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Abstract. We propose secure two-party computation for a new functionality that we call Private
Intersection-Weighted-Sum (PIW-Sum) and present an efficient semi-honestly secure protocol. In
this computation, two parties own integer matrices X and Y, respectively, where each row of the
matrices is associated with an identifier. Let I = (i1, . . . , in) be the intersection of the identifier
sets for the two parties. The goal is to compute the matrix Ŷ>X̂ together with the cardinality
|I|, where the j-th rows of X̂ and Ŷ are the rows of X and Y with identifier ij , respectively.
This functionality is a generalization of Private Intersection-Sum (PI-Sum) proposed by Ion et
al. (EuroS&P’20) and has important real-world applications such as computing a cross tabulation
after the equijoin of two tables owned by different parties.
Our protocol is built on a new variant of oblivious pseudorandom function (OPRF), and we
construct the new variant of OPRF from the decisional Diffie-Hellman (DDH) assumption. We
implement both our PIW-Sum protocol and the the most efficient PI-Sum protocol by Ion et
al. and compare their performance in the same environment. This shows that both communication
cost and computational cost of our protocol are only about 2 times greater than those of the
PI-Sum protocol in the case where X and Y are column vectors, i.e., the number of columns of
X and Y is one.

Keywords: private set intersection, private intersection-sum, privateintersection-weighted-sum,
two-party computation, secure computation
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1 Introduction

Secure multi-party computation (MPC) is a technique that allows parties to jointly compute a function
value from their inputs without revealing anything else about the inputs. Recent intensive studies have
drastically improved efficiency of MPC techniques and show that they can be used for many real-world
applications. The problem that we address in this paper is as follows. Suppose two parties have their
own database where each record has an identifier such as telephone number, e-mail address, etc., and
extra information. They want to make some analysis on the database that is generated by the equijoin
of their databases with respect to the identifiers, while both parties are unwilling to reveal any other
information about their database. Especially, we consider the case where identifiers including those in
the intersection are sensitive and need to be hidden from the communication parter.

A simple example for such a situation is as follows. Suppose that company that operates an online
store asks an ad supplier to distribute an advertisement campaign. Later, the client company wants
to know the effectiveness of the campaign for increasing purchase at the online store. It is natural to
assume that only the client knows identifiers who made a purchase at the store and its amount while
only the ad supplier knows identifiers to whom it sent an advertisement. In this case, the average
purchase amount of users who receive the advertisement (aggregate conversion rate) would help to
know the effectiveness of the campaign. The problem is that the company needs a list of users who
received the advertisement to compute the conversion rate, while it is sensitive information and cannot
be provided from the ad supplier. Hence, some sort of secure computation is necessary in such a
situation.
Private Intersection-Sum with Cardinality. Several works consider secure computation on equi-
join of databases [3, 6, 21, 26]. Especially, Private Intersection-Sum with Cardinality (PI-Sum) [21, 26]
is exactly the two party computation that is introduced and actually deployed by Google [21] to deal
with the situation as the above example. In PI-Sum, one party has a set of pairs of an identifier and an
integer {(vi, xi)} while the other party has an identifier set {wi}, and the goal is to compute

∑
i:vi=wj

xi

i.e., the sum of integers xi that correspond to the intersection of the two identifier sets, together with
the cardinality |{vi}∩{wi}| of the intersection. Hence, PI-Sum can be seen as computation after equi-
join of two tables owed by two parties where one table consists of only identifiers. We can observe that
the above example can be solved by PI-Sum as follows. Let {wi} be the identifier set held by an ad
supplier and {(vi, xi)} be set of pairs of an identifier and its purchase amount held by a client. Then,
the aggregate conversion rate can be obtained by

∑
i:vi=wj

xi/|{vi} ∩ {wi}|.
PI-Sum is closely related to Private Set Intersection (PSI) [8,9,11–15,17,19,20,23,30–38] and PSI-

cardinality [3,10,17,20,22,29,39]. PSI is multi-party computation for obtaining the intersection of the
sets owned by multiple parties, while PSI-cardinality allows parties to compute just the cardinality of
the intersection of their sets. Especially, PSI has many applications such as privacy-preserving location
sharing [28], testing of fully sequenced human genomes [4], botnet detection [27], social networks [24],
and online gaming [7], and has been extensively studied.
Private Intersection-Weighted-Sum. In this work, we put forward two-party computation for
new functionality that we call Private Intersection-Weighted-Sum1 (PIW-Sum) to deal with the more
general situation where each record of both tables owned by two parties contain extra information as
well as an identifier. A case example that we can solve by PIW-Sum is as follows: the ad supplier in the
previous example has an additional attribute such as age of each identifier and wants to analyze the
effectiveness of the advertisement by age. Such a case cannot be solved by PI-Sum since its function-
ality requires that an input of one party must consist of only identifiers. We present a more detailed
description of concrete situations that motivate us to consider PIW-Sum in Sec. 1.1.

In PIW-Sum, both parties have a set of pairs of an identifier and an integer vector, {(vi,xi)} and
{(wi,yi = (yi,1, . . . , yi,n))}, and the goal is to compute the weighted sum {

∑
(i,j):vi=wj

yj,`xi}`∈[n] with

1 Actually, since this functionality outputs the cardinality of the intersection additionally to weighted sum,
Private Intersection-Weighted-Sum with Cardinality would be a more precise terminology, but we omit “with
Cardinality” since the term is long.
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Fig 1: Cross tabulation for A/B testing.

Fig 2: Weighted advertising conversion measurement.

respect to the intersection of identifier sets and the cardinality |{vi} ∩ {wi}| of the intersection. We
can see yj,` as a “weight” and that PI-Sum is the special case of PIW-Sum, where both xi and yi are
one dimensional vectors and yi = 1 for all i. Alternatively, we can capture PIW-Sum as follows: both
parties have integer matrices X and Y, respectively, where each row of the matrices is associated with
an identifier. Let I = (i1, . . . , in) be the intersection of the identifier sets. The goal is to compute the
matrix Ŷ>X̂ together with the cardinality |I|, where the j-th rows of X̂ and Ŷ are the rows of X and
Y with identifier ij , respectively.

1.1 Applications of PIW-Sum.
PIW-Sum could be applied for various situations where two parties want to perform joint analysis over
the database generated by equijoin of their own databases. We give two typical scenarios that we can
solve by PIW-Sum.
Case 1. Cross tabulation for A/B testing. The first case is described in Fig 1. An ad supplier
delivered two types of advertisement on an online store. The ad supplier wants to know which ad was
more effective for the sales and the difference of their effectiveness by age to accumulate knowledge.
More precisely, it wants to compute the cross tabulation for the total purchase amounts by age and
received ad type (the right table of Fig 1). It knows users’ age and which ad was delivered to each
user, but only the company that runs the online store knows the purchase amount of each user. When
both parties are unwilling to reveal their databases except the cross tabulation, they can compute it
using a secure PIW-Sum protocol as follows.

The company sets its input as a set of pairs of an identifier vi and a purchase amount xi. On
the other hand, the ad supplier sets its input as a set of pairs of an identifier wi and a one-hot vector
yi ∈ {0, 1}2d where d is the number of choices in age and yi,` = 1 if the age and the delivered ad of user
wi corresponds to the `-th cell of the cross tabulation. Then, the output

∑
(i,j):vi=wj

yj,`xi for ` ∈ [2d]

corresponds to the value in the `-th cell of the cross tabulation. Note that in this case, the cardinality
of the intersection will become a leakage since it is not used to compute the cross tabulation.
Case 2. Weighted advertising conversion measurement. The second case is described in Fig 2.
An ad supplier delivered an advertisement on a campaign in a retail store to encourage its users to visit
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the store. Later the company that runs the store wants to know the effectiveness of the advertisement
per person. The store is going to strengthen the line up of products for people in their 20s and 30s, and
they will multiply the number of visits by some weight according to his or her age for the measurement.
In this situation, what the company wants to know is the weighted mean of the number of visits with
respect to the people who received the advertisement. Additionally, we assume that only the ad supplier
knows the information on age of users. We can deal with this situation via PIW-Sum just by setting
the ad supplier’s input as pairs of an identifier and a weight according to his or her age while the
company’s input as pairs of an identifier and a number of visits to the store.
More information on real-world application. We notice that Ion et al. gave quite detailed
analysis on deploying a PI-Sum protocol for business applications [21]. Since most of their analysis
is applicable to our PIW-Sum case, [21] is a great reference for readers who are interested in more
practical discussions.

1.2 Our Contributions

Our contributions in this work are two-folds. First, we propose an efficient semi-honestly secure PIW-
Sum protocol based on the decisional Diffie-Hellman (DDH) assumption and additively homomorphic
encryption (AHE). Our goal is to construct a protocol that has similar efficiency to the DDH-based
PI-Sum protocol proposed in [21]. In contrast to PSI where the most efficient protocols in typical
environments are based on random oblivious transfer (OT) [8, 38], a traditional DDH-based double
masking technique [25] would be the best approach for PI-Sum [21]. This is because the random OT-
based PI-Sum protocol needs a shuffle of ciphertexts of (slotted) AHE scheme, which uses expensive
fully homomorphic operations of the AHE scheme. Another approach for PI-Sum is circuit-based
PSI [19], which is a technique to utilize general two-party computation (garbled circuits [40] or the
GMW protocol [18]) to compute PSI-related functions. Garbled-circuit-based PSI protocols could
be more computationally efficient than the DDH-based protocol, but the communication cost of the
garbled-circuit-based approach is 20 times more than that of the DDH-based protocol [33]. GMW-
based PSI protocols with silent OT can be more communication efficient than garbled-circuit-based
PSI protocols [5,38], but they need online communication per evaluating an AND gate of circuits and
thus are sensitive to network latency.

As discussed in [21], the first priority in business-to-business batch computation would be commu-
nication efficiency. In a nutshell, the cost of resources such as CPU, RAM, and especially network are
more relevant than the total running time in such batch computation. Increasing the computational
resource in the company is much easier than increasing the bandwidth for the communication. Thus
the communication efficiency does matter. Another evidence is that when running protocols in a cloud
such as Google Cloud Platform, Amazon Web service, and Microsoft Azure, the monetary cost for
communication is often much more relevant than that for computation. Since we assume that many
applications of PIW-Sum are such business-to-business computation in the WAN setting, where high
network latency might exist, we choose the DDH-based approach for our PIW-Sum protocol.

The essential requirement to achieve an efficient PIW-Sum protocol is non-use of expensive fully
homomorphic operations including shuffles of AHE ciphertexts, which are not used in the DDH-based
PI-Sum protocol. One may think that why not to use fully homomorphism and ciphertext shuffles
is a challenge in constructing a PIW-Sum protocol while the DDH-based PI-Sum protocol does not
use them. Intuitively, parties would use AHE to compute a weighted sum obliviously to integers to be
summed up. However, when a party homomorphically evaluates the weighted sum, the party should be
oblivious to even its own integer to multiply as coefficient or weight since otherwise it learns that the
corresponding identifier belongs to the intersection. This problem does not occur in PI-Sum since the
coefficients are always one. To solve this problem without fully homomorphic encryption is completely
nontrivial. We discuss our solution in Sec. 1.3.

The second contribution is the implementation and evaluation of our protocol. We implement our
protocol together with the most efficient PI-Sum protocol in [21] and compare their performance in
the same environment. We use ideal lattice-based fully homomorphic encryption scheme for an AHE
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scheme that allows slot encryption [1]. This is the technique to encrypt many integers to a single
ciphertext while we can still perform homomorphic addition over any encrypted integers. This allows
us to significantly save the communication cost in the protocol.

Our implementation result shows that the computation cost and communication cost of our protocol
are only about 2 times greater than the most efficient PI-Sum protocol when we use tables where each
record has one integer element. The estimated monetary cost to run our protocol in a typical cloud
environment2 is 2.16 cents when both identifier sets are equivalent and their size is 220. We also evaluate
the performance of our protocol by changing the vector length of xi and yi in each record. We find
that the computational cost increases by only less than 5% while the communication cost increases
by about 100% when we compare the 16 × 16 case with the 1 × 1 case (note that n × n means that
the vector length in each record for both parties are n). An important feature of our protocol is that
both computation and communication costs are maximized when the two identifier sets are disjoint.
The monetary cost in the worst case for 220 sized tables, i.e., two identifier sets are disjoint, is 2.62
cents, which is about 1.2 times greater than that in the most efficient case, i.e., both identifier sets are
equivalent. These results show that our protocol is practical even for more than 220-sized tables.

1.3 Technical Overview

We describe a brief overview of our PIW-Sum protocol. Our starting point is the DDH-based PI-Sum
protocol by [21]. Let us briefly recall their protocol. In the setup, two parties, say Alice and Bob, agree
on a DDH group G (a cyclic group where the DDH assumption holds) of order p, its generator g, and
a hash function H : {0, 1}∗ → G modeled as a random oracle. Alice chooses a random Zp element a
and a key pair (pk, sk) of an AHE scheme. Bob chooses a random Zp element b. Let m1 and m2 be
the numbers of records owned by Alice and Bob, respectively. In round 1, on input {wi}i∈[m2], Bob
sends {H(wi)

b}i to Alice. In round 2, on input {(vi, xi)}i∈[m1] and the message from Bob, Alice sends
{(H(vi)

a, cti)}i and shuffled {H(wi)
ab}i to Bob, where cti is the AHE ciphertext of xi. Then, Bob

sums up cti for all i such that ∃j,H(vi)
ab = H(wj)

ab and sends it to Alice in round 3, and finally Alice
obtains the intersection sum by decrypting it.

Let us turn to the PIW-Sum case where Bob’s input is {(wi, yi)}i instead of {wi}i.3 Their protocol
cannot be applied for PIW-Sum since Bob cannot know the correspondence between the shuffled
{H(wi)

ab}i and {yi}i, while Bob has to sum up yjcti for all (i, j) : H(vi)
ab = H(wj)

ab to compute the
intersection weighted sum.
Join of encrypted table and plain table. We solve this problem by joining an encrypted table to
a plain table. The goal of this technique is to allow Bob to have {ctj}j∈[m2] with the correspondence of
wj and ctj where ctj is the ciphertext of xi if there exists i such that vi = wj , and the ciphertext of 0
otherwise. If Bob can obtain them, he can homomorphically compute the encryption of the intersection
weighted sum

∑
(i,j):vi=wj

yjxi by summing up yjctj for all j ∈ [m2]. The point is that Bob can perform
this computation without knowing whether each wj is in the intersection or not.
New variant of OPRF. The next challenge is how to compute {ctj}j with the correspondence of
wj and ctj . We solve this by introducing a new variant of oblivious pseudorandom function (OPRF).
Recall that OPRF is a two-party protocol of functionality (⊥, {zi}i) → (k, {f(k, zi)}i) where k is a
PRF key and f is a PRF [16]. Note that this means that in a OPRF protocol, Alice/Bob’s inputs are
⊥/{zi}i and Alice/Bob’s outputs are k/{f(k, zi)}i, respectively. Let {ui}i∈[m2] be public strings out
of the identifier space. The functionality of our new variant of OPRF is defined as

φ : ({vi}i∈[m1], {wi}i∈[m2])→ ((k, S), {f(k, zi)}i∈[m2]) (1.1)

where k is a PRF key, S = {j ∈ [m2] | ∀i, vi 6= wj}, f is a PRF, zi = wi if i 6∈ S, and zi = ui if
i ∈ S. The differences between OPRF and the variant φ are 1) Alice also has input strings {vi}i; 2)
2 We use the monetary cost for Google Cloud Platform shown in ?? for the estimation.
3 We consider the one-dimensional vector case here since the n-dimensional vector case is almost the same.
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Bob learns the PRF value f(k, ui) of public string ui instead of f(k,wi) if wi is not included in Alice’s
input strings; 3) Alice additionally learns the locations S of Bob’s input strings that do not match
any of Alice’s input strings. Note that since S is simulatable from the intersection size, and f(k, ui) is
pseudorandom, they do not leak any additional information on inputs other than PIW-Sum.

If we have a secure protocol for φ, we can solve the problem as follows. Alice and Bob run a
protocol for φ, and then Alice sends {(f(k, ti), cti)}i∈[m1+|S|] to Bob in a shuffled order, where ti = vi
for i ∈ [m1], ti+m1

= usi for i ∈ [|S|] (si is the i-th element of S), cti is the AHE ciphertext of xi for
i ∈ [m1], and cti+m1

is the AHE ciphertext of 0 for i ∈ [|S|]. By comparing f(k, ti) with f(k, zi), Bob
can obtain {ctj}j∈[m2] with the correspondence of wj and ctj where ctj is the ciphertext of xi if there
exists i such that vi = wj , and the ciphertext of 0 otherwise.
How to instantiate the new variant of OPRF. We can construct a three-round protocol for φ
from a DDH group as follows. In the setup, Alice chooses two random Zp elements a1, a2 while Bob
chooses a random Zp element b. First, Alice sends {H(vi)

a1}i to Bob. Next, Bob computes {H(vi)
a1b}i,

{H(wi)
b}i, {H(ui)

b}i, shuffles {H(vi)
a1b}i, and sends them to Alice. Then, Alice computes {H(vi)

b}i
by {H(vi)

a1b}i to the power of 1/a1, sets rj = H(wj)
a2b if ∃i,H(vi)

b = H(wj)
b and rj = H(uj)

a2b

otherwise for all j ∈ [m2], and sends {ri}i∈[m2] to Bob. Finally, Bob outputs {r1/bj }j . In this protocol,
we can observe that k = a2 is the PRF key, and f(k, z) = H(z)a2 .

2 Preliminaries

2.1 Notations

For a prime p, Zp denotes Z/pZ. For n ∈ N, [n] denotes the set {1, . . . , n}. For a set S, s← S means
that s is uniformly chosen from S. A function f : N → R is called negligible if f(λ) = λ−ω(1). For
families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, we say X and Y are computationally
indistinguishable, denoted by X ≈c Y , if for all probabilistic polynomial-time (PPT) adversaries A,
there exists a negligible function negl and we have |Pr[1← A(1λ, Xλ)]−Pr[1← A(1λ, Yλ)]| ≤ negl(λ).

2.2 Basic Tools and Assumption

Definition 2.1 (DDH assumption). Let Gλ be a family of cyclic groups indexed by λ ∈ N, the order
and generator of which are pλ and gλ, respectively. We omit λ from the parameters in what follows.
We say that the DDH assumption holds in G if (g, gα, gβ , gαβ) ≈c (g, g

α, gβ , gγ) where α, β, γ ← Zp. It
is well known that if the DDH assumption holds in G, we have (g, gα, gβ, gαβ) ≈c (g, g

α, gβ, gγ) where
α← Zp and β,γ ← Zn

p for all n ∈ N.

Definition 2.2 (Additively homomorphic encryption). An additively homomorphic (AHE) en-
cryption scheme is a public key encryption scheme that has additive homomorphism. It consists of four
algorithms:

AGen(1λ) :: It takes a security parameter 1λ and outputs a public key and a secret key (pk, sk). The
public key specifies a plaintext space M and a ciphertext space C that are additive abelian groups.

AEnc(pk,m) :: It takes pk a plaintext m ∈M and outputs a ciphertext ct ∈ C for m.
ARef(pk, ct) :: It takes pk, ct and outputs a ciphertext ct′ ∈ C.
ADec(sk, ct) :: It takes sk and ct and outputs a decryption value d.

Refreshability. The scheme is refreshable if for all n, λ ∈ N,m1, . . . ,mn ∈ M and valid pk, the two
distributions are statistically close:{cti}i,ARef(pk, ∑

i∈[n]

cti)

 ,

{cti}i,AEnc(pk, ∑
i∈[n]

mi)


7



where cti ← AEnc(pk,mi).
Correctness. The scheme is correct if there exists a negligible function negl, and the following holds
for all n, λ ∈ N,m1, . . . ,mn ∈M:

Pr

ADec(sk, ct) = ∑
i∈[n]

mi

∣∣∣∣∣∣
pk, sk← AGen(1λ)
cti ← AEnc(pk,mi)
ct =

∑
i∈[n] cti

≥1− negl(λ).

Security. We say the scheme is IND-CPA secure if there exists a negligible function negl, and the
following holds for all stateful PPT adversaries A and λ ∈ N:∣∣∣∣∣∣∣∣Pr

β ← A(ct)

∣∣∣∣∣∣∣∣
pk, sk← AGen(1λ)
β ← {0, 1}
m0,m1 ← A(1λ, pk)
ct← AEnc(pk,mβ)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

Vector encryption. A vector m ∈Mn can be encrypted by just element-wise encryption. We denote
this by AEnc(pk,m). It is not hard to see that additive homomorphism similarly holds as addition of
vectors. Note that this is a different notion from slot encryption that we explain in Sec. 4.1.

2.3 Private Intersection-Weighted-Sum

Private Intersection-Weighted-Sum (PIW-Sum) is a special case of two-party computation. Two-party
computation between parties P1 and P2 is a protocol where they jointly compute some function f =
(f1, f2) over their inputs x and y. In the input phase, P1 and P2 prepare their inputs x and y,
respectively. Then, they interactively compute f(x, y) = (f1(x, y), f2(x, y)) where P1 wants to obtain
f1(x, y) while P2 wants to obtain f2(x, y) as output. The primary requirement for secure two-party
computation is that P1 (resp. P2) leans only f1(x, y) (resp. f2(x, y)) and nothing else about the input
of the communication partner after the computation.

Basically, there are two types of security model for two-party computation, namely, semi-honest
security and malicious security. Semi-honest security guarantees that a party can never learn any
information about the other party’s input other than its own output as long as it follows the protocol.
On the other hand, malicious security requires that a party can never learn any information about the
other party’s input even if it deviates from the protocol. In this paper, we consider only semi-honest
security.

Definition 2.3 (Semi-honest security). Let Π be a two-party protocol computing f = (f1, f2).
Let viewΠ

i (x, y) be the view of Pi (entire distribution that Pi can see) and outΠ(x, y) = (outΠ1 (x, y),
outΠ2 (x, y)) be the output of the protocol where x and y are inputs of P1 and P2, respectively. We say
Π has semi-honest security if there exist PPT simulators S1, S2, and the following holds for all inputs
x, y:

(viewΠ
1 (x, y), outΠ(x, y)) ≈c (S1(1

λ, x, f1(x, y)), f(x, y))

(viewΠ
2 (x, y), outΠ(x, y)) ≈c (S2(1

λ, y, f2(x, y)), f(x, y)).

The goal of this paper is to present an efficient semi-honestly secure Private Intersection-Weighted-
Sum protocol, which computes the following function.

Definition 2.4 (Private Intersection-Weighted-Sum). This is secure two-party computation where
inputs and outputs for two parties are defined as in Fig 3. Initially, P1 and P2 have a set of pairs of an
identifier and an integer vector {vi,xi}i∈[m1] and {wi,yi}i∈[m2], respectively, where vi, wi are identities
belonging to an identifier space I and xi ∈ Zn1 ,yi ∈ Zn2 are integer vectors. Both parties know the
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table size of the communication partner. The goal is to allow P1 to learn Private Intersection-Weighted-
Sum {

∑
(i,j):vi=wj

yj,ηxi}η∈[n2] and the cardinality of the intersection of both identifier sets {vi}i and
{wi}i while P2 to learn nothing. Our protocol additionally allows P2 to learn the cardinality of the
intersection, which is captured by the output for P2. Note that this leakage for P2 also occurs in the
PI-Sum protocols in [21].
Revealing the Intersection Size in PIW-Sum. Our protocol leaks the cardinality of the intersec-
tion for both parties. In applications such as Case 2 in Sec.1.1, the cardinality is beneficial to normalize
the weighted sum to compare each other. However, it becomes sometimes unnecessary leakage in appli-
cations such as Case 1 in Sec.1.1. Additionally, when P2 should not learn anything in the computation,
the leakage for P2 is not desirable.

– Input for both parties: m1,m2, n1, n2.
– Input for P1 : {vi,xi}i∈[m1] where xi = (xi,1, . . . , xi,n1).
– Input for P2 : {wi,yi}i∈[m2] where yi = (yi,1, . . . , yi,n2).
– Output for P1 : {

∑
(i,j):vi=wj

yj,ηxi}η∈[n2], |{vi}i ∩ {wj}j |.
– Output for P2 : |{vi}i ∩ {wj}j |.

Fig 3: Private Intersection-Weighted-Sum

3 Our PIW-Sum Protocol

We present our PIW-Sum protocol in Fig 4. As explained in Sec. 1.3, a building block of our protocol
can be seen as a variant φ of OPRF (Eq. (1.1)). However, we describe our protocol without the OPRF
abstraction and explicitly describe the entire protocol. This is mainly because some protocol message
not related to the OPRF protocol is sent in parallel with an OPRF message to reduce the number of
rounds, and thus the explicit description is more convenient. Note that c in Round 1, d, e, f in Round
2, h in Round 3 are the messages related the OPRF variant φ (the description of φ is also described
in Sec. 1.3).

In the setup, P1 and P2 chooses random elements (a1, a2) and b, respectively, which is used to
run the variant φ of OPRF. Additionally, P1 chooses a key pair of an AHE scheme. They also shuffle
their inputs since the order of the records might reveal information of their inputs. Let {(vi,xi)}i and
{(wi,yi)}i be P1 and P2’s input after the shuffle, respectively.

Round 1 to 3 are used to run φ as described in Sec. 1.3, where P1’s input is {vi}i, and P2’s input is
{wi}i. Additionally, P1 sends a set of pairs of PRF values and AHE ciphertexts of its input or 0 under
the key generated in the setup ((2) and (3) in round 3). In (1) of round 4, P2 makes the correspondence
between ciphertexts sent by P1 and its input yi by comparing the PRF values sent by P1 and those
obtained via the execution of φ. Then, in (2) of round 4, P2 homomorphically evaluates PIW-Sum
over the ciphertexts using the correspondence. That is, since the ciphertexts that correspond to the
identifiers out of the intersection are encryption of 0, P2 can compute the wighted sum obliviously to
whether each ciphertext belongs to the intersection. In the final round, P1 decrypts the ciphertexts and
obtains PIW-Sum. The intersection size for P1 can be obtained from the size of S that is computed in
round 3. On the other hand, P2 can obtain the intersection size by m2 − ((m1 +m3)−m1) where m1

and m2 are public, and m3 is obtained from the number of ciphertexts sent by P1 in round 3.

3.1 Security

The proposed protocol Π has semi-honest security. This can be stated by the following theorem.

9



– Inputs:
• Both parties: A cyclic group G of prime order p, its generator g, an identifier space I, a set {ui}i∈[m2]

such that ui 6∈ I, a hash function H : {0, 1}∗ → G modeled as a random oracle, and table-size
parameters m1,m2, n1, n2.

• P1: A set of pairs {(v′i,x′
i)}i∈[m1] where v′i ∈ I,x′

i = (x′
i,1, . . . , x

′
i,n1

) ∈ Zn1 .
• P2: A set of pairs {(w′

i,y
′
i)}i∈[m2] where w′

i ∈ I,y′
i = (y′

i,1, . . . , y
′
i,n2

) ∈ Zn2 .
– Setup:
• P1 chooses a1, a2 ← Zp and a key pair (pk, sk) ← AGen(1λ) of an additive homomorphic encryption

scheme.
• P2 chooses b← Zp.
• P1 and P2 choose random permutations π1 in [m1] and π2 in [m2], and set (vi,xi) = (v′π1(i)

,x′
π1(i)

)
for i ∈ [m1] and (wi,yi) = (w′

π2(i)
,y′

π2(i)
) for i ∈ [m2], respectively.

– Round 1:
1. P1 computes c = (c1, . . . , cm1) where ci = H(vi)

a1 and sends (pk, c) to P2.
– Round 2:

1. P2 chooses a random permutation π3 in [m1] and computes d = (d1, . . . , dm1) = (cbπ3(1)
, . . . , cbπ3(m1)

).
2. P2 computes e = (e1, . . . , em2), f = (f1, . . . , fm2) where ei = H(wi)

b, fi = H(ui)
b and sends (d, e, f)

to P1.
– Round 3:

1. P1 computes d
1/a1
j for all j ∈ [m1]. Let S = {i ∈ [m2] | ∀j ∈ [m1], ei 6= d

1/a1
j }. P1 computes

h = (h1, . . . , hm2) where hi = ea2
i if i 6∈ S and hi = fa2

i otherwise.
2. Let m3 = |S|. P1 chooses a random permutation π4 in [m1 + m3] and computes (k′

1, . . . , k
′
m1+m3

) =
(H(v1)

a2 , . . . , H(vm1)
a2 , {H(ui)

a2}i∈S) and (`′1, . . . , `
′
m1+m3

) ← (AEnc(pk,x1), . . . ,AEnc(pk,xm1),
AEnc(pk,0), . . . ,AEnc(pk,0)).

3. Let k = (k1, . . . , km1+m3) = (k′
π4(1)

, . . . , k′
π4(m1+m3)

), ` = (`1, . . . , `m1+m3) = (`′π4(1)
, . . . , `′π4(m1+m3)

).
P1 sends (h,k, `) to P2.

– Round 4:
1. P2 computes h

1/b
i for all i ∈ [m2] and sets ri = `j for all i ∈ [m2] where j ∈ [m1 + m3] is the index

such that h
1/b
i = kj .

2. P2 computes zj = ARef(pk,
∑

i∈[m2]
yi,jri) for all j ∈ [n2] and sends {zj}j∈[n2] to P1.

– Output:
• P1 outputs ADec(sk, zj) for all j ∈ [n2] and |S| while P2 outputs m2 − ((m1 +m3)−m1).

Fig 4: Our Private Intersection-Weighted-Sum Protocol

Theorem 3.1. Assume that H is a hash function modeled as a random oracle and the DDH assumption
holds in G, then there exist simulators S1, S2 in the random oracle model such that

(viewΠ
1 (x, y), outΠ(x, y)) ≈c (S1(1

λ, x, f1(x, y)), f(x, y))

(viewΠ
2 (x, y), outΠ(x, y)) ≈c (S2(1

λ, y, f2(x, y)), f(x, y))

where

cmn = (G,m1,m2, n1, n2), x = (cmn, {(vi,xi)}i∈[m1]), y = (cmn, {(wi,yi)}i∈[m2])

f1(x, y) = ({
∑

(i,j):vi=wj

yj,ηxi}η∈[n2], |{vi}i ∩ {wj}j |), f2(x, y) = |{vi}i ∩ {wj}j |.

Proof. It is not difficult to see that we always have outΠ(x, y) = f(x, y) with overwhelming probability
due to the correctness of the AHE scheme. Thus, we can prove the theorem directly from Lemmata 3.1
and 3.2. ut

Security against corrupt P1. We construct S1 as follows.

1. S1 chooses a random tape rt and simulates honest P1 on inputs (x; rt) to obtain pk and a1.
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2. Let m4 = m1−|{vi}i∩{wj}j |. For round 2, S1 chooses g1, . . . , gm2+m4
← G, f ← Gm2 and random

permutations ρ1 in [m1] and ρ2 in {1+m4, . . . ,m2+m4}. Then, it sets d = (ga1

ρ1(1)
, . . . , ga1

ρ1(m1)
), e =

(gρ2(1+m4), . . . , gρ2(m2+m4)).
3. For round 4, S1 computes zη ← AEnc(pk,

∑
(i,j):vi=wj

yj,ηxi) for all η ∈ [n2].
4. Finally, S1 outputs (x, rt,d, e, f , {zη}η).

Lemma 3.1. viewΠ
1 (x, y) ≈c S1(1

λ, x, f1(x, y)).

Proof. Consider the following multi-step hybrid argument.

Hyb0: The view viewΠ
1 (x, y) in a real execution of Π.

Hyb1: The same as Hyb0 except that, in round 2 of Π, S1 chooses fresh group elements g1, . . . , g2m2+m4

← G and replaces d, e and f with (ga1

ρ1(1)
, . . . , ga1

ρ1(m1)
), (gρ2(1+m4), . . . , gρ2(m2+m4)) and (g1+m2+m4

, . . . , g2m2+m4
) respectively, where ρ1 (resp. ρ2) is a random permutation in [m1] (resp. {1 +

m4, . . . ,m2 +m4}).
Hyb2: The same as Hyb1 except that S1 generates fresh ciphertexts AEnc(pk,

∑
(i,j):vi=wj

yj,ηxi) instead
of computing the intersection-weighted-sum in round 4.

Hyb3: The view S1(1
λ, x, f1(x, y)).

Now, we show that each neighboring pair of the hybrid distributions is computationally indistin-
guishable. We focus on indistinguishability between Hyb0 and Hyb1 below since it can be straightfor-
wardly observed that Hyb1 and Hyb2 are indistinguishable according to the refreshability of the AHE
scheme, and Hyb2 and Hyb3 are identical.

We show that Hyb0 ≈c Hyb1 under the DDH assumption as follows. The reduction algorithm taking
(g, gα, gβ, gδ = gαβ/gγ) sets b = α and programs the random oracle as

(
H(t1), . . . , H(tm2+m4

),H(u1)

, . . . , H(um2)
)
= gβ where ti is the i-th element of {vi}i ∪ {wj}j . We additionally defines U1, U2 ⊆

[m2 +m4] as the sets such that {ti}i∈U1 = {vi}i∈[m1] and {ti}i∈U2 = {wi}i∈[m2], respectively. It also
sets d = (ga1δσ1(1) , . . . , ga1δσ1(m1)), e = (gδσ2(1) , . . . , gδσ2(m2)), f = (gδ1+m2+m4 , . . . , gδ2m2+m4 ) where δi
is the i-th element of δ, σ1 : [m1] → U1, σ2 : [m2] → U2 are random bijective functions. Then, the
view of P1 in round 3 corresponds to Hyb0 if δ = αβ, and Hyb1 otherwise. If there exists a PPT
adversary identifying Hyb0 and Hyb1, it can distinguish the tuple (g, gα, gβ, gαβ) from (g, gα, gβ, gγ)
straightforwardly.

Consequently, by the DDH assumption, Hyb0 and Hyb1 are computationally indistinguishable, and
hence Hyb0 ≈c Hyb3. ut

Security against corrupt P2. We construct S2 as follows.

1. S2 chooses pk, sk ← AGen(1λ) and a random tape rt, and simulates honest P2 on inputs (y; rt) to
obtain b.

2. For round 1, S2 chooses c← Gm1 .
3. Let m3 = m2 − |{vi}i ∩ {wj}j |. For round 3, S2 chooses g1, . . . , gm1+m3

← G and a random per-
mutation ρ3 in [m1 +m3]. Then, S2 computes h = (gb1, . . . , g

b
m2

),k = (gρ3(1), . . . , gρ3(m1+m3)), ` =
(`1, . . . , `m1+m3

)← AEnc(pk,0)m1+m3 .
4. Finally, S2 outputs (y, rt, pk, c,h,k, `).

Lemma 3.2. viewΠ
2 (x, y) ≈c S2(1

λ, y, f2(x, y)).

Proof. Consider the following multi-step hybrid argument.

Hyb0: The view viewΠ
2 (x, y) in a real execution of Π.

Hyb1: The same as Hyb0 except that S2 sends a fresh element c← Gm1 instead of
(
H(v1)

a1 , . . . , H(vm1
)a1

)
to P2 in round 1.

Hyb2: The same as Hyb1 except that, in round 3, S2 chooses fresh elements g1, . . . , gm1+m3 ← G and
replaces h and k with (gbρ3(1)

, . . . , gbρ3(m2)
) and (gρ4(1), . . . , gρ4(m1+m3)) respectively, where ρ3 (resp.

ρ4) is a random permutation in [m2] (resp. [m1 +m3]).
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Protocol
Computation Cost Communication Cost

#Group exponentiation #AHE operations #Group elements #AHE ciphertexts
IKN+20 [21] 2m1 + 2m2 m1 +m2 −m3 + 1 m1 + 2m2 m1 + 1

Ours 4m1 + 4m2 +m3 m1 +m2 +m3 + 1 3m1 + 3m2 +m3 m1 +m3 + 1

Table 1: Theoretical costs of each protocol. We compare them with respect to the computation and
communication costs on the DDH-group and the AHE scheme. AHE operations consists of addition
of ciphertexts, encryption, and decryption. Note that we do not consider slot-encrypting optimization
in this comparison. The natural numbers m1,m2,m3 denote the number of identifiers for P1, that for
P2, and that for P2 out of the intersection, respectively. That is, m3 = 0 if P1’s identifier set includes
P2’s identifier set, and m3 = m2 if they are disjoint.

Input Size
m1 = m2

Our Protocol IKN+20 [21]

Time [ms] Comm. [MiB] Monetary [US Cents] Time [ms] Comm. [MiB] Monetary [US Cents]
212 1553.2 1.12 0.00918 804.2 0.576 0.00472
216 24929.4 16.5 0.136 12873.8 8.73 0.0717
220 405072.2 262 2.16 205560.8 139 1.14

Table 2: Measurements of computation time, network costs and monetary costs in US cents, in settings
where n1 = n2 = 1, m1 = m2 = the intersection size (= the size of {vi}i ∩ {wj}j). In other words, the
input size of P1 and P2 are equal, and both have same identifiers set (i.e. {vi}i = {wj}j).

Hyb3: The same as Hyb2 except that, in round 3, S2 replaces all elements of ` with fresh ciphertexts
of 0, i.e., AEnc(pk,0).

Hyb4: The view S2(1
λ, y, f2(x, y)).

We show that each pair of the above consecutive hybrid distributions is computationally indis-
tinguishable. The indistinguishability between Hyb0 and Hyb1 is straightforwardly obtained from the
DDH assumption. That is, the reduction algorithm taking (g, gα, gβ, gδ = gαβ/gγ) sets a1 = α and
programs the random oracle as

(
H(v1), . . . , H(vm1)

)
= gβ. It also sets c = gδ. Then, the view of P2 in

round 2 corresponds to Hyb0 if δ = αβ, and Hyb1 otherwise. If there is an adversary identifying Hyb0
and Hyb1, it can easily break the DDH assumption.

We can also obtain the indistinguishability between Hyb1 and Hyb2 from the DDH assumption as
follows. The reduction algorithm taking (g, gα, gβ, gδ = gαβ/gγ) sets a2 = α and programs the random
oracle as

(
H(v1), . . . , H(vm1

), {H(ui)}i∈S

)
= gβ (recall that S = {i ∈ [m2] | ∀j ∈ [m1], ei 6= d

1/a1

j }).
It also sets h = (gbδσ3(1) , . . . , gbδσ3(m2)) and k = (gbδρ3(1) , . . . , gbδρ3(m1+m3)) where δi is the i-th element
of δ, σ3 : [m2]→ [m1 +m3] is the injective function such that

σ3(i) =

{
j : wi = vj (i 6∈ S)

m1 + j : i = sj (i ∈ S)
,

(recall that sj is the j-th element of S), and ρ3 is a random permutation in [m1 +m3]. Then, the view
of P2 in round 4 corresponds to Hyb1 if δ = αβ, and Hyb2 otherwise.

The difference between Hyb2 and Hyb3 is computationally indistinguishable by the IND-CPA secu-
rity of the AHE scheme, and Hyb3 and Hyb4 is identical. ut

4 Implementation and Evaluation

In this section, we present the measurements for our implementation of our new protocol for Private
Intersection-Weighted-Sum.
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Input Size
(m1,m2)

Time
[ms]

Comm.
[MiB]

Monetary
[US Cents]

(210, 216) 16187.0 11.4 0.0935
(212, 216) 16602.2 11.6 0.0952
(214, 216) 18318.2 12.6 0.104
(216, 216) 24929.4 16.5 0.136
(216, 210) 12394.2 6.30 0.0527
(216, 212) 13009.8 9.22 0.0756
(216, 214) 15424.8 10.7 0.0879
(216, 216) 24929.4 16.5 0.136

Table 3: Measurements of computation time, network costs and monetary costs in US cents , in settings
where n1, n2 = 1 but m1 6= m2. The one’s set of identifiers is included to that of the another, so The
intersection size is equals to min{m1,m2}.

Input Size
m1 = m2

Time
[ms]

Comm.
[MiB]

Monetary
[US Cents]

212 1751.0 1.30 0.0106
216 28267.2 20.0 0.164
220 456435.8 319 2.62

Table 4: Measurements of computation time, network costs and monetary costs in US cents , in settings
where n1 = n2 = 1 and m1 = m2 but their identifiers sets are disjoint i.e. the intersection size is 0.

4.1 Implementation Details

We implement our protocol together with the DDH-based PI-Sum protocol in [21] (the IKN+20 pro-
tocol) for comparison using the following instantiation. For DDH-group G, we use ”curve25519” im-
plemented in libsodium [2], and for the additively homomorphic encryption scheme, we use the BFV
scheme implemented in SEAL [1]. Note that the BFV scheme is an ideal lattice-based fully homomorphic
encryption scheme, but we use multiplicative homomorphism only in the light slot-shifting operation
explained later. We use the BFV scheme with a 54-bit ciphertext modulus (q, called coeff_modulus in
SEAL), a 23-bit plaintext modulus (t, plain_modulus), and a polynomial of degree 2048 for the poly-
nomial modulus (N , poly_modulus). Note that (N, log q) = (2048, 54) is one of the default parameters
for 128-bit security in SEAL. The size of plaintext modulus does not affect the security level.

For a hash function H : {0, 1}∗ → G to the elliptic curve, we use the hash function implemented in
libsodium. For preparing the public strings {ui}i out of the identifier space, we use suffixes ”_real”

Input Size
n1 × n2

Time
[ms]

Comm.
[MiB]

Monetary
[US Cents]

1× 1 24929.4 16.5 0.136
4× 1 25109.6 19.5 0.160
16× 1 25631.8 31.6 0.253
1× 1 24929.4 16.5 0.136
1× 4 24984.2 16.6 0.137
1× 16 24994.8 17.2 0.141
1× 1 24929.4 16.5 0.136
4× 4 25165.8 19.6 0.160

16× 16 25740.8 32.3 0.260
Table 5: Measurements of computation time, network costs and monetary costs in US cents , in settings
where m1 = m2 = the intersection size = 216 but n1, n2 6= 1.
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and ”_dummy”. That is, each party can generate the public strings by setting ui = i_dummy without
interaction while adding suffix _real for all identifiers.

We use the slotting optimization for the AHE scheme to reduce the communication cost. In a
nutshell, we can encrypt many plaintexts to a singe ciphertext of the BFV scheme. This is possible
since a BFV plaintext is a polynomial in the ring Zt[x]/(x

N + 1) (N = 2048 for our implementation),
and bN/dc polynomials {pk}k=0,...,bN/dc−1 of degree d − 1 (consisting of d terms) can be represented
by a single BFV plaintext p =

∑bN/dc−1
k=0 xkdpk. This allows us to encrypt bN/dc plaintexts into a

single ciphertext. Thanks to the homomorphic property of the BFV scheme, we can shift the slots in
ciphertext. That is, we can obtain the ciphertext of x−kdp from the ciphertext of p by homomorphic
multiplication. Observe that the coefficients of x−kdp in degree-0 to d− 1 terms are the same as those
of pk. Thus, we can perform homomorphic addition over arbitrary plaintexts using the least significant
slot. More detailed explanation of the slotting optimization technique can be found in [21, Appendix
B].

4.2 Methods of Measurement

We run our implementation on a desktop computer with Intel Core i9-9900K CPU (3.60GHz × 8)
and 16 GiB RAM. Each measurement is performed nine times, and we report the average of five
measurements excluding two largest and smallest values to exclude outliers.

In our results, computation time includes communication time. However, the parties P1 and P2 are
implemented as parts of a single program, and their communication is implemented just as copying of
memories. Therefore, communication time in computation time is negligible.

We also estimate the monetary costs of the protocols using the cost of Google Cloud Platform
(GCP), where the network cost is 0.08 USD/GB, and the computational cost is 0.01 USD/hour. For
computational cost, we used the n1-standard cost4. For network cost, we use the cost of the cheapest
10+TB category of the Premium Tier pricing5, which corresponds to the communication cost between
the Internet and the cloud. Although computation powers of our computer and GCP are somewhat
different, the percentage of the monetary cost on the computation in the total monetary cost is less
that 10%, and this estimation would be valid.

4.3 Discussion of Measurements

We present the theoretical costs of our protocol and the IKN+20 protocol with respect to the DDH-
group and the AHE scheme Table 1. An important feature of our protocol is that the cost of our
protocol is maximized when the identifier sets of P1 and P2 are disjoint. This is in contrast to the
IKN+20 protocol, the cost of which is maximized when the intersection size is maximum.
Comparison with the IKN+20 protocol. Next, we discuss our measurements. In Table 2 we
compare our protocol with the baseline, namely DDH-based intersection-sum protocol [21]. We measure
the costs with respect to various input sizes when the identifier sets for both parties are equivalent.
Although our protocol provides weighted-intersection-sum, its costs are only about twice as much as
those of the baseline.
Benchmark under various input sizes. To see the scalability of our protocol, we run our Private
Intersection-Weighted-Sum protocol under various input sizes. Columns 2 to 4 in Table 2 show the
costs when m1 and m2 are equal. As expected from Table 1, both computation time and network costs
are approximately proportional to the input size m1. Table 3 shows the costs when m1 and m2 may
not be equal. Comparing the cases when (m1,m2) = (210, 216) and (m1,m2) = (216, 210), the former
is about 1.3 times as large as the latter in both time and communication. This is consistent with the
relationship between m1, m2 and the costs predicted from Table 1. This also shows that when the
4 https://cloud.google.com/compute/all-pricing
5 https://cloud.google.com/vpc/network-pricing
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input sizes of two parties are different, the party who has a larger input should take the role of P1 if
both parties are allowed to learn the weighted intersection sum.

Next, we measure the costs when the two identifier sets are disjoint, which is the worst case for our
protocol. Table 4 shows the costs. Compared to the costs in Table 2, the computation time is at most
1.14 times and the network cost is at most 1.22 times for all input sizes. Even in the worst case, our
protocol can run at a practical cost of 2.62 cents when the input sizes of the two parties are both 220.
Benchmark for cross tabulation computations. As mentioned in Sec. 1.1, one of the promising
applications of our Private Intersection-Weighted-Sum protocol is the cross-tabulation computation
between two parties. To see how the costs increase as the table size increases, we measure the costs for
varying n1 and n2. Table 5 shows the costs when the table size is n1 × n2. When n1 is fixed, we can
see that the costs do not change much as n2 increases. Compared to the communication cost for the
table size of 1× 1, that for 1× 16 is about 1.05 times. On the other hand, when n2 is fixed, the costs
significantly increase as n1 increases. Compared to the communication cost for 1× 1, that for 16× 1 is
about 1.92 times. In both cases, any cost is less than the total cost for computing 16 1×1-sized tables.

5 Conclusion

We proposed the new functionality of two-party computation called PIW-Sum and constructed an
efficient PIW-Sum protocol from a DDH group and an additive homomorphic encryption scheme.
PIW-Sum would have various real-world applications, and we demonstrated typical scenarios that we
can use it.

We implemented our protocol together with the most efficient PI-Sum protocol in [21] and evalu-
ated their performance. We showed that the computation, communication, and monetary costs of our
protocol is only 2 times greater than those of the PI-Sum protocol. The benchmark of our protocol
shows that it is sufficiently efficient for batch computation in business even when we use the tables
consisting of more than one million records.

For future works, the construction of maliciously secure PIW-Sum protocol is an interesting open
problem. A maliciously secure PI-Sum protocol was proposed in [26], but it seems that we need further
work to extend their technique to PIW-Sum. Another interesting question is how our protocol compares
to a PIW-Sum protocol based on general two-party computation techniques.
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