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Abstract—The NIST post-quantum cryptography (PQC)
standardization project is probably the largest and most
ambitious cryptography standardization effort to date, and
as such it makes an excellent case study of cryptography
standardization projects. It is expected that with the end of
round 3 in early 2022, NIST will announce the first set of
primitives to advance to standardization, so it seems like a
good time to look back and see what lessons can be learned
from this effort. In this paper, we take a look at one specific
aspect of the NIST PQC project: software implementations.

We observe that many implementations included as a
mandatory part of the submission packages were of poor
quality and ignored decades-old standard techniques from
software engineering to guarantee a certain baseline quality
level. As a consequence, it was not possible to readily
use those implementations in experiments for post-quantum
protocol migration and software optimization efforts without
first spending a significant amount of time to clean up the
submitted reference implementations.

We do not mean to criticize cryptographers who submit-
ted proposals, including software implementations, to NIST
PQC: after all, it cannot reasonably be expected from every
cryptographer to also have expertise in software engineering.
Instead, we suggest how standardization bodies like NIST
can improve the software-submission process in future ef-
forts to avoid such issues with submitted software. More
specifically, we present PQClean, an extensive (continuous-
integration) testing framework for PQC software, which now
also contains “clean” implementations of the NIST round 3
candidate schemes. We argue that the availability of such
a framework—either in an online continuous-integration
setup, or just as an offline testing system—long before the
submission deadline would have resulted in much better
implementations included in NIST PQC submissions and
overall would have saved the community and probably also
NIST a lot of time and effort.

Index Terms—NIST PQC, post-quantum implementations,
testing cryptographic software, open source, continuous in-
tegration
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1. Introduction

The selection of cryptographic algorithms for use in
applications and standards is increasingly accomplished
via public competitions, in which researchers are invited
to submit algorithms that are then subject to public review.
One significant case study of such a process is the post-
quantum cryptography (PQC) standardization project of
the United States National Institute of Standards and Tech-
nology (NIST). In 2016, NIST announced its intention
to standardize quantum-resistant digital signatures and
public-key encryption / key-encapsulation mechanisms
(KEMs) in a multi-year public process that continues as
of March 2022. This PQC standardization project was
to be modeled after NIST’s earlier public competitions
that lead to the Advanced Encryption Standard (1997–
2001, 15 submissions total, 2 rounds) and the Secure Hash
Algorithm (SHA-3) (2007–2015, 51 submission total, 2
rounds).1

The PQC standardization project is NIST’s largest
cryptography standardization effort to date. There were
82 initial submissions of which 69 have been accepted
as “complete and proper” submissions. By now, those
have been winnowed down over three rounds of public
evaluation to 7 finalists and 8 alternate candidates. The
selection of algorithms for standardization is expected in
March 2022 leading to a final standard in 2024. A fourth
round for algorithms meriting further investigation and
an “on-ramp” for new signature scheme designs is also
expected.

Compared with the AES and SHA-3 competitions, the
PQC standardization project is more complex in several
ways, beyond the sheer number of submissions and rounds.
The PQC standardization project involves two distinct
cryptographic primitives (digital signatures and KEMs)
compared to one in each of the previous competitions
(block ciphers for AES, hash functions for SHA-3). There
is also a much greater variety of mathematical construc-
tions used to build the candidates. As a consequence, there
are much more pronounced differences between the speed
and output size characteristics of the various candidates.
Whereas the AES competition prescribed just three sizes—
128-, 192-, or 256-bit keys, all with 128-bit block sizes—
post-quantum KEM candidates (even just among round 3
finalists and alternates) have public keys ranging in size
from 197 bytes to more than 1.3 MB and encapsulations

1. The PQC standardization process was not explicitly called a “com-
petition” as it might result in several winners.
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from 128 bytes to 21 KB; and round 3 signature candidates
have public keys from 32 bytes to 1.9 MB and signatures
from 66 bytes to 209 KB.

Certainly, this scale and variety made NIST’s selection
task harder, and also meant a greater burden on the
community in reviewing and evaluating the candidates,
both in terms of security and performance. The wide
range of size and speed characteristics meant that stan-
dalone microbenchmarks would not suffice to evaluate the
suitability of candidates for adoption, and instead would
require integration and testing of candidates in a variety
of contexts. This is where the importance of software
implementations plays a greater role.

As with previous competitions, NIST required sub-
missions to be accompanied by software implementations.
Each submission needed to include a reference implemen-
tation and an optimized implementation for Intel x64, both
in ANSI C (no assembly or intrinsics allowed, limited
use of external libraries), along with known-answer test
(KAT) values to check correctness. Submissions could
also include additional implementations for other plat-
forms or microarchitectures. NIST provided a C applica-
tion programming interface (API) for each cryptographic
primitive as well as a test harness for known-answer tests.
(See Section 2 for a detailed review of NIST’s original
submission requirements and how they evolved over later
rounds.)

In addition to NIST’s internal benchmarking, there
have been many community and industry projects building
on software implementations submitted to NIST. These
include: the SUPERCOP benchmarking project [1]; the
PQClean project [2] for standalone C implementations on
Intel and ARMv8; the pqm4 project [3] for ARM Cortex
M4 platform; and the Open Quantum Safe project [4] with
a library of C implementations as well as integrations of
those algorithms into popular libraries, applications, and
protocols. There have also been many research papers
and industry experiments building on the above-mentioned
projects or directly on software submissions to NIST.

Due to the lack of consistency, organization, and qual-
ity of submitted software, each of the above initiatives
has involved a repetition of time and effort in getting
submitted software to compile and run cleanly on various
target platforms.

Admittedly, not all cryptographers should be expected
to have the software engineering expertise to create
production-quality software, and indeed expecting so may
disincentivize the submission of mathematically innova-
tive proposals. Nonetheless, a public cryptography stan-
dardization initiative does need software of sufficient qual-
ity that works in a variety of settings and has performance
characteristics representative of production implementa-
tions, in order for good decisions to be made.

We argue that the NIST PQC standardization
effort—and future public cryptography standardization
initiatives—could be improved by having a more extensive
software framework prepared in advance by the organizers
for submitters, relying on modern continuous integration
and testing tools. Our goal in this paper is to lay out
the requirements for such a framework, based on our
experience in the PQClean project where we assembled
a collection of standalone C implementations of NIST
PQC submissions, and developed a continuous integration

testing framework to improve the software we assembled.

1.1. Organization of this paper

In Section 2, we review the submission requirements
issued by NIST over the lifetime of the PQC standard-
ization project to date, specifically as related to software
implementations; understanding the software submission
requirements provides context to the types and quality of
software submitted.

In Section 3, we begin to examine what went wrong in
the process with respect to software implementations. Our
main observations in this section are (a) that the reference
implementations were not ready to meet all the needs
expected of them; (b) that “ANSI C” as the language for
both reference and optimized implementations may not
be the best choice; in particular as (c) use of standard
software-engineering techniques for programming in C
were not enforced.

In Section 4, we propose that future cryptography
competitions could be improved by having the organiz-
ers provide an extensive testing framework for software
implementations, and we enumerate desired features of
such a framework.

We continue in Section 5 to present details of our PQ-
Clean framework, which is an open-source collection of
C implementations of NIST PQC candidates, along with
an extensive array of compile- and run-time tests via a
range of continuous integration tools. Through the process
of adding PQC algorithms to PQClean and running our
test framework, we identified flaws in the implementations
of almost every of the 17 schemes from the NIST PQC
project that have been added to PQClean to date; these
are summarized in Table 1.

Much of sections 3–5 focus on C implementations. In
Section 6, we look beyond PQClean’s central focus on
“cleaning” C implementations, and discuss alternatives to
C for representing specifications as well as extensions be-
yond testing frameworks for cryptographic standardization
processes.

We wrap up in Section 7 with conclusions and recom-
mendations.

1.2. Related work

The risk of flaws in cryptographic software has been
well-known for decades [5], [6], [7]. There are many
potential causes for such flaws, which are important to
distinguish to help put this paper’s focus into context.
Obviously, there can be cryptographic weaknesses in the
cryptographic algorithm itself (weak parameters or bro-
ken cryptographic assumptions), applicable to any partic-
ular implementation, which is therefore outside the scope
of this paper’s focus. The cryptographic implementation
could be used in a context that does not match the im-
plementation’s threat model: side-channel attacks against
implementations without countermeasures, for example. It
is also possible that applications and protocols might im-
properly use otherwise good cryptography algorithms and
implementations. The latter is quite common; for example,
Lazar et al. [8] evaluated 269 flaws for cryptographic
software reported in the Common Vulnerabilities and Ex-
posures (CVE) database from 2011–2014 and found that
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only 17% were in cryptographic libraries, whereas 83%
were “misuses of cryptographic libraries by individual
applications.”

Our focus is on when the implementation of a crypto-
graphic algorithm (for which there are no known cryptana-
lytic attacks) contains flaws, and the software development
steps that lead to those flaws. Blessing et al. [9] examined
vulnerabilities specifically in open-source C/C++ crypto-
graphic libraries, and found that only 27% of vulnera-
bilities were cryptographic issues, whereas 37% of vul-
nerabilities were memory safety or resource management
issues, 11% involved improper input validation, and 5%
were numeric issues. There are also high-profile examples
that seem to derive from particular C coding styles, such
as the lack of braces leading to the so-called goto fail
bug [10].

In the context of cryptographic standardization
projects, in particular, Mouha et al. [11] studied software
implementations submitted to the NIST SHA-3 competi-
tion. Using solely black-box testing, they found a total
of 68 bugs in 41 of the 86 reference implementations
submitted, none of which were discovered by the test suite
provided by NIST.

A 2015 survey by Braga and Dahab [12] surveys
techniques for the development of secure cryptographic
software. They identify a sequence of three levels of cryp-
tographic software development: 1) cryptographic library
programming and verification; 2) cryptographic software
programming and verification; and 3) cryptographic soft-
ware testing. For each level, they identify a range of
techniques that can be used to reduce the risk of flaws,
including using secure languages, secure code generation,
applying static and dynamic analysis tools, and using func-
tional tests and adversarial tests (fault injection, fuzzing).

One trend is to create implementations of crypto-
graphic primitives domain-specific or specialized lan-
guages and then generate lower-level implementations
from there, with compilers and code generators yielding
certain assurances. Examples include the HACL∗ library
written in F∗ that generates C code [13]; and Jasmin [14]
which generates EasyCrypt code that can be verified for
security and functional correctness, and x86_64 assembly
code for execution; Jasmin can even include mitigations
against microarchitecture attacks such as SPECTRE [15].

For implementations that are originally written in C,
there are some tools and techniques available for aiding in
secure software development, including a range of general-
purpose static and dynamic analysis tools. One specialized
technique in the context of cryptography is the use of
Valgrind to detect control flow based on secret data, an
example of which is the TIMECOP project [16].

2. NIST PQC software submission require-
ments

In this section we review software requirements laid
out by NIST for the PQC standardization project as it
evolved. Figure 1 shows a timeline of the main events in
the process.

2.1. Call for proposals and round 1 submissions

NIST issued a call for proposals in December 2016
which included a set of submission requirements and eval-
uation criteria [17]. In addition to the design documents,
submissions were required to include several components
related to software and testing:

• A reference implementation, written in ANSI C,
intended to “promote understanding of how the
submitted algorithm may be implemented”, in
which “clarity... is more important than... effi-
ciency” [17, §2.C.1].

• An optimized implementation, also written in
ANSI C, targeting the Intel x64 processor.

• A statement by the implementations’ owners grant-
ing certain rights to use the implementation “for
the purposes of the post-quantum algorithm public
review and evaluation process, and implementation
if the corresponding cryptosystem is selected for
standardization and as a standard” [17, §2.D.3].

• Known-answer test (KAT) values to check the
correctness of reference and optimized implemen-
tations [17, §5.B].

Submitters could at their discretion include additional
implementations for other platforms, for example using
intrinsics or assembly [17, §2.C.1].

The evaluation criteria in [17] referred to software and
testing in several aspects:

• Performance: schemes will be evaluated based on
their computational cost in software and hardware
[17, §4.B.2].

• Side channel aspects: schemes that can be made
side-channel resistant efficiently are more desir-
able than those that cannot, and “optimized imple-
mentations that address side-channel attacks (e.g.,
constant-time implementations) are more meaning-
ful than those which do not” [17, §4.A.6].

• Flexibility: schemes that “can be implemented se-
curely and efficiently on a wide variety of plat-
forms” or for which implementations “can be
parallelized to achieve higher performance” are
desirable [17, §4.C.1].

NIST stated that the goal of the evaluation process
during round 1 was to “narrow the candidate pool for more
careful study and analysis” and that “this narrowing will
be done primarily on security, efficiency, and intellectual
property considerations” [17, §5.A]. NIST indicated that
submitters would be able to provide updated optimized
implementations for evaluation in round 2.

The call for proposals indicated that correctness and
efficiency testing would be performed by NIST on the
“NIST PQC Reference Platform, an Intel x64 running
Windows or Linux and supporting the GCC compiler”
[17, §5.B]. NIST further stated: “At a minimum, NIST
intends to perform an efficiency analysis on the reference
platform; however, NIST invites the public to conduct
similar tests and compare results on additional platforms
(e.g., 8-bit processors, digital signal processors, dedicated
CMOS, etc.). NIST may also perform efficiency testing
using additional platforms.”
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Figure 1. Timeline of NIST post-quantum cryptography standardization project. Dates after Feb. 2022 are estimates based on recent NIST
announcements.

In addition to the text of the submission requirements,
the call for proposals included several technical notes on
API and testing, and some corresponding source code.

NIST’s API notes [18] described the C API for sig-
nature schemes, public-key encryption schemes, and key-
encapsulation mechanisms. The API was derived from the
eBATS (ECRYPT Benchmarking of Asymmetric Systems)
API in the eBACS project [1]. One notable characteristic
of the API was that the signature API generated “attached
signatures” (where the output of the signing function
is a single variable-length “signed message” containing
both the message and the signature together) rather than
“detached signatures” (where the output of the signing
function is a typically fixed-length signature digest with-
out message). The API also included a function providing
random bytes, a pseudorandom expander, and an optional
deterministic random bit generator to facilitate known-
answer tests.

NIST provided a short document [19] describing the
process for generating known-answer test values, as well
as a source-code archive [20] containing C files for gener-
ating KATs for signature schemes, public-key encryption
schemes, and KEMs, and a C header file and implemen-
tation of a seeded pseudorandom number generator for
generating consistent KAT values. The document also
included an example Makefile for building and running
the KAT programs.

2.2. Round 1 selection and round 2 submissions

In January 2019, NIST issued a status report [21]
on round 1, including a discussion of its selection of
round 2 candidates. The report noted that evaluation
criteria used for selecting round 2 candidates were, in
order of importance, “security, cost and performance, and
algorithm and implementation characteristics” [21, §2.3].
Among the comments on individual schemes selected for
round 2 were comments on speed (either positively or
negatively) as well as side-channel attacks and constant-
time implementations.

The round 1 status report included a statement that, as
a next step, NIST was interested in more performance data,
including “optimized implementations written in assembly
code or using instruction set extensions, and analyses
of implementation suitability of candidate algorithms in
constrained platforms” [21, §4].

2.3. Round 2 selection and round 3 submissions

In July 2020, NIST issued a status report [22] on
round 2, including a discussion of its selection of round

3 candidates. At around the same time, NIST issued an
additional note with guidelines for submitting tweaks for
round 3 [23].

The status report on round 2 noted that the evaluation
period saw better data especially for constant-time imple-
mentations on Intel x64 as well implementations for ARM
Cortex-M4 and hardware implementations, and observed
that this included information about resources required
by implementations, such as RAM or gate counts. The
report indicated NIST’s desire to see “more and better
data for performance in the third round” including for
“implementations that protect against side-channel attacks,
such as timing attacks, power monitoring attacks, fault
attacks, etc.” [22, §2.2]. NIST concluded the report with
a clear request for performance evaluation of implementa-
tions during round 3: “NIST hopes that with only seven
finalists and eight alternate candidates, the public review
period will include more work on side-channel resistant
implementations, performance data in internet protocols,
and performance data for hardware implementations in
addition to more rigorous cryptanalytical study” [22, §4].

The guidelines for submitting tweaks for round 3 [23]
relaxed the requirements on the optimized implementation
included in the submission: “the reference implementa-
tion should still be in ANSI C; however, the optimized
implementation is not required to be in ANSI C” and
recommended “providing an AVX2 (Haswell) optimized
implementation and [. . . ] other optimized software imple-
mentations (e.g., microcontrollers) and hardware imple-
mentations (e.g., FPGAs).”

3. Problems with NIST PQC reference imple-
mentations

In this paper we will make the point that the reference
implementations submitted to the NIST post-quantum
competition did not achieve the declared goal of promot-
ing the understanding of how the submitted algorithm may
be implemented as well as they could have. In this section
we give an overview of what we believe to be the reasons
for this; in short, those are a combination of

1) different expectations of what a reference imple-
mentation should accomplish;

2) the choice of ANSI C as the primary program-
ming language; and

3) insufficient use of standard software-development
techniques, paired with a lack of experience with
writing cryptographic software in the submission
teams.
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3.1. Reference implementation expectations

Let us first look at what one might reasonably expect
from a reference implementation or what such an imple-
mentation might be used for. NIST’s call made it clear
that the central goal is about clarity of the code. Once
the programming language—here, ANSI C—is fixed, it
is not hard to start heated debates about what exactly
“clarity of code” means; however, this is not the central
problem. What is much more important is that reference
code is typically used for much more than just “promoting
understanding”, including:
Generation of test vectors. This is probably the most
obvious use-case for a reference implementation aside
from portraying what the proposed algorithms look like
in code. Being able to reliably generate test vectors is
the foundation for any kind of regression testing of more
optimized implementations.
Basic performance evaluation. A more controversial
question is if a reference implementation should also be
used as a baseline for performance evaluation. The call
made it pretty clear that performance should not be a
focus for the reference implementation. However, many
“reference implementations” submitted to NIST did in-
clude pieces of code that were clearly optimized for speed
rather than for readability. Also, many papers did report
benchmarks of reference implementations [24], [25], [26],
[27], [28], sometimes without clear warnings that such
benchmarks say absolutely nothing about the performance
of the proposed scheme.
Starting point for optimization. A very common ap-
proach for performance-oriented implementations, typi-
cally with platform-specific optimizations, is to start from
a reference implementation. The first step is to identify the
routines that take most of the CPU cycles and then step-by-
step replace those with optimized routines, often written
in assembly and targeting a specific microarchitecture. To
enable this approach, it is important that the reference
implementation builds for and runs on the platform tar-
geted for optimization. In particular, when considering
embedded platforms, the use of large external libraries
is often a problem.
Use in protocol experiments. Through the course of the
NIST PQC standardization project, various efforts have
investigated how to upgrade protocols to post-quantum
security, using the primitives (and implementations) sub-
mitted to NIST; see, e.g., [29], [28], [30], [31], [32].
Integration into cryptographic-protocol frameworks often
requires namespacing of the code. A meaningful perfor-
mance evaluation additionally requires implementations
that are optimized for the benchmark platform and adhere
to all security guidelines requested by that platform, most
notably, not leaking secrets through timing.
Use in (performance-uncritical) production software
experiments. We saw some early adopters experiment-
ing with post-quantum primitives in production software;
some prominent examples are Google’s and Cloudflare’s
post-quantum TLS experiments [33], [34], [35] and In-
fineon’s implementations of post-quantum cryptography
in contactless smartcards [36] and in TPMs [37]. While
server-side deployments typically need highly optimized
software, a portable (reference) implementation may be

perfectly reasonable for less performance-critical client-
side deployment. This, however, requires that this imple-
mentation is secure in the sense of the threat model the
respective application uses.
Portability. Many of these possible uses cases of a ref-
erence implementation require that code is portable to
different platforms, both hardware (e.g., 32-bit vs. 64-
bit platforms or platforms with different endianness) and
software (e.g., different operating systems or compilers).
In the PQC FAQ, NIST clearly states that “key require-
ments are that the submission code should be written in a
cross-platform manner [. . . ]”, however without clarifying
exactly what this means.

Some of the use cases for a reference implementation
have strong synergies. For example, optimized code is also
more useful to generate test vectors, and code suitable for
academic protocol-level experiments is more likely to also
be suitable for use in production software. However, some
of these possible use-case scenarios have opposing re-
quirements on a reference implementation and, ironically,
almost all of them have some requirements that do not
help to promote understanding. Notably, pursuing higher
performance often requires unrolling implementations or
more advanced (non-“schoolbook”) implementations of,
e.g., field arithmetic. This may distract from the overall
structure of the scheme.

3.2. The problems with “ANSI C”

The first problem with requesting software written in
“ANSI C” is that the term is not well defined. As pointed
out in a posting to NIST’s pqc-forum mailing list by
Saarinen, “ANSI C” is commonly understood to refer to
the ISO/ANSI C90 standard, which does not even define
the long long data type used by the API. This issue
with the definition of “ANSI C” was clarified in an FAQ
entry saying that “implementations written in C99 and
C11 are both perfectly fine”. Furthermore, with regards
to the use of the NTL library that is written in C++,
NIST clarified that implementations making use of NTL
should still be “as ANSI C-like as possible, only using
C++ functionality where absolutely required in order to
interact with NTL”.

However, these clarifications do not address two other
issues inherent to the C programming language: the fact
that the language is underspecified and that it offers very
little support to the programmer to write safe and correct
programs.
Underspecification of C. The C programming language is
intentionally underspecified to enable compilation to very
fast code on a broad range of platforms. Krebbers [38]
summarizes three different kinds of underspecification:

• Implementation-defined behavior leaves it to the
compiler to make decisions about the semantics
of certain expressions. These decisions need to
be consistent, i.e., when compiling code for one
target, all occurrences of the same kind of ex-
pression are required to have the same semantics.
Also, these semantics should be documented. It’s
is near impossible to write (cryptographic) soft-
ware without any expression that falls into this
category. For instance, even the number of bits in
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one byte (char) is not fixed by the C semantics.
Whether char is signed or unsigned is also left to
implementations. An example of implementation-
defined behavior that causes more issues in real-
world implementations is the endianness of inte-
gers.

• Unspecified behavior leaves it to the compiler to
define the semantics of certain expressions. These
decisions do not have to be consistent through-
out the compilation and also do not need to be
documented. One example is the evaluation order.
Carefully written code avoids the pitfalls of un-
specified behavior, either by entirely avoiding ex-
pressions that fall into this category or by ensuring
that semantics does not depend on the compiler’s
decision.

• Undefined behavior allows the compiler to gen-
erate literally any code; for example, it would
be within the specification of the C programming
language to generate a binary that deletes all data
in the user’s home directory when encountering a
case of undefined behavior. The most notable ex-
amples of undefined behavior are related to mem-
ory safety (i.e., reading or writing out of bounds),
but this also includes, for example, signed-integer
overflow, division by zero, modifications of string
literals, or dereferencing a NULL-pointer. Unde-
fined behavior in a program is generally a bug
and very often a security-critical one.

Trusting the programmer. The C programming language,
by its design philosophy, gives a lot of power to the
programmer but also puts a lot of trust in the programmer.
For example, C by itself has no mechanism to prevent
programmers from accessing memory at invalid locations,
has no mechanisms to ensure that all heap allocations
are eventually freed (and freed only once), and has no
mechanism to check for integer overflows. C does not
guarantee that variables are initialized before they are read,
it also features a rather weak type system with somewhat
unintuitive rules for implicit casts. This all together makes
C a great programming language to write highly optimized
software, but it also makes it very easy to write programs
with bugs that often have severe security implications –
in particular in cryptographic software.

3.3. Software-engineering issues

Many issues with software implementations submitted
to NIST PQC could have been avoided by following
standard software-development practices:
Compiler warnings. A first step to avoid common pitfalls
is to enable compiler warnings and ensure that code
compiles without any warnings. This may sound like a
rather straight-forward thing to do, but it turns out that
“compilation without warnings” is much more complex.
First, one needs to determine what warnings should be
enabled; enabling “all” warnings with -Wall in gcc
or Clang does by far not enable all warnings, neither
do the “extra” (-Wextra) or “pedantic” (-Wpedantic)
warnings levels. Compilation with the Microsoft compiler
uses different flags and, unsurprisingly, also issues dif-
ferent warnings. However, even standard warning levels

are suitable to identify many common patterns that are
typically related to bugs.
Static analysis. More generally, there exist many tools
for static analysis of C code, i.e., tools that analyze code
without actually running it [39], [40], [41], [42]. These
tools are typically able to find larger classes of bugs than
those identified through compiler warnings. Aside from
the general-purpose static-analysis analysis tools, there
exist also tools specifically to check that cryptographic
software is free of timing leaks [43]. However, the use
of these tools is not a default practice even in the devel-
opment of widely used cryptographic libraries [44]. One
example of a bug that, for example, gcc’s static analyzer
is able to catch is in the following piece of code that we
found in the reference implementation of a NIST round-1
submission:

int64_t* extEuclid(int64_t a, int64_t b) {
int64_t array[3];
int64_t *dxy = array;
...
return dxy;

}

The problem with this piece of code is that the
function returns a pointer to a local stack variable.
If the calling code dereferences this returned pointer—
and what else would it do with a pointer?—the re-
sult is undefined behavior. In principle both gcc (via
the -Wreturn-local-addr flag) and clang (via
the -Wreturn-stack-address flag) issue compiler
warnings for this kind of behavior. However, in our experi-
ments, the indirection through dxy hides the bug from this
compile-time analysis. The reason that this bug did not
actually trigger undefined behavior in this submission is
simply that the function was never called from any context
– spotting such dead code is another use case for static
analysis.

Dynamic analysis. Another approach to finding bugs is
running the code with instrumentation or inside special
environments. The most commonly used tools for dynamic
analysis, at least under Linux, are Valgrind [45], [46],
and the address-sanitizer [47] and undefined-behavior san-
itizer [48] included with the Clang compiler. Like for
static analysis, there also exist specialized tools to identify
timing leaks through dynamic analysis [16].
Testing. Extensive testing is still one of the cheapest
and most widely used techniques to ensure that software
behaves as intended. NIST provided a rather minimalistic
framework to generate test vectors for regression and com-
patibility testing to be used by submitters. Unfortunately,
the framework did not include any negative tests (i.e., tests
that ensure failure on invalid inputs) or basic tests that
the API was used as intended. For example, one of the
reference implementations submitted to round 1 of NIST
PQC used out-of-bound accesses of the form

sk[CRYPTO_SECRETKEYBYTES + j]

for positive values of j to access bytes of the public key.
The implementation simply made the assumption that the
public key happens to be stored behind the secret key in
memory. This is clearly something that any reasonable
testing framework should catch.

We do not mean to suggest that submitters to pub-
lic cryptographic standardization efforts like NIST PQC
should be familiar and up-to-date with all the intricacies
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of these tools for engineering (cryptographic) software.
On the contrary: Our proposal, which we detail in the
next section, is that the standardization body soliciting
submissions ensures a basic level of code quality by
providing a suitable code-analysis and testing framework.

4. Proposed features of a software framework
for cryptographic competitions

In this section, we propose a testing framework for
software submitted to future cryptographic competitions.
This section aims to be technology agnostic; we discuss
our specific realization, PQClean, which accomplishes
many of these goals, in Section 5. Where necessary, we
focus on the C programming language as it remains
prevalent for cryptographic software.

Our proposal could be implemented either as an offline
solution using virtualization, or online using continuous
integration. The benefit of the latter is that most testing
can be executed in the cloud without requiring setup by
or using resources of each submission team.

We propose that such a testing framework be made
available together with the call for proposals, or alter-
natively, not later than 6 months before the submission
deadline for software implementations.

The framework should include at least the following
features.
Build system. The framework should include a build sys-
tem that enables a reasonable level of compiler warnings
and refuses to compile if any warnings exist. This would
help to avoid many obvious mistakes and would save many
hours for other researchers to fix the same bugs.
Provide a working example. Along with the testing
framework, a working example should be provided to
serve as a reference of what is expected from submitters.
In the case of NIST PQC standardization, this could have
been a KEM and signature scheme based on RSA or
elliptic curves.
Automated functional tests. Straightforward functional
tests should be implemented. For example, for digital
signature schemes, a generated signed message should
verify correctly. Failure test cases should also be included,
e.g., a signed message should not verify under a different
public key.
Verify test vectors. In addition to asking submission
teams to submit test vectors, the framework should check
if the software satisfies the test vectors. We believe that
this is best done by including a hash of the test vectors in
the submission, saving space in the case of large parameter
sets. (Several round 1 submissions in the NIST PQC
standardization project had KAT file archives in excess
of 75 MB.)
Provide code building blocks. The framework should
provide core functionality that is likely to be used by
most schemes. For the NIST PQC competition, this pri-
marily consists of hash functions (e.g., SHA-2, SHA-3),
extendible output functions (XOFs) (e.g., SHAKE), the
AES function, and functions outputting random bytes.
This ensures that performance differences between imple-
mentations are not due to different implementations of the
same building blocks. Requiring implementations to use

the same APIs also eases evaluation and modifications
by other teams. Submissions should not be allowed to
ship their own version of the same functions, though the
competition organizers will need to consider how to deal
with requests for specialized versions of these functions
(e.g., vectorized implementations).
Test using all major toolchains. The submitted software
should support all major toolchains. In the case of the
C programming language, at least gcc, clang, and Mi-
crosoft’s compiler (CL) should be supported. The frame-
work should make sure that the code compiles with all of
them. As compilers change over time, it is important to
fix a version for each of them.
Test on all major platforms. To ensure that submitted
code is indeed platform-independent, the tests should be
executed on a variety of platforms, including 32-bit and
64-bit systems, and little-endian and big-endian architec-
tures.
Leverage modern static and dynamic analysis. The
framework should enable the static analysis included in
the toolchains. Additionally, Valgrind and AddressSani-
tizer should be used for dynamic software analysis for
detecting memory problems.
Enforce namespacing. As implementations from mul-
tiple submissions are likely going to be used in
the same software (e.g., in a library) their names-
paces should be properly separated. The framework
should enable and enforce appropriate namespacing
and visibility, requiring unique names for public API
functions (e.g., mykem_level1_encaps rather than
crypto_kem_encaps) and unique names or limited
visibility for internal symbols (e.g., static functions within
a compilation unit).
Enforce code style and documentation. To improve the
readability of code, submissions should be formatted in
the same way. The call for submissions should include
the coding guidelines and the framework should check if
the code is formatted accordingly. In the same vein, a
common syntax for documenting code should be defined.
The framework should automatically check if a bare min-
imum of documentation for each function in the source
code exists.
Benchmarking code. The framework should allow basic
benchmarks to ensure that all teams run benchmark their
code in the same way. The benchmarking results should
be reported in the submission document. Advanced bench-
marking (multiple platforms, multiple compilers) may be
provided by the competition organizer, in which case it
should be a public platform with clear submission proce-
dures and transparent results reporting, or can be taken on
by third-party projects like SUPERCOP.

Additionally, the framework could include the more
advanced features in the following.
Verify that code is constant time. Code intended for
use in actual software needs to have runtime independent
of any secret data, i.e., avoiding branches depending on
secrets, secret-dependent memory accesses, and variable-
time instructions depending on secrets. Tools like ct-
verif [43] could be used to detect such timing leakage.
Alternatively, dynamic checking through Valgrind with
uninitialized secret data can be used to catch most of
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the variable-time code. For some code (e.g., rejection
sampling) this approach may result in false positives. In
that case, submitters need to be able to mark the finding
as a false positive and provide a rationale for why it is
not a security issue.
Disallow dynamic memory allocation. Dynamic mem-
ory allocations present a problem on smaller bare-metal
platforms. Additionally, they are often a source for bugs
that would have been prevented by exclusively using
stack memory. Thus, we recommend disallowing dynamic
memory allocation and enforcing it using a test. In the
majority of cases, cryptographic code is only using fixed-
sized buffers which makes switching to stack memory
straightforward. If variable-sized buffers are needed, the
software can usually be re-written to allocate the worst-
case size. Admittedly disallowing dynamic memory alloca-
tion can cause other problems. Some PQC algorithms have
rather large memory usage, and some platforms do have
problems with large stack sizes, especially within threads.
Typically, 8 MB of stack is the limit on Linux. If such
large buffers are required, dynamic memory allocation
may be acceptable.

To lower the burden for initial software submissions,
some of the requirements could be optional, i.e., failing
tests will merely trigger a warning. In subsequent evalua-
tion rounds, more requirements could become mandatory
to gradually increase the quality of implementations. In
case any of the requirements are not fulfilled in the submis-
sion, we recommend publicly disclosing a list of problems
with each submission. The submission team should then
be able to remedy the issues within a reasonable time
frame. For this to work transparently, code should be
hosted in a code versioning system (e.g., git) that is
accessible to everyone. Note, however, that there need
to be clear guidelines on the scope of updates allowed.
As specifications are usually frozen during each evalua-
tion round, changes that alter test vectors or algorithmic
interoperability should not be allowed while algorithm
specifications are meant to be frozen.

5. The PQClean framework

PQClean is not a software library; the schemes and im-
plementations all exist independently and PQClean offers
no API other than the scheme’s interface. We organize the
implementations in PQClean like in the SUPERCOP [1]
project: the implementations are organized by type (KEM
or signature scheme), then by scheme and specific instanti-
ation (e.g., Kyber512). Each instantiation might have sev-
eral implementations. PQClean supports C and assembly
code; for some schemes we also have ARMv8-A or AVX2-
specific code.

5.1. Common files

PQClean makes some common primitives available to
each implementation. This includes (incremental) hashing
primitives, AES, and random number generators. Any-
one extracting implementations from PQClean can re-
use these, or provide their own implementation based on
our API. For hashing and encryption primitives, we addi-
tionally provide initialization and cleanup functions. This

allows them to be implemented by heap-based primitives,
as for example provided by OpenSSL [49]. PQClean does
not attempt to offer the most efficient or any machine-
optimized implementations of the primitives.

5.2. Meta information

In each instantiation folder, there exists a META.yml
file, in which some scheme metadata is tracked. This
information includes some scheme-specific information,
like authors; instantiation-specific information, like key
sizes; and information on each of the implementations
present, like version and optionally compatibility infor-
mation. This machine-readable information can be helpful
for any automated tool using the framework, including the
internal testing framework, as well as for any projects that
generate code that wraps implementations from PQClean.

5.3. Namespacing

PQClean enforces that all exported symbols, like func-
tion names and global values, have a predictable and
unique name. They are “namespaced” by prefixing with
PQCLEAN_, then the name of the scheme and parameter
set, and the name of the implementation. This ensures
that no symbols conflict between, for example, different
schemes or different implementations. Without this sep-
aration, it would be difficult to build software that uses
several primitives or selects implementations based on
CPU feature detection.

5.4. Automated testing

Currently, there are 22 automated tests in the PQClean
testing harness, against which each scheme is evaluated.
The tests range from simply compiling the source code
with compiler warnings or checking the existence of
license files, to the parsing of source files to exclude
certain types of patterns. These tests include the following;
symbols indicate which flaws in Table 1 the test can
potentially identify:

⋆ that the scheme compiles correctly, without com-
piler warnings;

♠ Makefile correctness: that all scheme source
files are correctly specified as dependencies;

♣ functional correctness: that the key generation,
KEM, and signature operations function as in-
tended, even on unaligned buffers; we also check if
corrupted ciphertexts and signatures fail to verify;

† that scheme keys, ciphertexts, and signatures
match test vectors, including NIST’s KAT test
vectors;

⋄ running functional tests with sanitizers (clang’s ad-
dress sanitizer [47], memory sanitizer [50], and un-
defined behavior sanitizer [48]) and Valgrind [46];

± specification of signedness of char;
= existence of certain timing-suspicious boolean op-

erations;
� clang-tidy [39] linting and static analysis;
© existence of license files;
• symbol namespacing;
• no usage of dynamic memory;
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TABLE 1. FLAWS FOUND, AND WHICH TESTS MIGHT HAVE DETECTED THEM, IN HOW MANY OF THE 10 KEMS AND 7 SIGNATURE SCHEMES
THAT HAVE EVER BEEN INCLUDED IN PQCLEAN.

Flaw KEMs Sigs Flaw KEMs Sigs Test

Memory safety ⋄ 3 4 Endianness assumptions † 7 2 ∗ Compilation test
Signed integer overflow ⋆, ⋄, � 3 1 Platform-specific behavior ♣, ±, †, � 4 0 ♠ Makefile checks
Alignment assumptions ⋆, ♣, ⋄ 4 4 Variable-Length Arrays ⋆ 4 1 ♣ Functional tests
Other Undefined Behavior ⋆, ♣ 1 1 Compiler extensions ⋆ 5 2 † Test vectors
Dead code ⋆, ♠ 3 4 Integer sizes ⋄, ⋆, † 6 3 ⋄ Sanitizers
Global state 2 1 Non-constant time = 4 0 ± Signedness of char
Licensing unclear © 3 1 = Timing-suspicious ops.

� clang-tidy
© License file

• consistent style and formatting.

The testing framework is based on Pytest [51], which
allows us to generate tests for each scheme and imple-
mentation flexibly, and which generates convenient output.
For tests that compile code, we isolate the source files
and compilation targets so that tests can be executed in
parallel.

5.5. Testing platform and platform diversity

The automated tests are run on each commit and pull
request to PQClean. We also run them periodically on the
master branch. This ensures that the implementations
continue to be validated as compilers and tools get up-
dated.

The testing platform is based on Github Actions [52].
This service provides Linux, Windows, and macOS run-
ners, on which we run our automated tests. We run all
tests on Linux and macOS with a recent version of GNU
GCC as well as with Clang. Windows tests use Microsoft’s
CL compiler. Results are publicly visible through Github’s
user interface.

Although the native architecture of these systems is
the 64-bit, little-endian Intel x64 architecture, we also
run tests on 32-bit Intel x86, on 32-bit ARMv7 and
64-bit ARMv8, and on big-endian PowerPC. We use
user-mode QEMU [53] emulation together with Linux’s
binfmt_misc capability [54] to run our tests within
Docker images that emulate these targets.

Due to the large number of tests being run on every
implementation, we have split the CI jobs per each imple-
mentation, operating system, compiler, and architecture.
Otherwise, we quickly exceed the maximum allowed run-
time for each job (5 hours). On pull requests, we only run
the tests on the affected scheme, if possible. This makes
testing times manageable and keeps feedback cycles short.

5.6. Results

We have integrated over 230 implementations of mul-
tiple parameter sets of 17 schemes into PQClean over the
course of the project. In almost every scheme we identified
“unclean” code, ranging from missing casts to memory
safety problems and other forms of undefined behavior. In
Table 1 we provide a summary of the number of schemes
affected by some of the more significant categories of
problems. Many of these flaws were detected by our
automated testing, as described in Section 5.4, but in the
process of integration, we also solved many problems by

hand. The symbols in the table correspond to the tests that
might have detected the type of flaw.

Many of the flaws are simply detected by enabling
compiler warnings. Solving these warnings probably took
the most time when integrating schemes into PQClean.
Although many of the reported warnings did not imme-
diately mean the code had a security or correctness flaw,
we found that enabling all warnings did help find those
problems that were flaws, as well as improve the general
code quality.

A perhaps surprising issue was the uncertainty around
licensing of 4 of the 17 schemes. Although NIST re-
quired the submitters of code in submissions to grant “the
right to reproduce, prepare derivative works based upon,
distribute copies of, and display such implementations
for the purposes of the post-quantum algorithm public
review and evaluation process” [17], it is unclear what
the scope of “public review and evaluation” is exactly,
and NIST did not require any specific open-source license.
Several of the included schemes did not include clear
licensing information with their implementations. We con-
tacted their authors and found that many had intended to
grant permissive licensing, or even CC0 copyright waivers,
to their implementations. However, this often resulted in
notable delays; one submission team never provided us
with a license and we had to abandon including it in
PQClean.

6. Beyond “cleaning C”

The various difficulties we discussed in the previous
sections motivate the question of whether C is the ap-
propriate programming language for the purposes of a
cryptographic standardization project. This is perhaps as
much a philosophical discussion as a technical one. We
can not answer this question definitively for any future
standardization project but feel it is worth highlighting
some issues.

6.1. Is C a good fit for specifications?

The C programming language has compilers for al-
most every system under the sun, which makes it very at-
tractive for experiments (implementation-specific behavior
notwithstanding). However, for the purposes of document-
ing and explaining an implementation, it is perhaps less
well suited. More expressive higher-level languages like
Python are perhaps better suited for the role of “executable
pseudo-code”. Rust could perhaps have stood in as a low-
level language that simply does not allow most of the
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problems that our testing system was designed to catch.
Additionally, allowing implementations in computational
algebra systems like SageMath [55] or Magma [56] would
permit expressing the mathematical constructions very
directly, not distracting a reader with the details of, for ex-
ample, polynomial multiplication. For specifications, there
have also been efforts such as hacspec [57] that aim to
not only generate executable code, but also translate spec-
ifications to formal-verification frameworks like F⋆ [58],
EasyCrypt [59], or Coq [60]. We believe this pathway has
the potential for powerful collaborations with the world of
computer-aided high-assurance cryptography [61].

6.2. Other languages in PQClean

Although PQClean initially only collected cleaned-
up reference C implementations of schemes, we now
also have optimized C and assembly implementations of
schemes that use platform-specific features like AVX2 or
Neon. These implementations are subjected to the same
tests as the reference implementations. It would be possi-
ble to extend this project to implementations in other pro-
gramming languages as well. The cross-implementation
testing of test vectors would grant more confidence that
each implementation is correct and interoperable, espe-
cially if at least one of the implementations has been
formally verified against a machine-readable specification
in, e.g., hacspec [57].

6.3. Beyond standardization projects

The goal of PQClean could be described as building
a repository of highly-tested, high-confidence implementa-
tions. We believe cleaned-up implementations are valuable
to other projects. The Open Quantum Safe [4] and the
pqm4 [3] projects already automatically integrate imple-
mentations from PQClean. We argue that there is value in
such an approach for more algorithms and cryptographic
libraries. Firstly, it allows focusing analysis and testing
efforts. It can save developer time and energy to, e.g.,
implement automated timing side-channel testing centrally
instead of in each individual project. Any such efforts
would then benefit all the consumers of the implementa-
tions. Currently, it seems that often when a vulnerability
like a side-channel leak is discovered, it affects many
cryptographic libraries and the effort of patching is dupli-
cated many times. A central repository would minimize
the maintenance effort required. Thus, we do believe that
a well-designed testing framework benefits not only the
standardization effort itself, but may reach beyond into
the phase of deployment.

7. Conclusions

This paper presented what we believe NIST and other
bodies coordinating cryptography standardization compe-
titions should do to improve the software quality of sub-
mitted code. Properly implemented, a set of guidelines
together with a testing framework could benefit submitters,
the community, and the standardization body itself. It will
allow everyone to focus on what the competition is about:
evaluating the candidate cryptographic schemes.

We believe that many of the recommendations in this
paper are uncontroversial and should be implemented in
any future competition. For example, providing a working
example of what is expected from submitters together with
a testing framework would be the bare minimum. The
scope of the testing framework may be more controversial
and one has to be careful to not raise the bar for submis-
sions too high. Limited resources at standardization bodies
may also limit the features of such a framework.

More controversially, we question if C is a suitable
programming language for reference implementations, es-
pecially if the main goal is clarity of the implementation.
While as of now there seems to be no consensus on which
alternative should be used, standardization entities should
revisit this on a regular basis.
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