
New Digital Signature Algorithm

No Author Given

No Institute Given

Abstract. Every public-key encryption/decryption algorithm where the
set of possible plain-texts is identical to the set of possible cipher-texts
may be converted into a digital signature algorithm. That is quite differ-
ent in the lattice (code)-based public-key cryptography. The decryption
algorithm on a random input produces a valid plain-text, that is a signa-
ture, with a negligible probability. That explains why it is so difficult to
construct a new secure and efficient lattice-based digital signature sys-
tem. Though several solutions are known and taking part in the NIST
Post Quantum Standardisation Process there is still a need to construct
digital signature algorithms based on new principles. In this work, a new
and efficient digital signature algorithm is suggested. Its design is simple
and transparent. Its security is based on the hardness of an approximate
closest vector problem in the maximum norm for some q-ary lattices. The
signature is shorter than that provided by the NIST Selected Digital Sig-
nature Algorithms with a comparable security level, while the public key
size is larger.

1 Introduction

Digital signatures are an important area of applications for public-key cryptogra-
phy. Every public-key encryption/decryption algorithm, where the set of possible
plain-texts is identical to the set of possible cipher-texts, may be converted into
a digital signature algorithm. The most notable examples are RSA and Rabin
crypto-systems. That is quite different in lattice(code)-based and multivariate
cryptography. The cipher-text is there larger than the plain-text as in NTRU
and Regev’s LWE based crypto-systems. The decryption algorithm on a random
input produces a valid plain-text, that is a signature, with a negligible proba-
bility. That explains why it is so difficult to construct a new secure and efficient
lattice-based digital signature system. Though several algorithms as GGH and
some of NTRU-based were broken in [15, 4], yet another NTRU-based signature
algorithm variation Falcon is among the finalists of the NIST Post Quantum
Standardisation Process, [13]. Similarly, several variations of multivariate algo-
rithms as HFE and TTM were broken [10, 8], and another multivariate signature
algorithm Rainbow is among the finalists of the NIST competition. The history
of the attacks and relevant countermeasures provides a better understanding
of the security of the cryptographic algorithms. However, the countermeasures
make the resulting algorithms patchy and non-transparent, one may not feel

certain about their security. So there is still a need to construct new digital sig-
nature algorithms. A new construction may improve the efficiency parameters
compared with known solutions.

In the present work, a new and efficient digital signature algorithm (hash-
and-sign) is suggested. The design of the signature algorithm is simple and
transparent. The security is based on the hardness of an approximate closest
vector problem (CVP) for some specific q-ary lattices in the maximum norm.
One proves that the signature is uniformly distributed if the hashing algorithm
provides a uniform distribution on its outputs. The signature is several times
shorter than that provided by the NIST Selected Digital Signature Algorithms
with comparable security level, while the public key size is larger.

There are three approaches to the cryptanalysis of the new algorithm. First,
find the private key given a public key only. Second, forge signatures without
the knowledge of the private key. Third, find the private key or forge a new
signature by analysing a number of valid signatures. We claim that it is hard to
forge a valid signature for any given message as one will need to solve a hard
CVC problem for some specific q-ary lattice. The cryptanalysis is presented in
Section 5.

Published digital signature lattice-based constructions typically make use of
short lattice bases as private keys and their random non-short perturbations as
public keys. That is true for GGH [5], some its modifications as DRS, see [18], and
NTRU-based signature algorithms as NTRUSign in [3]. Another approach based
on the hardness of the SIS (Short Integer Solution) problem was implemented
in [9],[14]. The present construction does not use neither short bases of relevant
lattices, nor the hardness of the SIS problem.

The new digital signature algorithm does not have so far a so-called security
proof, the proof that it stands all attacks by a reduction to an NP-hard problem
or some hard computational problem in general lattices, etc. That is not un-
common in the field. The most notable example is the RSA crypto-system. We
do not know if breaking the RSA results in fast integer factorisation. Another
example is a multivariate signature algorithm Rainbow, a round 3 NIST candi-
date, which does not have a security proof. One of the NIST selected algorithms
Falcon provides a reduction to the NTRU problem, which is the shortest vector
problem for a very particular lattice. The NTRU problem was around for more
than 25 years. Only recently a reduction-based evidence of its hardness was pub-
lished in [17]. Similarly, a reduction-based security argument for the underlying
problem of the new digital algorithm, the problem is specified in Section 9 of
this work, may require more time and effort.

2 Signature Algorithm

In this section a basic version of the new signature algorithm is explained. The
algorithm consists of private and public key generating algorithms, signature
generating and verifying algorithms. They all are presented in this section along
with the signature verification proof. Let q, n, k be positive integers. The sig-

nature for a message M is x ∈ Znq such that HASH(M) = Ax + e for some

public matrix A ∈ Zkn×nq and vector e ∈ Zknq , where HASH denotes a public
hash function. The entries of e represented as integers are bounded in absolute
values. A detailed description of the algorithm is in this section below.

To forge a signature for a message M without knowledge of the private key
one has to solve the following problem. Given h ∈ Zknq , where h = HASH(M),
find x ∈ Znq such that the entries of h − Ax taken as integers are bounded in
absolute values. We have not found an efficient method to solve the problem
without inverting the hash function.

Assume that the message M was already signed with x. To forge another
signature for M one has to solve a similar problem. Namely, one has to construct
x1 ∈ Znq , e1 ∈ Zknq , where x 6= x1, and the entries of e1 are bounded, and such
that HASH(M) = Ax1 +e1. That is equivalent to finding a nonzero y = x1−x ∈
Znq and an entry bounded vector e1 ∈ Zknq such that e = Ay + e1. We have not
found an efficient method to solve this problem too.

In Section 3, we prove that the signature x is uniformly distributed if the
hash function provides a uniform distribution on Zknq . So in the random oracle
model (the hash function is a random oracle) the signature algorithm itself is a
random oracle.

In Section 5.4 we analyse the security of the signature algorithm if a number
of valid signatures is available.

A reduced version is in Section 6 below and some explicit parameters are
proposed in Section 7. The underlying hard problem for these parameters is
described in Section 8.

2.1 Parameters

Let n, k, λ, c be positive integers, and q be an odd prime, λ ≥ 3, and 2λc+1 < q.
Also, h = HASH(M) is a hash value of the message M , where h is encoded by
a vector in Zknq .

2.2 Private Key

The private key consists of three matrices T,B,C.

1. The matrix T is an integer kn× n matrix in a column echelon form

T =



t11 0 . . . 0
t21 0 . . . 0
. . .
tk1 0 . . . 0
∗ t12 . . . 0
∗ t22 . . . 0
. . .
∗ tk2 . . . 0
. . .
∗ ∗ . . . t1n
∗ ∗ . . . t2n
. . .
∗ ∗ . . . tkn



, (1)

where entries t1j , t2j , . . . , tkj are called diagonal and they are not supposed
to be secret. The entries of T below the diagonal are denoted by ∗, they may
be randomly generated and are generally secret. In a variation introduced in
Section 6 the entries below the diagonal are set to 0 for r right most columns
of T , where r is a parameter. For the proposed parameters in Section 7 one
sets r = n/2. That does not seem to affect the security, see Sections 8 and
10, and reduces the size of the public key as shown in Section 6.
Each tuple [t1j , t2j , . . . , tkj] has to satisfy the following properties. First, all
entries are non-zero residues modulo q and at least one is coprime to q.
Second, for any integer b1, b2, . . . , bk there is an integer u such that

|(b1 − t1j u)mod q| ≤ c,
|(b2 − t2j u) mod q| ≤ c,

. . . , (2)

|(bk − tkj u) mod q| ≤ c.

For small q and k used to construct signatures in this work all such tuples
may be found by brute force. Let, for instance, q = 61, k = 3, c = 8. There is
only one tuple [t1, t2, t3] = [1, 4, 15] modulo q up to a permutation of entries,
multiplication the tuple by a residue coprime to q and changing the sign
of the entries such that for any integers b1, b2, b3 the system of inequalities
|(b1 − t1u) mod 61| ≤ 8, |(b2 − t2u) mod 61| ≤ 8, |(bk − t3u) mod 61| ≤ 8 has a
solution u.

2. The matrix C = (Cij) is an integer kn × kn-matrix, the 1-norm of the

rows Ci of which satisfy ||Ci||1 =
∑kn
j=1 |Cij | ≤ λ. To define C one may

take C = P1 + P2 + . . .+ Pλ mod q, where Pi are permutation matrices of
size kn × kn. Experimentally, such C is invertible over rationals with high
probability if λ > 2. We assume that C is invertible modulo q. For λ = 2 one
can achieve C = P1+P2 of full rank by Lemma 2, see Appendix (Section 11).
However, we do not recommend λ = 2 due to a weakness found in Section 5.

3. The matrix B is an arbitrary integer n× n-matrix invertible modulo q.

Theorem 1. For every integer vector a = (a1, a2, . . . , akn) there exist an integer
vector y = (y1, y2, . . . , yn) and an integer vector z = (z1, z2, . . . , zkn), where
|zi| ≤ c for every i = 1, . . . , kn, such that a ≡ Ty + z mod q.

Proof. We show how to compute iteratively the entries yj and z(j−1)k+1, . . . , zjk
for j = 1, . . . , n. For j = 1 we set

b1
b2
. . .
bk

 =


a1
a2
. . .
ak

 .

and y1 = u, where u is a solution to the system of inequalities (2). Then
z1
z2
. . .
zk

 ≡

b1
b2
. . .
bk

−

t11
t21
. . .
tk1

 y1 mod q.

The entries of the left hand side vector are bounded by c in absolute value by
(2). Let Tj be a sub-matrix of T of size k×j in the rows jk+1, jk+2, . . . , jk+k
and columns 1, . . . , j, where 1 ≤ j ≤ n − 1. The entries of Tj are denoted by ∗
in the definition of T . For j > 1 we set

b1
b2
. . .
bk

 ≡

a(j−1)k+1

a(j−1)k+2

. . .
ajk

− Tj−1
 y1
. . .
yj−1

 mod q.

Then yj = u, where u is a solution to the system of inequalities (2). So
z(j−1)k+1

z(j−1)k+2

. . .
zjk

 ≡

b1
b2
. . .
bk

−

t1j
t2j
. . .
tkj

 yj mod q

and the entries of the left hand side vector are bounded by c in absolute value.
Therefore for every 1 ≤ j ≤ n,

a(j−1)k+1

a(j−1)k+2

. . .
ajk

 ≡

∗ ... ∗ t1j
∗ ... ∗ t2j
∗ ... ∗ . . .
∗ ... ∗ tkj




y1
. . .
yj−1
yj

+


z(j−1)k+1

z(j−1)k+2

. . .
zjk

 mod q.

So a ≡ Ty + z mod q, where z = (z1, z2, . . . , zkn) and |zi| ≤ c. The statement
is proved.

2.3 Public Key

The public key is an integer kn× n matrix A ≡ CTB mod q.

2.4 Signature Generation

To sign the message M one computes h = HASH(M). Let a = (a1, a2, . . . , akn)
such that a ≡ C−1h mod q. The vectors

y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zkn),

such that a ≡ Ty + z mod q and |zi| ≤ c are then computed according to
Theorem 1, where each yj is taken uniformly from the set of solutions to (2)
for appropriate b1, . . . , bk. The signature is x ≡ B−1y mod q, where x ∈ Znq .
We call e = Cz the error vector for M,x. Given h, the vector y is generally not
unique. There may exist messages M which admit several valid signatures.

2.5 Signature Verification

To verify the signature x for M one computes h = HASH(M) and Ax. Let e ≡
h−Ax mod q, where e ∈ Zknq and such that the entries of e = (e1, e2, . . . , ekn)
are at most (q− 1)/2 in absolute value. The signature is accepted if |ei| ≤ λc for
every 1 ≤ i ≤ kn.

2.6 Verification Proof

According to the signature generating algorithm C−1h ≡ Ty + z mod q, where
z = (z1, z2, . . . , zkn) and |zj | ≤ c and x ≡ B−1y. Then

C−1h ≡ Ty + z ≡ TBx+ z mod q, and h ≡ Ax+ Cz mod q, (3)

where the entries of e = Cz are bounded by λc in absolute value. So the signature
is accepted.

3 Signature distribution

In this section we prove that if h = HASH(M) is distributed uniformly on
Zknq , then the signature x is uniformly distributed on Znq . Recall that (2) has a
solution for every b1, . . . , bk. We can there put t1 = t1j = 1, t2 = t2j . . . , tk = tkj
to simplify the notation below. So (2) is equivalent to the following statement.
For every tuple of residues b1, . . . , bk modulo q there exist u and i1, . . . , ik, where
|i1| ≤ c, . . . , |ik| ≤ c, and u is a residue modulo q, such that b1 ≡ u + i1, b2 ≡
ut2 + i2, . . . , bk ≡ utk + ik. Let A(b1, . . . , bk) denote the set of such u.

In order to prove that the signature x = B−1y is uniformly distributed it
is enough to prove that y is uniformly distributed. According to Theorem 1, it
is enough to prove that if b1, . . . , bk are generated independently and uniformly

at random on residues modulo q and the solution u to (2) is taken uniformly
from A(b1, . . . , bk), then u is uniformly distributed on residues modulo q. The
probability of u is equal to

1

qk

∑
u∈A(b1,...,bk)

1

|A(b1, . . . , bk)|
,

where the sum runs over all b1, . . . , bk such that u ∈ A(b1, . . . , bk). The following
lemma implies that this probability is 1/q.

Lemma 1.
∑
u∈A(b1,...,bk)

1
|A(b1,...,bk)| = qk−1.

Proof. The inequalities (2) are equivalent to b1 − u ≡ i1 , b2 − t2b1 ≡ i2 −
t2i1 , . . . , bk − tkb1 ≡ ik − tki1 modulo q, where |i1| ≤ c, . . . , |ik| ≤ c. Let s =
s(a2, . . . , ak) be the number of solutions i1, . . . , ik to

|i1| ≤ c, . . . , |ik| ≤ c a2 ≡ i2 − t2i1 mod q, . . . , ak ≡ ik − tki1 mod q. (4)

Then
|A(b1, . . . , bk)| = s(a2, . . . , ak),

where a2 ≡ b2− t2b1, . . . , ak ≡ bk− tkb1. Moreover, u ∈ A(b1, . . . , bk) if and only
if b1 = u+ i1, where i1, . . . , ik is a solution to (4). Since a2, . . . , ak may take any
values, we get∑
u∈A(b1,...,bk)

1

|A(b1, . . . , bk)|
=

∑
a2,...,ak

∑
i1,...,ik

1

s(a2, . . . , ak)
=

∑
a2,...,ak

1 = qk−1,

where the last sum is over all the solutions i1, . . . , ik to (4).

4 Complexity

One may solve the linear system Ca = h mod q for a with Wiedemann’s al-
gorithm [19] in at most λ(kn)2 additions and (kn)2 multiplications modulo q.
Another option is to keep the precomputed matrix C−1 modulo q and compute
a ≡ C−1h mod q.

In signature generating the vector y may be computed in around 2ckn +
kn2/2 multiplications modulo q and the complexity of computing x ≡ B−1y
is n2 multiplications. The signature size is dn log2 qe bits. The complexity of
verification is essentially kn2 multiplications modulo q to compute Ax. Remark,
that q may be taken relatively small compared with digital signature algorithms
from the NIST competition, see Table 1. So the computation is very fast in that
case.

For the public key one has to keep the matrix A, that is kn2 residues modulo
q. For the private key one keeps the matrix C−1 (or a minimal polynomial for
C to apply the Wiedemann algorithm) and the matrices B−1, T . Instead, one
may keep a seed and generate B−1 and T with this seed if necessary. That can

be done easily as all the entries of T except zeros and diagonal are random and
the entries of B are random, where B is invertible with probability close to 1.
So the size of the private key may be made negligible.

The complexity parameters are significantly lower for the reduced version of
the signature algorithm in Section 6.

5 Cryptanalysis

There are three approaches to the cryptanalysis: find private key given public
key only, find private key by analysing a number of valid signatures, and forge
signatures without the knowledge of the private key.

5.1 Private Key Recovery

We have not found any efficient method to recover the matrices C, T,B from
A = CTB besides searching over C or B according to their definitions. However,
if λ and k are small, one may recover around n/λ− n/kλ rightmost columns of
CT and B−1 relatively fast.

Really, let b be the rightmost column of the matrix B−1. Then Ab is the
rightmost column of CT . As T is in a column echelon form, the rightmost col-
umn of CT has at most kλ nonzero entries. Let A(m) be a sub-matrix of A
in m > n randomly chosen rows. With probability at least

(
kn−kλ
m

)
/
(
kn
m

)
we

have A(m)b ≡ 0 mod q and b is recovered by solving a system of linear equa-
tions. One thus recovers the rightmost column of CT with the number of trials
at most

(
kn
m

)
/
(
kn−kλ
m

)
. One now eliminates kλ rows from A, where the right-

most column of CT has non-zero entries. Then the second rightmost column
of CT is similarly recovered, etc. The l-th right most column of CT is found
after

(
kn−(l−1)kλ

m

)
/
(
kn−lkλ
m

)
trials for l ≤ n/λ − n/kλ. For l > n/λ − n/kλ the

complexity of recovering the columns of CT grows very fast because the sys-
tem of linear equations A(m)b = 0 will have rank m = kn − lkλ < n and the
number of solutions is of order qn−kn+lkλ before the system gets trivial, that
is with qn solutions, which happens when l = n/λ. Therefore, approximately
n/λ − n/kλ < n/λ right most columns of CT and of B−1 may be recovered.
To forge signatures one has to know the whole matrices C, T,B. According to
the definitions in Section 7 the left most s = n− n/λ columns of T still contain
nks− ks(s+ 1)/2 ≈ kn2(1/λ− 1/λ2) unknown non-diagonal entries and the left
most s columns of B still contain ns = n2(1 − 1/λ) unknown entries, residues
modulo q. Therefore, the method is not efficient enough to forge signatures.

5.2 Existential Forgery by Guessing

Given a hash value h, one may try small values (≤ λc in absolute value) of
some n entries of e ≡ h − Ax mod q, compute x by solving a system of linear
equations and check if all other entries of e are at most λc in absolute value.
The success probability is (2λc+1

q)(k−1)n. So, on the average, one needs to solve

around (q
2λc+1)(k−1)n linear systems of n equations in n variables modulo q in

order forge a signature for h.

5.3 Existential Forgery by Solving CVP

To forge the signature for a hash value h one is to find a vector e whose entries are
bounded by λc in absolute value and h ≡ Ax+e for some vector x. This problem
always has a solution for the parameters defining the signature algorithm. Let
L be a lattice of rank kn and of volume qkn−n generated by the columns of A
modulo q. Thus it is enough to solve an approximate CVP-instance for L in the
maximum norm.

The solution of this problem implies a vector in L at the Euclidean distance
≤ λc

√
kn from h. By Gaussian heuristic, see [16], the minimum distance between

any h and L is O(
√
kn q1−1/k) for average h. Therefore, to forge signatures one

has to solve a CVP-instance for L with a small approximation factor O(λc
q1−1/k).

The approximate CVP is hard for general lattices of large rank if the approxi-
mation factor is small [12]. It is an open question how to use the structure of A
to accelerate the solution.

One may also apply an exact CVP algorithm as in [1] or [6]. It is claimed in
[6] that the CVP may be solved in heuristic time 20.292 d+o(d) by a lattice sieving
algorithm with the same amount of memory, where d is the rank of the lattice.
That is not efficient for d = kn.

5.4 Key Recovery under Known Message Attack

Let m ≥ kn messages Mi, i = 1, . . . ,m be signed with the same private key and
si be their signatures respectively. Then

hi −Asi ≡ Cfi mod q, i = 1, . . . ,m, (5)

where Cfi is the error vector for Mi, si and hi = HASH(Mi). The entries of fi
are bounded by c. In these equations hi, A, si are public while fi, C are secret.
Let

U = [h1 −As1, . . . , hm −Asm] ≡ [Cf1, . . . , Cfm] mod q

be a matrix of size kn × m whose columns are left hand side columns in (5).
Let b be a row in C−1 mod q and v ≡ b U mod q. The entries of v are at most
c in absolute value as they are some entries of fi. The vector v belongs to the
lattice L generated by the rows of U modulo q. The lattice L is of rank m and of
volume Vol = qm−kn. The Euclidean norm of v is at most c

√
m and L contains

at least nk such vectors. Thus BKZ reduction or a sieving algorithm may be
tried to recover such v and the rows b of C−1 mod q. Recovering the matrices
T,B is then easy.

The application is successful if c
√
m is around the first minimum of L. Oth-

erwise, the lattice may contain too many vectors whose norm is close to the
norm of the target vectors v. The first minimum is bounded by

√
γm Vol1/m,

where γm is the Hermit constant for rank-m lattices. For large m we have
γm ≤ (1.745/2πe)m, see [16]. We take the smallest m such that

|v| ≤ c
√
m ≤

√
(1.745/2πe)m q(m−kn)/m.

So m ≥
[
ln q/ ln

(
q
c

√
1.745
2πe

)]
kn . The complexity of sieving is 20.292m+o(m) op-

erations according to [11] with the memory of the same order. As m is very large,
this method is inefficient. Block BKZ reduction does not provide any advantage
over the plain sieving algorithm in this setting. For instance, for the parameters
in Section 7 the size of the optimal block computed according to [2] is again m.

Let λ = 2 and let C = P1 +P2 be a sum of two permutation matrices P1, P2

such that the permutation Q = P1P
−1
2 has two cycles of odd length. Then

C−1 = (1/2)K over rationals, where the entries of K are 0,±1 by Lemma 2 in
the Appendix. SoK(hi−Asi) = 2fi mod q and one may recoverK and therefore
C faster than in the general case. That is why λ = 2 is not recommended. For
λ > 2 the matrix C−1 does not have such representation. Therefore the method
does not work.

6 Reduced Public Key

According to the cryptanalysis in Section 5.1, around n/λ − n/kλ rightmost
columns of CT and of B−1 may be recovered relatively fast given A. Therefore
these columns may not be considered secret. One can use that to reduce the size
of the public key. Let 1 ≤ s ≤ n be an integer parameter and r = n− s. We set

C =

(
C1 C4

C2 C3

)
, T =

(
T1 0
T2 T3

)
, B =

(
B1 0
B2 I

)
.

The sub-matrices C1, C3 are square and of size ks× ks and kr× kr respectively.
That defines the size of the sub-matrices C2, C4. The sub-matrices T1, T3 are of
size ks× s and kr× r respectively, where T3 is defined by (8) below. That is the
matrix T3 is of type (1), where only diagonal entries are non-zero. The sub-matrix
B1 is square and of size s× s, invertible modulo q, and I is an identity matrix of
size r × r. We assume that C3, C4, T3 are public while C1, C2, T1, T2, B1, B2 are
secret. Then

A ≡ CTB ≡
(
C1T1B1 + C4(T2B1 + T3B2) C4T3
C2T1B1 + C3(T2B1 + T3B2) C3T3

)
≡
(
A1 A4

A2 A3

)
.

Suppose C3 is invertible modulo q. Then

A ≡
(
A′ + C4C

−1
3 A2 A4

A2 A3

)
mod q, (6)

where A′ = C ′T1B1 and C ′ ≡ C1 − C4C
−1
3 C2. Let, for instance, λ = 4. One

chooses the rows of C1, C2 to be of 1-norm equal to 1 and the rows of C3, C4 to

be of 1-norm equal to 3. Experimentally, with high probability, C3 is invertible
modulo q and C−13 is quite dense. So the secret matrix C ′ is not sparse in that
case and it hides the structure of T1B1 in the definition of A′. As A is public,
one may recover the matrix A′. However, one can not recover any columns of
C ′T1 and B−11 from A′ as in Section 5.1.

As the matrices A3, A4 are sparse and may be made constants, one essentially
stores only the entries of A1, A2 for the public key. That makes kns residues
modulo q.

7 Proposed parameters

In this section we propose parameter sets. They are chosen to approximately
fit two security levels 2120 and 2240 bit operations to break the system. The
parameters are optimised to balance the complexity of the three so far best
attacks. They are a guessing algorithm in Section 5.2, another guessing algorithm
in Section 10 and a lattice sieving algorithm to solve a relevant instance of CVP in
Section 5.3. Also, the parameters are chosen to minimise the size of the signature
and the size of the public key. In order to reduce the public key the method in
Section 6 was applied with r = s = n/2 and k = 2. In every parameter set below
we take λ = 4 and c = 2.

Parameter sets are defined for prime q = 23 and composite q = 24, 25. There
is only one tuple [t1, t2] = [1, 5] modulo both q = 23 and 24 up to a permutation,
multiplication of the tuple modulo q by residues coprime to q and changing sign
of the tuple entries such that the system of inequalities (2) for k = 2, c = 2 has
a solution u for every integer b1, b2. For q = 25 there are two such tuples [1, 5]
and [1, 10]. One takes [t1, t2] independently to define the diagonal entries of T .

7.1 Security level 2120

We set (n, k, q, λ, c) = (230, 2, 23, 4, 2). The signature size is 1040 bits (130 bytes)
and the public key size is 30.3 Kbytes. In order to forge a signature x given a hash
value h one may apply the attack in Section 5.2, where the probability to find x
such that every entry of e ≡ h−Ax mod q is bounded by λc in absolute value is(

2λc+1
q

)(k−1)n
≈ 2−100.3. Therefore, one has to solve 2100.3 linear systems with

n = 230 equations and n = 230 variables modulo q = 23 to forge the signature
with this method on the average. This is the best attack so far in this setting.
The complexity matches the complexity of the guessing algorithms in Section
10. The algorithm in [1] solves an instance of CVP in Section 5.3 and therefore
finds e in 2134.3 operations with memory size 2134.3, these figures may in fact
be larger due to hidden factors. This choice fits the first security level 2120. The
new algorithm with this parameters was implemented on a common computer.
The signature verification took less than 10−3 of a second per signature and the
signature generation was around 4 times longer.

Using q = 24 significantly reduces the size of the signature and the public
key. For (n, k, q, λ, c) = (200, 2, 24, 4, 2) the signature size is 917 bits (115 bytes)

and the public key size is 23.3 Kbytes. These parameters fit the first security

level 2120 by the argument above as
(

2λc+1
q

)(k−1)n
≈ 2−99.5, see Section 5.2,

and the algorithm in [1] solves an instance of CVP in Section 5.3 and therefore
finds e and forges x in 2117 operations with memory size 2117, these figures may
be larger due to hidden factors.

Using q = 25 for this security level does not significantly reduce the size of
the signature and the public key.

7.2 Security level 2240

For (n, k, q, λ, c) = (500, 2, 23, 4, 2) the signature size is 2262 bits (283 bytes)
and the public key size is 142.2 Kbytes. These parameters fit the second security

level 2240 as
(

2λc+1
q

)(k−1)n
≈ 2−218.0, see Section 5.2, and the algorithm in [1]

solves an instance of CVP in Section 5.3 and therefore finds e and forges x in
2292.5 operations with memory size 2292.5.

For (n, k, q, λ, c) = (430, 2, 24, 4, 2) the signature size is 1972 bits (247 bytes)
and the public key size is 106.7 Kbytes. These parameters fit the second security

level 2240 as
(

2λc+1
q

)(k−1)n
≈ 2−213.9, see Section 5.2, and the algorithm in [1]

solves an instance of CVP in Section 5.3 and therefore finds e and forges x in
2251.5 operations with memory size 2251.5.

For (n, k, q, λ, c) = (400, 2, 25, 4, 2) the signature size is 1858 bits (232 bytes)
and the public key size is 93.5 Kbytes. These parameters fit the second security

level 2240 as
(

2λc+1
q

)(k−1)n
≈ 2−222.5 and the algorithm in [1] solves an instance

of CVP in Section 5.3 and therefore finds e and forges x in 2234.0 operations
with memory size 2234.0, these figures may be larger due to hidden factors. It is
easy to see that for q = 25 and c = 2 the signature algorithm generates a unique
signature for any given hash value h.

7.3 New Algorithm versus NIST Selected Digital Signature
Algorithms

We summarise the security and some complexity parameters of the new algo-
rithm in the first line of Table 1 and put them against those of the NIST Se-
lected Digital Signature Algorithms with approximately matching security 2120,
see [13]. In Table 1 bits, bytes and kilobytes are abbreviated by b, B and kB
respectively. One sees that the signatures generated with the new algorithm are
several times shorter than those of the NIST algorithms though the public key
size is significantly larger. A similar holds for higher security levels.

8 Underlying Problem

Let n, k, s, r = n− s be positive integers, q be an odd prime, and let δ < q be a
positive real. Let R denote an integer matrix of size kn×s, whose entries modulo

Table 1. Comparison with NIST 3-rd round candidates

algorithm security public key arithm. q sign.

(200, 2, 24, 4, 2) 119 b 23.2 kB 24 115 B

Dilithium level 2 121 b 1.31 kB 8380417 2420 B

Falcon level 2 120 b 0.897 kB 12289 666 B

SPHINCS+ level 1 133 b 0.032 kB - 7856 B

q were generated uniformly at random. Also, let K be an integer matrix of size
kn× r and of rank r modulo q. Given an integer vector h of size kn, one asks to
find integer vectors x1, x2 of size s and r respectively and an integer vector e of
size kn such that every entry of e is at most δ in absolute value and

Rx1 +Kx2 + e ≡ h mod q. (7)

Let’s denote the concatenations A = R|K and x = x1|x2. Then (7) is equivalent
to Ax+ e ≡ h mod q. That is an instance of the CVP in the maximum norm for
the lattice generated by the columns of A modulo q. Heuristically, the problem
has a solution for every h if qn(2δ + 1)kn > qkn.

The security of the new signature algorithm is based on the hardness of
solving (7) for some matrices R and K. For the parameters k = 2, s = r =
n/2, λ = 4 and matrices specified in Sections 6, the matrix R may be considered
as generated uniformly according to Section 9 below. To construct the matrix
K, let

T3 =



t11 0 . . . 0
t21 0 . . . 0
. . .
tk1 0 . . . 0
0 t12 . . . 0
0 t22 . . . 0
. . .
0 tk2 . . . 0
. . .
0 0 . . . t1r
0 0 . . . t2r
. . .
0 0 . . . tkr



(8)

be a matrix of size kr × r for non-zero diagonal entries tij such that each tuple
[t1j , t2j , . . . , tkj] has to satisfy (2) in Section 2.2.

Also, let C3 and C4 be matrices of size kr× kr and ks× kr respectively and
whose rows have 1-norm (the sum of the absolute values of the entries) equal to
3. The matrices C3, C4, T3 are public. Then

K =

(
C4T3
C3T3

)
(9)

is a matrix of size kn× r and of rank r. See Section 9 below for details.

8.1 Sub-problem.

Let a matrix K of size kn × s be defined by (9). Given an integer vector h
of length kn find an integer vector z of length s and an integer vector e of
length kn such that Kz + e ≡ h mod q and every entry of e is bounded by δ in
absolute value. Heuristically, the problem has a solution if qs(2δ + 1)kn > qkn.
An efficient algorithm to solve this equation implies an efficient algorithm to
solve the equation (7).

9 Reduction to the Underlying Problem

When constructing the public matrix A in Section 6, the matrix T2 of size kr×s
may be taken uniformly at random. So the matrix A2 of size kr × s in (6)
is uniformly distributed. The matrix A′ = C ′T1B1 of size ks × s is generated

independently of A2. It depends on ks(s−1)
2 randomly chosen entries of T1 and

on s2 randomly chosen entries of the invertible B1, besides randomly chosen

C1, C2. So the matrix R =

(
A1

A2

)
of size kn × s depends on ks(s−1)

2 + krs + s2

independent residues modulo q and on C1, C2.
Let k = 2 and s = r = n/2, and λ = 4. We set the public C3, C4 to be

a sum of three permutation matrices of size s × s each. The secret C1, C2 are
permutation matrices of size s× s.

Then the matrix R of size 2n×n/2, that is with n2 entries depends on n2−n/2
randomly and independently chosen residues modulo q and besides on randomly
chosen C1, C2. As qn

2−n/2(n2 !)2 > qn
2

for relatively small q, the number of
independent parameters for the entries of R is larger than the number of their
entries. So, heuristically, the matrix R is uniformly distributed. By construction,

the matrix K =

(
A4

A3

)
=

(
C4T3
C3T3

)
is of full rank r = n/2.

The signature x for a hash value h satisfies Ax+e = h, where the entries of e
are at most λc in absolute value. Let x = x1|x2, where x1, x2 are of size s. Then
Ax+ e = h implies Rx1 +Kx2 + e = h. To forge a signature one must solve an
instance of the problem in Section 8 with parameters k = 2, r = s = n/2 and
δ = λc = 4c.

The size of the public key is essentially n2 residues modulo q. Verification
cost is essentially n2 multiplications modulo q.

10 Solving the Underlying Problem by Guessing

There are two guessing type algorithms to find a solution to (7). First, one may
guess n small (bounded by δ) entries of e, find x = x1|x2 by solving a system of
linear equations modulo q, then check other kn − n entries of e. If they all are
small (bounded by δ), then the solution is found. The probability of success is
(2δ+1

q)kn−n.

Second, let x1 be a random vector of our choice and h−Rx1 = h1|h2, where
the size of h1 is ks and the size of h2 is kr. Also, let e = e1|e2, where the size
of e1 is ks and the size of e2 is kr. Assume that C3 is invertible modulo q. By
using Theorem 1, one finds vectors x2 and f such that the entries of f are small
(bounded by bδ/3c) and

T3x2 + f = C−13 h2.

Then C3T3x2 + e2 = h2, where the entries of e2 = C3f are small (bounded
by δ) as the 1-norm of the rows of C3 is equal to 3. The probability that the
vector e1 = h1 − C4T3x2 has small entries is (2δ+1

q)ks. So (7) is satisfied for

such x = x1|x2 and e. The success probabilities of the both algorithms are equal
for ks = kn − n. Therefore, one may set s = n − n/k. We conjecture that the
equation (7) is hard for K defined by (9), such s and for large n.

References

1. A. Becker, N. Gama, A. Joux, Solving shortest and closest vector problems: The
decomposition approach, IACR Cryptology ePrint Archive, 2013/685.

2. G. Hanrot, X. Pujol, D. Stehlé, Analyzing blockwise lattice algorithms using dynam-
ical systems, in CRYPTO 2011, LNCS, vol. 7073, pp. 1–20, Springer 2011.

3. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman, W. Whyte
NTRUSign: Digital signatures using the NTRU lattice in CT-RSA 2003. LNCS,
vol. 2612, pp. 122–140, Springer 2003.

4. C. Gentry and M. Szydlo, Cryptanalysis of the Revised NTRU Signature Scheme in
EUROCRYPT 2002, LNCS, vol. 2332, pp. 299–320, Springer 2002.

5. O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice re-
ductions problems, in CRYPTO 1997. LNCS, vol. 1294, pp. 112–131, Springer 1997.

6. T. Laarrhoven, Sieving for closest lattice vectors(with preprocessing), arXiv:
1607.04789v1, 16 Jul 2016.

7. X. Nie, X. Jiang, L. Hu, and J. Ding, Cryptanalysis of Two New Instances of TTM
Cryptosystem, Cryptology ePring Archive.

8. L. Goubin, N. Courtois, Cryptanalysis of the TTM Cryptosystem, in ASIACRYPT
2000, LNCS, vol 1976, pp. 44–57, Springer 2000.

9. C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices and new
cryptographic constructions, in STOC 2008, pp. 197–206, ACM 2008.

10. J.C. Faugére, A. Joux, Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases, in CRYPTO 2003, LNCS, vol 2729, pp. 44–60,
Springer, 2003.

11. T. Laarhoven, Sieving for shortest vectors in lattices using angular locality-sensitive
hashing, in CRYPTO 2015, LNCS vol. 9215, pp. 3–22, Springer 2015.

12. D. Micciancio, and S. Goldwasser , Complexity of Lattice Problems: A Crypto-
graphic Perspective, The Kluwer International Series in Engineering and Computer
Science, vol. 671, Kluwer Academic Publishers, Boston, MA, 2002.

13. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization.

14. D. Micciano, C. Peikert, Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller,
in EUROCRYPT 2012, LNCS, vol 7237, pp. 700-718, Springer 2012.

15. Ph. Q. Nguyen and O. Regev, Learning a Parallelepiped: Cryptanalysis of GGH
and NTRU Signatures, J, Cryptol. vol. 22 (2009), pp. 139–160.

16. Ph. Q. Nguyen, B. Vallée, editors, The LLL Algorithm, Survey and Applications,
Springer,2010.

17. A. Pellet-Mary, D. Stehle, On the hardness of the NTRU problem, in ASI-
ACRYPT’21, LNCS 13090, pp.3–35, 2021.

18. T. Plantard, W. Susilo, and K. T. Win, A Digital Signature Scheme Based on
CV P∞, in PKC 2008, LNCS 4939, pp. 288–307, 2008.

19. D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. on
Inf. Theory, vol. 32 (1986), pp. 54–62.

11 Appendix

Lemma 2. Let P1, P2 be permutation matrices of size m×m. Then C = P1+P2

is of rank m if and only if the permutation Q = P2P
−1
1 has only odd cycles. In

this case, detC = ±2s, where s is the number of cycles in Q.

Proof. The matrix C is of full rank if and only if the system of linear equations
x(P1 + P2) = 0 has only zero solution. The system is equivalent to x = −xQ.
The latter has a non-zero solution if and only if Q has at least one cycle of even
length. That proves the first part of the lemma. To prove the rest, let r1, . . . , rs
be the lengths of the cycles in Q and R = CP−11 = Im + Q, where Im is an
identity permutation.

Let r be an odd number and P = [2, 3, . . . , r, 1] be a permutation with exactly
one cycle of length r. We consider P as a matrix and get

Rr = Ir + P =


1 1 0 . . . 0 0
0 1 1 . . . 0 0
. . .
0 0 0 . . . 1 1
1 0 0 . . . 0 1

 . (10)

So det(Rr) = 2. There is a permutation U such that

U−1CP−11 U = U−1RU = Im + U−1QU =


Rr1 0 . . . 0
0 Rr2 . . . 0
. . .
0 0 . . . Rrs

 , (11)

where Rri is defined by (10). Therefore, det(R) = 2s.

For λ = 2 one may choose a random secret permutation Q of [1, 2, . . . , kn]
with two cycles of close odd lengths and a random secret permutation P1, and
set P2 = QP1. Then C = P1 + P2. The inversion of Rr is a Toeplitz matrix of
size r × r whose first row is [1,−1, 1,−1, . . . , 1] multiplied by 1/2. By (11) one
can easily compute the inversion of C.

