
Batch Arguments for NP and More

from Standard Bilinear Group Assumptions

Brent Waters

UT Austin and NTT Research

bwaters@cs.utexas.edu

David J. Wu

UT Austin

dwu4@cs.utexas.edu

Abstract
A non-interactive batch argument for NP provides a way to amortize the cost of NP veri�cation across multiple

instances. They enable a prover to convince a veri�er of multiple NP statements with communication much smaller

than the total witness length and veri�cation time much smaller than individually checking each instance.

In this work, we give the �rst construction of a non-interactive batch argument for NP from standard assumptions

on groups with bilinear maps (speci�cally, from either the subgroup decision assumption in composite-order groups

or from the :-Lin assumption in prime-order groups for any : ≥ 1). Previously, batch arguments for NP were only

known from LWE, or a combination of multiple assumptions, or from non-standard/non-falsi�able assumptions.

Moreover, our work introduces a new direct approach for batch veri�cation and avoids heavy tools like correlation-

intractable hash functions or probabilistically-checkable proofs common to previous approaches.

As corollaries to our main construction, we also obtain the �rst publicly-veri�able non-interactive delegation

scheme for RAM programs with a CRS of sublinear size (in the running time of the RAM program), as well as the

�rst aggregate signature scheme (supporting bounded aggregation) from standard assumptions on bilinear maps.

1 Introduction
Consider the following scenario: a prover has a batch of< NP statements x1, . . . , x< and seeks to convince the veri�er

that all of these statements are true (i.e., convince the veri�er that x8 ∈ L for all 8 ∈ [<], where L is the associated

NP language). A naïve solution is for the prover to provide the< witnesses w1, . . . ,w< to the veri�er and have the

veri�er check the NP relation on each pair (x8 ,w8). A natural question is whether we could do this more e�ciently.

Namely, can the prover convince the veri�er that x1, . . . , x< ∈ L with a proof of size > (<)—that is, can the size of the

proof grow sublinearly with the number of instances?

Batch arguments. The focus of this work is on constructing non-interactive batch arguments (BARGs) for NP
languages in the common reference string (CRS) model. In this model, a (trusted) setup algorithm samples a common

reference string crs that is used to construct and verify proofs. The goal of a BARG is to amortize the cost of NP
veri�cation across multiple instances. Speci�cally, a BARG for NP allows a prover to construct a proof c of< NP
statements x1, . . . , x< ∈ {0, 1}= where the size of the proof c scales sublinearly with<. We focus on the setting where

the proof is non-interactive and publicly veri�able. The soundness requirement is that no computationally-bounded
prover can convince the veri�er of a tuple (x1, . . . , x<) that contains a false instance x8 ∉ L; namely, we focus on

batch argument systems.

Constructing non-interactive batch arguments for NP is challenging, and until very recently, constructions have

either relied on idealized models [Mic95, Gro16, BBHR18, COS20, CHM
+
20, Set20] or on non-standard [KPY19], and

oftentimes, non-falsi�able cryptographic assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI
+
13,

BCPR14, BISW17, BCC
+
17] (see also Section 1.3 for more detail). This state of a�airs changed in two very recent

and exciting works by Choudhuri et al. In the �rst work [CJJ21a], they show how to construct a BARG assuming

both subexponential hardness of DDH in pairing-free groups and polynomial hardness of QR. Subsequently, they

construct a BARG from polynomial hardness of LWE [CJJ21b]. Both works leverage correlation-intractable hash

functions [CGH98, CCH
+
19, PS19, JJ21] to provably instantiate the Fiat-Shamir heuristic [FS86].

1

mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu

In this work, we take a direct approach for constructing BARGs from bilinear maps, and provide a new instantiation

from either polynomial hardness of the :-Lin assumption on prime-order bilinear groups, or from polynomial hardness

of the subgroup decision assumption on composite-order bilinear groups. This is the �rst BARG for NP under standard

assumptions over bilinear groups. Moreover, our construction is direct and avoids powerful tools like correlation-

intractable hash functions or probabilistically-checkable proofs used in many previous constructions.

Delegation for RAM programs. A closely related problem is delegation for RAM programs. In a delegation

scheme for RAM programs, the prover has a RAM program P, an input G , and output ~, and its goal is to convince

the veri�er that ~ = P(G). The e�ciency requirement is that the length of the proof and the veri�cation time should

be sublinear (ideally, polylogarithmic) in the running time of the RAM program. There is a close connection between

batch arguments for NP and delegation schemes for RAM programs [BHK17, KPY19, KVZ21, CJJ21b], and several

of these works show how to construct a delegation scheme for RAM programs using a batch argument for NP. As

a corollary to our main construction, we use our BARG to obtain a non-interactive delegation scheme for RAM

programs under the SXDH assumption in asymmetric bilinear groups. The CRS size of our construction is short (i.e.,

sublinear in the running time of the RAM computation).

Previously, Kalai et al. [KPY19] constructed a delegation scheme for RAM programs with a short CRS from a non-

standard, but falsi�able, @-type assumption on bilinear groups, and more recently, González and Zacharakis [GZ21]

showed how to construct a delegation scheme with a long CRS for arithmetic circuits from a bilateral :-Lin assumption

in asymmetric bilinear groups.
1

Choudhuri et al. [CJJ21b] showed how to construct a delegation scheme for RAM

programs from LWE, and previously, Jawale et al. [JKKZ21] constructed a delegation scheme for bounded-depth

circuits also from LWE; both of these schemes also have a short CRS. In the designated-veri�er model where a

secret key is needed to check proofs, Kalai et al. [BHK17] showed how to construct a delegation scheme from any

computational private information retrieval scheme.

1.1 Our Contributions
In this work, we introduce a simpler and more direct approach for constructing BARGs using bilinear maps. Our

main result is a BARG for NP assuming either the polynomial hardness of :-Lin in asymmetric prime-order pairing

groups (for any : ≥ 1)
2
, or alternatively, the subgroup decision assumption in composite-order pairing groups. We

capture this in the informal theorem statement below:

Theorem 1.1 (Informal). Take any constant Y > 0. Under the :-Lin assumption (for any : ≥ 1) in a prime-order
pairing group (alternatively, the subgroup decision assumption in a composite-order pairing group), there exists a publicly-
veri�able non-interactive BARG for Boolean circuit satis�ability with proof size poly(_, |� |), veri�cation complexity
poly(_,<,=) + poly(_, |� |), and CRS size<Y · poly(_), where _ is a security parameter, � : {0, 1}= × {0, 1}ℎ → {0, 1} is
the Boolean circuit, = is the statement size, and< is the number of instances. The BARG satis�es semi-adaptive soundness
(De�nition 2.5).

A new approach for batch veri�cation. In contrast to many recent works (see also Section 1.3) on constructing

succinct arguments that rely on probabilistically-checkable proofs (PCPs) [KRR13, KRR14, BHK17, CJJ21b, KVZ21]

or correlation-intractable hash functions [JKKZ21, CJJ21a, CJJ21b], we take a direct “low-tech” approach in our

construction. Our construction follows a “commit-and-prove” strategy and is reminiscent of the classic pairing-based

non-interactive proof systems by Groth et al. [GOS06] and Groth and Sahai [GS08]. Essentially, the prover starts by

providing a (succinct) commitment to the values associated with each wire in the circuit. The prover commits to<

bits for each wire, one for each instance, and we require that the size of the commitment be sublinear in<. Then, for

each gate in the circuit, the prover provides a short proof that the committed wire values are consistent with the gate

operation. The succinct commitment scheme to the wire labels can be viewed as a non-hiding version of the vector

commitment scheme of Catalano and Fiore [CF13]. The key challenge in the construction is proving consistency of

1
In the bilateral version of the :-Lin assumption, the challenge is encoded in both groups rather than one of the groups.

2
Recall that the case : = 1 corresponds to the DDH assumption holding in each base group (i.e., SXDH). The case : = 2 corresponds to the DLIN
assumption [BBS04, HK07, Sha07]

2

the gate computations given only the succinct commitments to the input and output wires of each gate. We give a

technical overview of our approach in Section 1.2 and the formal description in Sections 3 and 4.

Application to delegating RAM programs. The proof size in Theorem 1.1 is independent of the number of

instances <, but the veri�cation time contains a component poly(_,<,=) that scales with <. For general NP
languages, some type of linear dependence on the number of instances is inherent since the veri�cation algorithm

must at least read the input (of size< · =). However, when the statements have a “succinct description,” (e.g., they

are simply the indices 1, . . . ,<), and it is unnecessary for the veri�er to read the full input, we can reduce the the

veri�cation cost down to poly(_, log<, |� |). This setting is useful for applications to delegation [CJJ21b, KVZ21]. Our

main construction (Theorem 1.1 and Construction 4.5) directly supports this setting. Indeed, combining our new

pairing-based BARGs with the compiler from Choudhuri et al. [CJJ21b], we also obtain a delegation scheme for RAM

programs from the SXDH assumption over pairing groups.

We note here that invoking the compiler from [CJJ21a] additionally requires a “somewhere extractable commitment”

scheme (that supports succinct local openings). The pairing-based techniques underlying our BARG construction

naturally give rise to a somewhere extractable commitment (in conjunction with a somewhere extractable hash

function [HW15, OPWW15]). This is the �rst construction of a somewhere extractable commitment that supports

succinct local openings from standard assumptions over bilinear groups and may be of independent interest. We

describe the construction in Section 6. We summarize our result on delegation in the following informal theorem:

Theorem 1.2 (Informal). Take any constant Y > 0. Under the SXDH assumption in a prime-order pairing group, for
every polynomial) =) (_), there exists a publicly-veri�able non-interactive delegation scheme for RAM programs with
proof size poly(_, log)), veri�cation complexity poly(_, log)), a veri�cation key of size poly(_, log)), and a proving
key of size) Y · poly(_). Here, _ is the security parameter and) is the running time of the RAM program. The delegation
scheme is adaptively sound.

Theorem 1.2 gives the �rst RAM delegation scheme from standard assumptions over bilinear maps with a CRS

whose size is sublinear in the running time of the computation. Previously constructions of RAM delegation based on

pairings either relied on non-standard @-type assumptions [KPY19] or a CRS of size super-linear in the running time

of the RAM computation [GZ21].

Application to aggregate signatures. As a �nal application, we use our BARG for NP to obtain the �rst aggregate

signature scheme that supports bounded aggregation from standard assumptions over bilinear maps. In an aggregate

signature scheme, there is a public algorithm that takes a collection of message-signature pairs (`1, f1), . . . , (`<, f<)
under (possibly distinct) veri�cation keys vk1, . . . , vk< , respectively, and outputs a new signature fagg on (`1, . . . , `<)
under the joint veri�cation key (vk1, . . . , vk<). The requirement is that the size of fagg scales sublinearly with<.

A BARG for circuit satis�ability directly yields an aggregate signature scheme via the following straightforward

construction. De�ne the circuit� (vk,<, f) that takes as input the veri�cation key vk, message `, and signature f , and

outputs 1 if f is a valid signature on ` under vk. An aggregate signature on (`1, f1, vk1), . . . , (`<, f<, vk<) is a BARG

proof that � (vk8 , `8 , f8) = 1 for all 8 ∈ [<]. Succinctness of the BARG ensures that the size of the aggregate signature

is sublinear in the number of signatures<. Realizing the above blueprint requires that the underlying BARG satisfy a

(weak) form of extractability; the BARGs we construct in this work satisfy this property, and we refer to Section 7 for

the details. We obtain the �rst aggregate signature scheme supporting (bounded) aggregation from standard pairing

assumptions. We summarize the instantiation here and compare with previous approaches in Section 1.3:

Corollary 1.3 (Informal). Under the :-Lin assumption (for any : ≥ 1) in a prime-order pairing group (alternatively,
the subgroup decision assumption in a composite-order pairing group), there exists an aggregate signature scheme that
supports bounded aggregation. In particular, for any a priori bounded polynomial< =<(_), aggregating up to) ≤ <
message-signature pairs (`1, f1), . . . , (`) , f)) under veri�cation keys vk1, . . . , vk) yields an aggregate signature fagg of
size poly(_).

3

1.2 Technical Overview
In this work, we focus on constructing BARGs for the language of Boolean circuit satis�ability. Let � : {0, 1}= ×
{0, 1}ℎ → {0, 1} be a Boolean circuit of size B . A tuple (�, x1, . . . , x<) is true if for all 8 ∈ [<], there exists a witness

w8 such that � (x8 ,w8) = 1.

General blueprint. Our BARG for circuit satis�ability follows a “commit-and-prove” paradigm. To construct a

proof c of a statement (�, x1, . . . , x<) with associated witnesses (w1, . . . ,w<), the prover proceeds as follows:

• Wire commitments: The prover starts by evaluating � (x8 ,w8) for each 8 ∈ [<]. Let C be the number of wires

in circuit � . For each instance 8 ∈ [<] and wire : ∈ [C], we write F8,: ∈ {0, 1} to denote the value of wire

: in instance 8 . Then (F1,: , . . . ,F<,:) ∈ {0, 1}< is the vector of assignments to wire : across all< instances.

The prover starts by constructing a vector commitment *: to each vector (F1,: , . . . ,F<,:). Here, we require

the commitment to be succinct: namely, |*: | = poly(_, log<), where _ is a security parameter. The prover

additionally constructs a proof +: that*: is a commitment to a 0/1 vector (i.e.,F8,: ∈ {0, 1} for all 8 ∈ [<]).3
We similarly require that |+: | = poly(_, log<). Both the commitments to the wire assignments*1, . . . ,*: and

the proofs of valid assignment +1, . . . ,+: are included in the BARG proof.

• Gate satis�ability: We consider Boolean circuits with fan-in two. Namely, each gate �ℓ in � can be described

by a tuple of (:1, :2, :3) ∈ [C]3, where :1, :2 are the indices for the input wires and :3 is the index for the

output wire. Since NAND gates are universal, we will assume that all of the gates in � are NAND gates.
4

Let B be the number of gates (i.e., the size) of the circuit. For each gate ℓ ∈ [B], the prover constructs a proof

,ℓ that the committed assignments *:3
to the output wire are consistent with the committed assignments

*:1
,*:2

to the input wires. For example, if �ℓ is a NAND gate, *:1
is a commitment to (F1,:1

, . . . ,F<,:1
),

*:2
is a commitment to (F1,:2

, . . . ,F<,:2
), then the prover needs to demonstrate that *:3

is a commitment

to (NAND(F1,:1
,F1,:2

), . . . ,NAND(F<,:1
,F<,:2

)). The size of each proof ,ℓ must also be succinct: |,ℓ | =
poly(_, log<). The prover includes a proof of gate satis�ability,ℓ for each gate ℓ ∈ [B].

The overall proof is c =
(
{(*: ,+:)}:∈[C], {,ℓ }ℓ∈[B]

)
, and the proof size is |� | · poly(_, log<), which satis�es the

e�ciency requirements on the BARG. To verify the proof, the veri�er checks the following:

• Input validity: Without loss of generality, we associate wires 1, . . . , = with the bits of the statement. The

veri�er checks that *1, . . . ,*= are commitments to the bits of x1, . . . , x< ∈ {0, 1}= . In our construction, each

commitment is a deterministic function of the input vector, so the veri�er can compute *1, . . . ,*= directly from

x1, . . . , x< .

• Wire validity: For each : ∈ [C], the veri�er checks that*: is a commitment to a 0/1 vector using +: .

• Gate consistency: For each gate �ℓ = (:1, :2, :3), the veri�er uses ,ℓ to check that *:1
, *:2

, and *:3
are

commitments to a set of valid wire assignments consistent with the gate operation �ℓ .

• Output satis�ability: Let C be the index of the output wire in � . The veri�er checks that the commitment to

the output wire*C is a commitment to the all-ones vector (indicating that all< instances accept).

Since the veri�er needs to read the statement, the statement validity check runs in time poly(_, =,<). The remaining

checks run in time |� | · poly(_), which yields the desired veri�cation complexity.

1.2.1 Construction from Composite-Order Pairing Groups

To illustrate the main ideas underlying our construction, we �rst describe it using symmetric composite-order groups

and argue soundness under the subgroup decision assumption [BGN05]. We believe this construction is conceptually

simple and best illustrates the core ideas behind the construction. The approach described here translates to the

setting of asymmetric prime-order pairing groups to yield a construction from the :-Lin assumption.

3
Technically, this is only required for the input wires corresponding to the witness.

4
Our techniques extend naturally to support binary-valued gates that can compute arbitrary quadratic functions of their inputs; see Remark 4.16.

4

Composite-order pairing groups. A symmetric composite-order pairing group consists of two cyclic groups

G and G) of order # = ?@, where ?, @ are prime. Let 6 be a generator of G. By the Chinese Remainder Theorem,

we can write G � G? × G@ , where G? is a subgroup of order ? (generated by 6? = 6@) and G@ is a subgroup of

order @ (generated by 6@ = 6?). Additionally, there exists an e�ciently-computable, non-degenerate bilinear map

4 : G×G→ G) called the “pairing:” namely, for all 0, 1 ∈ Z# , it holds that 4 (60, 61) = 4 (6,6)01 . Finally, the subgroups

G? and G@ are orthogonal: 4 (6? , 6@) = 1, where 1 denotes the identity element in G) . In our construction, the real

scheme operates entirely in the order-? subgroup G? of G; the full group G only plays a role in the soundness analysis.

Vector commitments. The �rst ingredient we need to implement the above blueprint is a vector commitment

scheme for vectors of dimension< (< being the number of instances). We start by constructing a common reference

string with < group elements (�1, . . . , �<) where each �8 = 6
U8
? for some U8

r← Z# . A commitment to a vector

(F1,: , . . . ,F<,:) is a subset product of the associated group elements*: =
∏
8∈[<] �

F8,:
8

= 6

∑
8∈[<] U8F8,:

? ∈ G? . We note

that this is essentially the vector commitment scheme of Catalano and Fiore [CF13] instantiated in G? , but without

randomization (in our setting, we do not require a hiding property on the commitments). With this instantiation, the

commitment to each wire has size poly(_), and is independent of<.

Wire validity checks. The second ingredient we require is a way for the prover to demonstrate that the committed

values satisfy the wire validity and gate consistency relations. We start by describing the wire validity checks. Consider

a vector of candidate wire assignments (F1, . . . ,F<). The prover needs to convince the veri�er thatF8 ∈ {0, 1} for all

8 ∈ [<], or equivalently, that F2

8 = F8 . Now, a correctly-generated commitment to (F1, . . . ,F<) is an encoding of∑
8∈[<] U8F8 (in the exponent). We can now write

©«
∑
8∈[<]

U8
ª®¬ ©«

∑
8∈[<]

U8F8
ª®¬ =

∑
8∈[<]

U2

8F8 +
∑
8≠9

U8U 9F 9

©«
∑
8∈[<]

U8F8
ª®¬

2

=
∑
8∈[<]

U2

8F
2

8 +
∑
8≠9

U8U 9F8F 9 .

When F2

8 = F8 , the di�erence between these two expressions is

∑
8≠9 U8U 9 (1 − F8)F 9 . Notably, this di�erence is

a linear combination of the products U8U 9 where 8 ≠ 9 ; we refer to these terms as the cross terms. Conversely, if

F2

8 ≠ F8 for some 8 , then the di�erence between the two relations always depends on the non-cross-term U2

8 . This

suggests the following strategy for proof generation and veri�cation: we publish encodings �8, 9 := 6
U8U 9
? for 8 ≠ 9 in

the CRS to allow the prover to “cancel out” cross terms but not the non-cross terms. We also include an encoding

� :=
∏
8∈[<] �8 = 6

∑
8∈[<] U8

? that will be used for veri�cation. Speci�cally, we de�ne the CRS to be

crs =
(
{�8 := 6

U8
? }8∈[<] , � :=

∏
8∈[<]�8 = 6

∑
8∈[<] U8

? , {�8, 9 := 6
U8U 9
? }8≠9

)
. (1.1)

Then, the prover can compute the quantity + =
∏
8≠9 �

(1−F8)F9
8, 9

= 6

∑
8≠9 U8U 9 (1−F8)F9

? . By the above relations, we see

that if* = 6

∑
8∈[<] U8F8

? , then

4 (�,*) = 4 (* ,*)4 (6? ,+). (1.2)

The analysis above shows that if* is a valid commitment to a binary vector, then the prover can always compute +

that satis�es the veri�cation relation. When * is not a commitment to a binary vector, we need to argue that the

prover cannot craft a proof + that satis�es Eq. (1.2). The intuition is that there will be “non-cross-terms” that cannot

be cancelled using the components available to the prover. Formalizing this intuition requires some care and we

provide additional details below. We also note here that the size of the CRS (Eq. (1.1)) in our construction scales

quadratically with the number of instances<. In the following, we will describe a bootstrapping technique to reduce

the CRS size to scale with<Y
for any constant Y > 0.

5

Gate consistency checks. The approach we take for wire validity checks readily extends to enable gate consistency

checks. We describe our approach for verifying a single NAND gate. To simplify the description, suppose *1 and

*2 are vector commitments to the input wires (F1,1, . . . ,F<,1) and (F1,2, . . . ,F<,2), and*3 is a vector commitment

to the output wire (F1,3, . . . ,F<,3). The prover wants to show that F8,3 = NAND(F8,1,F8,2) for all 8 ∈ [<]. This is

equivalent to checking satis�ability of the quadratic relationF8,3 +F8,1F8,2 = 1. In this case, the prover computes the

element, ∈ G? such that

4 (�,*3)4 (*1,*2)
4 (�,�) = 4 (6? ,,). (1.3)

Suppose*1,*2,*3 are properly-generated commitments. Then, if we consider the exponents for the left-hand side of

the veri�cation relation, we have∑
8∈[<]

U2

8F8,3 +
∑
8≠9

U8U 9F 9,3︸ ︷︷ ︸
4 (�,*3)

+
∑
8∈[<]

U2

8F8,1F8,2 +
∑
8≠9

U8U 9F8,1F 9,2︸ ︷︷ ︸
4 (*1,*2)

−
∑
8∈[<]

U2

8 −
∑
8≠9

U8U 9︸ ︷︷ ︸
4 (�,�)

.

IfF8,3 +F8,1F8,2 = 1, then all of the non-cross terms vanish, and we are left with

∑
8≠9 U8U 9 (F 9,3 +F8,1F 9,2 − 1). The

prover can thus set, =
∏
8≠9 �

F9,3+F8,1F9,2−1

8, 9
to satisfy the above veri�cation relation. Similar to the case with wire

consistency checks, we now have to show that if there exists an 8 ∈ [<] whereF8,3 +F8,1F8,2 ≠ 1, then the prover is

unable to compute a, that satis�es Eq. (1.3).

Proving soundness. To argue soundness of our argument system, we take the dual-mode approach from [CJJ21a,

CJJ21b].
5

Speci�cally in this setting, there are two computationally indistinguishable ways to sample the CRS: (1) the

normal mode described above; and (2) a trapdoor mode that takes as input an instance index 8∗ ∈ [<] and outputs

a trapdoor CRS crs∗. The requirement is that in trapdoor mode, the scheme is statistically sound for instance 8∗.
Namely, with overwhelming probability over the choice of crs∗, there does not exist any proof c for (x1, . . . , x<) that

convinces the veri�er when x8∗ is false. However, it is still possible that there exists valid proofs of tuples where x8∗ is

true but x8 is false for some 8 ≠ 8∗. By a standard hybrid argument, it is easy to see that a BARG with this dual-mode

“somewhere statistical soundness” property also satis�es non-adaptive soundness (i.e., soundness for statements that

are independent of the CRS).
6

Achieving the stronger notion of adaptive soundness where security holds for statements

that depend on the CRS seems challenging and in certain settings, will either require non-black-box techniques or

basing security on non-falsi�able assumptions [GW11, BHK17].

Somewhere statistical soundness. To argue that our construction above satis�es somewhere statistical soundness,

we start by describing the trapdoor CRS. To ensure statistical soundness for index 8∗ ∈ [<], we replace the encoding

�8∗ = 6
U8∗
? associated with instance 8∗ with �8∗ ← 6U8∗ ∈ G. Critically, �8∗ is now in the full group rather than

the order-? subgroup G? . The encodings �8 associated with instances 8 ≠ 8∗ are still sampled from G? . We can

construct the cross terms �8, 9 in a similar manner as before: the components for 8, 9 ≠ 8∗ are una�ected and we set

�8∗, 9 = � 9,8∗ = �
U 9
8∗ ∈ G. The trapdoor CRS is computationally indistinguishable from the normal CRS by the subgroup

decision assumption [BGN05]. Consider the wire consistency checks and gate consistency checks:

• Wire consistency checks. Let * ∈ G be a commitment to a tuple of wire values and + ∈ G be the wire

consistency proof. We can decompose* as* = 6
V?
? 6

V@
@ for some V? ∈ Z? , V@ ∈ Z@ . Moreover, by construction,

the veri�cation component � is de�ned to be � =
∏
8∈[<] �8 = 6

∑
8∈[<] U8

? 6
U8∗
@ . Consider now the veri�cation

relation from Eq. (1.2). If this relation holds in G) , it must in particular hold in the order-@ subgroup of G) .

The key observation is that projecting the relation into the order-@ subgroup of G) isolates instance 8∗ (since

5
This is di�erent from the notion of “dual-mode” proof system often encountered in the setting of non-interactive zero-knowledge (NIZK) [GOS06,

PS19, LPWW20]. There, the CRS can be sampled in two computationally indistinguishable modes: one mode ensures statistical soundness and the

other ensures statistical zero knowledge.

6
Our construction satis�es the stronger notion of semi-adaptive somewhere soundness [CJJ21b], where the adversary �rst commits to an index 8∗,
but is allowed to choose the statements (x1, . . . , x<) after seeing the CRS. The adversary wins if the proof is valid but x8∗ is false. This notion is

needed for the implications to delegation.

6

only the encoding �8∗ contains components in the order-@ subgroup). Moreover, the pairing 4 (6? ,+) vanishes
in the order-@ subgroup, so the prover has no control over the validity check in the order-@ subgroup. Now, for

Eq. (1.2) to be satis�ed, it must be the case that U8∗V@ = V2

@ mod @. Thus, either V@ = 0 or V@ = U8∗ and so the

wire checks ensure that*: = 6
V?
? 6

b:U8∗
@ where b: ∈ {0, 1} for all : ∈ [<].

• Gate consistency checks. Now, consider the gate consistency checks. We again consider the projection of

the pairing check into the order-@ subgroup. If we project Eq. (1.3) in the order-@ subgroup and using the above

relations for*: and �, we obtain the relation

b:3
U2

8∗ + b:1
b:2
U2

8∗ − U2

8∗ = 0 mod @.

If U8∗ ≠ 0 mod @, then b:3
+b:1

b:2
−1 = 0 mod @. Since b:1

, b:2
, b:3
∈ {0, 1}, this means that b:3

= NAND(b:1
, b:2
).

The above relations show that (b1, . . . , bC) ∈ {0, 1}C constitutes a valid assignment to the wires of � ((b1, . . . , b=),w∗)
where w∗ = (b=+1, . . . , b=+ℎ). Again considering the veri�cation relations in the order-@ subgroup, the input validity

checks ensure that x8∗ = (b1, . . . , b=) and the output satis�ability check ensures that � (x8∗ ,w∗) = bC = 1. The above

argument shows that if all of the validity checks pass, then we can extract a witness for instance 8∗. Thus, statistical

soundness for instance x8∗ holds. In fact, this extraction procedure can be made e�cient given a trapdoor (i.e., the

factorization of #). We provide the full construction and security analysis in Section 3.

1.2.2 The Prime-Order Instantiation, Bootstrapping, and Applications

The BARG construction from symmetric composite-order groups is conceptually simple to describe and illustrates

the main ideas behind our construction. We now describe several extensions and generalizations of these ideas.

Instantiation from :-Lin. The ideas underlying the composite-order construction (Sections 1.2.1 and 3) naturally

extend to the setting of asymmetric prime-order groups. Recall that an asymmetric prime-order group consists of

two base groups G1 and G2, a target group G) , all of prime order ? , and an e�ciently-computable, non-degenerate

pairing 4 : G1 ×G2 → G) . In this setting, we can base security on the standard :-Lin assumption for any : ≥ 1. Recall

that the case : = 1 corresponds to the SXDH assumption (i.e., DDH in G1 and G2) and the case : = 2 corresponds

to the DLIN assumption [BBS04, HK07, Sha07]. The key property we relied on in the soundness analysis of the

composite-order construction is the ability to isolate a single instance by projecting the veri�cation relations into a

suitable subgroup. In the prime-order setting, we can simulate this projection property by considering subspaces of

vector spaces [GS08, Fre10]. We refer to Section 4 for the full description and security analysis.

Bootstrapping to reduce CRS size. The size of the CRS in the above construction scales quadratically with

the number of instances < (due to the cross terms). However, we can adapt the bootstrapping approach from

Kalai et al. [KPY19] reduce the size of the CRS to grow with <Y
(for any constant Y > 0). Soundness of the

bootstrapping construction critically relies on the ability to extract the witness for one of the instances in the BARG.

The construction is simple. To verify statements x1, . . . , x< , we consider a two-tiered construction where we

group the statements into</� batches of statements, each containing exactly � statements. We use a BARG (on �

instances) to prove that all of the statements in each batch (x� (8−1)+1, . . . , x8�) are true. Let c8 be the BARG proof

for the 8th batch. The prover then shows that it knows accepting proofs c1, . . . , c</� of each of the</� batches of

statements. Here, it will be critical that the size of the BARG veri�cation circuit for checking c8 be sublinear in the

batch size �. This is not possible in general since the veri�cation circuit has to read the statement which already has

length �. However, when the underlying BARG satis�es a “split veri�cation” property (De�nition 2.9), where the

veri�cation algorithm decomposes into (1) a circuit-independent preprocessing step that reads the statement and

outputs a succinct veri�cation key vk; and (2) a fast “online” veri�cation step whose running time is polylogarithmic
in the number of instances, it su�ces to use the BARG to only check the online veri�cation step.

Now, if we set � =
√
< in this framework, both the BARG for checking each batch of � statements as well as the

BARG for verifying the</� =
√
< batches are BARGs on

√
< instances. Thus, we can use a BARG on

√
< instances

to construct a BARG on< instances. If we start with a BARG with CRS size<3
, then the two-tiered construction

reduces the CRS size to roughly<3/2
. We can apply this approach recursively (with a constant number of iterations)

to reduce the CRS size from poly(_,<) to<Y · poly(_) for any constant Y > 0. We refer to Section 5 for the full details.

7

Application to delegation. Choudhuri et al. [CJJ21b] showed how to combine a “BARG for index languages” with

a somewhere extractable commitment scheme to obtain a delegation scheme for RAM programs. In a BARG for

index languages, the statements to the< instances are always �xed to be the binary representation of the integers

1, . . . ,<. In this setting, the prover and the veri�er do not need to read the statement anymore, and correspondingly,

the veri�cation algorithm is required to run in time poly(_, log<, |� |) when checking a circuit � .

Our BARG construction extends naturally to this setting. In the construction described in Section 1.2.1 (see also

Section 3), the veri�er starts by computing the commitments *1, . . . ,*= to the bits of the statement. This takes time

poly(_, =,<) since the veri�er has to minimally read the statement (of length<=). However in the case of an index

BARG, the statements are known in advance, so the encodings*8 can be computed in advance and included as part of

a veri�cation key vk = (*1, . . .*=) that the veri�er uses for veri�cation. Given vk, the statement validity checks can

be implemented by simply comparing the precomputed commitments with those provided by the adversary; notably

this check is now independent of the number of instances. Using the precomputed commitments, we can bring the

overall veri�cation cost down to |� | · poly(_, log<), which meets the e�ciency requirements for an index BARG.

The second ingredient we require to instantiate the Choudhuri et al. [CJJ21b] compiler is a somewhere extractable

commitment scheme. Our techniques for constructing BARGs can also be used to directly construct a somewhere

extractable commitment scheme (when combined with a somewhere statistically binding hash function [HW15,

OPWW15]). We can thus appeal to the compiler of Choudhuri et al. to obtain a delegation scheme for RAM programs

from the SXDH assumption in bilinear groups.
7

Similar to the case with BARGs, we �rst describe a construction with

a long CRS where the length of the CRS grows quadratically with the length of the committed message (Section 6.2).

We then describe a similar kind of bootstrapping technique to obtain a somewhere extractable commitment scheme

with a CRS of size sublinear in the message size (Section 6.3). We refer to Section 6 for the full details.

Application to aggregate signatures. As described in Section 1.1, our BARG construction directly implies an

aggregate signature scheme supporting bounded aggregation. We describe this construction in Section 7.

Generalized BARGs. As previously noted for the case of BARGs for index languages, when the statements are �xed

in advance, we can precompute commitments to them during setup and include the honestly-generated commitments

to their values as part of a veri�cation key. In this case, the veri�er can use the precomputed encodings during

veri�cation and no longer needs to perform the statement validity checks. In Appendix A, we describe a more

generalized view where some of the statement wires are �xed while others can be chosen by the prover. This

generalization captures both the standard setting (where all of the statement wires can be chosen by the prover) and

the BARG for index languages setting (where all of the statement wires are �xed ahead of time) as special cases.

1.3 Related Work
SNARGs. Batch arguments for NP can be constructed from any succinct non-interactive argument (SNARG) for NP.

Existing constructions of SNARGs have either relied on random oracles [Mic95, BBHR18, COS20, CHM
+
20, Set20], the

generic group model [Gro16], or strong non-falsi�able assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13,

BCI
+
13, BCPR14, BISW17, BCC

+
17]. Indeed, Gentry and Wichs [GW11] showed that no construction of an (adaptively-

sound) SNARG for NP can be proven secure via a black-box reduction to a falsi�able assumption [Nao03]. This

separation also extends to adaptively-sound BARGs of knowledge (i.e., “BARKs”) forNP [BHK17]. The only construction

of non-adaptively sound SNARGs from falsi�able assumptions is the construction based on indistinguishability

obfuscation [SW14]. We note that Lipmaa and Pavlyk [LP21] recently proposed a candidate SNARG from a non-

standard, but falsi�able, @-type assumption on bilinear groups. However, we were recently informed [Wic22] that the

proof of security was fundamentally �awed and later con�rmed this with the authors of [LP21].

7
While our BARG scheme can be based on the :-Lin assumption over bilinear groups for any : ≥ 1, existing constructions of somewhere

statistically binding hash functions [OPWW15] rely on the DDH assumption. As such, our current instantiation is based on SXDH. It seems

plausible that the DDH-based construction of somewhere statistically binding hash functions can be extended to achieve hardness under the

:-Lin assumption, but this is orthogonal to the primary focus of our work.

8

Batch arguments for NP. If we focus speci�cally on constructions of BARGs for NP, Kalai et al. [KPY19] showed

how to construct a BARG for NP from a non-standard, but falsi�able, @-type assumption on bilinear groups. More

recently, Choudhuri et al. gave constructions from subexponentially-hard DDH in pairing-free groups in conjunction

with polynomial hardness of the QR assumption [CJJ21a], as well as from polynomial hardness of the LWE assump-

tion [CJJ21b]. Both of these constructions leverage correlation-intractable hash functions. The size of the proof in the

DDH +QR construction grows with

√
<, where< is the number of instances, while that in the LWE construction

scales polylogarithmically with the number of instances. Our work provides the �rst BARG for NP from standard

assumptions on bilinear groups (with proof size that is independent of the number of instances).

Interactive schemes. Batch arguments for NP have also been considered in the interactive setting. First, the

classic IP = PSPACE theorem [LFKN90, Sha90] implies a interactive proof for batch NP veri�cation, albeit with an

ine�cient prover. For interactive proofs with an e�cient prover, batch veri�cation is known for the class UP of NP
languages with unique witnesses [RRR16, RRR18, RR20]. If we relax to interactive arguments, Brakerski et al. [BHK17]

constructed 2-message BARGs for NP from any computational private information retrieval (PIR) scheme.

Delegation schemes. Many works have focused on constructing delegation schemes for deterministic compu-

tations. In the interactive setting, we have succinct proofs for both bounded-depth computations [GKR08] and

bounded-space computations [RRR16]. In the non-interactive setting, Kalai et al. [KPY19] gave the �rst construction

from a falsi�able (but non-standard) assumption on bilinear groups. Using correlation-intractable hash functions based

on LWE, Jawale et al. [JKKZ21] and Choudhuri et al. [CJJ21b] constructed delegation schemes for bounded-depth

computations and general polynomial-time computations, respectively. Recently, González and Zacharakis [GZ21]

constructed a delegation scheme for arithmetic circuits (with a long CRS) from a bilateral (or “split”) :-Lin assumption

in asymmetric groups. The size of the CRS in their construction is quadratic in the circuit size. Our scheme is based

on the vanilla SXDH assumption in asymmetric groups and has a CRS whose size is sublinear in the running time of

the RAM computation (speci�cally,) Y for any constant Y > 0, where) is the running time of the RAM computation).

Aggregate signatures. Aggregate signatures were introduced by Boneh et al. [BGLS03] who also gave an e�cient

construction using bilinear maps in the random oracle model. In the standard model, constructions of aggregate

signatures have typically considered restricted settings such as sequential aggregation [LMRS04, LOS
+
06] where

the aggregate signature is constructed by having each signer sequentially “add” its signature to an aggregated

signature, or synchronized aggregation [GR06, AGH10, HW18], which assumes that signers have a synchronized

clock and aggregation is only allowed on signatures from the same time period (with exactly 1 signature from

each signer per time period). Other (standard model) constructions have relied on heavy tools such as multilinear

maps [RS09, FHPS13] or indistinguishability obfuscation [HKW15]. Aggregate signatures can also be constructed

generically from adaptively-sound succinct arguments of knowledge (SNARKs), which are only known from non-

falsi�able assumptions or idealized models. In the case of bounded aggregation (where there is an a priori bound on

the number of signatures that can be aggregated), the somewhere extractable BARG by Choudhuri et al. [CJJ21b]

can be used to obtain a construction from LWE. Our work provides the �rst instantiation of an aggregate signature

supporting bounded aggregation from standard assumptions over bilinear groups in the plain model.

2 Preliminaries
For a positive integer =, we write [=] to denote the set {1, . . . , =}. For a positive integer ? ∈ N, we write Z? to

denote the ring of integers modulo ? . We use bold-face uppercase letters (e.g., A, B to denote matrices) and bold-face

lowercase letters (e.g., x, w) to denote vectors. For a �nite set (, we write G
r← (to indicate that G is sampled

uniformly at random from (. We use non-bold-face letters to denote their components (e.g., x = (G1, . . . , G=)). We

write poly(_) to denote a function that is $ (_2) for some 2 ∈ N and negl(_) to denote a function that is > (_−2) for all

2 ∈ N. We say an event � occurs with overwhelming probability if its complement occurs with negligible probability.

An algorithm is e�cient if it runs in probabilistic polynomial time in its input length. We say that two families of

distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N are computationally indistinguishable if no e�cient algorithm

9

can distinguish them with non-negligible probability. We say they are statistically indistinguishable if the statistical

distance between them is bounded by a negligible function.

2.1 Non-Interactive Batch Arguments for NP
In this work, we consider the NP-complete language of Boolean circuit satis�ability. For ease of exposition, we focus

on Boolean circuits comprised exclusively of NAND gates in our main construction. In Remark 4.16, we describe how

to generalize the construction to support gates that compute arbitrary quadratic relations over their inputs. This

allows us to support both general gates (e.g., AND, OR, XOR) as well as gates with more than two inputs.

For a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} with C wires, we associate wires 1, . . . , = with the bits of the

statement G1, . . . , G= , and wires = + 1, . . . , = +ℎ with the bits of the witnessF1, . . . ,Fℎ , respectively. We associate wire

C with the output wire. We measure the size B of� by the number of NAND gates it has. By construction, C ≤ = +ℎ + B .
We now de�ne the (batch) circuit satis�ability language we consider in this work:

De�nition 2.1 (Circuit Satis�ability). We de�ne LCSAT = {(�, x) | ∃w ∈ {0, 1}ℎ : � (x,w) = 1} to be the language of

Boolean circuit satis�ability, where � : {0, 1}= × {0, 1}ℎ → {0, 1} is a Boolean circuit and x ∈ {0, 1}= is a statement.

For a positive integer< ∈ N, we de�ne the batch circuit satis�ability language LBatchCSAT,< as follows:

LBatchCSAT,< = {(�, x1, . . . , x<) | ∀8 ∈ [<] : ∃w8 ∈ {0, 1}ℎ : � (x8 ,w8) = 1},

where � : {0, 1}= × {0, 1}ℎ → {0, 1} is a Boolean circuit and x1, . . . , x< ∈ {0, 1}= are the instances.

De�nition 2.2 (Batch Argument for Circuit Satis�ability). A non-interactive batch argument (BARG) for circuit

satis�ability is a tuple of three e�cient algorithms ΠBARG = (Setup, Prove,Verify) with the following properties:

• Setup(1_, 1<, 1B) → crs: On input the security parameter _ ∈ N, the number of instances< ∈ N, and a bound

on the circuit size B ∈ N, the setup algorithm outputs a common reference string crs.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)) → c : On input the common reference string crs, a Boolean circuit

� : {0, 1}= × {0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ , the prove

algorithm outputs a proof c .

• Verify(crs,�, (x1, . . . , x<), c) → 1: On input the common reference string crs, the Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= and a proof c , the veri�cation algorithm outputs a bit1 ∈ {0, 1}.

De�nition 2.3 (Completeness). A BARG ΠBARG = (Setup, Prove,Verify) is complete if for all _,<, B ∈ N, all Boolean

circuits� : {0, 1}=×{0, 1}ℎ → {0, 1} of size at most B , all statements x1, . . . , x< ∈ {0, 1}= , and all witnessesw1, . . . ,w< ∈
{0, 1}ℎ where � (x8 ,w8) = 1 for all 8 ∈ [<],

Pr

[
Verify(crs,�, (x1, . . . , x<), c) = 1 :

crs← Setup(1_, 1<, 1B);
c ← Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<))

]
= 1.

De�nition 2.4 (Soundness). Let ΠBARG = (Setup, Prove,Verify) be a BARG. We consider two notions of soundness:

• Non-adaptive soundness: We say that ΠBARG satis�es non-adaptive soundness if for every e�cient adversary

A, every polynomial< =<(_), B = B (_), and every statement (�, x1, . . . , x<) ∉ LBatchCSAT,< , where� : {0, 1}=×
{0, 1}ℎ → {0, 1} is a Boolean circuit of size at most B and x1, . . . , x= ∈ {0, 1}= , there exists a negligible function

negl(·) such that for all _ ∈ N,

Pr

[
Verify(crs,�, (x1, . . . , x<), c) = 1 :

crs← Setup(1_, 1<, 1B);
c ← A(1_, crs)

]
= negl(_).

• Adaptive soundness: We say that ΠBARG is adaptively sound if for every e�cient adversary A and every

polynomial< =<(_), B = B (_), there exists a negligible function of negl(·) such that for all _ ∈ N,

Pr

Verify(crs,�, (x1, . . . , x<), c) = 1

and

(�, x1, . . . , x<) ∉ LBatchCSAT,<

:

crs← Setup(1_, 1<, 1B);
(�, x1, . . . , x<, c) ← A(1_, crs)

 = negl(_) .

10

De�nition 2.5 (Semi-Adaptive Somewhere Soundness [CJJ21b]). A BARG ΠBARG = (Setup, Prove,Verify) satis�es

semi-adaptive somewhere soundness if there exists an e�cient algorithm TrapSetup with the following properties:

• TrapSetup(1_, 1<, 1B , 8∗) → crs∗: On input the security parameter _ ∈ N, the number of instances< ∈ N, the

size of the circuit B ∈ N, and an index 8∗ ∈ [<], the trapdoor setup algorithm outputs a (trapdoor) common

reference string crs∗.

We require TrapSetup satisfy the following two properties:

• CRS indistinguishability: For integers< ∈ N, B ∈ N, a bit 1 ∈ {0, 1}, and an adversary A, de�ne the CRS

indistinguishability experiment ExptCRSA (_,<, B, 1) as follows:

1. Algorithm A(1_, 1<, 1B) outputs an index 8∗ ∈ [<].
2. If 1 = 0, the challenger gives crs ← Setup(1_, 1<, 1B) to A. If 1 = 1, the challenger gives crs∗ ←

TrapSetup(1_, 1<, 1B , 8∗) to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satis�es CRS indistinguishability if for every e�cient adversary A, every polynomial< =<(_),
B = B (_), there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ExptCRSA (_,<, B, 0) = 1] − Pr[ExptCRSA (_,<, B, 1) = 1]
�� = negl(_).

• Somewhere soundness in trapdoor mode: De�ne the somewhere soundness security game between an

adversary A and a challenger as follows:

– Algorithm A(1_, 1<, 1B) outputs an index 8∗ ∈ [<].
– The challenger samples crs∗ ← TrapSetup(1_, 1<, 1B , 8∗) and gives crs∗ to A.

– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , statements

x1, . . . , x< ∈ {0, 1}= , and a proof c . The output of the game is 1 = 1 if Verify(crs∗,�, (x1, . . . , x<), c) = 1

and (�, x8∗) ∉ LCSAT. Otherwise, the output is 1 = 0.

Then, ΠBARG satis�es somewhere soundness in trapdoor mode if for every adversary A, and every polynomial

< =<(_), B = B (_), there exists a negligible function negl(·) such that for all _ ∈ N, Pr[1 = 1] = negl(_) in the

somewhere soundness security game.

De�nition 2.6 (Somewhere Argument of Knowledge [CJJ21b]). A BARG ΠBARG = (Setup, Prove,Verify) is a some-

where argument of knowledge if there exists a pair of e�cient algorithms (TrapSetup, Extract) with the following

properties:

• TrapSetup(1_, 1<, 1B , 8∗) → (crs∗, td): On input the security parameter _ ∈ N, the number of instances< ∈ N,

the size of the circuit B ∈ N, and an index 8∗ ∈ [<], the trapdoor setup algorithm outputs a common reference

string crs∗ and an extraction trapdoor td.

• Extract(td,�, (x1, . . . , x<), c) → w∗ On input the trapdoor td, statements x1, . . . , x< , and a proof c , the

extraction algorithm outputs a witness w∗ ∈ {0, 1}ℎ . The extraction algorithm is deterministic.

We require (TrapSetup, Extract) to satisfy the following two properties:

• CRS indistinguishability: Same as in De�nition 2.5.

• Somewhere extractable in trapdoor mode: De�ne the somewhere extractable security game between an

adversary A and a challenger as follows:

– Algorithm A(1_, 1<, 1B) outputs an index 8∗ ∈ [<].
– The challenger samples (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗) and gives crs∗ to A.

11

– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , statements

x1, . . . , x< ∈ {0, 1}= , and a proof c . Let w∗ ← Extract(td,�, (x1, . . . ,w<), c).
– The output of the game is 1 = 1 if Verify(crs∗,�, (x1, . . . , x<), c) = 1 and � (x8∗ ,w∗) ≠ 1. Otherwise, the

output is 1 = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary A and every polynomial

< =<(_), B = B (_), there exists a negligible function negl(·) such that Pr[1 = 1] = negl(_) in the somewhere

extractable game.

Remark 2.7 (Soundness Notions). The notion of semi-adaptive somewhere soundness from De�nition 2.5 is stronger

than and implies non-adaptive soundness. Somewhere extractability (De�nition 2.6) is a further strengthening of

semi-adaptive somewhere soundness.

De�nition 2.8 (Succinctness). A BARG ΠBARG = (Setup, Prove,Verify) is succinct if there exists a �xed polynomial

poly(·, ·, ·) such that for all _,<, B ∈ N, all crs in the support of Setup(1_, 1<, 1B), and all Boolean circuits � : {0, 1}= ×
{0, 1}ℎ → {0, 1} of size at most B , the following properties hold:

• Succinct proofs: The proof c output by Prove(crs,�, ·, ·) satis�es |c | ≤ poly(_, log<, B).

• Succinct CRS: |crs| ≤ poly(_,<,=) + poly(_, log<, B).

• Succinct veri�cation: The veri�cation algorithm runs in time poly(_,<,=) + poly(_, log<, B).

BARGs with split veri�cation. Our bootstrapping construction in Section 5 (for reducing the size of the CRS)

will rely on a BARG with a split veri�cation property where the veri�cation algorithm can be decomposed into a

input-dependent algorithm that pre-processes the statements into a short veri�cation key together with a fast online

veri�cation algorithm that takes the precomputed veri�cation key and checks the proof. A similar property was also

considered by Choudhuri et al. [CJJ21b] to realize their RAM delegation construction.

De�nition 2.9 (BARG with Split Veri�cation). A BARG ΠBARG = (Setup, Prove,Verify) supports split veri�cation if

there exists a pair of e�cient and deterministic algorithms (GenVK,OnlineVerify) with the following properties:

• GenVK(crs, (x1, . . . , x<)) → vk: On input the common reference string crs and statements x1, . . . , x< ∈ {0, 1}= ,

the veri�cation key generation algorithm outputs a veri�cation key vk.

• OnlineVerify(vk,�, c) → 1: On input a veri�cation key vk, a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} and

a proof c , the veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

Then, we say ΠBARG supports split veri�cation if Verify(crs,�, (x1, . . . , x<), c) outputs

OnlineVerify(GenVK(crs, (x1, . . . , x<)),�, c).

We additionally require that there exists a �xed polynomial poly(·, ·, ·) such that for all _,<, B ∈ N, all crs in the

support of Setup(1_, 1<, 1B), and all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , the following

e�ciency properties hold (in addition to the properties in De�nition 2.8):

• Succinct veri�cation key: The veri�cation key generation algorithm GenVK runs in time poly(_,<,=), and

the size of the vk output by GenVK satis�es |vk| ≤ poly(_, log<,=).

• Succinct online veri�cation: The algorithm OnlineVerify(vk,�, c) runs in time poly(_, log<, B).

Remark 2.10 (BARGs for Index Languages [CJJ21b]). BARGs for index languages [CJJ21b] (“index BARGs”) are a

useful building block for constructing delegation schemes for RAM programs. In an index BARG with< instances,

the statement to the 8th instance is the binary representation of the index 8 . Since the statements are �xed in an

index BARG, they are not included in the input to the Prove and Verify algorithms. Moreover, the running time

12

of the veri�cation algorithm Verify on input a veri�cation key vk,
8

a circuit � , and a proof c is required to be

poly(_, log<, |� |). It is easy to see that any BARG with a split veri�cation procedure can also be used to build an

index BARG. Speci�cally, after the Setup algorithm samples the common reference string crs, it precomputes the

(short) veri�cation key vk ← GenVK(crs, (1, 2, . . . ,<)). The veri�cation algorithm Verify then takes as input the

precomputed veri�cation key vk, the circuit � , and the proof c , and outputs OnlineVerify(vk,�, c). The succinctness

requirements on the split veri�cation procedure implies the succinctness requirement on the index BARG.

3 BARG for NP from Subgroup Decision in Bilinear Groups
In this section, we show how to construct a BARGs from the subgroup decision assumption over symmetric composite-

order groups. We refer to Section 1.2.1 for a general overview of this construction. We start by recalling the de�nition

of a composite-order pairing group [BGN05] and the subgroup decision assumption.

De�nition 3.1 (Composite-Order Bilinear Groups [BGN05]). A (symmetric) composite-order bilinear group generator

is an e�cient algorithm CompGroupGen that takes as input the security parameter _ and outputs a description

G = (G,G) , ?, @, 6, 4) of a bilinear group where ?, @ are distinct primes, G and G) are cyclic groups of order # = ?@,

and 4 : G ×G→ G) is a non-degenerate bilinear map (called the “pairing”). We require that the group operation in G
and G) as well as the pairing operation to be e�ciently computable.

De�nition 3.2 (Subgroup Decision [BGN05]). The subgroup decision assumption holds with respect to a composite-

order bilinear group generator CompGroupGen if for every e�cient adversary A, there exists a negligible function

negl(·) such that for every _ ∈ N,��
Pr[A((G,G) , # , 6? , 4), 6A) = 1] − Pr[A((G,G) , # , 6? , 4), 6A?) = 1]

�� = negl(_),

where (G,G) , ?, @, 6, 4) ← CompGroupGen(1_), # ← ?@, 6? ← 6@ , and A
r← Z# .

Construction 3.3 (BARG for NP from Subgroup Decision). Take any integer< ∈ N. We construct a BARG with

split veri�cation for the language of circuit satis�ability as follows:

• Setup(1_, 1<, 1B): On input the security parameter _, the number of instances<, and the bound on the circuit

size B , the setup algorithm does the following:

– Run (G,G) , ?, @, 6, 4) ← GroupGen(1_) and let # = ?@, 6? ← 6@ . In particular, 6? generates a subgroup

of order ? in G. Let G = (G,G) , # , 6? , 4).

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ∈ [<], let �8 ← 6

U8
? . Let �←∏

8∈[<] �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , compute �8, 9 ← 6
U8U 9
? .

– Output the common reference string crs =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)): On input the common reference string crs = (G, �, {�8 }8∈[<], {�8, 9 }8≠9),
the circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ ,

de�ne C to be the number of wires in � and B to be the number of gates in � . Then, for 8 ∈ [<] and 9 ∈ [C], let

F8, 9 ∈ {0, 1} be the value of wire 9 in � (x8 ,w8). The prover proceeds as follows:

– Encoding wire values: For each : ∈ [C], let*: =
∏
8∈[<] �

F8,:
8

.

– Validity of wire assignments: For each : ∈ [C], let +: =
∏
8≠9 �

(1−F8,:)F9,:
8, 9

.

– Validity of gate computation: For each NAND gate �ℓ = (:1, :2, :3) ∈ [C]3 (where ℓ ∈ [B]), compute

,ℓ =
∏
8≠9 �

1−F8,:
1
F9,:

2
−F9,:

3

8, 9

8
Here, we allow the veri�cation algorithm to take in a separate veri�cation key vk, which may be shorter than the full common reference string crs.
Note that the vk is assumed to be public (i.e., the CRS contains vk and possibly additional components used to construct proofs).

13

Finally, output the proof c =
(
{*: ,+: }:∈[C], {,ℓ }ℓ∈[B]

)
.

• Verify(crs,�, (x1, . . . , x<), c): We decompose the veri�cation algorithm into (GenVK,OnlineVerify):

– GenVK(crs, (x1, . . . , x<)): On input the common reference string crs = (G, �, {�8 }8∈[<], {�8, 9 }8≠9), in-

stances x1, . . . , x< ∈ {0, 1}= , the veri�cation key generation algorithm computes * ∗
:
=

∏
8∈[<] �

G8,:
8

for

each : ∈ [=], and outputs the veri�cation key vk = (* ∗
1
, . . . ,* ∗=).

– OnlineVerify(vk,�, c): On input the veri�cation key vk = (* ∗
1
, . . . ,* ∗=), a circuit � : {0, 1}= × {0, 1}ℎ →

{0, 1} and the proof c = ({*: ,+: }:∈[C], {,ℓ }ℓ∈[B]), the veri�cation algorithm checks the following:

∗ Validity of statement: For each input wire : ∈ [=],*: = * ∗
:

.

∗ Validity of wire assignments: For each : ∈ [C],

4 (�,*:) = 4 (6? ,+:)4 (*: ,*:). (3.1)

∗ Validity of gate computation: For each gate �ℓ = (:1, :2, :3) ∈ [C]3,

4 (�,�) = 4 (*:1
,*:2
)4 (�,*:3

)4 (6? ,,ℓ). (3.2)

∗ Output satis�ability: The output encoding*C satis�es*C = �.

The algorithm outputs 1 if all checks pass, and outputs 0 otherwise.

The veri�cation algorithm outputs OnlineVerify(GenVK(crs, (x1, . . . , x<)),�, c).

Theorem 3.4 (Completeness). Construction 3.3 is complete.

Proof. Take any circuit� : {0, 1}=×{0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= and witnesses w1, . . . ,w< ∈ {0, 1}ℎ
such that � (x8 ,w8) = 1 for all 8 ∈ [<]. Let crs← Setup(1_, 1<, 1B) and c ← Prove(crs, (x1, . . . , x<), (w1, . . . ,w<)).
We show that Verify(crs,�, (x1, . . . , x<), c) outputs 1. Consider each of the veri�cation relations:

• Validity of statement: By construction of GenVK, * ∗
:
=

∏
8∈[<] �

G8,:
8

for each : ∈ [=]. By construction of

Prove, *: =
∏
8∈[<] �

F8,:
8

. By de�nition, the �rst = wires in � coincide with the wires to the statement, so

F8,: = G8,: for : ∈ [=], and*: = * ∗
:

for all : ∈ [=].

• Validity of wire assignments: Take any : ∈ [C]. Then*: =
∏
8∈[<] �

F8,:
8

= 6

∑
8∈[<] U8F8,:

? . Now,

©«
∑
8∈[<]

U8
ª®¬ ©«

∑
9 ∈[<]

U 9F 9,:
ª®¬ =

∑
8∈[<]

U2

8F8,: +
∑
8≠9

U8U 9F 9,: ,

and ©«
∑
8∈[<]

U8F8,:
ª®¬ ©«

∑
9 ∈[<]

U 9F 9,:
ª®¬ =

∑
8∈[<]

U2

8F8,: +
∑
8≠9

U8U 9F8,:F 9,: ,

using the fact that F8,: ∈ {0, 1} so F2

8,:
= F8,: . Finally +: =

∏
8≠9 �

(1−F8,:)F9,:
8, 9

= 6

∑
8≠9 U8U 9 (1−F8,:)F9,:

? . Thus, we

can write

4 (6? ,+:)4 (*: ,*:) = 4 (6? , 6?)
∑
8≠9 U8U 9 (1−F8,:)F9,:+

∑
8∈[<] U

2

8 F8,:+
∑
8≠9 U8U 9F8,:F9,:

= 4 (6? , 6?)
∑
8∈[<] U

2

8 F8,:+
∑
8≠9 U8U 9F9,:

= 4 (�,*:).

14

• Validity of gate computation: Take any gate �ℓ = (:1, :2, :3) ∈ [C]3. Consider �rst the exponents for the

terms 4 (*:1
,*:2
), 4 (�,*:3

), and 4 (�,�):

©«
∑
8∈[<]

U8F8,:1

ª®¬ ©«
∑
9 ∈[<]

U 9F 9,:2

ª®¬ =
∑
8∈[<]

U2

8F8,:1
F8,:2

+
∑
8≠9

U8U 9F8,:1
F 9,:2

©«
∑
8∈[<]

U8
ª®¬ ©«

∑
9 ∈[<]

U 9F 9,:3

ª®¬ =
∑
8∈[<]

U2

8F8,:3
+

∑
8≠9

U8U 9F 9,:3

©«
∑
8∈[<]

U8
ª®¬ ©«

∑
9 ∈[<]

U 9
ª®¬ =

∑
8∈[<]

U2

8 +
∑
8≠9

U8U 9 .

By de�nitionF8,:3
= NAND(F8,:1

,F8,:2
). This means that for each 8 ∈ [<], either (F8,:1

F8,:2
= 1 andF8,:3

= 0)

or (F8,:1
F8,:2

= 0 andF8,:3
= 1). This means that∑

8∈[<]
U2

8 (F8,:1
F8,:2

+F8,:3
) =

∑
8∈[<]

U2

8 .

Combining the above relations in the exponent, we have that

4 (�,�)
4 (*:1

,*:2
)4 (�,*:3

) =
4 (6? , 6?)

∑
8∈[<] U

2

8 +
∑
8≠9 U8U 9

4 (6? , 6?)
∑
8∈[<] U

2

8
+∑8≠9 U8U 9 (F8,:1

F9,:
2
+F9,:

3
)

=
∏
8≠9

4 (6? , �8, 9)1−F8,:1
F9,:

2
−F9,:

3

= 4 (6? ,,ℓ).

• Output satis�ability: Since � (x8 ,w8) = 1, it follows that F8,C = 1 for all 8 ∈ [<]. By de�nition, *C =∏
8∈[<] �

F8,C
8

=
∏
8∈[<] �8 = �. �

Theorem 3.5 (Somewhere Argument of Knowledge). Suppose the subgroup decision assumption holds with respect to
CompGroupGen. Then, Construction 3.3 is a somewhere argument of knowledge.

Proof. We start by de�ning the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1<, 1B , 8∗) : The trapdoor algorithm uses the following procedure (we highlight in green the

di�erences in the common reference string components between TrapSetup and Setup):

1. Run (G,G) , ?, @, 6, 4) ← GroupGen(1_) and let # = ?@, 6? ← 6@ . Let G = (G,G) , # , 6? , 4).

2. For each 8 ∈ [<], sample U8
r← Z# . For each 8 ≠ 8∗, let �8 ← 6

U8
? . Let �8∗ ← 6U8∗ . Let �← �8∗

∏
8≠8∗ �8 .

3. For each 8, 9 ∈ [<] where 8 ≠ 9 and 8, 9 ≠ 8∗, compute �8, 9 ← 6
U8U 9
? . Compute �8∗, 9 ← �

U 9
8∗ and �8,8∗ ← �

U8
8∗

for all 8, 9 ≠ 8∗.

4. Output the common reference string crs∗ =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
and the trapdoor td = 6@ ← 6? .

• Extract(td,�, (x1, . . . , x<), c): On input the trapdoor td = 6@ , the Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1},
statements x1, . . . , x< ∈ {0, 1}= , and the proof c =

(
{*: ,+: }:∈[C], {,ℓ }ℓ∈[B]

)
, the extraction algorithm sets

F∗
:
= 0 if 4 (6@,*:) = 1 andF∗

:
= 1 otherwise for each : = = + 1, . . . , = + ℎ. It outputs w∗ = (F∗=+1, . . . ,F∗=+ℎ).

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.

Lemma 3.6 (CRS Indistinguishability). If the subgroup decision assumption holds with respect to CompGroupGen,
then Construction 3.3 satis�es CRS indistinguishability.

15

Proof. Take any polynomial< =<(_), B = B (_). We proceed via a hybrid argument:

• Hyb
0
: This is the real distribution. At the beginning of the security game, the adversary chooses an index

8∗ ∈ [<]. The challenger then constructs the common reference string by running Setup(1_, 1<, 1B):

– Run (G,G) , ?, @, 6, 4) ← GroupGen(1_) and let # = ?@, 6? ← 6@ . Let G = (G,G) , # , 6? , 4).

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ∈ [<], let �8 ← 6

U8
? . Let �←∏

8∈[<] �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , compute �8, 9 ← 6
U8U 9
? .

– Output the common reference string crs =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
.

The challenger gives crs to A and A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
except the challenger constructs � and �8, 9 using the procedure from TrapSetup:

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ∈ [<], let �8 ← 6

U8
? . Let �← �8∗

∏
8≠8∗ �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 and 8, 9 ≠ 8∗, compute �8, 9 ← 6
U8U 9
? . Compute �8∗, 9 ← �

U 9
8∗ and �8,8∗ ← �

U8
8∗

for all 8, 9 ≠ 8∗.

• Hyb
2
: Same as Hyb

1
except the challenger samples �8∗ ← 6U8∗ :

– For each 8 ∈ [<], sample U8
r← Z# . For each 8 ≠ 8∗, let �8 ← 6

U8
? . Let �8∗ ← 6U8∗ . Let �← �8∗

∏
8≠8∗ �8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 and 8, 9 ≠ 8∗, compute �8, 9 ← 6
U8U 9
? . Compute �8∗, 9 ← �

U 9
8∗ and �8,8∗ ← �

U8
8∗

for all 8, 9 ≠ 8∗.

In this experiment, crs is distributed according to TrapSetup(1_, 1<, 1B , 8∗).

For an index 8 , we write Hyb8 (A) to denote the output of experiment Hyb8 with algorithm A. We show that the

output distributions each adjacent pair of experiments are computationally indistinguishable (or identical).

Claim 3.7. For all adversaries A, Pr[Hyb
0
(A) = 1] = Pr[Hyb

1
(A) = 1].

Proof. The di�erence between Hyb
0

and Hyb
1

is purely syntactic. In Hyb
1
, �8 = �8∗

∏
8≠8 �8 =

∏
8∈[<] �8 , which

matches the distribution in Hyb
0
. Similarly, in Hyb

1
,

�8∗, 9 = �
U 9
8∗ = 6U8∗U 9 and �8,8∗ = �

U8
8∗ = 6U8∗U8 ,

which is precisely the distribution of �8∗, 9 and �8,8∗ in Hyb
0

for all 8, 9 ≠ 8∗. Finally �8, 9 for 8 ≠ 9 and 8, 9 ≠ 8∗ are

identically distributed in the two experiments. �

Claim 3.8. Suppose the subgroup decision assumption holds with respect to GroupGen. Then, for all e�cient adversaries
A, there exists a negligible function negl(·) such that for all _ ∈ N,

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(_).

Proof. Suppose there exists an e�cient adversary A such that

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = Y for some

non-negligible Y. We use A to construct an adversary B for the subgroup decision problem:

1. At the beginning of the game, algorithmB receives the group descriptionG = (G,G) , # , 6? , 4) and the challenge

/ ∈ G from the subgroup decision challenger.

2. For 8 ≠ 8∗, algorithm B samples U8
r← Z# and sets �8 ← 6

U8
? . It sets �8∗ ← / to be the challenge value. Next, it

computes �← /
∏
8≠8∗ �8 . For 8 ≠ 9 and 8, 9 ≠ 8∗, algorithm B computes �8, 9 ← 6

U8U 9
? . For 8, 9 ≠ 8∗, it computes

�8∗, 9 ← /U 9 and �8,8∗ ← /U8 .

3. Algorithm B gives crs =
(
G, �, {�8 }8∈[<], {�8, 9 }8≠9

)
to A and outputs whatever A outputs.

Consider now the two possibilities:

16

• Suppose / = 6A? in the subgroup decision game. Then, �8∗ = 6A? and algorithm B perfectly simulates the

distribution in Hyb
1
. In this case, algorithm B outputs 1 with probability Pr[Hyb

1
(A) = 1].

• Suppose / = 6A in the subgroup decision game. Then, �8∗ = 6A and algorithm B perfectly simulates the

distribution in Hyb
2
. In this case, algorithm B outputs 1 with probability Pr[Hyb

2
(A) = 1].

The advantage of B in the subgroup decision game is thus

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = Y. �

Combining Claims 3.7 and 3.8, CRS indistinguishability holds. �

Lemma 3.9 (Somewhere Extractable in Trapdoor Mode). Construction 3.3 is somewhere extractable in trapdoor mode.

Proof. Fix polynomials< =<(_) and B = B (_). Let 8∗ ← A(1_, 1<, 1B) and (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗). By

construction,

crs∗ = (G, �, {�8 }8∈[<], {�8, 9 }8≠9) and td = 6@,

where G = (G,G) , # , 6? , 4). Let # = ?@ and 6 be the generator of G (i.e., 6? := 6@ and 6@ := 6?). Let G? = 〈6?〉 be the

order-? subgroup of G generated by 6? . Correspondingly, let G@ = 〈6@〉 be the order-@ subgroup of G generated by

6@ . By the Chinese Remainder Theorem, G � G? × G@ .

Let � : {0, 1}= × {0, 1}ℎ → {0, 1} be the Boolean circuit, x1, . . . , x< ∈ {0, 1}= be the statements, and c =(
{*: ,+: }:∈[C], {,ℓ }ℓ∈[B]

)
be the proof the adversary outputs. Suppose Verify(crs∗, (x1, . . . , x<), c) = 1. By con-

struction of TrapSetup, we can write�8∗ = 6
U8∗ = 6

U8∗,?
? 6

U8∗,@
@ for some U8∗,? ∈ Z? and U8∗,@ ∈ Z@ . Suppose that U8∗,@ ≠ 0.

This holds with overwhelming probability since U8∗
r← Z# . Now the following properties hold:

• For all : ∈ [C], either *: ∈ G? or *:/6
U8∗,@
@ ∈ G? . This follows from the wire validity checks. Speci�cally,

suppose*: = 6
V?
? 6

V@
@ . We can also write � = 6

∑
8∈[<] U8

? 6
U8∗,@
@ . Since veri�cation succeeds, it must be the case that

4 (�,*:) = 4 (6? ,+:)4 (*: ,*:).

Consider the projection in the order-@ subgroup of G) . This relation requires that U8∗,@ · V@ = V2

@ . This means

that either V@ = 0 (in which case*: ∈ G?) or V@ = U8∗,@ (in which case*:/6
U8∗,@
@ ∈ G?).

• For each : ∈ [C], if *: ∈ G? , then set b: = 0. If *:/6
U8∗,@
@ ∈ G? , then set b: = 1. Then, for all gates

�ℓ = (:1, :2, :3) ∈ [C]3 in the circuit, b:3
= NAND(b:1

, b:2
). This follows from the gate validity checks. In

particular, if veri�cation succeeds, then Eq. (3.2) holds. From the above analysis, we can write *: = 6
V:,?
? 6

b:U8∗,@
@

for all : ∈ [C] and some V:,? ∈ Z? . Consider the projection of Eq. (3.2) into the order-@ subgroup of G) . This

yields the relation

U2

8∗,@ = (b:1
U8∗,@) (b:2

U8∗,@) + U8∗,@ (b:3
U8∗,@) = U2

8∗,@ (b:1
b:2
+ b:3
).

Since U8∗,@ ≠ 0, this means that 1 = b:1
b:2
+ b:3

, or equivalently, b:3
= 1 − b:1

b:2
= NAND(b:1

, b:2
).

• Let x8∗ = (G8∗,1, . . . , G8∗,=). For : ∈ [=], b: = G8∗,: .

This follows from the statement validity check. Namely, for: ∈ [=], the veri�er checks that*: = �
G8∗,:
8∗

∏
8≠8∗ �

G8,:
8

.

Since �8 ∈ G? for 8 ≠ 8∗, it follows that if G8∗,: = 0, then *: ∈ G? (and b: = 0 = G8∗,:). Otherwise, if G8∗,: = 1,

then the component of*: in G@ is exactly 6
U8∗,@
@ , in which case b: = 1 = G8∗,: .

• Finally bC = 1. This follows from the output satis�ability check. Namely, the veri�er checks that *C = � =

6

∑
8∈[<] U8

? 6
U8∗,@
@ . If the veri�er accepts, then this relation holds and bC = 1.

The above properties show that b1, . . . , bC is a valid assignment to the wires of � on input x8∗ and witness / =

(b=+1, . . . , b=+ℎ). Moreover, � (x8∗ , /) = bC = 1.

To complete the proof, let w∗ ← Extract(td,�, (x1, . . . , x<), c). We claim that w∗ = / . In particular, for : ∈ [ℎ], if

=+: ∈ G? , then 4 (6@,:) = 1 andF∗
:
= 0 = b=+: . Alternatively, if*=+:/6

U8∗,@
? ∈ G? , then 4 (6@,*:) = 4 (6@, 6@)U8∗,@ ≠ 1,

soF∗
:
= 1 = b=+: . Thus, with probability 1 − negl(_), either Verify(crs∗,�, (x1, . . . , x<), c) = 0 or � (x,w∗) = 1. �

17

By Lemmas 3.6 and 3.9, Construction 3.3 is a somewhere argument of knowledge. �

Theorem 3.10 (Succinctness). Construction 3.3 is succinct and satis�es split veri�cation (De�nition 2.9).

Proof. Take any _,<, B ∈ N and consider a Boolean circuit� : {0, 1}=×{0, 1}ℎ → {0, 1} of size at most B . Let C = poly(B)
be the number of wires in � . We check each property:

• Proof size: A proof c consists of 2C + B elements in G, each of which can be represented in poly(_) bits. Thus,

the proof size satis�es |c | = (2C + B) · poly(_) = poly(_, B)

• CRS size: The common reference string crs consists of the group description G, and < + 1 +<(< − 1)/2
elements in G. Thus, |crs| =<2 · poly(_).

• Veri�cation key size: The size of the veri�cation key vk output by GenVK consists of = group elements. Thus,

|vk| = = · poly(_).

• Veri�cation key generation time: The algorithm GenVK performs =< group operations. This takes time

poly(_,<,=).

• Online veri�cation time: The running time of the online veri�cation algorithm OnlineVerify is

= · poly(_)︸ ︷︷ ︸
statement validity

+ C · poly(_)︸ ︷︷ ︸
wire validity

+ B · poly(_)︸ ︷︷ ︸
gate validity

+ poly(_)︸ ︷︷ ︸
output validity

= poly(_, B),

since =, C = poly(B). �

Remark 3.11 (Variable Number of Instances). As currently described, the prover and veri�er algorithms in Con-

struction 3.3 takes exactly< instances as input. However, the same scheme can also be used to prove any) ≤ <
instances (by ignoring components in the CRS). In this case, the proof size is unchanged, and the veri�cation running

time (assuming random read access to the CRS) is poly(_, =,)) + poly(_, B).

4 BARG for NP from :-Lin in Bilinear Groups
In this section, we show how to translate the ideas underlying Construction 3.3 to work with asymmetric prime-order

groups under the :-Lin assumption. We start by recalling the de�nition of a prime-order pairing group and the matrix

Di�e-Hellman (MDDH) assumption [EHK
+
13].

De�nition 4.1 (Prime-Order Bilinear Group). A prime-order asymmetric group generator GroupGen is an e�cient

algorithm that takes as input the security parameter 1
_

and outputs a description G = (G1,G2,G) , ?, 61, 62, 4) of two

base groups G1 and G2 with generators 61, 62, respectively, a target group G) , all of prime order ? = 2
Θ(_)

, and a

non-degenerate bilinear map 4 : G1 × G2 → G) . We require that the group operation in G1,G2,G) and the pairing

operations to be e�ciently computable.

Notation. When working with an asymmetric prime-order pairing group G = (G1,G2,G) , ?, 61, 62, 4), we use the

implicit representation of group elements [EHK
+
13]. Speci�cally, for a matrix M over Z? , we write [M]1 := 6M

1
,

[M]2 := 6M
2

, and [M]) := 6M
)

, where exponentiation is de�ned component-wise and 6) = 4 (61, 62). Given matrices A
and B over Z? , we de�ne the pairing operation 4 ([A]1, [B]2) := [AB]) . We also denote this by writing [A]1 · [B]2 :=

4 ([A]1, [B]2). For matrices A,B,C,D over Z? , we write A[B]1 + [C]1D := [AB + CD]1 to represent linear operations

within G1 (and analogously in G2 and G)). We now recall the :-Lin and matrix Di�e-Hellman assumptions. In the

case of :-Lin, recall that the case of : = 1 corresponds to the decisional Di�e-Hellman (DDH) assumption and the

case : = 2 corresponds to the decisional linear (DLIN) assumption [BBS04, HK07, Sha07]. Finally, the symmetric

external Di�e-Hellman (SXDH) assumption corresponds to DDH (i.e., 1-Lin) holding in both G1 and G2.

18

De�nition 4.2 (:-Lin Assumption [BBS04, HK07, Sha07]). Let : ∈ N. The :-Lin assumption holds in G1 with respect

to GroupGen if for all e�cient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N:

|Pr[A(G, [M]1, [Mv]1) = 1] − Pr[A(G, [M]1, [u]1) = 1] | = negl(_),

where G ← GroupGen(1_),

M =

[
diag(s)

1T

]
∈ Z(:+1)×:? ,

s = (B1, . . . , B:)
r← Z:? , diag(s) ∈ Z:×:? is the diagonal matrix whose entries are B1, . . . , B: , v

r← Z:? , and u
r← Z:+1? . We

de�ne the :-Lin assumption in G2 with respect to GroupGen in an analogous manner.

De�nition 4.3 (Matrix Di�e-Hellman Assumption [EHK
+
13]). Let : ∈ N. The MDDH: assumption holds in G1

with respect to GroupGen if for all e�cient adversaries A, there exists a negligible function negl(·) such that for all

_ ∈ N:

|Pr[A(G, [M]1, [Mv]1) = 1] − Pr[A(G, [M]1, [u]1) = 1] | = negl(_),

where G ← GroupGen(1_), M r← Z(:+1)×:? , v
r← Z:? and u

r← Z:+1? . We de�ne the MDDH: assumption in G2 with

respect to GroupGen in an analogous manner.

Theorem 4.4 (Matrix Di�e-Hellman [EHK
+
13]). Let : ∈ N. Suppose the :-Lin assumption holds in G1 (resp., G2) with

respect to GroupGen. ThenMDDH: holds in G1 (resp., G2) with respect to GroupGen.

Construction overview. Our BARG from asymmetric prime-order groups relies on a similar underlying principle as

the construction from symmetric composite-order groups (Construction 3.3). Here, we summarize the key di�erences:

• Randomizing cross-terms in the CRS. In the symmetric setting, we associated a single encoding �8 with

each instance. In the asymmetric setting, we need to encode the instance in bothG1 andG2 in order to apply the

pairing consistency checks. Thus, the prover now generates two commitments to the wire labels for each wire,

one in G1 and the other in G2. This introduces a new challenge when it comes to constructing the cross-terms
�8, 9 , as it depends on the exponents associated with the encodings in both G1 and G2. Proving security would

seemingly need to rely on a “bilateral” assumption over pairing groups where the assumption gives out elements

with correlated exponents in both G1 and G2. To avoid this and base security on the vanilla :-Lin assumption,

we split the cross-terms into two shares, with one share in G1 and the other in G2. The extra randomness in

the cross terms allows for a simple simulation strategy in the security analysis (see Lemma 4.8).

• Simulating projective pairing using outer products. The key property we relied on in the soundness

analysis of the composite-order construction is that the pairing is projecting. Namely, there exists a projection

map on G and G) that map into the subgroup of order-@ in each respective group; moreover, this projection

map commutes with the pairing. Then, if a relation like Eq. (3.1) or Eq. (3.2) holds in the target group, the

projected relation formed by projecting the left-hand and right-hand sides into the order-@ subgroup also holds.

As argued in Lemma 3.9, projecting into the order-@ subgroup allows us to isolate a single instance 8∗, in which

case the veri�cation checks ensure statistically soundness for instance 8∗. To obtain an analog of projective

pairings in the prime order setting, we can replace the subgroups with subspaces of a vector space and de�ne

the pairing operation to be an outer (tensor) product of vectors [GS08, Fre10]. As we show in Lemma 4.12, this

enables a similar strategy to prove soundness.

Construction 4.5 (BARG for NP from :-Lin). Let : ∈ N be an integer. We construct a BARG with split veri�cation

for the language of circuit satis�ability as follows:

• Setup(1_, 1<, 1B): On input the security parameter _, the number of instances<, and the bound on the circuit

size B , the setup algorithm does the following:

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matrices M, M̂
r← Z(:+1)×:? .

19

– For each 8 ∈ [<], sample " 8 , "̂ 8

r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a ← ∑
8∈[<] a8 and

â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and let B8, 9 ← M(" 8 "̂

T
9 + R8, 9) ∈ Z

(:+1)×:
? and

B̂8, 9 ← −M̂RT
8, 9 ∈ Z

(:+1)×:
? .

– Output the common reference string crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)): On input the common reference string

crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
,

the circuit � : {0, 1}= → {0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ ,

de�ne C to be the number of wires in � and B to be the number of gates in � . Then, for 8 ∈ [<] and 9 ∈ [C], let

F8, 9 ∈ {0, 1} be the value of wire 9 in � (x8 ,w8). The prover then proceeds as follows:

– Encoding the wire values: For each wire 3 ∈ [C], let

[u3]1 ←
∑
8∈[<]

F8,3 [a8]1 and [û3]2 ←
∑
8∈[<]

F8,3 [â8]2.

– Validity of witness wires: For each 3 ∈ {= + 1, . . . , = + ℎ}, compute

[V3,1]1 =
∑
8≠9

(1 −F8,3)F 9,3 [B8, 9]1 and [V̂3,1]2 =
∑
8≠9

(1 −F8,3)F 9,3 [B̂8, 9]2,

as well as

[V3,2]1 =
∑
8≠9

(1 −F 9,3)F8,3 [B8, 9]1 and [V̂3,2]2 =
∑
8≠9

(1 −F 9,3)F8,3 [B̂8, 9]2,

– Validity of gate computation: For each NAND gate �ℓ = (31, 32, 33) ∈ [C]3 (where ℓ ∈ [B]), compute

[Wℓ,1]1 =
∑
8≠9

(1 −F8,31
F 9,32

−F 9,33
) [B8, 9]1 and [Ŵℓ,1]2 =

∑
8≠9

(1 −F8,31
F 9,32

−F 9,33
) [B̂8, 9]2

as well as

[Wℓ,2]1 =
∑
8≠9

(1 −F8,31
F 9,32

−F8,33
) [B8, 9]1 and [Ŵℓ,2]2 =

∑
8≠9

(1 −F8,31
F 9,32

−F8,33
) [B̂8, 9]2

Finally, output the proof

c =
(
{[u3]1, [û3]2}3∈[C], {[V=+3,8]1, [V̂=+3,8]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8]1, [Ŵℓ,8]2}ℓ∈[B],8∈{1,2}

)
.

• Verify(crs,�, (x1, . . . , x<), c): We decompose the veri�cation algorithm into (GenVK,OnlineVerify):

– GenVK(crs, (x1, . . . , x<)): On input the common reference string

crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
and instances x1, . . . , x< ∈ {0, 1}= , the veri�cation key generation algorithm computes

[u∗
3
]1 =

∑
8∈[<]

G8,3 [a8]1 and [û∗
3
]2 =

∑
8∈[<]

G8,3 [â8]2 .

for each 3 ∈ [=] and outputs the veri�cation key vk =
{
[u∗
3
]1, [û∗3]2

}
3∈[=] .

20

– OnlineVerify(vk,�, c): On input the veri�cation key vk =
{
[u∗
3
]1, [û∗3]2

}
3∈[=] , the circuit � : {0, 1}= ×

{0, 1}ℎ → {0, 1}, and the proof

c =
(
{[u3]1, [û3]2}3∈[C], {[V=+3,8]1, [V̂=+3,8]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8]1, [Ŵℓ,8]2}ℓ∈[B],8∈{1,2}

)
,

the veri�cation algorithm checks the following:

∗ Validity of statement: For each statement wire 3 ∈ [=], check that [u3]1 = [u∗3]1 and [û3]2 = [û∗3]2.

∗ Validity of witness wires: For each witness wire 3 ∈ {= + 1, . . . , = + ℎ}, check that

[a]1 · [ûT3]2 =
(
[u3]1 · [ûT3]2

)
+

(
[M]1 · [V̂T

3,1
]2
)
+

(
[V3,1]1 · [M̂T]2

)
and that

[u3]1 · [âT]2 =
(
[u3]1 · [ûT3]2

)
+

(
[M]1 · [V̂T

3,2
]2
)
+

(
[V3,2]1 · [M̂T]2.

)
∗ Validity of gate computation: For each gate �ℓ = (31, 32, 33) ∈ [C]3, check that

[a]1 · [âT]2 =
(
[u31
]1 · [ûT32

]2
)
+

(
[a]1 · [ûT33

]2
)
+

(
[M]1 · [ŴT

ℓ,1]2
)
+

(
[Wℓ,1]1 · [M̂T]2

)
,

and that

[a]1 · [âT]2 =
(
[u31
]1 · [ûT32

]2
)
+

(
[u33
]1 · [âT]2

)
+

(
[M]1 · [ŴT

ℓ,2]2
)
+

(
[Wℓ,2]1 · [M̂T]2

)
.

∗ Output satis�ability: Finally, the veri�er checks that [uC]1 = [a]1 and [ûC]2 = [â]2.

Theorem 4.6 (Completeness). Construction 4.5 is complete.

Proof. Take any _,<, B ∈ N, and let � : {0, 1}= × {0, 1}ℎ → {0, 1} be a Boolean circuit of size at most B . Take

statements x1, . . . , x< ∈ {0, 1}= and witnesses w1, . . . ,w< ∈ {0, 1}ℎ where � (x8 ,w8) = 1 for all 8 ∈ [<]. Let

crs← Setup(1_, 1<, 1B) and c ← Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)), where

crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
c =

(
{[u3]1, [û3]2}3∈[C], {[V=+3,8]1, [V̂=+3,8]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8]1, [Ŵℓ,8]2}ℓ∈[B],8∈{1,2}

)
For 8 ∈ [<] and 9 ∈ [C], letF8, 9 ∈ {0, 1} denote the value of wire 9 in � (x8 ,w8). First, observe that for all 8 ≠ 9 ,

MB̂T
8, 9 + B8, 9M̂T = −MR8, 9M̂T +M(" 8 "̂

T
9 + R8, 9)M̂T = M" 8 "̂

T
9 M̂

T = a8 âT9 . (4.1)

We show that each of the veri�cation checks pass:

• Validity of statement: The honest prover computes u3 =
∑
8∈[<] F8,3a8 for all 3 ∈ [C]. Since the �rst = wires

of the circuit corresponds to the statement, we haveF8,3 = G8,3 for all 3 ∈ [=] and the check passes. Similarly,

û3 =
∑
8∈[<] F8,3 â8 =

∑
8∈[<] G8,3 â8 .

• Validity of witness wires: By construction of V3,1, V̂3,1 and appealing to Eq. (4.1),

MV̂T
3,1
+ V3,1M̂T =

∑
8≠9

(1 −F8,3)F 9,3 (MB̂T
8, 9 + B8, 9M̂T) =

∑
8≠9

(F 9,3 −F8,3F 9,3)a8 âT9 .

Similarly, by construction of u3 , û3 , and a, we can write

u3 ûT3 =
∑

8, 9 ∈[<]
F8,3F 9,3a8 âT9 =

∑
8∈[<]

F2

8,3
a8 âT8 +

∑
8≠9

F8,3F 9,3a8 âT9

aûT
3
=

∑
8, 9 ∈[<]

F 9,3a8 âT9 =
∑
8∈[<]

F8,3a8 âT8 +
∑
8≠9

F 9,3a8 âT9

21

SinceF8,3 ∈ {0, 1}, we have thatF2

8,3
= F8,3 . Combining the above relations,

u3 ûT3 +MV̂T
3,1
+ V3,1M̂T =

∑
8∈[<]

F8,3a8 âT8 +
∑
8≠9

F 9,3a8 âT9 = aûT
3
,

and the �rst veri�cation check passes. Validity of the second veri�cation check follows by an analogous

calculation. Namely,

MV̂T
3,2
+ V3,2M̂T =

∑
8≠9

(1 −F 9,3)F8,3 (MB̂T
8, 9 + B8, 9M̂T) =

∑
8≠9

(F8,3 −F8,3F 9,3)a8 âT9

u3 âT =
∑

8, 9 ∈[<]
F8,3a8 âT9 =

∑
8∈[<]

F8,3a8 âT8 +
∑
8≠9

F8,3a8 âT9 ,

from which we can conclude that

u3 ûT3 +MV̂T
3,2
+ V3,2M̂T =

∑
8∈[<]

F8,3a8 âT8 +
∑
8≠9

F8,3a8 âT9 = u3 âT .

• Validity of gate computation: Similar to the previous case, we expand each term in the veri�cation relation

and apply Eq. (4.1) to obtain

MŴT
ℓ,1 +Wℓ,1M̂T =

∑
8≠9

(1 −F8,31
F 9,32

−F 9,33
) (MB̂T

8, 9 + B8, 9M̂T) =
∑
8≠9

(1 −F8,31
F 9,32

−F 9,33
)a8 âT9

u31
ûT
32

=
∑

8, 9 ∈[<]
F8,31

F 9,32
a8 âT9 =

∑
8∈[<]

F8,31
F8,32

a8 âT8 +
∑
8≠9

F8,31
F 9,32

a8 âT9

aûT
33

=
∑

8, 9 ∈[<]
F 9,33

a8 âT9 =
∑
8∈[<]

F8,33
a8 âT8 +

∑
8≠9

F 9,33
a8 âT9

aâT =
∑

8, 9 ∈[<]
a8 âT9 =

∑
8∈[<]

a8 âT8 +
∑
8≠9

a8 âT9 .

By de�nition,F8,33
= NAND(F8,31

,F8,32
) for all 8 ∈ [<]. In particular, this means thatF8,33

= 1 −F8,31
F8,32

, or

equivalently,F8,31
F8,32

+F8,33
= 1. Substituting into the above relations,

u31
ûT
32

+ aûT
33

+MŴT
ℓ,1 +Wℓ,1M̂T =

∑
8∈[<]

a8 âT8 +
∑
8≠9

a8 âT9 = aâT .

For the second validation check, we expand as above to obtain

MŴT
ℓ,2 +Wℓ,2M̂T =

∑
8≠9

(1 −F8,31
F 9,32

−F8,33
) (MB̂T

8, 9 + B8, 9M̂T) =
∑
8≠9

(1 −F8,31
F 9,32

−F8,33
)a8 âT9

u33
âT =

∑
8, 9 ∈[<]

F8,33
a8 âT9 =

∑
8∈[<]

F8,33
a8 âT8 +

∑
8≠9

F8,33
a8 âT9 .

Combining the relations, we see that

u31
ûT
32

+ u33
âT +MŴT

ℓ,2 +Wℓ,2M̂T =
∑
8∈[<]

a8 âT8 +
∑
8≠9

a8 âT9 = aâT.

• Validity of output: Since � (x8 ,w8) = 1, it follows that F8,C = 1 for all 8 ∈ [<]. This means that uC =∑
8∈[<] a8 = a and ûC =

∑
8∈[<] â8 = â. �

Theorem 4.7 (Somewhere Argument of Knowledge). Take any positive integer : ∈ N. If the :-Lin assumption holds
in G1 and G2 with respect to GroupGen, then Construction 4.5 is a somewhere argument of knowledge.

22

Proof. We start by de�ning the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1<, 1B , 8∗) : The trapdoor algorithm uses the following procedure (we highlight in green the

di�erences in the common reference string between TrapSetup and Setup):

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matrices M, M̂
r← Z(:+1)×:? .

– For 8 ≠ 8∗, sample " 8 , "̂ 8

r← Z:? and let a8 ← M" 8 , â8
r← M̂"̂ 8 . Let 0 ≠ 3 ∈ Z:+1? be any non-zero vector

such that 3TM = 0. Since M has rank at most : , such a 3 always exists and can be e�ciently computed.

– Sample a8∗ , â8∗
r← Z:+1? . Let a← ∑

8∈[<] a8 and â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? . Construct B8, 9 and B̂8, 9 for 8 ≠ 9 as follows:

B8, 9 =

{
a8 "̂ T

9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂RT

8, 9 9 ≠ 8∗

−M̂RT
8, 9 + â9" T

8 9 = 8∗ .

– Output the common reference string crs∗ =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
and the trapdoor td = 3 ∈ Z:+1? .

• Extract(td,�, (x1, . . . , x<), c): On input the trapdoor td = 3 ∈ Z:+1? , the Boolean circuit � : {0, 1}= × {0, 1}ℎ →
{0, 1}, statements x1, . . . , x< ∈ {0, 1}= , and the proof

c =
(
{[u3]1, [û3]2}3∈[C], {[V=+3,8]1, [V̂=+3,8]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8]1, [Ŵℓ,8]2}ℓ∈[B],8∈{1,2}

)
,

the extraction algorithm computes 3T [u3]1. It sets F∗
3
= 0 if 3T [u]1 = [0]1, and F∗

3
= 1 otherwise for each

3 = = + 1, . . . , = + ℎ. It outputs w∗ = (F∗=+1, . . . ,F∗=+ℎ).

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.

Lemma 4.8 (CRS Indistinguishability). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen, then
Construction 4.5 satis�es CRS indistinguishability.

Proof. Take any polynomial< =<(_), B = B (_). We now proceed via a simple hybrid argument:

• Hyb
0
: This is the real distribution. At the beginning of the security game, the adversary chooses an index

8∗ ∈ [<]. The challenger then constructs the common reference string by running Setup(1_, 1<, 1B):

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matrices M, M̂
r← Z(:+1)×:? .

– For each 8 ∈ [<], sample " 8 , "̂ 8

r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a ← ∑
8∈[<] a8 and

â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and let B8, 9 ← M(" 8 "̂

T
9 + R8, 9) ∈ Z

(:+1)×:
? and

B̂8, 9 ← −M̂RT
8, 9 ∈ Z

(:+1)×:
? .

– Set crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
.

The challenger gives crs to A and A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
except the challenger constructs B8, 9 and B̂8, 9 as in TrapSetup:

– For each 8 ∈ [<], sample " 8 , "̂ 8

r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a ← ∑
8∈[<] a8 and

â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and compute

B8, 9 =

{
a8 "̂ T

9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂RT

8, 9 9 ≠ 8∗

−M̂RT
8, 9 + â9" T

8 9 = 8∗ .

23

• Hyb
2
: Same as Hyb

1
except the challenger samples a8∗

r← Z:+1? :

– For each 8 ∈ [<], sample " 8 , "̂ 8

r← Z:? . For 8 ≠ 8∗, let a8 ← M" 8 and sample a8∗
r← Z:+1? . For all 8 ∈ [<],

let â8 ← M̂"̂ 8 . Let a← ∑
8∈[<] a8 and â← ∑

8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and compute

B8, 9 =

{
a8 "̂ T

9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂RT

8, 9 9 ≠ 8∗

−M̂RT
8, 9 + â9" T

8 9 = 8∗ .

• Hyb
3
: Same as Hyb

2
except the challenger sample â8∗

r← Z:+1? :

– For 8 ≠ 8∗, sample " 8 , "̂ 8

r← Z:? and let a8 ← M" 8 , â8
r← M̂"̂ 8 . Sample a8∗ , â8∗

r← Z:+1? . Let a← ∑
8∈[<] a8

and â← ∑
8∈[<] â8 .

– For each 8, 9 ∈ [<] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and compute

B8, 9 =

{
a8 "̂ T

9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂RT

8, 9 9 ≠ 8∗

−M̂RT
8, 9 + â9" T

8 9 = 8∗ .

In this experiment, crs is distributed according to TrapSetup(1_, 1<, 1B , 8∗).

For an adversary A, we write Hyb8 (A) to denote the output of experiment Hyb8 with algorithm A. We now show

that each adjacent pair of hybrid experiments are computationally indistinguishable (or identical). In the following

analysis, we use the fact that the :-Lin assumption implies the MDDH: assumption (see Theorem 4.4). We will use

the MDDH: assumption in our analysis below.

Claim 4.9. For all adversaries A, Pr[Hyb
0
(A) = 1] = Pr[Hyb

1
(A) = 1].

Proof. This is just a syntactic relabeling. We consider the two cases 9 = 8∗ and 9 ≠ 8∗ separately:

• Suppose 9 ≠ 8∗. In Hyb
0
,

B8, 9 = M(" 8 "̂
T
9 + R8, 9) = (M" 8)"̂ T

9 +MR8, 9 = a8 "̂ T
9 +MR8, 9 .

Thus B8, 9 is identically distributed in Hyb
0

and Hyb
1
. In both experiments, B̂8, 9 = −M̂RT

8, 9 .

• Suppose 9 = 8∗. Consider the distribution of B8,8∗ and B̂8,8∗ in Hyb
0

and Hyb
1

for 8 ≠ 8∗. In Hyb
0
,

B8,8∗ = M(" 8 "̂
T
8∗ + R8,8∗) and B̂8,8∗ = −M̂RT

8,8∗ ,

where R8,8∗
r← Z:×:? . Suppose we instead sampled R8,8∗ as R∗

8,8∗ − " 8 "̂
T
8∗ where R∗

8,8∗
r← Z:×:? . Certainly, R8,8∗ is

still uniform over Z:×:? . Substituting into the above expressions, we have

B8,8∗ = M(" 8 "̂
T
8∗ + R8,8∗) = MR∗8,8∗

B̂8,8∗ = −M̂RT
8,8∗ = −M̂(R∗8,8∗)T + M̂"̂ 8∗"

T
8 = −M̂(R∗8,8∗)T + â8∗" T

8 ,

which is precisely the distribution of B8,8∗ and B̂8,8∗ in Hyb
1
. Thus, the adversary’s view in Hyb

0
and Hyb

1
is

identically distributed and the claim follows. �

Claim 4.10. Suppose the MDDH: assumption holds in the group G1. Then, for all e�cient adversaries A, there exists a
negligible function negl(·) such that for all _ ∈ N,

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(_).

24

Proof. Suppose there exists an e�cient adversary A such that

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = Y for some

non-negligible Y. We use A to construct an algorithm B for the MDDH: assumption in G1:

1. Algorithm B receives the group description G, the matrix [M]1 ∈ G(:+1)×:
1

and a challenge [z]1 ∈ G:+11
from

the MDDH: challenger.

2. Algorithm B starts running A to obtain the challenge index 8∗ ∈ [<].

3. For all 8 ∈ [<], algorithm B samples " 8

r← Z:? . For 8 ≠ 8∗, it sets [a8]1 ← [M]1" 8 and it sets [a8∗]1 ← [z]1.

Next, it samples M̂
r← Z(:+1)×:? , "̂ 8

r← Z:? and â8 ← M̂"̂ 8 for all 8 ∈ [<].

4. Algorithm B sets [a]1 ←
∑
8∈[<] [a8]1 and â← ∑

8∈[<] â8 . Then, for 8 ≠ 9 , it samples R8, 9
r← Z:×:? and computes

[B8, 9]1 =
{
[a8]1"̂ T

9 + [M]1R8, 9 9 ≠ 8∗

[M]1R8, 9 9 = 8∗
B̂8, 9 =

{
−M̂RT

8, 9 9 ≠ 8∗

−M̂RT
8, 9 + â9" T

8 9 = 8∗ .

Importantly, algorithm B only computes [B8, 9]1 and B̂8, 9 where 8 ≠ 9 . It does not need to compute B̂8∗,8∗ which

would depend on the (non-existent) value " 8∗ .

5. It sets crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
and gives crs to A. Finally, it

outputs whatever A outputs.

Using the above procedure, algorithm B is able to construct all of the components of crs from the encodings [M]1
and [z]1. If z = Mv for some v

r← Z:? , then crs is distributed as in Hyb
1
. Conversely, if z

r← Z:? , then crs is distributed

as in Hyb
2
. Hence, B breaks MDDH: with the same advantage Y. �

Claim 4.11. Suppose the MDDH: assumption holds in group G2. Then, for all e�cient adversaries A, there exists a
negligible function negl(·) such that for all _ ∈ N,

��
Pr[Hyb

2
(A) = 1] − Pr[Hyb

3
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as in the proof of Claim 4.10. Suppose there exists an e�cient adversaryA
where

��
Pr[Hyb

2
(A) = 1] − Pr[Hyb

3
(A) = 1]

�� = Y for some non-negligible Y. We use A to construct an adversary B
for the MDDH: assumption in G2:

1. Algorithm B receives the group description G, the matrix [M̂]2 ∈ G(:+1)×:
2

and a challenge [ẑ]2 ∈ G:+12
from

the MDDH: challenger.

2. Algorithm B starts running A to obtain the challenge index 8∗ ∈ [<].

3. It samples M
r← Z(:+1)×:? . For 8 ≠ 8∗, it samples " 8

r← Z:? and sets a8 ← M" 8 . It samples a8∗
r← Z:? .

4. For 8 ≠ 8∗, it samples "̂ 8

r← Z:? and sets [â8]2 ← [M̂]2"̂ 8 . It sets [â8∗]2 ← [ẑ]2.

5. Algorithm B sets a← ∑
8∈[<] a8 and [â]2 ←

∑
8∈[<] [â8]2.

6. For 8 ≠ 9 , it samples R8, 9
r← Z:×:? and computes

B8, 9 =

{
a8 "̂ T

9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
[B̂8, 9]2 =

{
−[M̂]2RT

8, 9 9 ≠ 8∗

−[M̂]2RT
8, 9 + [â9]2" T

8 9 = 8∗ .

Importantly, algorithm B only needs to computes [B̂8, 9]2 where 8 ≠ 9 . It does not need to compute [B̂8∗,8∗]2
which would depend on the (non-existent) value " 8∗ .

7. It sets crs =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
and gives crs to A. Finally, B

outputs whatever A outputs.

25

Using the above procedure, algorithm B is able to construct all of the components of crs from the encodings [M]2
and [z]2. If z = Mv for some v

r← Z:? , then crs is distributed as in Hyb
2
. Conversely, if z

r← Z:? , then crs is distributed

as in Hyb
3
. Hence, B breaks MDDH: with the same advantage Y. �

Combining Claims 4.9 to 4.11, we conclude that under the MDDH: assumption, CRS indistinguishability holds. Since

:-Lin implies MDDH: (Theorem 4.4), the same result holds under :-Lin. �

Lemma 4.12 (Somewhere Extractable in Trapdoor Mode). For all constants : ∈ N, Construction 4.5 is somewhere
sound in trapdoor mode.

Proof. Take any polynomial< =<(_) and B = B (_). Let 8∗ ← A(1_, 1<, 1B) and (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗).
By construction,

crs∗ =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<], {[B8, 9]1, [B̂8, 9]2}8≠9

)
and td = 3 ,

where M, M̂
r← Z(:+1)×:? , a8∗ , â8∗

r← Z:+1? , and for 8 ≠ 8∗, a8 = M" 8 , â8 = M̂"̂ 8 where " 8 , "̂ 8

r← Z:? . We start by proving

the following claim that will be useful in our analysis:

Claim 4.13. With probability 1 − negl(_), the following properties hold:

(i) For every vector v ∈ Z:+1? , there exists B, B̂ ∈ Z? and t, t̂ ∈ Z:? such that v = Ba8∗ + Mt and v = B̂â8∗ + M̂t̂. In
particular, a8∗ âT8∗ ≠ 0.

(ii) Every matrix A ∈ Z(:+1)×(:+1)? can be uniquely written as

A = Ba8∗ â8∗ +
∑
8∈[:]

C8a8∗m̂T
8 +

∑
8∈[:]

D8m8 âT8∗ +
∑

8, 9 ∈[:]
E8, 9m8m̂T

9 .

where B, C8 , D8 , E8, 9 ∈ Z? , m1, . . . ,m: are the columns of M, and m̂1, . . . , m̂: are the columns of M̂. Moreover, we
de�ne the projection operator proj(A) ↦→ Ba8∗aT8∗ .

(iii) Let A ∈ Z(:+1)×(:+1)? and suppose that there exists B ∈ Z? and t1, t2, z1, z2 ∈ Z:? such that

A = Ba8∗ âT8∗ + a8∗ tT1M̂T +Mt2âT8∗ +Mz1zT2M̂
T .

Then, proj(A) = Ba8∗ âT8∗ .

(iv) For all V ∈ Z(:+1)×:? , proj(MVT) = 0 = proj(VM̂T).

Proof. We show each statement separately:

(i) This statement is equivalent to saying that the matrices M′ = [a8∗ | M] and M̂′ = [â8∗ | M̂] ∈ Z(:+1)×(:+1)? are

full rank. By construction, the distribution of M′ and M̂′ is uniform over Z
(:+1)×(:+1)
? . By the Schwartz-Zippel

lemma, the determinant of M′ and M̂′ is non-zero with probability at least 1 − (: + 1)/? = negl(_).

(ii) De�ne M′ = [a8∗ | M] and M̂′ = [â8∗ | M̂] as before, and consider M′ ⊗ M̂′ ∈ Z(:+1)
2×(:+1)2

? . Since M′ and M̂′ are

invertible with overwhelming probability, the matrix M′ ⊗ M̂′ is also invertible (with inverse (M′)−1 ⊗ (M̂′)−1
).

Thus, the columns of M′ ⊗ M̂′ form a basis for Z
(:+1)2
? . Suppose we rearrange each column of M′ ⊗ M̂′ into a

(: + 1)-by-(: + 1) matrix in row-major order. This yields the following collection of matrices:

a8∗ âT8∗ , {a8∗m̂T
8 }8∈[:], {m8 âT8∗ }8∈[:] {m8m̂T

9 }8, 9 ∈[:] . (4.2)

Since the columns of M′ ⊗ M̂′ form a basis for Z
(:+1)2
? , the matrices in Eq. (4.2) form a basis for Z

(:+1)×(:+1)
? ,

and the claim follows.

26

(iii) We express A as a linear combination of the basis vectors in Eq. (4.2):

A = Ba8∗ âT8∗ + a8∗
∑
8∈[:]

C1,8m̂T
8 +

∑
8∈[:]

C2,8m8 âT8∗ +
©«
∑
8∈[:]

I1,8m8
ª®¬ ©«

∑
9 ∈[:]

I2, 9 m̂T
9

ª®¬
= Ba8∗ âT8∗ +

∑
8∈[:]

C1,8a8∗m̂T
8 +

∑
8∈[:]

C2,8m8 âT8∗ +
∑

8, 9 ∈[:]
I1,8I2, 9m8m̂T

9 ,

By de�nition, proj(A) = Ba8∗ â8∗ .

(iv) By Property (i), we can write V = â8∗ ŝT + M̂ ˆT where ŝ ∈ Z:? and
ˆT ∈ Z:×:? . We can further decompose

ˆT =
∑
8, 9 ∈[:] Ĉ8, 9e8eT9 where Ĉ8, 9 is the (8, 9)th component of

ˆT and e8 ∈ Z:? denotes the 8th canonical basis vector.

Then,

MVT = MŝâT8∗ +M ˆTTM̂T = MŝâT8∗ +
∑

8, 9 ∈[:]
Ĉ8, 9Me9eT8 M̂

T .

By Property (iii), proj(MVT) = 0. For proj(VM̂T), we again appeal to Property (i) and write V = a8∗sT +MT for

some s ∈ Z:? and T ∈ Z:×:? . By an analogous computation, we have

VM̂T = a8∗sTM̂T +
∑

8, 9 ∈[:]
C8, 9Me8eT9 M̂

T .

Again by Property (iii), proj(VM̂T) = 0. �

Returning to the proof of Lemma 4.12, let � : {0, 1}= × {0, 1}ℎ → {0, 1} be the Boolean circuit, x1, . . . , x< ∈ {0, 1}= be

the set of statements, and

c =
(
{[u3]1, [û3]2}3∈[C], {[V=+3,8]1, [V̂=+3,8]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8]1, [Ŵℓ,8]2}ℓ∈[B],8∈{1,2}

)
be the proof the adversary outputs. Suppose Verify(crs∗, (x1, . . . , x<), c) = 1. We now show the following claim:

Claim 4.14. Suppose Verify(crs∗, (x1, . . . , x<), c) = 1. Then, for all 3 ∈ [C], there exists t3 , t̂3 ∈ Z:? and b3 ∈ {0, 1} such
that u3 = b3a8∗ +Mt3 and û3 = b3 â8∗ +M̂t̂3 . Moreover, x8∗ = (b1, . . . , b=), bC = 1, and for each gate�ℓ = (31, 32, 33) ∈ [C]3,
b3 = NAND(b31

, b32
).

Proof. Let # =
∑
8≠8∗ " 8 and

ˆ# =
∑
8≠8∗ "̂ 8 . By construction, a =

∑
8∈[<] a8 = a8∗ +

∑
8≠8∗ M" 8 = a8∗ +M# . Similarly,

â =
∑
8∈[<] â8 = â8∗ + M̂ ˆ# . We now show the claim for each wire 3 ∈ [C]:

• The claim holds for all statement wires 3 ∈ [=]. Since Verify outputs 1,

u3 =
∑
8∈[<]

G8,3a8 = G8∗,3a8∗ +
∑
8≠8∗

G8,3M" 8 = G8∗,3a8∗ +M
(∑
8≠8∗

G8,3" 8

)
.

Thus u3 has the desired form. Correspondingly, we can write û3 = G8∗,3 â8∗ + M̂
∑
8≠8∗ G8,3 "̂ 8 .

• Consider a witness wire 3 ∈ {= + 1, . . . , = + ℎ}. By Claim 4.13 (i), we can write u3 = b3a8∗ + Mt3 , and

û3 = ˆb3 â8∗ + M̂t̂3 , for some b3 ,
ˆb3 ∈ Z? and t3 , t̂3 ∈ Z:? . Our goal is to show b3 = ˆb3 ∈ {0, 1}. Consider the

following terms from the veri�cation relations:

aûT
3
= (a8∗ +M#) (ˆb3 â8∗ + M̂t̂3)T

u3 âT = (b3a8∗ +Mt3) (â8∗ + M̂ ˆ#)T

u3 ûT3 = (b3a8∗ +Mt3) (ˆb3 â8∗ + M̂t̂3)T

27

Since Verify outputs 1, both veri�cation relations are satis�ed. The same must hold for their projections. By

Claim 4.13 (iii), (iv), the following relations must hold:

proj(aûT
3
)︸ ︷︷ ︸

ˆb3 ·a8∗ âT8∗

= proj(u3 ûT3)︸ ︷︷ ︸
b3

ˆb3 ·a8∗ âT8∗

+ proj(MV̂T
3,1
)︸ ︷︷ ︸

0

+ proj(V3,1M̂T)︸ ︷︷ ︸
0

proj(u3 âT)︸ ︷︷ ︸
b3 ·a8∗ âT8∗

= proj(u3 ûT3)︸ ︷︷ ︸
b3

ˆb3 ·a8∗ âT8∗

+ proj(MV̂T
3,2
)︸ ︷︷ ︸

0

+ proj(V3,2M̂T),︸ ︷︷ ︸
0

.

By Claim 4.13 (i), a8∗ âT8∗ ≠ 0, and we conclude that
ˆb3 = b3

ˆb3 = b3 . This implies
ˆb3 = b3 = b2

3
, and so

b3 = ˆb3 ∈ {0, 1}.

• Consider a wire that is the output of some gate �ℓ = (31, 32, 33) ∈ [C]3, and suppose moreover that the claim

holds for 31, 32: namely, u31
= b31

a8∗ +Mt31
, û31

= b31
â8∗ + M̂t̂31

, u32
= b32

a8∗ +Mt32
, and û32

= b32
â8∗ + M̂t̂32

,

for b31
, b32
∈ {0, 1} and t31

, t32
, t̂31

, t̂32
∈ Z:? . By Claim 4.13 (iii), (iv), we can write u33

= b33
a8∗ + Mt33

and

û33
= ˆb33

â8∗ + M̂t̂33
for some b33

, ˆb33
∈ Z? and t33

, t̂33
∈ Z:? . Our goal is to show that b33

= ˆb33
∈ {0, 1} and

moreover, b33
= NAND(b31

, b32
). Similar to the previous case, we consider the terms in the two veri�cation

relations:

aâT = (a8∗ +M#) (â8∗ + M̂ ˆ#)T

u31
ûT
32

= (b31
a8∗ +Mt31

) (b32
â8∗ + M̂t̂32

)T

aûT
33

= (a8∗ +M#) (ˆb33
â8∗ + M̂t̂33

)T

u33
âT = (b33

a8∗ +Mt33
) (â8∗ + M̂ ˆ#)T .

We apply the projection operator to the two veri�cation relations and by Claim 4.13 (iii), (iv),

proj(aâT)︸ ︷︷ ︸
a8∗ âT8∗

= proj(u31
ûT
32

)︸ ︷︷ ︸
b3

1
b3

2
a8∗ âT8∗

+ proj(aûT
33

)︸ ︷︷ ︸
ˆb3

3
a8∗ âT8∗

+ proj(MŴT
ℓ,1)︸ ︷︷ ︸

0

+ proj(Wℓ,1M̂T)︸ ︷︷ ︸
0

proj(aâT)︸ ︷︷ ︸
a8∗ âT8∗

= proj(u31
ûT
32

)︸ ︷︷ ︸
b3

1
b3

2
a8∗ âT8∗

+ proj(u33
âT)︸ ︷︷ ︸

b3
3
a8∗ âT8∗

+ proj(MŴT
ℓ,2)︸ ︷︷ ︸

0

+ proj(Wℓ,2M̂T)︸ ︷︷ ︸
0

.

If both relations hold, we conclude

1 = b31
b32
+ ˆb33

= b31
b32
+ b33

.

This means b33
= ˆb33

= 1 − b31
b32

= NAND(b31
, b32
).

• For the output wire, the output satis�ability check requires that uC = a = a8∗ +M# and ûC = â = â8∗ + M̂ ˆ# . This

means that bC = ˆbC = 1.

The �rst two cases show that the claim holds for all input wires 3 ∈ [= + ℎ]. The �nal case shows that if the claim

holds for the input wires to a gate, then it holds for the output wire. Inductively applying the argument to the gates

of the circuit in topological order, we conclude that the claim holds for all 3 ∈ [C]. �

Let b1, . . . , bC ∈ {0, 1} be the bits from Claim 4.14. By Claim 4.14, x8∗ = (b1, . . . , b=), and for all gates � = (31, 32, 33) ∈
[C]3, b33

= NAND(b31
, b32
). Thus, b1, . . . , bC is a set of valid wire assignments for the computation � (x8∗ , /) where

/ = (b=+1, . . . , b=+ℎ). Since the output wire bC = 1, this means that � (x8∗ , /) = 1.

To complete the proof, let w∗ ← Extract(td,�, (x1, . . . , x<), c). We claim that w∗ = / . By Claim 4.14, u3 =

b3a8∗ +Mt3 . Then, 3Tu3 = b33
Ta8∗ + 3TMt3 = b33

Ta8∗ since 3TM = 0. Moreover, since a8∗ is uniform over Z:+1? and

independent of 3 , it follows that 3Ta8∗ ≠ 0 with probability 1−1/? = 1−negl(_). Thus, if b=+3 = 0, thenF∗
3
= 0 = b=+3 ,

and if b=+3 = 1, then F∗
3
= 1 = b=+3 . Thus, w∗ = (b=+1, . . . , b=+ℎ) = / . Thus, with probability 1 − negl(_), either

Verify(crs∗,�, (x1, . . . , x<), c) = 0 or � (x,w∗) = 1. The claim follows. �

28

By Lemmas 4.8 and 4.12, Construction 4.5 is a somewhere argument of knowledge. �

Theorem 4.15 (Succinctness). For all constants : ∈ N, Construction 4.5 is succinct and satis�es split veri�cation
(De�nition 2.9).

Proof. Take any _,<, B ∈ N and consider a Boolean circuit� : {0, 1}=×{0, 1}ℎ → {0, 1} of size at most B . Let C = poly(B)
be the number of wires in � . We check each property:

• Proof size: A proof c consists of C (: + 1) + 2ℎ: (: + 1) + 2B: (: + 1) elements in each of G1 and G2. Each group

element can be represented in poly(_) bits. Since : is constant and ℎ ≤ C = poly(B), the overall proof size is

|c | = poly(_, B).

• CRS size: The common reference string crs consists of the group description G and $ (:2<2) elements in each

of G1 and G2. When : ∈ N is a constant, the size of the veri�cation key is |vk| =<2 · poly(_).

• Veri�cation key size: The size of the veri�cation key vk outputs by GenVK consists of =(: + 1) elements in

each of G1 and G2. For constant : , |vk| = = · poly(_).

• Veri�cation key generation time: The algorithm GenVK performs 2<=(: + 1) group operations, which

requires time poly(_,<,=).

• Online veri�cation time: The running time of the online veri�cation algorithm OnlineVerify is bounded by

=: · poly(_)︸ ︷︷ ︸
statement validity

+ℎ:3 · poly(_)︸ ︷︷ ︸
wire validity

+ B:3 · poly(_)︸ ︷︷ ︸
gate validity

+ : · poly(_)︸ ︷︷ ︸
output validity

= poly(_, B),

since = ≤ B , ℎ ≤ C = poly(B), and : ∈ N is a constant. �

Remark 4.16 (Verifying General Quadratic Relations). The technique underlying the wire validity and gate consis-

tency checks in Construction 4.5 readily extends to gates that compute arbitrary quadratic predicates on their inputs.

For instance, this includes standard Boolean gates such as AND, OR, and XOR gates as well as gates with more than

two input wires. Consider a binary-valued gate predicate of the form

Fℓ = W +
∑
d∈[)1]

XdF8d +
∑
d∈[)2]

ˆXdF 9d,1F 9d,2 ∈ {0, 1}, (4.3)

where ℓ ∈ [C] is the index of the output wire, 8d , 9d,1, 9d,2 ∈ [C] are indices of the input wires, and W, Xd , ˆXd ∈ Z are

�xed coe�cients associated with the gate. To support gates of this type, we adapt Construction 4.5 as follows. As

in Construction 4.5, let [u3]1, [û3]2 be vector commitments to the values (F1,3 , . . . ,F<,3) of wire 3 across the <

instances. To check the above relation is satis�ed, the prover computes

Z8, 9 = W + XdF8,8d + ˆXdF8, 9d,1F 9, 9d,2 −F8,ℓ and [W1]1 =
∑
8≠9

Z8, 9 [B8, 9]1 and [Ŵ1]2 =
∑
8≠9

Z8, 9 [B̂8, 9]2,

and

Z ′8, 9 = W + XdF8,8d + ˆXdF8, 9d,1F 9, 9d,2 −F 9,ℓ and [W2]1 =
∑
8≠9

Z ′8, 9 [B8, 9]1 and [Ŵ2]2 =
∑
8≠9

Z ′8, 9 [B̂8, 9]2.

To check that the gate is satis�ed, the veri�er checks

W [a]1 · [âT]2 +
∑
d∈[)1]

Xd [u8d]1 · [âT]2 +
∑
d∈[)2]

ˆXd [u9d,1]1 · [ûT9d,2] − [uℓ]1 · [â
T]2 = [M]1 · [ŴT

1
]2 + [W1]1 · [M̂T]2,

and

W [a]1 · [âT]2 +
∑
d∈[)1]

Xd [u8d]1 · [âT]2 +
∑
d∈[)2]

ˆXd [u9d,1]1 · [ûT9d,2] − [a]1 · [û
T
ℓ]2 = [M]1 · [ŴT

2
]2 + [W2]1 · [M̂T]2 .

29

Completeness. To argue completeness, consider each term in the �rst veri�cation relation:

aâT =
∑

8, 9 ∈[<]
a8 âT9 =

∑
8∈[<]

a8 âT8 +
∑
8≠9

a8 âT9

u8d â
T =

∑
8, 9 ∈[<]

F8,8d a8 â
T
9 =

∑
8∈[<]

F8,8d a8 â
T
8 +

∑
8≠9

F8,8d a8 â
T
9

u9d,1 û
T
9d,2

=
∑

8, 9 ∈[<]
F8, 9d,1F 9, 9d,2a8 â

T
9 =

∑
8∈[<]

F8, 9d,1F8, 9d,2a8 â
T
8 +

∑
8≠9

F8, 9d,1F 9, 9d,2a8 â
T
9

uℓ âT =
∑

8, 9 ∈[<]
F8,ℓa8 âT9 =

∑
8∈[<]

F8,ℓa8 âT8 +
∑
8≠9

F8,ℓa8 âT9

Then, the �rst veri�cation relation becomes

WaâT +
∑
d∈[)1]

Xdu8d â
T +

∑
d∈[)2]

ˆXdu9d,1 û9d,2 − uℓ âT =
∑
8∈[<]

/8a8aT8 +
∑
8≠9

/8, 9a8 âT9 ,

where

/8 = W +
∑
d∈[)1]

XdF8,8d +
∑
d∈[)2]

ˆXdF8, 9d,1F8, 9d,2 −F8,ℓ

/8, 9 = W +
∑
d∈[)1]

XdF8,8d +
∑
d∈[)2]

ˆXdF8, 9d,1F 9, 9d,2 −F8,ℓ = Z8, 9 .

If Eq. (4.3) holds for all< instances, then /8 = 0 for all 8 ∈ [ℓ] and we are only left with

∑
8≠9 /8, 9a8 âT9 . By construction,

the right-hand side of the �rst veri�cation relation is

MŴT
1
+W1M̂T =

∑
8≠9

Z8, 9 (MB̂T
8, 9 + B8, 9M̂T) =

∑
8≠9

Z8, 9a8 âT9 =
∑
8≠9

/8, 9a8 â9 ,

using the relation from Eq. (4.1). Thus, the �rst veri�cation relation holds. A similar calculation applies to the second

veri�cation relation and completeness follows.

Somewhere argument of knowledge. The somewhere argument of knowledge property follows analogously as

the proof of Theorem 4.7. Since we did not need to modify the CRS to support general gates, CRS indistinguishability

holds. It su�ces to show that the scheme is somewhere extractable in trapdoor mode. The proof of Lemma 4.12 uses

an inductive strategy where we show that as long as the commitments to the input wires of a gate is well-formed,

then the commitment to the output wire respects the gate constraint. Speci�cally, for each input wire 3 to the gate,

suppose that u3 = b3a8∗ +Mt3 and û3 = b3 â8∗ + M̂t̂3 for some b3 ∈ {0, 1} and t3 , t̂3 ∈ Z:? . By Claim 4.13 (iii), (iv), the

commitments uℓ and ûℓ to the output wires can be written as uℓ = bℓa8∗ +Mtℓ and ûℓ = ˆbℓ â8∗ + M̂t̂ℓ for some bℓ , ˆbℓ ∈ Z?
and tℓ , t̂ℓ ∈ Z:? . Our goal is to show that bℓ = ˆbℓ and moreover, bℓ = W +

∑
d∈[)1] Xdb8d +

∑
d∈[)2]

ˆXdb 9d,1b 9d,2 ∈ {0, 1}.
Following the identical strategy as in the proof of Lemma 4.12, we consider the terms in the veri�cation relations:

aâT = (a8∗ +M#) (â8∗ + M̂ ˆ#)T

u8d â
T = (b8d a8∗ +Mt8d) (â8∗ + M̂ ˆ#)T

u9d,1 û
T
9d,2

= (b 9d,1a8∗ +Mt9d,1) (b 9d,2 â8∗ + M̂t̂9d,2)T

uℓ âT = (bℓa8∗ +Mtℓ) (â8∗ + M̂ ˆ#)T

aûTℓ = (a8∗ +M#) (ˆbℓ â8∗ + M̂t̂ℓ)T .

30

We apply the projection operator to the two veri�cation relations and by Claim 4.13 (iii), (iv),

proj(WaâT)︸ ︷︷ ︸
Wa8∗ âT8∗

+
∑
d∈[)1]

proj(Xdu8d âT)︸ ︷︷ ︸∑
d∈[)

1
] Xdb8d a8∗ â

T
8∗

+
∑
d∈[)2]

proj(ˆXdu9d,1 ûT9d,2)︸ ︷︷ ︸∑
d∈[)

2
] ˆXdb 9d,1b 9d,2a8∗ â

T
8∗

− proj(uℓ âT)︸ ︷︷ ︸
bℓ a8∗ âT8∗

= proj(MŴT
1
)︸ ︷︷ ︸

0

+ proj(W1M̂T)︸ ︷︷ ︸
0

proj(WaâT)︸ ︷︷ ︸
Wa8∗ âT8∗

+
∑
d∈[)1]

proj(Xdu8d âT)︸ ︷︷ ︸∑
d∈[)

1
] Xdb8d a8∗ â

T
8∗

+
∑
d∈[)2]

proj(ˆXdu9d,1 ûT9d,2)︸ ︷︷ ︸∑
d∈[)

2
] ˆXdb 9d,1b 9d,2a8∗ â

T
8∗

− proj(aûTℓ)︸ ︷︷ ︸
ˆbℓ a8∗ âT8∗

= proj(MŴT
2
)︸ ︷︷ ︸

0

+ proj(W2M̂T)︸ ︷︷ ︸
0

.

In combination, this means that

bℓ = W +
∑
d∈[)1]

Xdb8d +
∑
d∈[)2]

ˆXdb 9d,1b 9d,2 =
ˆbℓ .

Since Eq. (4.3) is a binary-valued predicate and the input assignments b8d , b 9d,1 , b 9d,2 ∈ {0, 1} by the inductive hypothesis,

this means that bℓ ∈ {0, 1}. By the same argument as in the proof of Lemma 4.12, we conclude that the extracted wire

assignment (b1, . . . , bC) satis�es the gate constraint Eq. (4.3).

5 BARG Bootstrapping to Reduce CRS Size
In this section, we describe how to recursively compose succinct batch arguments for NP with a long CRS to obtain a

BARG with a short CRS (i.e., with size that is sublinear in the number of instances). The bootstrapping construction

applies to any BARG with a split veri�cation procedure (De�nition 2.9). We refer to Section 1.2.2 for an overview of

the construction.

Construction 5.1 (BARG Bootstrapping). Let � ∈ N be a batch size parameter. Let Π (0)BARG = (BARG0 .Setup,
BARG0 .Prove,BARG0.GenVK,BARG0 .OnlineVerify) be a batch argument with split veri�cation. We construct a new

BARG with split veri�cation as follows:

• Setup(1_, 1<, 1B): On input the security parameter _, the number of instances<, and a bound on the circuit

size B , the setup algorithm proceeds as follows:

– Sample crsbase ← BARG0 .Setup(1_, 1�, 1B).
– Let ℓc = ℓc (_, �, B) and ℓvk = ℓvk (_, �, B) be the length of the proofs c and veri�cation keys vk output by

BARG0.Prove(crsbase, ·, ·, ·) and BARG0.GenVK(crsbase, ·), respectively.

– De�ne the Boolean circuit�top : {0, 1}ℓvk×{0, 1}ℓc → {0, 1} as�top (vk, c) := BARG0.OnlineVerify(vk,�, c).
Let Btop be a bound on the size of the circuit �top.

– Sample crstop ← BARG0.Setup(1_, 1</�, 1Btop) and output crs = (crsbase, crstop).

We will require that � ≤ <.

• Prove(crs,�, (x1, . . . , x<), (w1, . . . ,w<)): On input crs = (crsbase, crstop), the Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈ {0, 1}ℎ , the prove algorithm

proceeds as follows:

– For each 8 ∈ [</�], compute c8 ← BARG0.Prove(crsbase,�, (x(8−1)�+1, . . . , G8�), (w(8−1)�+1, . . . ,w8�)).
– Output the proof c ← BARG0.Prove

(
crstop,�top, (vk1, . . . , vk</�), (c1, . . . , c</�)

)
.

• GenVK(crs, (x1, . . . , x<)): On input the common reference string crs = (crsbase, crstop) and statements x1, . . . , x< ∈
{0, 1}= , the veri�cation key generation algorithm proceeds as follows:

– For each 8 ∈ [</�], compute vk8 ← BARG0.GenVK(crsbase, (x(8−1)�+1, . . . , x8�)).

31

– Compute and output vk← BARG0.GenVK(crstop, (vk1, . . . , vk</�)).

• OnlineVerify(vk,�, c): On input a veri�cation key vk and a proof c , output BARG0.OnlineVerify(vk,�top, c).

Theorem 5.2 (Completeness). If Π (0)BARG is complete, then Construction 5.1 is also complete.

Proof. Follows by construction. �

Theorem 5.3 (Somewhere Argument of Knowledge). If Π (0)BARG is a somewhere argument of knowledge, then Construc-
tion 5.1 is also a somewhere argument of knowledge.

Proof. We start by de�ning the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1<, 1B , 8∗): Write 8∗ = (8∗top − 1)� + 8∗base where 8∗top ∈ [</�] and 8∗base ∈ [�]. The trapdoor setup

algorithm samples the CRS components using the corresponding trapdoor setup algorithms:

– Sample (crs∗base, tdbase) ← BARG0.TrapSetup(1_, 1�, 1B , 8∗base).
– Sample (crs∗top, tdtop) ← BARG0.TrapSetup(1_, 1</�, 1Btop , 8∗top).
– Output crs∗ = (crs∗base, crs

∗
top) and the trapdoor td = (crstop, 8∗top, tdbase, tdtop).

• Extract(td,�, (x1, . . . , x<), c): On input the trapdoor td = (crstop, 8∗top, tdbase, tdtop), the circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x< ∈ {0, 1}= and a proof c , proceed as follows:

– For each 8 ∈ [</�], compute vk∗8 ← BARG0.GenVK(crs∗top, (x(8−1)�+1, . . . , x8�)).
– Compute cbase ← BARG0 .Extract(tdtop,�top, (vk∗1, . . . , vk∗</�), c),

– Output BARG0 .Extract
(
tdbase,�, (x(8∗top−1)�+1, . . . , x8∗top�), cbase

)
.

We now show the CRS indistinguishability and somewhere extractable in trapdoor mode properties.

Lemma 5.4 (CRS Indistinguishability). If Π (0)BARG is a somewhere argument of knowledge (speci�cally, it satis�es CRS
indistinguishability), then Construction 5.1 satis�es CRS indistinguishability.

Proof. This is immediate by a standard hybrid argument. Namely, the CRS in Construction 5.1 consists of two

independent common reference strings for Π (0)BARG. �

Lemma 5.5 (Somewhere Extractable in Trapdoor Mode). If Π (0)BARG is a somewhere argument of knowledge (speci�cally,
if it is somewhere extractable in trapdoor mode), then Construction 5.1 is somewhere extractable in trapdoor mode.

Proof. Take any polynomial < = <(_) and B = B (_). Let 8∗ ← A(1_, 1<, 1B) and write 8∗ = (8∗top − 1)� + 8∗base
where 8∗top ∈ [</�] and 8∗base ∈ [�]. Let � : {0, 1}= × {0, 1}ℎ → {0, 1} be the Boolean circuit, x1, . . . , x< ∈ {0, 1}=

be the set of statements, and c be the proof output by the adversary. Let (crs∗, td) ← TrapSetup(1_, 1<, 1B , 8∗) and

vk∗ ← GenVK(crs∗, (x1, . . . , x<)). Then crs∗ = (crs∗base, crs
∗
top) and td = (tdbase, tdtop) where

• (crs∗base, tdbase) ← BARG0.TrapSetup(1_, 1�, 1B , 8∗base);
• (crs∗top, tdtop) ← BARG0 .TrapSetup(1_, 1</�, 1Btop , 8∗top);
• vk∗8 ← BARG0.GenVK

(
crs∗base, (x(8−1)�+1, . . . , x8�)

)
for each 8 ∈ [</�]; and

• vk∗ ← BARG0.GenVK
(
crs∗top, (vk∗1, . . . , vk∗</�)

)
.

Suppose OnlineVerify(vk∗,�, c) = 1. Let cbase ← BARG0 .Extract(tdtop,�top, (vk∗1, . . . , vk∗</�), c) be the extracted

proof and let w∗ ← BARG0.Extract
(
tdbase,�, (x(8∗top−1)�+1, . . . , x8∗top�), cbase

)
be the extracted witness. We proceed via

a sequence of claims:

32

Claim 5.6. If Π (0)BARG is a somewhere extractable argument of knowledge, then there exists a negligible function negl(·)
such that for all _ ∈ N,

Pr

[
BARG0.OnlineVerify

(
vk∗
8∗top
,�, cbase

)
= 1

]
= 1 − negl(_).

Proof. First (crs∗top, tdtop) is sampled using BARG0.TrapSetup with index 8∗top. If BARG0 .OnlineVerify(vk∗,�top, c) =
1 with vk∗ ← BARG0.GenVK(crs∗top, (vk∗1, . . . , vk∗</�)), then �top

(
vk∗
8∗top
, cbase

)
= 1 with probability 1 − negl(_).

Otherwise, we have an adversary that breaks somewhere extractability of Π (0)BARG. By de�nition of �top, this means

BARG0 .OnlineVerify
(
vk∗
8∗top
,�, cbase

)
= 1. �

Claim 5.7. If Π (0)BARG is a somewhere extractable argument of knowledge, then there exists a negligible function negl(·)
such that for all _ ∈ N, Pr[� (x8∗ ,w∗) = 1] = 1 − negl(_).

Proof. This follows from the fact that (crsbase, tdbase) is sampled usingBARG0 .TrapSetupwith index 8∗base. By Claim 5.6,

with probability 1 − negl(_), BARG0 .OnlineVerify
(
vk∗
8∗top
,�, cbase

)
= 1, where

vk∗
8∗top
← BARG0.GenVK(crs∗base, (x(8∗top−1)�+1, . . . , x8∗top�)).

Somewhere extractability of Π (0)BARG then implies that with probability 1 − negl(_),

� (x(8∗top−1)�+8∗base ,w
∗) = � (x8∗ ,w∗) = 1. �

Combining Claims 5.6 and 5.7, we conclude that with probability 1 − negl(_), the extracted witness w∗ satis�es

� (x8∗ ,w∗) = 1 and the claim follows. �

The somewhere argument of knowledge property now follows from Lemmas 5.4 and 5.5. �

Theorem 5.8 (Succinctness). Suppose Π (0)BARG is a succinct BARG with split veri�cation and CRS size ℓ0 (_,<, B) =
<3 · poly(_, B), for some constant 3 ∈ N. Then Construction 5.1 is a succinct BARG with split veri�cation and CRS size

ℓ (_,<, B, �) = �3 · poly(_, B) + (</�)3 · poly(_, log<, B).

Moreover, if ℓ0 (_,<, B) =<3 · poly(_), then ℓ (_,<, B, �) = (�3 + (</�)3) · poly(_).

Proof. We verify each of the required properties:

• CRS size: The CRS in Construction 5.1 consists of two common reference strings (crsbase, crstop) for Π (0)BARG.

The size of crsbase is ℓ0 (_, �, B) and the size of crstop is ℓ0 (_,</�, B ′) where B ′ is a bound on the size of the circuit

�top computing BARG0.OnlineVerify(vk, ·) where vk← BARG0 .GenVK(crsbase, ·). By succinctness of Π (0)BARG,

the size Btop of �top is bounded by some polynomial poly(_, log<, B). Thus,

ℓ (_,<, B, �) = �3 · poly(_, B) + (</�)3 · poly(_, log<, B),

as required. When ℓ0 is independent of B , the same is true for ℓ .

• Proof size: The proof c in Construction 5.1 consists of a proof for Π (0)BARG instantiated with</� instances and

circuits of size at most Btop = poly(_, log<, B). Thus, |c | ≤ poly(_, log(</�), Btop) = poly(_, log<, B).

• Veri�cation key generation time: The veri�cation key generation algorithm GenVK consists of two main

components:

– First, it runs</� copies of BARG0 .GenVK with � instances (of length =) and circuits of size at most B . By

succinctness of Π (0)BARG, each copy runs in time poly(_, �, =), so generating vk1, . . . , vk</� requires time

</� · poly(_, �, =) = poly(_,<,=).

33

– Next, it runs BARG0 .GenVK with</� instances (of length ℓvk where ℓvk is a bound on the length of the ver-

i�cation keys vk8) and circuits of size at most Btop. Again by succinctness of Π (0)BARG, ℓvk ≤ poly(_, log<,=).
Thus, this step requires time poly(_,</�, ℓvk) = poly(_,<,=).

Since both steps complete in time poly(_,<,=), the claim holds.

• Veri�cation key size: The veri�cation key vk in Construction 5.1 consists of a single veri�cation key for Π (0)BARG

with</� instances and circuits of size at most Btop. By succinctness of Π (0)BARG, |vk| ≤ poly(_, log(</�), Btop) =
poly(_, log<, B).

• Online veri�cation time: The veri�cation algorithm in Construction 5.1 simply runs BARG0.OnlineVerify
with</� instances and a circuit of size Btop. By succinctness of Π (0)BARG, the running time is at most

poly(_, log(</�), Btop) = poly(_, log<, B) . �

Corollary 5.9 (BARG for NP with Short CRS). Suppose there exists a batch argument for NP with split veri�cation and
a CRS of size poly(_,<, B), where< is the number of instances and B is the circuit size. Then, for every constant Y > 0,
there exists a batch argument for NP with split veri�cation and a CRS of size<Y · poly(_, B).

Proof. Let Π (0)BARG be the BARG with CRS size at most<3 ·poly(_, B) for some constant 3 ∈ N. Let : = dlog(23/Y)e ∈ N.

For 8 ∈ [:], let Π (8)BARG be the BARG formed by applying Construction 5.1 to Π (8−1)
BARG with � =

√
<. Let ℓ8 denote the

length of the CRS in Π (8)BARG. Since ℓ0 (_,<, B) =<3 · poly(_, B), we can inductively apply Theorem 5.8 to show that

ℓ8 (_,<, B) =<3/28 · poly(_, log<, B).

Substituting : = dlog(23/Y)e into the above, we have that

ℓ: (_,<, B) ≤ <Y/2 · poly(_, log<, B) < <Y · poly(_, B),

since 23/Y is a constant. The other succinctness requirements are preserved since we compose a constant number of

times. �

Corollary 5.10 (BARG for NP with Short CRS from Pairings). For any constant : ≥ 1, if the :-Lin assumption holds in
G1 andG2 with respect to a prime-order group generatorGroupGen (or, alternatively, if the subgroup decision assumption
holds with respect to a composite-order group generator CompGroupGen), then for every constant Y > 0, there exists a
BARG for NP with split veri�cation and a CRS of size<Y · poly(_).

Proof. Follows by combining Construction 4.5 (alternatively, Construction 3.3) with Corollary 5.9. Note that the CRS

in Construction 4.5 (alternatively, Construction 3.3) is independent of the circuit size B (Theorems 3.10 and 4.15). �

Remark 5.11 (Bootstrapping Tradeo�s). The bootstrapping construction from Construction 5.1 and Corollary 5.10

is best viewed as a way to reduce the CRS size dependence on the number of instances< (e.g., from<2
to<Y

) in

exchange for a higher dependence on the security parameter _. In general, the dependence on the security parameter

scales exponentially with the depth of the composition. This is also the reason we are limited to constant-depth

composition. Recursive composition yields a similar blowup (with respect to _) in the proof size, veri�cation key size,

and veri�cation time.

6 Delegation for RAM Programs
In this section, we show how our techniques for constructing BARGs for NP can be leveraged to obtain delega-

tion schemes for RAM programs. We obtain the delegation scheme by invoking the generic compiler by Choud-

huri et al. [CJJ21b] which combines a BARG for index languages with a somewhere extractable commitment scheme.

Choudhuri et al. showed that the Hubácek-Wichs somewhere statistically binding (SSB) hash function [HW15] is

34

already a somewhere extractable commitment, thus obtaining an instantiation from LWE. However, the SSB hash

function from DDH [OPWW15] does not satisfy the stronger extractability requirement. In this section (Section 6.2),

we show that our techniques for constructing BARGs can be combined with any SSB hash function to obtain a

somewhere extractable commitment with a long CRS. We then describe an analogous bootstrapping procedure to

reduce the CRS size (Section 6.3). Finally, we combine our somewhere extractable commitment with the BARG for

index languages (Corollary 5.10 and Remark 2.10) to obtain a RAM delegation scheme (Corollaries 6.28 and 6.30).

6.1 Somewhere Extractable Commitments
We begin by recalling the concept of a somewhere statistically binding (SSB) hash function [HW15] and the closely-

related notion of a somewhere extractable commitments from Choudhuri et al. [CJJ21b].

De�nition 6.1 (Somewhere Statistically Binding Hash Function [HW15, OPWW15]). A somewhere statistically

binding (SSB) hash function with block length ℓblk, output length ℓhash, and opening length ℓopen is a tuple of e�cient

algorithms ΠSSB = (Setup,Hash,Open,Verify) with the following properties:

• Setup(1_, 1ℓblk , # , 8∗) → hk: On input the security parameter _, the block size ℓblk, the message length # ≤ 2
_
,

and an index 8∗ ∈ [#], the setup algorithm outputs a hashing key hk. Both # and 8∗ are encoded in binary; in

particular, this means that |hk| = poly(_, ℓblk, log#). We let Σ = {0, 1}ℓblk denote the block alphabet.

• Hash(hk, x) → ℎ: On input the hash key hk and a message x ∈ Σ# , the hash algorithm deterministically outputs

a hash ℎ ∈ {0, 1}ℓhash .

• Open(hk, x, 8) → c8 : On input the hash key hk, an input x ∈ Σ# and an index 8 ∈ [!], the open algorithm

outputs an opening c8 ∈ {0, 1}ℓopen .

• Verify(hk, ℎ, 8, G8 , c8) → 1: On input the hash key hk, a hash value ℎ ∈ {0, 1}ℓhash , an index 8 ∈ [#], a value

G8 ∈ Σ, and an opening c8 ∈ {0, 1}ℓopen , the veri�cation algorithm outputs a bit 1 ∈ {0, 1} indicating whether it

accepts or rejects.

We require the following properties:

• Correctness: For all security parameters _ ∈ N, all block sizes ℓblk = ℓblk (_), all integers # ≤ 2
_
, all indices

8, 8∗ ∈ [#], and any x ∈ Σ# ,

Pr

[
Verify(hk, ℎ, 8, G8 , c8) = 1 :

hk← Setup(1_, 1ℓblk , # , 8∗);
ℎ ← Hash(hk, x);c8 ← Open(hk, x, 8)

]
= 1.

• Index hiding: For a bit 1 ∈ {0, 1} and an adversaryA, de�ne the index hiding game ExptIHA (_,1) as follows:

1. Algorithm A(1_) chooses an integer # and two indices 80, 81 ∈ [#].
2. The challenger sets hk← Setup(1_, 1ℓblk , # , 81), and gives hk to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all polynomials ℓblk = ℓblk (_) and all e�cient adversariesA, there exists a negligible function

negl(·) such that for all _ ∈ N,��
Pr[ExptIHA (_, 0) = 1] − Pr[ExptIHA (_, 1) = 1]

�� = negl(_).

• Somewhere statistically binding: We say that a hash key hk is statistically binding for an index 8∗ ∈ [#] if

there does not exist ℎ ∈ {0, 1}ℓhash , G ≠ G ′ ∈ Σ, and c, c ′ where Verify(hk, ℎ, 8∗, G, c) = 1 = Verify(hk, ℎ, 8∗, G ′, c ′).
We require that for all polynomials ℓblk = ℓblk (_) and all # ≤ 2

_
, there exists a negligible function negl(·) such

that for all _ ∈ N and all 8 ∈ [#],

Pr[hk is statistically binding for index 8 : hk← Setup(1_, 1ℓblk , # , 8)] = 1 − negl(_).

35

• Succinctness: The hash length ℓhash, and opening length ℓopen are all �xed polynomials in the security parameter

_ and the block size ℓblk (and independent of #).

De�nition 6.2 (Somewhere Extractable Commitment [CJJ21b, adapted]). A somewhere extractable commitment

scheme with block size ℓblk and locality ! is a tuple of e�cient algorithms ΠSECom = (Setup,Commit,Open,Verify)
with the following properties:

• Setup(1_, 1ℓblk , 1# , 1!) → (crs, vk): On input the security parameter _ ∈ N, the block size ℓblk, the number

of blocks # , and the locality parameter !, the setup algorithm outputs a common reference string crs and a

veri�cation key vk.

• Commit(crs, v) → (2, g): On input the common reference string crs, and a vector v ∈ ({0, 1}ℓblk)# , the commit

algorithm outputs a commitment 2 and a state g .

• Open(crs, g, 8) → c8 : On input the common reference string crs, the commitment state g , and an index 8 , the

open algorithm outputs a local opening c8 .

• Verify(vk, 2, 8, E, c) → 1: On input the veri�cation key vk, the commitment 2 , an index 8 ∈ [#], a block

E ∈ {0, 1}ℓblk , and a proof c , the veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠSECom should satisfy the following properties:

• Correctness: For all security parameters _, block sizes ℓblk, message lengths # , locality parameters !, messages

v = (E1, . . . , E#) ∈ ({0, 1}ℓblk)# , and indices 8 ∈ [#],

Pr

[
Verify(vk, 2, 8, E8 , c8) = 1 :

(crs, vk) ← Setup(1_, 1ℓblk , 1# , 1!);
(2, g) ← Commit(crs, v);c8 ← Open(crs, g, 8)

]
= 1.

• Somewhere extractable: There exists a pair of e�cient algorithms (TrapSetup, Extract) with the following

properties:

– TrapSetup(1_, 1ℓblk , 1# , 1!, () → (crs∗, vk∗, td): On input the security parameter _, the block size ℓblk, the

number of blocks # , the locality parameter !, and a set (⊆ [#], the trapdoor setup algorithm outputs a

common reference string crs∗, veri�cation key vk∗, and an extraction trapdoor td.

– Extract(td, 2, 8) → v: On input the extraction trapdoor td, a commitment 2 , and an index 8 ∈ [#], the

extraction algorithm either outputs a block v ∈ {0, 1}ℓblk or a special symbol v = ⊥. The extraction

algorithm is deterministic.

We moreover require the following two properties:

– CRS indistinguishability: For integers ℓblk, # , ! ∈ N, a bit 1 ∈ {0, 1}, and an adversary A, de�ne the

CRS indistinguishability experiment ExptCRSA (_, ℓblk, # , !, 1) as follows:

1. Algorithm A(1_, 1ℓblk , 1# , 1!) chooses a set (⊆ [#] of size at most !.

2. If 1 = 0, the challenger samples (crs, vk) ← Setup(1_, 1ℓblk , 1# , 1!). If 1 = 1, it samples (crs, vk, td) ←
TrapSetup(1_, 1ℓblk , 1# , 1!, (). It gives (crs, vk) to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all e�cient adversaries A, all polynomials ℓblk = ℓblk (_), # = # (_), and ! = !(_),
there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ExptCRSA (_, ℓblk, # , !, 0) = 1] − Pr[ExptCRSA (_, ℓblk, # , !, 1) = 1]
�� = negl(_).

– Somewhere extractable in trapdoor mode: For integers ℓblk, # , ! ∈ N and an adversary A, de�ne the

somewhere extractability game as follows:

1. Algorithm A(1_, 1ℓblk , 1# , 1!) chooses a set (⊆ [#] of size at most !.

36

2. The challenger samples (crs∗, vk∗, td) ← TrapSetup(1_, 1ℓblk , 1# , 1!, () and gives (crs∗, vk∗) to A.

3. Algorithm A outputs a commitment 2 , a set of blocks {E8 }8∈(, and a set of openings {c8 }8∈(.

4. The output of the experiment is 1 = 1 if there exists 8 ∈ (such that Verify(vk∗, 2, 8, E8 , c8) = 1 and

Extract(td, 2, 8) ≠ E8 . Otherwise, the output is 1 = 0.

We require that for all adversaries A, all polynomials ℓblk = ℓblk (_), # = # (_), and ! = !(_), there exists

a negligible function negl(·) such that for all _ ∈ N, Pr[1 = 1] = negl(_) in the above experiment.

• Succinctness: There exists a universal polynomial poly(·, ·, ·, ·) such that for all _ ∈ N, ℓblk = ℓblk (_), # = # (_),
! = !(_), vectors v = (E1, . . . , E#) ∈ ({0, 1}ℓblk)# , indices 8 ∈ [#], all pairs (crs, vk) in the support of

Setup(1_, 1ℓblk , 1# , 1!), all pairs (2, g) in the support Commit(crs, v), and all openings c8 in the support of

Open(crs, g, 8), the following properties hold:

– Succinct veri�cation key: |vk| = poly(_, ℓblk, !, log#).
– Succinct commitment: |2 | = poly(_, ℓblk, !, log#).
– Succinct local opening: |c8 | = poly(_, ℓblk, !, log#).
– Succinct veri�cation: The running time of Verify(vk, 2, 8, E8 , c8) is poly(_, ℓblk, !, log#). This is implied

by the previous properties. Namely, the length of the input to Verify is poly(_, ℓblk, !, log#), succinct

veri�cation holds as long as the running time of Verify is polynomial in its input length (i.e., it is an

e�cient algorithm).

Remark 6.3 (Fixed Parameter Variants [OPWW15]). De�nition 6.1 allows for a �exible input length # and block size

ℓblk, and these parameters are provided as input to the Setup algorithm. As described in Okamoto et al. [OPWW15, §2],

we can also consider variants of De�nition 6.1 with a �xed input length # and/or a �xed block size ℓblk. Analogously,

we can consider variants of De�nition 6.2 with a �xed locality parameter ! and/or a �xed block size ℓblk.

Remark 6.4 (Separating the Veri�cation Key from CRS). In the de�nition of somewhere extractable commitments of

Choudhuri et al. [CJJ21b], Setup is required to output a single succinct CRS that is used by the Commit, Open, and

Verify algorithms. In this work, we consider a relaxed notion where Setup outputs a common reference string crs
for generating and opening commitments and a separate (but still public) veri�cation key is used to check openings.

Importantly, for the primary application to delegation for RAM programs [CJJ21b], it is necessary that the size of the

veri�cation key and the running time of the veri�cation algorithm be succinct. Less critical is the size of the CRS:

namely, if we combine a somewhere extractable commitment scheme with a long CRS (e.g., |crs| = poly(_, ℓblk, !, #))
with a BARG for index languages, then we obtain a delegation scheme for RAM programs where the CRS size is long

(scales polynomially with the running time of the RAM program). However, both the proof size and the veri�cation
cost still scale polylogarithmically with the running time of the RAM program. This is conceptually similar to the

notion of a preprocessing succinct argument for NP [Gro10, Lip13, BCCT13, GGPR13, BCI
+
13], where the CRS is

long, but the online veri�cation costs (as measured in the proof size and the veri�cation complexity) is succinct.

Remark 6.5 (Extending the Block Size and Locality). Let Π (0)SECom be a somewhere extractable commitment scheme

with block size 1. We can extend this to obtain a somewhere extractable commitment scheme ΠSECom with arbitrary

(polynomial) block size ℓblk by concatenating ℓblk copies of the base scheme Π (0)SECom. Speci�cally, a commitment 2 to a

vector v ∈ ({0, 1}ℓblk)# consists of ℓblk commitments (21, . . . , 2ℓblk) under the base scheme, where the 9 th commitment

2 9 is a commitment to the 9 th bit of each block (E1, 9 , . . . , E#,9). An opening to block 8 ∈ [#] consists of openings

(c1, . . . , cℓblk) where c 9 is an opening of 2 9 to bit E8, 9 . The size of the veri�cation key, commitment, and opening

increase by a factor of ℓblk over that of the base scheme, which satis�es the required succinctness requirements.

A similar approach su�ces for extending a somewhere extractable commitment scheme with locality param-

eter 1 (and arbitrary block size) to one with arbitrary (polynomial) locality parameter !. Very brie�y, the some-

where extractable commitment with locality parameter ! consists of ! independent copies of the base scheme. Let

(crs1, vk1), . . . , (crs!, vk!) denote the common reference strings and veri�cation keys associated with the ! indepen-

dent copies of the base scheme. A commitment to a vector v ∈ ({0, 1}ℓblk)= consists of ! commitments 21, . . . , 2! where

28 is a commitment to v with respect to (crs8 , vk8). To open the commitment (21, . . . , 2!), the committer provides

! openings c1, . . . , c! , and the veri�er accepts only if all of the ! copies accept. To sample a trapdoor CRS for

37

indices 91, . . . , 9! ∈ [#], we sample (crs∗8 , vk
∗
8 , td8) ← TrapSetup(1_, 1ℓblk , 1# , 1!, { 98 }) for each 8 ∈ [!]. Namely, the

8th commitment enables extraction of block 98 of the message. CRS indistinguishability and somewhere extractability

follow by a standard hybrid argument. Extending from 1-locality to !-locality increases the length of the veri�cation

key, commitment, and local opening by a factor of !.

6.2 Somewhere Extractable Commitments from Pairings
We show how to construct a somewhere extractable commitment scheme with block size ℓblk = 1 and locality

parameter ! = 1 by adapting the techniques we used to construct a BARG (see Construction 4.5). We can extend to

larger block sizes and locality parameters by concatenation (see Remark 6.5). In particular, the commitment scheme

the prover uses to commit to the wire values naturally supports succinct local openings. Somewhere extractability in

turn follows from a similar proof strategy as the proof of Theorem 4.7. We can view our construction as a non-hiding

version of the Catalano-Fiore vector commitment scheme [CF13] (which also publishes cross-terms in the CRS to

support succinct local openings) that satis�es a somewhere extractable property. The original Catalano-Fiore scheme

does not support extraction on any index.

The one remaining issue is that the resulting veri�cation key scales linearly with the length of the vector. However,

we observe that verifying an opening to an index 8∗ ∈ [#] only requires knowledge of a constant number of group

elements from the veri�cation key. We can then use the optimization suggested by Catalano and Fiore of moving

the veri�cation key into the proving key, and having the prover provide the veri�cation component as part of the

commitment opening. Of course, we now need to ensure robustness against a dishonest prover. The approach in

Catalano and Fiore is to include signatures to authenticate the veri�cation components, and the veri�er would �rst

check the signature before validating the commitment opening. In our setting, we require that the commitment be

statistically binding (indeed, extractable) at a particular index; to realize this, we replace the signature with an SSB

hash over the veri�cation components. By sampling the SSB hash key to bind at index 8∗, the prover is forced to

provide the correct veri�cation component for index 8∗. We give the full construction and analysis below.

Construction 6.6 (Somewhere Extractable Commitment from Pairings). Let : ∈ N and let ΠSSB = (SSB.Setup,
SSB.Hash, SSB.Open, SSB.Verify) be a somewhere statistically binding hash function. We construct a somewhere

extractable commitment with a �xed block size ℓblk = 1 and a �xed locality parameter ! = 1 (see Remark 6.3).

• Setup(1_, 1#): On input the security parameter _ and the message length # , the setup algorithm does the

following:

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matrices M, M̂
r← Z(:+1)×:? .

– For each 8 ∈ [#], sample " 8 , "̂ 8

r← Z:? and compute a8 ← M" 8 , â8 ← M̂"̂ 8 . Let a← ∑
8∈[#] a8 .

– For each 8, 9 ∈ [#] where 8 ≠ 9 , sample R8, 9
r← Z:×:? and let B8, 9 ← M(" 8 "̂

T
9 + R8, 9) ∈ Z

(:+1)×:
? and

B̂8, 9 ← −M̂RT
8, 9 ∈ Z

(:+1)×:
? .

– Let ℓblk (_) be a bound on the number of bits needed to represent an element of G:+1
2

. Sample a hash key

hk← SSB.Setup(1_, 1ℓblk , # , 1) and compute ℎ ← SSB.Hash(hk, ([â1]2, . . . , [â#]2)).
– Output the veri�cation key vk =

(
G, hk, ℎ, [M]1, [M̂]2, [a]1) and the common reference string crs =(

vk, {[a8]1, [â8]2}8∈[#], {[B8, 9]1, [B̂8, 9]2}8≠9
)
.

• Commit(crs, v): On input crs =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1, {[a8]1, [â8]2}8∈[#], {[B8, 9]1, [B̂8, 9]2}8≠9

)
and a vector

v = (E1, . . . , E#) ∈ {0, 1}# , the commit algorithm computes [u]1 ←
∑
8∈[#] E8 [a8]1. It outputs the commitment

2 = [u]1 and the state g = v).

• Open(crs, g, 8): On input crs =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1, {[a8]1, [â8]2}8∈[#], {[B8, 9]1, [B̂8, 9]2}8≠9

)
, the state g =

v ∈ {0, 1}# , and the index 8 ∈ [#], the open algorithm �rst computes cSSB ← Open(hk, ([â1]2, . . . , [â#]2), 8).
Next, it computes

[W]1 =
∑
9≠8

(E 9 − E8) [B9,8]1 and [Ŵ]2 =
∑
9≠8

(E 9 − E8) [B̂9,8]2.

38

It outputs the opening c = ([â8]2, cSSB, [W]1, [Ŵ]2).

• Verify(vk, 2, 8, E, c): On input the veri�cation key vk = (G, hk, ℎ, [M]1, [M̂]2, [a]1), commitment 2 = [u]1, index

8 ∈ [#], bit E ∈ {0, 1}, and an opening c = ([ã]2, cSSB, [W]1, [Ŵ]2), the veri�cation algorithm accepts if the

following two properties hold:

– SSB.Verify(hk, ℎ, 8, [ã]2, cSSB) = 1.

– [u]1 · [ãT]2 =
(
E [a]1 · [ãT]2) +

(
[M]1 · [ŴT]2

)
+

(
[W]1 · [M̂T]2

)
.

Theorem 6.7 (Correctness). If ΠSSB is correct, then Construction 6.6 is correct.

Proof. Fix a security parameter _ and message length # . Take any vector v = (E1, . . . , E#) ∈ {0, 1}# and index

8∗ ∈ [#]. Let (crs, vk) ← Setup(1_, 1#), (2, g) ← Commit(crs, v) and c8∗ ← Open(crs, g, 8∗). By construction, we

can write

vk =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1) and crs =

(
vk, {[a8]1, [â8]2}8∈[#], {[B8, 9]1, [B̂8, 9]2}8≠9

)
,

2 = [u]1 and c8∗ = ([â8]2, cSSB, [W]1, [Ŵ]2). Consider each of the veri�cation relations in Verify(vk, 2, 8∗, E8∗ , c8∗):

• By construction, the hash key hk is generated using SSB.Setup, ℎ is a hash of ([â1]2, . . . , [â#]2), and cSSB is an

opening of ℎ to [â8∗]2 at index 8∗. Correctness of ΠSSB implies that SSB.Verify(hk, ℎ, 8∗, [â8∗]2, cSSB) = 1.

• By construction, u =
∑
8∈[#] E8 [a8]1. Thus, we can write

uâT8∗ =
∑
8∈[#]

E8a8 âT8∗ = E8∗a8∗ â
T
8∗ +

∑
8≠8∗

E8a8 âT8∗

E8∗aâT8∗ =
∑
8∈[#]

E8∗a8 âT8∗ = E8∗a8∗ â
T
8∗ +

∑
8≠8∗

E8∗a8 âT8∗

Next, by the same calculation as Eq. (4.1) from the proof of Theorem 4.6, for all 8 ≠ 9 ,

MB̂T
8, 9 + B8, 9M̂T = −MR8, 9M̂T +M(" 8 "̂

T
9 + R8, 9)M̂T = M" 8 "̂

T
9 M̂

T = a8 âT9 .

In particular, this means that

MŴT +WM̂T =
∑
8≠8∗
(E8 − E8∗) (MB̂T

8,8∗ + B8,8∗M̂T) =
∑
8≠8∗
(E8 − E8∗)a8 âT8∗ .

Combining the above relations, we have

E8∗aâT8∗ +MŴT + ŴM̂T = E8∗a8∗ âT8∗ +
∑
8≠8∗
(E8∗ + E8 − E8∗)a8 âT8∗ = E8∗a8∗ âT8∗ +

∑
8≠8∗

E8a8 âT8∗ = uâT8∗ .

Thus, the veri�er accepts. �

Theorem 6.8 (Somewhere Extractable). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen and
ΠSSB is a somewhere statistically binding hash function, then Construction 6.6 is somewhere extractable.

Proof. We start by de�ning the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1# , 8∗): On input the security parameter _, message length # , and index 8∗ ∈ [#] (recall that

we are considering the special case of locality ! = 1 so the set (contains just a single index 8∗), the trapdoor

setup algorithm samples the common reference string and veri�cation key using the following procedure (we

highlight the di�erences from Setup in green):

– Run G = (G1,G2,G) , ?, 61, 62, 4) ← GroupGen(1_). Sample matrices M, M̂
r← Z(:+1)×:? .

39

– For 8 ≠ 8∗, sample " 8 , "̂ 8

r← Z:? and let a8 ← M" 8 , â8 ← M̂"̂ 8 . Let 0 ≠ z ∈ Z:+1? be any non-zero vector

such that zTM = 0. Since M has rank at most : , such a z always exists and can be e�ciently computed.

– Sample a8∗ , â8∗
r← Z:+1? . Let a← ∑

8∈[#] a8 .

– For each 8, 9 ∈ [#] where 8 ≠ 9 , sample R8, 9
r← Z:×:? . Construct B8, 9 and B̂8, 9 for 8 ≠ 9 as follows:

B8, 9 =

{
a8 "̂ T

9 +MR8, 9 9 ≠ 8∗

MR8, 9 9 = 8∗
B̂8, 9 =

{
−M̂RT

8, 9 9 ≠ 8∗

−M̂RT
8, 9 + â9" T

8 9 = 8∗ .

– Let ℓblk (_) be a bound on the number of bits needed to represent an element of G:+1
2

. Sample a hash key

hk← SSB.Setup(1_, 1ℓblk , # , 8∗) and compute ℎ ← SSB.Hash(hk, ([â1]2, . . . , [â#]2)).
– Output the veri�cation key vk∗ =

(
G, hk, ℎ, [M]1, [M̂]2, [a]1), the common reference string crs∗ =(

vk∗, {[a8]1, [â8]2}8∈[#], {[B8, 9]1, [B̂8, 9]2}8≠9
)
, and the trapdoor td = (8∗, z).

• Extract(td, 2, 8) → E : On input the extraction trapdoor td = (8∗, z), a commitment 2 = [u]1, and an index 8 ,

the extraction algorithm outputs ⊥ if 8 ≠ 8∗. If 8 = 8∗, then extraction algorithm outputs 0 if zT [u]1 = 0 and 1

otherwise.

We now show the CRS indistinguishability and somewhere extractability properties.

Lemma 6.9 (CRS Indistinguishability). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen and
ΠSSB satis�es index hiding, then Construction 4.5 satis�es CRS indistinguishability.

Proof. Take any message length # = # (_). We proceed via a hybrid argument:

• Hyb
0
: This is the real distribution ExptCRSA (_, # , 0). Speci�cally, at the beginning of the security game, the

adversary A chooses an index 8∗ ∈ [#]. The challenger then samples (crs, vk) ← Setup(1_, 1#) and gives

(crs, vk) to A. Algorithm A then outputs a bit 1 ′ ∈ {0, 1} which is the output of the experiment.

• Hyb
1
: Same as Hyb

0
except the challenger samples the hash key hk using the procedure in TrapSetup: hk←

SSB.Setup(1_, 1ℓblk , # , 8∗). All of the other components of crs and vk are sampled as in Hyb
0
.

• Hyb
2
: This is the trapdoor distribution ExptCRSA (_, # , 1). Namely, the challenger samples a8∗ , â8∗

r← Z:+1? and

de�nes matrices B8, 9 , B̂8, 9 according to the speci�cation of TrapSetup.

For an adversary A, we write Hyb8 (A) to denote the output of experiment Hyb8 (A) with algorithm A. We now

show that each adjacent pair of hybrid experiments are computationally indistinguishable.

Claim 6.10. If ΠSSB satis�es index hiding, then for all e�cient adversaries A, there exists a negligible function negl(·)
such that for all _ ∈ N,

��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = negl(_).

Proof. This is immediate by index hiding since the only di�erence between Hyb
0

and Hyb
1

is that hk binds to

index 0 in Hyb
0

and to index 8∗ in Hyb
1
. More formally, suppose there exists an e�cient algorithm A such that��

Pr[Hyb
0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = Y for some non-negligible Y. We use A to construct an algorithm B that

breaks index hiding of ΠSSB (for block size ℓblk):

1. Algorithm B starts running A to obtain an index 8∗ ∈ [#]. It sends indices 0 and 8∗ as its challenge pair to the

index hiding challenger.

2. The index hiding challenger replies to B with a hash key hk. Algorithm B samples the other components of

crs and vk exactly as described in Hyb
0

and Hyb
1
. It gives crs and vk to A and outputs whatever A outputs.

By construction, if hk binds to index 0, then B perfectly simulates Hyb
0
, and if hk binds to index 8∗, then B perfectly

simulates Hyb
1
. Thus, algorithm B breaks index hiding with the same advantage Y. �

40

Claim 6.11. If the :-Lin assumption holds in G1 and G2 with respect to GroupGen, then for all e�cient adversaries A,
there exists a negligible function negl(·) such that for all _ ∈ N,

��
Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(_).

Proof. First, the hash key hk is identically distributed in the two experiments and independent of the group elements

in the CRS and veri�cation key. The hash value ℎ is a deterministic function of hk and the group elements appearing

in the CRS. Thus, it su�ces to argue that the distribution of group elements in the CRS and veri�cation key is

computationally indistinguishable between Hyb
1

and Hyb
2
. This now follows by the same argument as the proof of

Lemma 4.8. In particular, the group elements in the CRS and veri�cation key of Construction 6.6 are exactly the same

as those in Construction 4.5; this is also true for the distribution of the trapdoor CRS and veri�cation key of the two

schemes. �

CRS indistinguishability now follows by a standard hybrid argument. �

Lemma 6.12 (Somewhere Extractable in Trapdoor Mode). If ΠSSB is correct and somewhere statistically binding, then
Construction 6.6 satis�es extraction correctness.

Proof. Take any polynomial # = # (_). Take any adversaryA for the somewhere extractability game and let 8∗ ∈ [#]
be the index chosen by A. Let (crs∗, vk∗, td) ← TrapSetup(1_, 1# , 8∗). We write

vk∗ =
(
G, hk, ℎ, [M]1, [M̂]2, [a]1) and crs∗ =

(
vk∗, {[a8]1, [â8]2}8∈[#], {[B8, 9]1, [B̂8, 9]2}8≠9

)
.

Let 2 = [u]1, E ∈ {0, 1}, and c = ([ã]2, cSSB, [W]1, [Ŵ]2) be the commitment, value, and opening, respectively, chosen

by A. Suppose Verify(vk∗, 2, 8∗, E, c) = 1. Let E ′ ← Extract(td, 2, 8∗). We claim that E = E ′. We �rst show that under

the somewhere statistically binding property of ΠSSB, ã = â8∗ with overwhelming property.

Claim 6.13. Suppose ΠSSB is correct and somewhere statistically binding. Then, there exists a negligible function negl(_)
such that for all _ ∈ N, Pr[ã ≠ â8∗] = negl(_), where the probability is taken over the random coins of TrapSetup.

Proof. Since Verify(vk∗, 2, 8∗, E, c) = 1, this means that SSB.Verify(hk, ℎ, 8∗, [ã]2, cSSB) = 1. By construction of

TrapSetup, hk is generated using SSB.Setup and moreover, ℎ is the hash of ([â1]2, . . . , [â#]2) under hk. Let c8∗ ←
SSB.Open(hk, ([â1]2, . . . , [â#]2), 8∗). Since ΠSSB is correct, this means that SSB.Verify(hk, ℎ, 8∗, [â8∗]2, c8∗) = 1. Then,

if ã ≠ â8∗ , we conclude that hk is not statistically binding at index 8∗. Since ΠSSB is somewhere statistically binding,

this event can only happen with negligible probability. �

The rest of the proof now follows a similar structure as the proof of Lemma 4.12. In particular, the group elements in

crs∗ and vk∗ are distributed exactly as in the trapdoor setup algorithm from the proof of Theorem 4.7. As demonstrated

in Claim 6.13, ã = â8∗ with overwhelming probability. Moreover, by Claim 4.13 (i), we can write u = ba8∗ +Mt for some

b ∈ Z? and t ∈ Z:? . In addition, let # =
∑
8≠8∗ " 8 . Then a =

∑
8∈[<] a8 = a8∗ +

∑
8≠8∗ M" 8 = a8∗ +M# . Now, we write

uãT = uâT8∗ = ba8∗ â
T
8∗ +MtâT8∗

aãT = aâT8 = (a8∗ +M#)âT8∗ = a8∗ âT8∗ +M# âT8∗ .

We now consider the veri�cation relations under the projection operator from Claim 4.13 (ii). By Claim 4.13 (iii), (iv),

we can write

proj(uãT)︸ ︷︷ ︸
ba8∗ â8∗

= proj(EaãT)︸ ︷︷ ︸
Ea8∗ â8∗

+ proj(MŴT)︸ ︷︷ ︸
0

+ proj(WM̂T)︸ ︷︷ ︸
0

.

By Claim 4.13 (i), a8∗ âT8∗ ≠ 0 with overwhelming probability, so we conclude that b = E . This means that u = Ea8∗ +Mt.
Consider now the value of E ′ output by Extract(td, [u]1, 8∗) where td = (8∗, z). By construction, z ≠ 0 and zTM = 0.

Next, a8∗ is uniform over Z:+1? and independent of z, so with overwhelming probability, zTa8∗ ≠ 0. This means that

zTu = EzTa8∗ + zTMt = EzTa8∗ .

Thus, zTu is zero if and only if E = 0. By de�nition of Extract, E ′ = E , as required. �

41

Somewhere extractability now follows from Lemmas 6.9 and 6.12. �

Theorem 6.14 (Succinctness). Let : ∈ N be a constant. If ΠSSB is succinct, then Construction 6.6 is succinct.

Proof. Take any security parameter _, message length # , vector v ∈ {0, 1}# , and index 8 ∈ [#]. Suppose we

sample (crs, vk) ← Setup(1_, 1#), (2, g) ← Commit(crs, v) and c8 ← Open(crs, g, 8). By construction, we can write

vk = (G, hk, ℎ, [M]1, [M̂]2, [a]1), 2 = [u]1 and c8 = ([â8]2, cSSB, [W]1, [Ŵ]2). We consider each of the requirements:

• Succinct veri�cation key: The description G output by GroupGen(1_) has length poly(_). Moreover, the

number of bits needed to encode elements of G1,G2 are also poly(_). For constant : , the encodings [M]1 and

[M̂]2 and [a]1 each contain of a constant number of group elements, and can be represented using poly(_) bits.

Next, the hash key hk output by SSB.Hash has size |hk| = poly(_, ℓblk, log#). As noted above, ℓblk = poly(_)
so |hk| = poly(_, log#). By succinctness of ΠSSB, |ℎ | = poly(_, ℓblk) = poly(_). Putting everything together,

|vk| = poly(_, log#), as required.

• Succinct commitment: The commitment 2 = [u]1 ∈ G:+11
consists of : + 1 group elements. For constant : ,

this means |2 | = poly(_).

• Succinct opening: For constant : , the components [â8]2, [W]1, and [Ŵ]2 in c8 contain a constant number

of group elements: : (: + 1) elements in G1 and (: + 1)2 elements in G2. By succinctness of ΠSSB, |cSSB | =
poly(_, ℓblk) = poly(_). Thus, |c8 | = poly(_).

• Succinct veri�cation: Verify is an e�cient algorithm (i.e., its running time is polynomial in its input length),

so succinct veri�cation follows by the previous properties. �

Combining Theorems 6.7, 6.8 and 6.14, we obtain the following corollary:

Corollary 6.15 (Somewhere Extractable Commitment). If the :-Lin assumption holds in G1 and G2 with respect to
GroupGen (for any constant : ≥ 1), and ΠSSB is a somewhere statistically binding hash function, then Construction 6.6
is a somewhere extractable commitment scheme with block size 1, locality 1, and CRS size # 2 · poly(_, log#), where #
is the message length.

6.3 Somewhere Extractable Commitments with a Short CRS
The size of the CRS in Construction 6.6 has size # 2 · poly(_, log#), where # is the bit-length of the input. In

this section, we show that a similar type of bootstrapping procedure as that described in Section 5 for the case of

BARGs can be used to obtain a somewhere extractable commitment scheme with a CRS whose size is sublinear in # .

Speci�cally, for any constant Y > 0, we construct a somewhere extractable commitment with CRS size # Y · poly(_).
Similar to the bootstrapping procedure from Section 5, we start by describing a two-tiered construction. For a

batch size �, we break the input vector v ∈ {0, 1}# into # /� blocks v1, . . . , v# /� ∈ {0, 1}� , each of length �. Let

28 be a commitment to the 8th block v8 . Next, we construct a commitment to the vector (21, . . . , 2# /�) to obtain a

commitment 2top. To open a commitment at a particular index 8 ∈ [#], we �rst write 8 = �(8top − 1) + 8base where

8top ∈ [# /�] and 8base ∈ [�]. Then, we open 2top to 28top (at index 8top) and open 28top at index 8base. It is not di�cult to

see that if the base commitment scheme satis�es succinctness, then the two-tiered scheme is also succinct. Moreover,

since the commitments in the base scheme are succinct (|28 | = poly(_, log�)), the two-tiered scheme only needs to

commit to vectors of length � and # /� · poly(_, log�). By setting the batch size to � =
√
, we e�ectively reduce

the size of the CRS from # 2 · poly(_, log#) to # · poly(_, log#). By recursively composing (a constant number of

times), we obtain a somewhere extractable commitment with CRS size # Y
for any constant Y > 0. We give the full

construction below:

Construction 6.16 (Somewhere Extractable Commitment Bootstrapping). Let � ∈ N be a batch size parameter. Let

Π (0)SECom = (SECom0.Setup, SECom0.Commit, SECom0 .Open, SECom0.Verify) be a somewhere extractable commit-

ment scheme with locality ! = 1. We construct a new somewhere extractable commitment scheme with locality ! = 1

as follows:

42

• Setup(1_, 1ℓblk , 1#): On input the security parameter _, the block size ℓblk, and the number of blocks # , the

setup algorithm does the following:

– Sample (crsbase, vkbase) ← SECom0.Setup(1_, 1ℓblk , 1�).
– Let ℓ2 = ℓ2 (_, ℓblk, �) be the length of the commitments output by SECom0.Commit(crsbase, ·).
– Sample (crstop, vktop) ← SECom0.Setup(1_, 1ℓ2 , 1# /�).
– Output crs = (crsbase, crstop) and vk = (vkbase, vktop).

We will require that � ≤ # .

• Commit(crs, v): On input crs = (crsbase, crstop) and a vector v = (E1, . . . , E#), the commit algorithm proceeds

as follows:

– For each 8 ∈ [# /�], compute a commitment (28 , g8) ← SECom0.Commit(crsbase, (E (8−1)�+1, . . . , E8�)).
– Compute (2top, gtop) ← SECom0 .Commit(crstop, (21, . . . , 2# /�)).
– Output the commitment 2 = 2top and the state g = (21, . . . , 2# /�, g1, . . . , g# /�, gtop).

• Open(crs, g, 8): On input crs = (crsbase, crstop), a state g = (21, . . . , 2# /�, g1, . . . , g# /�, gtop), and an index

8 = �(8top − 1) + 8base where 8top ∈ [# /�] and 8base ∈ [�], the open algorithm computes openings ctop ←
SECom0 .Open(crstop, gtop, 8top) and cbase ← SECom0.Open(crsbase, g8top , 8base) and outputs c = (28top , ctop, cbase).

• Verify(vk, 2, 8, E, c): On input the veri�cation key vk = (vkbase, vktop), a commitment 2 = 2top, an index 8 ∈ [#],
a value E ∈ {0, 1}ℓblk , and a proof c = (2 ′, ctop, cbase), the veri�cation algorithm writes 8 = �(8top − 1) + 8base
where 8top ∈ [# /�] and 8base ∈ [�]. The algorithm accepts (with output 1) if all of the following properties

hold:

– SECom0 .Verify(vktop, 2top, 8top, 2 ′, ctop) = 1; and

– SECom0 .Verify(vkbase, 2 ′, 8base, E, cbase) = 1.

Otherwise, the veri�cation algorithm outputs 0.

Theorem 6.17 (Correctness). If Π (0)SECom is correct, then Construction 6.6 is correct.

Proof. Correctness follows by construction. Concretely, take any security parameter _ ∈ N and polynomials ℓblk =

ℓblk (_), # = # (_). Take any vector v = (E1, . . . , E#) ∈ ({0, 1}ℓblk)# and index 8 ∈ [#]. Write 8 = �(8top − 1) + 8base
where 8top ∈ [# /�] and 8base ∈ [�]. Let (crs, vk) ← Setup(1_, 1ℓblk , 1#), (2, g) ← Commit(crs, v), c ← Open(crs, g, 8).
We can write crs = (crsbase, crstop), vk = (vkbase, vktop), g = (21, . . . , 2# /�, g1, . . . , g# /�, gtop), and c = (28top , ctop, cbase).
We show that both veri�cation relations in Verify(vk, 2, 8, E8 , c) hold:

• First, 2top is a commitment to (21, . . . , 2# /�) with respect to (crstop, vktop) and ctop is an opening of 2top to index

8top. By correctness of Π (0)SECom, SECom0.Verify(vktop, 2top, 8top, 28top , ctop) = 1.

• Next, 28top is a commitment to (E (8top−1)�+1, . . . , E8top�) with respect to (crsbase, vkbase) and cbase is an opening of

28top to index 8base. By de�nition, E (8top−1)�+8base = E8 , so SECom0.Verify(vkbase, 2base, 8base, E8 , cbase) = 1. �

Theorem 6.18 (Somewhere Extractable). If Π (0)SECom is somewhere extractable, then Construction 6.16 is somewhere
extractable.

Proof. We start by de�ning the trapdoor setup and extraction algorithms:

• TrapSetup(1_, 1ℓblk , 1# , 8∗): On input the security parameter _, block length ℓblk, the number of blocks # , and

an index 8∗ ∈ [#], the trapdoor setup algorithm writes 8∗ = �(8∗top − 1) + 8∗base and then samples the following:

– (crs∗base, vk
∗
base, tdbase) ← SECom0.TrapSetup(1_, 1ℓblk , 1�, 8∗base); and

43

– (crs∗top, vk∗top, tdtop) ← SECom0.TrapSetup(1_, 1ℓ2 , 1# /�, 8∗top).

It outputs crs∗ = (crs∗base, crs
∗
top), vk∗ = (vk∗base, vk

∗
top), and td = (8∗, tdbase, tdtop).

• Extract(td, 2, 8): On input the trapdoor td = (8∗, tdbase, tdtop), a commitment 2 and an index 8 ∈ [#], if 8 ≠ 8∗,
the extraction algorithm outputs ⊥. Otherwise, it computes 2base ← SECom0.Extract(tdtop, 2, 8∗top) and outputs

E ← SECom0.Extract(tdbase, 2base, 8∗base) where 8∗ = �(8∗top − 1) + 8∗base.

We now show that the CRS indistinguishability and somewhere extractability properties hold:

Lemma 6.19 (CRS Indistinguishability). If Π (0)SECom satis�es CRS indistinguishability, then Construction 6.16 also satis�es
CRS indistinguishability.

Proof. This follows by a standard hybrid argument. First, (crsbase, vkbase) and (crstop, vktop) are sampled indepen-

dently in Construction 6.16, as is the case in the trapdoor setup algorithm. In the real setup, (crsbase, vkbase) is

sampled by computing SECom0.Setup(1_, 1ℓblk , 1�) and in the trapdoor setup algorithm, they are sampled by com-

puting SECom0.TrapSetup(1_, 1ℓblk , 1�, 8∗base). These two distributions are computationally indistinguishable by CRS

indistinguishability of Π (0)SECom. A similar argument applies to the distribution of (crstop, vktop). �

Lemma 6.20 (Somewhere Extractable in Trapdoor Mode). If Π (0)SECom is somewhere extractable in trapdoor mode, then
Construction 6.16 is somewhere extractable in trapdoor mode.

Proof. Fix polynomials ℓblk = ℓblk (_) and # = # (_). Let 8∗ ∈ [#] be the index chosen by the adversary. Let

(crs∗, vk∗, td) ← TrapSetup(1_, 1ℓblk , 1# , 8∗). We write vk∗ = (vk∗base, vk
∗
top) and 8∗ = �(8∗top − 1) + 8∗base. Take any

commitment 2 , string E ∈ {0, 1}ℓblk , and proof c = (2 ′, ctop, cbase). Suppose that Verify(vk∗, 2, 8∗, E, c) = 1. Let 2base ←
SECom0.Extract(tdtop, 2, 8∗top) and E ′← SECom0.Extract(tdbase, 2base, 8∗base). It su�ces to show that with overwhelm-

ing probability, E = E ′. Since Verify(vk∗, 2, 8∗, E, c) outputs 1, we have that SECom0.Verify(vk∗top, 2, 8∗top, 2 ′, ctop) = 1

and SECom0 .Verify(vk∗base, 2 ′, 8∗base, E, cbase) = 1.

Claim 6.21. If Π (0)SECom is somewhere extractable in trapdoor mode, then there exists a negligible function negl(·) such
that for all _ ∈ N, Pr[2 ′ = 2base] = 1 − negl(_).

Proof. Suppose there is an adversaryA that outputs 2, E, c = (2 ′, ctop, cbase)where 2 ′ ≠ 2base andVerify(vk∗, 2, 8∗, E, c) =
1. By construction of Verify, this means that SECom0.Verify(vk∗top, 2, 8∗top, 2 ′, ctop) = 1. We use A to construct an

algorithm B that breaks the somewhere extractability property of Π (0)SECom with the same advantage:

1. Algorithm B runs A to obtain an index 8∗ ∈ [#]. It writes 8∗ = �(8∗top − 1) + 8∗base, gives 8∗top to its challenger,

and receives (crs∗top, vk∗top) from its challenger.

2. Algorithm B samples (crs∗base, vk
∗
base, tdbase) ← SECom0 .TrapSetup(1_, 1ℓblk , 1�, 8∗base). It constructs and gives

crs∗ = (crs∗base, crs
∗
top) and vk∗ = (vk∗base, vk

∗
top) to A.

3. Algorithm A outputs a commitment 2 , a string E ∈ {0, 1}ℓblk and a proof c = (2 ′, ctop, cbase). Algorithm B
outputs 2 , 2 ′, and ctop.

By construction, algorithm B perfectly simulates the view of A in the somewhere extractability game. Thus, if A
succeeds with advantage Y, then with the same probability Y, Verify(vk∗top, 2, 8∗top, 2 ′, ctop) = 1 and 2 ′ ≠ 2base where

2base ← SECom0.Extract(tdtop, 2, 8∗top). Thus, B breaks somewhere extractability of Π (0)SECom with advantage Y. �

Claim 6.22. If Π (0)SECom is somewhere extractable in trapdoor mode, then there exists a negligible function negl(·) such
that for all _ ∈ N, Pr[E = E ′] = 1 − negl(_).

Proof. By assumption, SECom0 .Verify(vk∗base, 2 ′, 8∗base, E, cbase) = 1 and E ′ ← SECom0 .Extract(tdbase, 2base, 8∗base). By

Claim 6.21, 2 ′ = 2base with overwhelming probability. Since (crs∗base, vk
∗
basetdbase) is sampled using SECom0.TrapSetup

with index 8∗base, we can appeal to a similar argument as used in the proof of Claim 6.21 to conclude that E = E ′ with

probability 1 − negl(_). �

44

Combining Claims 6.21 and 6.22, we have that the extracted block E ′ ∈ {0, 1}ℓblk matches the claimed block E ∈ {0, 1}ℓblk
with overwhelming probability and the claim follows. �

The claim now follows by combining Lemmas 6.19 and 6.20. �

Theorem 6.23 (Succinctness). Suppose Π (0)SECom is a succinct somewhere extractable commitment with CRS size
ℓ0 (_, ℓblk, #) = #3 · poly(_, ℓblk) for some constant 3 ∈ N. Then Construction 6.16 is a succinct somewhere extractable
commitment with CRS size

ℓ (_, ℓblk, # , �) = �3 · poly(_, ℓblk) + (# /�)3 · poly(_, ℓblk, log#).
Proof. We show that each of the properties are satis�ed:

• CRS size: The CRS in Construction 6.16 consists of two common reference strings (crsbase, crstop) for Π (0)SECom.

The size of crsbase is ℓ0 (_, ℓblk, �) and the size of crstop is ℓ0 (_, ℓ2 , # /�). By succinctness of Π (0)SECom, we have that

ℓ2 (_, ℓblk, �) = poly(_, ℓblk, log�). Thus,

ℓ (_, ℓblk, # , �) = �3 · poly(_, ℓblk) + (# /�)3 · poly(_, ℓblk, log#). �

• Succinct veri�cation key: The veri�cation key vk in Construction 6.16 consists of two veri�cation keys

(vkbase, vktop) for Π (0)SECom. By succinctness of Π (0)SECom, we have that |vkbase | = poly(_, ℓblk, log�) and

��vktop�� =
poly(_, ℓ2 , log# /�) = poly(_, ℓblk, log#). Thus, |vk| = poly(_, ℓblk, log#).

• Succinct commitment: The commitment consists of a single commitment under crstop, which has size

poly(_, ℓ2 , log# /�) = poly(_, ℓblk, log#).

• Succinct opening: An opening (2base, ctop, cbase) consists of a commitment 2 under crsbase and two openings

ctop andcbase under crstop and crsbase, respectively. By succinctness ofΠ (0)SECom, |2base | , |cbase | = poly(_, ℓblk, log�)
and

��ctop�� = poly(_, ℓ2 , log(# /�)) = poly(_, ℓblk, log#). The overall opening size is then poly(_, ℓblk, log#).

• Succinct veri�cation: The veri�cation algorithm reduces to two invocations of the veri�cation algorithm

for Π (0)SECom which run in time poly(_, ℓblk, log�) and poly(_, ℓ2 , log(# /�)). The total running time is thus

poly(_, ℓblk, log#).
Corollary 6.24 (Somewhere Extractable Commitment with Short CRS). Suppose there exists a somewhere extractable
commitment with locality 1 and commitment size poly(_, ℓblk, #), where ℓblk is the block size and # is the number of
blocks. Then, for every constant Y > 0, there exists a somewhere extractable commitment with locality 1 and a CRS of size
Y · poly(_, ℓblk).

Proof. Let Π (0)SECom be a somewhere extractable commitment scheme with locality 1 and a CRS of size bounded by

#3 · poly(_, ℓblk) for some constant 3 ∈ N. Let : = dlog(23/Y)e ∈ N. For 8 ∈ [:], let Π (8)SECom be the somewhere

extractable commitment with locality 1 formed by applying Construction 6.16 to Π (8−1)
SECom with � =

√
. Let ℓ8 denote

the length of the CRS in Π (8)SECom. Since ℓ0 (_, ℓblk, #) = #3 · poly(_, ℓblk), we can inductively apply Theorem 6.23 to

write

ℓ8 (_, ℓblk, #) = #3/2
8 · poly(_, ℓblk, log#).

Substituting : = dlog(23/Y)e into the above, we have that

ℓ: (_, ℓblk, #) = # Y/2 · poly(_, ℓblk, log#) < # Y · poly(_, ℓblk),
since 23/Y is a constant. The other succinctness requirements are preserved since we compose a constant number of

times. �

Corollary 6.25 (Somewhere Extractable Commitment with Short CRS). If the :-Lin assumption holds in G1 and G2

with respect to GroupGen (for any constant : ≥ 1), and if there exists a somewhere statistically binding hash function,
then for every constant Y > 0, there exists a somewhere extractable commitment scheme with locality 1 and CRS size
Y · poly(_, ℓblk) where ℓblk is the block size and # is the number of blocks in the input.

Proof. Follows by instantiating Corollary 6.24 with Corollary 6.15 (along with Remark 6.5). �

45

6.4 Delegation for RAM Programs
In this section, we recall the de�nition of delegation for RAM machines from the works of [KPY19, CJJ21b]. We refer

to Kalai et al. [KPY19, Remark 3.6] for comparisons with earlier de�nitions of RAM delegation [KP16, BHK17]. Our

description here is adapted from that in [KPY19]. A RAM machine R with word size ℓ is modeled as a deterministic

machine with random access to a memory of size 2
ℓ

bits and a local state of size $ (ℓ). On each step of the RAM

computation, the machine either reads or writes to a single word in memory and then updates its local state. We

refer to the combination of the machine’s local state and the memory as its con�guration cf. For ease of exposition,

we assume that the machine has no input or output other than its initial memory and local state con�guration, and

moreover, we set the word size ℓ = _ to the security parameter. For a RAM machine R, we de�ne the language LR as

LR := {(ℓ, cf, cf ′,)) | R with word size ℓ transitions from cf to cf ′ in) steps}.

De�nition 6.26 (Delegation for RAM Programs [KPY19, CJJ21b, adapted]). A publicly-veri�able non-interactive

delegation scheme for a RAM program R with setup time)(=)((_,)) and proof length ℓc = ℓc (_,)) is a tuple of

e�cient algorithms ΠRAM = (Setup,Digest, Prove,Verify) with the following properties:

• Setup(1_, 1)) → (pk, vk, dk): On input the security parameter _, a time bound) , the setup algorithm outputs

a prover key pk, a veri�cation key vk, and a digest key dk.

• Digest(dk, cf) → h: On input the digest key dk and a con�guration cf, the digest algorithm outputs a hash h.

This algorithm is deterministic.

• Prove(pk, cf, cf ′) → c : On input the prover key pk, an initial con�guration cf and a �nal con�guration cf ′, the

prove algorithm outputs a proof c . This algorithm is deterministic.

• Verify(vk, h, h′, c) → 1: On input the veri�cation key vk, a pair of digests h, h′, and a proof c , the veri�cation

algorithm outputs a bit 1 ∈ {0, 1}. This algorithm is deterministic.

We require that ΠRAM satisfy the following properties:

• Completeness: For every _,) ∈ N where) ≤ 2
_

and cf, cf ′ ∈ {0, 1}∗ where (_, cf, cf ′,)) ∈ LR ,

Pr[Verify(vk, h, h′, c) = 1] = 1,

where (pk, vk, dk) ← Setup(1_, 1)), h← Digest(dk, cf), h′← Digest(dk, cf ′), and c ← Prove(pk, cf, cf ′).

• E�ciency: In the completeness experiment above, we require the following hold:

– The setup algorithm runs in time)((_,)).
– The digest algorithm on con�guration cf runs in time |cf | · poly(_) and outputs a digest of size _.

– The prover runs in time poly(_,) , |cf |) and outputs a proof of length ℓc (_,)).
– The veri�er runs in time $ (ℓc) + poly(_).

• Collision Resistance: For every e�cient adversaryA and every polynomial) =) (_), there exists a negligible

function negl(·) such that for all _ ∈ N,

Pr

[
cf ≠ cf ′ ∧ Digest(dk, cf) = Digest(dk, cf ′) :

(pk, vk, dk) ← Setup(1_, 1));
(cf, cf ′) ← A(pk, vk, dk).

]
= negl(_).

• Soundness: For every e�cient adversary A and every polynomial) =) (_), there exists a negligible function

negl(·) such that for all _ ∈ N,

Pr

Verify(vk, h, h′, c) = 1 ∧
(_, cf, cf ′,)) ∈ LR ∧
h = Digest(dk, cf) ∧
h′ ≠ Digest(dk, cf ′)

:

(pk, vk, dk) ← Setup(1_, 1));
(cf, cf ′, h, h′, c) ← A(pk, vk, dk)

 = negl(_) .

46

Construction and instantiation. Choudhuri et al. [CJJ21b] showed how to construct a delegation scheme for

RAM programs from a variant of a somewhere extractable commitment scheme that supports “no-signaling” ex-

traction [GZ21] together with a non-interactive batch argument for an index language (Remark 2.10). As shown

by González and Zacharakis (see also [CJJ21b, Theorem 13]), a no-signaling somewhere extractable commitment

scheme with locality ! can be constructed using ! copies of a vanilla somewhat extractable commitment scheme with

locality 1 (e.g., from Corollary 6.25). We summarize this instantiation in the following theorem:

Theorem 6.27 (Delegation for RAM Programs [CJJ21b]). Suppose there exists a somewhere extractable commitment
scheme with block size ℓblk = 1, locality ! = 1, and a batch non-interactive argument for index languages. Then, there
exists a delegation scheme for RAM programs with setup time)(= poly(_,)) and proof length ℓc = poly(_, log)).9
Moreover, the size of the digest key is poly(_) and the size of the proving key is (|crsindexBARG | + |crsSECom |) · poly(_),
where crsindexBARG denotes the length of the CRS for the index BARG (with< = poly()) instances and B = poly(_)-size
circuits) and crsSECom denotes the lengths of the CRS for the somewhere extractable commitment scheme (with message
length # = poly(_,))).

We can instantiate Theorem 6.27 with our batch non-interactive argument for index languages (Corollary 5.10

and Remark 2.10) together with our somewhere extractable commitment scheme (Corollary 6.25). This yields a

delegation scheme for RAM programs from the :-Lin assumption over asymmetric prime-order groups in conjunction

with an SSB hash function. We can moreover instantiate the SSB hash function using the DDH-based construction

of Okamoto et al. [OPWW15], which yields a delegation scheme for RAM programs from the 1-Lin (i.e., SXDH)

assumption on prime-order pairing groups. We state these corollaries formally below:

Corollary 6.28 (Delegation for RAM Programs). If the :-Lin assumption holds in G1 and G2 with respect to GroupGen
(for any constant : ≥ 1), and there exists a somewhere statistically binding hash function, then for every constant Y > 0,
there exists a delegation scheme for RAM programs with setup time)(= poly(_,)), proof length ℓc = poly(_, log)),
digest key size poly(_), and proving key size) Y · poly(_).

Theorem 6.29 (SSB Hash Functions from DDH [OPWW15]). Suppose the DDH assumption holds with respect to a
group generator GroupGen. Then, there exists a SSB hash function for any polynomial block length ℓblk = ℓblk (_).

Corollary 6.30 (Delegation for RAM Programs from SXDH). If the SXDH assumption holds with respect to GroupGen,
then for every constant Y > 0, there exists a delegation scheme for RAM programs with setup time)(= poly(_,)), proof
length ℓc = poly(_, log)), digest key size poly(_), and proving key size) Y · poly(_).

7 Aggregate Signatures from BARGs
In this section, we describe the straightforward approach of constructing aggregate signatures from BARGs for NP,

and show that we can argue security so long as the BARG is a somewhere argument of knowledge. Importantly,

security does not require that the BARG be fully extractable. We start by recalling the de�nition of a standard digital

signature scheme and an aggregate signature scheme:

De�nition 7.1 (Digital Signature). A digital signature scheme with message spaceM is a tuple of e�cient algorithms

ΠSig = (KeyGen, Sign,Verify) with the following properties:

• KeyGen(1_) → (sk, vk): On input the security parameter _, the key-generation algorithm outputs a signing

key sk and a veri�cation key vk.

• Sign(sk, `) → f : On input the signing key sk and a message ` ∈ M, the signing algorithm outputs a signature

f .

• Verify(vk, `, f) → 1: On input the veri�cation key vk, a message ` ∈ M, and a signature f , the veri�cation

algorithm outputs a bit 1 ∈ {0, 1}.
9
Technically, the construction also requires a collision-resistant hash function, but this is implied by a somewhere extractable commitment.

47

Moreover, the above algorithms should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N and messages ` ∈ M,

Pr[Verify(vk, `, f) = 1 : (sk, vk) ← KeyGen(1_);f ← Sign(sk, `)] = 1.

• Unforgeability: De�ne the signature unforgeability game between an adversaryA and a challenger as follows:

– The challenger samples (sk, vk) ← KeyGen(1_) and gives vk to A.

– The adversary can now make signing queries on messages ` ∈ M of its choosing. On each query `, the

challenger replies with Sign(sk, `).
– At the end of the game, the adversary outputs a message-signature pair (`∗, f∗). The output of the game

is 1 if Verify(vk, `∗, f∗) = 1 and the adversary did not make a signing query on `∗. Otherwise, the output

is 0.

We say ΠSig is unforgeable if for all e�cient adversaries, there exists a negligible function negl(·) such that for

all _ ∈ N, Pr[1 = 1] = negl(_) in the above unforgeability game.

De�nition 7.2 (Aggregate Signature [BGLS03, adapted]). A bounded aggregate signature scheme with message space

M is a tuple of e�cient algorithms ΠAggSig = (Setup,KeyGen, Sign,Verify,Aggregate,AggVerify) with the following

properties:

• Setup(1_, 1<) → pp: On input the security parameter _ and an aggregation bound <, the setup algorithm

outputs the public parameters pp.

• KeyGen(pp) → (sk, vk): On input the public parameters pp, the key-generation algorithm outputs a signing

key sk and a veri�cation key vk.

• Sign(pp, sk, `) → f : On input the public parameters pp, the signing key sk, and a message ` ∈ M, the signing

algorithm outputs a signature f .

• Verify(pp, vk, `, f) → 1: On input the public parameters pp, the veri�cation key vk, a message ` ∈ M, and a

signature f , the veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

• Aggregate(pp, {(vk8 , `8 , f8)}8∈[)]) → fagg: On input the public parameters pp, and a collection of up to) ≤ <
veri�cation keys vk8 , messages `8 , and signatures f8 , the aggregation algorithm outputs an aggregate signature

fagg.

• AggVerify(pp, (vk1, . . . , vk)), (`1, . . . , `)), fagg) → 1: On input the public parameters pp, a collection of) ≤ <
veri�cation keys vk8 and messages `8 , and an aggregate signature fagg, the aggregate veri�cation algorithm

outputs a bit 1 ∈ {0, 1}.

Moreover, the above algorithms should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all values< ∈ N, all messages ` ∈ M,

Pr

[
Verify(pp, vk, `, f) = 1 :

pp← Setup(1_, 1<);
(sk, vk) ← KeyGen(pp);f ← Sign(pp, sk, `)

]
= 1.

In addition, for all public parameters pp in the support of Setup(1_, 1<) and all collections {(vk8 , `8 , f8)}8∈[)]
where) ≤ < and Verify(pp, vk8 , `8 , f8) = 1 for all 8 ∈ [)],

Pr

[
AggVerify(pp, (vk1, . . . , vk)), (`1, . . . , `)), fagg) = 1 : fagg ← Aggregate(pp, {(vk8 , `8 , f8)}8∈[)])

]
= 1.

• E�ciency: There exists a �xed polynomial poly(·, ·) such that in the completeness experiment above, the size

of the aggregate signature fagg satis�es

��fagg�� = poly(_, log)).

48

• Unforgeability: De�ne the signature unforgeability game between an adversaryA and a challenger as follows:

– The challenger samples pp← A(1_, 1<) and (vk∗, sk∗) ← KeyGen(pp) and gives pp and vk∗ to A.

– The adversary can now make signing queries on messages ` ∈ M of its choosing. On each query `, the

challenger replies with Sign(pp, sk∗, `).
– At the end of the game the adversary outputs a tuple of veri�cation keys (vk1, . . . , vk)), a tuple of messages

(`1, . . . , `)) with) ≤ <, and a signature f∗.

– The output of the game is 1 if there exists an index 8∗ ∈ [)] where vk8∗ = vk∗, algorithm A did not make

a signing query on `8∗ , and AggVerify(pp, (vk1, . . . , vk)), (`1, . . . , `)), f∗) = 1. Otherwise, the output is 0.

Then, ΠAggSig is unforgeable if for all e�cient adversaries A and all polynomials < = <(_), there exists a

negligible function negl(·) such that for all _ ∈ N, Pr[1 = 1] = negl(_) in the above unforgeability game.

Construction 7.3 (Aggregate Signature from BARGs for NP). Let ΠSig = (Sig.KeyGen, Sig.Sign, Sig.Verify) be a

digital signature scheme, and let ΠBARG = (BARG.Setup,BARG.Prove,BARG.Verify) be a BARG for NP. We require

that ΠBARG supports proving and verifying a variable number) of instances provided that) ≤ < where< is the

bound on the total number of instances (see Remark 3.11). We construct a bounded aggregate signature scheme as

follows:

• Setup(1_, 1<): On input the security parameter _ and the aggregation bound<, let B = B (_) be the size of the

circuit that computes Sig.Verify. Sample crsBARG ← BARG.Setup(1_, 1<, 1B) and output pp = (1_, crsBARG).

• KeyGen(pp): On input the public parameters pp = (1_, crsBARG), output (sk, vk) ← Sig.KeyGen(1_).

• Sign(pp, sk, `): On input the public parameters pp = (1_, crsBARG), the signing key sk, and the message ` ∈ M,

output f ← Sig.Sign(sk, `).

• Verify(pp, vk, `, f): On input the public parameters pp = (1_, crsBARG), the veri�cation key vk, the message

` ∈ M, and the signature f , output Sig.Verify(vk, `, f).

• Aggregate(pp, {(vk8 , `8 , f8)}8∈[)]): On input the public parameters pp = (1_, crsBARG) and a collection of tuples

{(vk8 , `8 , f8)}8∈[)] , the aggregation algorithm computes

c ← BARG.Prove(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), (f1, . . . , f))),

where�Ver is the Boolean circuit that computes�Ver ((vk, `), f) := Sig.Verify(vk, `, f). The aggregated signature

is the proof fagg = c .

• AggVerify(pp, (vk1, . . . , vk)), (`1, . . . , `)), fagg): On input the public parameters pp = (1_, crsBARG), veri�cation

keys vk1, . . . , vk) , messages `1, . . . , `) ∈ M, and a signature fagg, output

BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), fagg).

Theorem 7.4 (Completeness). If ΠSig is correct and ΠBARG is complete, then Construction 7.3 is correct.

Proof. Follows by construction. �

Theorem 7.5 (E�ciency). If ΠBARG is succinct, then Construction 7.3 is e�cient.

Proof. The aggregate signature in Construction 7.3 is a BARG proof. Succinctness of the BARG ensures that

��fagg�� ≤
poly(_, log<, B) = poly(_, log<), since B = B (_) is the size of the veri�cation circuit �Ver. �

Theorem 7.6 (Unforgeability). If ΠBARG is a somewhere argument of knowledge and ΠSig is unforgeable, then Con-
struction 7.3 is unforgeable.

Proof. We proceed using a hybrid argument:

49

• Hyb
0
: This is the real signature unforgeability game:

– At the beginning of the game, the challenger samples crsBARG ← BARG.Setup(1_, 1<, 1B) and sets

pp = (1_, crsBARG). It also samples (vk, sk) ← Sig.KeyGen(1_), and gives pp, vk to the adversary A.

– Algorithm A can then make signing queries on messages ` ∈ M and the challenger replies with

f ← Sig.Sign(sk, `).
– At the end of the game the adversary outputs a tuple of veri�cation keys (vk1, . . . , vk)), a tuple of messages

(`1, . . . , `)) with) ≤ <, and a signature f∗.

– The output of the experiment is 1 if there exists an index 8∗ ∈ [)] where vk8∗ = vk∗, algorithm A did not

make a signing query on `8∗ , and BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), f∗) = 1. Otherwise,

the output is 0.

• Hyb
1
: In this experiment, the challenger starts by guessing an index 9∗

r← [<]. The rest of the experiment

then proceeds as in Hyb
0
. After the adversary outputs (vk1, . . . , vk)), (`1, . . . , `)) and f∗, the output of the

experiment is 1 if vk9∗ = vk∗, algorithm A did not make a signing query on ` 9∗ , and

BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), f∗) = 1.

Otherwise, the output is 0.

• Hyb
2
: Same as Hyb

1
, except the challenger uses the BARG trapdoor sampling algorithm to sample crsBARG. In

particular, after sampling 9∗
r← [<], the challenger samples (crsBARG, tdBARG) ← BARG.TrapSetup(1_, 1<, 1B , 9∗).

Everything else is the same as in Hyb
1
.

• Hyb
3
: Same as Hyb

2
except at the end of the experiment, the challenger additionally computes

f̂ ← BARG.Extract(tdBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), f∗).

If �Ver (vk9∗ , ` 9∗ , f̂) ≠ 1, then the output of the game is 0. Otherwise, the output is the same as in Hyb
2
.

For an adversary A, we write Hyb8 (A) to denote the output of an execution of experiment Hyb8 with adversary A.

Our goal is to show that for all e�cient adversaries A, Pr[Hyb
0
(A) = 1] = negl(_).

Lemma 7.7. For all adversaries A, we have that Pr[Hyb
1
(A) = 1] ≥ 1

<
Pr[Hyb

0
(A) = 1].

Proof. By construction, the views of the adversary in Hyb
0

and Hyb
1

are identical. The only di�erence is in how

the output of the experiment is computed. Suppose Pr[Hyb
0
(A) = 1] = Y. Then, with probability Y, algorithm A

outputs (vk1, . . . , vk)), (`1, . . . , `)) and f∗ where there exists an index 8∗ ∈ [)] satisfying the listed properties with

probability at least Y. This is also the case in Hyb
1
. Here, if 9∗ = 8∗, then the output in Hyb

1
(A) is also 1. Since 9∗ is

uniform, this happens with probability at least Y/< and the lemma holds. �

Lemma 7.8. If ΠBARG is a somewhere argument of knowledge (speci�cally, the CRS indistinguishability property holds),
then for all e�cient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb
1
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(_).

Proof. This is immediate by CRS indistinguishability. Namely, the only di�erence between Hyb
1

and Hyb
2

is that the

challenger samples crsBARG using BARG.Setup(1_, 1<, 1B) in Hyb
1

and BARG.TrapSetup(1_, 1<, 1B , 9∗) in Hyb
2
. By

CRS indistinguishability, these two distributions are computationally indistinguishable. Moreover, the output bit in

Hyb
1

and Hyb
2

can be e�ciently computed from crsBARG and the adversary’s output. �

Lemma 7.9. If ΠBARG is a somewhere argument of knowledge (speci�cally, the extractability in trapdoor mode property
holds), then for all adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb
3
(A) = 1] − Pr[Hyb

2
(A) = 1]

�� = negl(_).

50

Proof. The only di�erence between Hyb
2

and Hyb
3

is the extra check the challenger performs in Hyb
3
. Namely, in

order for Hyb
2

to output 1, but Hyb
3

to output 0, it must be the case that

• BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), f∗) = 1; and

• �Ver (vk9∗ , ` 9∗ , f̂) ≠ 1 where f̂ ← BARG.Extract(tdBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), f∗).

In Hyb
2

and Hyb
3
, crsBARG is sampled using BARG.TrapSetup(1_, 1<, 1B , 9∗), so any adversary A that produces an

output that successfully triggers both of the above conditions with advantage Y also breaks somewhere extractability

in trapdoor mode property with identical advantage. �

Lemma 7.10. If ΠSig is unforgeable, then for all e�cient adversaries A, there exists a negligible function negl(·) such
that for all _ ∈ N, Pr[Hyb

3
(A) = 1] = negl(_).

Proof. Suppose there exists an e�cient algorithm A where Pr[Hyb
3
(A) = 1] = Y for some non-negligible Y. We use

A to build an algorithm B that breaks unforgeability of ΠSig:

1. Algorithm B receives the veri�cation key vk∗ from its challenger.

2. Algorithm B starts by sampling 9∗
r← [<] and (crsBARG, tdBARG) ← BARG.TrapSetup(1_, 1<, 1B , 9∗). It sets

pp← (1_, crsBARG) and gives pp to A.

3. Whenever algorithm A makes a signing query on a message ` ∈ M, algorithm B makes a signing query on `

and obtains a signature f . It replies to A with the signature f .

4. At the end of the game, algorithm A outputs (vk1, . . . , vk)), (`1, . . . , `)) and f∗. Algorithm B checks that

vk9∗ = vk∗, algorithm A did not issue a signing query on ` 9∗ , and that

BARG.Verify(crsBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), f∗) = 1.

If any checks do not pass, algorithm B aborts with output ⊥. Otherwise, it computes

f̂ ← BARG.Extract(tdBARG,�Ver, ((vk1, `1), . . . , (vk) , `))), f∗)

and outputs ` 9∗ , f̂ as its forgery.

By construction, algorithm B perfectly simulates an execution of Hyb
3

for A. Thus, with probability at least Y,

algorithm A outputs (vk1, . . . , vk)), (`1, . . . , `)) and f∗ where vk9∗ = vk∗, the adversary never queried the signing

oracle on ` 9∗ , and �Ver (vk9∗ , ` 9∗ , f̂) = 1. Since �Ver is the veri�cation circuit, this means that f̂ is a valid signature on

` 9∗ , and so algorithm B succeeds with the same advantage Y. �

By Lemmas 7.8 to 7.10, we have that for all e�cient adversaries A, Pr[Hyb
1
(A) = 1] = negl(_). By Lemma 7.7, this

means that Pr[Hyb
0
(A) = 1] ≤ < · Pr[Hyb

1
(A) = 1] = negl(_) since< = poly(_). �

Corollary 7.11 (Bounded Aggregate Signature from Pairings). For any constant : ≥ 1, if the :-Lin assumption holds in
G1 and G2 with respect to a prime-order group generator GroupGen (or alternatively, if the subgroup decision assumption
holds with respect to a composite-order group generator CompGroupGen), then for all constants Y > 0, there exists an
bounded aggregate signature scheme with public parameter size<Y · poly(_), where< is the aggregation bound.

Acknowledgments
B. Waters is supported by NSF CNS-1908611, a Simons Investigator award and the Packard Foundation Fellowship.

D. J. Wu is supported by NSF CNS-1917414, CNS-2045180, and a Microsoft Research Faculty Fellowship.

51

References
[AGH10] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate signatures: new

de�nitions, constructions and applications. In ACM CCS, 2010.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum

secure computational integrity. IACR Cryptol. ePrint Arch., 2018, 2018.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, 2004.

[BCC
+
17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Sha� Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran

Tromer. The hunting of the SNARK. J. Cryptol., 30(4), 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to

succinct non-interactive arguments of knowledge, and back again. In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping

for SNARKS and proof-carrying data. In STOC, 2013.

[BCI
+
13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-

interactive arguments via linear interactive proofs. In TCC, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way

functions. In STOC, 2014.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and veri�ably encrypted signatures

from bilinear maps. In EUROCRYPT, 2003.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, 2005.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and batch NP

veri�cation from standard computational assumptions. In STOC, 2017.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their application to

more e�cient obfuscation. In EUROCRYPT, 2017.

[CCH
+
19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and

Daniel Wichs. Fiat-Shamir: from practice to theory. In STOC, 2019.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC, 2013.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (preliminary

version). In STOC, 1998.

[CHM
+
20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.

Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In EUROCRYPT, 2020.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from

standard assumptions. In CRYPTO, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS, 2021.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive

proofs from holography. In EUROCRYPT, 2020.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communica-

tion. In TCC, 2012.

52

[EHK
+
13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Villar. An algebraic framework for

Di�e-Hellman assumptions. In CRYPTO, 2013.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Programmable

hash functions in the multilinear setting. In CRYPTO, 2013.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups to

prime-order groups. In EUROCRYPT, 2010.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�cation and signature

problems. In CRYPTO, 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and

succinct NIZKs without PCPs. In EUROCRYPT, 2013.

[GKR08] Sha� Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs

for muggles. In STOC, 2008.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In

EUROCRYPT, 2006.

[GR06] Craig Gentry and Zul�kar Ramzan. Identity-based aggregate signatures. In PKC, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, 2016.

[GS08] Jens Groth and Amit Sahai. E�cient non-interactive proof systems for bilinear groups. In EUROCRYPT,

2008.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi�able

assumptions. In STOC, 2011.

[GZ21] Alonso González and Alexandros Zacharakis. Succinct publicly veri�able computation. In TCC, 2021.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation. In

CRYPTO, 2007.

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggregators. In EURO-
CRYPT, 2015.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function evaluation with

long output. In ITCS, 2015.

[HW18] Susan Hohenberger and Brent Waters. Synchronized aggregate signatures from the RSA assumption. In

EUROCRYPT, 2018.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-exponential DDH. In

EUROCRYPT, 2021.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for bounded depth

computations and PPAD hardness from sub-exponential LWE. In STOC, 2021.

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In TCC, 2016.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In STOC, 2019.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In STOC, 2013.

53

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the power of

no-signaling proofs. In STOC, 2014.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,

post-quantum security, and SNARGs. In TCC, 2021.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karlo�, and Noam Nisan. Algebraic methods for interactive

proof systems. In FOCS, 1990.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear

error-correcting codes. In ASIACRYPT, 2013.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signatures

from trapdoor permutations. In EUROCRYPT, 2004.

[LOS
+
06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate

signatures and multisignatures without random oracles. In EUROCRYPT, 2006.

[LP21] Helger Lipmaa and Kateryna Pavlyk. Gentry-Wichs is tight: a falsi�able non-adaptively sound SNARG.

In ASIACRYPT, 2021.

[LPWW20] Benoît Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions of statistical NIZKs:

Dual-mode DV-NIZKs and more. In EUROCRYPT, 2020.

[Mic95] Silvio Micali. Computationally-sound proofs. In Proceedings of the Annual European Summer Meeting of
the Association of Symbolic Logic, 1995.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of somewhere

statistically binding hashing and positional accumulators. In ASIACRYPT, 2015.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical veri�able

computation. In IEEE Symposium on Security and Privacy, 2013.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.

In CRYPTO, 2019.

[RR20] Guy N. Rothblum and Ron D. Rothblum. Batch veri�cation and proofs of proximity with polylog

overhead. In TCC, 2020.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs for delegating

computation. In STOC, 2016.

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. E�cient batch veri�cation for UP. In CCC,

2018.

[RS09] Markus Rückert and Dominique Schröder. Aggregate and veri�ably encrypted signatures from multilinear

maps without random oracles. In ISA, 2009.

[Set20] Srinath T. V. Setty. Spartan: E�cient and general-purpose zkSNARKs without trusted setup. In CRYPTO,

2020.

[Sha90] Adi Shamir. IP=PSPACE. In FOCS, 1990.

[Sha07] Hovav Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from progressively

weaker linear variants. IACR Cryptol. ePrint Arch., 2007.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and

more. In STOC, 2014.

[Wic22] Daniel Wichs, 2022. Personal communication.

54

A A More General View: BARGs with Fixed Wires
As discussed in Section 1.2.2, it is straightforward to generalize our BARG constructions (Constructions 3.3 and 4.5)

to achieve better e�ciency when the statements (x1, . . . , x<) admit a more compact representation. For instance,

when using BARGs to construct delegation schemes [CJJ21b, KVZ21], the underlying statements indeed have a

succinct description. In our setting, we show how to achieve better e�ciency when some of the bits of the statements

x1, . . . , x< are a priori �xed.

Notation. For a bit string x ∈ {0, 1}= and a set (⊆ [=], we write x|(∈ {0, 1} |(| to denote the subset of bits indexed

by (: x|(:= (G8 | 8 ∈ () ∈ {0, 1} |(|

De�nition A.1 (Batch Circuit Satis�ability with Constraints). Let � : {0, 1}= × {0, 1}ℎ → {0, 1} be a Boolean circuit

and< ∈ N be the number of instances. A �xed-wire constraint i for � is a pair (9,2) where 9 ∈ [=] is an index and

2 = (f1, . . . , f<) ∈ {0, 1}< is an assignment. We say that a tuple of statements (x1, . . . , x<) satis�es i if x8, 9 = f8 for

all 8 ∈ [<]; we denote this by writing i (x1, . . . , x<) = 1. We will say that a set of constraints Φ is admissible if it

contains at most one constraint for each index 9 . Unless otherwise noted, we will only consider admissible sets of

constraints. For an admissible set of constraints Φ, we de�ne

LBatchCSAT,<,Φ = {(�, x1, . . . , x<) | (�, x1, . . . , x<) ∈ LBatchCSAT,< and ∀i ∈ Φ : i (x1, . . . , x<) = 1}

to be the batch circuit satis�ability language with �xed-wire constraints. For a collection of �xed-wire constraints

Φ = {(9,2) | 9 ∈ [=],2 ∈ {0, 1}<}, we de�ne �Φ := {2 ∈ {0, 1}< | ∃ 9 : (9,2) ∈ Φ} to be the set of assignments

associated with Φ and we de�ne (Φ := { 9 ∈ [=] | ∃2 : (9,2) ∈ Φ} to be the set of indices �xed by Φ.

De�nition A.2 (Batch Argument with Fixed Wires). A non-interactive batch argument for circuit satis�ability

with �xed-wire constraints is a tuple of three e�cient algorithms ΠBARG = (Setup, Prove,Verify) with the following

properties:

• Setup(1_, 1<, 1B , �) → (crs, vk,D): On input the security parameter _ ∈ N, the number of instances< ∈ N, a

bound on the circuit size B ∈ N, and a collection of �xed-wire assignments � ⊆ {0, 1}< , the setup algorithm

outputs a common reference string crs, a veri�cation key vk, and a dictionary D : �→ E that associates each

2 ∈ � with an encoding from some set E of encodings.

• Prove(crs,D,�,Φ, (x1, . . . , x<), (w1, . . . ,w<)) → c : On input the common reference string crs, a dictionary D,

a Boolean circuit� : {0, 1}= × {0, 1}ℎ → {0, 1}, a set of �xed-wire constraints Φ, statements x1, . . . , x< ∈ {0, 1}= ,

and witnesses w1, . . . ,w< ∈ {0, 1}ℎ , the prove algorithm outputs a proof c .

• Verify(vk,�, (x1 |(, . . . , x< |(), {(8, enc8)}8∈[=]\(, c) → 1: On input the veri�cation key vk, a Boolean circuit

� : {0, 1}= × {0, 1}ℎ → {0, 1}, a collection of statements x1 |(, . . . , x< |(∈ {0, 1} |(| restricted to some set (⊆ [=],
and a collection of encodings (8, enc8)10

for the indices [=] \ (, and a proof c , the veri�cation algorithm outputs

a bit 1 ∈ {0, 1}.

We say ΠBARG is a non-interactive batch argument with fully �xed wires if Verify only takes vk, � , {(8, enc8)}8∈[=] ,
and c as input (i.e., the set (of non-�xed wires is (= ∅).

De�nition A.3 (Completeness). A BARG with �xed-wire constraints ΠBARG = (Setup, Prove,Verify) is complete

if for all _,<, B ∈ N, all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , all sets of �xed-wire

assignments � ⊆ {0, 1}< , all admissible sets of �xed-wire constraints Φ whose assignments �Φ ⊆ � are contained

in �, all statements x1, . . . , x< ∈ {0, 1}= , all witnesses w1, . . . ,w< ∈ {0, 1}ℎ where � (x8 ,w8) = 1 for all 8 ∈ [<] and

i (x1, . . . , x<) = 1 for all i ∈ Φ,

Pr[Verify(vk,�, (x1 |(̄Φ , . . . , x< |(̄Φ), {(9,D[2 9])}(9,2 9) ∈Φ, c) = 1,

where (Φ ⊆ [=] is the set of indices �xed by Φ, (̄Φ = [=] \(Φ is the set of un�xed indices, and we sample (crs, vk,D) ←
Setup(1_, 1<, 1B , �), and c ← Prove(crs,D,�, (x1, . . . , x<), (w1, . . . ,w<)).
10

Note that we allow the same encoding to be used across multiple indices. For instance, it may be the case that enc8 = enc9 with 8 ≠ 9 .

55

De�nition A.4 (Somewhere Argument of Knowledge). A BARG with �xed-wire constraints ΠBARG = (Setup, Prove,
Verify) is a somewhere argument of knowledge if there exists a pair of e�cient algorithms (TrapSetup, Extract) with

the following properties:

• TrapSetup(1_, 1<, 1B , 8∗, �) → (crs∗, vk∗,D∗, td): On input the security parameter _ ∈ N, the number of

instances< ∈ N, the size of the circuit B ∈ N, an index 8∗ ∈ [<], and a collection of �xed-wire assignments

� ⊆ {0, 1}< , the trapdoor setup algorithm outputs a common reference string crs∗, a veri�cation key vk∗, a

dictionary D∗, and an extraction trapdoor td.

• Extract(td,�, (x1 |(, . . . , x< |(), {(8, enc∗8)}8∈[=]\(, c) → w∗: On input the trapdoor td, a collection of statements

x1 |(, . . . , x< |(∈ {0, 1} |(| restricted to some set (⊆ [=], a collection of encodings (8, enc∗8) for the indices

[=] \ (, and a proof c , the extraction algorithm outputs a witness w∗ ∈ {0, 1}ℎ . The extraction algorithm is

deterministic.

We require (TrapSetup, Extract) to satisfy the following two properties:

• CRS indistinguishability: For integers< ∈ N, B ∈ N, a bit 1 ∈ {0, 1}, and an adversary A, de�ne the CRS

indistinguishability experiment ExptCRSA (_,<, B, 1) as follows:

1. AlgorithmA(1_, 1<, 1B) outputs a collection of �xed-wire assignments� ⊆ {0, 1}< and an index 8∗ ∈ [<].
2. If1 = 0, the challenger computes and gives (crs, vk,D) ← Setup(1_, 1<, 1B , �) toA. If1 = 1, the challenger

computes (crs∗, vk∗,D∗, td) ← TrapSetup(1_, 1<, 1B , 8∗, �) and gives (crs∗, vk∗,D∗) to A.

3. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

Then, ΠBARG satis�es CRS indistinguishability if for every e�cient adversaryA and every polynomial< =<(_),
B = B (_), there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ExptCRSA (_,<, B, 0) = 1] − Pr[ExptCRSA (_,<, B, 1) = 1]
�� = negl(_).

• Somewhere extractable in trapdoor mode: De�ne the somewhere extractable security game between an

adversary A and a challenger as follows:

– Algorithm A(1_, 1<, 1B) outputs an index 8∗ ∈ [<] and a set of �xed-wire assignments � ⊆ {0, 1}< .

– The challenger samples (crs∗, vk∗,D∗, td) ← TrapSetup(1_, 1<, 1B , 8∗, �) and gives crs∗, vk∗,D∗ to A.

– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , an admissible

set of �xed-wire constraints Φ whose assignments �Φ ⊆ � are contained in �, a set of statements

x̂1 |(̄Φ , . . . , x̂< |(̄Φ ∈ {0, 1}
|(̄Φ |

restricted to the set of indices (̄Φ = [=] \ (Φ not �xed by Φ, and a proof c .

– The challenger computes w∗ ← Extract(td,�,D∗, {(9,D∗ [2 9])}(9,2 9) ∈Φ, c)
– For 8 ∈ [<], de�ne x8 |(̄Φ = x̂8 |(̄Φ . For indices 9 ∈ (Φ �xed by Φ, let G8, 9 = 0 9,8 where (9, (0 9,1, . . . , 0 9,<)) ∈ Φ.

The output of the game is 1 = 1 if the following conditions hold:

∗ Verify(vk∗,�, (x̂1 |(̄Φ , . . . , x̂< |(̄Φ), {(9,D
∗ [2 9])}(9,2 9) ∈Φ, c) = 1

∗ � (x8∗ ,w∗) ≠ 1.

We say ΠBARG is somewhere extractable in trapdoor mode if for all e�cient adversaries A, there exists a

negligible function negl(·) such that Pr[1 = 1] = negl(_) in the somewhere extractable game.

In the case of a BARG with fully �xed wires, we additionally restrict the adversary A to choosing admissible

sets of �xed-wire constraint Φ where (Φ = [=] (i.e., Φ �xes all input wires to �).

De�nition A.5 (Succinctness). A BARG with �xed-wire constraints ΠBARG = (Setup, Prove,Verify) is succinct if

there exists a �xed polynomial poly(·, ·, ·) such that for all _,<, B ∈ N, all sets of �xed-wire assignments � ⊆ {0, 1}< ,

all (crs, vk,D) in the support of Setup(1_, 1<, 1B , �), all Boolean circuits� : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B ,

and all sets of �xed-wire constraints Φ, the following properties hold:

56

• Succinct proofs: The proof c output by Prove(crs,D,�, ·, ·, ·) satis�es |c | ≤ poly(_, log<, B).

• Succinct veri�cation key: We require

|vk| + |{D[2]}2 ∈� | ≤ poly(_,<,=) + poly(_, log<, B) + poly(_, log<, |�|).

In the setting of fully �xed wires, we require

|vk| + |{D[2]}2 ∈� | ≤ poly(_, log<, B) + poly(_, log<, |�|).

• Succinct veri�cation: The running time of Verify(vk,�, (x1 |(, . . . , x< |(), {(8, enc8)}8∈[=]\() is bounded by

poly(_,<, |(|) + poly(_, log<, B). In the setting of fully �xed wires, (= ∅ and this requirement collapses to

Verify needing to run in time poly(_, log<, B).

Remark A.6 (Special Cases of BARGs with Fixed-Wire Constraints). We describe two important special cases of

BARGs with �xed-wire constraints:

• BARG for NP: When there are no �xed-wire assignments � = ∅ or constraints Φ = ∅, De�nition A.2 is

equivalent to a standard BARG for NP (De�nition 2.2).

• BARG for index languages: The special case of an index BARG (Remark 2.10) on< instances corresponds to a

BARG with fully �xed wires where the set of �xed-wire assignments� input to Setup has size |�| = = = $ (log<).
The veri�cation key vkindexBARG for the index BARG would be the veri�cation key for the BARG with �xed

wires together with the encodings of the assignments in �. In this case, succinctness (De�nition A.5) requires

that |vkindexBARG | = poly(_, log<, B) and similarly, that the veri�cation time is poly(_, log<, B). This matches

the succinctness requirement for index BARGs.

Construction A.7 (BARG for NP with Fixed Wires from :-Lin). Let : ∈ N be an integer. We show how to adapt

Construction 4.5 to construct a BARG for the language of circuit satis�ability that supports �xed wires as follows. For

ease of exposition, we do not describe Verify with split veri�cation (De�nition 2.9), but it is straightforward to modify

the scheme to support it.

• Setup(1_, 1<, 1B , �): On input the security parameter _, the number of instances<, the bound on the circuit size

B , and the set of �xed-wire assignments � ⊆ {0, 1}< , the setup algorithm constructs the veri�cation key vk =(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<]

)
and the common reference string crs =

(
vk, {[B8, 9]1, [B̂8, 9]2}8≠9

)
exactly as in Construction 4.5. Then, for each 2 = (f1, . . . , f<) ∈ �, compute encodings

[u2]1 ←
∑
8∈[<]

f8 [a8]1 and [û2]2 ←
∑
8∈[<]

f8 [â8]2.

The setup algorithm outputs crs, vk, and the dictionary D where D[2] ↦→ ([u2]1, [û2]2)

To obtain a BARG with fully �xed wires, Setup removes the encodings of [a8]1 and [â8]2 from the veri�cation

key. Namely, it sets

vk′ =
(
G, [M]1, [M̂]2, [a]1, [â]2

)
.

It outputs crs, vk′, and D. Note that Setup outputs the same crs as Construction 4.5.

• Prove(crs,D,�, (x1, . . . , x<), (w1, . . . ,w<)): On input the common reference string crs, a dictionary D of en-

codings, the circuit � : {0, 1}= → {0, 1}ℎ → {0, 1}, instances x1, . . . , x< ∈ {0, 1}= , and witnesses w1, . . . ,w< ∈
{0, 1}ℎ , the prover proceeds constructs c using the same procedure as in Construction 4.5.

• Verify(vk,�, (x1 |(, . . . , x< |(), {(8, enc8)}8∈[=]\(, c) → 1: On input the veri�cation key

vk =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<]

)
,

57

the circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a set of instances (x1 |(, . . . , x< |() ∈ {0, 1} |(| restricted to the set (, a

collection of encodings {(8, enc8)}8∈[=]\(, and the proof

c =
(
{[u3]1, [û3]2}3∈[C], {[V=+3,8]1, [V̂=+3,8]2}3∈[ℎ],8∈{1,2}, {[Wℓ,8]1, [Ŵℓ,8]2}ℓ∈[B],8∈{1,2}

)
.

the veri�cation algorithm starts by checking the following:

– Validity of statement: For each statement wire 3 ∈ [=], if 3 ∈ (, then the veri�er checks that

[u3]1 =
∑
8∈[<]

G8,3 [a8]1 and [û3]2 =
∑
8∈[<]

G8,3 [â8]2,

exactly as in Construction 4.5. For statement wires 3 ∈ [=] \ (, the veri�er looks up the encoding (8, enc8)
and checks that ([u3]1, [û3]2) = enc3 .

The veri�er performs the remaining checks exactly as described in the OnlineVerify algorithm of Construc-

tion 4.5.

Theorem A.8 (Completeness). Construction A.7 is complete.

Proof (Sketch). The di�erence between Construction 4.5 and Construction A.7 is that instead of having the prover

and veri�er compute encodings of the �xed wires, those encodings are precomputed and provided as input to Prove
and Verify. Completeness follows by an analogous argument as in the proof of Theorem 4.6. �

Theorem A.9 (Somewhere Argument of Knowledge). Take any positive integer : ∈ N. If the :-Lin assumption holds
in G1 and G2 with respect to GroupGen, then Construction A.7 is a somewhere argument of knowledge

Proof (Sketch). The argument follows by a similar argument as in the proof of Theorem 4.7. For completeness, we

describe the TrapSetup and Extract algorithms:

• TrapSetup(1_, 1<, 1B , 8∗): The TrapSetup algorithm samples vk∗ =
(
G, [M]1, [M̂]2, [a]1, [â]2, {[a8]1, [â8]2}8∈[<]

)
,

crs∗ =
(
vk∗, {[B8, 9]1, [B̂8, 9]2}8≠9

)
, and td = 3 ∈ Z:+1? using exactly the same procedure as TrapSetup in the proof

of Theorem 4.7. Then, for each 2 = (f1, . . . , f<) ∈ �, it computes encodings

[u2]1 ←
∑
8∈[<]

f8 [a8]1 and [û2]2 ←
∑
8∈[<]

f8 [â8]2.

Let D∗ be the dictionary that maps D∗ [2] ↦→ ([u2]1, [û2]2) for all 2 ∈ �. The trapdoor setup algorithm outputs

crs∗, vk∗, D∗, and td.

In the case of a BARG with fully �xed wires, TrapSetup removes the encodings of [a8]1 and [â8]2 from vk∗.
Namely, it now sets vk∗ =

(
G, [M]1, [M̂]2, [a]1, [â]2

)
. The other components crs∗, D∗, td are unchanged.

• Extract(td,�, (x1 |(, . . . , x< |(), {(8, enc∗8)}8∈[=]\(, c): The extraction algorithm is the same as Extract in the

proof of Theorem 4.7 (which only depends on td and c).

We now sketch the arguments for the CRS indistinguishability and somewhere extractability in trapdoor mode

properties. Both follow by the corresponding argument from the proof of Theorem 4.7.

• CRS indistinguishability: This follows by the same argument as in the proof of Lemma 4.8. Namely,

Lemma 4.8 shows that crs∗ output by TrapSetup is computationally indistinguishable from crs output by Setup
in Construction 4.5. These are the exact same components in the common reference string and veri�cation key

in Construction A.7. Next, the encodings in the dictionary D∗ and D are public (and e�ciently-computable)

functions of the elements in crs∗ and crs, respectively. Thus, the tuple (crs∗, vk∗,D∗) output by TrapSetup (for

any index 8∗ ∈ [<]) and (crs, vk,D) output by Setup in Construction A.7 are computationally indistinguishable.

58

• Somewhere extractable in trapdoormode: Since the structure of c in Construction A.7 and Construction 4.5

is identical, this property follows by the same argument as in the proof of Lemma 4.12. More precisely, we

can show that an adversary that breaks the somewhere extractability property for Construction A.7 implies a

corresponding adversary that breaks the same property for Construction 4.5. We provide a brief sketch here:

Suppose there exists an adversaryA that wins the somewhere extractable game with non-negligible probability

Y. We use A to construct an adversary B that wins the somewhere extractable game for Construction 4.5 with

the same probability:

– Algorithm B runs A to obtain an index 8∗ ∈ [<] and a set of �xed-wire assignments � ⊆ {0, 1}< .

– Algorithm B submits 8∗ to its challenger and receives crs∗ from the challenger. It forms vk∗ from crs∗

(which consists of a subset of the components of crs∗). AlgorithmB computes D∗ as described in TrapSetup
(which only depends on components in crs∗). Algorithm B gives crs∗, vk∗,D∗ to A.

– Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a set of �xed-wire constraints Φ, a

set of statements x̂1 |(̄Φ , . . . , x̂< |(̄Φ ∈ {0, 1}
(̄Φ

restricted to the set (̄Φ = [=] \ (Φ, and a proof c .

– For 8 ∈ [<], de�ne x8 |(̄Φ = x̂8 |(̄Φ . For indices 9 ∈ (Φ �xed by Φ, let G8, 9 = 0 9,8 where (9, (0 9,1, . . . , 0 9,<)) ∈ Φ.

– Algorithm B outputs the circuit � , statements (x1, . . . , x<) and the proof c .

By construction, if Verify(vk∗,�, (x̂1 |(̄Φ , . . . , x̂< |(̄Φ), {(9,D
∗ [2 9])}(9,2 9) ∈Φ, c) = 1, then

(
�, (x1, . . . , x<), c

)
ver-

i�es under the same procedure in Construction 4.5. Moreover, the extraction algorithm Extract is identical to

the corresponding algorithm in the proof of Lemma 4.12. Thus, algorithm B succeeds with the same advantage

as A and the claim holds. �

Theorem A.10 (Succinctness). For all constants : ∈ N, Construction A.7 is succinct.

Proof. Take any _,<, B ∈ N and any set of �xed-wire assignments � ⊆ {0, 1}< . Take any Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1} of size at most B and any set of �xed-wire constraints. We check each property individually:

• Proof size: By construction, the size of the proof is the same as in Construction 4.5. By Theorem 4.15,

|c | = poly(_, B).

• Veri�cation key size: We can appeal to the analysis in Theorem 3.10 to show that |crs| , |vk| = poly(_,<).
Next, for each 2 ∈ �, the encoding D[2] consists of :+1 elements in each ofG1 andG2. Thus, |D[2] | = poly(_).
Thus,

|vk| + |{D[2]}2 ∈� | = poly(_,<) + poly(_, |�|).

In the fully �xed wire setting, the veri�cation key consists of the group description G along with (: + 1)2
elements in each of G1 and G2. In this case, |vk| = poly(_), and so

|vk| + |{D[2]}2 ∈� | = poly(_, |�|).

• Veri�cation time: The veri�cation procedure in Construction A.7 is a slimmed-down version of the procedure

from Construction 4.5 where some of the statement validity checks are replaced with direct equality checks

against the provided encodings. The claim follows by a similar analysis. In particular, in the fully-�xed setting,

the veri�er does not need to perform any statement-validity check, which yields an overall veri�cation time of

poly(_, B) in this setting. �

59

	Introduction
	Our Contributions
	Technical Overview
	Construction from Composite-Order Pairing Groups
	The Prime-Order Instantiation, Bootstrapping, and Applications

	Related Work

	Preliminaries
	Non-Interactive Batch Arguments for NP

	BARG for NP from Subgroup Decision in Bilinear Groups
	BARG for NP from k-Lin in Bilinear Groups
	BARG Bootstrapping to Reduce CRS Size
	Delegation for RAM Programs
	Somewhere Extractable Commitments
	Somewhere Extractable Commitments from Pairings
	Somewhere Extractable Commitments with a Short CRS
	Delegation for RAM Programs

	Aggregate Signatures from BARGs
	A More General View: BARGs with Fixed Wires

