
Communication-Efficient Inner Product Private Join and
Compute with Cardinality

Koji Chida

Gunma University

Gunma, Japan

chida@gunma-u.ac.jp

Koki Hamada

NTT Social Informatics Laboratories

Tokyo, Japan

koki.hamada.rb@hco.ntt.co.jp

Atsunori Ichikawa

NTT Social Informatics Laboratories

Tokyo, Japan

atsunori.ichikawa.nf@hco.ntt.co.jp

Masanobu Kii

NTT Social Informatics Laboratories

Tokyo, Japan

masanobu.kii.gw@hco.ntt.co.jp

Junichi Tomida

NTT Social Informatics Laboratories

Tokyo, Japan

junichi.tomida.vw@hco.ntt.co.jp

ABSTRACT
Private join and compute (PJC) is a paradigm where two parties

owing their private database securely join their databases and com-

pute a function over the combined database. Inner product PJC,

introduced by Lepoint et al. (Asiacrypt’21), is a class of PJC that has

a wide range of applications such as secure analysis of advertising

campaigns. In this computation, two parties, each of which has

a set of identifier-value pairs, compute the inner product of the

values after the (inner) join of their databases with respect to the

identifiers. They proposed inner product PJC protocols that are

specialized for the unbalanced setting where the input sizes of both

parties are significantly different and not suitable for the balanced

setting where the sizes of two inputs are relatively close.

We propose an inner product PJC protocol that is much more

efficient than that by Lepoint et al. for balanced inputs in the

setting where both parties are allowed to learn the intersection

size additionally. Our protocol can be seen as an extension of the

private intersection-sum protocol based on the decisional Diffie-

Hellman assumption by Ion et al. (EuroS&P’20) and is especially

communication-efficient as the private intersection-sum protocol.

In the case where both input sizes are 2
16
, the communication cost

of our inner-product PJC protocol is 46× less than that of the inner

product PJC protocol by Lepoint et al.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
private set intersection, private intersection-sum, inner product,

private join and compute, two-party computation, secure computa-

tion

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Koji Chida, Koki Hamada, Atsunori Ichikawa, Masanobu Kii, and Junichi

Tomida. 2018. Communication-Efficient Inner Product Private Join and

Compute with Cardinality. In Woodstock ’18: ACM Symposium on Neural
Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Secure multi-party computation (MPC) is a technique that allows

parties to jointly compute a function value from their inputs without

revealing anything else about the inputs. Recent intensive studies

have drastically improved the efficiency of MPC techniques and

show that they can be used for many real-world applications. The

problem that we address in this paper is as follows. Suppose two

parties have their own database where each record has an identifier

such as telephone number, e-mail address, etc., and extra informa-

tion (“payload”). They want to make some analysis on the database

that is generated by the inner join of their databases with respect to

the identifiers, while both parties are unwilling to reveal any other

information about their database. Especially, we consider the case

where identifiers in the intersection are sensitive and need to be

hidden from the communication partner.

Private Set Intersection. The above problem is closely related to

Private Set Intersection (PSI) [8, 9, 11–15, 17, 20, 21, 24, 32–40]

and PSI-cardinality [3, 10, 17, 21, 23, 31, 41]. PSI is a multi-party

computation for obtaining the intersection of the sets owned by

multiple parties, while PSI-cardinality allows parties to compute just

the cardinality of the intersection of their sets. Especially, PSI has

many applications such as privacy-preserving location sharing [30],

testing of fully sequenced human genomes [4], botnet detection

[29], social networks [26], and online gaming [7], and has been

extensively studied. However, both functionalities involve only a

set of identifiers and cannot handle the payload associated with the

identifiers.

Computing on payloads in the intersection. Several works con-
sider secure two-party computation on the intersection of identifier

sets and its payloads, e.g., [3, 6, 18, 22, 25, 28, 35]. Although we can

compute any functions on the payloads in the intersection by using

circuit PSI [35], this significantly increases the communication cost

or the round complexity due to the use of generic two-party compu-

tation. Another promising approach is to construct protocols for a

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

specific but useful functionality, which often allows us to construct

more efficient protocols than those for generic functionalities.

A notable functionality in the latter approach is Private Intersection-

Sum with Cardinality (PI-Sum) [18, 22, 28], which is introduced and

deployed by Google [22]. In PI-Sum, one party has a set of pairs

of an identifier and an value {(𝑣𝑖 , 𝑥𝑖)} while the other party has

an identifier set {𝑤 𝑗 }, and the goal is to compute

∑
𝑖:𝑣𝑖=𝑤𝑗

𝑥𝑖 i.e.,

the sum of values 𝑥𝑖 within the intersection {𝑣𝑖 } ∩ {𝑤 𝑗 } of the two
identifier sets, together with the cardinality |{𝑣𝑖 } ∩ {𝑤 𝑗 }| of the
intersection. Hence, PI-Sum can be seen as computation after the

inner join of two databases owed by two parties where only one

party has a database with payloads.

Recently, a more generalized functionality called inner product

private join and compute (inner product PJC) was introduced by

[25]. In this computation, both parties have a set of pairs of an iden-

tifier and a value: (𝑉 ,𝑋) = {(𝑣𝑖 , 𝑥𝑖)} and (𝑊,𝑌) = {(𝑤 𝑗 , 𝑦 𝑗)}. Inner
product PJC allows one party (receiver) to learn

∑
(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑥𝑖𝑦 𝑗 ,

i.e., the inner product of 𝑋 and 𝑌 within the intersection of 𝑉 and

𝑊 1
. Inner product PJC is a quite useful functionality in secure

analysis of advertising campaigns as discussed later in Section 1.2.

An exposure notification protocol for COVID-19 is also suggested

for another application of inner product PJC [25]. We can easily

observe that PI-Sum is basically the special case of inner product

PJC where 𝑦 𝑗 = 1 for all 𝑖 .

The inner product PJC protocols by [25] are suitable for the

unbalanced setting where the database size of the receiver is much

smaller than that of the sender. This is because the communication

and computation costs of the receiver are either independent of or

logarithmic to the size of the sender’s input. On the other hand, their

protocols do not perform well in the balanced setting where the

input sizes of the sender and the receiver are relatively close. In fact,

both communication and computation costs of the inner product

PJC protocol for the online setting by [25] are larger than the circuit

PSI protocol by [35] that computes inner product with a circuit.

This naturally motivates us to explore a more communication and

round efficient inner product PJC protocol for balanced inputs.

1.1 Our Contributions
Our contributions in this work are two-fold. First, we construct a

communication-efficient 4-round inner product PJC protocol that

allows both parties to learn the cardinality of the intersection addi-

tionally. Although this additional leakage is a disadvantage if both

parties are unwilling to reveal it, we consider that it is rather bene-

ficial in typical cases. We discuss this in Section 1.2. Our protocol

is based on the decisional Diffie-Hellman (DDH) assumption and

additively homomorphic encryption (AHE) and is secure against

semi-honest adversaries.

While the most efficient PSI protocols are based on random obliv-

ious transfer (OT) [8, 40], it seems difficult to apply the technique

to PI-Sum and inner product PJC. In fact, the PI-Sum protocol based

on the classical DDH-based double masking technique in [22] is

more efficient than that based on random OT in [22]. This is be-

cause the random OT-based PI-Sum protocol needs a shuffle of

1
In contrast to PI-Sum by [22], the inner product PJC protocol by [25] does not reveal

the intersection size.

ciphertexts of the AHE scheme, which uses expensive fully ho-

momorphic operations of the underlying AHE scheme. Later, the

more computation-efficient PI-Sum protocol based on oblivious

switching was proposed by [18], but their technique cannot be

straightforwardly extended to inner product PJC.

Another approach for PI-Sum is circuit PSI [20], which is a tech-

nique to use general two-party computation (garbled circuits [42]

or the GMW protocol [19]) to compute any functions on the inter-

section and the related payloads. Garbled-circuit-based PSI proto-

cols could be more computationally efficient than the DDH-based

protocol, but the communication cost of the garbled-circuit-based

approach are much higher than that of the DDH-based protocol [22].

GMW-based PSI protocols can be more communication efficient

than garbled-circuit-based PSI protocols [5, 40], but this approach

significantly increases the round complexity.

As discussed in [22], communication efficiency is the first pri-

ority in business-to-business batch computation for huge data. In

a nutshell, increasing the computational resource such as CPU,

RAM is much easier than increasing the bandwidth of the Inter-

net connection of data centers. Another piece of evidence is that

when running protocols in a cloud such as Google Cloud Platform,

Amazon Web service, and Microsoft Azure, the monetary cost for

communication is often much more relevant than that for com-

putation. For instance, 1 GB of communication is the same price

as 8 hours of computation in Google Cloud Platform. Hence, our

protocol is suitable for such business-to-business computation in

the WAN setting where a high network latency exists.

The second contribution is the implementation and evaluation

of our protocol. We use an ideal lattice-based fully homomorphic

encryption scheme for an AHE scheme that allows slot encryption

[1]. This technique allows us to encrypt many values to a single

ciphertext while we can still perform homomorphic addition over

any encrypted values and significantly save the communication

cost in the protocol. In the case where both input sizes are 2
16
,

the communication cost of our inner-product PJC protocol is 28×
less than that of the circuit-PSI protocol with garbled circuit [35]

and 46× less than that of the inner product PJC protocol by [25].

The estimated monetary cost to run our protocol in a typical cloud

environment
2
is about 0.15 cents when both identifier sets are

equivalent and their size is 2
16
. It is 26× less than the monetary

cost of the circuit-PSI protocol with garbled circuit [35] and 44×
less than that of the inner product PJC protocol by [25].

1.2 Applications of Inner Product PJC
Inner product PJC can be applied for various situations where

two parties would like to perform joint analysis over the database

generated by the inner join of their databases. We give two typical

scenarios that we can solve by inner product PJC where the input

sizes of both parties can be naturally close. Note that inner product

PJC can be easily extended to computing the weighted sum of

vectors, that is, two parties compute

∑
(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑦 𝑗x𝑖 from their

inputs (𝑉 ,𝑋) = {(𝑣𝑖 , x𝑖)} and (𝑊,𝑌) = {(𝑤 𝑗 , 𝑦 𝑗)}.

Case 1. Weighted advertising conversion measurement. The first
case is depicted as Fig. 1. An ad supplier delivers an advertisement

2
We use the monetary cost of Google Cloud Platform for the estimation.

Communication-Efficient Inner Product Private Join and Compute with Cardinality Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 1: Weighted advertising conversion measurement.

Figure 2: Cross-tabulation for A/B testing.

on a campaign of a retail chain to encourage its users to visit retail

stores. Later the retail chain may analyze the effectiveness of the

advertisement. The retail chain is going to strengthen the line up of

products for people in their 20s and 30s and would like to multiply

the number of visits by some weight according to their age for the

measurement for analysis. In this situation, what the retail chain

needs to know is the weighted mean of the number of visits with

respect to the people who received the advertisement. Additionally,

we assume that only the ad supplier knows the information on

the age of users. We can deal with this situation via inner product

PJC just by setting the retail chain’s input as a set of pairs of an

identifier 𝑣𝑖 and a number 𝑥𝑖 of visits to the stores while the ad

supplier’s input as a set of pairs of an identifier 𝑤 𝑗 and a weight

𝑦 𝑗 according to their age. Then, the output is 𝑧1 =
∑
(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑥𝑖𝑦 𝑗

and 𝑧2 = |{𝑣𝑖 } ∩ {𝑤 𝑗 }|, and one can compute 𝑧1/𝑧2 as desired.
In this application, it is crucial to compute the cardinality in

addition to the inner product within the intersection since the

inner product itself has no relation to the effectiveness of the ad-

vertisement unless one divides it by the intersection size. Hence,

the property of our protocol that it reveals the intersection size is a

benefit for this situation.

Case 2. Cross tabulation for A/B testing. The second case is de-

picted as Fig. 2. An ad supplier delivers two types of advertisements

on an online store. The ad supplier wants to know which ad was

more effective for the sales and the difference in their effectiveness

by age to accumulate knowledge. More precisely, it wants to com-

pute the cross-tabulation for the total purchase amounts by age

and received ad type (the right table of Fig. 2). It knows users’ age

and which ad was delivered to each user, but only the company

that runs the online store knows the purchase amount of each user.

When both parties are unwilling to reveal their databases except the

cross-tabulation, they can compute it using a secure inner product

PJC protocol as follows.

The ad supplier sets its input as a set of pairs of an identifier 𝑣𝑖

and a one-hot vector x𝑖 ∈ {0, 1}2𝑑 where 𝑑 is the number of choices

in age, and 𝑥𝑖,𝑘 = 1 if and only if the age and the delivered ad of user

𝑣𝑖 corresponds to the 𝑘-th cell of the cross-tabulation. On the other

hand, the company sets its input as a set of pairs of an identifier

𝑤 𝑗 and a purchase amount 𝑦 𝑗 . Then, the output
∑
(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑥𝑖,𝑘𝑦 𝑗

for 𝑘 ∈ [2𝑑] corresponds to the value in the 𝑘-th cell of the cross

tabulation.

Note that in this case, the cardinality of the intersection might

be an unnecessary leakage since it is not used to compute the cross-

tabulation. In such an application, however, we consider that the

intersection size should be rather revealed to validate the correct-

ness of the analysis.

More information on real-world application. We notice that Ion

et al. gave quite a detailed analysis on deploying a PI-Sum protocol

for business applications [22]. Since most of their analysis applies

to our inner product PJC case, [22] is an excellent reference for

readers interested in more practical discussions.

2 TECHNICAL OVERVIEW
DDH-based PI-Sum protocol. Let us briefly recall the DDH-based

PI-Sum protocol by [22], which is our starting point. Their protocol

can be seen as construction from a shuffled oblivious pseudorandom

function (shuffled OPRF) protocol and an AHE scheme. Shuffled

OPRF is a two-party protocol for the following functionality:

Shuffled OPRF : ((𝜋, 𝑘), {𝑧𝑖 }𝑖∈[𝑚]) → (⊥, {𝑓 (𝑘, 𝑧𝜋 (𝑖))}𝑖∈[𝑚])

where 𝜋 is a permutation, 𝑘 is a PRF key, and 𝑓 is a PRF. That

is, the sender’s input is a permutation 𝜋 in [𝑚] and a PRF key 𝑘

while the receiver’s input is𝑚 strings {𝑧𝑖 }, and the sender learns

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

nothing while the receiver obtains the PRF values {𝑓 (𝑘, 𝑧𝜋 (𝑖))} in
the permuted order by 𝜋 as outputs.

We can construct a PI-Sum protocol from shuffled OPRF as fol-

lows. On inputs {(𝑣𝑖 , 𝑥𝑖)}𝑖∈[𝑚1] for the receiver of the PI-Sum pro-

tocol, say Alice, and {𝑤 𝑗 } 𝑗 ∈[𝑚2] for the sender, say Bob, they run a

shuffled OPRF protocol with Alice/Bob’s input being (𝜋, 𝑘)/{𝑤 𝑗 } 𝑗
where 𝜋 and 𝑘 is randomly chosen by Alice. At the same time,

Alice generates an AHE instance to encrypt {𝑥𝑖 }𝑖∈[𝑚1] and sends

{Enc(𝑥𝑖), 𝑓 (𝑘, 𝑣𝑖)} to Bob. Since Bob obtains {𝑓 (𝑘,𝑤𝜋 (𝑗))} 𝑗 ∈[𝑚2]
from the shuffled OPRF protocol, Bob can homomorphically com-

pute Enc(∑𝑖:𝑣𝑖=𝑤𝑗
𝑥𝑖) by adding Enc(𝑥𝑖) for all 𝑖 such that 𝑓 (𝑘, 𝑣𝑖) ∈

{𝑓 (𝑘,𝑤𝜋 (𝑗))}. Finally, Alice obtains
∑
𝑖:𝑣𝑖=𝑤𝑗

𝑥𝑖 by decrypting the

AHE ciphertext.

The shuffled OPRF protocol is obtained as follows. Let G be a

DDH group of order 𝑝 , 𝑔 be its generator, and 𝐻 : {0, 1}∗ → G be a

hash function modeled as a random oracle. The receiver chooses a

random Z𝑝 element 𝑏. In round 1, on input {𝑧𝑖 }𝑖∈[𝑚] , the receiver
sends {𝐻 (𝑧𝑖)𝑏 } to the sender. In round 2, on input (𝜋, 𝑘) and the

message from the receiver, the sender sends {𝐻 (𝑧𝜋 (𝑖))𝑏𝑘 } to the

receiver. Then, the receiver can learn the permuted PRF values

{𝐻 (𝑧𝜋 (𝑖))𝑘 } where the PRF is defined as 𝑓 (𝑘, 𝑧) = 𝐻 (𝑧)𝑘 .

Difficulty of efficient DDH-based inner product PJC. Our protocol
uses the same ingredient as the DDH-based PI-Sum protocol by [22],

i.e., a DDH group and an AHE scheme. The essential requirement

to achieve an efficient inner product PJC protocol is the non-use of

expensive shuffles of AHE ciphertexts, which significantly increases

the computation cost [22, Table 5 and Figure 7]. Our main technical

contribution is the construction of a DDH-based inner product PJC

protocol that does not use shuffles of AHE ciphertexts.

One may wonder why the non-use of ciphertext shuffles is a

challenge in constructing an inner product PJC protocol based on

DDH-group and AHE while the DDH-based PI-Sum protocol does

not use them. In inner product PJC, a straightforward approach is

that one party, say Alice, encrypts its input {𝑥𝑖 } to {Enc(𝑥𝑖)} by
AHE and the other party, say Bob, homomorphically computes the

inner product {Enc(𝑥𝑖𝑦 𝑗)} (𝑖, 𝑗) :𝑣𝑖=𝑤𝑗
in the intersection. However,

Bob should be oblivious to its values {𝑦 𝑗 } in the homomorphic

computation as otherwise it learns whether the corresponding

identifier belongs to the intersection or not. Note that this problem

does not occur in PI-Sum since the latter party does not need to

know the correspondence between 𝑥𝑖 and 𝑦 𝑗 such that 𝑣𝑖 = 𝑤 𝑗 .

This problem can be naively solved as follows. First, the two

parties jointly generate a fully homomorphic encryption (FHE) in-

stance so that ciphertexts can be decrypted in only a co-operated

manner. Then, both parties encrypt their values {𝑥𝑖 } and {𝑦 𝑗 } to
{Enc(𝑥𝑖)} and {Enc(𝑦 𝑗)}, respectively, by the FHE scheme and

join them to obtain {Enc(𝑥𝑖), Enc(𝑦 𝑗)} (𝑖, 𝑗) :𝑣𝑖=𝑤𝑗
in a similar man-

ner to the DDH-based shuffled OPRF protocol [3]. Finally, one

party homomorphically computes 𝑧 = Enc(∑(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗
𝑥𝑖𝑦 𝑗) and

jointly decrypts it to obtain the desired output. The point is that

when the parties join the encrypted values, i.e., when they compute

{Enc(𝑥𝑖), Enc(𝑦 𝑗)} (𝑖, 𝑗) :𝑣𝑖=𝑤𝑗
, this pairs of ciphertexts must be shuf-

fled as otherwise the party that obtains {Enc(𝑥𝑖), Enc(𝑦 𝑗)} (𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

learns which identifiers of its input is in the intersection. Thus, we

need to contrive a new protocol to remove the use of expensive

shuffle and homomorphic multiplication over the ciphertext.

Outer join instead of inner join. Conceptually, the approach dis-

cussed so far can be seen as the inner join (or equijoin) of two

databases where one or both databases are encrypted. However,

this approach would require shuffles of ciphertexts and an FHE

scheme, which we would like to avoid using. Our solution to this

problem is to use the (right) outer join of two databases instead of

the inner join. The goal of this approach is to allow Bob to have the

outer joined database where all Bob’s plain values are on the right

side, each of which is accompanied by the corresponding encrypted

value from Alice or the encryption of 0 on the left side. More for-

mally, on inputs {𝑣𝑖 , 𝑥𝑖 }𝑖∈[𝑚1] for Alice and {𝑤 𝑗 , 𝑦 𝑗 } 𝑗 ∈[𝑚2] for Bob,
Bob obtains the outer joined database {Enc(𝑞 𝑗), 𝑦 𝑗 } 𝑗 ∈[𝑚2] where
𝑞 𝑗 = 𝑥𝑖 if there exists 𝑖 such that 𝑣𝑖 = 𝑤 𝑗 and 𝑞 𝑗 = 0 otherwise.

Then, he can homomorphically compute the inner product in the

intersection Enc(∑(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗
𝑦 𝑗𝑥𝑖) by summing up 𝑦 𝑗Enc(𝑞 𝑗) for

all 𝑗 ∈ [𝑚2]. The point is that Bob can perform this computation

without knowing whether each𝑤 𝑗 is in the intersection or not.

New variant of OPRF. The next challenge is how to compute the

outer joined database. We solve this by introducing a new variant of

oblivious pseudorandom function (OPRF). Let {𝑢𝑖 }𝑖∈[𝑚2] be public
strings out of the identifier space. The functionality of our new

variant of OPRF is defined as

𝜙 : ((𝑘, {𝑣𝑖 }𝑖∈[𝑚1]), {𝑤 𝑗 } 𝑗 ∈[𝑚2]) → (𝑆, {𝑓 (𝑘, 𝑧 𝑗)} 𝑗 ∈[𝑚2]) (1)

where 𝑘 is a PRF key, 𝑆 = { 𝑗 ∈ [𝑚2] | ∀𝑖, 𝑣𝑖 ≠ 𝑤 𝑗 }, 𝑓 is a PRF,

𝑧 𝑗 = 𝑤 𝑗 if 𝑗 ∉ 𝑆 , and 𝑧 𝑗 = 𝑢 𝑗 if 𝑗 ∈ 𝑆 . The differences between the

normal (multi-point) OPRF
3
and the variant 𝜙 are 1) the sender

has input strings {𝑣𝑖 }𝑖 in addition to the PRF key 𝑘 ; 2) the receiver

learns the PRF value 𝑓 (𝑘,𝑢𝑖) of public string 𝑢𝑖 instead of 𝑓 (𝑘,𝑤𝑖)
if 𝑤𝑖 is not included in the sender’s input strings; 3) the sender

additionally learns the locations 𝑆 of the receiver’s input strings

that do not match any of the sender’s input strings.

If we have a secure protocol for 𝜙 , the two parties can compute

the outer joined database as follows. Alice first generates a random

PRF key 𝑘 and an AHE instance. Alice and Bob run the protocol

for 𝜙 on inputs ((𝑘, {𝑣𝑖 }𝑖∈[𝑚1]), {𝑤 𝑗 } 𝑗 ∈[𝑚2]) where Alice learns

𝑆 while Bob learns {𝑓 (𝑘, 𝑧 𝑗)} 𝑗 ∈[𝑚2] . Then, Alice sends {𝑓 (𝑘, 𝑡𝑖),
Enc(𝑞𝑖)}𝑖∈[𝑚1+|𝑆 |] to Bob in a shuffled order, where 𝑡𝑖 = 𝑣𝑖 for 𝑖 ∈
[𝑚1], 𝑡𝑖+𝑚1

= 𝑢𝑠𝑖 for 𝑖 ∈ [|𝑆 |] (𝑠𝑖 is the 𝑖-th element of 𝑆), 𝑞𝑖 = 𝑥𝑖 for

𝑖 ∈ [𝑚1], and 𝑞𝑖+𝑚1
= 0 for 𝑖 ∈ [|𝑆 |]. Finally, Bob combines Enc(𝑞𝑖)

and 𝑦 𝑗 such that 𝑓 (𝑘, 𝑡𝑖) = 𝑓 (𝑘, 𝑧 𝑗) for all (𝑖, 𝑗) ∈ [𝑚1 + |𝑆 |] × [𝑚2].
Observe that for 𝑗 ∈ [𝑚2]\𝑆 such that 𝑣𝑖 = 𝑤 𝑗 for some 𝑖 ∈ [𝑚1],
we have 𝑡𝑖 = 𝑣𝑖 , 𝑧 𝑗 = 𝑤 𝑗 , 𝑞𝑖 = 𝑥𝑖 . On the other hand, for 𝑗 ∈ 𝑆 , we
have 𝑧 𝑗 = 𝑢 𝑗 , 𝑢 𝑗 ∈ {𝑡𝑖+𝑚1

}𝑖∈[|𝑆 |] , and 𝑞𝑖+𝑚1
= 0 for all 𝑖 ∈ [|𝑆 |].

Hence, Bob successfully obtains the outer joined database.

How to instantiate the new variant of OPRF. We can construct a

three-round protocol for 𝜙 from a DDH group as follows. In the

setup, the sender chooses two random Z𝑝 elements 𝑎 while the re-

ceiver chooses a random Z𝑝 element𝑏. On input (𝑘, {𝑣𝑖 }𝑖∈[𝑚1]), the
sender sends {𝐻 (𝑣𝑖)𝑎}𝑖∈[𝑚1] to the receiver. On input {𝑤 𝑗 } 𝑗 ∈[𝑚2]
and themessage from the sender, the receiver computes {𝐻 (𝑣𝑖)𝑎𝑏 }𝑖∈[𝑚1] ,

3
We assume the multi-point OPRF functionality as (𝑘, {𝑧𝑖 }𝑖) → (⊥, {𝑓 (𝑘, 𝑧𝑖) }𝑖)
here, where 𝑓 is a PRF and 𝑘 is a PRF key.

Communication-Efficient Inner Product Private Join and Compute with Cardinality Woodstock ’18, June 03–05, 2018, Woodstock, NY

{𝐻 (𝑤 𝑗)𝑏 } 𝑗 ∈[𝑚2] , {𝐻 (𝑢 𝑗)𝑏 } 𝑗 ∈[𝑚2] , shuffles {𝐻 (𝑣𝑖)𝑎𝑏 }, and sends

them back to the sender. Then, the sender computes {𝐻 (𝑣𝑖)𝑏 }𝑖∈[𝑚1]
by {𝐻 (𝑣𝑖)𝑎𝑏 }𝑖 to the power of 1/𝑎, sets 𝑟 𝑗 = 𝐻 (𝑤 𝑗)𝑏𝑘 if∃𝑖, 𝐻 (𝑣𝑖)𝑏 =

𝐻 (𝑤 𝑗)𝑏 and 𝑟 𝑗 = 𝐻 (𝑢 𝑗)𝑏𝑘 otherwise for all 𝑗 ∈ [𝑚2], and sends

{𝑟 𝑗 } 𝑗 ∈[𝑚2] to the receiver. Finally, the receiver outputs {𝑟
1/𝑏
𝑗
}. The

sender learns 𝑆 = { 𝑗 ∈ [𝑚2] | ∀𝑖, 𝐻 (𝑣𝑖)𝑏 ≠ 𝐻 (𝑤 𝑗)𝑏 }. In this proto-

col, the PRF is defined as 𝑓 (𝑘, 𝑧) = 𝐻 (𝑧)𝑘 .

3 PRELIMINARIES
3.1 Notations
For a prime 𝑝 , Z𝑝 denotes Z/𝑝Z. For 𝑛 ∈ N, [𝑛] denotes the set
{1, . . . , 𝑛}. For a set 𝑆 , 𝑠 ← 𝑆 means that 𝑠 is uniformly chosen

from 𝑆 . A function 𝑓 : N→ R is called negligible if 𝑓 (_) = _−𝜔 (1) .
For families of distributions 𝑋 := {𝑋_}_∈N and 𝑌 := {𝑌_}_∈N, we
say 𝑋 and 𝑌 are computationally indistinguishable, denoted by

𝑋 ≈𝑐 𝑌 , if for all probabilistic polynomial-time (PPT) adversaries

A, there exists a negligible function negl and we have | Pr[1 ←
A(1_, 𝑋_)] − Pr[1← A(1_, 𝑌_)] | ≤ negl(_).

3.2 Basic Tools and Assumption
Definition 3.1 (DDH assumption). Let G_ be a family of cyclic

groups indexed by _ ∈ N, the order and generator of which are 𝑝_
and𝑔_ , respectively.We omit _ from the parameters in what follows.

We say that the DDH assumption holds in G if (𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛼𝛽) ≈𝑐
(𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾) where 𝛼, 𝛽,𝛾 ← Z𝑝 . It is well known that if the DDH

assumption holds in G, we have (𝑔,𝑔𝛼 , 𝑔𝜷 , 𝑔𝛼𝜷) ≈𝑐 (𝑔,𝑔𝛼 , 𝑔𝜷 , 𝑔𝜸)
where 𝛼 ← Z𝑝 and 𝜷,𝜸 ← Z𝑛𝑝 for all 𝑛 ∈ N.

Definition 3.2 (Additively homomorphic encryption). An addi-

tively homomorphic (AHE) encryption scheme is a public key en-

cryption scheme that has additive homomorphism. It consists of

four algorithms:

AGen(1_) It takes a security parameter 1
_
and outputs a public

key and a secret key (pk, sk). The public key specifies a

plaintext spaceM and a ciphertext space C that are additive

abelian groups.

AEnc(pk,𝑚) It takes pk a plaintext 𝑚 ∈ M and outputs a

ciphertext ct ∈ C for𝑚.

ARef (pk, ct) It takes pk, ct and outputs a ciphertext ct′ ∈ C.
ADec(sk, ct) It takes sk and ct and outputs a decryption value

𝑑 .

Refreshability. The scheme is refreshable if for all𝑛, _ ∈ N,𝑚1, . . . ,

𝑚𝑛 ∈ M and valid pk, the two distributions are statistically close:{ct𝑖 }𝑖 ,ARef (pk,
∑︁
𝑖∈[𝑛]

ct𝑖)
 ,

{ct𝑖 }𝑖 ,AEnc(pk,
∑︁
𝑖∈[𝑛]

𝑚𝑖)

where ct𝑖 ← AEnc(pk,𝑚𝑖).
Correctness. The scheme is correct if there exists a negligible

function negl, and the following holds for all 𝑛, _ ∈ N,𝑚1, . . . ,𝑚𝑛 ∈
M:

Pr

ADec(sk, ct) =
∑︁
𝑖∈[𝑛]

𝑚𝑖

������ pk, sk← AGen(1_)
ct𝑖 ← AEnc(pk,𝑚𝑖)
ct =

∑
𝑖∈[𝑛] ct𝑖

 ≥ 1 − negl(_) .

Security. We say the scheme is IND-CPA secure if there exists

a negligible function negl, and the following holds for all stateful

PPT adversaries A and _ ∈ N:��������Pr
𝛽 ← A(ct)

��������
pk, sk← AGen(1_)
𝛽 ← {0, 1}
𝑚0,𝑚1 ← A(1_, pk)
ct← AEnc(pk,𝑚𝛽)

 −
1

2

�������� ≤ negl(_).

Vector encryption. A vector m ∈ M𝑛
can be encrypted by just

element-wise encryption. We denote this by AEnc(pk,m). It is not
hard to see that additive homomorphism similarly holds as addition

of vectors. Note that this is a different notion from slot encryption

that we explain in Section 5.1.

3.3 Inner Product Private Join and Compute
with Cardinality

Inner product private join and compute with cardinality (inner

product PJC) is a special case of two-party computation. Two-

party computation between parties P1 and P2 is a protocol where
they jointly compute some function 𝑓 = (𝑓1, 𝑓2) over their in-
puts 𝑥 and 𝑦. In the input phase, P1 and P2 prepare their inputs
𝑥 and 𝑦, respectively. Then, they interactively compute 𝑓 (𝑥,𝑦) =
(𝑓1 (𝑥,𝑦), 𝑓2 (𝑥,𝑦)) where P1 wants to obtain 𝑓1 (𝑥,𝑦) while P2 wants
to obtain 𝑓2 (𝑥,𝑦) as output. The primary requirement for secure
two-party computation is that P1 (resp. P2) leans only 𝑓1 (𝑥,𝑦) (resp.
𝑓2 (𝑥,𝑦)) and nothing else about the input of the communication

partner after the computation.

Basically, there are two types of security model for two-party

computation, namely, semi-honest security and malicious security.

Semi-honest security guarantees that a party can never learn any

information about the other party’s input other than its own output

as long as it follows the protocol. On the other hand, malicious

security requires that a party can never learn any information

about the other party’s input even if it deviates from the protocol.

In this paper, we consider only semi-honest security.

Definition 3.3 (Semi-honest security). Let Π be a two-party proto-

col computing 𝑓 = (𝑓1, 𝑓2). Let viewΠ
𝑖
(𝑥,𝑦) be the view of P𝑖 (entire

distribution that P𝑖 can see) and outΠ (𝑥,𝑦) = (outΠ
1
(𝑥,𝑦), outΠ

2
(𝑥,

𝑦)) be the output of the protocol where 𝑥 and 𝑦 are inputs of P1
and P2, respectively. We say Π has semi-honest security if there

exist PPT simulators S1,S2, and the following holds for all inputs

𝑥,𝑦:

(viewΠ
1
(𝑥,𝑦), outΠ (𝑥,𝑦)) ≈𝑐 (S1 (1_, 𝑥, 𝑓1 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))

(viewΠ
2
(𝑥,𝑦), outΠ (𝑥,𝑦)) ≈𝑐 (S2 (1_, 𝑦, 𝑓2 (𝑥,𝑦)), 𝑓 (𝑥,𝑦)).

Definition 3.4 (Inner Product PJC). Inner Product PJC4
is secure

two-party computation where inputs and outputs for two parties

are defined as in Fig. 3. Initially, P1 and P2 have a set of pairs of an
identifier and an integer vector {𝑣𝑖 , 𝑥𝑖 }𝑖∈[𝑚1] and {𝑤 𝑗 , 𝑦 𝑗 } 𝑗 ∈[𝑚2] ,
respectively, where 𝑣𝑖 ,𝑤 𝑗 are identities belonging to an identifier

space I and 𝑥𝑖 , 𝑦 𝑗 ∈ Z are integers. Both parties know the table

size of the communication partner. The goal is to allow P1 to learn

4
In what follows we use the term “inner product PJC” for the functionality that reveals

the intersection size unless otherwise stated, while the term is used for the functionality

that computes only inner product in [25].

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

the inner product

∑
(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑥𝑖𝑦 𝑗 with in the intersection and the

cardinality of the intersection |{𝑣𝑖 }𝑖 ∩ {𝑤 𝑗 } 𝑗 | while P2 learns only
the cardinality of the intersection |{𝑣𝑖 }𝑖 ∩ {𝑤 𝑗 } 𝑗 |.

• Input for both parties:𝑚1,𝑚2.

• Input for P1 : {𝑣𝑖 , 𝑥𝑖 }𝑖∈[𝑚1] .
• Input for P2 : {𝑤𝑗 , 𝑦 𝑗 } 𝑗∈[𝑚2] .
• Output for P1 :

∑
(𝑖,𝑗) :𝑣𝑖=𝑤𝑗

𝑥𝑖𝑦 𝑗 , | {𝑣𝑖 }𝑖 ∩ {𝑤𝑗 } 𝑗 |.
• Output for P2 : | {𝑣𝑖 }𝑖 ∩ {𝑤𝑗 } 𝑗 |.

Figure 3: The functionality of inner product PJC

Inner product PJC can be easily extended to the more general

case where the values 𝑥𝑖 and 𝑦 𝑗 are changed to integer vectors, and

the output is the matrix product with in the intersection. We call

the functionality matrix product PJC. The case 2 in Section 1.2 uses

the matrix product PJC functionality where each payload of P1 is
an integer vector x𝑖 while each payload of P2 is an integer 𝑦 𝑗 .

Definition 3.5 (Matrix Product PJC). Matrix Product PJC is a gen-

eralization of inner product PJC where inputs and outputs for two

parties are defined as in Fig. 4. This functionality is the same as

inner product PJC except that the payloads in the inputs of P1 and
P2 are vectors x𝑖 and y𝑗 , respectively, and the first output of P1 is
{∑(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑥𝑖,𝑘𝑦 𝑗,ℓ }𝑘∈[𝑛1],ℓ∈[𝑛2] . In other words, let (𝐼1, . . . , 𝐼𝑑)
be the intersection of {𝑣𝑖 } and {𝑤 𝑗 }, and the first output of P1 can
be equivalently defined as Y⊤X, where the 𝑘-th rows of X and Y
are x𝑖 and y𝑗 such that 𝑣𝑖 = 𝑤 𝑗 = 𝐼𝑘 , respectively.

• Input for both parties:𝑚1,𝑚2, 𝑛1, 𝑛2.

• Input for P1 : {𝑣𝑖 , x𝑖 }𝑖∈[𝑚1] where x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛1
) .

• Input for P2 : {𝑤𝑗 , y𝑗 } 𝑗∈[𝑚2] where y𝑗 = (𝑦 𝑗,1, . . . , 𝑦 𝑗,𝑛2
) .

• Output for P1 : {∑(𝑖,𝑗) :𝑣𝑖=𝑤𝑗
𝑥𝑖,𝑘𝑦 𝑗,ℓ }𝑘∈[𝑛1],ℓ∈[𝑛2] , | {𝑣𝑖 }𝑖 ∩

{𝑤𝑗 } 𝑗 |.
• Output for P2 : | {𝑣𝑖 }𝑖 ∩ {𝑤𝑗 } 𝑗 |.

Figure 4: The functionality of matrix product PJC

4 OUR MATRIX PRODUCT PJC PROTOCOL
In this section, we present our matrix product PJC protocol. Note

that our inner product PJC protocol is easily obtained from our

matrix product PJC protocol by setting 𝑛1 = 𝑛2 = 1. Our matrix

product PJC protocol is shown in Fig. 5.

As explained in Section 2, a building block of our protocol can

be seen as a variant 𝜙 of OPRF. However, we describe our protocol

without the OPRF abstraction and explicitly describe the entire

protocol. This is mainly because some protocol message not related

to the OPRF protocol is sent in parallel with an OPRF message to

reduce the number of rounds, and thus the explicit description is

more convenient. Note that c in Round 1, d, e, f in Round 2, h in

Round 3 are the messages for the OPRF variant 𝜙 :

𝜙 : ((𝑘, {𝑣𝑖 }𝑖∈[𝑚1]), {𝑤 𝑗 } 𝑗 ∈[𝑚2]) → (𝑆, {𝑓 (𝑘, 𝑧𝑖)}𝑖∈[𝑚2])
In the setup, P1 and P2 chooses random elements (𝑎1, 𝑎2) and 𝑏,

respectively, which is used to run the variant 𝜙 of OPRF, where 𝑎2

corresponds to the PRF key 𝑘 . Additionally, P1 chooses a key pair

of an AHE scheme. They also shuffle their inputs since the order of

the records might reveal information of their inputs. Let {(𝑣𝑖 , x𝑖)}𝑖
and {(𝑤𝑖 , y𝑖)}𝑖 be P1 and P2’s input after the shuffle, respectively.

Round 1 to 3 are used to run 𝜙 as described in Section 2, where

P1’s input is (𝑎2, {𝑣𝑖 }𝑖), and P2’s input is {𝑤 𝑗 } 𝑗 . In steps (2) and (3)

of Round 3, P1 additionally sends a set of pairs of PRF values and

AHE ciphertexts of its payload or 0. The pairs of the PRF values

and the AHE ciphertexts are used to make the (right) outer join of

the two databases in round 4.

In step (1) of round 4, P2 makes the correspondence between

ciphertexts sent by P1 and its input y𝑖 for the outer join by compar-

ing the PRF values sent by P1 and those obtained via the execution

of 𝜙 . Then, in step (2) of round 4, P2 homomorphically evaluates the

matrix product over the ciphertexts. In the final round, P1 decrypts
the ciphertexts and obtains the matrix product. The intersection

size for P1 can be obtained from the size of 𝑆 that is computed in

round 3. On the other hand, P2 can obtain the intersection size

by𝑚2 − ((𝑚1 +𝑚3) −𝑚1) where𝑚1 and𝑚2 are public, and𝑚3 is

obtained from the number of ciphertexts sent by P1 in round 3.

4.1 Security
The proposed protocol Π has semi-honest security. This can be

stated by the following theorem.

Theorem 4.1. Assume that 𝐻 is a hash function modeled as a
random oracle, the DDH assumption holds in G, and the AHE scheme
is IND-CPA secure, then there exist simulators S1,S2 in the random
oracle model such that

(viewΠ
1
(𝑥,𝑦), outΠ (𝑥,𝑦)) ≈𝑐 (S1 (1_, 𝑥, 𝑓1 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))

(viewΠ
2
(𝑥,𝑦), outΠ (𝑥,𝑦)) ≈𝑐 (S2 (1_, 𝑦, 𝑓2 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))

where

cmn = (G,𝑚1,𝑚2, 𝑛1, 𝑛2),
𝑥 = (cmn, {(𝑣𝑖 , x𝑖)}𝑖∈[𝑚1]), 𝑦 = (cmn, {(𝑤𝑖 , y𝑖)}𝑖∈[𝑚2])

𝑓1 (𝑥,𝑦) = ({
∑︁

(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑦 𝑗,[x𝑖 }[∈[𝑛2] , |{𝑣𝑖 }𝑖 ∩ {𝑤 𝑗 } 𝑗 |)

𝑓2 (𝑥,𝑦) = |{𝑣𝑖 }𝑖 ∩ {𝑤 𝑗 } 𝑗 |.

Proof. It is not difficult to see that we always have outΠ (𝑥,𝑦) =
𝑓 (𝑥,𝑦) with overwhelming probability due to the correctness of

the AHE scheme. Thus, we can prove the theorem directly from

Lemmas 4.2 and 4.3. □

Security against corrupt P1. We construct S1 as follows.
(1) S1 chooses a random tape rt and simulates honest P1 on

inputs (𝑥 ; rt) to obtain pk and 𝑎1.

(2) Let 𝑚4 = 𝑚1 − |{𝑣𝑖 }𝑖 ∩ {𝑤 𝑗 } 𝑗 |. For round 2, S1 chooses

𝑔1, . . . , 𝑔𝑚2+𝑚4
← G, f ← G𝑚2

and random permutations

𝜌1 in [𝑚1] and 𝜌2 in {1 +𝑚4, . . . ,𝑚2 +𝑚4}. Then, it sets
d = (𝑔𝑎1

𝜌1 (1) , . . . , 𝑔
𝑎1
𝜌1 (𝑚1)), e = (𝑔𝜌2 (1+𝑚4) , . . . , 𝑔𝜌2 (𝑚2+𝑚4)).

(3) For round 4,S1 computes 𝑧[← AEnc(pk,∑(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗
𝑦 𝑗,[x𝑖)

for all [∈ [𝑛2] (note that S1 takes
∑
(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗

𝑦 𝑗,[x𝑖 as in-
put).

(4) Finally, S1 outputs (𝑥, rt, d, e, f, {𝑧[}[).

Communication-Efficient Inner Product Private Join and Compute with Cardinality Woodstock ’18, June 03–05, 2018, Woodstock, NY

• Inputs:

– Both parties: A cyclic group G of prime order 𝑝 , its generator 𝑔, an identifier space I, a set {𝑢𝑖 }𝑖∈[𝑚2] such that 𝑢𝑖 ∉ I, a hash function

𝐻 : {0, 1}∗ → G modeled as a random oracle, and table-size parameters𝑚1,𝑚2, 𝑛1, 𝑛2.

– P1: A set of pairs {(𝑣′
𝑖
, x′

𝑖
) }𝑖∈[𝑚1] where 𝑣

′
𝑖
∈ I, x′

𝑖
= (𝑥′

𝑖,1
, . . . , 𝑥′

𝑖,𝑛1

) ∈ Z𝑛1 .

– P2: A set of pairs {(𝑤′
𝑖
, y′

𝑖
) }𝑖∈[𝑚2] where 𝑤

′
𝑖
∈ I, y′

𝑖
= (𝑦′

𝑖,1
, . . . , 𝑦′

𝑖,𝑛2

) ∈ Z𝑛2 .

• Setup:

– P1 chooses 𝑎1, 𝑎2 ← Z𝑝 and a key pair (pk, sk) ← AGen(1_) of an additive homomorphic encryption scheme.

– P2 chooses 𝑏 ← Z𝑝 .
– P1 and P2 choose random permutations 𝜋1 in [𝑚1] and 𝜋2 in [𝑚2], and set (𝑣𝑖 , x𝑖) = (𝑣′𝜋1 (𝑖) , x

′
𝜋1 (𝑖)
) for 𝑖 ∈ [𝑚1] and (𝑤𝑖 , y𝑖) = (𝑤′𝜋2 (𝑖) , y

′
𝜋2 (𝑖)
)

for 𝑖 ∈ [𝑚2], respectively.
• Round 1:

(1) P1 computes c = (𝑐1, . . . , 𝑐𝑚1
) where 𝑐𝑖 = 𝐻 (𝑣𝑖)𝑎1 and sends (pk, c) to P2.

• Round 2:

(1) P2 chooses a random permutation 𝜋3 in [𝑚1] and computes d = (𝑑1, . . . , 𝑑𝑚1
) = (𝑐𝑏

𝜋3 (1)
, . . . , 𝑐𝑏

𝜋3 (𝑚1)
) .

(2) P2 computes e = (𝑒1, . . . , 𝑒𝑚2
), f = (𝑓1, . . . , 𝑓𝑚2

) where 𝑒𝑖 = 𝐻 (𝑤𝑖)𝑏 , 𝑓𝑖 = 𝐻 (𝑢𝑖)𝑏 and sends (d, e, f) to P1.
• Round 3:

(1) P1 computes 𝑑
1/𝑎1
𝑗

for all 𝑗 ∈ [𝑚1]. Let 𝑆 = {𝑖 ∈ [𝑚2] | ∀𝑗 ∈ [𝑚1], 𝑒𝑖 ≠ 𝑑
1/𝑎1
𝑗
}. P1 computes h = (ℎ1, . . . , ℎ𝑚2

) where ℎ𝑖 = 𝑒
𝑎2
𝑖

if 𝑖 ∉ 𝑆 and

ℎ𝑖 = 𝑓
𝑎2
𝑖

otherwise.

(2) Let𝑚3 = |𝑆 |. P1 chooses a random permutation 𝜋4 in [𝑚1 +𝑚3] and computes (𝑘′
1
, . . . , 𝑘′𝑚1+𝑚3

) = (𝐻 (𝑣1)𝑎2 , . . . , 𝐻 (𝑣𝑚1
)𝑎2 , {𝐻 (𝑢𝑖)𝑎2 }𝑖∈𝑆) and

(ℓ′
1
, . . . , ℓ′𝑚1+𝑚3

) ← (AEnc(pk, x1), . . . ,AEnc(pk, x𝑚1
),AEnc(pk, 0), . . . ,AEnc(pk, 0)) .

(3) Let k = (𝑘1, . . . , 𝑘𝑚1+𝑚3
) = (𝑘′

𝜋4 (1)
, . . . , 𝑘′

𝜋4 (𝑚1+𝑚3)
), ℓ = (ℓ1, . . . , ℓ𝑚1+𝑚3

) = (ℓ′
𝜋4 (1)

, . . . , ℓ′
𝜋4 (𝑚1+𝑚3)

) . P1 sends (h, k, ℓ) to P2.
• Round 4:

(1) P2 computes ℎ
1/𝑏
𝑖

for all 𝑖 ∈ [𝑚2] and sets 𝑟𝑖 = ℓ𝑗 for all 𝑖 ∈ [𝑚2] where 𝑗 ∈ [𝑚1 +𝑚3] is the index such that ℎ
1/𝑏
𝑖

= 𝑘 𝑗 .

(2) P2 computes 𝑧 𝑗 = ARef (pk,∑𝑖∈[𝑚2] 𝑦𝑖,𝑗𝑟𝑖) for all 𝑗 ∈ [𝑛2] and sends {𝑧 𝑗 } 𝑗∈[𝑛2] to P1.
• Output:

– P1 outputs ADec(sk, 𝑧 𝑗) for all 𝑗 ∈ [𝑛2] and𝑚2 −𝑚3 while P2 outputs𝑚2 − ((𝑚1 +𝑚3) −𝑚1) .

Figure 5: Our matrix product PJC Protocol

Lemma 4.2. viewΠ
1
(𝑥,𝑦) ≈𝑐 S1 (1_, 𝑥, 𝑓1 (𝑥,𝑦)).

Proof. Consider the following multi-step hybrid argument.

Hyb
0
The view viewΠ

1
(𝑥,𝑦) in a real execution of Π.

Hyb
1
The same asHyb

0
except that, in round 2 ofΠ,S1 chooses

fresh group elements 𝑔1, . . . , 𝑔2𝑚2+𝑚4
← G and replaces d, e

and f with (𝑔𝑎1
𝜌1 (1) , . . . , 𝑔

𝑎1
𝜌1 (𝑚1)), (𝑔𝜌2 (1+𝑚4) , . . . , 𝑔𝜌2 (𝑚2+𝑚4))

and (𝑔1+𝑚2+𝑚4
, . . . , 𝑔2𝑚2+𝑚4

) respectively, where 𝜌1 (resp.

𝜌2) is a random permutation in [𝑚1] (resp. {1+𝑚4, . . . ,𝑚2 +
𝑚4}).

Hyb
2
The same as Hyb

1
except that S1 generates fresh cipher-

texts AEnc(pk,∑(𝑖, 𝑗) :𝑣𝑖=𝑤𝑗
𝑦 𝑗,[x𝑖) instead of computing the

matrix produxt in round 4.

Hyb
3
The view S1 (1_, 𝑥, 𝑓1 (𝑥,𝑦)).

Now, we show that each neighboring pair of the hybrid dis-

tributions is computationally indistinguishable. We focus on in-

distinguishability between Hyb
0
and Hyb

1
below since it can be

straightforwardly observed that Hyb
1
and Hyb

2
are indistinguish-

able according to the refreshability of the AHE scheme, and Hyb
2

and Hyb
3
are identical.

We show that Hyb
0
≈𝑐 Hyb

1
under the DDH assumption as fol-

lows. The reduction algorithm taking (𝑔,𝑔𝛼 , 𝑔𝜷 , 𝑔𝜹 = 𝑔𝛼𝜷/𝑔𝜸) sets
𝑏 = 𝛼 and programs the random oracle as

(
𝐻 (𝑡1), . . . , 𝐻 (𝑡𝑚2+𝑚4

),
𝐻 (𝑢1), . . . , 𝐻 (𝑢𝑚2

)
)
= 𝑔𝜷 where 𝑡𝑖 is the 𝑖-th element of {𝑣𝑖 }𝑖 ∪

{𝑤 𝑗 } 𝑗 . We additionally define 𝑈1,𝑈2 ⊆ [𝑚2 + 𝑚4] as the sets

such that {𝑡𝑖 }𝑖∈𝑈1
= {𝑣𝑖 }𝑖∈[𝑚1] and {𝑡𝑖 }𝑖∈𝑈2

= {𝑤𝑖 }𝑖∈[𝑚2] , re-

spectively. It also sets d = (𝑔𝑎1𝛿𝜎1 (1) , . . . , 𝑔𝑎1𝛿𝜎1 (𝑚1
)), e = (𝑔𝛿𝜎2 (1)

, . . . , 𝑔𝛿𝜎2 (𝑚2
)), f = (𝑔𝛿1+𝑚2

+𝑚
4 , . . . , 𝑔𝛿2𝑚2

+𝑚
4) where 𝛿𝑖 is the 𝑖-th

element of 𝜹 , 𝜎1 : [𝑚1] → 𝑈1, 𝜎2 : [𝑚2] → 𝑈2 are random bijective

functions. Then, the view of P1 in round 3 corresponds to Hyb
0
if

𝜹 = 𝛼𝜷 , and Hyb
1
otherwise. If there exists a PPT adversary iden-

tifying Hyb
0
and Hyb

1
, it can distinguish the tuple (𝑔,𝑔𝛼 , 𝑔𝜷 , 𝑔𝛼𝜷)

from (𝑔,𝑔𝛼 , 𝑔𝜷 , 𝑔𝜸) straightforwardly.
Consequently, by the DDH assumption,Hyb

0
andHyb

1
are com-

putationally indistinguishable, and hence Hyb
0
≈𝑐 Hyb

3
. □

Security against corrupt P2. We construct S2 as follows.
(1) S2 chooses pk, sk ← AGen(1_) and a random tape rt, and

simulates honest P2 on inputs (𝑦; rt) to obtain 𝑏.

(2) For round 1, S2 chooses c← G𝑚1
.

(3) Let 𝑚3 = 𝑚2 − |{𝑣𝑖 }𝑖 ∩ {𝑤 𝑗 } 𝑗 |. For round 3, S2 chooses

𝑔1, . . . , 𝑔𝑚1+𝑚3
← G and a random permutation 𝜌3 in [𝑚1 +

𝑚3]. Then, S2 computes h = (𝑔𝑏
1
, . . . , 𝑔𝑏𝑚2

), k = (𝑔𝜌3 (1) , . . . ,
𝑔𝜌3 (𝑚1+𝑚3)), ℓ = (ℓ1, . . . , ℓ𝑚1+𝑚3

) ← AEnc(pk, 0)𝑚1+𝑚3
.

(4) Finally, S2 outputs (𝑦, rt, pk, c, h, k, ℓ).

Lemma 4.3. viewΠ
2
(𝑥,𝑦) ≈𝑐 S2 (1_, 𝑦, 𝑓2 (𝑥,𝑦)).

Proof. Consider the following multi-step hybrid argument.

Hyb
0
The view viewΠ

2
(𝑥,𝑦) in a real execution of Π.

Hyb
1
The same as Hyb

0
except that S2 sends a fresh element

c← G𝑚1
instead of

(
𝐻 (𝑣1)𝑎1 , . . . , 𝐻 (𝑣𝑚1

)𝑎1
)
to P2 in round

1.

Hyb
2
The same as Hyb

1
except that, in round 3, S2 chooses

fresh elements 𝑔1, . . . , 𝑔𝑚1+𝑚3
← G and replaces h and

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

k with (𝑔𝑏
𝜌3 (1) , . . . , 𝑔

𝑏
𝜌3 (𝑚2)) and (𝑔𝜌4 (1) , . . . , 𝑔𝜌4 (𝑚1+𝑚3)) re-

spectively, where 𝜌3 (resp. 𝜌4) is a random permutation in

[𝑚2] (resp. [𝑚1 +𝑚3]).
Hyb

3
The same as Hyb

2
except that, in round 3, S2 replaces all

elements of ℓ with fresh ciphertexts of 0, i.e., AEnc(pk, 0).
Hyb

4
The view S2 (1_, 𝑦, 𝑓2 (𝑥,𝑦)).

We show that each pair of the above consecutive hybrid distribu-

tions is computationally indistinguishable. The indistinguishability

between Hyb
0
and Hyb

1
is straightforwardly obtained from the

DDH assumption. That is, the reduction algorithm taking (𝑔,𝑔𝛼 , 𝑔𝜷 ,
𝑔𝜹 = 𝑔𝛼𝜷/𝑔𝜸) sets 𝑎1 = 𝛼 and programs the random oracle as(
𝐻 (𝑣1), . . . , 𝐻 (𝑣𝑚1

)
)
= 𝑔𝜷 . It also sets c = 𝑔𝜹 . Then, the view of P2

in round 2 corresponds to Hyb
0
if 𝜹 = 𝛼𝜷 , and Hyb

1
otherwise.

If there is an adversary identifying Hyb
0
and Hyb

1
, it can easily

break the DDH assumption.

We can also obtain the indistinguishability between Hyb
1
and

Hyb
2
from the DDH assumption as follows. The reduction algo-

rithm taking (𝑔,𝑔𝛼 , 𝑔𝜷 , 𝑔𝜹 = 𝑔𝛼𝜷/𝑔𝜸) sets 𝑎2 = 𝛼 and programs

the random oracle as

(
𝐻 (𝑣1), . . . , 𝐻 (𝑣𝑚1

), {𝐻 (𝑢𝑖)}𝑖∈𝑆
)
= 𝑔𝜷 (re-

call that 𝑆 = {𝑖 ∈ [𝑚2] | ∀𝑗 ∈ [𝑚1], 𝑒𝑖 ≠ 𝑑
1/𝑎1
𝑗
}). It also sets

h = (𝑔𝑏𝛿𝜎3 (1) , . . . , 𝑔𝑏𝛿𝜎3 (𝑚2
)) and k = (𝑔𝑏𝛿𝜌3 (1) , . . . , 𝑔𝑏𝛿𝜌3 (𝑚1

+𝑚
3
))

where 𝛿𝑖 is the 𝑖-th element of 𝜹 , 𝜎3 : [𝑚2] → [𝑚1 +𝑚3] is the
injective function such that

𝜎3 (𝑖) =
{
𝑗 : 𝑤𝑖 = 𝑣 𝑗 (𝑖 ∉ 𝑆)
𝑚1 + 𝑗 : 𝑖 = 𝑠 𝑗 (𝑖 ∈ 𝑆)

,

(recall that 𝑠 𝑗 is the 𝑗-th element of 𝑆), and 𝜌3 is a random permu-

tation in [𝑚1 +𝑚3]. Then, the view of P2 in round 4 corresponds

to Hyb
1
if 𝜹 = 𝛼𝜷 , and Hyb

2
otherwise.

The difference between Hyb
2
and Hyb

3
is computationally in-

distinguishable by the IND-CPA security of the AHE scheme, and

Hyb
3
and Hyb

4
is identical. □

5 IMPLEMENTATION AND EVALUATION
In this section, we present the measurements for our implemen-

tation of our matrix product PJC protocol and the comparison to

previous works.

5.1 Implementation Details
We implement our protocol together with the DDH-based PI-Sum

protocol in [22] for comparison using the following instantiation.

For DDH-groupG, we use "curve25519" implemented in libsodium
[2], and for the additively homomorphic encryption scheme, we

use the BFV scheme implemented in SEAL [1]. Note that the BFV
scheme is an ideal lattice-based fully homomorphic encryption

scheme, but we use multiplicative homomorphism only in the light

slot-shifting operation explained later. We use the BFV scheme with

a 54-bit ciphertext modulus (𝑞, called coeff_modulus in SEAL), a
23-bit plaintext modulus (𝑡 , plain_modulus), and a polynomial of

degree 2048 for the polynomial modulus (𝑁 , poly_modulus). Note
that (𝑁, log𝑞) = (2048, 54) is one of the default parameters for

128-bit security in SEAL. The size of the plaintext modulus does not

affect the security level.

For a hash function 𝐻 : {0, 1}∗ → G to the elliptic curve, we

use the hash function implemented in libsodium. For preparing

the public strings {𝑢𝑖 }𝑖 out of the identifier space, we use suffixes

"_real" and "_dummy". That is, each party can generate the public

strings by setting 𝑢𝑖 = 𝑖_dummy without interaction while adding

suffix _real for all identifiers.

We use the slotting optimization for the AHE scheme to reduce

communication cost. In a nutshell, we can encrypt many plaintexts

to a single ciphertext of the BFV scheme. This is possible since a BFV

plaintext is a polynomial in the ring Z𝑡 [𝑥]/(𝑥𝑁 + 1) (𝑁 = 2048 for

our implementation), and ⌊𝑁 /𝑑⌋ polynomials {𝑝𝑘 }𝑘=0,..., ⌊𝑁 /𝑑 ⌋−1
of degree 𝑑 − 1 (consisting of 𝑑 terms) can be represented by a sin-

gle BFV plaintext 𝑝 =
∑ ⌊𝑁 /𝑑 ⌋−1
𝑘=0

𝑥𝑘𝑑𝑝𝑘 . This allows us to encrypt

⌊𝑁 /𝑑⌋ plaintexts into a single ciphertext. Thanks to the homomor-

phic property of the BFV scheme, we can shift the slots in the

ciphertext. That is, we can obtain the ciphertext of 𝑥−𝑘𝑑𝑝 from

the ciphertext of 𝑝 by homomorphic multiplication. Observe that

the coefficients of 𝑥−𝑘𝑑𝑝 in degree-0 to 𝑑 − 1 terms are the same

as those of 𝑝𝑘 . Thus, we can perform homomorphic addition over

arbitrary plaintexts using the least significant slot. A more detailed

explanation of the slotting optimization technique can be found in

[22, Appendix B].

5.2 Methods of Measurement
We run our implementation on a desktop computer with Intel Core

i9-9900K CPU (3.60GHz × 8) and 16 GiB RAM. Each measurement

is performed nine times, and we report the average of five mea-

surements excluding the two largest and smallest values to exclude

outliers.

In our results, computation time includes communication time.

However, the parties 𝑃1 and 𝑃2 are implemented as parts of a single

program, and their communication is executed just as copying of

memories. Therefore, communication time in computation time is

negligible.

We also estimate the monetary costs of the protocols using the

cost of Google Cloud Platform (GCP), where the network cost is 0.08

USD/GB, and the computational cost is 0.01 USD/hour. For compu-

tational cost, we used the n1-standard cost
5
. For network cost, we

use the cost of the cheapest 10+TB category of the Premium Tier

pricing
6
, which corresponds to the communication cost between

the Internet and the cloud. Although the computation powers of

our computer and GCP are somewhat different, the percentage of

the monetary cost on the computation in the total monetary cost is

less than 10%, and this estimation would be valid.

5.3 Discussion of Measurements
Theoretical cost and comparison with the PI-Sum protocol. First, we

present the theoretical costs of our protocol and the DDH-based PI-

Sum protocol by [22] with respect to the DDH-group and the AHE

scheme in Table 1. The comparison shows that both communication

and computation costs of our inner product PJC protocol are about

2×more than those of the PI-Sum protocol, while inner product PJC

computes a more general functionality than PI-Sum. An important

feature of our protocol is that the cost of our protocol is maximized

when the identifier sets of P1 and P2 are disjoint. This is in contrast

5
https://cloud.google.com/compute/all-pricing

6
https://cloud.google.com/vpc/network-pricing

https://cloud.google.com/compute/all-pricing
https://cloud.google.com/vpc/network-pricing

Communication-Efficient Inner Product Private Join and Compute with Cardinality Woodstock ’18, June 03–05, 2018, Woodstock, NY

Protocol
Computation Cost Communication Cost

#Group exponentiation #AHE operations #Group elements #AHE ciphertexts

PI-Sum [22] 2𝑚1 + 2𝑚2 𝑚1 +𝑚2 −𝑚3 + 1 𝑚1 + 2𝑚2 𝑚1 + 1
Ours 4𝑚1 + 4𝑚2 +𝑚3 𝑚1 +𝑚2 +𝑚3 + 1 3𝑚1 + 3𝑚2 +𝑚3 𝑚1 +𝑚3 + 1

Table 1: Theoretical costs of our protocol and the DDH-based PI-Sum protocol by [22]. We compare them with respect to
the computation and communication costs of the DDH-group and the AHE scheme. AHE operations consist of addition
of ciphertexts, encryption, and decryption. Note that we do not consider slot-encrypting optimization in this comparison.
The natural numbers𝑚1,𝑚2,𝑚3 denote the number of identifiers for P1, that for P2, and that for P2 out of the intersection,
respectively. That is,𝑚3 = 0 if P1’s identifier set includes P2’s identifier set, and𝑚3 =𝑚2 if they are disjoint.

Input Size Group Operations AHE Operations Others Total

𝑚1 =𝑚2 Comm. [MB] Time [sec.] Comm. [MB] Time [sec.] Time [sec.] Comm. [MB] Time [sec.]

2
12

1.0 1.52 0.1 0.049 0.051 1.1 1.62

2
16

16.1 24.32 1.1 0.82 0.78 17.2 25.92

2
20

258 396.0 17 13.6 14.8 275 424.4

Table 2: Measurements of computation time and network costs of our protocol for various input sizes and those with respect
to component operations, namely, DDH-group and AHE operations and others. Others include operations such as shuffling
elements and comparison of group elements. In these measurements, we use the setting where the inputs of both parties are
the same, 𝑛1 = 𝑛2 = 1, and all the records of P1 match all the records of P2.

Input Size Our Protocol Inner Product PJC [25]† Circuit PSI [35]† PI-Sum [22]‡

𝑚1 𝑚2

Comm. Time Cost Comm. Time Cost Comm. Time Cost Comm. Time Cost

[MB] [sec.] [US cent] [MB] [sec.] [US cent] [MB] [sec.] [US cent] [MB] [sec.] [US cent]

2
16

2
8

9.2 11.80 0.08 27 172.3 0.26 5 3.02 0.04 5.4 6.05 0.04

2
12

9.7 12.63 0.08 120 139.3 1.00 30 3.81 0.24 5.6 6.23 0.05

2
16

17.2 25.92 0.14 801 131.1 6.44 472 8.52 3.78 9.2 12.4 0.08

2
20

2
8

146 191.6 1.22 29 3026 1.07 51 45.6 0.42 86.1 93.6 0.71

2
12

146 192.4 1.22 213 2134 2.30 76 46.3 0.62 86.2 93.7 0.72

2
16

154 205.4 1.29 1821 2228 15.2 522 51.1 4.19 89.8 99.8 0.75

Table 3: Measurements of computation time and network costs, estimated monetary costs in US cent of our protocol, and
comparison with other works that can compute the inner product PJC functionality. In this comparison we use the setting
where 𝑛1 = 𝑛2 = 1 (i.e. the inner product PJC case) and the set for P2 is included in the set for P1.
† The measurements for inner product PJC and circuit PSI are taken from [25], which are obtained by a machine with a single
core of Intel(R) Xeon(R) CPU E5-2696 v3 @ 2.30GHz.
‡ PI-Sum is a special case of inner product PJC and cannot compute the inner product PJC functionality. Since our protocol is
an extension of the PI-Sum protocol by [22], we report it for reference.

to the PI-Sum protocol, the cost of which is maximized when the

intersection size is maximum.

Measurement of our protocol. We show the communication and

computation costs of our protocol for various input sizes and those

with respect to each component operation in Table 2. It shows

that most of the cost in our protocol is taken by group operations.

Specifically, 93% of the total cost is used for group operations in

both communication and computation costs.

Comparison with other inner product PJC protocols. In Table 3,

we compare our protocol with other protocols that can compute

the inner product functionality with constant rounds [25, 35]. The

inner product PJC protocol by [25] is the only direct construction

of the inner product PJC functionality, which does not use a generic

two-party protocol inside. They also provide the measurements

of the circuit-based PSI protocol by [35] that computes the inner

product functionality via circuit evaluation, and we include them

for our comparison. Note that recent papers on improved circuit

PSI protocols such as [40] provide only the measurements with

the GMW protocol, the round complexity of which depends on the

input sizes, and thus we exclude them from comparison.

The inner product PJC protocol by [25] is specialized for the

unbalanced setting and has an excellent performance when the

input size of one party is significantly larger than that of the other

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

Input Size Parameters Our Protocol

𝑚1 𝑚2 𝑚3 𝑛1 𝑛2 Comm. [MB] Time [sec.] Cost [US cent]

2
16

2
16

0

1 1 17.2 24.92
†

0.14

1 16 18.0 24.99 0.15

16 1 33.1 25.63 0.27

16 16 33.9 25.74 0.28

2
16

1 1 20.9 28.27 0.17

Table 4:Measurements of computation time, network costs, andmonetary costs in US cent of our protocol for various parameters,
where both input sizes are 216. Recall that𝑚3 is the number of the records for P2 out of the intersection, and 𝑛1 and 𝑛2 are the
vector lengths of payloads for P1 and P2 in matrix product PJC, respectively. Thus, the first four rows are the measurements in
the setting where all the identifiers for P1 match all the identifiers for P2, while the last row shows the measurements in the
case where the identifier sets of both parties are disjoint.
† The measurements in this table is performed separately from those in Tables 2 and 3 and the time is a bit different from the
time for the same condition in Tables 2 and 3.

party. On the other hand, their protocol is not suitable if the in-

put sizes of both parties are relatively close. As shown in Table 3,

our protocol outperforms the protocol by [25] in most cases. In

the case where both input sizes are 2
16
, our protocol is 46× more

communication-efficient and 5× more computation-efficient than

the protocol by [25].

The circuit PSI protocol by [35] is more efficient than inner

product PJC protocol by [25] in most cases, even though it uses

generic two-party computation for label comparison and computing

inner product. While the circuit PSI protocol outperforms our inner

product PJC protocol with respect to computation cost in all the

cases, our protocol is much more communication-efficient than

their protocol in the balanced setting. For the case where both

input sizes are 2
16
, the communication cost of ours is 28× less than

that of the circuit PSI protocol.

We also estimate the monetary costs of each protocol using

Google Cloud Platform pricing. As well as communication cost, our

protocol outperforms the other protocols with respect to monetary

cost in the balanced setting. Concretely, the cost of our protocol

is 26× less than that of the circuit-PSI protocol, and 44× less than

that of the inner product PJC protocol by [25] in the case where

both input sizes are 2
16
.

Measurement for various parameters. Table 4 shows measure-

ments of our protocol for various parameters. As mentioned in

Section 1.2, one of the promising applications of inner product (ma-

trix product) PJC is the cross-tabulation computation between two

parties. To see how the costs increase as the table size increases,

we measure the costs for varying 𝑛1 and 𝑛2 and report them in the

second to the fourth rows. When 𝑛1 is fixed, we can see that the

costs do not change much as 𝑛2 increases. Compared to the commu-

nication cost for the table size of 1 × 1, that for 1 × 16 is about 1.05
times. On the other hand, when 𝑛2 is fixed, the costs significantly

increase as 𝑛1 increases. Compared to the communication cost for

1× 1, that for 16× 1 is about 1.92 times. Importantly, all the costs in

all the cases are much less than the total cost for running the inner

product PJC protocol 16 times.

We also measure the costs when the two identifier sets are dis-

joint, which is the worst case for our protocol. We show the costs in

the last row. Compared to the costs in the case where both identifier

sets are equivalent (the first row), the computation time is at most

1.14 times and the network cost is at most 1.22 times for all input

sizes.

6 CONCLUSION
We proposed the new inner product (and matrix product) pri-

vate join and compute protocol from a DDH group and an ad-

ditive homomorphic encryption scheme. Our protocol is especially

communication-efficient and outperforms previous protocols in the

balanced setting if both parties are allowed to learn the intersection

size additionally.

We implemented our protocol and evaluated its performance. In

the case where both input sizes are 2
16
, the communication cost of

our inner-product PJC protocol is 28× less than that of the circuit-

PSI protocol with garbled circuit [35] and 46× less than that of the

inner product PJC protocol by [35]. The estimated monetary cost

to run our protocol in Google Cloud Platform is about 0.15 cents

when both identifier sets are equivalent and their size is 2
16
. It is

26× less than the monetary cost of the circuit-PSI protocol with

garbled circuit [35] and 44× less than that of the inner product PJC

protocol by [35].

For future works, the construction of maliciously secure inner

product PJC protocol is an interesting open problem. A maliciously

secure PI-Sum protocol was proposed in [28], but it seems that we

need further work to extend their technique to inner product PJC.

Another interesting question is the construction of more computa-

tion efficient inner product PJC, because there is a significant gap

of computation efficiency between our inner product PJC protocol

and the state-of-the-art PSI protocols such as [40].

REFERENCES
[1] Microsoft SEAL, https://github.com/Microsoft/SEAL

[2] The sodium crypto library (libsodium), https://doc.libsodium.org

[3] Agrawal, R., Evfimievski, A.V., Srikant, R.: Information sharing across private

databases. In: Halevy, A.Y., Ives, Z.G., Doan, A. (eds.) ACM SIGMOD 2003. pp.

86–97. ACM (2003), https://doi.org/10.1145/872757.872771

[4] Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GAT-

TACA: efficient and secure testing of fully-sequenced human genomes. In: Chen,

Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011. pp. 691–702. ACM Press (Oct

2011)

https://github.com/Microsoft/SEAL
https://doc.libsodium.org
https://doi.org/10.1145/872757.872771

Communication-Efficient Inner Product Private Join and Compute with Cardinality Woodstock ’18, June 03–05, 2018, Woodstock, NY

[5] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Efficient

two-round OT extension and silent non-interactive secure computation. In: Cav-

allaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 291–308. ACM

Press (Nov 2019)

[6] Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., Vlaskin,

V.: Private matching for compute. Cryptology ePrint Archive, Report 2020/599

(2020), https://eprint.iacr.org/2020/599

[7] Bursztein, E., Hamburg, M., Lagarenne, J., Boneh, D.: OpenConflict: Preventing

real time map hacks in online games. In: 2011 IEEE Symposium on Security and

Privacy. pp. 506–520. IEEE Computer Society Press (May 2011)

[8] Chase, M., Miao, P.: Private set intersection in the internet setting from light-

weight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020,

Part III. LNCS, vol. 12172, pp. 34–63. Springer, Heidelberg (Aug 2020)

[9] Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private

set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.A., Vergnaud, D. (eds.)

ACNS 09. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (Jun 2009)

[10] De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality

of set intersection and union. In: Pieprzyk, J., Sadeghi, A.R., Manulis, M. (eds.)

CANS 12. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (Dec 2012)

[11] De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection

protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,

vol. 6477, pp. 213–231. Springer, Heidelberg (Dec 2010)

[12] Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality

using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp.

209–226. Springer, Heidelberg (Sep 2015)

[13] Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an

efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)

ACM CCS 2013. pp. 789–800. ACM Press (Nov 2013)

[14] Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately

computing set-union and set-intersection cardinality via bloom filters. In: Foo,

E., Stebila, D. (eds.) ACISP 15. LNCS, vol. 9144, pp. 413–430. Springer, Heidelberg

(Jun / Jul 2015)

[15] Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear communi-

cation from general assumptions. In: Cavallaro, L., Kinder, J., Domingo-Ferrer, J.

(eds.) WPES@CCS, 2019. pp. 14–25. ACM (2019), https://doi.org/10.1145/3338498.

3358645

[16] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious

pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–

324. Springer, Heidelberg (Feb 2005)

[17] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-

section. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,

pp. 1–19. Springer, Heidelberg (May 2004)

[18] Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private set

operations from oblivious switching. In: Garay, J. (ed.) PKC 2021, Part II. LNCS,

vol. 12711, pp. 591–617. Springer, Heidelberg (May 2021)

[19] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A

completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th

ACM STOC. pp. 218–229. ACM Press (May 1987)

[20] Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better

than custom protocols? In: NDSS 2012. The Internet Society (Feb 2012)

[21] Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust in elec-

tronic communities. In: Feldman, S.I., Wellman, M.P. (eds.) ACM Conference

on Electronic Commerce, 1999. pp. 78–86. ACM (1999), https://doi.org/10.1145/

336992.337012

[22] Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Saxena, S., Seth, K., Raykova, M.,

Shanahan, D., Yung, M.: On deploying secure computing: Private intersection-

sum-with-cardinality. In: EuroS&P 2020. pp. 370–389. IEEE (2020), https://doi.

org/10.1109/EuroSP48549.2020.00031

[23] Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)

CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (Aug 2005)

[24] Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious

PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,

S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 818–829. ACM

Press (Oct 2016)

[25] Lepoint, T., Patel, S., Raykova, M., Seth, K., Trieu, N.: Private join and compute

from PIR with default. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II.

LNCS, vol. 13091, pp. 605–634. Springer, Heidelberg (Dec 2021)

[26] Li, M., Cao, N., Yu, S., Lou, W.: Findu: Privacy-preserving personal profile match-

ing in mobile social networks. In: INFOCOM,2011. pp. 2435–2443. IEEE (2011),

https://doi.org/10.1109/INFCOM.2011.5935065

[27] Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use

in the absence of a continuously available third party. In: IEEE Symposium on

Security and Privacy, 1986. pp. 134–137. IEEE Computer Society (1986), https:

//doi.org/10.1109/SP.1986.10022

[28] Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security

for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T.

(eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 3–33. Springer, Heidelberg

(Aug 2020)

[29] Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: BotGrep: Finding

P2P bots with structured graph analysis. In: USENIX Security 2010. pp. 95–110.

USENIX Association (Aug 2010)

[30] Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location

privacy via private proximity testing. In: NDSS 2011. The Internet Society (Feb

2011)

[31] Narayanan, G.S., Aishwarya, T., Agrawal, A., Patra, A., Choudhary, A., Rangan,

C.P.: Multi party distributed private matching, set disjointness and cardinality of

set intersection with information theoretic security. In: Garay, J.A., Miyaji, A.,

Otsuka, A. (eds.) CANS 09. LNCS, vol. 5888, pp. 21–40. Springer, Heidelberg (Dec

2009)

[32] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: Lightweight private set

intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)

CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 401–431. Springer, Heidelberg (Aug

2019)

[33] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: Fast, malicious

private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II.

LNCS, vol. 12106, pp. 739–767. Springer, Heidelberg (May 2020)

[34] Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection

using permutation-based hashing. In: Jung, J., Holz, T. (eds.) USENIX Security

2015. pp. 515–530. USENIX Association (Aug 2015)

[35] Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with

linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.

LNCS, vol. 11478, pp. 122–153. Springer, Heidelberg (May 2019)

[36] Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via

cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III.

LNCS, vol. 10822, pp. 125–157. Springer, Heidelberg (Apr / May 2018)

[37] Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT

extension. In: Fu, K., Jung, J. (eds.) USENIX Security 2014. pp. 797–812. USENIX

Association (Aug 2014)

[38] Rindal, P., Rosulek, M.: Improved private set intersection against malicious ad-

versaries. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol.

10210, pp. 235–259. Springer, Heidelberg (Apr / May 2017)

[39] Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-

tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017.

pp. 1229–1242. ACM Press (Oct / Nov 2017)

[40] Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and circuit-PSI from vector-

OLE. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol.

12697, pp. 901–930. Springer, Heidelberg (Oct 2021)

[41] Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to

association rule mining. J. Comput. Secur. 13(4), 593–622 (2005), http://content.

iospress.com/articles/journal-of-computer-security/jcs223

[42] Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th

FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986)

https://eprint.iacr.org/2020/599
https://doi.org/10.1145/3338498.3358645
https://doi.org/10.1145/3338498.3358645
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/INFCOM.2011.5935065
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
http://content.iospress.com/articles/journal-of-computer-security/jcs223
http://content.iospress.com/articles/journal-of-computer-security/jcs223

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Applications of Inner Product PJC

	2 Technical Overview
	3 Preliminaries
	3.1 Notations
	3.2 Basic Tools and Assumption
	3.3 Inner Product Private Join and Compute with Cardinality

	4 Our Matrix Product PJC Protocol
	4.1 Security

	5 Implementation and Evaluation
	5.1 Implementation Details
	5.2 Methods of Measurement
	5.3 Discussion of Measurements

	6 Conclusion
	References

