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Abstract. Every public-key encryption/decryption algorithm where the set

of possible plain-texts is identical to the set of possible cipher-texts may be
converted into a digital signature algorithm. That is quite different in the

lattice (code)-based public-key cryptography. The decryption algorithm on a

random input produces a valid plain-text, that is a signature, with a negligible
probability. That explains why it is so difficult to construct a new secure and

efficient lattice-based digital signature system. Though several solutions are

known and taking part in the NIST Post Quantum Standardisation Process
there is still a need to construct digital signature algorithms based on new

principles. In this work, a new and efficient digital signature algorithm is

suggested. Its design is simple and transparent. Its security is based on the
hardness of an approximate closest vector problem in the maximum norm for

some q-ary lattices. The complexity parameters are comparable with those of

the round 3 NIST digital signature candidates.

1. Introduction

Digital signatures are an important area of applications for public-key cryptogra-
phy. Every public-key encryption/decryption algorithm, where the set of possible
plain-texts is identical to the set of possible cipher-texts, may be converted into
a digital signature algorithm. The most notable examples are RSA and Rabin
crypto-systems. That is quite different in lattice-based and coding-based cryptog-
raphy. The cipher-text is there larger than the plain-text as in NTRU and Regev’s
LWE based crypto-systems. The decryption algorithm on a random input produces
a valid plain-text, that is a signature, with a negligible probability. That explains
why it is so difficult to construct a new secure and efficient lattice-based digital
signature system. Though several algorithms as GGH and some of NTRU-based
were broken in [16, 5], yet another NTRU-based signature algorithm variation Fal-
con is among the finalists of the NIST Post Quantum Standardisation Process, [14].
Similarly, several variations of multivariate algorithms as HFE and TTM were bro-
ken [11, 9], and another multivariate signature algorithm Rainbow is among the
finalists of the NIST competition. The history of the attacks and relevant coun-
termeasures provides a better understanding of the security of the cryptographic
algorithms. However, the countermeasures make the resulting algorithms patchy
and non-transparent, one may not feel certain about their security. So there is still
a need to construct digital signature algorithms based on new principles.

Recently, a new public key crypto-system EHT was described in [2]. It does not
seem possible to use this crypto-system for signatures. In the present work,a new
and efficient digital signature algorithm (hash-and-sign) is suggested. The design
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of the signature algorithm is simple and transparent. It has some similarity with
the crypto-system in [2]. So we call the signature algorithm EHT too. The security
is based on the hardness of an approximate closest vector problem (CVP) for some
specific q-ary lattices in the maximum norm. One proves that the signature is
uniformly distributed if the hashing algorithm provides a uniform distribution on
its outputs.

The complexity parameters are comparable with those of the round 3 NIST
digital signature candidates. There are three approaches to the cryptanalysis of
the new algorithm: find private key given public key only, find the private key or
forge a new signature by analysing a number of valid signatures, and forge signatures
without the knowledge of the private key. In particular, we claim that it is hard to
forge a valid signature for any given message as one will need to solve a hard CVC
problem for some specific q-ary lattice for this. The cryptanalysis is presented in
Section 5.

Published digital signature lattice-based constructions typically make use of
short lattice bases as private keys and their random non-short perturbations as
public keys. That is true for GGH [6], some its modifications as DRS, see [18], and
NTRU-based signature algorithms as NTRUSign in [4]. Another approach based
on the hardness of the SIS (Short Integer Solution) problem was implemented in
[10],[15]. The EHT construction does not use neither short bases of relevant lattices,
nor the hardness of the SIS problem.

The EHT digital signature algorithm does not have a so-called security proof,
the proof that it stands all attacks by a reduction to an NP-hard problem or some
hard computational problem in general lattices, etc. That is not uncommon in the
field. For instance, the multivariate signature algorithm Rainbow, which is a NIST
finalist, does not have a security proof. Another NIST finalist Falcon provides a
reduction to the NTRU problem, which is the shortest vector problem for a very
particular lattice.

The author is grateful to Markus Hittmeir for a number of suggestions to improve
the presentation.

2. Signature Algorithm

In this section a basic version of the new signature algorithm EHT is explained.
The algorithm consists of private and public keys generating algorithms, signature
generating and verifying algorithms. They all are presented in this section along
with the signature verification proof. The signature for a message M is x ∈ Fnq
such that H(M) = Ax+ e for some public matrix A ∈ Fkn×nq and vector e ∈ Fknq ,
and where H denotes a hash function. The entries of e represented as integers are
bounded in absolute values.

In Section 3, we prove that the signature x is uniformly distributed if the hash
function provides a uniform distribution on Fknq . So in the random oracle model
(the hash function is a random oracle) the signature algorithm itself is a random
oracle. That implies that EHT signatures, if the algorithm is taken as a black box,
are strong existentially unforgeable in the random oracle model. In Section 5.3 we
analyse the security of the signature algorithm if a number of valid signatures is
available.
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A reduced version is in Section 6 below and some explicit parameters are pro-
posed in Section 7. The underlying hard problem for these parameters is described
in Section 8.

2.1. Parameters. Let n, k, λ, c be positive integers, and q be an odd prime, λ ≥ 3,
and 2λc+ 1 < q. Also, h = HASH(M) is a hash value of the message M , where h
is encoded by a vector in Fknq .

2.2. Private Key. The private key consists of three matrices T,B,C.

(1) The matrix T is an integer kn× n matrix in a column echelon form

T =



t11 0 . . . 0
t21 0 . . . 0
. . .
tk1 0 . . . 0
∗ t12 . . . 0
∗ t22 . . . 0
. . .
∗ tk2 . . . 0
. . .
∗ ∗ . . . t1n
∗ ∗ . . . t2n
. . .
∗ ∗ . . . tkn



,

where entries t1j , t2j , . . . , tkj are called diagonal. The other entries of T
denoted by ∗ may be randomly generated. Each tuple [t1j , t2j , . . . , tkj ] has
to satisfy the following property: for any integer b1, b2, . . . , bk there is an
integer u such that

|(b1 − t1j u)mod q| ≤ c,
|(b2 − t2j u) mod q| ≤ c,

. . . ,(1)

|(bk − tkj u) mod q| ≤ c.

Let, for instance, q = 61, k = 3, c = 8. There is only one tuple [t1, t2, t3] =
[1, 4, 15] modulo q up to a permutation of entries, multiplication the tuple
by non-zero residues and changing the sign of the entries such that for any
integers b1, b2, b3 the system of inequalities |(b1 − t1u) mod 61| ≤ 8, |(b2 −
t2u) mod 61| ≤ 8, |(bk − t3u) mod 61| ≤ 8 has a solution u.

(2) The matrix C = (Cij) is an integer kn × kn-matrix, the 1-norm of the

rows Ci of which satisfy ||Ci||1 =
∑kn
j=1 |Cij | ≤ λ. To define C one may

take C = P1 + P2 + . . . + Pλ mod q, where Pi are permutation matrices
of size kn × kn. Experimentally, such C is invertible over rationals with
high probability if λ > 2. We assume that C is invertible modulo q. For
λ = 2 one can achieve C = P1 +P2 of full rank by Lemma 3, see Appendix
(Section 11). However, we do not recommend λ = 2 due to a weakness
found in Section 5.

(3) The matrix B is an arbitrary integer n× n-matrix invertible modulo q.
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Theorem 1. For every integer vector a = (a1, a2, . . . , akn) there exist an integer
vector y = (y1, y2, . . . , yn) and an integer vector z = (z1, z2, . . . , zkn), where |zi| ≤ c
for every i = 1, . . . , kn, such that a ≡ Ty + z mod q.

Proof. We show how to compute iteratively the entries yj and z(j−1)k+1, . . . , zjk for
j = 1, . . . , n. For j = 1 we set 

b1
b2
. . .
bk

 =


a1
a2
. . .
ak

 .

and y1 = u, where u is a solution to the system of inequalities (1). Then
z1
z2
. . .
zk

 ≡

b1
b2
. . .
bk

−

t11
t21
. . .
tk1

 y1 mod q.

The entries of the left hand side vector are bounded by c in absolute value by (1).
Let Tj be a sub-matrix of T of size k× j in the rows jk + 1, jk + 2, . . . , jk+ k and
columns 1, . . . , j, where 1 ≤ j ≤ n − 1. The entries of Tj are denoted by ∗ in the
definition of T . For j > 1 we set

b1
b2
. . .
bk

 ≡

a(j−1)k+1

a(j−1)k+2

. . .
ajk

− Tj−1
 y1
. . .
yj−1

 mod q.

Then yj = u, where u is a solution to the system of inequalities (1). So
z(j−1)k+1

z(j−1)k+2

. . .
zjk

 ≡

b1
b2
. . .
bk

−

t1j
t2j
. . .
tkj

 yj mod q

and the entries of the left hand side vector are bounded by c in absolute value.
Therefore for every 1 ≤ j ≤ n,

a(j−1)k+1

a(j−1)k+2

. . .
ajk

 ≡

∗ ... ∗ t1j
∗ ... ∗ t2j
∗ ... ∗ . . .
∗ ... ∗ tkj




y1
. . .
yj−1
yj

+


z(j−1)k+1

z(j−1)k+2

. . .
zjk

 mod q.

So a ≡ Ty + z mod q, where z = (z1, z2, . . . , zkn) and |zi| ≤ c. The statement is
proved. �

2.3. Public Key. The public key is an integer kn× n matrix A ≡ CTB mod q.

2.4. Signature Generation. To sign the messageM one computes h = HASH(M).
Let a = (a1, a2, . . . , akn) such that a ≡ C−1h mod q. The vectors

y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zkn),

such that a ≡ Ty+ z mod q and |zi| ≤ c are then computed according to Theorem
1, where each yj is taken uniformly from the set of solutions to (1) for appropriate
b1, . . . , bk. The signature is x ≡ B−1y mod q, where x ∈ Fnq . We call e = Cz the
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error vector for M,x. Given h, the vector y is generally not unique. There may
exist messages M which admit several valid signatures.

2.5. Signature Verification. To verify the signature x for M one computes h =
HASH(M) and Ax. Let e ≡ h−Ax mod q, where e ∈ Fknq and such that the entries
of e = (e1, e2, . . . , ekn) are at most (q − 1)/2 in absolute value. The signature is
accepted if |ei| ≤ λc for every 1 ≤ i ≤ kn.

2.6. Verification Proof. According to the signature generating algorithm C−1h ≡
Ty + z mod q, where z = (z1, z2, . . . , zkn) and |zj | ≤ c and x ≡ B−1y. Then

(2) C−1h ≡ Ty + z ≡ TBx+ z mod q, and h ≡ Ax+ Cz mod q,

where the entries of e = Cz are bounded by λc in absolute value. So the signature
is accepted.

3. Signature distribution

In this section we prove that if h = H(M) is distributed uniformly on Fknq , then
the signature x is uniformly distributed on Fnq . Recall that (1) has a solution for
every b1, . . . , bk. We can there put t1 = t1j = 1, t2 = t2j . . . , tk = tkj to simplify the
notation below. So (1) is equivalent to the following statement. For every tuple of
residues b1, . . . , bk modulo q there exist u and i1, . . . , ik, where |i1| ≤ c, . . . , |ik| ≤ c,
and u is a residue modulo q, such that b1 ≡ u+ i1, b2 ≡ ut2 + i2, . . . , bk ≡ utk + ik.
Let A(b1, . . . , bk) denote the set of such u.

In order to prove that the signature x = B−1y is uniformly distributed it is
enough to prove that y is uniformly distributed. According to Theorem 1, it is
enough to prove that if b1, . . . , bk are generated independently and uniformly at
random on residues modulo q and the solution u to (1) is taken uniformly from
A(b1, . . . , bk), then u is uniformly distributed on residues modulo q. The probability
of u is equal to

1

qk

∑
u∈A(b1,...,bk)

1

|A(b1, . . . , bk)|
,

where the sum runs over all b1, . . . , bk such that u ∈ A(b1, . . . , bk). The following
lemma implies that this probability is 1/q.

Lemma 2.
∑
u∈A(b1,...,bk)

1
|A(b1,...,bk)| = qk−1.

Proof. The inequalities (1) are equivalent to b1−u ≡ i1 , b2−t2b1 ≡ i2−t2i1 , . . . , bk−
tkb1 ≡ ik − tki1 modulo q, where |i1| ≤ c, . . . , |ik| ≤ c. Let s = s(a2, . . . , ak) be the
number of solutions i1, . . . , ik to

(3) |i1| ≤ c, . . . , |ik| ≤ c a2 ≡ i2 − t2i1 mod q, . . . , ak ≡ ik − tki1 mod q.

Then
|A(b1, . . . , bk)| = s(a2, . . . , ak),

where a2 ≡ b2 − t2b1, . . . , ak ≡ bk − tkb1. Moreover, u ∈ A(b1, . . . , bk) if and only
if b1 = u + i1, where i1, . . . , ik is a solution to (3). Since a2, . . . , ak may take any
values, we get∑

u∈A(b1,...,bk)

1

|A(b1, . . . , bk)|
=

∑
a2,...,ak

∑
i1,...,ik

1

s(a2, . . . , ak)
= qk−1,

where the last sum is over all the solutions i1, . . . , ik to (3).



6 IGOR SEMAEV
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4. Complexity

One may solve the linear system Ca = h mod q for a with Wiedemann’s algo-
rithm [19] in at most λ(kn)2 additions and (kn)2 multiplications modulo q. Another
option is to keep the precomputed matrix C−1 modulo q and compute a ≡ C−1h
mod q.

In signature generating the vector y may be computed in around 2ckn+ kn2/2
multiplications modulo q and the complexity of computing x ≡ B−1y is n2 mul-
tiplications. The signature size is ndlog2 qe bits. The complexity of verification is
essentially kn2 multiplications modulo q to compute Ax. Remark, that q may be
taken relatively small compared with digital signature algorithms from the NIST
competition, see Table 1. So the computation is very fast in that case.

For the public key one has to keep the matrix A, that is kn2 residues modulo
q. For the private key one keeps the matrix C−1 (or a minimal polynomial for C
to apply the Wiedemann algorithm) and the matrices B−1, T . Instead, one may
keep a seed and generate B−1 and T with this seed if necessary. So the size of the
private key may be made negligible.

The complexity parameters are significantly lower for the reduced version of the
signature algorithm in Section 6.

5. Cryptanalysis

There are three approaches to the cryptanalysis: find private key given public
key only, find private key by analysing a number of valid signatures, and forge
signatures without the knowledge of the private key.

5.1. Private Key Recovery. We have not found any efficient method to recover
the matrices C, T,B from A = CTB besides searching over C or B according to
their definitions. However, if λ and k are small, one may recover around n/λ−n/kλ
rightmost columns of CT and B−1 relatively fast.

Really, let b be the rightmost column of the matrix B−1. Then Ab is the right-
most column of CT . As T is in a column echelon form, the rightmost column of
CT has at most kλ nonzero entries. Let A(m) be a sub-matrix of A in m > n

randomly chosen rows. With probability at least
(
kn−kλ
m

)
/
(
kn
m

)
we have A(m)b ≡ 0

mod q and b is recovered by solving a system of linear equations. One thus recov-
ers the rightmost column of CT with the number of trials at most

(
kn
m

)
/
(
kn−kλ
m

)
.

One now eliminates kλ rows from A, where the rightmost column of CT has non-
zero entries. Then the second rightmost column of CT is similarly recovered, etc.

The l-th right most column of CT is found after
(
kn−(l−1)k

m

)
/
(
kn−lkλ
m

)
trials for

l ≤ n/λ−n/kλ. For larger l the complexity of recovering the columns of CT grows
very fast. Therefore, approximately n/λ− n/kλ right most columns of CT and of
B−1 may be recovered. However, it is not enough to forge signatures.

5.2. Guessing the Signature. Given a hash value h, one may try small values
(≤ λc in absolute value) of some n entries of e ≡ h − Ax mod q, compute x by
solving a system of linear equations and check if all other entries of e are at most
λc in absolute value. The success probability is ( 2λc+1

q )(k−1)n.
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5.3. Multiple Signatures Analysis. Let m ≥ kn messages Mi, i = 1, . . . ,m be
signed with the same private key and si be their signatures respectively. Then

(4) hi −Asi ≡ Cfi mod q, i = 1, . . . ,m,

where Cfi is the error vector for Mi, si and hi = HASH(Mi). The entries of fi are
bounded by c. In these equations hi, A, si are public while fi, C are secret. Let

U = [h1 −As1, . . . , hm −Asm] ≡ [Cf1, . . . , Cfm] mod q

be a matrix of size kn ×m whose columns are left hand side columns in (4). Let
b be a row in C−1 mod q and v ≡ b U mod q. The entries of v are at most c in
absolute value as they are some entries of fi. The vector v belongs to the lattice
L generated by the rows of U modulo q. The lattice L is of rank m and of volume
Vol = qm−kn. The Euclidean norm of v is at most c

√
m and L contains at least nk

such vectors. Thus BKZ reduction or a sieving algorithm may be tried to recover
such v and the rows b of C−1 mod q. Recovering the matrices T,B is then easy.

The application is successful if c
√
m is around the first minimum of L. Other-

wise, the lattice may contain too many vectors whose norm is close to the norm of

the target vectors v. The first minimum is bounded by
√
γm Vol1/m, where γm is

the Hermit constant for rank-m lattices. For large m we have γm ≤ (1.745/2πe)m,
see [17]. We take the smallest m such that

|v| ≤ c
√
m ≤

√
(1.745/2πe)m q(m−kn)/m.

So m ≥
[
ln q/ ln

(
q
c

√
1.745
2πe

)]
kn . The complexity of sieving is 20.292m+o(m) oper-

ations according to [12] with the memory of the same order. As m is very large,
this method is inefficient. Block BKZ reduction does not provide any advantage
over the plain sieving algorithm in this setting. For instance, for the parameters in
Section 7 the size of the optimal block computed according to [3] is again m.

Let λ = 2 and let C = P1 + P2 be a sum of two permutation matrices P1, P2

such that the permutation Q = P1P
−1
2 has two cycles of odd length. Then

C−1 = (1/2)K over rationals, where the entries of K are 0,±1 by Lemma 3 in
the Appendix. So K(hi−Asi) = 2fi mod q and one may recover K and therefore
C faster than in the general case. That is why λ = 2 is not recommended.

5.4. Forging Signatures by Solving CVP. To forge the signature for a hash
value h one is to find a vector e whose entries are bounded by λc in absolute value
and h ≡ Ax + e for some vector x. This problem always has a solution for the
parameters defining the signature algorithm. Let L be a lattice of rank kn and of
volume qkn−n generated by the columns of A modulo q. Thus it is enough to solve
an approximate CVP-instance for L in the maximum norm.

The solution of this problem implies a vector in L at the Euclidean distance
≤ λc

√
kn from h. By Gaussian heuristic, see [17], the minimum distance between

any h and L is O(
√
kn q1−1/k) for average h. Therefore, to forge signatures one has

to solve a CVP-instance for L with a small approximation factor O( λc
q1−1/k ). The

approximate CVP is hard for general lattices of large rank if the approximation
factor is small [13]. One may also apply an exact CVP algorithm as in [1] or [7].
It is claimed in [7] that the CVP may be solved in heuristic time 20.292 d+o(d) by a
lattice sieving algorithm with the same amount of memory, where d is the rank of
the lattice. That is not efficient for d = kn.
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6. Reduced Public Key

According to the cryptanalysis in Section 5.1, around n/λ − n/kλ rightmost
columns of CT and of B−1 may be recovered relatively fast given A. Therefore
these columns may not be considered secret. One can use that to reduce the size
of the public key. Let 1 ≤ s ≤ n be an integer parameter and r = n− s. We set

C =

(
C1 C4

C2 C3

)
, T =

(
T1 0
T2 T3

)
, B =

(
B1 0
B2 I

)
.

The sub-matrices C1, C3 are square and of size ks × ks and kr × kr respectively.
That defines the size of the sub-matrices C2, C4. The sub-matrices T1, T3 are of size
ks× s and kr× r respectively, where T3 is defined by (7). That is in the matrix T3
only diagonal entries are non-zero. The sub-matrix B1 is square and of size s× s,
invertible modulo q, and I is an identity matrix of size r × r. We assume that
C3, C4, T3 are public while C1, C2, T1, T2, B1, B2 are secret. Then

A ≡ CTB ≡
(
C1T1B1 + C4(T2B1 + T3B2) C4T3
C2T1B1 + C3(T2B1 + T3B2) C3T3

)
≡
(
A1 A4

A2 A3

)
.

Suppose C3 is invertible modulo q. Then

A ≡
(
A′ + C4C

−1
3 A2 A4

A2 A3

)
mod q,(5)

where A′ = C ′T1B1 and C ′ ≡ C1−C4C
−1
3 C2. Let, for instance, λ = 4. One chooses

the rows of C1, C2 to be of 1-norm equal to 1 and the rows of C3, C4 to be of 1-norm
equal to 3. Experimentally, with high probability, C3 is invertible modulo q and
C−13 is quite dense. So the secret matrix C ′ is not sparse in that case and it hides
the structure of T1B1 in the definition of A′. As A is public, one may recover the
matrix A′. However, one can not recover any columns of C ′T1 and B−11 from A′ as
in Section 5.1.

As the matrices A3, A4 are sparse and may be made constants, one essentially
stores only the entries of A1, A2 for the public key. That makes kns residues modulo
q.

7. Proposed parameters

Let (n, k, q, λ, c) = (230, 2, 23, 4, 2). One may use 256-bit hash algorithm with
these parameters. The signature size is 1040 bits. There is only one tuple [t1, t2] =
[1, 5] modulo 23 up to a permutation, multiplication of the tuple modulo q by
non-zero residues and changing sign of the tuple entries such that the system of
inequalities (1) for k = 2, c = 2 has a solution u for every integer b1, b2. One
takes such [t1, t2] independently to define the diagonal entries of T , other entries
are chosen uniformly at random. For a reduced public key one chooses T such that
only diagonal entries are non-zero for r = n/2 right most columns according to
Section 6. The matrices C,B are chosen randomly according to the definitions in
Section 6. The entries of e = Cz are bounded by λc = 8 in absolute values. The
probability to find x such that every entry of e ≡ h− Ax mod q is bounded by λc

in absolute value is
(

2λc+1
q

)(k−1)n
≈ 2−100.3, see Sections 8 and 5.2. Therefore,

one has to solve 2100.3 linear systems with 230 variables modulo 23 to forge the
signature with this method on the average. This seems to be the best attack so far
in this setting. The algorithm in [1] solves an instance of CVP in Section 5.4 and
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therefore finds e in 2134.3 operations with memory size 2134.3, these figures may in
fact be larger due to hidden factors. The verification of one signature takes around
10−3 of a second on a common computer. Generating of one signature is about four
times longer.

7.1. EHT versus NIST signature candidates. We summarise the security and
complexity parameters of the new algorithm EHT in Table 1 and put them against
those of the NIST 3-rd round digital signature candidates with approximately
matching security, see [14]. In Table 1 bits, bytes and kilobytes are abbreviated by
b, B and kB respectively. The size of the public key is reduced according to Section
6. The parameters of the new algorithm are comparable with those of the NIST
candidates.

Table 1. Comparison with NIST 3-rd round candidates

security public key arithm. q sign.
EHT 116 b 30.2 kB 23 130 B

Dilithium level 2 121 b 1.31 kB 8380417 2420 B
Falcon level 2 120 b 0.897 kB 12289 666 B

Rainbow level 1 147 b 58.8 kB 216 66 B

8. Underlying Problem

Let n, k, s, r = n− s be positive integers, q be an odd prime, and let δ < q be a
positive real. Let R denote an integer matrix of size kn× s, whose entries modulo
q were generated uniformly at random. Also, let K be an integer matrix of size
kn × r and of rank r modulo q. Given an integer vector h of size kn, one asks to
find integer vectors x1, x2 of size s and r respectively and an integer vector e of size
kn such that every entry of e is at most δ in absolute value and

(6) Rx1 +Kx2 + e ≡ h mod q.

Let’s denote the concatenations A = R|K and x = x1|x2. Then (6) is equivalent to
Ax+ e ≡ h mod q. That is an instance of the CVP in the maximum norm for the
lattice generated by the columns of A modulo q. Heuristically, the problem has a
solution for every h if qn(2δ + 1)kn > qkn.

The security of the new signature algorithm is based on the hardness of solving
(6) for some matrices R and K. For the parameters k = 2, s = r = n/2, λ = 4
and matrices specified in Sections 6, the matrix R may be considered as generated
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uniformly according to Section 9 below. To construct the matrix K, let

(7) T3 =



t11 0 . . . 0
t21 0 . . . 0
. . .
tk1 0 . . . 0
0 t12 . . . 0
0 t22 . . . 0
. . .
0 tk2 . . . 0
. . .
0 0 . . . t1r
0 0 . . . t2r
. . .
0 0 . . . tkr


be a matrix of size kr × r for some non-zero entries tij specified in Section 2.2.
Namely, each tuple [t1j , t2j , . . . , tkj ] has to satisfy (1).

Also, let C3 and C4 be matrices of size kr × kr and ks × kr respectively and
whose rows have 1-norm (the sum of the absolute values of the entries in each row)
equal to 3. The matrices C3, C4, T3 are public. Then

(8) K =

(
C4T3
C3T3

)
is a matrix of size kn× r and of rank r. See Section 9 below for details.

8.1. Sub-problem. Let a matrix K of size kn × s be defined by (8). Given an
integer vector h of length kn find an integer vector z of length s and an integer
vector e of length kn such that Kz+e ≡ h mod q and every entry of e is bounded by
δ in absolute value. Heuristically, the problem has a solution if qs(2δ+ 1)kn > qkn.
An efficient algorithm to solve this equation implies an efficient algorithm to solve
the equation (6).

9. Reduction to the Underlying Problem

When constructing the public matrix A in Section 6, the matrix T2 of size kr×s
may be taken uniformly at random. So the matrix A2 of size kr×s in (5) is uniformly
distributed. The matrix A′ = C ′T1B1 of size ks× s is generated independently of

A2. It depends on ks(s−1)
2 randomly chosen entries of T1 and on s2 randomly

chosen entries of the invertible B1, besides randomly chosen C1, C2. So the matrix

R =

(
A1

A2

)
of size kn×s depends on ks(s−1)

2 +krs+s2 independent residues modulo

q and on C1, C2.
Let k = 2 and s = r = n/2, and λ = 4. We set the public C3, C4 to be a sum of

three permutation matrices of size s × s each. The secret C1, C2 are permutation
matrices of size s× s.

Then the matrix R of size 2n×n/2, that is with n2 entries depends on n2−n/2
randomly and independently chosen residues modulo q and besides on randomly

chosen C1, C2. As qn
2−n/2(n2 !)2 > qn

2

for relatively small q, the number of indepen-
dent parameters for the entries of R is larger than the number of their entries. So,
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heuristically, the matrix R is uniformly distributed. By construction, the matrix

K =

(
A4

A3

)
=

(
C4T3
C3T3

)
is of full rank r = n/2.

The signature x for a hash value h satisfies Ax + e = h, where the entries of e
are at most λc in absolute value. Let x = x1|x2, where x1, x2 are of size s. Then
Ax + e = h implies Rx1 + Kx2 + e = h. To forge a signature one must solve
an instance of the problem in Section 8 with parameters k = 2, r = s = n/2 and
δ = λc = 4c.

The size of the public key is essentially n2 residues modulo q. Verification cost
is essentially n2 multiplications modulo q.

10. Solving the Underlying Problem by Guessing

There are two guessing type algorithms to find a solution to (6). First, one may
guess n small (bounded by δ) entries of e, find x = x1|x2 by solving a system of
linear equations modulo q, then check other kn − n entries of e. If they all are
small (bounded by δ), then the solution is found. The probability of success is
( 2δ+1

q )kn−n.

Second, let x1 be a random vector of our choice and h − Rx1 = h1|h2, where
the size of h1 is ks and the size of h2 is kr. Also, let e = e1|e2, where the size
of e1 is ks and the size of e2 is kr. Assume that C3 is invertible modulo q. By
using Theorem 1, one finds vectors x2 and f such that the entries of f are small
(bounded by bδ/3c) and

T3x2 + f = C−13 h2.

Then C3T3x2 + e2 = h2, where the entries of e2 = C3f are small (bounded by
δ) as the 1-norm of the rows of C3 is equal to 3. The probability that the vector
e1 = h1−C4T3x2 has small entries is ( 2δ+1

q )ks. So (6) is satisfied for such x = x1|x2
and e. The success probabilities of the both algorithms are equal for ks = kn− n.
Therefore, one may set s = n − n/k. We conjecture that the equation (6) is hard
for K defined by (8), such s and for large n.
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11. Appendix

Lemma 3. Let P1, P2 be permutation matrices of size m×m. Then C = P1 + P2

is of rank m if and only if the permutation Q = P2P
−1
1 has only odd cycles. In this

case, detC = ±2s, where s is the number of cycles in Q.

Proof. The matrix C is of full rank if and only if the system of linear equations
x(P1 + P2) = 0 has only zero solution. The system is equivalent to x = −xQ.
The latter has a non-zero solution if and only if Q has at least one cycle of even
length. That proves the first part of the lemma. To prove the rest, let r1, . . . , rs be
the lengths of the cycles in Q and R = CP−11 = Im + Q, where Im is an identity
permutation.

Let r be an odd number and P = [2, 3, . . . , r, 1] be a permutation with exactly
one cycle of length r. We consider P as a matrix and get

(9) Rr = Ir + P =


1 1 0 . . . 0 0
0 1 1 . . . 0 0
. . .
0 0 0 . . . 1 1
1 0 0 . . . 0 1

 .

So det(Rr) = 2. There is a permutation U such that

(10) U−1CP−11 U = U−1RU = Im + U−1QU =


Rr1 0 . . . 0
0 Rr2 . . . 0
. . .
0 0 . . . Rrs

 ,

where Rri is defined by (9). Therefore, det(R) = 2s.
�

For λ = 2 one may choose a random secret permutation Q of [1, 2, . . . , kn]
with two cycles of close odd lengths and a random secret permutation P1, and set
P2 = QP1. Then C = P1 + P2. The inversion of Rr is a Toeplitz matrix of size
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r×r whose first row is [1,−1, 1,−1, . . . , 1] multiplied by 1/2. By (10) one can easily
compute the inversion of C.
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