩ B̃. Specifically, in hybrid 4 the receiver’s output is computed as

I = {x ∈ A | U(x) = 0}

Where I is equivalent to the set A ∩ B̃ up to a negligible failure probability. After defining the
set B̃, Sim sends it to the ideal functionality of FmPSI, and the set A ∩ B̃ is delivered to the
honest receiver. In this hybrid, Sim makes the honest receiver computes its output as A∩ B̃. This
concludes the proof that our PSI protocol is secure against both malicious sender and receiver.

References

ADI+17. B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic computation
with constant computational overhead. In CRYPTO 2017, Part I, LNCS 10401, pages 223–254.
Springer, Heidelberg, August 2017.

BCG+17. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret sharing: Optimiza-
tions and applications. In ACM CCS 2017, pages 2105–2122. ACM Press, October / November
2017.

BCG+19a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient two-round
OT extension and silent non-interactive secure computation. In ACM CCS 2019, pages 291–308.
ACM Press, November 2019.

BCG+19b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators: Silent OT extension and more. In CRYPTO 2019, Part III, LNCS 11694,
pages 489–518. Springer, Heidelberg, August 2019.

PSI from Pseudorandom Correlation Generators 25

BCG+20a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Correlated pseudorandom
functions from variable-density LPN. In 61st FOCS, pages 1069–1080. IEEE Computer Society
Press, November 2020.

BCG+20b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators from ring-LPN. In CRYPTO 2020, Part II, LNCS 12171, pages 387–416.
Springer, Heidelberg, August 2020.

BCGI18. E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM CCS 2018,
pages 896–912. ACM Press, October 2018.

BMR20. S. Badrinarayanan, P. Miao, and P. Rindal. Multi-party threshold private set intersection with
sublinear communication. Cryptology ePrint Archive, Report 2020/600, 2020. https://eprint.
iacr.org/2020/600.

CLR17. H. Chen, K. Laine, and P. Rindal. Fast private set intersection from homomorphic encryption.
In ACM CCS 2017, pages 1243–1255. ACM Press, October / November 2017.

CM20. M. Chase and P. Miao. Private set intersection in the internet setting from lightweight oblivious
PRF. In CRYPTO 2020, Part III, LNCS 12172, pages 34–63. Springer, Heidelberg, August 2020.

CRR21. G. Couteau, P. Rindal, and S. Raghuraman. Silver: Silent VOLE and oblivious transfer from
hardness of decoding structured LDPC codes. LNCS, pages 502–534. Springer, Heidelberg, 2021.

DKT10. E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols se-
cure in malicious model. In ASIACRYPT 2010, LNCS 6477, pages 213–231. Springer, Heidelberg,
December 2010.

DMRY09. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set intersection.
In ACNS 09, LNCS 5536, pages 125–142. Springer, Heidelberg, June 2009.

DP12. I. Damgård and S. Park. How practical is public-key encryption based on LPN and ring-LPN?
Cryptology ePrint Archive, Report 2012/699, 2012. https://eprint.iacr.org/2012/699.

DW07. M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly packed
constant size bins. Theoretical Computer Science, 380(1-2):47–68, 2007.

FHNP16. M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas. Efficient set intersection with simulation-
based security. Journal of Cryptology, 29(1):115–155, January 2016.

FIPR05. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudo-
random functions. In Theory of Cryptography, pages 303–324, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

FNP04. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
EUROCRYPT 2004, LNCS 3027, pages 1–19. Springer, Heidelberg, May 2004.

GN19. S. Ghosh and T. Nilges. An algebraic approach to maliciously secure private set intersection. In
EUROCRYPT 2019, Part III, LNCS 11478, pages 154–185. Springer, Heidelberg, May 2019.

GPR+21. G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Oblivious key-value stores and
amplification for private set intersection. LNCS, pages 395–425. Springer, Heidelberg, 2021.

GS19. S. Ghosh and M. Simkin. The communication complexity of threshold private set intersection.
In CRYPTO 2019, Part II, LNCS 11693, pages 3–29. Springer, Heidelberg, August 2019.

Haz15. C. Hazay. Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In
TCC 2015, Part II, LNCS 9015, pages 90–120. Springer, Heidelberg, March 2015.

HEK12. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than
custom protocols? In NDSS 2012. The Internet Society, February 2012.

HFH99. B. A. Huberman, M. Franklin, and T. Hogg. Enhancing privacy and trust in electronic commu-
nities. In Proceedings of the 1st ACM Conference on Electronic Commerce, EC ’99, page 78–86,
New York, NY, USA, 1999. Association for Computing Machinery.

HKL+12. S. Heyse, E. Kiltz, V. Lyubashevsky, C. Paar, and K. Pietrzak. Lapin: An efficient authentication
protocol based on ring-LPN. In FSE 2012, LNCS 7549, pages 346–365. Springer, Heidelberg,
March 2012.

HN10. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In
PKC 2010, LNCS 6056, pages 312–331. Springer, Heidelberg, May 2010.

HV17. C. Hazay and M. Venkitasubramaniam. Scalable multi-party private set-intersection. In
PKC 2017, Part I, LNCS 10174, pages 175–203. Springer, Heidelberg, March 2017.

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
CRYPTO 2003, LNCS 2729, pages 145–161. Springer, Heidelberg, August 2003.

JL10. S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN 10, LNCS 6280, pages
418–435. Springer, Heidelberg, September 2010.

KK13. V. Kolesnikov and R. Kumaresan. Improved ot extension for transferring short secrets. In
Advances in Cryptology – CRYPTO 2013, pages 54–70, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

KKRT16. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In ACM CCS 2016, pages 818–829. ACM Press, October
2016.

https://eprint.iacr.org/2020/600
https://eprint.iacr.org/2020/600
https://eprint.iacr.org/2012/699

26 Dung Bui and Geoffroy Couteau

KRTW19. V. Kolesnikov, M. Rosulek, N. Trieu, and X. Wang. Scalable private set union from symmetric-key
techniques. In ASIACRYPT 2019, Part II, LNCS 11922, pages 636–666. Springer, Heidelberg,
December 2019.

KS05. L. Kissner and D. X. Song. Privacy-preserving set operations. In CRYPTO 2005, LNCS 3621,
pages 241–257. Springer, Heidelberg, August 2005.

LP15. H. Lipmaa and K. Pavlyk. Analysis and implementation of an efficient ring-LPN based commit-
ment scheme. In CANS 15, LNCS, pages 160–175. Springer, Heidelberg, December 2015.

MB72. R. Moenck and A. Borodin. Fast modular transforms via division. In Proceedings of the 13th
Annual Symposium on Switching and Automata Theory (Swat 1972), SWAT ’72, page 90–96,
USA, 1972. IEEE Computer Society.

Mea86. C. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of
a continuously available third party. In 1986 IEEE Symposium on Security and Privacy, pages
134–134. IEEE, 1986.

OOS17. M. Orrù, E. Orsini, and P. Scholl. Actively secure 1-out-of-N OT extension with application to
private set intersection. In CT-RSA 2017, LNCS 10159, pages 381–396. Springer, Heidelberg,
February 2017.

Pan05. R. Panigrahy. Efficient hashing with lookups in two memory accesses. In 16th SODA, pages
830–839. ACM-SIAM, January 2005.

PR04. R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.
PRTY19. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. SpOT-light: Lightweight private set intersection

from sparse OT extension. In CRYPTO 2019, Part III, LNCS 11694, pages 401–431. Springer,
Heidelberg, August 2019.

PRTY20. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from PaXoS: Fast, malicious private set
intersection. In EUROCRYPT 2020, Part II, LNCS 12106, pages 739–767. Springer, Heidelberg,
May 2020.

PSSZ15. B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security 2015, pages 515–530. USENIX Association,
August 2015.

PSWW18. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based PSI via cuckoo
hashing. In EUROCRYPT 2018, Part III, LNCS 10822, pages 125–157. Springer, Heidelberg,
April / May 2018.

PSZ14. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT extension.
In USENIX Security 2014, pages 797–812. USENIX Association, August 2014.

PSZ18. B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection based on ot extension.
ACM Transactions on Privacy and Security (TOPS), 21(2):1–35, 2018.

RR17. P. Rindal and M. Rosulek. Malicious-secure private set intersection via dual execution. In ACM
CCS 2017, pages 1229–1242. ACM Press, October / November 2017.

RS21. P. Rindal and P. Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE. LNCS,
pages 901–930. Springer, Heidelberg, 2021.

RT21. M. Rosulek and N. Trieu. Compact and malicious private set intersection for small sets. Cryp-
tology ePrint Archive, Report 2021/1159, 2021. https://eprint.iacr.org/2021/1159.

SGRR19. P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. Distributed vector-OLE: Improved
constructions and implementation. In ACM CCS 2019, pages 1055–1072. ACM Press, November
2019.

TLP+17. S. Tamrakar, J. Liu, A. Paverd, J.-E. Ekberg, B. Pinkas, and N. Asokan. The circle game: Scalable
private membership test using trusted hardware. In ASIACCS 17, pages 31–44. ACM Press, April
2017.

W+17. U. Wieder et al. Hashing, load balancing and multiple choice. Foundations and Trends® in
Theoretical Computer Science, 12(3–4):275–379, 2017.

WYKW21. C. Weng, K. Yang, J. Katz, and X. Wang. Wolverine: fast, scalable, and communication-efficient
zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1074–1091. IEEE, 2021.

YWL+20. K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. Ferret: Fast extension for correlated OT
with small communication. In ACM CCS 20, pages 1607–1626. ACM Press, November 2020.

https://eprint.iacr.org/2021/1159

Supplementary Material

A Additional Preliminaries

In this appendix, we provide further preliminaries, including necessary preliminaries for our second
construction, described in Section 5.

A.1 Ideal Functionalities and Security Model

The ideal functionality of PSI in the semi-honest and malicious settings are shown on Figure 6 and 7
respectively. The reason for two different functionalities is a standard limitation of all known protocol:
in the semi-honest setting, the size of a corrupted party’s input set is fixed to n, while in the malicious
setting, the functionality allows a malicious party to use a possibly larger set of bounded size n′ > n.
Since PSI is a special case of secure computation, the security analysis of a two-party PSI protocol is
performed via the standard simulation paradigm, recalled below.

PARAMETERS:

– An arbitrary field F, n ∈ Z.
– There are two parties, a sender with a input set X ⊆ F and a receiver with a input set Y ⊆ F

where |X| = |Y | = n.

FUNCTIONALITY:

– Wait for the input set X of the sender.
– Wait for the input set Y of the receiver.
– The functionality outputs the intersection X ∩ Y to the receiver.

Fig. 6. Ideal functionality of semi-honest PSI FsPSI

PARAMETERS:

– An arbitrary field F, n, n′ public parameters for honest parties and corrupt parties respectively
where n ≤ n′.

– There are two parties, a sender with a input set X ⊆ F and a receiver with a input set Y ⊆ F.

FUNCTIONALITY:

– Wait for the input set X of the sender then abort if |X| > n.
– Wait for the input set Y of the receiver. If |Y | > n′ and the receiver is malicious or if |Y | > n

and the receiver is honest then abort.
– The functionality outputs the intersection X ∩ Y to the receiver.

Fig. 7. Ideal functionality of malicious PSI FmPSI

Semi-honest security. Let viewΠ
1 (X,Y) and viewΠ

2 (X,Y) be the view of P1 and P2 in the protocol
Π, outΠ(X,Y) be the output of P2 in the protocol, and f(X,Y) be the output of P2 from the ideal
functionality. The protocol Π is semi-honest secure if there exist PPT simulators Sim1 and Sim2 such
that for all inputs X,Y,

(viewΠ
1 (X,Y), outΠ(X,Y)) ≈ Sim1((1

κ, X, n), f(X,Y));

viewΠ
2 (X,Y) ≈ Sim2((1

κ, Y, n), f(X,Y))

28 Dung Bui and Geoffroy Couteau

Malicious Security. Let f be a two-party functionality and Π be a secure protocol for computing f .
The protocol Π is said to be secure against malicious adversary if for all non-uniform PPT adversary
A in the real model, there exists a non-uniform PPT adversary S in the deal model satisfying:

IDEAL(f,S,i)(X,Y) ≈ REAL(Π,A,i)(X,Y)

where i ∈ {1, 2} index of corrupted party. IDEAL(f,S,i)(X,Y) is the output pair of the honest party
and the adversary S in the ideal model, REAL(Π,A,i)(X,Y) is defined as the output pair of the honest
party and the adversary A from the real execution of Π.

A.2 Learning Parity with Noise

We define the LPN assumption over a ring R with dimension k, number of samples n, w.r.t. a code
generation algorithm C, and a noise distribution D:

Definition 7 (Dual LPN). Let D(R) = {Dk,n(R)}k,n∈N denote a family of efficiently sampleable
distributions over a ring R, such that for any k, n ∈ N, Im(Dk,n(R)) ⊆ Rn. Let C be a probabilistic
code generation algorithm such that C(k, n,R) outputs a matrix H ∈ Rk×n. For dimension k = k(λ),
number of samples (or block length) n = n(λ), and ring R = R(λ), the (dual) (D,C,R)-LPN(k, n)
assumption states that

{(H,b) | H ←r C(k, n,R), e←r Dk,n(R),b← H · s}
c
≈ {(H,b) | H ←r C(k, n,R),b←r Rn}.

The dual LPN assumption is also called syndrome decoding assumption in the code-based cryp-
tography literature. The dual LPN assumption as written above is equivalent to the primal LPN
assumption with respect to G (a matrix G ∈ Rn×n−k such that H ·G = 0), which states that G ·s+e
is indistinguishable from random, where s←r Rn−k and e←r Dk,n(R); the equivalence follows from
the fact that H (̇G · s+ e) = H · e.

The standard LPN assumption refers to the case where H is a uniformly random matrix over F2,
and e is sampled from Berr(F2), where r is called the noise rate. Other common noise distributions
include exact noise (the noise vector e is a uniformly random weight-rn vector from Fn

2 ; this is
a common choice in concrete LPN-based constructions) and regular noise (the noise vector e is a
concatenation of rn random unit vectors from F1/r

2 , widely used in the PCG literature [BCGI18,
BCG+19b,BCG+19a]).

Known constructions of subfield-VOLE use various flavors of the dual LPN assumption with
regular noise over a finite field. For example, the work of [BCGI18] suggests relying on an LDPC
code, while [BCG+19a] uses quasi-cyclic codes, and [CRR21] uses a new family of codes, called Silver
codes.

In this section, we recall the Ring-LPN assumption, which was first introduced in [HKL+12] to
build efficient authentication protocols. Since then, it has received some attention from the cryptog-
raphy community [?,DP12,LP15,?], due to its appealing combination of LPN-like structure, compact
parameters, and short runtimes. Below, we also provide a definition of Module-LPN, which generalizes
Ring-LPN in the same way that the more well-known Module-LWE generalizes Ring-LWE.

A.3 Ring-LPN

We now define the Ring-LPN assumption, a variant of the dual LPN assumption over polynomial
rings, first introduced in [HKL+12] The assumption has been used in multiple works since. Ring-LPN
is the natural “ring analog” of LPN, in the same way that ring-LWE is the ring analog of LWE.

Definition 8 (Ring-LPN). Let R = F[X]/(F (X)) for some field F and degree-N polynomial
F (X) ∈ Z[X], and let m, t ∈ N. Let HWt be the distribution over Rp that is obtained via sampling
t noise positions A ← [0..N)t as well as t payloads b ← Zt

p uniformly at random, and outputting
e(X) :=

∑t−1
j=0 b[j] ·XA[j]. The R-LPNp,q,t problem is hard if for any PPT adversary A, it holds that

|Pr[A((ai, ai · s+ ei)
m
i=1) = 1]− Pr[A((ai, ui)

m
i=1) = 1]| ≤ negl(λ)

where the probabilities are taken over the random choices of the values a1, . . . , am, u1, . . . , um ← Rp,
s, e1, . . . , em ← HWt and the randomness of A.

PSI from Pseudorandom Correlation Generators 29

A.4 Subfield Ring-OLE

In a recent work [BCG+20b], a new PCG construction was described for the ring-OLE correlation.
The ring-OLE correlation over a ringRq is the following correlation: {((x0, z0), (x1, z1)) | x0, x1, z0 ←r

Rq, z1 ← x0.x1 − z0}. The main motivation in [BCG+20b] was that, when the ring is a polynomial
ring where the polynomial splits fully into n linear factors, such a correlation can be locally converted
into n instances of an OLE correlation over a large field, which is very useful for secure computation of
arithmetic circuit. We note that our work will actually directly rely on the ring-OLE correlation over a
polynomial ring, and we do not need the polynomial to split. This allows to build the necessary PCG
from a much more conservative assumption. We note that the work of [BCG+20b] also describes
a maliciously secure protocol to distribute the seed of this PCG which, combined with the PCG,
leads to a maliciously secure protocol to instantiate the ideal functionality for malicious ring-OLE
correlation.

In this work, we rely on a slight variant of the ring-OLE correlation: given the ringRq = Fpt [x]/F(x)
for some polynomial F (X), we consider the subfield ring-OLE correlation, where x0 is instead sampled
from the ring Rp = Fp[x]/F(x) (that is, the coefficients of x0 are sampled from the subfield Fp instead
of the field Fq = Fpt). We represent the corresponding variant of the ideal functionality on Figure 8.
We note that the protocol of [BCG+20b] to instantiate the ring-OLE functionality can be adapted to
handle the subfield ring-OLE functionality in a straightforward way.

PARAMETERS:

– The security parameter κ, the subring Rp = Fp[x]/F(x), the ring Rq = Fpt [x]/F(x) where F (x)
has the degree of n, p is a power prime and t is arbitrary integer.

– There are two parties, a sender and a receiver.

FUNCTIONALITY:

1. If all the parties are honest:
– Sample uniformly random x0 ←r Rp, x1, z1 ←r Rq, let z0 = x0 · x1 + z1.
– Output (x0, z0), (x1, z1) to the sender and the receiver respectively.

2. One party is corrupt:
– If the sender is malicious:

Waiting for the input x0 ∈ Rp and z0 ∈ Rq from the adversary. Sample x1 ←r Rq and
compute z1 = x0 · x1 − z0. Output (x1, z1) to the receiver.

– If the receiver is malicious:
Waiting for the input (x1, z1) ∈ R2

p from the adversary. Sample x0 ←r Rp and compute
z0 = x0 · x1 − z1. Output (x0, z0) to the sender.

Fig. 8. The ideal functionality Fsole of a malicious subfield-ring OLE of length n in Rq over the subring Rp

Theorem 9 ([BCG+20b]). If the ring-LPN assumption holds over R = F[X]/(F (X)) where F
is a degree-N polynomial, there exists a maliciously secure protocol instantiating the functionality 8
over R, with communication logarithmic in N .

A.5 Useful Lemmas about Polynomials

Our second protocol will rely on encoding the input sets as polynomials: the set X = {x1, x2, . . . , xn}
is encoded as the coefficients of P (X) =

∑n
i=0(X − xi). Encoding and decoding can be performed in

O(n2) field operations by Lagrange interpolation and Horner evaluation. For large values of n, the
work of [MB72] requires O(n log2 n) arithmetic operations where the interpolation and evaluation are
reducible to a recursive use of polynomial divisions.

Private set intersection can be reduced to simple arithmetic operations on the polynomial encoding
of the sets. This was observed in previous works [KS05,GS19,GN19]. The reduction builds upon simple
lemmas, which we state below (we also consider, and prove, a slight generalization of these lemmas).

30 Dung Bui and Geoffroy Couteau

Lemma 10. Let F (X) be a degree-n polynomial, q = pt where p is a prime, P (x) ∈ Rp = Fp[x]/F(x)
be an arbitrary polynomial of degree n and R(x) ∈ Rq = Fpt [x]/F(x) be a uniformly random polynomial
of degree n. Then

Pr[gcd(P (x), R(x)) ̸= 1] ≤ n2/q.

Proof. gcd(P (x), R(x)) = 1 iff P (x) and R(x) share no common root. A random polynomial over Rp

of degree n has at most n roots, which are distributed uniformly; hence, each root of R(x) is equal
to a root of P (x) with probability at most 1− n/q. Therefore:

Pr[gcd(P (x), R(x)) ̸= 1] = 1− Pr[gcd(P (x), R(x)) = 1]

= 1− (1− n/q)n ≤ n2/q (union bound).

Lemma 11 ([BMR20]). Given Fp be a finite field of prime order p. Fix any p = O(poly(λ)). Let
P (x), Q(x) ∈ Fp[x] be two arbitrary polynomials of degrees α1 and α2 respectively. Let R1(x), R2(x)
be two polynomials sampled independently and uniformly at random over Fp[x], of degrees β1, and β2

respectively, where n = α1 + β1 = α2 + β2 ≤ α1 + α2. Let S(x) = P (x) · R1(x) +Q(x) · R2(x) ∈ Fp.
Then S(x) = gcd(P (x), Q(x)) · U(x), where U(x) is an uniformly random polynomial of degree at
most n over Fp[x].

B Error in the KKRT Notion of Correlation Robustness

We recall the notion of Hamming correlation robustness from [KKRT16]. The original notion of
correlation robustness from [IKNP03] states that H : {0, 1}k → {0, 1}∗ is correlation robust if for
a random and independent choice of (polynomial many) strings s, t1, . . . , tm ∈ {0, 1}k, the joint
distribution (H(t1 ⊕ s), . . . ,H(tm ⊕ s)) is pseudorandom given t1, . . . , tm. The notion was adapted as
follows in KKRT:

Definition 12 (Hamming Correlation Robustness). Let H be a hash function with input length
n. Then H is d-Hamming correlation robust if for any strings z1, · · · , zm ∈ {0, 1}∗, a1, . . . , am, b1, . . . , bm ∈
{0, 1}n with ∥bi ∥H≥ d for each i ∈ [m], the following distribution, induced by random sampling of
s← {0, 1}n, is pseudorandom:

(H(z1 ∥ a1 ⊕ [b1.s]), . . . ,H(zm ∥ am ⊕ [bm.s]).

Unfortunately, there is a clear mistake in the above definition: no condition is imposed on the
strings zi, ai, bi – in particular, the definition does not require them to be distinct. But whenever
(zi, ai, bi) = (zj , aj , bj) for two distinct indices (i, j), the hashes are of course equal, hence the distri-
bution cannot be pseudorandom.

The aim of the authors was, perhaps, to state that the. z1 · · · zm should be pairwise distinct: this
makes the definition valid (and it becomes easy to show that it holds in the random oracle model).
Unfortunately, this notion does not suffice to prove the security of the KKRT protocol. Indeed, the
zi in the KKRT protocol correspond to the indices of the bins where the parties place their inputs.
However, one of the parties has to use simple hashing with three hash functions in the KKRT protocol,
meaning that a bin can contain up to η ≈ 3 log n/ log log n items. Concretely, this means that up η
pairs (a, b) can correspond to the same value zi.

The “right” definition is a bit more tedious to state: given a bound η on the maximum load of a bin,
we require that the zi are distinct, but for each zi there can be up to η pairs (ai,j , bi,j) ∈ ({0, 1}n)2
such that for any index i and for distinct j, k ≤ η, ai,j ̸= ai,k. This is the definition which we use
in our construction (with the slight distinction that we do not use a Hamming notion of correlation
robustness), and it is not too hard to show that this notion holds in the random oracle model (it is a
direct adaptation of our ROM proof for our variant of the notion) and suffices to prove the security
of the relaxed PRF in [KKRT16].

	Private Set Intersection from Pseudorandom Correlation Generators

